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Abstract

This thesis studies polynomial optimization, that is, the problem of minimizing the value of a
polynomial over a semi-algebraic set. Such polynomial optimization problems arise in a wide
variety of contexts, both in mathematics, and more generally in science and engineering.

In the first part of this thesis, we study a polynomial optimization problem which arises
when solving the separability problem in Quantum Information Theory. Our approach is via
sums of squares decompositions for polynomials, which provide a natural relaxation for poly-
nomial optimization. Our focus is on the development of practical computational methods to
address these problems. We review classical sum of squares relaxations, and give a compari-
son of the computational complexities between some of the modern state-of-the-art relaxations.
Using the insights gained from this analysis we develop a MATLAB package which is able to
solve the separability problem in cases which were beyond the reach of previously existing
software implementations.

In the second part of this thesis, we study the tracial moment problem, which can be thought
of as a dual problem to non-commutative polynomial optimization. For the bivariate quartic
tracial moment problem, the problem is well understood when the associated Hankel matrix
(which has size 7 × 7) is positive definite, or positive semi-definite and of rank at most 4.
Here we examine the Hankel matrix when it is of rank 5 or 6 and show that there are four
canonical cases to study. In two out of the four rank 6 cases, we reformulate the existence of
a representing measure, to a feasibility problem of three small linear matrix inequalities and a
rank constraint. Our results significantly improve previous approaches to the bivariate quartic
tracial moment problem.

Finally, we also study the tracial moment problem on elliptic curves, giving a reduction
to the classical moment problem in two out of the three cases. Furthermore, for the classical
moment problem on elliptic curves, we give sufficient conditions for a representing measure µ
to exist.
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Chapter 1

Introduction

Optimization is one of the most widely applicable branches of mathematics across science. It is
ubiquitous in statistics [58], biology [68], cosmology [41], engineering [72, 89], and computer
science [77] to name a few. In this thesis we will study the special subclass of polynomial
optimization problems: given polynomials p, g1, . . . , gk ∈ R[x1, . . . , xn] ≡ R[x], compute

pmin = min
x∈Rn

p(x),

s.t. g1(x) ≥ 0, . . . , gk(x) ≥ 0.
(1.1)

In other words, find the minimum (or more generally the infimum) of the polynomial p, over
the semi-algebraic set K = {x ∈ Rn : g1(x) ≥ 0, . . . , gk(x) ≥ 0} which is the non-negativity
set of the polynomials g1, . . . , gk. Many problems from different areas of mathematics can
be formulated in this way; some notable examples are the max-cut problem, testing matrix
copositivity, and the stable set problem. However, it is well known that problem (1.1) is NP-
hard [40, 70, 75]. In the first part of this thesis (Chapters 2 and 3) we focus on approximating
the solution to (1.1) via a sum of squares relaxations.

Sums of squares relaxations arise out of the following consideration, ‘given a polynomial
p ∈ R[x], if there are polynomials h1, . . . , hk ∈ R[x], such that the polynomial p can be
decomposed as p = h2

1 + · · · + h2
k, then p is non-negative on Rn’. Thus, a sum of squares

decomposition provides a certificate of non-negativity. Furthermore, sum of squares decompo-
sitions make problem (1.1) easier, as such decompositions can be efficiently computed using
the recent advances in semi-definite programming. As we can see, an essential component here
is understanding when such a decomposition into a sum of squares is possible. This topic has
a rich history, beginning with the work of Hilbert in the late 1800’s [46]. For the univariate
case, it has been known for a long time that if a univariate polynomial p(x) is non-negative
on R, then it can be written as a sum of squares (two squares to be precise), a result often
credited to Gauss. But in 1885, during his thesis defense, Minkowski conjectured that there
are non-negative homogeneous polynomials which are not sums of squares. Fascinated by this,
in 1888 Hilbert published [46] proving that this conjecture was in fact true. He further charac-
terized the only cases where non-negativity is equivalent to the existence of a sum of squares
decomposition.

This was the inspiration for Hilbert’s 17th problem, presented at the 1900 International
Congress of Mathematicians in Paris, which questioned whether every non-negative polyno-
mial could be decomposed as a sum of squares of rational functions. This question was an-
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2 Introduction

swered in the affirmative by Artin in 1927 [3], and these results are usually regarded as the
birthplace of Real Algebraic Geometry [13].

Since then, our understanding of sum of squares decompositions has grown considerably.
In Chapter 2 we present these developments in more detail. The most groundbreaking being
the Positivstellensatz, presented by Stengle [92] and now known to have been understood ear-
lier by Krivine [55], which gives the most general conditions for decomposing non-negative
polynomials into a sum of squares. We consider also the Positivstellensätze of Schmüdgen and
Putinar, which under some additional natural assumptions, improve upon the result of Krivine.
The representations due to the results of Schmüdgen or Putinar are undoubtedly simpler, and
computationally advantageous in the context of optimization. We also show how to pose the
existence of a sum of squares decomposition as a semi-definite program.

Hilbert’s theorem proved the existence of non-negative polynomials which could not be
written as sums of squares, however his proof was not constructive. The first known example,
the Motzkin polynomial (Example 2.7), was discovered almost eight decades later [69]. In their
recent work, Blekherman, Smith and Velasco [12] showed how to construct (random) non-
negative polynomials, over varieties of non-minimal degrees, which are not sums of squares.
The work of [51] further refines this process into an algorithm (Algorithm 1) to construct non-
negative biquadratic polynomials which are not sums of squares and have a carefully chosen set
of zeros. Biquadratic polynomials which are non-negative but not sums of squares are in direct
correspondence with positive maps that are not completely positive from operator algebras
(pncp maps for short). Our interest in this correspondence is motivated by the separability
problem from Quantum Information Theory, which asks to determine if a given quantum state
ρ is entangled. A general approach to solving the separability problem relies on pncp maps,
which can be constructed using Algorithm 1.

The underlying optimization problem in Algorithm 1 requires minimizing a non-negative
polynomial. When we restrict to strictly positive polynomials, there are many methods to
decompose a polynomial into a sum of squares which are guaranteed to work, and work well.
On the contrary, when we consider non-negative polynomials, many of these methods (while
useful) start to become limited and require additional information on intricate algebraic objects,
which in most cases is difficult to obtain. Hence, the construction of pncp maps from Algorithm
1, requires a computationally suitable sum of squares relaxation for non-negative polynomials.

In Chapter 3 we examine several new relaxations to construct pncp maps. Our contributions
towards this are as follows. Through our experiments we find the most stable, and the most
efficient relaxation for Algorithm 1. In addition to this, we also illustrate how these randomly
constructed pncp maps can help to detect entanglement in a quantum state represented by a
density matrix ρ ∈ Rn×n. Our findings are nicely collected into a MATLAB package PnCP,
designed for constructing random positive maps which are not completely positive. Moreover,
PnCP can be used to check if a quantum state is entangled (see Algorithm 2 and Examples 3.15
and 3.16). While there are existing software packages for detecting quantum entanglement,
they rely on a criterion (Criterion 3.13) which is no longer sufficient in higher dimensions; in
contrast PnCP is applicable for arbitrary dimensions. As such we expect PnCP to significantly
aid in the study of many problems in Quantum Information Theory.

In the second part of this thesis (Chapters 4 and 5) we study the dual theory of moments.
The moment problem is a classical question in analysis, which asks when a linear functional on
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the space of univariate polynomials is represented by integration. Equivalently, for a sequence,
β, of real (or complex) numbers, does there exist a representing measure µ, such that the terms
of β are the moments of µ?

Initiated by Stieltjes, the power moment problem in particular requires a real sequence
(βk)

∞
k=0 to satisfy

βi =

∫ b

a
xi dµ,

and is well studied. Let

∆n =


β0 β1 . . . βn
β1 β2 . . . βn+1

...
...

. . .
...

βn βn+1 . . . β2n

 , and ∆(1)
n =


β1 β2 . . . βn+1

β2 β3 . . . βn+2

...
...

. . .
...

βn+1 βn+2 . . . β2n+1

 .

For the interval [a, b] = [0,∞), Stieltjes [93] gave necessary and sufficient conditions for a
solution to the power moment problem using the Hankel matrices ∆n and ∆

(1)
n ; there exists a

representing measure µ, such that βi =
∫∞

0 xi dµ if and only if det(∆n) > 0 and det(∆
(1)
n ) >

0 for every n ≥ 0. Similar solutions for [a, b] = (−∞,∞), and [a, b] = [0, 1] are given by
Hamburger [43] and Hausdorff [45] respectively, with each of these problems now named after
the solver.

There are of course many generalizations, the first natural extension perhaps being to con-
sider the problem on Rn. To be precise, given a sequence (βγ) indexed by γ = (γ1, . . . , γn) ∈
Nn, we ask if there is a positive Borel measure µ on Rn such that

βγ =

∫
Rn

xγ dµ, (1.2)

with the standard multi-index notation xγ = xγ11 · · ·x
γn
n . The general solution to this exten-

sion, the Riesz-Haviland Theorem [32, Theorem 1.1], provides a connection to non-negative
polynomials through a duality relation: A sequence (βγ)γ∈Nn , represents the moments of a
positive Borel measure µ on Rn (i.e., (βγ) satisfies (1.2)), if and only if

∑
γ pγβγ ≥ 0 for

every polynomial p =
∑
pγx

γ ∈ R[x] which is non-negative on Rn.

For the bivariate case (R2) in particular, there is a great deal of understanding and success
for the truncated moment problem, which considers (1.2) with the truncation of (βγ)γ∈N2 , i.e.,

βγ1,γ2 =

∫
R2

xγ11 x
γ2
2 dµ, γ1 + γ2 ≤ 2d, (1.3)

and d ∈ N. Stochel has shown in [95] that the truncated moment problem (1.3) is in fact
more general than the full problem (1.2). In light of this, we only concern ourselves with the
truncated moment problem.



4 Introduction

Consider the following (generalized) Hankel matrix

Md(β) :=

1 X Y . . . Xd . . . Yd



1 β0,0 β1,0 β0,1 . . . βd,0 . . . β0,d

X β1,0 β2,0 β1,1 . . . βd+1,0 . . . β1,d

Y β0,1 β1,1 β0,2 . . . βd,1 . . . β0,d+1

...
...

...
...

. . .
...

. . .
...

Xd βd,0 βd+1,0 βd,1 . . . β2d,0 . . . βd,d
...

...
...

...
. . .

...
. . .

...

Yd β0,d β1,d β0,d+1 . . . βd,d . . . β0,2d

.

Hankel matrices have been integral to the study of the moment problem. Curto and Fialkow
paved the way forward through their seminal works [26, 27, 28, 29, 30, 31], in which they
connected the solution of the truncated moment problem (1.3) to extensions ofMd(β). They
developed a new functional calculus for the truncated moment problem, which studies polyno-
mial equations defined on the columns and rows ofMd(β) (hence the suggestive column/row
labels for Md(β)). This technique provided a complete characterization of the quartic mo-
ment problem (M2(β), see Theorem 4.10), and is now an essential tool in studying not only
the moment problem, but also some of its further generalizations.

Extending this problem further, Burgdorf and Klep introduced the tracial moment prob-
lem in [16], a non-commutative counterpart to (1.2). For a simple statement of the problem,
consider the sequence (βw(X,Y )) generated as

βw(X,Y ) =

∫
(SRt×t)2

tr(w(A,B)) dµ(A,B), (1.4)

where SRt×t is the space of symmetric real matrices, µ a measure on this space, w(X,Y ) are
monomials of the non-commutative variables X and Y , and tr is the trace functional. The
tracial moment problem is the converse : Given a sequence (βw(X,Y )), is there a t ∈ N with a
measure µ on (SRt×t)2 such that (βw(X,Y )) satisfies (1.4)?

Like the moment problem, the tracial moment problem is intertwined with optimization of
non-commutative polynomials. Burgdorf and Klep have studied this connection well [15, 18],
and in fact for the quartic tracial moment problem with sequences (βw(X,Y )) that have their
corresponding tracial Hankel matrix positive definite, they solved the problem entirely [16]
(an alternative proof can be found in [19]). The tracial moment problem is further shown
to be connected to many other important problems such as Connes’ embedding conjecture in
operator algebras [24, 52], or the now confirmed BMV conjecture [8, 14, 53, 91].

In the author’s MSc thesis [9], we explored the quartic tracial moment problem when
the associated Hankel matrix is singular and positive semi-definite, equivalently, when the
representing measure µ must be contained in some quadratic variety. We used the extension
approach of Curto and Fialkow to establish sufficient conditions for a solution to exist. During
the PhD, collaboration with Aljaž Zalar led to refinements of these results, and moreover we
established necessary conditions for the solution to exist, with our results published in [10].
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In Chapter 4, we present some of these new results, developed during the PhD, on the
quartic tracial moment problem, which provide a novel computational framework to search for
solutions. We show that the quartic tracial moment problem reduces to the analysis of four
canonical column relations in the Hankel matrixM2. We also illustrate that in many cases, the
atoms of a potential representing measure have a nice form. This atomic approach enables us
to completely characterize when a solution exists if the Hankel matrixM2 has rank 5. Finally,
in the rank 6 case, we show that the quartic tracial moment problem can be reformulated into
a feasibility problem of three small linear matrix inequalities and a rank constraint.

Chapter 5 generalizes this study to truncations of all orders d, where the representing mea-
sure lies on a cubic variety. This is the first presentation of the truncated tracial moment prob-
lem on cubic varieties. In particular, we study measures over Elliptic curves, which are the
smooth cubics. Our first contribution is a reduction of the truncated tracial moment problem
on elliptic curves, in two out of the three cases, to the classical (commutative) truncated mo-
ment problem on elliptic curves. The classical truncated moment problem has previously been
studied on cubic varieties in special cases. For instance [33, 102, 103] study extremal cases of
the sextic moment problem, with [102] giving special focus to harmonic cubic polynomials,
and Fialkow [38] solves the classical truncated moment problem with representing measures
supported on y = x3. Elliptic varieties however remain largely unstudied, and to the best of
our knowledge our presentation is the first analysis on elliptic varieties, even for the classical
truncated moment problem. Our second contribution is an analysis of sufficient conditions for
a representing measure to exist on elliptic curves in the classical setting. We also illustrate the
distinctions with the quartic moment problem in Example 5.15.

Sums of squares relaxations and the dual theory of moments have become an increasingly
popular approach to polynomial optimization problems. Indeed many state-of-the art opti-
mization software such as SOStools, GloptiPoly3, RealCertify etc., are based on these ideas.
The results of this thesis help to further our understanding of these concepts, highlight new
directions for future research, and expand the horizon of applications to the realm of Quantum
Information Theory.





Chapter 2

Sums of Squares & Optimization

This chapter establishes a basic background for studying optimization through sums of squares
(SOS) relaxations. The material presented is well understood and classical, with most texts on
SOS theory having a similar presentation.

There is a vast amount of literature on the topic, but the survey of Laurent [59] is perhaps
the best introduction, covering a broad range of topics. We follow the overall structure of [59]
for sums of squares, and naturally adjust things for our purposes. We present proofs only when
they are instructive, and otherwise refer the reader to appropriate literature.

We first settle on some notation which we use throughout the thesis. We denote by N
(resp., R,C) the set of non-negative integers (resp., real numbers, complex numbers). We
write R[x1, . . . , xn] for the ring of polynomials in n variables and coefficients from R, and
often abbreviate to R[x], with x = (x1, . . . , xn). When working with a small number of
variables, for instance two, we normally write R[x, y] instead of R[x1, x2]. We use bold face
letters x,y, z, . . . for vectors. For α = (α1, . . . , αn) ∈ Nn, xα represents the monomial
xα1

1 · · ·xαn
n , which has degree |α| = α1 + · · · + αn. A polynomial p(x) ∈ R[x] is of the

form p(x) =
∑

α∈Nn pαx
α, with only finitely many non-zero pα (unless working with specific

examples, we usually just write p instead of p(x)). When pα 6= 0, we call pαxα a term of p.
The degree of a polynomial p is defined as deg(p) := max{|α| : pα 6= 0}. The set R[x]d is the
set of all polynomials with degree less than or equal to d.

We write Rs×t for the set of real matrices of size s× t, and SRs×s for the set of symmetric
real matrices of size s× s. We equip Rs×s (SRs×s) with the trace inner product

〈A,B〉 = tr(ATB),

for matrices A,B ∈ Rs×s.
We note that, in general, every polynomial p ∈ R[x]2d can be written (in a non-unique

way) as
p(x) = xTdQxd, (2.1)

where Q ∈ SRs×s and xd is the vector of all monomials with degree at most d. A matrix
Q ∈ SRs×s is called positive semi-definite if for all non-zero vectors x ∈ Rs we have

xTQx ≥ 0. (2.2)

We write Q � 0. Similarly, Q is called positive definite (Q � 0) if (2.2) is strict whenever

7



8 Sums of Squares & Optimization

x 6= 0. There are many equivalent formulations of positive semi-definiteness. Some important
ones are the following: if Q ∈ SRs×s then the following are equivalent

(1) Q � 0,

(2) there exists a V ∈ Rs×s such that

Q = V TV, (2.3)

(3) Q =
∑k

i=1 aia
T
i for some vectors ai ∈ Rs,

(4) all eigenvalues of Q are non-negative.

2.1 Polynomials and Non-negativity.

We say that p ∈ R[x] is non-negative if the evaluation p(a) ≥ 0 for all a ∈ Rn. In this case we
write p ≥ 0 (and similarly p > 0 when p is positive). We say that p has an SOS decomposition,
or that p is SOS, if there exist q1, . . . , qk ∈ R[x] such that

p = q2
1 + · · ·+ q2

k.

We use the standard notation

Pn = {p ∈ R[x1, . . . , xn] : p ≥ 0},
Σn = {p ∈ R[x1, . . . , xn] : p is SOS},

and
Pn,d = Pn ∩ R[x1, . . . , xn]d,

Σn,d = Σn ∩ R[x1, . . . , xn]d.

