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RESUMO

SANDIM, M. Sobre detecção de fronteira para métodos baseados em partículas:
visibilidade, aprendizado, análise intervalar, métricas, e aplicações. 2020. 83 p.
Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional)
– Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2020.

Esta tese é um estudo compreensivo sobre a definição, desenvolvimento, e avaliação de
métodos de detecção de fronteira em sistemas de partículas. Um sistema de partículas é
um tipo de representação de dados usada em diversos métodos de simulação de fluidos,
como o Smoothed Particle Hydrodynamics (SPH) e o Position Based Fluids (PBF) usam
sistemas de partículas como sua representação primária para o fluido. Outras técnicas
como o Fluid-Implicit-Particle e o Affine Particle-In-Cell (APIC) usam sistemas de par-
tículas como uma representação suplementar. Em ambos os casos a informação sobre a
fronteira do sistema de partículas pode ser útil, uma vez que ela provê informação crucial
para melhorar a precisão e qualidade da simulação, da geração de uma superfície-livre,
ou para reamostrar ou redistribuir partículas em regiões críticas. Apesar disso esse é um
problema mal definido e com soluções custosas e propensas a erros. Sendo assim, nós pro-
pomos uma definição matemática para o problema, e, a partir dessa definição, exploramos
quatro soluções distintas. Baseamos nossas soluções em testes de visibilidade, aprendi-
zado de máquina, e uma combinação de aritmética intervalar e geometria computacional.
Nós testamos extensivamente nossas soluções usando diferentes classes de problemas e
medimos a sua eficiência. Dados os resultados, nós podemos afirmar que cada uma das
nossas soluções possuem características que as fazem adequadas para diversos casos de
uso distintos.

Palavras-chave: Sistemas de partículas, Fronteira, Geometria computacional, Aprendi-
zado de máquina, Aritmética intervalar.





ABSTRACT

SANDIM, M. On the boundary detection for particle-based methods: visibility,
learning, interval analysis, metrics, and applications. 2020. 83 p. Tese (Douto-
rado em Ciências – Ciências de Computação e Matemática Computacional) – Instituto
de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP,
2020.

This thesis is a comprehensive study of the definition, development, and evaluation of
boundary detection methods for particle systems. A particle system is a variety of data-
representation used in many fluid simulation methods, such as Smoothed Particle Hydro-
dynamics (SPH) and Position-Based Fluids (PBF) use particle systems as their primary
representation for the fluid. Other techniques, such as Fluid-Implicit-Particle (FLIP) and
Affine Particle-In-Cell (APIC), use particle systems as a supplemental representation. In
both cases, the knowledge about the boundaries of the particle system can be useful, as
it gives crucial information to improve the precision and quality of the simulation, of the
generation of a free-surface, or to resample or redistribute particles in critical regions.
Despite all that, this is still a poorly defined problem and with costly and error-prone
solutions. In light of this, we introduce a mathematical definition for the problem, and,
starting from this definition, we explore four distinct solutions. We based our solutions
on visibility tests, machine learning, and a combination of interval arithmetic and compu-
tational geometry. We thoroughly tested our solutions using different classes of problems
and measured their efficiency. Given the results, we can affirm that each of our solutions
has characteristics that make them well suited for several distinct use cases.

Keywords: Particle systems, Boundary, Computational geometry, Machine learning,
Interval arithmetic.
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CHAPTER

1
INTRODUCTION

Particle-based methods – also called meshfree methods – are one of the most
widely used tools in numerical simulation of physical phenomena. They have been ap-
plied in the simulation of fluids for decades since the introduction of the Smoothed Par-
ticle Hydrodynamics method by Gingold and Monaghan (1977), and many others im-
proved and extended the idea of particle-based fluid simulation. They consist of using
a finite set of discrete elements to represent a continuous medium that would otherwise
be impracticable to represent and manage using the limited resources of a computer. In
a particle-based method, each particle carries information about its position and any
other relevant information. In fluid simulation, the pressure, density, and velocity are
some of the data needed to compute approximate solutions for the Navier-Stokes equa-
tions or Euler equations that describe fluid motion. However, the use of particle-based
methods goes beyond the extensions and improvements of the SPH method (LIU; LIU,
2003; GOSWAMI et al., 2010; AKINCI; AKINCI; TESCHNER, 2013; ORTHMANN et
al., 2013), with methods such as Position-Based Fluids (PBF) (MACKLIN; MÜLLER,
2013), Fluid-Implicit-Particle (FLIP) (ZHU; BRIDSON, 2005), and Moving-Particle Semi-
implicit (MPS) (KOSHIZUKA et al., 2018) taking widely different ways on the use of
particles.

The use of meshfree methods has some intrinsic advantages over mesh-based meth-
ods. Particles can naturally track changes in topology and adapt to high-detail bound-
aries. Nevertheless, it is not easy to obtain accurate information about the boundaries
themselves in particle-based methods, and authors have proposed many solutions to this
problem. One can refer to this problem as the classification of boundary and internal
particles, or just boundary detection.

Even though the boundary of a set of particles is not trivial to compute, it has many
applications. Incompressibility is a property that is hard to ensure in a fluid simulation
using the SPH method. We can solve the incompressibility problem through the Poisson
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Pressure Equation, usually referred to as the PPE, which needs information about the
boundaries of the particle system to impose boundary conditions (HOSSEINI; FENG,
2011). Without boundary conditions, the PPE can have infinite solutions. Another use of
boundary information is on the evaluation of surface tension. Lin, Liu and Wang (2019)
attested that information about the boundary of the system could help to calculate the
local curvature at the position of the particles and thus help estimate the surface tension.
Two-way coupling between fluids and solids can also take advantage of this information,
as shown by He et al. (2012) and Lin, Liu and Wang (2019).

1.1 Contribution

Given the importance of the boundary computation problem, we explored four
different solutions for it. Each one with a different objective in mind, as it is clear that
one single solution cannot fit all requirements of each possible application.

Focusing on speed but keeping the consistency and the reliability of the method in
mind, we developed a method that reuses traditional data structures present on meshfree
methods and applies visibility tests to identify boundary particles. Every particle-based
method needs a tool to accelerate the search for neighbors for each particle, and regular
grids are one of the most common. We use the grids to distribute a comparatively low
number of viewpoints around the boundaries of the particle system in a way that we
guarantee that they are close to the boundary. From each viewpoint, we use a local
version of the Hidden Point Removal (HPR) operator proposed by Katz et al. By using an
appropriate flipping function, we increase the separation between layers before computing
the convex hull. This method produces reliable and consistent results; it is simple to
implement; and adds low overhead.

One alternative to reduce the runtime overhead of a method is offloading part of the
cost to a pre-processing step. Machine learning methods often do this by using a training
phase that is considerably more expensive than the classification phase. By reframing
the boundary detection problem as a classification problem, we can also use training
and classification phases. The use of machine learning has the potential to significantly
improve the runtime performance of the boundary detection at the cost of reliability and
accuracy. This tradeoff is an option for cases when performance is more important than
accuracy.

The use of visibility tests and machine learning have an inherent flaw: they have
weak assurances about the overall correctness of the method. Interval analysis, on the
other hand, is a tool with theoretical guarantees that empower us to approximate and
refine a solution as long as we are capable and willing to reduce the size of the intervals.
By using interval analysis, we developed a simple method that adaptatively refines the



1.2. Outline 21

solution while preserving the guarantee that it will never label a boundary particle as
internal. This kind of error is usually referred to as Type I error, or a False Positive. Type
II errors – or False Negative – can still occur in our method, but the user can choose to
reduce the rate of false negatives in exchange for a slightly higher computational cost.

1.2 Outline
This organization of this text follows our main contributions, where each chapter

corresponds to a paper of our authorship:

• Chapter 2 presents our visibility-based method and other contributions, such as a
mathematical definition for the boundary detection problem, and a metric that can
give an overall score to a boundary detection method (SANDIM et al., 2016);

– Section 2.6 exhibits the application of the visibility-based boundary detection
method on a resampling method that can improve the particle distribution in
critical areas (SANDIM et al., 2019).

• Chapter 3 shows how we can use the mathematical definition of the boundary detec-
tion method to train a Support Vector Machine (SVM) that can classify particles
as boundary and internal (SANDIM; PAIVA, 2020);

• Chapter 4 discusses the use of interval analysis to solve the boundary detection
problem while preserving some theoretical guarantees. It is an adaptive method
that is simple to implement and simple to use (SANDIM; PAIVA; FIGUEIREDO,
2020);

• Chapter 5 concludes the thesis and presents possibilities for future work.
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CHAPTER

2
BOUNDARY DETECTION IN

PARTICLE-BASED FLUIDS

Figure 1 – The boundary particles (red) detected by our method in a cutaway view of a dam
break with Bunny as obstacle.

Source: Sandim et al. (2016).

This chapter presents a novel method to detect free-surfaces on particle-based vol-
ume representation. In contrast to most particle-based free-surface detection methods,
which perform the surface identification based on physical and geometrical properties de-
rived from the underlying fluid flow simulation, the proposed approach only demands the
spatial location of the particles to properly recognize surface particles, avoiding even the
use of kernels. Boundary particles are identified through a Hidden Point Removal (HPR)
operator used for visibility test. Our method is very simple, fast, easy to implement and
robust to changes in the distribution of particles, even when facing large deformation of
the free-surface. A set of comparisons against state-of-the-art boundary detection meth-
ods show the effectiveness of our approach. The good performance of our method is also
attested in the context of fluid flow simulation involving free-surface, mainly when using
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level-sets for rendering purposes.

2.1 Introduction

Particle-based fluid representation has an important role in computer animation,
enabling realistic physical simulations of water and blood flows, honey pouring, and
smoke dispersion. In fact, meshfree methods such as Smoothed Particle Hydrodynam-
ics (SPH) (IHMSEN et al., 2014), Moving-Particle Semi-implicit (MPS) (PREMZOE et
al., 2003), Fluid-Implicit-Particle (FLIP) (ZHU; BRIDSON, 2005), and Position Based
Fluids (PBF) (MACKLIN; MÜLLER, 2013) strongly rely on particle representation to
simulate topologically intricate fluid flows in complex geometries.

A main issue for meshfree methods is the imposition of boundary conditions, a
task that demands accurate identification of boundary particles, that is, particles that
belong to the free-surface. Inaccuracies in the detection of boundary particles can lead
to undesirable results such as unrealistic artifacts during simulation. Moreover, rendering
mechanisms can greatly benefit from the information of boundary particles, reinforcing
the need of an effective detection of boundary particle.

Despite its importance, the problem of accurately detecting boundary particles
has not been extensively addressed in the literature. One of the first attempt to properly
tackle the problem is the work by Dilts (DILTS, 2000), where a geometric approach is pro-
posed to identify boundary particles in 2D meshfree simulations. However, Dilts’ method
is computationally involved, making its extension to 3D not so straightforward (HAQUE;
DILTS, 2007). Müller et al. (MÜLLER; CHARYPAR; GROSS, 2003) rely on a simple
approach based on the SPH gradient of a color field defined on the particles. A main
drawback of using color field gradients is its instability when facing non-uniform parti-
cle distribution, making hard the task of finding a global gradient magnitude threshold
to properly classify particles as boundary or non-boundary. Zhang et al. (ZHANG; SO-
LENTHALER; PAJAROLA, 2008) proposed to identify boundary particles based on the
distance between a particle and the center of mass of its neighbors. He et al. (HE et al.,
2012) improved Zhang’s method by adding the SPH particle density information in the
boundary/non-boundary test. However, the use of a kernel function to estimate densi-
ties and center of masses makes the method sensitive to uneven particle distribution. In
order to simulate fluid surface transport, Orthmann et al. (ORTHMANN et al., 2013)
compute surface particles using an SPH approximation of the surface area. Their method
classifies surface particles using an area threshold, resulting in layers of particles around
the surface. In computational physics, Marrone et al. (MARRONE et al., 2010) performs
boundary/non-boundary particle classification based on the spectrum of the SPH kernel
correction matrix combined with a conical region scan defined from normal vector infor-
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mation. However, Marrone’s methodology is restricted to SPH-based numerical simulation
with fairly uniform distribution of particles.