The following simple result is helpful when searching for SOS decompositions, as we will see
in Example 2.7.

Lemma 2.1 (Lemma 3.1, [59]). If p ∈ Σn, then deg(p) is even. Moreover for any qi ∈ R[x]

such that p =
∑

i q
2
i , we have deg(qi) ≤ deg(p)/2.

A polynomial p is called homogeneous if all of its terms have the same degree. Let p be
a polynomial of degree d, i.e., p =

∑
|α|≤d pαx

α, the homogenization of p is the polynomial

p̃ ∈ R[x, xn+1] defined as p̃ =
∑
|α|≤d pαx

αx
d−|α|
n+1 . As an example, consider the univariate

quadratic
f(x) = x2 + x+ 1 ∈ R[x].

The homogenization of f is given by

f̃(x, y) = x2 + xy + y2 ∈ R[x, y].

The following result shows that being non-negative or SOS is preserved under homogenization.
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Proposition 2.2. A polynomial p ∈ R[x]2d is non-negative (resp. is SOS) if and only if the
homogenization p̃ ∈ R[x, xn+1]2d is non-negative (resp. is SOS).

Proof. When p̃ is non-negative or SOS, the statement is clear (evaluate xn+1 = 1). Suppose
that

p(x) =
∑
|α|≤2d

pαx
α,

is non-negative on Rn. Notice that we may write

p̃(x, xn+1) = x2d
n+1

∑
|α|≤2d

pα

(
x

xn+1

)α
. (2.4)

When xn+1 6= 0, it is clear that p̃ is non-negative, as both x2d
n+1 and p are non-negative. On the

other hand when xn+1 = 0, we instead write p(x) = p2d + · · · + p0, where each pi is a term
of degree i. Expanding (2.4) we find

p̃ = x2d
n+1

(
p2d

x2d
n+1

+ · · ·+ p0

x0
n+1

)
= p2d ≥ 0,

where the last inequality holds because the highest degree term must be non-negative since p
is non-negative. The SOS property is proved similarly.

It is clear to see that any SOS polynomial is non-negative on Rn, the interesting question
is when are these sets equal, i.e., Σn,d = Pn,d? Two instances of this have been known for a
long time.

Theorem 2.3 (Gauss). Let p ∈ R[x] be a univariate polynomial. If p(a) ≥ 0 for all a ∈ R,
then p is SOS. In fact p is a sum of two squares.

Theorem 2.4. Let p ∈ R[x] be a quadratic polynomial. If p(a) ≥ 0 for all a ∈ Rn, then p is
SOS.

Remark 2.5. While there is a standard proof of Theorem 2.3 using the Fundamental Theorem
of Algebra and the identity (a2 + b2)(c2 +d2) = (ac+ bd)2 + (ad− bc)2, we recommend [67]
for a far more interesting and general proof based on the Hahn-Banach Seperation theorem and
Caratheodory’s theorem on convex combinations.

Hilbert completely characterized when Σn,d = Pn,d [46], by proving that equality holds in
exactly one other case.

Theorem 2.6 (Hilbert). Σn,d = Pn,d if and only if (n, d) is one of the following, (1, d), (n, 2)

or (2, 4).

While this theorem proved the existence of non-negative polynomials which could not be
written as sums of squares, the first concrete example, the Motzkin polynomial, was discovered
much later in 1967 [69].
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Example 2.7 (Motzkin polynomial). Let M(x, y) = x4y2 + x2y4 − 3x2y2 + 1. To see that
M(x, y) ≥ 0, set a = xy2, b = x2y and c = 1, then the arithmetic geometric mean inequality
gives

a2 + b2 + c2

3
≥ 3
√
a2b2c2,

that is
x4y2 + x2y4 + 1 ≥ 3x2y2.

Now suppose that M is SOS. Using Lemma 2.1, we know that any decomposition M =

q2
1 + · · ·+ q2

k, requires qr to be of the form

qr(x, y) = arx
3 + brx

2y + crxy
2 + dry

3 + erx
2 + frxy + gry

2 + hrx+ iry + jr.

Comparing coefficients, we see that
∑

r a
2
r = 0 and so ar = 0. Similarly we find er =

gr = 0, and so (comparing coefficients for x2y2 terms)
∑

r(f
2
r + 2ergr) =

∑
r f

2
r = −3, a

contradiction. Hence M(x, y) /∈ Σ2,6.

Some other examples of polynomials which are non-negative but not SOS, such as the
Robinson or Choi-Lam, can be found in [86].

2.2 SOS Programming

Definition 2.8. Given a finite set G = {g1, . . . , gk} of R[x], the basic semi-algebraic set
associated to G is defined as

KG := {x ∈ Rn : g1(x) ≥ 0, . . . , gk(x) ≥ 0}.

Let us see now how the theory of sums of squares can be helpful in optimization. Recall
our general optimization problem

pmin = min
x∈KG

p(x). (2.5)

We may rewrite this as
pmin = max

γ∈R
γ,

s.t. for all x ∈ KG, p(x)− γ ≥ 0,
(2.6)

in other words, finding the minimum of p on KG is equivalent to finding the largest scalar
γ such that the polynomial (p − γ) is non-negative on KG. This reformulation may seem
unnecessary, however when KG = Rn, it allows to us to approximate pmin by replacing the
condition “(p− γ) ≥ 0” with “(p− γ) is SOS”, i.e.,

pSOS = max
γ∈R

γ,

s.t. p− γ is SOS.
(2.7)

Problems with such SOS constraints, i.e., of the form (2.7), are called SOS relaxations or
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SOS programs. Since Σn,d ⊆ Pn,d, we must have pSOS ≤ pmin. Furthermore, by Hilbert’s
theorem (Theorem 2.6) there are polynomials where the inequality is strict; every polynomial
q ∈ Pn\Σn obviously satisfies −∞ = qSOS < 0 ≤ q∗.

At this point it is natural to wonder about one very important question, “is pSOS any easier
to compute than pmin?”

2.2.1 Using Semi-definite Programs

While computing pmin is known to be NP hard [70, 75], pSOS on the other hand can be
computed efficiently thanks to recent advances in computational mathematics. Recall that
every polynomial p ∈ R[x]2d can be written as

p(x) = xTdQxd,

for someQ ∈ SRs×s. For polynomials which are sums of squares, the following theorem gives
information about Q.

Theorem 2.9 (pg. 106, [23]). A homogeneous polynomial p ∈ R[x]2d is SOS if and only if we
can write

p(x) = xTdQxd,

where Q is a positive semi-definite matrix.

Proof. Suppose Q is positive semi-definite. Then we have the decomposition Q = V TV and

p(x) = xTd V
TV xd,

= ‖V xd‖2 ,

hence p is SOS. Conversely, if p is SOS, then we have that

p(x) = q1(x)2 + · · ·+ qk(x)2.

For each qi there is some coefficient vector ai such that we can write qi(x) = xTd ai (note that
we use the monomial vector xd due to Lemma 2.1). Substituting this we see

p(x) =

k∑
i=1

(xTd ai)(x
T
d ai),

=
k∑
i=1

(xTd ai)(x
T
d ai)

T ,

=

k∑
i=1

xTd (aia
T
i )xd,

= xTd

(
k∑
i=1

aia
T
i

)
xd.
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Setting Q =
(∑k

i=1 aia
T
i

)
proves the result.

Consequently, finding an SOS decomposition for a polynomial p ∈ R[x]2d amounts to
finding a positive semi-definite matrix Q which satisfies the constraints

p(x)− xTdQxd = 0. (2.8)

There are two important points to take note of here. Firstly, (2.8) gives a system of linear
constraints with the entries ofQ as variables. Secondly, we must haveQ positive semi-definite.
So finding such a Q requires solving the linear program generated by (2.8) over the set of
positive semi-definite matrices. This is precisely semi-definite programming [1, 97, 98, 100].

Semi-definite programs are a generalization of linear programs, and have the standard pri-
mal form

s∗ = sup
X∈SRs×s

〈C,X〉,

s.t. 〈Aj , X〉 = bj , j = 1, . . . , k,

and X � 0,

(2.9)

with the matrix variable X , problem data C,A1, . . . , Ak ∈ SRs×s, and b = (b1, . . . , bk) ∈ Rk.
When C = 0s×s, (2.9) is called a feasibility program. Finding an SOS decomposition for any
p ∈ R[x]2d can be written as the following semi-definite feasibility program,

Q � 0,

s.t. 〈Aα, Q〉 = pα, |α| ≤ 2d
(2.10)

where

(Aα)β,γ =

{
1, if β + γ = α,

0, otherwise
.

Semi-definite programming has quickly become an invaluable tool for optimization. SOS
programs in particular, are almost exclusively solved using semi-definite programming. The
theory of semi-definite programming diverges too much from the core content of this thesis.
We refer the reader to the books [1, 100] and the surveys [97, 98] for a more comprehensive
discussion of semi-definite programming.

We simply state here that given some ε > 0, there are efficient methods and algorithms
which can find ε-optimal solutions in polynomial time, given some mild regularity. In particu-
lar, the dependence of the complexity of these methods on ε, is polynomial in log(1

ε ) (cf. the
references above, or Section 4.1 of [83] for a classical discussion of this). Therefore approxi-
mate solutions to pSOS are much easier to compute than approximate solutions to pmin.

2.2.2 Lasserre’s Hierarchy

Until now we have only considered SOS programs for global optimization (KG = Rn). Let us
consider SOS programs for optimization when we have constraints (KG 6= Rn).

As an alternative, instead of checking “p − γ is SOS”, we can first “divide out” the con-
straints by squares. With the constraint set KG = {x ∈ Rn : g1(x) ≥ 0, . . . , gk(x) ≥ 0}, we
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obtain the following SOS program for the problem (2.6)

pSOS = max
γ∈R

γ,

s.t. p(x)− γ = r +
k∑
i=1

qi(x)gi(x),

r, q1, . . . , qk ∈ Σn.

(2.11)

Notice that (2.11) is not solvable with semi-definite programming because the constraints are
now of arbitrary degree, so there is no bound for the dimension of the matrices required in an
SDP program. This can be remedied by bounding the degrees of the unknown polynomials
r, q1, . . . , qk, giving us a sequence of approximations to pmin with the following SDP,

pSOSd = max
γ∈R

γ,

s.t. p(x)− γ = r +
k∑
i=1

qi(x)gi(x),

r, q1, . . . , qk ∈ Σn,

deg(qigi) ≤ 2d.

(2.12)

Lasserre [57] has shown that pSOSd → pmin as d→∞ under some natural conditions, and this
hierarchy of approximations are often referred to as Lasserre’s hierarchy.

2.2.2.1 Duality

Let B(Rn) be the space of probability measures on Rn (positive, normalized, Borel measures).
Lasserre replaced the global optimization problem (2.5) (KG = Rn) with the following

pmom = min
µ∈B(Rn)

∫
p(x) dµ(x). (2.13)

The equivalency of (2.5) and (2.13) of the problem can be seen as follows: p(x) ≥ pmin and
hence

∫
pdµ ≥ pmin since µ is normalized, and conversely if xmin is a global minimizer, we

may consider µmin = δxmin , the Dirac measure at xmin giving pmin =
∫
pdµmin ≥ pmom.

If we now consider the polynomial p ∈ R[x]2d, we see that∫
Rn

p(x) dµ(x) =
∑
|α|≤2d

pα

∫
Rn

xα dµ(x) =
∑
|α|≤2d

pαβα,

where βα =
∫
xα dµ(x) are the moments of µ. We may thus replace the optimization problem

(2.13) with
pmom = min

∑
|α|≤2d

pαβα,

s.t. βα =
∫
xα dµ(x), µ ∈ B(Rn),

(2.14)
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which is known as the moment relaxation. Clearly this requires an understanding of when
a sequence (βα)α∈N represents the moments of a measure µ ∈ B(Rn) (in other words, an
understanding of the moment problem). We refer the reader to [57, 59] for a more detailed
discussion of this duality, with computational considerations, formulations for the constrained
setting and comparisons with the SOS relaxations.

2.3 SOS Representations

Hilbert’s theorem (Theorem 2.6) classified all polynomials (in terms of the number of variables
n, and degree d) where non-negativity was equivalent to being SOS. But as we have seen for
constrained optimization problems, there are alternatives to the SOS condition that can be more
useful. In this section we present some of the key relaxations which have had a significant
impact in SOS programming. We also briefly discuss some more recent results.

2.3.1 The 17th Problem

Theorem 2.10 (Artin’s Solution to Hilbert’s 17th Problem, [3]). For any p ∈ R[x], if p ≥ 0

on Rn, then p is a sum of squares of rational functions, i.e., there are polynomials r, qi ∈ R[x],
with r 6= 0, such that

r2p =
∑
i

q2
i .

The solution to Hilbert’s 17th problem is one of the most general representation result for
non-negative polynomials. In Chapter 3 we will see an application where the SOS program
from Theorem 2.10 performs tremendously well.

For positive polynomials, Polya gave a concrete denominator, r2, for Theorem 2.10 when
restricted to the standard simplex ∆n = {x ∈ Rn : xi ≥ 0 and x1 + · · ·+ xn = 1}.

Theorem 2.11 (Polya, [79]). Let p ∈ R[x] be homogeneous and positive on ∆n, then for
sufficiently large N , the coefficients of

(x1 + · · ·+ xn)2Np(x1, ..., xn),

are positive.

Since xi ≥ 0 in Theorem 2.11, we can use the change of variables zi =
√
xi and obtain an

SOS decomposition. Reznick and Powers [81] have in recent years extended Polya’s theorem
to non-negative polynomials, with specialized zeros.

Definition 2.12. Let p ∈ Pn,d be non-negative on ∆n. Then p has a simple zero at the unit
vector ej if the coefficient of xdj is zero and the coefficient of xd−1

j xi is non-zero for every
i 6= j.

Theorem 2.13 (Corollary 1, [81]). Suppose p ∈ Pn,d is homogeneous and non-negative on
∆n with the only zeros being simple zeros at the unit vectors ej1 , . . . , ejk . Then there is an
N ∈ N such that

(x1 + · · ·+ xn)Np
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has non-negative coefficients.

Further refinements of this result are given in [22], where the zeros are allowed to be on
faces of the simplex. Although restricted to positive homogeneous polynomials, computation-
ally speaking, Theorem 2.11 is particularly useful because the certification can be written as a
linear program.

Reznick generalizes the use of a similar denominator beyond the simplex for strictly posi-
tive polynomials.

Theorem 2.14 (Theorem 3, [84]). Suppose that a homogeneous polynomial p ∈ R[x] is strictly
positive. Then there is an ` ∈ N and q1, . . . , qk ∈ R[x] such that

(x2
1 + · · ·+ x2

n)`p =
k∑
i=1

q2
i .

One might try and use this result for non-negative p by considering (p+ ε(x2
1 + · · ·+x2

n))

for some ε > 0, and then take limit as ε→ 0. However, in the same paper Reznick even gives
a lower bound on `, which is inversely dependent on the infimum of p (Theorem 2 [84]). Due
to this ` →∞, as ε → 0. Therefore the denominator (x2

1 + · · ·+ x2
n)` only works well when

p > 0.
Moreover, Delzell has shown in his thesis [35], that there are non-negative polynomials

p ∈ R[x1, . . . , xn] with n ≥ 3, such that in any decomposition

r2p =

k∑
i=1

q2
i ,

the zeros zj of p are shared by r, i.e., r(zj) = p(zj) = 0. Such common zeros are known in as
“bad points”. The example (Example 3 [35])

f(x, y, z) = z6 + x6y2 − 3x2y4z2 + y10

is non-negative (arithmetic-geometric mean inequality), and in particular has the origin as a
bad point, hence there is no ` ∈ N such that (x2

1 + · · ·+ x2
n)`f is SOS.

Reznick has also shown that in general no finite set of denominators is enough.

Theorem 2.15 (Corollory 2, [85]). Suppose that Pn,d\Σn,d 6= ∅. Then for any finite set
{r1, . . . , rk}, there is a polynomial p ∈ Pn,d such that

rip 6= SOS,

for all i = 1, . . . , k.

2.3.2 The Positivstellensätze

Recall the semi-algebraic set KG = {x ∈ Rn : g1(x) ≥ 0, . . . , gk(x) ≥ 0}, which is the
non-negativity set of G = {g1, . . . , gk}. If a polynomial p is non-negative on KG, are there
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any SOS representations that p is guaranteed to satisfy? To understand the answer, let us first
define a preordering.

Definition 2.16. Given a finite set G = {g1, . . . , gk} ⊆ R[x], the preordering associated to G
is defined as

TG =

 ∑
α∈{0,1}k

σαg
α1
1 · · · g

αk
k : σα ∈ Σn

 .

The most general decomposition a non-negative polynomial will admit, is given by the
Positivstellensatz (we present the statement from [65, 2.2.1]). This result was long credited to
Stengle [92], but it is now known that core ideas of the result were presented by Krivine in [55]
a decade earlier. The Positivstellensatz is a powerful result. We can even obtain a solution to
Hilbert’s 17th problem by applying statement (2) with KG = Rn.

Theorem 2.17 (The Positivstellensatz). Suppose G is a finite subset of R[x], KG, TG are the
semi-algebraic set, and preordering associated to G, and p ∈ R[x]. Then the following are
true

(1) p > 0 on KG⇔ there exists r, q ∈ TG such that rp = 1 + q.

(2) p ≥ 0 on KG⇔ there is an integer m ≥ 0 and r, q ∈ TG such that rp = p2m + q.

(3) p = 0 on KG⇔ there is an integer m ≥ 0 such that −p2m ∈ TG.

(4) KG = ∅ ⇔ −1 ∈ TG.

We present here the proof of the equivalency of (1)-(4) from [65]. This proof is very
accessible, even to the unfamiliar reader, requiring nothing more than the basic definitions
to understand. It is also instructive as it shows how each statement can be used. Note that
the following proof does not establish the Positivstellensatz, only that the four statements are
equivalent; the interested reader is referred to [65] to see that the four equivalent statements
are indeed true.

Proof. [(1)⇒(2)] Suppose that p ≥ 0 on KG. We extend dimensions from n to n+ 1 with

(x, y) = (x1, . . . , xn, y) ∈ Rn+1, R[x, y] = R[x1, . . . , xn, y].

We take
G′ = {g1, . . . , gs, yp− 1,−yp+ 1},

so that
KG′ = {(x, y) ∈ Rn+1 : yp(x) = 1, gi ≥ 0, i = 1, . . . , s}.

Thus on KG′ we have p(x, y) = p(x) > 0, so by (1), there is a r′, q′ ∈ TG′ such that

r′(x, y)p(x) = 1 + q′(x, y).

Replacing y with 1
p(x) in this equation and clearing denominators by multiplying with p(x)2m

and m sufficiently large, we obtain

r(x)p(x) = p(x)2m + q(x),
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with

r(x) = p(x)2mr′
(
x,

1

p(x)

)
, q(x) = p(x)2mq′

(
x,

1

p(x)

)
.

It is enough now to show that r, q ∈ TG for sufficiently large m. By the definition of TG′ we
know that

r′(x, y) =
∑

σ(x, y)g1(x)e1 · · · gs(x)es(yp(x)− 1)es+1(−yp(x) + 1)es+2 ,

with σ(x, y) ∈ Σn+1, say σ(x, y) =
∑
hj(x, y)2. Replacing y as before, the terms with

es+1 = 1 or es+2 = 1 vanish. For all the other terms, it is clear that with m large enough,

p(x)2mσ

(
x,

1

p(x)

)
∈ R[x].

We have the same for q, and so r, q ∈ TG.
[(2)⇒(3)] Suppose p = 0 on KG. Using (2) on p and −p yields

r1p = p2m1 + q1, −r2p = p2m2 + q2, ri, qi ∈ TG, i = 1, 2.

The product of these gives

−r1r2p
2 = p2(m1+m2) + p2m1q2 + p2m2q1 + q1q2,

meaning that
−p2m = r,

with m = m1 +m2, and

r = r1r2p
2 + p2m1q2 + p2m2q1 + q1q2,

which belongs to TG since preorderings are closed under addition, multiplication and contain
all squares.

[(3)⇒(4)] Since KG = ∅, we know that 1 = 0 on KG. Applying (3) with p = 1 shows
that −1 ∈ TG.

[(4)⇒(1)] Let G′ = G ∪ {−p}. Since p > 0 on KG, KG′ = ∅, hence −1 ∈ TG′ by (4).
Moreover, since G′ = G ∪ {−p}, it follows TG′ = TG − pTG. Thus, −1 = q − rp, i.e.,
rp = 1 + q with r, q ∈ TG.

Just like Theorem 2.10, the Positivestellensatz sees remarkable improvement when we
work with strictly positive polynomials. When the set KG is compact, we have the following
Positivstellensatz of Schmüdgen.

Theorem 2.18 (Schmüdgen’s Positivstellensatz [90]). Suppose that KG is compact. If p ∈
R[x] is strictly positive on KG, then p ∈ TG.

As noted in [65], there is a gap in Schmüdgen’s original proof, but the result is still true
(see [65]). The SOS program arising from Theorem 2.18 is computationally simpler than the
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program from the Positivstellensatz. However, Theorem 2.18 can not be extended to the realm
of non-negative polynomials as shown by the following,

Proposition 2.19. Let n ≥ 3, and suppose KG has a non-empty interior. Then there exists a
q ∈ R[x], such that q ≥ 0 on KG, but q /∈ TG.

The above is a particular instance of a more general result by Scheiderer [87].

Definition 2.20. For G = {g1, . . . , gk}, the quadratic module generated by G is the set

MG ≡M(g1, . . . , gk) =

{
r +

k∑
i=1

qigi : r, qi ∈ Σn

}
.

Furthermore, MG is called Archimedean if there is an N ∈ N such that

N −
n∑
i=1

x2
i ∈MG.

Observe that the preordering TG is simply the quadratic module generated by all possible
products of the gi’s. Thus every preordering is a quadratic module, and hence quadratic mod-
ules are more fundamental objects than preorderings. Furthermore, quadratic modules are a
natural object to study for SOS representations. Notice that the SOS program (2.11) is nothing
more than a test of membership into MG.

Theorem 2.21 (Putinar’s Positivstellensatz [82]). LetG be a finite subset of R[x], and suppose
that MG is Archimedean. Given a polynomial p ∈ R[x], if p > 0 on KG, then p ∈MG.

Theorem 2.21 implies the asymptotic convergence of the relaxations (2.11) as shown by
Lasserre in [57]. Degree bounds for such decompositions are discussed in [73]. Theorem 2.21
is also used in [71] to develop a new ‘Jacobian’ relaxation, which we utilize in Chapter 3.

While the Positivstellensätze of Schmüdgen and Putinar (Theorem 2.18, 2.21) provide im-
proved, denominator-free SOS representations, they come at the cost of restricting to positive
polynomials (among other things). Fortunately, there are some recent advances towards poly-
nomials with zeros.

Schiederer extends Putinar’s Positivstellensatz to non-negative polynomials with finitely
many zeros, by considering local positivity and smoothness conditions on the zeros [88, Corol-
lary 3.6]. Marshall further explores and refines this approach in [64], and considers degree
bounds for applications to optimization in [66].

The basic idea is that for a polynomial p ∈ R[x] which is non-negative on KG, in any
neighborhood of a zero, the polynomial is positive. Hence smoothness at the zero implies the
Hessian is positive definite. With these ideas in mind, Marshall shows that if there is a local
system of parameters {t1, . . . , tk, tk+1, . . . , tj}, such that we can write p = p1 + p2 + · · · ,
(where each pi is a term of degree i) with

p1 = a1t1 + · · ·+ aktk, ai > 0,

and p2(0, . . . , 0, tk+1, . . . , tj) is positive definite, then p ∈MG [64, Theorem 2.3].
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There are also other representation results, which diverge from the Positivstellensätze and
instead rely on first and second order optimality conditions. We present these in Chapter 3 in
the context of completely positive maps.





Chapter 3

Detecting Quantum Entanglement

This chapter presents a modified version of the manuscript “Practical Construction of Positive
Maps which are not Completely Positive” (https://arxiv.org/abs/2001.01181). We show how
non-negative (and sum of squares) polynomials arise in Quantum Information Theory. We
also give an account of modern sums of squares relaxations, and show how they can be used
to detect entanglement in quantum states.

3.1 Constructing Positive & Completely Positive Maps

Given two matrix spaces A and B, a linear map Φ : A → B with the involution-preserving
property Φ(A∗) = Φ(A)∗ for all A ∈ A, is called positive if for all A � 0, Φ(A) � 0. For a
given l ∈ N, such linear maps induce the ampliation

Φ(l) : Rl×l ⊗A → Rl×l ⊗ B; M ⊗A→M ⊗ Φ(A),

where ⊗ is the standard Kronecker tensor product of matrices. If Φ(l) is positive then we call
Φ l-positive. If Φ(l) is positive for all l ∈ N, then Φ is called completely positive. Positive and
completely positive maps arise naturally in matrix theory and operator algebras (e.g., positive
linear functionals) [76, 101], frequently in quantum information theory [47, 74, 96], and have
recently even been used in semi-definite programming [54].

We study these maps via their correspondence to non-negative and sum of squares polyno-
mials. Restricting these involution-preserving maps to the space of symmetric matrices, each
linear map Φ : SRn×n → SRm×m gives rise to a biquadratic, bihomogeneous polynomial
pΦ ∈ R[x1, . . . , xn, y1, . . . , ym], with

pΦ(x, y) = yTΦ(xTx)y.

It is known (see, e.g., [51]) that Φ is positive if and only if pΦ is non-negative on Rn+m, and
Φ is completely positive if and only if pΦ is a sum of squares (SOS) on Rn+m.

The connection between non-negative and SOS polynomials plays a central role in real al-
gebraic geometry. There are many results concerning this interplay, see for instance the surveys
[6, 59, 60, 80] or the book [65]. In particular, [12] explores the connection between varieties
of minimal degrees and non-negative polynomials. Their main theorem (given below) shows
that on varieties of minimal degrees, non-negative quadratic forms have an SOS decomposition

21
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with linear forms.

Theorem 3.1 (Thereom 1.1, [12]). LetX ⊆ Pn be a real irreducible non-degenerate projective
sub-variety, with homogeneous coordinate ring R, such that the set X(R) of real points is
Zariski dense. Every non-negative real quadratic form on X is a sum of squares of linear
forms in R if and only if X is a variety of minimal degree.

Moreover, when X is not of minimal degree, [12] gave a construction for generic quadratic
forms which are non-negative onX but not SOS. In [51] the authors specialize this construction
(Procedure 3.3 of [12]) to biquadratic, bihomogeneous polynomials over the Segre Variety,
which is the image of the Segre embedding σ : Pn−1 × Pm−1 → Pnm−1 (and is well known
to not be of minimal degree for n,m ≥ 3). This formalization of the method in [12], gives an
algorithmic construction of positive maps which are not completely positive (pncp maps for
short).

Letting n,m ≥ 3, t = n + m − 2 and N = n + m, the algorithm of [12, 51] can be
summarized as follows (see Section 3.2.1 for full details):

Algorithm 1: KMSZ Construction
1. Generate random points x ∈ Rn, y ∈ Rm
2. Use x, y to create bilinear forms {h0, . . . , ht} over RN
3. Generate f /∈ 〈h0, . . . , ht〉 so that f 6= SOS on RN
4. Choose δ small enough so that Fδ = δf + h2

0 + · · ·+ h2
t ≥ 0 on RN

Steps 1-3 are simple linear algebra computations, our contribution in this work is to find the
most practical technique for Step 4, and to establish benchmarks for this type of construction.

This is an expository and experimental chapter in which we introduce the MATLAB pack-
age PnCP, currently the only implementation of Algorithm 1. We survey recent optimization
techniques for verifying Step 4 and specify relaxations theoretically superior to those pre-
sented in [51]. We implement and test these methods in PnCP. Our package and test data are
made available at https://github.com/Abhishek-B/PhD-Thesis-Supplementary-Material
(as well as the official repository of PnCP, https://bitbucket.org/Abhishek-B/pncp/). We also
consider rationalizations of the forms obtained with Algorithm 1 to construct exact certificates
of non-negativity (PnCP is able to construct pncp maps with rational coefficients).

PnCP is developed as a consequence of the rising interest in quantum information and its
purpose is to help identify entangled (quantum) states (see Section 3.5 for definitions); pncp
maps preserve their positivity on separable states, however they may fail to preserve positivity
on entangled states, which provides the following classification criterion.

Criterion 3.2 (The general criteria, [4] section 8.4). A quantum state ρ ∈ SRs×s is entangled
if there is a pncp map Φ such that the ampliation (I ⊗ Φ)(ρ) � 0.

As an example, consider the Bell State, which has density matrix (see Section 3.5)

ρ =
1

2


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 ∈ R2×2 ⊗ R2×2.

https://github.com/Abhishek-B/PhD-Thesis-Supplementary-Material
https://bitbucket.org/Abhishek-B/pncp/
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and let T be the standard transpose map (clearly positive, and known to be pncp). Then the
partial ampliation (I ⊗ T ) : R2×2 ⊗ R2×2 → R2×2 ⊗ R2×2 applied to ρ gives,

(I ⊗ T )(ρ) =
1

2


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


which has a negative eigenvalue of −1/2, and serves as evidence of entanglement in the Bell
State. While the transpose map was sufficient in this simple example, in general finding a
suitable map is difficult. With the help of PnCP one can generate many such maps to test for
entanglement (see the examples in Section 3.5 for details).

The chapter is organized as follows. Section 3.2 reviews some notation and algebraic ge-
ometry background for the optimization involved in Step 4. In Section 3.3 we present some
of the relaxations we surveyed and thought to be promising for using in Step 4. We also
present our implementation of these methods using MATLAB and show their performance via
computational efficiency (w.r.t. time) and success rate. Section 3.4 details issues in generat-
ing pncp maps with rational coefficients using Algorithm 1. We also show the difference in
computational requirements for constructing maps with floating point coefficients and those
with rational coefficients. Section 3.5 explains how we use PnCP to identify entanglement in
quantum states. We demonstrate this usefulness through illustrative examples.

3.2 Background

In this section we present the necessary mathematical background and notation for understand-
ing Algorithm 1, and then present the full Algorithm 1, for self-containment and convenience.

We use the following notation; for any integer n > 0, [n] = {1, . . . , n} and for a subset
I ⊆ [n], |I| denotes its cardinality. For k ∈ N, [n]k = {I ⊆ [n] : |I| = k}.

A subset I ⊆ R[x] is called an ideal if (R[x] · I) ⊆ I . The set 〈g1, . . . , gk〉 is the ideal
generated by {g1, . . . , gk} ⊆ R[x], which is the smallest ideal containing {g1, . . . , gk}. Ac-
cording to the Hilbert Basis Theorem [25], every ideal has such a finite generating set. The
variety of an ideal is the set of common complex zeros for the ideals’ generators

V (I) = V (〈g1, . . . , gk〉) = {x ∈ Cn : gj(x) = 0, ∀j = 1, ..., k},

or more generally
V (I) = {x ∈ Cn : p(x) = 0, ∀p ∈ I}.

The real variety of I is simply the restriction of V (I) to the reals. We denote this with V R(I).
If the variety V (I) is a finite set, then I is called zero dimensional (this is not the same as
requiring V R(I) to be finite). A variety V (〈g1, . . . , gr〉) =: V ⊆ Cn is called smooth, or
non-singular if the associated (r × n) Jacobian matrix

(
∂gi
∂xj

(a)
)
i,j

has rank n − dim(V ) at

every point a ∈ V (cf. [25, Chapter 9]). For every ideal I ∈ R[x], its radical is the ideal
√
I = {p ∈ R[x] : pr ∈ I for some r ∈ N}.
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For more details see [25]. Recall from Chapter 2, with any finite setG = {g1, . . . , gk} ⊆ R[x]

we have the semi-algebraic set, and the preorder generated by G resp.,

KG = {x ∈ Rn : gj(x) ≥ 0, ∀j = 1, ..., k},

TG =

 ∑
γ∈{0,1}k

sγg
γ1
1 · · · g

γk
k : sγ ∈ Σn

 .
(3.1)

3.2.1 Constructing Positive Maps

We will describe now Algorithm 1 in full detail, along with its relation to the Segre variety. As
before letting

σn,m : Pn−1 × Pm−1 → Pnm−1,

([x1 : . . . : xn], [y1 : . . . : ym]) 7→ [x1y1 : x1y2 : . . . : x1ym : . . . : xnym].

be the Segre embedding, then it is known that (the Segre variety) σn,m(Pn−1 × Pm−1) is the
variety of the ideal In,m ∈ C[z11, z12, . . . , z1m, . . . , znm] generated by all 2× 2 minors of the
matrix (zij)i,j [44]. As in [51] we will write

V (In,m) = {[z11 : . . . : znm] ∈ Pnm−1 : f(z) = 0 for every f ∈ In,m},

for the Segre variety, where

z = (z11, z12, . . . , z1m, . . . , znm),

and VR(In,m) for the subset of its real points. Finally, as explained in [51], biquadratic forms
in R[x, y]2,2 are in a bijective correspondence with quadratic forms in R[z]/In,m. Let us write

P(VR(In,m)) = {f ∈ R[z]/In,m : f(z) ≥ 0 for all z ∈ VR(In,m)} ,

Σ(VR(In,m)) = {f ∈ R[z]/In,m : f =
∑
i

f2
i for some fi ∈ R[z]/In,m},

then the construction is as follows.

Algorithm 1. Let n > 2, m > 2,

d = n+m−2 = dimσn,m(Pn−1×Pm−1) and e = (n−1)(m−1) = codimσn,m(Pn−1×Pm−1).

To obtain a quadratic form in P(VR(In,m)) \ Σ(VR(In,m)) proceed as follows:

Step 1 Choose e + 1 random points x(i) ∈ Rn and y(i) ∈ Rm and calculate their Kronecker
tensor products z(i) = x(i) ⊗ y(i) ∈ Rnm.

Step 2 Construction of linear forms h0, . . . , hd.
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Step 2.1 Choose d random vectors v1, . . .vd ∈ Rnm from the kernel of the matrix(
z(1) . . . z(e+1)

)∗
.

The corresponding linear forms h1, . . . , hd are

hj(z) = v∗j · z ∈ R[z] for j = 1, . . . , d.

If the number of points in the intersection

ker(
(
v1 . . . vd

)∗
)
⋂
V (In,m)

is not equal to deg(V (In,m)) =
(
n+m−2
n−1

)
or if the points in the intersection are

not in linearly general position, then repeat Step 1.

Step 2.2 Choose a random vector v0 from the kernel of the matrix(
z(1) . . . z(e)

)∗
.

(Note that we have omitted z(e+1).) The corresponding linear form h0 is

h0(z) = v∗0 · z ∈ R[z].

If h0 intersects h1, . . ., hd in more than e points on V (In,m), then repeat Step 2.2.

Let a be the ideal in R[z]/In,m generated by h0, h1, . . . , hd.

Step 3 Construction of a quadratic form f ∈ (R[z]/In,m) \ a2.

Step 3.1 Let g1(z), . . . , g(n2)(
m
2 )(z) be the generators of the ideal In,m, i.e., the 2×2 minors

zijzkl−zilzkj for 1 ≤ i < k ≤ n, 1 ≤ j < l ≤ m. For each i = 1, . . . , e compute
a basis {w(i)

1 , . . . ,w
(i)
d+1} ⊆ R

nm of the kernel of the matrix
∇g1(z(i))∗

...