In this work we propose a novel method to detect boundary particles in meshfree
fluid flow simulations. Our approach converts the boundary particle identification problem
in a visibility test problem, employing the well-known Hidden Point Removal (HPR)
operator proposed by Katz et al. (KATZ; TAL; BASRI, 2007) to identify the particles
that belong to the free-surface of the fluid. Figure 1 shows our method in action.

Contributions. In contrast to previous techniques, the proposed method is purely ge-
ometric, requiring only particle positions (without normal) to perform the boundary/non-
boundary particle classification. In other words, our methodology does not demand any
kernel-based interpolation of physical and geometrical properties. Moreover, besides be-
ing computationally efficient and easy to implement, our approach is able to deal with
non-uniform particle distributions and it is robust to large free-surface deformations.

The effectiveness of our approach is shown through a set of comparisons against
state-of-the-art of boundary particle detection techniques. The good performance of the
proposed method is also confirmed in experiments involving free-surfaces generated from
level-sets defined from boundary particles.

2.2 Boundary and Visibility

Let P be a set of points (particles) sampling a compact region Ω⊂Rd and S = ∂Ω

be the boundary surface (free-surface in the case of a fluid) of Ω. Our main goal is to
identify the subset of points p ∈P that lie on S, called boundary points. Boundary points
can be characterized by their visibility, that is, a point p is a boundary point if there is
a viewpoint V /∈Ω such that the line segment connecting p and V intersects Ω only in p.
Intuitively, the visibility criterion says that points p ∈ int(Ω) are “hidden” from V by S,
therefore, only points on S are visible.

Although intuitive, the visibility test as stated above is not useful in practice, as
the region defined by Ω is unknown (only information about the particles are available). In
order to precisely define boundary particles in a meshfree context we rely on the concept
of r-sampling (KATZ; TAL; BASRI, 2007). A point set P is a r-sampling of a domain
Ω if for any x ∈ Ω there exist p ∈P, such that ‖x−p‖ < r. Assuming a r-sampling P,
consider the set

Mr = {x ∈ Rd | dist(x,P)< r , P ⊂Ω} . (2.1)

Let Br(p) denotes an open ball of radius r centered at p. A point p∈P is called r-interior
if ∂Br(p)⊂Mr, where ∂Br(p) is the boundary of Br(p). Otherwise, p is called r-boundary
and we denote by Br ⊂P the set of all r-boundary particles (see Figure 2).
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Figure 2 – The r-boundary particles (red) and r-interior particles (blue) from P.

Source: Adapted from Sandim et al. (2016).

Computing the r-boundary set Br is a laborious, intricate, and computationally
intensive task (HAQUE; DILTS, 2007). An alternative is to approximate Br rather than
compute it directly. A tenable option is to approximate Br using the hidden point removal
(HPR) operator (KATZ; TAL; BASRI, 2007), which aims at identifying visible points on
point-set surfaces.

The HPR operator comprises two main steps: inversion and convex hull computa-
tion. In the inversion step each point p ∈P is mapped to an “inverted” domain as to a
viewpoint V, that is, points closer to V are mapped far away while points distant from
V tend to be placed closer to V. Denoting the set of inverted points as P̂, a point p is
labeled as visible if its inverted image p̂ is a vertex of the convex hull of P̂ ∪{V}. The
second step of the HPR algorithm computes the convex hull of inverted points, returning
the vertices of the resulting polyhedron as the visible points.

Spherical flipping (KATZ; TAL; BASRI, 2007) is possibly the most widely used
inversion mapping in the context of point-set surfaces. However, when dealing with vol-
umetric particle distributions, the spherical flipping does not present satisfactory results,
as illustrated in Figure 3a, where r-interior points end up being labeled as visible when
the spherical flipping mapping is employed.

In order to better handle volumetrically distributed particles we opt to the ex-
ponential flipping inversion mapping. Assuming a viewpoint placed at origin 0 and that
‖p‖< 1, the exponential flipping is defined as (KATZ; TAL; BASRI, 2007):

f (p) =


p
‖p‖γ

if ‖p‖ 6= 0

0 otherwise
, (2.2)
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Figure 3 – Boundary particles (red) detected from a viewpoint V (green): (a) the effect of HPR
operator using spherical flipping, (b) HPR operator using exponential flipping and
their correspondent convex hull of P̂ ∪ {V} (orange) on top left. Note that, the
spherical flipping can produce misclassified points (dark blue).

V

(a) Spherical flipping.

V

(b) Exponential flipping.

Source: Sandim et al. (2016).

where γ > 1 is a parameter (γ = 1.3 in our implementation). Figure 3b shows particles
labeled as visible when using the exponential flipping inversion mapping, a result clearly
better than in Figure 3a. As depicted in Figure 3b, the exponential flipping performs
better because it generates larger and more “tangential” displacements, tending to place
visible points on the border of the convex hull of inverted points.

An important aspect to be analyzed is whether the set of visible points obtained
from the HPR algorithm is indeed a good approximation to the r-boundary set Br. The
following lemma provides an answer to this question by establishing a relation between
visible and r-boundary points (see proof in Appendix A):

Lemma 2.2.1. Let P be a r-sampling of a domain Ω and p be a r-boundary point, that
is, p ∈Br. There exists a viewpoint V such that p is in the set of visible points HV(P)

resulting from HPR algorithm.

Lemma 2.2.1 provides theoretical guarantees on the existence of viewpoints from
which one can obtain approximations to Br, however, its implementation is cumbersome
and computationally intensive. Next section tackles the problem of creating viewpoints
that produce satisfactory results in a computationally efficient manner.

2.3 The Proposed Method

Given a r-sampling set of points P, we have to choose viewpoint positions from
which the HPR algorithm can properly identify boundary points. Since our approach
rely on HPR to perform the boundary/non-boundary classification, it only requires the
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Figure 4 – Overview of our pipeline in a dam break simulation.

Input Viewpoints Generation Visibility Test Final Result

Source: Sandim et al. (2016).

coordinates of the points as input, disregarding physical attributes typically used by other
approaches.

As illustrated in Figure 4, two main steps are involved in our boundary identifi-
cation process: viewpoint placement (green dots in Figure 4) and the visibility test (red
dots in Figure 4). The following subsections detail both steps of our methodology.

2.3.1 Viewpoint Placement

In order to place viewpoints in appropriate locations, we first define a Cartesian
uniform grid G covering the bounding box of P, setting the edge length of each cubic
(square in 2D) cell equal to 2r. A grid cell C is labeled empty if it contains no particles in
its interior, otherwise, C is labeled full.

Viewpoints must be placed outside the domain Ω (the fluid domain in our case).
For this reason, empty cells adjacent to at least one full cell become natural candidates
to host viewpoints. Therefore, we place a viewpoint in the centroid of each empty cell
adjacent to a full cell. However, cavities with a diameter at least 2r may be present
inside or between full cells and the points on the boundary of those cavities must also be
identified. We mark a full cell C as a cavity cell if it satisfies the two conditions below:

(a) all cells adjacent to C are full,

(b) there is a ball with center in C and radius r that contains no point of P in its interior.

Condition (a) is straightforward to check. In order to verify condition (b), for each point
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pi inside C a candidate viewpoint Vi is located as follows:

Vi =

pi + r
δδδ i

‖δδδ i‖
if ‖δδδ i‖ 6= 0

pi otherwise
(2.3)

with
δδδ i = pi−

1
|Ni| ∑

j∈Ni

p j ,

where j indexes the points p j lying in the neighborhood Ni of radius 2r from pi. Then,
we check the emptiness of each ball Br(Vi). If Br(Vi) is empty, its center is chosen as
a viewpoint. In terms of computational aspects, we decrease the diameter of Br(Vi) by
multiplying a scale factor of 0.95 due to the non-uniform particle distribution. Figure 5
shows the viewpoints generated in the cavity cells, note that a cavity cell can admit
multiple viewpoints.

Figure 5 – Viewpoints generated in empty cells (green) are not enough to detect boundary par-
ticles (red) in internal cavities with diameter at least 2r (gray). While, viewpoints
generated in cavity cells (purple) are able to detect the remaining boundary particles.

2

2

2

Source: Adapted from Sandim et al. (2016).
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2.3.2 Visibility Test

Once the viewpoints have been settled, the HPR operator should be locally ap-
plied as discussed in Section 2.2. For each viewpoint Vi, the set of points Pi within the
ball centered in Vi with radius 4r are picked out for inversion. In order to ensure the
HPR requirements, apply an affine transformation to Pi∪{Vi} such that Vi is moved to
the origin and Pi is scaled by a factor of 1/4r. After inversion, the convex hull of the in-
verted points P̂i∪{Vi} is computed using the QuickHull algorithm (BARBER; DOBKIN;
HUHDANPAA, 1996). The union of all points marked as visible after applying the HPR
operator from each Vi gives rise to the set of the boundary points Br.

The proposed method can be summarized by the Algorithm 1.

Algorithm 1 – Boundary Particle Detection
1: function Detection(Pr)
2: build a uniform grid G of cell size 2r
3: insert the points of P in G
4: for all cell C ∈ G do
5: if C is empty and has a adjacent cell that is full then
6: place a new viewpoint at the centroid of C
7: else if C is a cavity cell then
8: for all point pi ∈C do
9: place a viewpoint Vi according to Eq. (2.3) which satisfies the condition

(b)
10: end for
11: end if
12: end for
13: for all viewpoint Vi do
14: run the visibility test with all points within radius 4r of Vi
15: insert the visible points in Br
16: end for
17: return Br
18: end function

Figure 6 – Boundary particles (red) detected by our method. The interior points (gray) are
shown in a cutaway view. At bottom-right, their reconstructed surface.

(a) Armadillo (b) Bunny (c) Water Crown (d) Enright Test

Source: Sandim et al. (2016).
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2.4 Results

We implemented our technique in C++ using OpenMP (OpenMP Architecture Re-
view Board, 2011) under the Microsoft Visual Studio 2013 for Windows. All experiments
have been performed on an Intel Xeon processor E5620 with four 2.4 GHz cores and 12
GB RAM. Table 1 shows statistics as to the number of particles (|P|), the number of
viewpoints (ϑ ) generated by our method, the ratio between the number of boundary par-
ticles (Bd) and interior particles (Int), and computational times for all 3D experiments
presented in this and the following section.

Table 1 – Average statistics and computational times (in seconds) per frame.