∇g(n2)(m2 )(z(i))∗

 .

(Note that this kernel is always (d+ 1)-dimensional, since the variety V (In,m) is
d-dimensional (in Pnm−1) and smooth.)

Step 3.2 Let ei denote the i-th standard basis vector of the corresponding vector space,
i.e., the vector with 1 on the i-th component and 0 elsewhere. Choose a random
vector v ∈ Rn2m2

from the intersection of the kernels of the matrices(
z(i) ⊗w

(i)
1 · · · z(i) ⊗w

(i)
d+1

)∗
for i = 1, . . . , e
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with the kernels of the matrices(
ei ⊗ ej − ej ⊗ ei

)∗
for 1 ≤ i < j ≤ nm.

(The latter condition ensures v is a symmetric tensor in Rnm ⊗ Rnm. Note also
that we have omitted the point z(e+1).)

For 1 ≤ i, k ≤ n and 1 ≤ j, l ≤ m denote

Eijkl = (ei ⊗ ej)⊗ (ek ⊗ el) + (ek ⊗ el)⊗ (ei ⊗ ej) ∈ Rn
2m2

.

Let

A = {vi ⊗ vj + vj ⊗ vi : 0 ≤ i ≤ j ≤ d} ,
B = {Eijkl − Eilkj ; 1 ≤ i < k ≤ n, 1 ≤ j < l ≤ m} .

If v is in
span

(
A ∪B

)
,

then repeat Step 3.2. Otherwise the corresponding quadratic form f

f(z) = v∗ · (z ⊗ z) ∈ R[z]/In,m,

does not belong to a2.

Step 4 Construction of a quadratic form in R[z]/In,m that is positive but not a sum of squares.

Calculate the greatest δ0 > 0 such that δ0f +
∑d

i=0 h
2
i is nonnegative on VR(In,m).

Then for every 0 < δ < δ0 the quadratic form

(δf +

d∑
i=0

h2
i )(z)

is nonnegative on VR(In,m) but is not a sum of squares.

As is explained in [51], with random data this algorithm works with probability 1 without
implementing verifications (for Step 2.1, etc.). However, implementing this algorithm with
truly generic data is difficult at best. Hence, in practice this algorithm will not work with
probability 1, but with some other (likely smaller) probability.

3.3 Relaxations & Performance

We focus in this section on the general optimization problem of Step 4, and the underlying
principles for finding a solution.

We first look at minimization techniques which we can use to ensure non-negativity, and
then consider their relaxations which make them computationally feasible. We also describe
how we implement these techniques in PnCP for practical success.
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Recall the general minimization problem

min
x∈RN

p(x)

s.t. g1(x) ≥ 0, · · · , gk(x) ≥ 0.
(3.2)

Step 4 of Algorithm 1 involves solving a maximization problem similar to (3.2). To be more
specific, in Algorithm 1 Step 4, we need to solve the following problem

max
δ>0

δ

s.t. Fδ(x, y) ≥ 0.
(3.3)

The recommended SOS relaxation in [51] for (3.3) is the following

max
δ>0

δ,

s.t.
(∑

(xiyj)
2
)`
Fδ(x, y) ∈ Σn+m,

` ∈ N.

(3.4)

As we know (cf., Chapter 2 Section 2.2.1), relaxation problems such as the one above can be
stated and solved as an appropriate optimization program (semi-definite, second order cone,
quadratically constrained, etc.). In recent years, there have been many developments in opti-
mization for computing minima, and the majority of solvers can handle the broad class of these
problems.

We now present alternate SOS relaxations to solving problem (3.2). We present the theory
in this section with regards to an arbitrary function p ∈ R[x]. We then give a description of
how the results apply to our function of interest Fδ and problem (3.3).

To test the success rate of each relaxation, we do the following. We generate 50 random
forms using Algorithm 1: Step 1 - Step 3 (with standard rand functions from MATLAB).
Then we employ Step 4 with each relaxation, and note how many forms are identified as
positive, but not completely positive.

3.3.1 Rational Functions

Let us begin by considering Artin’s solution to Hilbert’s 17th problem [13], which we restate
for convenience.

Theorem 3.3 (Solution to Hilbert’s 17th Problem). For any p ∈ R[x], if p ≥ 0 on Rn, then p
is a sum of squares of rational functions, i.e., there are polynomials g, qi ∈ R[x], with g 6= 0,
such that

g2p =
∑
i

q2
i .

This result provides the most fundamental SOS relaxation. For Step 4, instead of minimiz-
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ing Fδ, we look for a decomposition into sums of rational squares, i.e.,

max
δ>0

δ,

s.t. σ(x, y)Fδ(x, y) ∈ Σn+m,

σ(x, y) ∈ Σn+m.

(3.5)

If for some δ, Fδ is non-negative, then by Theorem 3.3 the SOS decomposition in (3.5) always
exists. Of course to solve the general problem (3.5) using semi-definite programming, we must
first bound the degree of σ(x, y) 6= 0.

Note that (3.5) is a quadratically constrained optimization program (non-linear in the deci-
sion variables, δ and the coefficients of σ), which can be solved with solvers such as PENLAB
[37], but our early tests indicated that this approach is not ideal. So we instead implement (3.5)
with a “bisection” approach. This is already the suggested method in [51], which tries to solve
(3.4), and increases ` if a solution is not found. While bisecting may seem like a simple idea,
given some tolerance ε, bisection achieves an ε-optimal solution in log2(1

ε ) calls to a feasibility
oracle. And so it has comparable dependence on the tolerence ε as interior-point methods for
semi-definite programming.

For the Hilbert method (3.5), let G be the Gram matrix of σ. We fix δ = 20, d = 1, and
solve the following

find σ(x, y) ∈ Σn+m,d,

s.t. tr(G) = 1,

σ(x, y)Fδ(x, y) = Σn+m.

If a solution is not found, we first bisect over δ, and if still there is no solution we increase d
and repeat. We set the limits of δ to be 2−6 and d to be 2.

The SOS decomposition and related optimization problems are generated using the sym-
bolic computation package YALMIP [62, 63]. Our MATLAB code & data for the experiments,
is available on https://github.com/Abhishek-B/PhD-Thesis-Supplementary-Material (as
well as the official repository of PnCP, https://bitbucket.org/Abhishek-B/pncp/), so that the
reader may verify the results of our experiments.

To solve the required semi-definite program we use the MOSEK solver [2] with our im-
plementations. Verification of the SOS decomposition is done with the YALMIP command
sol.problem==0 (where sol is what we name our solution), as well as requiring the resid-
ual of the problem to be small (≤ O(10−6)).

All of the experiments were carried out on a standard Dell Optiplex 9020, with 12GB of
memory, an Intel ®Core™ i5-4590 CPU @ 3.30GHz×4 processor, 500GB of storage and
running Ubuntu 18.04 LTS.

https://github.com/Abhishek-B/PhD-Thesis-Supplementary-Material
https://bitbucket.org/Abhishek-B/pncp/
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Figure 3.1: Performance of the Hilbert Relaxation (3.5) on problems of different sizes (3,m),
tested on 50 randomly constructed biquadratic forms for each size.

The success rate of this relaxation for problems of small size is remarkable, as seen in Fig-
ure 3.1. Moreover, we observe from the average residual (which includes the failed examples
as well) in Table 3.1, that if we were to allow the residual to be slightly larger (say≤ O(10−5)),
we would see a higher success rate. This would also reduce computation times, increasing the
appeal of this relaxation.

Hilbert Relaxation
(n,m) Success (%) Time (s) Residual
(3, 3) 98 63.31 7.19× 10−7

(3, 4) 80 423.99 2.02× 10−6

(3, 5) 38 2098.93 1.17× 10−5

Table 3.1: Average performance of relaxation (3.5)

Remark 3.4. After running a few experiments it becomes apparent that in the Hilbert method,
we should initialize d = 2. While there are instances where d = 1 has a solution, it works with
very small δ and hence requires a long runtime due to the number of bisections. We also add
tr(G) = 1 in our constraints to avoid the trivial solution of σ ≡ 0.

The relaxation (3.4) is a simplified version of (3.5), which fixes the denominator

σ(x, y) =
(∑

(xiyj)
2
)`
.

We refer to this simplification as the Coordinate Norm Relaxation (CNR) and implement it
similar to the Hilbert method. Since σ is known, we maximize δ and “bisect” over ` ≤ 2.
The verification of a solution is also similar, with the additional requirement δ > O(10−4) as
otherwise δ becomes indistinguishable from numerical error.



30 Detecting Quantum Entanglement

Figure 3.2: Performance of the Coordinate Norm Relaxation (3.4) on problems of different
sizes (3,m), tested on 50 randomly constructed biquadratic forms for each size.

As we can see (Figure 3.2 or Table 3.2), this relaxation is incredibly fast (it is in fact the
fastest relaxation). On problems of smaller size, it is not as successful compared to the Hilbert
method, but we can see from the residuals, that if we relax our verification criteria, we might
improve the success rate of the CNR quite dramatically.

CNR
(n,m) Success (%) Time (s) Residual Average δ
(3, 3) 50 2.65 4.89× 10−6 1.83
(3, 4) 50 8.75 5.53× 10−6 0.13
(3, 5) 44 56.61 1.34× 10−5 0.09

Table 3.2: Average performance of relaxation (3.4)

If we consider the variables zij = xi ⊗ yj over the Segre variety, then the CNR can be
written as

max
δ>0

δ,

s.t.
(∑

z2
ij

)`
Fδ(z) ∈ Σn+m,

` ∈ N.

For polynomials with zeros, this denominator has been used in practice (see [61] for instance),
but there is little theoretical justification for its use (see Theorem 2.14 and the discussion fol-
lowing it). Algorithm 1 works by fixing some zeros of Fδ in Step 1, hence the relaxation (3.4)
while practically efficient, is not guaranteed to work, jeopardizing the entire construction.
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3.3.2 Critical Points Ideal

A more modern relaxation comes from the gradient ideal I∇ =
〈
∂p
∂x1

, . . . , ∂p
∂xn

〉
. The first

order optimality test ∇p(x) = 0 implies that minima exist in the gradient variety V R∇ (I) =

{x ∈ Rn : ∇p(x) = 0} (note that we may easily transform the equality constraint∇p(x) = 0,
into the equivalent pair of inequality constraints∇p(x) ≥ 0,−∇p(x) ≥ 0). In [72] it is shown
that one may consider searching for minimizers in the quotient ring R[x]/I∇ instead of R[x].
Their main theorem is the following.

Theorem 3.5 (Theorem 8, [72]). Assume that the gradient ideal I∇ is radical. If the real
polynomial p(x) is non-negative over V R∇ (p), then there exist real polynomials qi(x) and φj(x)

such that

p(x) =

s∑
i=1

qi(x) +

n∑
j=1

φj(x)
∂p

∂xj
(x)

and each qi ∈ Σn.

Note that this is quite similar to (2.11), with the radicality of I∇ providing a guarantee on
the existence of the decomposition. Algorithms for extracting the minimum and minimizers of
polynomials are also presented in [72] and tested on several notable examples. In cases where
it is unknown if I∇ is radical, one may use the following alternative result of [72].

Theorem 3.6 (Theorem 9, [72]). Suppose p(x) ∈ R[x] is strictly positive on its real gradient
variety V R∇ . Then p(x) is a SOS modulo its gradient ideal I∇.

Extending Theorem 3.5 and Theorem 3.6, [36] considers the ideal generated by the KKT
system related to f when minimizing over a semi-algebraic set. To this end let {g1, . . . , gk} ⊆
R[x] generate KG and TG (3.1). The KKT system associated to minimizing p on KG is

Pi =
∂p

∂xi
−
∑
r

λr
∂gr
∂xi

= 0,

gr ≥ 0,

λrgr = 0,

for r = 1, . . . , k and i = 1, . . . , n. As in [36], we let

IKKT = 〈P1, . . . ,Pn, λ1g1, . . . , λkgk〉 ,
V RKKT = {(x, λ) ∈ Rn × Rk : q(x, λ) = 0, ∀q ∈ IKKT},
H = {(x, λ) ∈ Rn × Rk : gr(x) ≥ 0, r = 1, . . . , k},

and the KKT preorder generated by G (now in the larger ring R[x, λ]) is

TKKT = TG + IKKT.

Theorem 3.7 (Theorem 3.2, [36]). Assume IKKT is radical. If p(x) is non-negative on V RKKT∩H,
then p(x) belongs to TKKT.
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If the radicality of IKKT is not known, then similar to Theorem 3.5 positivity of p(x) on the
appropriate subset of V RKKT, ensures membership in TKKT.

Theorem 3.8 (Theorem 3.5, [36]). If p(x) > 0 on V RKKT ∩H, then p(x) belongs to TKKT.

For our application we work on the sphere SN−1 (this can be replaced by any other suitable
compact set) and the minimizers (x∗, y∗) must now satisfy

s(x, y) =
n∑
i=1

x2
i +

m∑
j=1

y2
j − 1 = 0,

∇Fδ(x, y)− λ∇s(x, y) = 0.

This allows us to use the following KKT relaxation, where we write w for the variables (x, y),

max
δ>0

δ

s.t. Fδ(w)−
n∑
i=1

φi(w)

(
∂Fδ
∂wi

(w)− λ ∂s
∂wi

(w)

)
− λη(w)s(w) ∈ Σn+m

φi, η ∈ R[w]

(3.6)

Notice that we do not search for membership of Fδ modulo IKKT into all of TG, instead
to simplify things we search only for elements of TG with γ = (0, . . . , 0). Since Fδ is known
to have zeros, for this relaxation to be successful IKKT must be radical. While the random
nature of Fδ implies a high probability of IKKT being radical, verifying this is computationally
difficult, especially given the floating point construction of Fδ.

This relaxation also has non-linear constraints, arising from the products of decision vari-
ables (coefficients of φi and δ). Hence, we implement this with the same “bisection” approach
and verification criteria as (3.5). We fix δ = 20, d = 1, and solve

find φi, η ∈ R[w]d,

s.t. Fδ(w)− φ(w)T (∇Fδ(w)− λ∇s(w))− λη(w)s(w) ∈ Σn+m.



§3.3 Relaxations & Performance 33

Figure 3.3: Performance of the KKT Relaxation (3.6) on problems of different sizes (3,m),
tested on 50 randomly constructed biquadratic forms for each size.

To our surprise, this method fails completely on the (relatively) larger problems, and has
quite poor performance even on the smaller ones of size (3, 3). This suggests that the random
construction alone is not enough to guarantee the radicalness of IKKT. Unlike the previous two
relaxations, the residuals here do not indicate any room for improvement. In our tests, increas-
ing the relaxation degree d offers some success, but this also greatly increases the computation
time, making this relaxation impractical for the problem at hand.

KKT Relaxation
(n,m) Success (%) Time (s) Residual
(3, 3) 40 97.15 16.95

(3, 4) 0 581.06 33.07

(3, 5) 0 1879.94 56.57

Table 3.3: Average performance of relaxation (3.6)

3.3.3 Jacobian relaxation

We now present an exact relaxation which (in theory) always works for our problem of in-
terest. This approach is similar to the KKT relaxation, only now to establish the dependence
between derivatives of the constraints and the function, we consider determinants of an asso-
ciated Jacobian matrix. Consider problems of the form (3.2) with a single constraint g. We
define

B(x) = (∇p(x) ∇g(x)) ,

to be the matrix with columns being the gradient vectors of p and g. Let

ϕ`(x) =
∑

E∈[N ]2
sum(E)=`

detBE(x), (3.7)
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where BE is the submatrix of B with rows listed in E, and sum(E) is the sum of the elements
in E. As shown in [71], (3.2) is equivalent to

min
x∈RN

p(x)

s.t. g(x) = 0,

ϕ`(x) = 0, ` = 3, . . . , 2N − 1.

(3.8)

We call this the Jacobian system related to (3.2). Letting J = 〈g, ϕ3, . . . , ϕ2N−1〉 and

J (d) = {q ∈ J : deg(q) ≤ 2d} ,

we can write the SOS relaxation for (3.8) as

max
γ>0

γ,

s.t. p(x)− γ − q(x) ∈ Σn,

q(x) ∈ J (d).

(3.9)

Moreover, letting p∗ be the solution of (3.8), p(d) of the corresponding SOS relaxation (of
order d) and pmin the minimum of (3.2). Then the following holds.

Theorem 3.9 (Theorem 2.3, [71]). Assume that V (g) is non-singular, then p∗ > −∞ and
there is a D ∈ N such that p(d) = p∗ for all d ≥ D. Moreover, if pmin is achievable, then
p(d) = pmin for all d ≥ D.

For us, the minimum of Fδ is always achieved on SN−1, and it is clear that V (s) = SN−1

is non-singular. It follows that we can solve the Jocabian system (3.9) associated to Fδ exactly.
This relaxation is given as

max
δ>0

δ,

s.t. Fδ(x, y)− q(x, y) ∈ Σn+m,

q(x, y) ∈ J (d).

(3.10)

Due to non-linearity in the constraints of (3.10), we employ the bisection approach similar to
the other methods and solve

find q(x, y) ∈ J (d),

s.t. Fδ(x, y)− q(x, y) ∈ Σn+m,

again with the limits of δ being 2−6 and d being 2.

Remark 3.10. The functions ϕ` in (3.7) are quartic polynomials in our problem of interest. We
could instead write this relaxation over the Segre variety in the variables zij = xi ⊗ yj which
would lead to quadratic constraints ϕ`. However, as detailed in [71] the generators of the Segre
variety introduce an exponential number of constraints, and would in turn make (3.10) more
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difficult to solve numerically. This trade-off between the degree and the number of constraints
is also present in the KKT relaxation.

Figure 3.4: Performance of the Jacobian Relaxation (3.10), tested on 50 randomly constructed
biquadratic forms. Problems of size (3,5) were too difficult for this relaxation.