Dataset |P| ϑ Ratio (Bd:Int) Exec. Time
Bunny 114K 4K 1:2.3 0.9

Double Dam Break 275K 8K 1:9.3 1.6
Water Crown 297K 8K 1:5.7 1.8

Armadillo 797K 18K 1:3.7 7.5
Enright Test 1904K 13K 1:16.8 44.7

The parameter r used to define the underlying grid (see subsection 2.3.1) de-
pends on numerical and spatial resolution of the problem. In SPH simulations a good
choice for r is the smoothing length, which defines the radius of influence of the ker-
nel function (HAQUE; DILTS, 2007). In our experiments, all particle-based fluid sim-
ulations were produced using a weakly compressible SPH formulation implemented in
SPHysics (GOMEZ-GESTEIRA et al., 2012). The volumetric particle models for Ar-
madillo and Bunny were created by first generating tetrahedral meshes from the corre-
sponding triangular surface meshes using Gmsh (GEUZAINE; REMACLE, 2009), getting
the vertices of the tetrahedra as particles. Tetrahedron element size and the r parame-
ter were chosen as the average edge length of the input triangular surface meshes (see
Figure 6).

The effectiveness of our approach (denoted by “Ours”) is assessed through a set
of qualitative and quantitative comparisons against four existing surface detection tech-
niques. More precisely, we compare our approach against the methods proposed by Müller
et al. (MÜLLER; CHARYPAR; GROSS, 2003) (Müller) , He et al. (HE et al., 2012) (He)
and Orthmann et al. (ORTHMANN et al., 2013) (Orthmann), which are well known by the
computer graphics community. We also compare against the method proposed by (MAR-
RONE et al., 2010) (Marrone), which is the state-of-art in computational physics. All
those four techniques were applied using parameters as suggested in the corresponding
papers. Figures 7 and 8 enable qualitative comparisons by showing boundary points re-
sulting from each technique. Notice that our approach is able to capture sharp and thin
features better than other methods while producing a reduced number of misclassified
interior points.
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Figure 7 – Comparison between different boundary detection methods in a 2D dam break sim-
ulation.

(a) Müller (b) He (c) Orthmann

(d) Marrone (e) Ours (f) Ground Truth

Source: Sandim et al. (2016).

For the sake of quantitative comparisons, we apply the method proposed by Haque
and Dilts (HAQUE; DILTS, 2007) (and its 2D version (DILTS, 2000)) to label boundary/non-
boundary particle, which we will consider as ground truth. The classification provided
by Haque and Dilts is fairly reliable, as the method computes, for a given r, the “ex-
act” intersection of spheres with radius r centered at each particle, identifying r-interior
and r-boundary particles as defined in Section 2.2. Although very accurate, Haque and
Dilts’ method is not scalable for practical applications, as its computational complexity
is O(|P|nε), where n is the average number of particles inside spheres with radius 2r cen-
tered at the particles and ε ∈ [1.6,2.0] is a problem-dependent constant. Our approach,
in contrast, inherits the complexity of the local convex hull computations, resulting in a
complexity O(ϑ k logk), where ϑ is the number of viewpoints and k is the maximum num-
ber of particles used as input the convex hull. Although in the worst case (a full convex
hull for each point) our approach is also costly, that worst case is very rare, specially in
real applications involving a large number of particles. Given a reference classification, we
can assess the accuracy of each method using quantitative metrics commonly employed
in data classification (POWERS, 2011).

Specifically, we assign each particle to one of four categories:

• True Positive (T P): a r-boundary point correctly classified;

• True Negative (T N): a r-interior point correctly classified;
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Figure 8 – Comparison between different boundary detection methods in a 2D single vortex
experiment, as detailed in (ENRIGHT et al., 2002).

(a) Müller (b) He (c) Orthmann

(d) Marrone (e) Ours (f) Ground Truth

Source: Sandim et al. (2016).

• False Positive (FP): a r-interior point classified as r-boundary;

• False Negative (FN): a r-boundary point classified as r-interior.

The Recall, is given by
Rec =

T P
T P+FN

.

measures how well a technique performs when detecting boundary particles among the
actual set of r-boundary particles. The best possible result is Rec = 1, meaning that
all boundary particles were detected correctly, although false positives can be included.
The main issue caused by false positives is that they thicken the boundary surface, thus
hampering tasks such as surface reconstruction. On the other hand, the False Positive Rate
(FPR) quantifies how many interior particles were classified as boundary. Mathematically,
FPR is defined as

FPR =
FP

FP+T N
.

The best scenario occurs when FPR = 0, i.e., no interior particle has been classified as
boundary. When employed separately those two metrics may lead to a wrong analysis.
For instance, the maximum recall can be achieved by classifying every particle in P as
boundary, regardless whether this is true or not. FPR can be minimized when the whole
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set of particles is classified as interior. Therefore, we combined both metrics as follows:

MC = Rec∗ (1−FPR) .

The combined metric MC reaches its maximum value 1 when the Recall is maximum
and FPR is minimum simultaneously. Table 2 shows MC scores resulting from each of
the five techniques. Notice that our approach outperforms the four other methods in all
experiments.

Table 2 – Quantitative analysis between different boundary detection techniques (best results
are shown in bold).

Dataset Method MC

2D cases

Müller 0.796
Dam Break He 0.795

Orthmann 0.885
(Fig. 7) Marrone 0.949

Ours 0.978
Müller 0.256

Single Vortex He 0.708
Orthmann 0.596

(Fig. 8) Marrone 0.873
Ours 0.944

3D cases

Müller 0.000
Armadillo He 0.078

Orthmann 0.822
(Fig. 6a) Marrone 0.947

Ours 0.995
Müller 0.017

Bunny He 0.027
Orthmann 0.740

(Fig. 6b) Marrone 0.921
Ours 0.994

Müller 0.058
Water Crown He 0.848

Orthmann 0.931
(Fig. 6c) Marrone 0.957

Ours 0.971
Müller 0.926

Enright Test He 0.938
Orthmann 0.904

(Fig. 6d) Marrone 0.968
Ours 0.989

Müller 0.589
Double Dam Break He 0.074

Orthmann 0.919
(Fig. 11) Marrone 0.892

Ours 0.974
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2.5 Applications

One of the main advantages of correctly classifying boundary particles is the pos-
sibility of using point-set surface reconstruction algorithms (BERGER et al., 2014) to
generate the free-surface of particle-based fluids, instead of SPH-based surface recon-
struction (MÜLLER; CHARYPAR; GROSS, 2003; SOLENTHALER; SCHLÄFLI; PA-
JAROLA, 2007; YU; TURK, 2013) which requires a weighted summation over all neigh-
boring particles. The free-surface S is given implicitly by the zero level-set of a signed
distance field φ : Rd → R. Besides the identified boundary particles, the construction of
φ demands oriented surface normals. Many algorithms have been proposed to compute
oriented normals. In our case, the traditional SPH approximation proposed by Müller
et al. (MÜLLER; CHARYPAR; GROSS, 2003) is used for estimating oriented normals.
Thus, the normal at a boundary particle i is computed as

ni =
ui

‖ui‖
with ui = ∑

j∈Ni

∇Wh
(∥∥pi−p j

∥∥) ,
where Wh is the Gaussian kernel function with smoothing length h. Figure 9 shows a
2D example of our boundary detection (BD) method and the computed surface normals
(Figure 9a). The smooth signed distance field φ defined using Radial Basis Functions
(RBF) (CARR et al., 2001) and its corresponding surface S = φ−1(0) is depicted in Fig-
ure 9b.

Figure 9 – Surface reconstruction of gingerbread man: (a) boundary particles (red) with oriented
normals (brown) and (b) the signed distance field φ using RBF, varying from negative
(red) to positive (green) values and its zero level-set (black).

(a) (b)

Source: Sandim et al. (2016).

Figure 10 compares level-sets generated by our BD with RBF implicit (CARR et
al., 2001) against the Particle Level Set (PLS) method (ENRIGHT et al., 2002), a well
known level-set method employed in Eulerian grid-based simulations. The experiment
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shows the resulting boundary surface after a 360◦ degree rotation of the classical Zalesak’s
disc with fourth-order Runge-Kutta for time integration (ZALESAK, 1979). Notice that
the surface resulting from our method is quite close to that generated by PLS, preserving
the sharp features and avoiding numerical diffusion (mass loss) at the interface. Moreover,
in contrast to PLS, our approach does not demand any level-set re-initialization nor outer
marker particles, making it a good asset for any point-set surface reconstruction method.

Figure 10 – Zalesak’s disk after one full rotation: our method with 800 particles and PLS on a
100×100 resolution grid.

Reference Disk PLS BD + RBF

Source: Sandim et al. (2016).

Figure 11 – The free-surface reconstruction of a double dam break simulation with opaque (top)
and transparent (bottom) renderings.

Source: Sandim et al. (2016).

Figure 11 shows our BD method combined with Screened Poisson surface recon-
struction (KAZHDAN; HOPPE, 2013) to compute the level-set surface that represents the
liquid interface. Notice that due to the good performance of our BD method, the level-set
obtained by the Screened Poisson method nicely captures droplets and thin sheets of water
(usually formed by a thin layer of particles) in a double dam break simulation. In all 3D
experiments shown in this section we used the Screened Poisson as surface reconstruction
method (notice that Screened Poisson can not operate in volumes).
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Figure 12 shows the effectiveness of our approach when facing the Enright test (EN-
RIGHT et al., 2002), where a sphere is advected by a velocity field which induces large
shape deformation. Notice that the sphere is preserved even after a stretching followed by
a compression. In this example, we used fourth-order Runge-Kutta to compute particles
trajectories.

Figure 12 – Enright test: the shape of sphere is preserved by our approach despite large defor-
mations (start: top left, end: bottom right).

Source: Sandim et al. (2016).

Figure 13 shows a comparison between our approach and the surface reconstruction
method proposed by Zhu and Bridson (ZHU; BRIDSON, 2005), which also operates on
the particle volume. One can easily see that Zhu and Bridson’s method introduces surface
bumps due to the irregular particle distribution. Those artifacts are not present in the
reconstruction generated from our approach. We use an implementation of Marching
Cubes (MC) algorithm (LEWINER et al., 2003) to extract the isosurface from the output
of Zhu and Bridson’s method, defining the MC grid size from the particle spacing (AKINCI
et al., 2012). Moreover, the surface reconstruction with Screened Poisson took a similar
time of Zhu and Bridson’s method, approximately 5 seconds per frame.

A common strategy when dealing with particle volumes is to perform surface
reconstruction directly from the volume defined by the particles. Bhattacharya et al.
(BHATTACHARYA; GAO; BARGTEIL, 2015) proposed a technique for skinning particle
data that relies on a biharmonic-smoothed distance field constrained between two-offset
surfaces obtained from the particles. Figure 14 presents surfaces reconstructed from a
volumetric Armadillo model using our approach and the particle skinning proposed by
Bhattacharya. Notice that the reconstruction generated by Screened Poisson from the
boundary surface captured by our method contains most of the details and sharp features
present in the original model. Bhattacharya et al. technique, in contrast, produced a
smoother reconstruction. In this experiment, our BD method with Screened Poisson took
approximately 16 seconds (BD corresponds to ∼ 47% of the time) against 105 seconds of
Bhattacharya’s method.
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Figure 13 – Comparison with our method (left) and the surface reconstruction proposed by Zhu
and Bridson (ZHU; BRIDSON, 2005) (right) on the water crown formed by the
impact of a drop on a water layer.

Source: Sandim et al. (2016).

Figure 14 – Comparison of our strategy (middle) against Particle Skinner (left) proposed by
Bhattacharya et al. (BHATTACHARYA; GAO; BARGTEIL, 2015). At the right-
most, the silhouette profiles of each reconstruction strategy is shown in detail against
the reference volumetric Armadillo.

Source: Sandim et al. (2016).