Unsurprisingly, this is quite slow. The solve time on test cases of size (3, 5) was close
to one hour, and so we do not test the Jacobian relaxation on this set. We can also see (Fig-
ure/Table 3.4) that this relaxation exhibits low success rates and high residuals. Similar to
KKT, the Jacobian relaxation is somewhat impractical in our context.

Jacobian Relaxation
(n,m) Success (%) Time (s) Residual
(3, 3) 38 476.63 18.64

(3, 4) 24 2578.73 25.06

Table 3.4: Average performance of relaxation (3.10)

Remark 3.11. It should be noted again that these tests were conducted with limited freedom
on the degrees of the relaxations. Based on our experience, we recommend using the Hilbert
method with a high relaxation degree (d = 3) if memory is not a concern and the user wants
more successful constructions. When memory becomes an issue, the CNR seems to be a better
choice; although its success rate is lower, the speed of computation makes generating random
examples more practical.

3.4 Rationalization

Constructing PnCP maps over floating point numbers provides quick numerical tests which can
indicate positivity, but ideally we would like to have rational PnCP maps with exact certificates
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of positivity. Recall from Chapter 2, that the semi-definite programs arising from our SOS
relaxations are feasibility problems of the form,

G � 0

s.t. 〈Ai,G〉 = bi, i = 1, . . . ,m
(3.11)

where Ai and bi are obtained from the problem data (see [75] for a nice presentation of this).
The following theorem, first proved in [78], provides a means to obtain rational solutions of
(3.11) from numerical ones.

Theorem 3.12 (Theorem 3.2, [20]). Let G be a positive definite feasible point for (3.11) satis-
fying

µ := min (eig(G)) > ||(〈Ai,G〉 − bi)i|| =: ε,

then there is a (positive definite) rational feasible point Ĝ. This can be obtained in two step;

(1) Compute a rational approximation G̃ with τ := ||G − G̃|| satisfying τ2 + ε2 ≤ µ2,

(2) Project G̃ onto the affine subspace L defined by the equations 〈Ai,G〉 = bi to obtain Ĝ.

For our problems, there are two key issues with using this rationalization. Firstly, our
semi-definite programs will never satisfy the strict feasibility requirements of G being positive
definite. This is because by construction, the form Fδ will always have non-trivial zeros chosen
in Step 1 of Algorithm 1. To tackle this, there are many facial reduction methods available to
allow this rationalization for positive semi-definite G. To put it simply, these methods work by
‘removing’ the rational zeros, and allowing us to work with a smaller positive definite Ĝ. One
such reduction is presented in [51], see also [56] for instance. However, we should note that in
general even this strategy will not work in our setting. This is because, even though our initial
choice of zeros for Fδ may be rational, it is still possible for Fδ to have some irrational zeros,
which then can not be removed via facial reduction.

More importantly, the numbers bi are obtained from the coefficients of the polynomial
being tested, in our case Fδ. This means that the affine subspace L is being defined by floating
point numbers, and any sort of rationalization of G will perturb this subspace.

In PnCP we combat this by restricting the randomization in the linear algebra steps of Algo-
rithm 1; we restrict the choices of the initial points xi, yj , so that the generated linear/quadratic
forms have rational entries with small (single digit) denominators. To be more specific, for the
constructing the initial points x(i),y(i), instead of using rand in MATLAB to generate uni-
form random numbers, we use randi to generate pseudorandom integers, with the integers
belonging to the interval [−3, 3]. This ensures that the points z(i) has single digit entries, and
as a result the required kernels of Step 2 and Step 3, have rational entries where the numerators
and denominators normally have a small number of digits (two or three). For the linear forms
hi and the quadratic form f , we choose the random vectors in Step 2 and Step 3 as a ran-
dom linear combination of vectors that span the required kernels, with the linear combinations
having coefficients −1, 0, or 1.

As expected this reduces the base success rate of Algorithm 1, but it successfully constructs
Fδ with rational coefficients. We also observe a significant increase in computation time to
construct forms with rational coefficients; we test this by constructing 50 random forms with
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rational coefficients, and comparing the timing costs to constructing forms with floating point
coefficients.

As we can see below, constructing rational forms is far more expensive than floating point
forms. In fact, the average time taken to construct forms with floating point coefficients re-
mains almost constant (∼2 seconds). In constrast, the construction time for forms with rational
coefficients can take close to 10 minutes.

Figure 3.5

This rational construction can be used in PnCP with the command Gen PnCP and set-
ting the ‘rationalize’ argument to 1. Currently, PnCP provides numerical verification of the
constructed rational Fδ, via the techniques of Section 3.3. This construction can be used in
conjunction with the many rational SOS packages (such as RationalSOS, RealCertify, multiv-
sos, etc.) to obtain exact certificates of non-negativity.

3.5 Detecting Quantum Entanglement

We will now show how we can use PnCP for detecting quantum entanglement. We start with
a brief (and simplified) exposition into quantum states, the core object of interest for us, pre-
senting some terminology and commonly known facts (for a more detailed introduction we
refer the reader to [4, 50, 99], or any graduate text on Quantum Information Theory). We then
state two entanglement criteria, and then give an example demonstrating how PnCP is used to
implement the most general one.

A quantum state is a vector φ ∈ Rn, and with any quantum state there is an associated
(normalized) density matrix φφT =: ρ ∈ SRn×n (normalized to have unit trace). A density
matrix

ρ =
∑
i

piφiφ
T
i , (3.12)
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with {φi} an orthonormal system, pi ≥ 0 and
∑

i pi = 1, represents a quantum system in one
of several states φi with associated probabilities pi. We use the following terminology; ρ is a
pure state if ρ = φφT , otherwise if ρ is of the form (3.12), then it is a mixed state. It should be
noted that any (symmetric) positive semi-definite matrix ρ with tr(ρ) = 1 is a density matrix.
It is known that pure states satisfy tr(ρ2) = 1 while for mixed states tr(ρ2) < 1.

Given a composite quantum system SRnm×nm = SRn×n ⊗ SRm×m and a state ρnm ∈
SRnm×nm, we call ρnm simply separable if

ρnm = ρn ⊗ ρm, with ρi ∈ SRi×i, and
∥∥ρi∥∥ = 1,

separable if
ρnm =

∑
i

piρ
n
i ⊗ ρmi , pi ≥ 0,

∑
i

pi = 1,

and entangled if its not separable. A problem of interest in quantum information theory is
the so called separability problem; given a state (density matrix) ρ in a composite system,
determine if it is entangled.

There are many different criteria and measures of entanglement throughout the literature.
For pure states, things are relatively simple and separability can be determined by checking if
the state is in the image of the Segre embedding. For mixed states however, the situation is
more complicated.

In low dimensional composite systems, we have the Peres-Horodecki criterion, also known
as the positive partial transpose (PPT) criterion; for ρnm =

∑
i piρ

n
i ⊗ ρmi define the partial

ampliation map (I ⊗ Φ)(ρnm) =
∑

i piρ
n
i ⊗ Φ(ρmi ).

Criterion 3.13 (PPT, [4] section 8.4). For a quantum state ρ ∈ SRnm×nm, if (I ⊗ T )(ρ) has
a negative eigenvalue, i.e., (I ⊗ T )(ρ) � 0, then ρ is entangled.

For systems of size (n,m) = (2, 2) or (2, 3), this criteria is both necessary and sufficient.
In higher dimensional systems, we lose the sufficiency of this test, i.e., there are entangled
states ρent with (I ⊗ T )(ρent) � 0 (see [49] for the first such example). In this situation we
instead have the more general entanglement criteria.

Criterion 3.14 (The general criterion, [4] section 8.4). A quantum state ρ ∈ SRnm×nm is
entangled if there is a pncp map Φ such that the ampliation (I ⊗ Φ)(ρ) � 0.

The PPT entanglement criterion is a special case of Criterion 3.14, with Φ being the trans-
pose map. With PnCP we can apply this test with many different random Φ in the following
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way;

Algorithm 2: Entanglement Detection
Input: ρ, S
Output: Status
i = 0; Status = “Unknown”;
while i < S do

Generate random Φ;
Compute I ⊗ Φ(ρ);
if I ⊗ Φ(ρ) � 0 then

Status = “Entangled”;
break;

else
i = i+ 1;

end
end

Example 3.15. As an example consider the following state,

∆ =



1/3 0 0 0 1/3 0 0 0 1/3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1/3 0 0 0 1/3 0 0 0 1/3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1/3 0 0 0 1/3 0 0 0 1/3


=

1

3

∑
i,j

Ei,j ⊗ Ei,j ∈ R3×3 ⊗ R3×3,

where each Ei,j ∈ R3×3 is the unit matrix with 1 in row i, column j and zeros everywhere
else. This state is modeled after the Bell states, and is entangled. We use PnCP to generate the
following non-negative, non-SOS polynomial with the command Ent PnCP,

F1(x, y) = 5x2
1y

2
1 + 4x2

1y1y3 + 12x1x2y
2
1 − 22x1x2y1y2 + 36x1x2y1y3 + 8x1x3y

2
1

+2x1x3y1y2 + 6x1x3y1y3 + 2x2
1y

2
2 + 2x2

1y2y3 + 60x1x2y
2
2 − 74x1x2y2y3

+4x1x3y
2
2 + 2x1x3y2y3 − 3x2

1y
2
3 + 28x1x2y

2
3 − 2x1x3y

2
3 + 19x2

2y
2
1

−66x2
2y1y2 + 24x2

2y1y3 − 4x2x3y
2
1 + 24x2x3y1y2 − 10x2x3y1y3 + 94x2

2y
2
2

−36x2
2y2y3 + 30x2x3y

2
2 + 2x2x3y2y3 + 5x2

2y
2
3 − 2x2x3y

2
3 + 3x2

3y
2
1

+2x2
3y1y2 + 2x2

3y1y3 + 2x2
3y

2
2 + x2

3y
2
3

and the associated PnCP map Φ,
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Φ(E1,1) =

5 0 2

0 2 1

2 1 −3

 , Φ(E1,3 + E3,1) =

8 1 3

1 4 1

3 1 −2


Φ(E3,3) =

3 1 1

1 2 0

1 0 1

 , Φ(E1,2 + E2,1) =

 12 −11 18

−11 60 −37

18 −37 28


Φ(E2,2) =

 19 −33 12

−33 94 −18

12 −18 5

 , Φ(E2,3 + E3,2) =

−4 12 −5

12 30 1

−5 1 −2


Since we construct Φ on SR3×3, we make the canonical extension to R3×3 by setting

Φ(Ei,j) = 1
2Φ(Ei,j + Ej,i) for i 6= j. With this extension, we find that

(I ⊗ Φ)(∆) =
1

6



10 0 4 12 −11 18 8 1 3
0 4 2 −11 60 −37 1 4 1
4 2 −6 18 −37 28 3 1 −2
12 −11 18 38 −66 24 −4 12 −5
−11 60 −37 −66 188 −36 12 30 1
18 −37 28 24 −36 10 −5 1 −2
8 1 3 −4 12 −5 6 2 2
1 4 1 12 30 1 2 4 0
3 1 −2 −5 1 −2 2 0 2


,

with (numerical) eigenvalues −8.45,−2.78,−0.83,−0.06, 0.23, 2.17, 3.28, 7.14, 41.96.

Example 3.16. We consider now an example of a bound entangled state, which are known to
be entangled whilst having a positive partial transpose (see [48] or [50, Section 6.11]). We take
the example from [42], with

σ =
1

60



5 5 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

5 5 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

−1 −1 5 −1 −1 −1 −1 −1 −1 −1 −1 5

−1 −1 −1 5 −1 −1 −1 −1 −1 5 −1 −1

−1 −1 −1 −1 5 5 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 5 5 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 5 −1 5 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 5 −1 −1 5 −1

−1 −1 −1 −1 −1 −1 5 −1 5 −1 −1 −1

−1 −1 −1 5 −1 −1 −1 −1 −1 5 −1 −1

−1 −1 −1 −1 −1 −1 −1 5 −1 −1 5 −1

−1 −1 5 −1 −1 −1 −1 −1 −1 −1 −1 5



,

∈ R4×4 ⊗ R3×3.

Note that tr(σ2) = 0.2 < 1, and so σ is a mixed state (meaning we cannot simply check if it
is in the image of the Segre embedding). PnCP generates the following
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Φ(E1,1) =

 7 17/2 −5/2

17/2 13/2 −7/2

−5/2 −7/2 2

 , Φ(E1,3 + E3,1) =

−6 −3 3

−3 −2 3

3 3 0

 ,
Φ(E3,3) =

 3 −1 0

−1 0 −1

0 −1 3

 , Φ(E1,2 + E2,1) =

−1/2 15/2 −6

15/2 15 −17/2

−6 −17/2 9/2

 ,
Φ(E2,2) =

 3 0 −1

0 17/2 −4

−1 −4 3

 , Φ(E2,3 + E3,2) =

 2 −3 0

−3 −2 3

0 3 −2

 .
We find the ampliation (I ⊗ Φ)(σ) to be

1

120



133 162 −101 −17 −18 13 −17 −18 13 19 −30 13

162 308 −182 −18 −52 22 −18 −52 22 −30 −52 10

−101 −182 129 13 22 −21 13 22 −21 13 10 15

−17 −18 13 163 36 −29 −17 −18 13 67 84 −17

−18 −52 22 36 104 −44 −18 −52 22 84 26 −20

13 22 −21 −29 −44 51 13 22 −21 −17 −20 3

−17 −18 13 −17 −18 13 67 36 7 19 −18 1

−18 −52 22 −18 −52 22 36 104 −44 −18 50 −26

13 22 −21 13 22 −21 7 −44 75 1 −26 15

19 −30 13 67 84 −17 19 −18 1 139 72 −29

−30 −52 10 84 26 −20 −18 50 −26 72 128 −80

13 10 15 −17 −20 3 1 −26 15 −29 −80 75



,

with (numerical) eigenvalues of−0.14, 0.00, 0.06, 0.10, 0.27, 0.37, 0.60, 0.79, 1.01, 1.81, 2.76, 4.69.
For this example, PnCP took ∼10 seconds to numerically check the entanglement status of the
state, with majority of the time spent constructing the rational Φ. If we desired only an indica-
tion of entanglement, we could repeat this with Φ having floating point entries, and the whole
process would be significantly quicker.

Remark 3.17. With Example 3.16, PnCP only claims that the given state is entangled, it
does not claim that σ is bound entangled, i.e., it does not check whether σ is distillable [7].
Distillation of quantum states is beyond the scope of this thesis.

There are many other entanglement criteria that rely on testing some condition with a PnCP
map. As we can see from the examples, PnCP provides a means to implement these criteria by
being able to generate random (rational) pncp maps.

3.6 Improvements for PnCP

In this chapter we presented PnCP; a MATLAB package for constructing positive maps which
are not completely positive, with a focus on the practicality of this construction and its appli-
cation to testing entanglement of quantum states.
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PnCP is an open-source package available from https://bitbucket.org/Abhishek-B/pncp/.
The package implements state of the art optimization techniques to numerically ensure posi-
tivity of the constructed maps. PnCP is even able to construct pncp maps with rational coeffi-
cients, which can be used in conjunction with existing software to obtain not only numerical,
but exact certificates of positivity.

We use the KMSZ construction which additionally provides a priori knowledge of some of
the zeros of the constructed polynomial. While there is work on optimizing polynomials with
zeros [22, 81], there are restrictions on the zeros in these methods. Whether it is possible to
adapt the zeros of the KMSZ construction to suit these methods, is something we wish to study
in the future.

As the only package for this kind of construction, we intend to maintain and improve
PnCP in various means; implementing better non-negativity tests as they become available,
optimizing the existing code (perhaps even pursuing parallel computing where possible), and
including more entanglement criteria to improve the classification of quantum states.

Our main focus moving forward will be to strengthen PnCP as a classification tool for
quantum states; primarily by implementing a rational SOS decomposition method which will
automatically provide exact certificates of positivity.

https://bitbucket.org/Abhishek-B/pncp/


Chapter 4

Truncated Tracial Moment Problem

The truncated tracial moment problem is a non-commutative analogue of the classical trun-
cated moment problem. It is the study of positive linear functionals on the space of non-
commutative polynomials that can be represented using traces of evaluations on tuples of real
symmetric matrices. This chapter concerns the bivariate quartic tracial moment problem. As
we have seen in Chapter 2 (Section 2.2.2.1), the classic moment problem is dual to polynomial
optimization; likewise the truncated tracial moment problem is dual to trace optimization of
non-commutative polynomials (see [18] for an introduction to this).

The author’s MSc thesis [9] studied the bivariate quartic tracial moment problem when
the associated Hankel matrixM2 is singular. Using the rank analysis approach of Curto and
Fialkow, [9] gave a complete characterization of the bivariate quartic tracial moment prob-
lem when M2 is of rank at most 4. Furthermore, [9] gave sufficient conditions for when a
representing measure exists.

While [9] studied sufficient conditions for the existence of a representing measure, it did
not cover necessary conditions. During the PhD, we searched for these necessary conditions
in collaboration with Aljaž Zalar, and our results are published in [10]. This chapter is based
on our publication [10], and we will present here our novel, computationally oriented results;
which provide a significant improvement (see below) to any existing algorithmic search for a
representing measure.

For a more comprehensive discussion of bivariate quartic tracial moment problem, we refer
the reader to [10], which includes the results of this chapter, as well as other (more technical)
results, such as a complete characterization of the rank 5 case.

In Section 4.1 we present necessary definitions and preliminary results for the study of
the truncated tracial moment problem. Section 4.2 gives the reduction of the bivariate quartic
tracial moment problem withM2 of ranks 5 and 6 to four basic cases. This reduction helps to
simplify future analysis of the tracial moment problem on quadratic varieties, by reducing it to
the four canonical quadratics. Furthermore, our analysis is detailed and comprehensive, so it
can easily be implemented to transform any givenM2 of rank 5 or 6 into one with canonical
relations.

Section 4.3 contains an analysis of the form of atoms in a potential representing measure;
the results in this section were proved by Zalar in our article [10]. This atomic representation
result was pivotal in analyzing the bivariate quartic tracial moment problem for ranks 5 and
6. In particular, a complete characterization of the rank 5 cases was obtainable thanks to this
representation.

43
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Section 4.4 gives the solution of the bivariate quartic tracial moment problem in two of the
four rank 6 basic cases. The results include a consideration of the sizes of atoms in the minimal
representing measure, and show that atoms of size 2 (i.e., 2 × 2 matrices) are sufficient. It is
also shown how the problem can be rephrased as a feasibility problem of small linear matrix
inequalities and a rank condition. This is reformulation is one of the main contributions of
this thesis; ordinarily, the search for a representing measure is carried out via flat extensions,
however this approach is teemed with numerical instabilities, and for larger size problems
quickly becomes computationally intractable. In comparison, the computational complexity of
the posed linear matrix inequalities remains the same, and these can be efficiently solved.

Remark 4.1. Note that all results in this chapter which have previously appeared in the au-
thor’s MSc thesis will be cited as [9]. The results obtained during the PhD and subsequently
published in the peer reviewed journal article [10], will be cited as such when required.

4.1 Preliminaries

4.1.1 Non-commutative bivariate polynomials

We denote by 〈X,Y 〉 the free monoid generated by the non-commuting letters X,Y and call
its elements words in X,Y . Consider the free algebra R〈X,Y 〉 of polynomials in X,Y with
coefficients in R. Its elements are called non-commutative (nc) polynomials. Endow R〈X,Y 〉
with the involution p 7→ p∗ fixing R ∪ {X,Y } pointwise. For a word w ∈ 〈X,Y 〉, w∗ is its
reverse, and v ∈ 〈X,Y 〉 is cyclically equivalent to w, which we denote by v

cyc∼ w, if and only
if v is a cyclic permutation of w. The length of the longest word in a polynomial f ∈ R〈X,Y 〉
is the degree of f and is denoted by deg(f) or |f |. We write R〈X,Y 〉k for all polynomials of
degree at most k. For an nc polynomial f , its commutative collapse f̌ is obtained by replacing
the nc variables X,Y , with commutative variables x, y.

4.1.2 Bivariate truncated tracial moment problem

Given a sequence of real numbers β ≡ β(2n) = (βw)|w|≤2n, indexed by words w of length at
most 2n such that

βv = βw whenever v
cyc∼ w and βw = βw∗ for all |w| ≤ 2n, (4.1)

we want to know if there exist t ∈ N, and a probability measure (positive, normalized, Borel
measure) µ on (SRt×t)2 such that

βw =

∫
(SRt×t)2

Tr(w(A,B)) dµ(A,B).

By the tracial version [15, Theorem 3.8] of the Bayer-Teichmann theorem [5], this is equivalent
to the following simpler problem.

Given β as above, does there exist N ∈ N, ti ∈ N, λi ∈ (0,∞) with
∑N

i=1 λi = 1 and
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pairs of matrices (Ai, Bi) ∈ (SRti×ti)2, such that

βw =
N∑
i=1

λiTr(w(Ai, Bi)), (4.2)

where w runs over the indices of the sequence β and Tr denotes the normalized trace, i.e.,

Tr(A) =
1

t
tr(A) for every A ∈ Rt×t.

If such data exist, we say that β admits a representing measure. The bivariate quartic tracial
moment problem is the above with n = 2. The pair (Ai, Bi) ∈ (SRti×ti)2 atoms of size ti and
the numbers λi are densities. We say that µ is a representing measure of type (m1,m2, . . . ,mr)

if it consists of exactly mi ∈ N ∪ {0} atoms of size i and mr 6= 0.

Example 4.2. As a very simple example, consider the following sequence

θ(2) = (θ1, θX , θY , θX2 , θXY , θY X , θY 2)

= (1, 1,
1

2
, 2,

1

2
,
1

2
,
1

2
).

For this sequence, one can write

θw =
1

2
Tr(w(A1, B1)) +

1

2
Tr(w(A2, B2)),

where

(A1, B1) = (1, 0) ∈ (SR1×1)2, (A2, B2) =

((
2 1

1 0

)
,

(
1 0

0 1

))
∈ (SR2×2)2.

Then we know that θ(2) has a representing measure µ1 which consists of two atoms, with equal
densities (λi = 1

2 ). Since the pair (A1, B1) have size 1, and the pair (A2, B2) have size 2, µ1

is of type (1, 1). We could also take the alternative representing measure µ2, which consists of
equal densities (λi = 1

2 again), and the atoms{((
1 0

0 1

)
,

(
0 0

0 0

))
,

((
2 1

1 0

)
,

(
1 0

0 1

))}
∈ (SR2×2)2.

Because there are now no atoms of size 1, and two atoms of size 2, the representing measure
µ2 is of type (0, 2).

As seen in Example 4.2, given a representing measure, we can always present the atoms
using matrices of a larger dimension. A representing measure of type (m

(1)
1 ,m

(1)
2 , . . . ,m

(1)
r1 )

is minimal, if there does not exist another representing measure of type (m
(2)
1 , m(2)

2 ,. . ., m(2)
r2 )

such that

r2 < r1 or (r2 = r1,m
(2)
r2 < m(1)

r1 ) or (r2 = r1,m
(2)
r2 = m(1)

r2 ,m
(2)
r2−1 < m

(1)
r1−1)
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or . . . or (r2 = r1,m
(2)
r2 = m(1)

r2 , . . . ,m
(2)
2 = m

(1)
2 ,m

(2)
1 < m

(1)
1 ).

We say that β admits a non-commutative (nc) measure, if it admits a minimal measure of type
(m1,m2, . . . ,mr) with r > 1. If β1 = 1, then we say β is normalized. We may always assume
that β is normalized (otherwise we replace Tr with 1

β1
Tr). If βw = βw̌ for all w ∈ 〈X,Y 〉

with |w| ≤ 2n, we call β a commutative (cm) sequence and the moment problem reduces to
the classical one solved by Curto and Fialkow. Otherwise we call β a non-commutative (nc)
sequence.

Remark 4.3. The following helps to simplify the problem at hand; Replacing a vector (Ai, Bi)

with any vector
(UiAiU

T
i , UiBiU

T
i ) ∈ (SRti×ti)2

where Ui ∈ Rti×ti is an orthogonal matrix, preserves (4.2).

We associate to the sequence β the (generalized) Hankel matrixMn = Mn(β) of order
n with rows and columns indexed by words in R〈X,Y 〉n in the graded reverse lexicographic
order, in which we first sort elements by degree, and then in reverse lexicographic order (cf.,
[25, Chapter 2, Definition 6]). To illustrate,

1 < X < Y < X2 < XY < YX < Y 2 < X3 < X2Y < XYX < XY 2 < ...

The entry in row U and column V is βU∗V , i.e.,

Mn(β) =

1 X Y . . . Xn . . . Yn



1 β1 βX βY . . . βXn . . . βY n

X βX βX2 βXY . . . βXn+1 . . . βXY n

Y βY βXY βY 2 . . . βXnY . . . βY n+1

...
...

...
...

. . .
...

. . .
...

Xn βXn βXn+1 βXnY . . . βX2n . . . βXnY n

...
...

...
...

. . .
...

. . .
...

Yn βY n βXY n βY n+1 . . . βXnY n . . . βY 2n

, (4.3)

and in the special case of n = 2,

M2 =

1 X Y X2 XY YX Y2



1 β1 βX βY βX2 βXY βXY βY 2

X βX βX2 βXY βX3 βX2Y βX2Y βXY 2

Y βY βXY βY 2 βX2Y βXY 2 βXY 2 βY 3

X2 βX2 βX3 βX2Y βX4 βX3Y βX3Y βX2Y 2

YX βXY βX2Y βXY 2 βX3Y βX2Y 2 βXYXY βXY 3

XY βXY βX2Y βXY 2 βX3Y βXYXY βX2Y 2 βXY 3

Y2 βY 2 βXY 2 βY 3 βX2Y 2 βXY 3 βXY 3 βY 4

, (4.4)

where we have replaced the subscripts of the entries βU∗V with cyclically equivalent mono-
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mials, in accordance with the (degree-)lexicographic ordering. We will label the row/column
vectors ofMn(β) with bold characters X,Y, etc. to distinguish from the nc variables X,Y,
etc.

Observe that Mn is symmetric. Let S1, S2 ⊆ {1,X,Y,X2,XY,YX, . . . ,Xn, . . . ,Yn}. We
will denote by [Mn]S1,S2 the submatrix ofMn consisting of the rows indexed by the elements
of S1 and the columns indexed by the elements of S2. In case S := S1 = S2, we write
[Mn]S := [Mn]S,S for short, and if S = R〈X,Y 〉k (with k ≤ n) we write [Mn]k. For any
matrix A with its rows and columns indexed by words in R〈X,Y 〉, writing w(X,Y) we mean
the column/row of A indexed by the word w. Similarly for vectors. If β admits a measure,
thenMn is positive semi-definite; see Proposition 4.4. IfMn represents a cm sequence, we
call it a cm Hankel matrix. Otherwise Mn is a nc Hankel matrix. By [17, Corollaries 3.19,
3.20], β admits a measure if and only if there exists a Hankel matrixMn+k extendingMn,
which admits a rank preserving extension Mn+k+1. Furthermore, by [17, Corollary 3.2] in
this case the atoms of size at most rank(Mn+k) are sufficient. When n = 2, ifM2 is positive
definite, then β admits a measure since all trace-positive polynomials of degree 4 are cyclically
equivalent to sums of hermitian squares [16]. This is the duality established by [17, Theorem
4.4]. Moreover, the measure consists of at most 15 atoms of size 2 [15, Remark 3.9].

4.1.3 Riesz functional and truncated Hankel matrix

For a polynomial p ∈ R〈X,Y 〉2n, let p̂ = (aw)w be its coefficient vector with respect to the
degree-lexicographic ordered basis{

1, X, Y,X2, XY, Y X, Y 2, . . . , X2n, . . . , Y 2n
}

of R〈X,Y 〉2n. Any sequence β ≡ β(2n) : β1, . . . , βX2n , . . . , βY 2n , which satisfies (4.1) de-
fines the Riesz functional Lβ(2n) : R〈X,Y 〉2n → R which is given by

Lβ(2n)(p) :=
∑
|w|≤2n

awβw, where p =
∑
|w|≤2n

aww.

Notice that βw = Lβ(2n)(w) for every |w| ≤ 2n, andMn is the unique matrix such that for
p, q ∈ R〈X,Y 〉n we have that

〈Mnp̂, q̂〉 = Lβ(2n)(pq∗),

where 〈p̂, q̂〉 := p̂T q̂, and q∗ denotes the involution ∗ applied to q. In particular, the row
w1(X,Y) and column w2(X,Y) entry ofMn is equal to〈

Mn
̂w2(X,Y), ̂w1(X,Y)

〉
= Lβ(2n)(w2w

∗
1).
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If β(2n) admits a measure, i.e., (4.2) holds for every βw, then for p ∈ R〈X,Y 〉 of degree at
most n we have that

〈Mnp̂, p̂〉 = Lβ(2n)(pp∗) =
m∑
i=1

λiTr (p(Ai, Bi) (p(Ai, Bi))
∗) ≥ 0,

where λi, Ai, Bi are as in (4.2). This proves the following proposition, which is also well
understood in the commutative setting.

Proposition 4.4. If β(2n) admits a measure, thenMn is positive semi-definite.

4.1.4 Support and Recursive Generation

We write 0m×n for the m × n matrix with zero entries. Usually we will omit the subindex
m× n, when the size is clear from context.

Let CMn denote the column space ofMn, i.e.,

CMn = span{1,X,Y, . . . ,Xn . . . ,Yn}.

For a polynomial p ∈ R〈X,Y 〉n of the form p =
∑
aww(X,Y ), we define

p(X,Y) =
∑
w

aww(X,Y).

Note that p(X,Y) ∈ CMn . We express linear dependencies among the columns ofMn as

p1(X,Y) = 0, . . . , pm(X,Y) = 0,

for some p1, . . . , pm ∈ R〈X,Y 〉n, with m ∈ N. We define the free zero set Z(p) of p ∈
R〈X,Y 〉 by

Z(p) :=
{

(A,B) ∈ (SRt×t)2 : t ∈ N, p(A,B) = 0t×t
}
,

and the variety V(Mn) as

V(β(2n)) ≡ V(Mn) :=
⋂

p∈R〈X,Y 〉n
p(X,Y)=0

Z(p). (4.5)

Theorem 4.5 (1) (resp. (3)) is a real tracial analogue of [26, Proposition 3.1] (resp. [27,
Theorem 1.6]) and was first established in [9, Lemma 4.1.1] (resp. [9, Theorem 4.1.3]).

Theorem 4.5 (Theorem 2.2, [10]). Suppose β(2n) admits a representing measure consisting
of finitely many atoms (Ai, Bi) ∈ (SRti×ti)2, ti ∈ N, with the corresponding densities λi ∈
(0, 1). Let p ∈ R〈X,Y 〉n be a polynomial. Then the following are true:

1. We have ⋃
i

(Xi, Yi) ⊆ Z(p) ⇔ p(X,Y) = 0 inMn.
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2. Suppose the sequence β(2n+2) = (βw)|w|≤n+1 is the extension of β generated by

βw =
∑
i

λiTr(w(Ai, Bi)).

LetMn+1 be the corresponding Hankel matrix. Then:

p(X,Y) = 0 inMn ⇒ p(X,Y) = 0 inMn+1.

3. (Recursive generation) For q ∈ R〈X,Y 〉n such that (pq) ∈ R〈X,Y 〉n, we have

p(X,Y) = 0 inMn ⇒ (pq)(X,Y) = (qp)(X,Y) = 0 inMn.

Column relations forced uponMn with an application of Theorem 4.5 (3) will be impor-
tant in solving bivariate quartic tracial moment problem and we will refer to them as the RG
relations. IfMn satisfies RG relations, we sayMn is recursively generated. The first conse-
quence of the RG relations is the following important observation about an nc Hankel matrix
Mn.

Corollary 4.6 (Lemma 4.1.5, [9]). Suppose n ≥ 2 and let β(2n) be a sequence such that
βX2Y 2 6= βXYXY . Then the columns 1,X,Y,XY ofMn are linearly independent.

Corollary 4.7 (Corollary 4.2.1, [9]). Suppose n ≥ 2 and let β(2n) be a sequence such that
βX2Y 2 6= βXYXY . IfMn is of rank at most 3, then β does not admit a measure.

4.1.5 Flat extensions

For a matrix A ∈ SRs×s, an extension Ã ∈ SR(s+u)×(s+u) of the form

Ã =

(
A B

BT C

)
for some B ∈ Rs×u and C ∈ Ru×u, is called flat if rank(A) = rank(Ã). This is equivalent
to saying that there is a matrix W ∈ Rs×u such that B = AW and C = W TAW . The
connection between flat extensions and the bivariate truncated tracial moment problem is the
following.

Theorem 4.8 (Theorem 3.19, [17]). Let β ≡ β(2n) be a sequence satisfying (4.1). IfMn(β)

is positive semi-definite and is a flat extension of Mn−1(β), then β admits a representing
measure.

4.1.6 Affine linear transformations

An important result for converting a given moment problem into a simpler, equivalent moment
problem is the application of affine linear transformations to a sequence β. For a, b, c, d, e, f ∈
R with bf − ce 6= 0, let us define

φ(X,Y ) = (φ1(X,Y ), φ2(X,Y )) := (aIs+bX+cY, dIs+eX+fY ), (X,Y ) ∈ (SRs×s)2,
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where Is is the identity matrix in SRs×s. Let β̃(2n) be the sequence obtained by the rule

β̃w = Lβ(2n)(w ◦ φ) for every |w| ≤ n.

Notice that L
β̃(2n)(p) = Lβ(2n)(p ◦ φ) for every p ∈ R〈X,Y 〉n.

The following is the tracial analogue of [30, Proposition 1.9], which will allow us to make
affine linear changes of variables.

Proposition 4.9 (Proposition 3.1.5, [9]). Suppose β(2n) and β̃(2n) are as above andMn and
M̃n the corresponding Hankel matrices. Let Jφ : R〈X,Y 〉2n → R〈X,Y 〉2n be the linear map
given by

Jφp̂ := p̂ ◦ φ.

Then the following hold:

1. M̃n = (Jφ)TMnJφ.

2. Jφ is invertible.

3. M̃n � 0⇔Mn � 0.

4. rank(M̃n) = rank(Mn).

5. The formula µ = µ̃ ◦ φ establishes a one-to-one correspondence between the sets of
representing measures of β and β̃, and φ maps supp(µ) bijectively onto supp(µ̃).

6. Mn admits a flat extension if and only if M̃n admits a flat extension.

7. For p ∈ R〈X,Y 〉n, we have p(X̃, Ỹ ) = (Jφ)T (p ◦ φ)(X,Y ).

4.1.7 Classical bivariate quartic real moment problem

The classical bivariate quartic moment problem has been solved by Curto and Fialkow in a
series of papers, e.g., [26, 27, 28, 29, 30, 31, 32, 39]. The main technique used was the analysis
of the existence of a flat extension of the Hankel matrixM2. Curto and Fialkow’s solution to
the singular bivariate quartic real moment problem is given in Theorem 4.10 below. Given
a polynomial p ∈ R[x, y]2 we write Zcm(p) =

{
(x, y) ∈ R2 : p(x, y) = 0

}
for the variety

generated by p.