2.6 Boundary particle resampling for surface reconstruc-
tion in liquid animation

The renderings shown in Section 2.5 can suffer from poor particle distribution.
Three main feature types can hinder the quality of the generated mesh:

• Droplets: single particles disconnected from the rest of the fluid;

• Ligaments: thin fluid features in the form of strings;

• Thin sheets: overstretched sheets of fluid that contain a single layer of particles.

These features can cause surface-fitting algorithms (KAZHDAN; HOPPE, 2013)
to miss some portions of the fluid. To overcome this problem, we developed a simple
scheme to identify them and to replace them with better-distributed particles (SANDIM
et al., 2019).
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We explored different ways to identify particles in critical areas. We based our
approach in the spectral decomposition of the covariance matrix of a particle:

Ci =
1
|Ni| ∑

j∈Ni

(x j−xi)(x j−xi)
> with xi =

1
|Ni| ∑

j∈Ni

x j . (2.4)

From the matrix Ci, we computed the eigendecomposition Ci = Ui Σi U>i using
the Singular Value Decomposition (SVD) present in the Eigen library1 (GUENNEBAUD;
JACOB et al., 2010). The matrix Σi gives us the three positive eigenvalues in ascending
order: Σi = diag(σ1,σ2,σ3).

Along with these values, we employ two parameters K and α , where K is a lower
bound on the number of neighbors of a particle, and α is a threshold that allows us to
regulate the desired degree of deformation of our features. In our experiments, we used
K = 4 and α = 0.2. We can write the final labeling scheme as:

`i =



0 , |Ni|< K

1 , |Ni| ≥ K and σ2 ≤ α σ3

2 , |Ni| ≥ K and σ1 ≤ α σ3 and σ2 > α σ3

3 , |Ni| ≥ K and σ1 > α σ3

. (2.5)

Figure 15 show an example of the result of our labeling.

Figure 15 – Feature classification color encoding: the color encodes the boundary particles (blue)
and the features particles in a water crown splash: small droplets (cyan), ligaments
(yellow) and thin sheets (magenta).

Source: Adapted from Sandim et al. (2019).

After labeling the particles, we resample the particles where `i 6= 3. For each label:
1 <http://eigen.tuxfamily.org>

http://eigen.tuxfamily.org
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• `= 0: we replace the particle with six new particles;

• `= 1: we replace the particle with four new particles;

• `= 2: we replace the particle with two new particles.

We define the positions of the new particles as shifts from the position of the
original particles: eigenvectors extracted from Ui give the direction of the shift, and its
size is chosen as a factor of 0.5r. When ` = 0 we can’t use the eigenvectors, so we use
the vectors that compose the standard basis as the directions. Figure 16 illustrate the
resampling scheme for the three types of features.

Figure 16 – Particle refinement: a feature particle i (light blue) is replaced by new particles (dark
blue) according to its label `i.

(a) `i = 0 (b) `i = 1 (c) `i = 2

Source: Sandim et al. (2019).

This resampling scheme can introduce discontinuities on the boundary and, con-
sequently, on the generated surfaces. We work around this problem by shifting the non-
resampled boundary particles by a factor of 0.5r in the direction of their normal vectors.

The resulting surfaces are more consistent with the underlying particle system, as
it does not lose features and does not create spurious features caused by incorrect normal
alignment. Figure 17 gives an interesting example of the results; our method produces
a smoother and more consistent surface on the top and eliminates a spurious feature
from the bottom. The original paper (SANDIM et al., 2019) contains more details of the
method, results, and analysis.
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Figure 17 – Mushroom jet simulation in a top (left column) and a bottom view (right column)
at t = 0.38 sec. Surface reconstruction without (top row) and with (bottom row) our
resampling in a simulation involving 2M particles.

Source: Sandim et al. (2019).

2.7 Discussion and Limitations

We have experimentally found that good results are reached when setting γ = 1.3
in the exponential flipping. We use this parameter value in all experiments presented in
this thesis. However, misclassification can show up in concave regions with high curvature,
resulting in false negatives. A theoretical upper-bound for the curvature (cf. Lemma 3.1
in (KATZ; TAL, 2013)) can be established in terms of γ and surface normals, i.e., HPR is
guaranteed to produce correct results if the curvature is not larger than an upper-bound.

The parameter r defining the underlying grid size employed our BD method can
also be tricky to be specified when information about particle spacing is not available.
If particles are provided with no additional information, it is very hard to make any
assumption about the topology of the surface and thus proper value to set r. We believe
that is possible to establish a relation between r and the local feature size (AMENTA;
BERN, 1998) of the points, but this is not a straightforward task.

2.8 Conclusion and Future Work

We presented a novel method to detect free-surface on particle-base volumes. The
method relies on HPR visibility test and in the concept of r-sampling to identify particles
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laying on the boundary of a volume sampled by particles. Comparisons against state-of-
the-art methods show the effectiveness of our methodology, which can be used together
with most point set-surface reconstruction method to produce accurate surface models.

As future work, we would like to build our boundary detection method into mesh-
free solvers, especially in simulations of physical phenomena involving complex free-surface
phenomena. In particular, we believe that particle-based simulations involving surface ten-
sion (AKINCI; AKINCI; TESCHNER, 2013) and surface turbulence (MERCIER et al.,
2015) can greatly benefit from our methodology. In terms of rendering, we want to inves-
tigate the surface reconstruction in screen space using an image-based implementation
of the HPR operator (SILVA et al., 2014). Finally, since our method is built upon local
visibility tests, adapting it to GPU architecture is feasible, being another direction for
future work.
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CHAPTER

3
SUPERVISED LEARNING FOR BOUNDARY

DETECTION ON PARTICLE SYSTEMS

In particle-based physics simulations, the information about which particles belong
to the boundary of the system and which are considered internal is, in general, an infor-
mation that is useful but hard to obtain in antabu efficient way. This information can be
applied to generate the free surface of the fluid or to compute the surface tension, among
other applications. Techniques found in the literature may present satisfactory results,
but in general they are sensible to the problem scale, particle distribution and involve
computationally expensive operations such as matrix inversion. The goal of this study is
to present an alternative with lower computational cost at runtime by transferring some
of the work to a preprocessing step using offline learning.

3.1 Introduction

The area of Computational Fluid Dynamics (CFD) has received attention for years
due to its application on many fields, ranging from industry to entertainment. Meshless
methods such as Smoothed Particle Hydrodynamics (SPH) (GINGOLD; MONAGHAN,
1977), although very popular, still have a series of problems with suboptimal solutions.
One of these problems is the detection of boundary particles (DILTS, 2000; SANDIM
et al., 2016; ORTHMANN et al., 2013) This information is useful on other steps of a
simulation such as the pressure computation on incompressible simulations, which needs
a boundary condition to make its solution unique. Other uses are the application of surface
tension, and visualization of the free-surface of the fluid.

An interesting approach to this problem that hasn’t been explored on the Com-
puter Graphics or Computational Physics literature, is the use of Machine Learning (ML)
to solve a classification problem that separates the boundary particles from the internal
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ones. During a simulation step using the SPH method, many intermediary attributes are
computed for each particle of the system, but in most cases they are discarded at the end
of the step. The main idea of this article is to use these attributes along with a few others
that can be easily computed to build a feature vector that represents the particle and ML
to classify the particles. A recent study about this problem, using a different approach,
was made recently by Sandim et al. (2016) and it can be used as a primer on the subject.

To successfully apply an supervised learning method a ground truth is needed,
since supervised learning methods need labels in its training phase. This ground truth is
computed trough a more complex and expensive method proposed by Dilts (2000) which
uses a notion that can be interpreted as an r-boundary definition that will be discussed
ahead. With the labels provided by Dilts’ method and feature vectors for a representative
subset of the data, we can train a classifier that can be applied to other particle systems
with similar characteristics.

3.2 Supervised learning

In a classification problem, supervised learning consists in feeding data with known
labels to an algorithm so it can learn a mapping between the data and the labels. This
mapping can then be used to assign labels to new data samples. In our case, the data comes
from a set of features computed for each particle and the labels are, at first, unknown. In
the next sections we’ll discuss in detail how we obtain both the data and the labels used
in the training step.

3.2.1 Feature vectors

During the simulation process of a particle system, most methods – like SPH –
produce a lot of data for each particle of the system. In many cases a lot of this data
is discarded at the end of the simulation step. This data is composed by some simple
variables, like the number of neighbors inside the influence radius of a particle, some
are more complex: the particle’s velocity, density or pressure, and derivatives (gradient,
divergent, curl) of some of them. Since the behavior of each particle is a result of these
variables, we can use them to create a feature vector that represent the particle.

Two points arise from the idea of using this data on a feature vector: which variables
are useful to separate the boundary from the interior, and how are they related to each
other. Variables that don’t carry any information about the surroundings of a particle
aren’t really useful when trying to separate the boundary of the system. The particle’s
position in Rn, for instance, describes its location in space but doesn’t say much about its
position relative to other particles or the system itself. On the other hand, information
that is derived from the surroundings of a particle are more useful for us. Particles on
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Figure 18 – Plot of the correlation matrix of the chosen features: (1) modulus of the gradient of
the density function, (2) divergence of the density function, (3) smallest eigenvalue
of the covariance matrix, (4) largest eigenvalue of the covariance matrix, (5) density
function, (6) number of neighbors inside influence radius.

Source: Sandim and Paiva (2020).

the boundary, or near it, tend to have fewer neighbors, lower density, it’s density have a
larger gradient, and so on.

The problem with some of these variables is that they are highly correlated, which
makes them redundant. On Fig. 18 we show a correlation matrix created from a small
sample of the data that can be extracted from particles. This is very useful to help us
better understand this problem as it helps to identify and eliminate variables that add
little to no information.

For instance, the density of a particle in the SPH method uses a density estimator
based on the Parzen window (PARZEN, 1962) with an additional scale by the particle’s
mass: ρi = ∑ j∈Ni m jWi j. Here ρi represents the density of the particle i, Ni the set of the
neighbors (particles inside the influence radius) of i, m j is the mass of j and Wi j is the
value at the position of j of a kernel function, usually the gaussian kernel, centered on
i. If all the particles have the same mass, it can be moved outside the summation and
becomes just a scale: ρi = m∑ j∈Ni Wi j. Since the chosen features will be normalized in a
further step, this scale by the mass is useless and can be removed. This leaves us with a
simple density estimator based on the Parzen window, which is simpler and carries similar
information.

The density function in the context of the SPH method is a bit noisy thanks to
the discretization used and the sum of kernel functions. This variation can be useful to
identify regions near the boundary of the system. The gradient of the density function
is greater near the boundaries of the system, so the modulus of the gradient of density



46 Chapter 3. Supervised learning for boundary detection on particle systems

function is greater at the position of particles near or at the boundary of the system.

By using Principal Component Analysis (PCA) on the neighborhood of a parti-
cle, we can differentiate between particles near the boundary as they have very different
eigenvalues. Particles inside the system have roughly the same eigenvalues as their neigh-
borhood is evenly distributed around them.

The final set of features used to train a classifier capable of extracting the boundary
of a system are: the density function, the modulus of its gradient and divergence, the
number of neighboring particles inside the influence radius of the particle, and the smallest
and largest eigenvalues of the covariance matrix of the positions of the particles on the
neighborhood of each particle.

3.2.2 Ground truth and labels

A solid ground truth that can be used as labels for training is essential in training
and testing a classifier. Here we discuss how we use the method proposed by Dilts (DILTS,
2000) to generate the labels that we use.

Consider a point set P that represent the positions of particles in a system, this set
can be seen as a sampling of a closed region Ω that contains the system and has a surface
S = ∂Ω. As discussed by Sandim et al. (2016), a boundary point of P is a point that lies
on S. Since it is quite hard to know if a point lies exactly on S, a more useful definition
takes into account the sampling density of the set, as proposed by Sandim et al. By taking
into account the sampling density, Sandim et al. give the definition of r-boundary points.
These definitions match the method proposed by Dilts, so we can use this method to
compute our labels. Albeit faster, the method proposed by Sandim et al. can’t be applied
here since it gives an approximation of the set of boundary particles of P.

By applying directly the arcs method from Dilts (2000), we obtain a reliable set
of labels that follow the definitions given by Sandim et al. (2016). These labels can then
be used by us to train our classifier in order for it to identify r-boundary particles, which
will be called only boundary particles for simplicity.

3.2.3 Training and testing

We chose to use a Support Vector Machine (SVM) classifier was used. This choice
was based on the fact that its training phase may be costly but the classifying phase
has linear complexity on the number of support vectors. This means that the majority of
the computational effort is moved to the training phase of the method, and allowing the
already trained classifier to be used inside the pipeline of a particle-based simulation.

The literature of Support Vector Machines dates back to 1964, with Vapnik and
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Chervonenkis (1964) first introducing the idea of statistical learning, which is the basis for
the SVM method. The SVM method itself was introduced by Boser, Guyon and Vapnik
(1992) and ,from then on, many others extended the idea to adapt and use the SVM in
different applications.

The training data is extracted from preprocessed SPH simulations, which contains
the necessary information to compute the feature vector for each particle. All steps of
the simulations used in training and testing have their labels computed according to
Section 3.2.2. To build a training set that contains different cases from different configu-
rations, we do the sampling in two phases: sampling of the time steps of the simulation
and sampling of particles inside the sampled steps.

To sample the time steps of the simulation we use a random sampling of 30% of
the available steps to be used as training, leaving the other 70% to testing. From the
training steps we do a hold-out validation in which we chose again 30% of the particles
from the step to be used as training and leaving the rest to testing. Note that the 30%
of the particles chosen from a step are composed by roughly the same amount of internal
and boundary particles to ensure that both cases are properly represented in the training
data.

With this partitioning scheme we use only 9% of the available data as training, but
if we consider that the total size of the datasets available from our SPH simulations are
often around 100 steps with 500 thousand particles each, adding up to a total of 50 million
different instances in a single simulation, the training set with 9% of this still has a total of
4.5 million samples. This training set is quite large and can be problematic to process in a
conventional workstation with 8GB of RAM. The use of Sequential Minimal Optimization
(SMO) to solve the optimization step of the SVM, proposed by Platt et al. (1999), reduces
the memory needed during the training phase, since its memory requirements are linear
to the training set size. An extended version of the SMO was made by Fan, Chen and Lin
(2005).

The training is made using the SVM implementation from LIBSVM (CHANG;
LIN, 2011), with an extended version of the SMO algorithm made by Fan, Chen and Lin
(2005) and a Radial Basis Function (RBF) kernel. The choice of the RBF kernel over a
linear was based on the fact that the groups are not linearly separable using the chosen
features, preventing the convergence of the SMO algorithm in an acceptable number of
iterations. After the training phase, the remaining data is used as testing and the confusion
matrix is computed. Along with the confusion matrix we plot the particle system with
the labels from the ground truth and the classifier’s results, this plot shows not just the
number of correct or wrong cases but also where they occur. The information of where
the particles are classified on the wrong group is useful to understand the effect of the
chosen features on the classifier.
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Figure 19 – Sample steps from the training data.

Source: Sandim and Paiva (2020).

3.3 Results

The method was implemented using MATLAB, which uses LIBSVM as the back-
end for its SVM tools. The tests were run in a workstation equipped with an Intel®

CoreTM i5-3570 processor and 8GB of RAM. The data used was obtained from SPH
simulations made with DualSPHysics, which is an open source SPH simulation tool built
and maintained by Crespo et al. (2015) and others. Another dataset is the single vortex
spin by Bell, Colella and Glaz (1989), which is a common benchmark in the computational
physics literature.

We trained a classifier using the information from the single vortex spin and a dam
break simulation. Both start with a well behaved distribution but evolve to configurations
with thin layers, sharp features, drops and holes. These features are fundamental to the
training since the feature vectors of the particles in these regions carry the information
needed to identify these structures. Fig. 19 shows a few steps of these datasets with the
mentioned features. It is important to include extreme cases in the training data, with
bad particle distribution, such as the tail of the system in the single vortex dataset. These
cases are the ones that push the classifier to its limit.

The results obtained with the training data are consistent, even between runs with
different partitioning of the data. This means that the partitioning scheme is successfully
including representative samples into the training set. The confusion matrix on Table 3
shows a very low False Negative Rate (FNR) meaning that a low amount of boundary
particles were wrongly classified as internal. A low FNR also indicates that the boundary
has few or no holes. On the other hand, the False Positive Rate (FPR) is somewhat high,
indicating that there is a considerable amount of internal particles being classified as
boundary particles. This higher FPR may be a problem to some applications, but this
can be solved by using a more expensive method such as Dilts’ method (DILTS, 2000) to
filter this cases and reduce the FPR.

After training and testing, we used a different simulation made with DualSPHysics
to analyze the use of a classifier built with one simulation to classify another one and test
the generalization of the model. In this case we used a double dam break scene, with a
higher number of particles and finer discretization. The results were similar to the testing
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Table 3 – Confusion matrix from the classification of the testing data.

Predicted class
Internal Boundary

Actual class Internal 562,246 14,813
Boundary 1,600 86,251

Table 4 – Confusion matrix from the classification of the double dam break data.

Predicted class
Internal Boundary

Actual class Internal 3,917,101 285,354
Boundary 11 204,090

Table 5 – Time taken in seconds by the classification of the double dam break data.

Method Total time (sec) Avg time/step (sec)
SVM 317.80 1.26

Reference 4,979.28 19.83

data but with a higher FPR as seen on Table 4, this is a grave issue that needs to be solved.
On the other hand, the time to classify all the particle of each time step of the simulation
using the SVM model is lower than the time needed to compute the reference method
used as ground truth. After all 250 time steps were processed, the total time spent by the
ML approach is considerably lower than the reference method. Table 5 shows the time in
seconds spent by each technique to process the entire dataset. The geometric approach
consumes more than 15 times more time to label the same data, this shows that while
the approach using SVM may yield a high FPR it can be much faster than the geometric
approach. Fig. 20 shows a few steps comparing the reference method with our proposal.

Figure 20 – Results of the classification of the double dam break simulation. The top row con-
tains the results from the reference method, and the bottom row the results obtained
by the proposed method. It is clear that the proposed method gives a closed bound-
ary but has a high FPR.

Source: Sandim and Paiva (2020).
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3.4 Conclusion
With this article we can conclude that it is possible to employ ML techniques to

solve the boundary detection problem with low time overhead on the moment of classifi-
cation. The running time of the proposed approach is more than 15 times lower than the
reference method, this was one of the objectives and was successfully met. However the
high FPR may turn the method unusable in some contexts where lower error rates are a
requirement.

A third possibility, apart from a pure ML or pure geometric solution, is to combine
both approaches in a two phase method: coarse phase using SVM and a fine phase using
Dilts’ method (DILTS, 2000). The second phase can be run only on the particles labeled as
“boundary candidates” by the classifier used in the first phase. With this we may be able
to achieve smaller running time than the reference method, but with FPR in acceptable
levels.
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CHAPTER

4
SIMPLE AND RELIABLE BOUNDARY

DETECTION FOR MESHFREE PARTICLE
METHODS USING INTERVAL ANALYSIS

We present two novel algorithms for detecting boundary particles in 2D and 3D
domains that are suitable for meshfree particle methods in Computational Fluid Dynamics.
We combine a robust purely geometric sphere covering test based on interval analysis
with an adaptive spatial subdivision of the sphere associated with a given particle. The
methods are simple, fast, and easy to code. We report comparisons against state-of-the-art
boundary detection methods in free-surface flow problems to demonstrate the effectiveness
and accuracy of our approaches.

4.1 Introduction

Meshfree methods, such as Smoothed Particle Hydrodynamics (SPH) (LIU; LIU,
2003), Moving Least-Squares Particle Hydrodynamics (MLSPH) (DILTS, 2000), and Mov-
ing Particle Semi-implicit (MPS) (KOSHIZUKA et al., 2018), provide attractive numerical
discretizations for a wide range of Computational Fluid Dynamics applications. In these
methods, particles typically carry a kernel function for a local approximation of attributes,
such as density and pressure, instead of keeping track of the connectivity between particles
during the simulation. Besides, meshfree interpolations can also be applied to local subdo-
mains to perform numerical integration like Galerkin type methods (FASSHAUER, 2007;
NGUYEN et al., 2008) or to achieve generalized finite difference stencils from scattered
nodes (FLYER; BARNETT; WICKER, 2016).

An intrinsic advantage of meshfree methods over mesh-based methods is related to
problems involving complex free-surface flows, efficiently capturing the topological changes
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(splitting and merging regions) that occur in the free surface, such as fragmentation, frac-
ture, waves, splashing, and air bubbles creation. A delicate task for meshfree methods in
handling boundary conditions at solid walls (e.g., no-slip and pressure Neumann condi-
tion) or across the free surface (e.g., constant pressure and kinematic condition), because
such tasks demand accurate identification of boundary particles, that is, the particles
that comprise the boundary of the fluid. This drawback is especially severe when solving
problems where incompressibility must be satisfied (HOSSEINI; FENG, 2011) or surface
tension has a meaningful effect on the flow behavior (LIN; LIU; WANG, 2019). Beyond
boundary conditions, detecting boundary particles is essential also in applications com-
prising level-set definition (MARRONE et al., 2010; SANDIM et al., 2016) and particle
shifting technology (PST) (WANG et al., 2019).

Despite its importance, the problem of accurately detecting boundary particles
has not been extensively addressed in the literature. To detect the “exact” boundary,
Dilts (DILTS, 2000) provided a robust and reliable two-dimensional (2D) algorithm, where
complex geometric predicates determine whether a particle is covered by its neighbor
particles. Haque and Dilts (HAQUE; DILTS, 2007) extended that algorithm to three-
dimensional (3D) particles. However, their extension is neither straightforward to im-
plement nor efficient, since computing mutual covering of spheres is expensive. Lo and
Shao (LO; SHAO, 2002) proposed criteria where an SPH particle is classified as boundary
particle if its density is less than a certain threshold with respect to a reference density. He
et al. (2012) and Liu, Lin and Shao (2014) presented a similar approach considering the
SPH weighting of the particle distances. Although these methods involving SPH kernels
are simple, they are inaccurate for free-surface flows with large deformations. Marrone et
al. (2010) performed boundary/non-boundary particle classification using a pre-processing
step based on the spectrum of the SPH correction matrix (RANDLES; LIBERSKY, 1996)
combined with a geometrical test that verifies whether a neighbor particle lies in a conical
region determined by a SPH approximation of normal vector. Barecasco, Terissa and Naa
(2013) simplified that method by replacing the normal vector by a cover vector defined
by a weighted average of the particle positions. However, both approaches (MARRONE
et al., 2010; BARECASCO; TERISSA; NAA, 2013) are sensitive to the non-uniformity of
particle distribution due to the estimative of surface normals. Recently, Wang et al. (2019)
presented an optimization of the algorithm by Marrone et al. (2010) just by changing the
pre-processing step by the criteria regarding the SPH divergence of the particle positions
as stated by Lee et al. (2008). Sandim et al. (2016) introduced an accurate and efficient ge-
ometrical test reinterpreting the original problem as a point-cloud visibility problem. Lin,
Liu and Wang (2019) proposed an algorithm to detect boundary particles in 2D. Their
method first computes a Delaunay triangulation of the neighbor particles projected on a
unit circle, and then classifies a particle as boundary if any circumcircle radius exceeds a
certain threshold. Since Lin, Liu and Wang (2019) provided no hints on extending their
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method to 3D, we believe that extension is not straightforward.