Theorem 4.10. Suppose β ≡ β(4) is a commutative sequence with the associated Hankel
matrixM2. Let

V :=
⋂

g∈R[x,y]2
g(X,Y)=0

Zcm(g)

be the variety associated to M2 and p ∈ R[x, y] a polynomial with deg(p) = 2. Then β
has a representing measure supported in Zcm(p) if and only if M2 is positive semi-definite,
recursively generated, satisfies rank(M2) ≤ card(V) and has a column dependency relation
p(X,Y) = 0.

Moreover, assume thatM2 is positive semi-definite, recursively generated and satisfies the
column dependency relation p(X,Y). The following statements are true:
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1. If rank(M2) ≤ 3, thenM2 always admits a flat extension to a Hankel matrixM3 and
hence β admits a 3-atomic minimal measure.

2. If rank(M2) = 4, then β does not necessarily come from a cm measure.

3. If rank(M2) = 5, then β always admits a cm measure, but M2 does not necessarily
admit a flat extension to a Hankel matrixM3. There exists an affine linear transforma-
tion such that V is one of x2 + y2 = 1, y = x2, xy = 1, x2 = 1 or xy = 0. In the
first four casesM2 always admits a flat extension to a Hankel matrixM3 and hence β
admits a 5-atomic measure. However, in the last case there always exists a measure with
6 representing atoms, but not necessarily 5.

4. If rank(M2) = 6, thenM2 always admits a flat extension to a Hankel matrixM3 and
hence β admits a 6-atomic measure.

4.2 Ranks 5 and 6 - Canonical forms

When the Hankel matrix for the bivariate quartic tracial moment problem has rank 5 or 6,
it suffices to study some basic cases satisfying “nice” column relations. We proved this in
Proposition 4.1 of [10].

Proposition 4.11. Suppose an nc sequence β ≡ β(4) has a Hankel matrixM2 of rank 5 or
6. Let Lβ be the Riesz functional belonging to β. If β admits an nc measure, then there exists
an affine linear transformation φ such that a sequence β̂, given by β̂w = Lβ(w ◦ φ) for every
|w(X,Y )| ≤ 4, has a Hankel matrix M̂2 such that:

1. IfM2 is of rank 5, then M̂2 satisfies XY+YX = 0 and one of the following relations:

Basic case 1 X2 + Y2 = 1,

Basic case 2 Y2 = 1,

Basic case 3 Y2 − X2 = 1,

Basic case 4 Y2 = X2.

2. IfM2 is of rank 6, then M̂2 satisfies one of the following relations:

Basic relation 1 Y2 = 1− X2,

Basic relation 2 Y2 = 1+ X2,

Basic relation 3 XY+ YX = 0,

Basic relation 4 Y2 = 1.

To prove Proposition 4.11 we need some lemmas. We proved the following in Lemma 4.2
of [10].

Lemma 4.12. Suppose an nc sequence β ≡ β(4) has a Hankel matrix M2 of rank 5 or 6
satisfying the relation

Y2 = a11+ a2X+ a3Y+ a4X2 + a5XY+ a6YX, (4.6)
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where ai ∈ R for each i. Let Lβ be the Riesz funtional belonging to β. If β admits an nc
measure, then there exists an affine linear transformation φ of the form

φ(X,Y ) = (α1X + α2I, α3Y + α4I), (4.7)

where αi ∈ R for each i, α1 6= 0, α4 6= 0, such that the sequence β̂ given by β̂w = Lβ(w ◦ φ)

for every |w(X,Y )| ≤ 4, has a Hankel matrix M̂2 satisfying one of the following relations:

Relation 1 Y2 = 1− X2,

Relation 2 Y2 = 1,

Relation 3 Y2 = 1+ X2,

Relation 4 Y2 = X2.

Moreover, relation 4 is equivalent to

Relation 4′ XY+ YX = 0.

Proof. By comparing the rows XY, YX on both sides of (4.6) we conclude that a5 = a6. We
rewrite the relation (4.6) as

(Y− a5X)2 = a11+ a2X+ a3Y+ (a4 + a2
5)X2.

Applying an affine linear transformation φ1(X,Y ) = (X,Y − a5X) to β we get β̃ with the
Hankel matrix M̃2 satisfying the relation

Y2 = a11+ (a2 + a3a5)X+ a3Y+ a4X2. (4.8)

We separate three possibilities according to the sign of a4 ∈ R.

Case 1: a4 < 0. The relation (4.8) can be rewritten as(
Y− a3

2

)2
= −

(√
|a4|X−

a2 + a3a5

2
√
|a4|

)2
+
(
a1 +

a2
3

4
+

(a2 + a3a5)2

4a4

)
1.

Applying an affine linear transformation φ2(X,Y ) = (
√
|a4|X − a2+a3a5

2
√
|a4|

, Y − a3
2 ) to β̃ we

get β withM2 satisfying the relation

Y2 = −X2 +
(
a1 +

a2
3

4
+

(a2 + a3a5)2

4a4

)
1. (4.9)

If C1 := a1 +
a23
4 + (a2+a3a5)2

4a4
≤ 0, then by comparing the row Y2 on both sides of (4.9) we

get
0 ≤ βY 4 + βX2Y 2 = C1 · βY 2 ≤ 0,

where we used that βY 4 ≥ 0, βX2Y 2 ≥ 0, βY 2 ≥ 0. But then βY 4 = βX2Y 2 = βY 2 = 0,
which contradicts the rank of M̃2 being 5 or 6. Therefore C1 > 0. Applying an affine linear



§4.2 Ranks 5 and 6 - Canonical forms 53

transformation φ3(X,Y ) = ( X√
C1
, Y√

C1
) to β we get β̂ with M̂2 satisfying

Y2 = 1− X2,

which is the relation 1.

Case 2: a4 = 0. Multiplying (4.8) with Y we get

Y3 = a1Y+ (a2 + a3a5)XY+ a3Y2. (4.10)

By comparing the rows XY, YX on both sides of (4.10) we conclude that a2 + a3a5 = 0. We
can rewrite (4.8) as (

Y− a3

2

)2
=
(
a1 +

a2
3

4

)
1.

Applying an affine linear transformation φ4(X,Y ) = (X,Y − a3
2 ) to β̃ we get β with M2

satisfying

Y2 =
(
a1 +

a2
3

4

)
1. (4.11)

If C2 := a1 +
a23
4 ≤ 0, then by comparing the row Y2 on both sides of (4.11) we get

0 ≤ βY 4 = (a2 +
c2

2

4
)βY 2 ≤ 0,

where we used that βY 4 ≥ 0, βY 2 ≥ 0. But then βY 4 = βY 2 = 0 and hence also βX2Y 2 = 0,
which contradicts the rank of M̃2 being 5 or 6. Therefore C2 > 0. Applying an affine linear
transformation φ5(X,Y ) = (X, Y√

C2
) to β we get β̂ with M̂2 satisfying

Y2 = 1,

which is the relation 2.

Case 3: a4 > 0. The relation (4.8) can be rewritten as(
Y− a3

2

)2
=
(√

a4X+
a2 + a3a5

2
√
a4

)2
+
(
a1 +

a2
3

4
− (a2 + a3a5)2

4a4

)
1.

Applying an affine linear transformation φ6(X,Y ) = (
√
a4X + a2+a3a5

2
√
a4

, Y − a3
2 ) to β̃ we get

β withM2 satisfying

Y2 = X2 +
(
a1 +

a2
3

4
− (a2 + a3a5)2

4a4

)
1. (4.12)

We separate three possibilities according to the sign of C3 := a1 +
a23
4 −

(a2+a3a5)2

4a4
.

Case 3.1: C3 > 0. Applying an affine linear transformation φ7(X,Y ) = ( X√
C3
, Y√

C3
) to β we
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get β̂ with M̂2 satisfying
Y2 = 1+ X2,

which is the relation 3.

Case 3.2: C3 = 0. The relation (4.12) is

Y2 = X2,

which is the relation 4. Applying an affine linear transformation φ8(X,Y ) = (X −Y,X +Y )

to β̃ we get β withM2 satisfying
XY+ YX = 0,

which is the relation 4′.

Case 3.3: C3 < 0. Applying an affine linear transformation φ9(X,Y ) = (Y,X) to β we come
into Case 3.1.

Lemma 4.13 (Lemma 4.4.1, [9]). Suppose an nc sequence β ≡ β(4) has a Hankel matrixM2

of rank 5 with linearly independent columns 1, X, Y, XY. Then one of the following cases
occurs:

Case 1: The set {1,X,Y,XY,YX} is the basis for CM2 and the columns X2,Y2 belong to the
span{1,X,Y}.

Case 2: The set
{
1,X,Y,X2,XY

}
is the basis for CM2 .

Case 3: The set
{
1,X,Y,Y2,YX

}
is the basis for CM2 .

Lemma 4.14 (Lemma 4.5.1, [9]). Suppose an nc sequence β ≡ β(4) has a Hankel matrix
M2 of rank 6 with linearly independent columns 1, X, Y, XY. There exists an affine linear
transformation φ such that a sequence β̂, given by β̂w = Lβ(w ◦ φ) for every |w(X,Y )| ≤ 4,
has a Hankel matrix M̂2 such that:

Case 1: The set
{
1,X,Y,X2,XY,YX

}
is the basis for CM̂2

.

Case 2: The set
{
1,X,Y,X2,XY,Y2

}
is the basis for CM̂2

.

Lemma 4.15 (Section 4.5, [9]). Suppose an nc sequence β ≡ β(4) has a Hankel matrixM2

satisfying one of the relations

Y2 + X2 = 1 or Y2 − X2 = 1 or Y2 = X2.

If β admits an nc measure µ, then the extensionM3 :=

(
M2 B3

Bt
3 C3

)
generated by µ satisfies

the relations
X2Y = YX2 and XY2 = Y2X.

In particular, the rows XY, YX are the same in the columns X2Y, YX2 and the columns XY2,
Y2X.
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Finally we give the proof of Proposition 4.11 (1).

Proof of Proposition 4.11 (1). By Proposition 4.6 the columns 1, X, Y, XY ofM2 are linearly
independent. By Lemma 4.13 there are three cases to consider.

Case 1: The set {1,X,Y,XY,YX} is the basis for CM2 and the columns X2,Y2 belong to
the span {1,X,Y}.

By assumption there are constants aj , bj , cj ∈ R for j = 1, 2 such that

X2 = a11+ b1X+ c1Y and Y2 = a21+ b2X+ c2Y.

By multiplying the first relation with X and the second with Y it follows that if β admits an nc
measure, then c1 = b2 = 0. Let

φ1(X,Y ) =
(
X − b1

2
, Y − c3

2

)
, φ2(X,Y ) =

( X√
a1 +

b21
4

,
Y√

a3 +
c23
4

)
.

Applying an affine linear transformation φ2 ◦ φ1 to β we get β̃ with M̃2 satisfying

X2 = Y2 = 1.

Equivalently, the relations are

Y2 − X2 = 0, Y2 = 1.

Finally applying an affine linear transformation φ3(X,Y ) = (X+Y
2 , Y−X2 ) to β̃ we get β̂ with

M̂2 satisfying
XY+ YX = 0, X2 + Y2 = 1.

Hence we are in a basic case 1 of Proposition 4.11.

Case 2: The set
{
1,X,Y,X2,XY

}
is the basis for CM2 .

By assumption there are constants aj , bj , cj , dj , ej ∈ R for j = 1, 2 such that

YX = a11+ b1X+ c1Y+ d1X2 + e1XY, Y2 = a21+ b2X+ c2Y+ d2X2 + e2XY.

By comparing the rows XY, YX of the both sides of equations we conclude that e1 = −1 and
e2 = 0, so that the relation are

XY+ YX = a11+ b1X+ c1Y+ d1X2 and Y2 = a21+ b2X+ c2Y+ d2X2. (4.13)

By Lemma 4.12 there exists an affine linear transformation φ4 of the form (4.7) such that after
applying φ4 to β the second relation in (4.13) of the corresponding matrixM2 becomes one
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of the following:

Y2 = 1 or Y2 = 1− X2 or Y2 = X2 or Y2 = 1+ X2, (4.14)

while the first relation in (4.13) becomes

XY+ YX = a31+ b3X+ c3Y+ d3X2, (4.15)

where a3, b3, c3, d3 ∈ R. We separate four possibilities according to the relation in (4.14).

Case 2.1: Y2 = 1 in (4.14). The relation (4.15) can be rewritten in the form

Y
(
X− c3

2

)
+
(
X− c3

2

)
Y = a31+ b3X+ d3X2.

Applying an affine linear transformation φ5(X,Y ) = (X − c3
2 , Y ) to β we get β̆ with M̆2

satisfying
XY+ YX = a41+ b4X+ d4X2 and Y2 = 1, (4.16)

where a4, b4, d4 ∈ R. Multiplying the first relation in (4.16) with X on left (resp. right) we get

X2Y+ XYX = a4X+ b4X2 + d4X3 = XYX+ YX2.

Hence, X2Y = YX2. Multiplying the first relation in (4.16) with Y on right and using the
second relation in (4.16), we get

X+ YXY = a4Y+ b4XY+ d4X2Y. (4.17)

Comparing the rows XY, YX on both sides of (4.17) gives b4 = 0. We now separate two
possibilities depending on d4.

Case 2.1.1: d4 = 0 in (4.16). The relations (4.16) are

XY+ YX = a41, Y2 = 1.

Using the second relation we can rewrite the first relation in the form(
X− a4

2
Y
)
Y+ Y

(
X− a4

2
Y
)

= 0.

Applying an affine linear transformation φ6(X,Y) = (x − a4
2 y, y) to β̆ we get β̂ with M̂2

satisfying
XY+ YX = 0, Y2 = 1.

Hence we are in the basic case 2 of Proposition 4.11 (1).
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Case 2.1.2: d4 6= 0 in (4.16). The relations (4.16) are

X2 − 1

d4
(XY+ YX) = −a4

d4
1 and Y2 = 1.

Summing together the first relation and the second relation multiplied by 1
d24

we get

1

d2
4

Y2 − 1

d4
(XY+ YX) + X2 =

( 1

d2
4

− a4

d4

)
1. (4.18)

Now we rewrite (4.18) in the form( 1

d4
Y− X

)2
=
( 1

d2
4

− a4

d4

)
1.

Applying an affine linear transformation φ7(X,Y ) =
(

1
d4
y − X,Y

)
to β̆ we get β́ with Ḿ2

satisfying

X2 =
( 1

d2
4

− a4

d4

)
1 and Y2 = 1.

Hence we are in Case 1.

Case 2.2: Y2 = 1 − X2 in (4.14). Multiplying the relation (4.15) from the left by X (resp.
Y) and comparing the rows XY, YX on both sides using Lemma 4.15 we conclude that c3 = 0

(resp. b3 = 0). Thus the relation ofM2 are

XY+ YX = a31+ d3X2 and Y2 + X2 = 1.

Summing together the first relation and the second relation multiplied by α we get

αY2 + (XY+ YX) + (α− d3)X2 = (α+ a3)1. (4.19)

Choosing

α =
1

2

√
4 + d2

3 +
d3

2
,

we see that
α > 0, α− d3 > 0 and

√
(α− d3)α = 1,

and thus (4.19) can be rewritten in the form

(
√
α− d3X+

√
αY)2 = (α+ a3)1.

Applying an affine linear transformation φ8(X,Y ) = (X,
√
α− d3X +

√
αY ) to β we get β̂

with M̂2 satisfying

Y2 = (α+ a3)1 and XY+ YX = a41+ d4X2, (4.20)

where a4, d4 ∈ R. Since M̂2 is positive semi-definite of rank 5, α + a3 > 0 and after
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normalization the relations (4.20) become

Y2 = 1 and XY+ YX = a51+ d5X2,

where a5, d5 ∈ R. Hence we are in Case 2.1.

Case 2.3: Y2 = X2 in (4.14). As in the first paragraph of Case 2.2 we conclude that the
relations ofM2 are

XY+ YX = a31+ d3X2 and Y2 = X2.

Applying an affine linear transformation φ9(X,Y ) = (X+Y, Y −X) to β we get β̃ with M̃2

satisfying
(2− d3)X2 − (2 + d3)Y2 = 4a31 and XY+ YX = 0, .

If d3 = 2, then after normalization we come into Case 2.1. If d3 = −2, then we come into
Case 2.1 after we apply a transformation (X,Y ) 7→ (Y,X) to change the roles of X and Y and
normalize. Otherwise we apply an affine linear transformation

φ10(X,Y ) = (
√
|2− d3|X,

√
|2 + d3|Y )

to β̃ and get β̆ with M̆2 satisfying
XY+ YX = 0

and one of the following:

X2 + Y2 = 4a31 or X2 − Y2 = 4a31 or − X2 − Y2 = 4a31. (4.21)

The first and the last cases are equivalent, since the third relation can be rewritten asX2 +Y2 =

−4a31. Thus we separate two possibilities in (4.21).

Case 2.3.1: X2 + Y2 = 4a31 in (4.21). It is easy to see that a3 > 0 (by M̆2 being positive
semi-definite of rank 5, since otherwise βY 2 = βX2Y 2 = βY 4 = 0). Thus after the normaliza-
tion we are in the basic case 1 of Proposition 4.11.

Case 2.3.2: X2−Y2 = 4a31 in (4.21). We may assume that a3 ≤ 0 (otherwise we change the
roles ofX andY). If a3 < 0, then after normalization we come into the basic case 3. Otherwise
a3 = 0 and we are in the basic case 4.