In this chapter, we present two novel algorithms for detecting boundary particles
in 2D and 3D. Our approach is similar to the ones by Dilts and Haque (DILTS, 2000;
HAQUE; DILTS, 2007), in that we perform a purely geometric sphere covering test. The
key difference is that we use interval analysis methods to ensure robustness. The accuracy
of our methods relies on an adaptive spatial subdivision of the sphere associated with a
given particle. The first method performs an interval evaluation of the implicit function
defining the sphere for each particle. The second method uses geometric predicates on the
enclosures of the boundary of the sphere. Both methods are robust: they do not produce
false negatives; that is, no boundary particles are classified as interior. Moreover, the
methods are simple, easy to code, and with competitive computational times. We perform
a set of comparisons against state-of-the-art boundary detection methods in free-surface
flow problems to demonstrate the effectiveness and accuracy of our approaches.

4.2 Boundary particles

Let P be a set of scattered particles sampling a compact region Ω ⊂ Rd and let
∂Ω be the boundary surface of Ω. We index the particles in P by i ∈ N. Particle i is
located at the point pi ∈ Rd. Our main goal is to identify the boundary particles in P,
that is, the set of particles in P that lie on ∂Ω. Ideally, we would like to identify all
boundary particles precisely, but we shall aim for a large subset of particles that are
guaranteed to be on the boundary.

To define boundary particles precisely, we assume that P is an r-sampling of Ω (KATZ;
TAL; BASRI, 2007): for every point x∈Ω, there is a particle i in P such that ‖x−pi‖< r.
The parameter r corresponds to the numerical resolution of the problem. For instance,
in SPH solvers the radius r coincides with the SPH smoothing length (HAQUE; DILTS,
2007). Thus, the radius r dictates the accuracy of the method: the boundary detection
method should be able to capture small-scale details of the fluid (like cavities, thin-sheets,
ligaments, and drops) of diameter or thickness at least 2r.

Let Bi be the ball of radius r centered at the point pi and let Si = ∂Bi be the
boundary sphere of Bi. A particle i is called an interior particle when its sphere Si is
completely covered by the neighboring balls; more precisely, when Si ⊂ ∪ j∈NiB j where
Ni = { j ∈ N : ‖p j− pi‖ ≤ 2r}. Note that it is the boundary Si of Bi that is completely
covered other balls, not necessarily the whole ball Bi (Figure 21). A particle i is called a
boundary particle when it is not an interior particle.
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Figure 21 – Interior particles (brown dots) and boundary particles (green dots).

Source: Sandim, Paiva and Figueiredo (2020).

4.3 Boundary detection using interval analysis

To determine whether a particle is on the boundary, we perform a purely geometric
covering test, following the definition above. This approach is similar to the ones by Dilts
and Haque (DILTS, 2000; HAQUE; DILTS, 2007). The contribution of this chapter is two
robust and efficient solutions for this geometric problem. They rely on adaptive spatial
subdivision and robust geometric tests. There is a single user parameter, the subdivision
depth, which controls the tradeoff between speed of processing and accuracy of the results.

Our methods use tools from interval analysis: interval arithmetic and geometric
enclosures. The first method is easier to understand and to implement. It also serves
as an introduction to the second method, which deals with slightly more complicated
geometry. Recall that our main task is deciding whether particle i is an interior particle.
By definition, we have to check whether the boundary Si of Bi is completely covered by
neighboring balls B j for j ∈N j.

4.3.1 Using interval arithmetic

In our first method, we perform an adaptive spatial subdivision of the bounding
box of Bi into query boxes. We test the query boxes that intersect Si against the neighboring
balls B j. The geometric tests in this method rely on the implicit formulation of balls:

B j = {x ∈ Rd : f j(x)≤ 0}, where f j(x) = ‖x−p j‖2− r2

We test a query box Q against a ball B j by computing the interval I = f j(Q). We compute
this interval exactly using interval arithmetic (MOORE R. BAKER KEARFOTT, 2009)1.
1 Interval arithmetic is a numerical technique that provides estimates for the whole range of

values taken by a function in a box in Rd . For the functions f j defining spheres, it happens
that the estimates computed by interval arithmetic are exact.
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There are three possible outcomes of this computation, according to the position of the
bounds of I, given by min I and max I, with respect to 0:

• max I ≤ 0: Then I ⊆ [−∞,0] and Q is completely inside B j.

• min I > 0: Then I ⊆ (0,∞) and Q is completely outside B j.

• min I ≤ 0≤max I: Then Q straddles the boundary S j of B j.

The query boxes that straddle the boundary Si of Bi are called boundary boxes. They are
found by testing the interval fi(Q). Boundary boxes are the interesting query boxes; the
other ones are discarded. We test whether a boundary box Q is completely covered by
neighboring balls B j using the same test on the interval f j(Q). There are three possible
outcomes:

• Q is completely inside B j for some j: Then the part of Si inside Q is completely
covered by B j.

• Q is completely outside B j for all j: Then the part of Si inside Q is completely
uncovered by the neighboring balls.

• Otherwise, Q is partially covered. Then, Q is subdivided by bisection at its center
into 2d children boxes, the test is applied recursively to the children, and the results
are combined.

If all boundary boxes are completely covered, then particle i is an interior particle. Oth-
erwise, particle i is a boundary particle.

The function is_interior provided by Algorithm 2 implements these ideas: it
performs an adaptive spatial subdivision of the sphere associated to particle i, starting
the recursion with the bounding box of Bi, that is, the cube centered at pi with side 2r.
The algorithm follows a subdivision tree (a quadtree in 2D and an octree in 3D), trying
to classify query boxes according to the criteria above, up to a maximum depth chosen
by the user to control the tradeoff between speed and accuracy.

Figure 22 illustrates this algorithm in 2D using a quadtree with maximum depth 3.
In this case, the algorithm classifies particle i as a boundary particle without having to
process the whole quadtree. For this, we assume that the conjuction in subdivide is
short-circuited, that is, stops at the first term that is false. (The algorithm is correct even
if this assumption does not hold; it just processes more query boxes.)

We shall now discuss some important implementation details.
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Algorithm 2 – Recursive classification of a particle i

1: function isinterior(i)
2: Q← bounding box of Bi
3: return query(Q, i,0)
4: end function
5: function query(Q, i,depth)
6: if Q is completely inside Bi or Q is completely outside Bi then
7: return true . uninteresting boxes
8: end if
9: uncovered← true

10: for all j ∈Ni do
11: if Q is completely inside B j then
12: return true
13: end if
14: if Q straddles the boundary S j of B j then
15: uncovered← f alse
16: end if
17: end for
18: if uncovered then
19: return false . definitely boundary
20: end if
21: if depth = maximum depth then
22: return false . probably boundary
23: end if
24: return subdivide(Q, i,depth)
25: end function
26: function subdivide(Q, i,depth)
27: Q = Q1∪·· ·∪Q2d . subdivision
28: return query(Q1, i,depth+1) and . . . and query(Q2d , i,depth+1)
29: end function

Finding neighboring particles

Crucial to the performance of the algorithm is a fast way to identify the set Ni

of neighboring particles. For this task, we use the linked-list algorithm (LIU; LIU, 2003),
where the cells of the search grid have a size of 2r.

Faster tests

To test whether a query box Q is a boundary box, we skip interval arithmetic and
test the signs of fi on the vertices of Q. Then Q is a boundary box iff the signs are not
the same. This change does not affect correctness because query boxes are subdivisions of
the bounding box of Bi and so are in special positions with respect to Bi. In particular, a
boundary box never has all of its vertices outside Bi. The one exception is the bounding
box of Bi, which is the initial query box. We avoid this case by starting the recursion at
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Figure 22 – The 2D version of our boundary detection method using interval arithmetic.
The ball Bi around particle i is shown in light blue. We check whether the cir-
cle Si (dark blue) is covered by its neighboring balls (orange). Some boundary boxes
are not processed (yellow), and some are covered by a neighbor ball (dark green),
while the non-boundary boxes (light green) are discarded by our method. A query
box (red) at depth 3 reveals an uncovered region of Si. Thus, particle i is a boundary
particle.

Source: Sandim, Paiva and Figueiredo (2020).

depth 1, by changing is_interior slightly to call subdivide instead of query, as shown
in Algorithm 3:

Algorithm 3 – Modified recursive classification of a particle i

1: function isinterior(i)
2: Q← bounding box of Bi
3: return subdivide(Q, i,0)
4: end function

This change improves overall performance by about 16%. On the other hand, we
cannot use the signs of f j on the vertices of Q to test Q against neighboring balls B j

because their relative positions are arbitrary. We must rely on interval arithmetic for
those tests.

Interval arithmetic libraries

For computations with intervals, we used PyInterval2 in 2D and Boost C++3 in
3D, both easy-to-use libraries. For the simple case of a sphere equation, we could avoid
a full interval arithmetic library and use the simple ad-hoc code given in the Appendix.
We could also probably avoid using outward rounding, because the geometric resolution
is much lower than the numerical resolution of the floating point system.
2 <https://pypi.org/project/pyinterval/>
3 <https://www.boost.org/doc/libs/1_66_0/libs/numeric/interval/doc/interval.htm>

https://pypi.org/project/pyinterval/
https://www.boost.org/doc/libs/1_66_0/libs/numeric/interval/doc/interval.htm
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Avoiding recursion

While Algorithm 2 is easy to understand and to check correctness, our actual
implementation in Algorithm 4 simulates recursion by keeping query boxes that need
to be checked in a stack. This makes it easier to terminate the process earlier without
changing the final result, by following the simple rules below:

R1: If Q is uncovered, we can safely say that Si has an uncovered region and thus the
particle i is a boundary particle;

R2: If Q is covered, we stop the subdivision at Q;

R3: If Q is partially covered and the maximum depth has not been reached, we subdi-
vide Q and continue recursively;

R4: If the maximum depth has been reached, we declare that the particle i is a boundary
particle. These are the potential false positives, i.e., interior particles misclassified
as boundary particles.

Rules R1 and R2 have precedence over R3 and R4. If R2 is satisfied, we must
keep evaluating the sibling nodes until we find an uncovered node or determine that all
nodes are covered, in which case that the particle i is interior. In R4, although Q is
partially covered, we classify the particle i as boundary particle for two reasons: (i) we
ensure that the algorithm will never produce a false negative and (ii) it allows us to a
short circuit the evaluation process and thus speeds up the detection.

Whenever we need a box to evaluate, we get the one on the top of the stack; when
we subdivide a box, we push its children ton top of the stack. The simulated depth-first
traversal is beneficial since we can reach rules R1 and R4 quicker and terminate the
process earlier. If we do not arrive at R1 or R4, and we reach the bottom of the stack,
then all boxes fell on rule R2, and thus they are all covered; consequently, the particle i

in an interior particle.

4.3.2 Using geometric enclosures

Our first method is simple to understand and to implement, but it spends effort
classifying query boxes against a ball Bi: it finds and discards boxes that are completely
inside or completely outside Bi. However, we care only about the boundary Si of Bi and
the only interesting boxes are the boundary boxes.

Our second method performs an adaptive spatial subdivision of an enclosure of Si, a
process that takes place in a lower dimension. We decompose Si into a coarse mesh of linear
elements and enclose Si around that mesh with a union of thin convex polytopes which
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we shall call slabs. This cover is refined as needed by adaptively refining the underlying
mesh.

Figure 23 – Slab (gray) enclosing a segment L (green).

Source: Sandim, Paiva and Figueiredo (2020).

In 2D, the mesh is initially given by the sides of an equilateral triangle inscribed
in Si. The mesh is then adaptively refined into an inscribed polygon. The slab around a
mesh segment L is the rectangle having one side on L and the opposite side tangent to
the circle Si at the projection of the midpoint b of L onto Si (see Figure 23). To test a
segment L against a neighboring ball B j, we test the corresponding slab Q against B j by
testing the signs of f j at the vertices of Q, as follows:

• If f j(v)< 0 for all vertices v of Q: Then Q is completely inside B j.

• If f j(v)> 0 for all vertices v of Q: Then Q is completely outside Bk.

• Otherwise, Q straddles the boundary S j of B j.

As in the first method, there are three possible outcomes:

• Q is completely inside B j for some j: Then L is completely covered by B j.

• Q is completely outside B j for all j: Then L is completely uncovered by the neigh-
boring balls.

• Otherwise, L is partially covered. Then, L is subdivided at its midpoint into two
children segments, the test is applied recursively to the children, and the results are
combined.

If all segments are completely covered, then particle i is an interior particle. Otherwise,
particle i is a boundary particle. Figure 24 illustrates our second method in 2D.
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Figure 24 – The 2D version of our method based on geometric enclosures. At each level, we check
whether the slabs (gray) are covered by its neighboring balls (orange). At maximum
depth 3, a slab (red) shows an uncovered region of Si. Thus, the particle i is a
boundary particle.

Source: Sandim, Paiva and Figueiredo (2020).

Computing slabs in 3D

Firstly, we apply the affine transformation Ti(x) = r−1(x−pi) in the sphere Si and
its neighboring balls. Note that the center of Si is translated for the origin 0 and all balls
become unit balls.

In 3D, the linear elements are triangles; the mesh is initially a regular tetraheadron
inscribed in Si. Let L be a mesh triangle and b its barycenter. The slab around L is the
frustum obtained by projecting L onto the plane P that is tangent to Si at the projection
b = b/‖b‖ of b onto Si (see Figure 25).

Each vertex a ∈ L is projected onto P to mimic a perspective projection from the
viewpoint 0. Considering a as the projection of a onto P, by construction as shown in
Figure 25, we have that a · b = cosθ = ‖a‖−1. Thus, the projected vertex is given by
a = a/(a ·b).

Figure 25 – Perspective projection of a triangle L (green) onto the tangent plane P (blue) of the
unit sphere Si: the frustum formed by L and its projection (left) and the projection
of a single vertex a ∈ L on the plane P (right).

Source: Sandim, Paiva and Figueiredo (2020).
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The mesh triangle L is refined when necessary by using the standard midpoint
subdivision scheme (see Figure 26). Then, we update the location of these new vertices by
projecting them on Si. Although the refined mesh provides a better approximation of Si,
this process can produce hanging nodes and so a non-conforming mesh. However, this is
not a problem because we are not interested in the resulting mesh itself, only in the slabs
that enclosure the boundary.

The mesh refinement process rapidly reduces the total volume of the enclosure
because the combined volumes of the slabs associated with the four child nodes will be a
fraction of the volume associated with the original parent node. So each subdivision step
improves the accuracy of the covering test, consequently its convergence.

Figure 26 – Mesh refinement in 3D (center) and its underlying quadtree (top-right): a regular
tetrahedron inscribed in Si is refined using midpoint subdivision scheme (bottom-
left).

Source: Sandim, Paiva and Figueiredo (2020).

We apply the rules R1–R4 of the previous method in each slab. Assuming that
a slab is a boundary box, the labeling of a generic element (box or slab) regarding its
covering is summarized in Algorithm 4.

4.4 Results

We first analyze the performance of our novel techniques based on interval arith-
metic (IA) and geometric enclosure (GE). Assuming the classification provided by Dilts
and Haque (DILTS, 2000; HAQUE; DILTS, 2007) as ground truth, we count the number
of particles according to their assignment:
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Algorithm 4 – Classification of a particle i

1: function isinterior(i)
2: initialize the stack T with the nodes from the first tree-level
3: while T 6= /0 do
4: Q← the topmost element from T
5: remove Q from T
6: q← Label(Q, i)
7: if q is uncovered then
8: return false
9: else if q is covered then

10: continue . proceed to the next element of T
11: else . Q is partially covered
12: ` ← the depth of Q
13: if ` < maximum depth then
14: Q = Q1∪·· ·∪Qm . subdivision
15: for all child node Qk do
16: if Qk is boundary box then
17: add Qk to the top of T with depth `+1
18: end if
19: end for
20: else
21: return false
22: end if
23: end if
24: end while
25: return true
26: end function
27: function Label(Q, i)
28: q← uncovered
29: for all j ∈Ni do
30: if Q is completely outside B j then
31: continue . keep the current label
32: else . either covered or partial
33: if Q is completely inside B j then
34: return covered
35: end ifq← partial
36: end if
37: end for
38: return q
39: end function

• True Positive (T P): a boundary particle correctly classified;

• True Negative (T N): an interior particle correctly classified;

• False Positive (FP): an interior particle classified as boundary;

• False Negative (FN): a boundary particle classified as interior.
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Figure 27 – Comparison between IA ( ) and GE ( ) methods. On the left, the classification of
the boundary particles (green) and interior particles (brown) in a model with 170k
particles, and a cutaway view thereof. On the right, the symmetric log (symlog)
plots of the FP and the computational times (in milliseconds) w.r.t. the subdivision
depth.

Source: Sandim, Paiva and Figueiredo (2020).

Since our interval approaches do not produce false negatives (i.e., FN = 0), the comparison
between IA and GE approaches is performed by analyzing the number of false positives.
Figure 27 shows an error analysis based on FP in a static model and a comparison of
the computational performance between both approaches as well. We observe that GE
approach converges to the exact classification faster than IA with less computational
effort.

In search of a balance between accuracy and efficiency in IA and GE methods, we
choose the maximum depth of 6 in all experiments carried out below.

Figure 28 provides a qualitative comparison by showing the misclassified particles
(FP and FN) resulting from each technique in an SPH simulation of a 2D dam-break
problem, as described in (MARRONE et al., 2010). The zoomed rectangle in this figure
shows that our geometric approaches can capture cavities and thin sheets of fluid better
than any other detection method due to the reduced number of misclassified particles.

Figure 29 shows the behavior of the particles in the classical single vortex experi-
ment, as detailed by Enright et al. (2002). Our IA method detects the boundary particles
gracefully, even when the particles are compressed due to a considerable stretching caused
by the vortex flow field.

Figure 30 shows an SPH flow simulation of a liquid been injected in a domain with
an obstacle. Our GE method captures the bubbles formed by the impact of the liquid
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Figure 28 – Comparison between different boundary detection methods in a 2D dam-break sim-
ulation using SPH (top) at t = 1.4. The misclassified particles are highlighted (bot-
tom): FP (red) and FN (blue).

(a) Marrone et al. (b) Sandim et al. (c) Lin et al. (d) Our IA (e) Our GE

Source: Sandim, Paiva and Figueiredo (2020).

Figure 29 – Boundary detection using IA in a single vortex at different times t = 0.0,0.25,0.5
and 1.0 (from left to right): boundary particles (green) and interior particles
(brown).

Source: Sandim, Paiva and Figueiredo (2020).

against a rigid obstacle.

Figures 31 and 32 depict the boundary detection using IA and GE methods in
complex free-surface flows in 3D resulting from the impact of a double dam-break and
against a rigid tall obstacle after a single dam-break, respectively. Our geometric methods
are resilient to the fragmentation of the interface and the thin layers of particles created
by the impact.

All SPH flow simulations presented in this section were performed using the com-
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Figure 30 – Boundary detection using GE in an SPH flow simulation of an injector (blue) with
inlet velocity of 4m/s in a domain with an obstacle (gray) at different times (t):
boundary particles (green) and interior particles (brown).

(a) t = 0.00 (b) t = 2.48 (c) t = 4.95 (d) t = 7.43

Source: Sandim, Paiva and Figueiredo (2020).

Figure 31 – Boundary particles detected by our IA method in an SPH flow simulation of a dam-
break problem of two liquid columns at opposite corners of a container with a square
base of size 2.5 and height 3.5 at different times (t).

Source: Sandim, Paiva and Figueiredo (2020).

putational platform SPHysics (GOMEZ-GESTEIRA et al., 2012).

Beyond SPH, Figure 33 shows the versatility of our GE method when applied to de-
tect the boundary particles in an Affine Particle-in-Cell (APIC) (JIANG; SCHROEDER;
TERAN, 2017) flow simulation of a liquid sloshing in a spherical tank. In this experiment,
we use the APIC implementation provided by Kim (2016).

Similar to the level-set definition from the boundary particles introduced by Mar-
rone et al. (2010), Figure 34 demonstrates the effectiveness of our geometric approach
when the free-surface is reconstructed from the level-set of the Enright test (ENRIGHT
et al., 2002) generated by Sandim et al.’s algorithm (SANDIM et al., 2019).

4.4.1 Quantitative analysis

To perform quantitative comparisons between different boundary detection meth-
ods, we measure the accuracy of each method using the metric proposed by Sandim et al.



66
Chapter 4. Simple and reliable boundary detection for meshfree particle methods using interval

analysis

Figure 32 – Boundary particles detected by our GE method in an SPH flow simulation of the
impact against a rigid obstacle after a dam-break, as reported in (MARRONE et
al., 2010).

(a) t = 0.0 (b) t = 0.2

Source: Sandim, Paiva and Figueiredo (2020).

(2016):
M = Rec · (1−FPR) ,

where Rec= T P/(T P+FN) and FPR =FP/(P+T N) are well-known metrics in data anal-
ysis (FAWCETT, 2006) called Recall and False Positive Rate (FPR), respectively. Recall
measures the accuracy of a method in detecting boundary particles precisely among the
actual set of boundary particles. The best result occurs when Rec = 1, meaning that all
boundary particles were classified correctly, although of the possible presence of false pos-
itives. While FPR quantifies how many interior particles were misclassified as boundary.
The best case occurs when FPR = 0, when no interior particles have been classified as
boundary. Thus, the best classification occurs when the combined metric M reaches its
maximum value of 1, i.e. when the Recall is maximum, and FPR is minimum simultane-
ously.

Table 6 and Table 7 show the number of particles (|P|), the parameter r, and the
average scores resulting from each technique in 2D and 3D, respectively. We apply the
same parameters as suggested in the corresponding paper of each technique. Remembering,
for the assessments of IA and GE, we choose the maximum depth of 6. Notice that our
interval approaches reliably detect all boundary particles, providing certified results with
Rec = 1. Moreover, the GE approach outperforms the other methods in all experiments.

We implemented the 2D version of our techniques in Python and the 3D version in
C++. All boundary detection methods in C++ were parallelized using OpenMP, except
the ground truth (HAQUE; DILTS, 2007) due to its complexity. All experiments have
been performed on a computer equipped with processor Intel i7-8750H with six 2.2GHz
cores and 16GB RAM. Table 8 shows the computational times regarding the number of
processor cores for the experiments in 3D. The column speedup is the relation 1-core/6-
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Figure 33 – APIC flow simulation of liquid sloshing starting in a section of a sphere of diame-
ter 0.8: boundary particles detected by our GE method at different time instants.

(a) t = 0.0 (b) t = 0.3

(c) t = 0.6 (d) t = 0.9

Source: Sandim, Paiva and Figueiredo (2020).

core, and the last column is how much faster is a detection method than the exact method,
i.e., the rate of CPU time of a detection method over the exact method using a single
core. As can be seen, the GE method is almost twice as fast as the exact method in the
worst case.

The scalability of the detection methods is measured on a mushroom jet simulation
using SPH, as illustrated by Figure 35. In this simulation, more than 3 million particles are
inserted in the system along the time. The computational time of GE method is located
between the exact and the fastest methods.

4.5 Conclusion

We have presented two novel methods for detecting boundary particles in both 2D
and 3D domains. These methods are tailored to particle-based methods in free-surface flow
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Table 6 – Quantitative analysis between different boundary detection methods in 2D (best re-
sults are shown in bold).

Experiment |P| r Methods Rec FPR M

Figure 28 11.2k 0.009

Marrone et al. 0.9767 0.0245 0.9523
Sandim et al. 0.9979 0.0184 0.9796
Lin et al. 0.9762 0.0189 0.9577
Our IA 1.0000 0.0036 0.9964
Our GE 1.0000 0.0016 0.9984

Figure 29 837 0.022

Marrone et al. 0.9779 0.0701 0.9093
Sandim et al. 1.0000 0.0776 0.9224
Lin et al. 0.9982 0.0642 0.9341
Our IA 1.0000 0.0569 0.9431
Our GE 1.0000 0.0472 0.9528

Figure 30 [5k, 23.4k] 0.051

Marrone et al. 0.9735 0.0136 0.9602
Sandim et al. 0.9540 0.0040 0.9502
Lin et al. 0.9307 0.0106 0.9209
Our IA 1.0000 0.0052 0.9948
Our GE 1.0000 0.0014 0.9986

simulations. We combine a robust purely geometric sphere covering tests based on interval
analysis with an adaptive spatial subdivision of the sphere associated with a given particle.
Our approaches outperform the state-of-the-art boundary detection methods as attested
by the set of experiments and comparisons carried out in the chapter. As an application,
we show that the proposed methods can be applied to define a level-set function from

Figure 34 – The Enright test at different times t = 0.0,0.5,1.0 and 1.5 (from left to right):
the boundary particles detected by our GE method (at top) and its level-set (at
bottom).

Source: Sandim, Paiva and Figueiredo (2020).
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Table 7 – Quantitative analysis between different boundary detection methods in 3D (best re-
sults are shown in bold).

Experiment |P| r Methods Rec FPR M

Figure 31 275.4k 0.033

Marrone et al. 0.9127 0.0304 0.8850
Sandim et al. 0.9992 0.0269 0.9723
Our IA 1.0000 0.0094 0.9906
Our GE 1.0000 0.0065 0.9935

Figure 32 1.1M 0.007

Marrone et al. 0.9708 0.0376 0.9343
Sandim et al. 0.9998 0.0298 0.9700
Our IA 1.0000 0.0122 0.9878
Our GE 1.0000 0.0070 0.9930

Figure 33 550k 0.007

Marrone et al. 0.6928 0.0269 0.6742
Sandim et al. 0.9938 0.0338 0.9602
Our IA 1.0000 0.0169 0.9831
Our GE 1.0000 0.0089 0.9911

Figure 34 1.9M 0.005

Marrone et al. 0.9708 0.0376 0.9343
Sandim et al. 0.9998 0.0298 0.9700
Our IA 1.0000 0.0122 0.9878
Our GE 1.0000 0.0070 0.9930

Figure 35 [22k, 3.2M] 0.010

Marrone et al. 0.6727 0.1729 0.5564
Sandim et al. 0.99908 0.2027 0.7965
Our IA 1.0000 0.2219 0.7781
Our GE 1.0000 0.0787 0.9213

the boundary particles by using the strategy provided by Sandim et al. (SANDIM et al.,
2019).

As future work, we intend to port our geometric methods to GPU architecture,
since the particle classification is performed locally and independently for each particle.
Another direction is to apply our boundary detection to adapt tree-based grids dynami-
cally around the liquid interface in fluid simulations (OLSHANSKII; TEREKHOV; VAS-
SILEVSKI, 2013) and in particle remeshing applications (OBEIDAT; BORDAS, 2019) as
well.
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Table 8 – Average computational times (in seconds) per time-step.

Experiment |P| Methods 1-core 6-core speedup rate

Figure 31 275.4k

Haque and Dilts 19.70 7 7 1.00
Marrone et al. 4.77 0.97 4.91 4.13
Sandim et al. 4.68 1.02 4.59 4.21
Our IA 15.26 2.85 5.35 1.29
Our GE 10.60 2.38 4.46 1.86

Figure 32 1.1M

Haque and Dilts 113.00 7 7 1.00
Marrone et al. 31.09 6.52 4.77 3.63
Sandim et al. 23.37 5.37 4.35 4.84
Our IA 81.32 15.07 5.39 1.39
Our GE 61.45 13.68 4.49 1.84

Figure 33 550k

Haque and Dilts 112.89 7 7 1.00
Marrone et al. 15.51 3.60 4.30 7.28
Sandim et al. 17.03 5.73 2.97 6.63
Our IA 48.36 9.95 4.86 2.33
Our GE 37.10 8.48 4.38 3.04

Figure 34 1.9M

Haque and Dilts 649.05 7 7 1.00
Marrone et al. 149.16 35.53 4.20 4.35
Sandim et al. 74.85 21.21 3.53 8.67
Our IA 362.61 70.32 5.16 1.79
Our GE 300.71 71.73 4.19 2.19
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Figure 35 – SPH flow simulation of a mushroom jet with inlet velocity of 5m/s. On the top, the
level-set from the boundary particles detected by our GE method at t = 0.5. On the
bottom-left, the sketch of the problem geometry. On the bottom-right, the compu-
tational times (in seconds) of each detection method: Haque and Dilts (HAQUE;
DILTS, 2007) ( ), Marrone et al. (2010) ( ), Sandim et al. (2016) ( ), our IA ( ),
and our GE ( ).

Source: Sandim, Paiva and Figueiredo (2020).
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CHAPTER

5
CONCLUSION

In this thesis, we successfully explored the boundary detection problem, its defini-
tion, and possible solutions. We analyzed the methods present in the literature of both
computer graphics and computational physics and proposed new techniques that con-
tribute to both areas.

As shown in Chapter 2, we have successfully presented a mathematical definition
of the problem. This formal definition allowed us to establish metrics to evaluate the
effectiveness of a boundary solution method and develop methods that satisfy diverse
requirements. Moreover, we presented a method that is simple to use, has a single param-
eter, works for most cases with its default configuration, and produces excellent results
when compared to other popular and state-of-the-art methods. We also showed successful
cases of the application of the method with the generation of free-surface meshes through
surface-fitting algorithms.

The method presented in Chapter 3 builds upon the definition of the problem
presented in the previous chapter while exploring an innovative way to tackle the problem.
It also employed tools that have great potential to accelerate boundary detection and many
other problems in computer graphics.

For applications where the user needs a robust boundary detection method, we
presented methods based on interval analysis in Chapter 4. They outperform both state-
of-the-art methods in boundary detection, including our previous solutions, while being
straightforward and keeping a reasonable runtime.

We heavily tested all of our solutions using SPH simulations, but we have also
shown cases have we successfully applied our solution to other methods, such as APIC.
These results reinforce the flexibility of the proposed solutions and widen the range of
possible use cases.

We also briefly discussed an application of one of the boundary detection methods
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to particle resampling. The method in Section 2.6 applies to different particle methods,
improving the particle distribution significantly in critical areas, and it is fast and easy
to implement. We showed how resampling improves the generation of free-surface meshes
for rendering, without creating new particles unnecessarily.

5.1 Future work
All of the solutions proposed in this thesis can take advantage of parallel process-

ing hardware and tools. The algorithms presented in Chapters 2 and 4 have low data
dependency, low memory usage, rely on local computations, and simple operations. These
aspects make them simple to adapt to a parallel processing model. The method proposed
in Chapter 3 can use common machine learning frameworks that are ready to explore par-
allel processing hardware like TensorFlow(ABADI et al., 2015) and ThunderSVM (WEN
et al., 2018). This type of change can significantly improve the performance of the meth-
ods.

Our machine learning method still suffers heavily from memory management is-
sues. A more sophisticated sample selection scheme is crucial to allow its application to
training-sets with a higher number of particles. Another alternative is the application of
incremental training or methods suited to streams of data.

Explore the application of the proposed solutions integrated into a simulation
pipeline is an exciting path to take. By inserting them into a pipeline, other steps of the
simulation can take advantage of the information, improving results related to incompress-
ibility, surface tension, interaction with other objects of a scene, and others. The particle
resampling method presented in Section 2.6 has the potential to improve the simulation
by keeping a more regular distribution in small feature areas during simulation, avoiding
possible numerical errors due to the lack of neighbor particles to interpolate information.

Finally, it is nothing new to use computational geometry to solve other classes
of problems. Some applications in pattern recognition, image processing, statistics, and
data mining use convex-hull algorithms to extract information from multi-dimensional
data. Given this, utilize our boundary detection methods with multi-dimensional data is
an intriguing possibility.
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APPENDIX

A
PROOF OF LEMMA 2.2.1

Lemma A.0.1. Let P be a r-sampling of a domain Ω and p be a r-boundary point, that
is, p ∈Br. There exists a viewpoint V such that p is in the set of visible points HV(P)

resulting from HPR algorithm.

Proof. Since p ∈Br, there is at least one point x ∈ ∂Br(p) that is not covered by any
other ball Br(q) centered in q ∈P \{p}. Therefore, a viewpoint V placed on x is closer
to p than any other q ∈P \ {p}. By construction, the exponential flipping f is strictly
monotonically decreasing along each ray from V, then the inversion mapping will take p
farther away from V than other point in P \ {p}. Thus, ensuring that p̂ = f (p) lies on
the boundary of the convex hull of P̂ ∪{V}, i.e., p ∈HV(P).
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APPENDIX

B
AD-HOC INTERVAL EVALUATION

Algorithm 5 shows pseudo code for computing the image of a 3D query box Q =

[xmin,xmax]× [ymin,ymax]× [zmin,zmax] by the function fk defining the sphere Sk. As mentioned
in the text, we avoid using outward rounding, because the geometric resolution is much
lower than the numerical resolution of the floating point system.

Algorithm 5 – Ad-hoc interval evaluation of fk(Q)

1: function FK(xmin,xmax,ymin,ymax,zmin,zmax)
2: global xk,yk,zk,r
3: amin,amax← Sqr(xmin,xmax,xk)
4: bmin,bmax← Sqr(ymin,ymax,yk)
5: cmin,cmax← Sqr(zmin,zmax,zk)
6: fmin← amin +bmin + cmin− r2

7: fmax← amax +bmax + cmax− r2

8: end function
9: function Sqr(tmin, tmax, t)

10: tmin← tmin− t
11: tmax← tmax− t
12: if tmin ≥ 0 then
13: fmin← t2

min
14: fmax← t2

max
15: else if tmax ≤ 0 then
16: fmin← t2

max
17: fmax← t2

min
18: else
19: fmin← 0
20: fmax← max(t2

min, t
2
max)

21: end if
22: end function
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