Case 2.4: Y2 = 1 + X2 in (4.14). As in the first paragraph of Case 2.2 we conclude that the
relations ofM2 are

XY+ YX = a31+ d3X2 and Y2 = 1+ X2,

and after applying an affine linear transformation φ9(X,Y ) = (X + Y, Y −X) to β to get β̆
with M̆2 satisfying

(2− d3)X2 − (2 + d3)Y2 = (4a3 − 2d3)1 and XY+ YX = 2 · 1.
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If d3 = 2, then after normalization we come into Case 2.1. If d3 = −2 then we come into
Case 2.1 after we apply a transformation (X,Y ) 7→ (Y,X) to change the roles of X and Y and
normalize. Otherwise we apply an affine linear transformation

φ11(X,Y ) = (
√
|2− d3|X,

√
|2 + d3|Y )

to β̆ and get β́ with Ḿ2 satisfying

XY+ YX = 2
√
|(4− d2

3|1

and one of the following

X2 + Y2 = ã1 or X2 − Y2 = ã1 or − X2 − Y2 = ã1, (4.22)

where ã = 4a3− 2d3. The first and the last cases are equivalent, since the third relation can be
rewritten as X2 + Y2 = −ã1. Thus we separate two possibilities in (4.22).

Case 2.4.1: X2 +Y2 = ã1. It is easy to see that ã > 0 (by Ḿ2 being positive semi-definite of
rank 5, since otherwise βY 2 = βX2Y 2 = βY 4 = 0). Hence after normalization we come into
Case 2.2.

Case 2.4.2: Y2 − X2 = ã1. We may assume that ã ≥ 0 (otherwise we change the roles of X
and Y). If ã = 0, we are in Case 2.3. Otherwise we apply a transformation

φ12(X,Y ) =
(
X,X − 2

√
|(4− d2

3|
ã

Y
)

to β́ and get β̂ with M̂2 satisfying

Y2 +
(

1− 4(4− d2
3)2

ã2

)
X2 = 0 and XY+ YX = −ã1+ ãX2.

It is easy to see that 1 − 4(4−d23)2

ã2
< 0 (by M̂2 being positive semi-definite of rank 5, since

otherwise βY 4 = βX2Y 2 = βY 2 = βX2 = 0) and after a further normalization of X the
relations of the corresponding matrix M̂2 become

Y2 − X2 = 0 and XY+ YX = −â1− âX2, for some â ∈ R.

Hence we come into Case 2.3.

Case 3: The set
{
1,X,Y,Y2,YX

}
is the basis for CM2 .

Applying an affine linear transformation (X,Y ) 7→ (Y,X) we come into Case 2.

Now we prove Proposition 4.11 (2).

Proof of Proposition 4.11 (2). By Lemma 4.14 we have to consider 2 different cases.
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Case 1: The set
{
1,X,Y,X2,XY,YX

}
is the basis for CM2 .

By assumption there are constants ai, i = 1, . . . , 6, such that

Y2 = a11+ a2X+ a3Y+ a4X2 + a5XY+ a6YX.

By Lemma 4.12 the statement of Proposition 4.11 follows.

Case 2: The set
{
1,X,Y,X2,XY,Y2

}
is the basis for CM2 .

By assumption there are constants ai, i = 1, . . . , 6, such that

YX = a11+ a2X+ a3Y+ a4X2 + a5XY+ a6Y2. (4.23)

By comparing the rows XY, YX of the both sides of equation we conclude that a5 = −1. We
separate two cases.

Case 2.1: a4 6= 0 or a6 6= 0. By symmetry we may assume that a6 6= 0. We rewrite the
relation (4.23) as

Y2 = −a1

a6
1− a2

a6
X− a3

a6
Y− a4

a6
X2 − a5

a6
XY+

1

a6
YX.

By Lemma 4.12 the statement of Proposition 4.11 follows.

Case 2.2: a4 = a6 = 0. We rewrite the relation (4.23) as

(X+ Y)Y+ Y(X+ Y)− 2Y2 = a11+ a2(X+ Y) + (a3 − a2)Y.

Applying an affine linear transformation φ1(X,Y ) = (X + Y, Y ) to β we get β̃ with M̃2

satisfying
XY+ YX− 2Y2 = a11+ a2X+ (a3 − a2)Y.

By Lemma 4.12 the statement of Proposition 4.11 (2) follows.

4.3 Atoms in the minimal measure of ranks 5 and 6

Every nc sequence β ≡ β(4) which admits an nc measure withM2 in one of the basic cases
of rank 5 or one of the first three basic cases of rank 6 given by Proposition 4.11, admits a
minimal measure with all the atoms of special form. This form is crucial in the analysis of
each basic case.

The next result and its proof are due to Zalar, and are proved in Proposition 5.1 of our
article [10].

Proposition 4.16. Suppose an nc sequence β ≡ β(4) has a Hankel matrixM2 satisfying one
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of the column relations

XY+ YX = 0 or Y2 = 1− X2 or Y2 = 1+ X2. (4.24)

If β admits an nc measure, then the atoms are of the following two forms:

1. (xi, yi) ∈ R2.

2. (Xi, Yi) ∈ (SR2ti×2ti)2 for some ti ∈ N such that

Xi =

(
γiIti Bi
BT
i −γiIti

)
and Yi =

(
µiIti 0

0 −µiIti

)

where γi ≥ 0, µi > 0 and Bi are ti × ti matrices.

Proof. Suppose µ is any nc measure representing β. By Theorem 4.5 every atom (Xi, Yi) in µ
satisfies the relation (4.24).

Claim 1: We may assume that XiYi + YiXi and Yi are diagonal matrices.

Observe that XiYi + YiXi is symmetric and commutes with Yi. Therefore after a orthogo-
nal transformation we may assume that XiYi + YiXi and Yi are diagonal matrices.

Claim 2: We may assume that the atoms (Xi, Yi) of size greater than 1 are of the forms

Xi =

(
Di1 Bi
BT
i Di2

)
and Yi =

(
µiIni1 0

0 −µiIni2

)
, (4.25)

where µi > 0, ni1, ni2 ∈ N, Di1 ∈ Rni1×ni1 and Di2 ∈ Rni2×ni2 are diagonal matrices and
Bi ∈ Rni1×ni2 .

By an appropriate permutation we may assume that Yi is of the form

Yi =

`i⊕
j=1

(
µ
(i)
j Inij 0

0 −µ(i)
j Imij

)⊕
0m×m,

where `i, nij ,mij ,m ∈ N ∪ {0}, µ(i)
j > 0 and µ(i)

j1
6= µ

(i)
j2

for j1 6= j2. Let

Xi = (X(i)
pr )pr

be the corresponding block decomposition of Xi. Since XiYi + YiXi is diagonal, it follows
that
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1. for 1 ≤ p, r ≤ `i and p 6= r we have that

[XiYi + YiXi]2p−1,2r−1 = (µ(i)
p + µ(i)

r )X
(i)
2p−1,2r−1 = 0 ⇒ X

(i)
2p−1,2r−1 = 0,

[XiYi + YiXi]2p−1,2r = (µ(i)
p − µ(i)

r )X
(i)
2p−1,2r = 0 ⇒ X

(i)
2p−1,2r = 0,

[XiYi + YiXi]2p,2r = −(µ(i)
p + µ(i)

r )X
(i)
2p,2r = 0 ⇒ X

(i)
2p,2r = 0.

2. for 1 ≤ p ≤ `i we have that

[XiYi + YiXi]2p−1,2`i+1 = µ(i)
p X

(i)
2p−1,2`i+1 = 0 ⇒ X

(i)
2p−1,2`i+1 = 0,

[XiYi + YiXi]2p,2`i+1 = −µ(i)
p X

(i)
2p,2`i+1 = 0 ⇒ X

(i)
2p,2`i+1 = 0,

[XiYi + YiXi]2`i+1,2p−1 = µ(i)
p X

(i)
2`i+1,2p−1 = 0 ⇒ X

(i)
2`i+1,2p−1 = 0,

[XiYi + YiXi]2`i+1,2p = −µ(i)
p X

(i)
2`i+1,2p = 0 ⇒ X

(i)
2`i+1,2p = 0.

3. for 1 ≤ p = r ≤ `i we have that

[XiYi + YiXi]2p−1,2p−1 = 2µ(i)
p X

(i)
2p−1,2p−1 is diagonal ⇒ X

(i)
2p−1,2p−1 is diagonal,

[XiYi + YiXi]2p,2p = −2µ(i)
p X

(i)
2p,2p is diagonal ⇒ X

(i)
2p,2p is diagonal.

So Xi is of the form

Xi =

`i⊕
j=1

(
X

(ij)
11 X

(ij)
12

(X
(ij)
12 )T X

(ij)
22

)⊕
X

(i)
`i+1.

Thus we can replace the atom (Xi, Yi) with the atoms of the form

X̃ij =

(
X

(ij)
11 X

(ij)
12

(X
(ij)
12 )T X

(kij)
22

)
and Ỹij =

(
µ

(i)
j Inij 0

0 −µ(i)
j Imij

)
, (4.26)

or
X̃ij = X

(i)
`i+1 and Ỹij = 0. (4.27)

By orthogonal transformation the atom (4.27) can be replaced by the atom

X̂ij = D
(i)
`i+1 and Ỹij = 0,

where D(i)
`i+1 is a diagonal matrix and further on by atoms of size 1 of the form (x, 0), where x

runs over the diagonal of D(i)
`i+1. Hence we may assume that the atoms of size greater than 1 in

the representing measure for β are of the form (4.26). Furthermore, by appropriate orthogonal
transformation we may assume that they are of the form (4.25). This proves the claim.

Claim 3: We may assume that the atoms (Xi, Yi) of size greater than 1 are of the forms

Xi =

(
γiIti Bi
BT
i −γiIti

)
and Yi =

(
µiIti 0

0 −µiIti

)
,
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where γi ≥ 0, µi > 0 and Bi are ti × ti matrices for some ti ∈ N.

First we prove Claim 3 in case we have XY + YX = 0 in (4.24). Let us prove that we
may assume invertibility of Xi. After applying an orthogonal transformation to (Xi, Yi) we

have Xi =

(
0 0

0 X̂i

)
where X̂ is invertible and Yi =

(
Yi1 Yi2
Y t
i2 Yi3

)
. From XiYi + YiXi = 0

it follows that Yi2X̂i = 0. Since X̂i is invertible, Yi2 = 0. Hence we can replace the atom
(Xi, Yi) with the atoms (0, Yi1) and (X̂i, Yi3). Since the atom (0, Yi1) can be further replaced
with the atoms of size 1, we may assume the Xi is invertible.

Observe that in (3) from the proof of Claim 2 we have

0 = [XiYi + YiXi]2p−1,2p−1 = 2µ(i)
p X

(i)
2p−1,2p−1 ⇒ X

(i)
2p−1,2p−1 = 0,

0 = [XiYi + YiXi]2p,2p = −2µ(i)
p X

(i)
2p,2p ⇒ X

(i)
2p,2p = 0.

Therefore Xi in (4.25) is of the form Xi =

(
0 Bi
BT
i 0

)
with Bi ∈ Rni1×ni2 and ni1 = ni2 by

the invertibility of Xi. This proves Claim 3 in case we have XY+ YX = 0 in (4.24).

It remains to prove Claim 3 in case we have Y2 = 1± X2 in (4.24). By Claim 2 and after
an appropriate permutation we may assume that Xi, Yi are of the form (4.25) with

Di1 =

pi⊕
j=1

λ
(i)
j Isij and Di2 =

ri⊕
j=1

γ
(i)
j Ivij ,

where pi, sij , ri, vij ∈ N and

λ
(i)
1 > λ

(i)
2 > . . . > λ(i)

pi and γ
(i)
1 > γ

(i)
2 > . . . > γ(i)

ri .

Let
Bi = (B(i)

pr )pr

be the corresponding block decomposition of Bi, where

B(i)
pr ∈ Rsip×vri

for p = 1, . . . , pi, r = 1, . . . , ri. Calculating X2
i we get that

X2
i =

(
D2
i1 +BiB

T
i Di1Bi +BT

i Di2

BT
i Di1 +Di2Bi BT

i Bi +D2
i2

)
.

Since X2
i is a diagonal matrix, we conclude that

Di1Bi +BT
i Di2 = 0.

Thus
[Di1Bi +BT

i Di2]pr = (λ(i)
p + γ(i)

r )B(i)
pr = 0,
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for 1 ≤ p ≤ pi, 1 ≤ r ≤ ri. We conclude that

λ(i)
p = −γ(i)

r or B(i)
pr = 0.

So in every row and every column in the block decomposition of Bi at most one block B(i)
pr

is possibly non-zero, i.e., B(i)
pr may be non-zero if and only if λ(i)

p = −γ(i)
r So after a suitable

permutation Xi has the following block decomposition

Xi =
⊕

1≤p≤pi
1≤r≤ri

λ
(i)
p +γ

(i)
r =0

(
λ

(i)
p Isip B

(i)
pr

(B
(i)
pr )T γ

(i)
r Ivir

)⊕ ⊕
1≤p≤pk

λ
(i)
p 6=−γ

(i)
r ∀r

(
λ

(i)
p Isip

)

⊕ ⊕
1≤r≤rk

λ
(i)
p 6=−γ

(i)
r ∀p

(
γ

(i)
r Ivir

)
.

The corresponding block decomposition of Yi is of the form

Yi =
⊕

1≤p≤pi
1≤r≤ri

λ
(i)
p +γ

(i)
r =0

(
µiIsip 0

0 −µiIvir

)⊕ ⊕
1≤p≤pk

λ
(i)
p 6=−γ

(i)
r ∀r

(
µiIsip

)
⊕ ⊕

1≤r≤rk
λ
(i)
p 6=−γ

(i)
r ∀p

(
−µiIvir

)
.

Thus we can replace the atom (Xi, Yi) with the atoms of the form

X̃ij =

(
λ

(i)
p Isip B

(i)
pr

(B
(i)
pr )T −λ(i)

p Ivir

)
and Ỹij =

(
µiIsip 0

0 −µiIvir

)
(4.28)

or
X̃ij = λ(i)

p and Ỹij = µi

or
X̃ij = γ(i)

r and Ỹij = −µi.

Hence we may assume that the atoms (Xi, Yi) of size greater than 1 in the representing measure
forM2 are of the form (4.28). Now

X2
i =

(
(λ

(i)
p )2Isip +B

(i)
pr (B

(i)
pr )T 0

0 (B
(i)
pr )TB

(i)
pr + (λ

(i)
p )2Ivir

)

Since

X2
i = 1± Y 2

i =

(
(1± µ2

i )Isip 0

0 (1± µ2
i )Ivir

)
,
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it follows that

B(i)
pr (B(i)

pr )T = (1± µ2
i − (λ(i)

p )2)Isip (4.29)

(B(i)
pr )TB(i)

pr = (1± µ2
i − (λ(i)

p )2)Ivir . (4.30)

We separate two cases according to the value of 1± µ2
i − (λ

(i)
p ).

Case 1: 1± µ2
i − (λ

(i)
p ) = 0.

It follows that B(i)
pr = 0. Then Xi is diagonal and commutes with Yi. Therefore the atom

(Xi, Yi) can be replaced by the atoms (λ
(i)
p , µi) and (−λ(i)

p ,−µi).

Case 2: 1± µ2
i − (λ

(i)
p ) 6= 0.

From (4.29) and (4.30) it follows that

sip = rank(B(i)
pr (B(i)

pr )T ) ≤ min(rank(B(i)
pr ), rank((B(i)

pr )T )) ≤ min(sip, vir) (4.31)

vir = rank((B(i)
pr )TB(i)

pr ) ≤ min(rank((B(i)
pr )T ), rank(B(i)

pr )) ≤ min(vir, sip). (4.32)

It follows from (4.31) and (4.32) that sip = vir in (4.28) which proves Claim 3 and concludes
the proof of Proposition 4.16.

4.4 M2 in the basic cases 1 and 2 of rank 6

In this section we solve the bivariate quartic tracial moment problem for M2 in the basic
cases 1 and 2 of rank 6 given by Proposition 4.11. In Subsections 4.4.1 and 4.4.2 each case is
presented separately, characterizing whenM2 admits an nc measure, see Theorems 4.21 and
4.24. Corollaries 4.22 and 4.25 translate the existence of an nc measure into the feasibility
problem of three linear matrix inequalities and a rank condition from Theorem 4.10.

The following proposition states that if β has a Hankel matrix M2 of rank 6 in the ba-
sic cases 1, 2 or 3 given by Proposition 4.11 (2) and β admits an nc measure, then it has a
representing measure with the atoms of size at most 2.

The following three propositions are due to Zalar and were proved in Proposition 7.1, 7.2
and 7.3 of our article [10].

Proposition 4.17. Let us fix a basic case relation 1, 2 or 3 given by Proposition 4.11 (2) and
denote it by R. If an nc sequence β with a Hankel matrixM2(β) of rank 6 satisfying R admits
an nc measure, then it admits an nc measure with atoms of size at most 2.

The following two propositions say more about the minimal measure.

Proposition 4.18. Let us fix a basic case relation 1, 2 or 3 given by Proposition 4.11 (2) and
denote it by R. If a sequence β with a Hankel matrixM2 satisfying R admits an nc measure
of type (k, 1), then
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1. 2 ≤ k ≤ 5 if R is equal to Y2 = 1− X2 or Y2 = 1+ X2.

2. 2 ≤ k ≤ 6 if R is equal to XY+ YX = 0.

Proposition 4.19. Let us fix a basic case relation 1 or 2 given by Proposition 4.11 (2) and
denote it by R. If every sequence β with βX = βY = βX3 = βX2Y = β3

Y = 0 and a Hankel
matrixM2(β) of rank 6 with column relation R, admits an nc measure with exactly one atom
of size 2 and some atoms of size 1, then every sequence β̃ which admits an nc measure and has
a Hankel matrix M̃2 of rank 6 with the column relation R, admits an nc measure with exactly
one atom of size 2 and some atoms of size 1.

4.4.1 Relation Y2 = 1− X2.

In this subsection we present results for an nc sequence β with a Hankel matrixM2 of rank 6
satisfying the relationY2 = 1−X2. Theorem 4.21 characterizes when β admits an nc measure.
Corollary 4.22 shows that the existence of an nc measure is equivalent to the feasibility problem
of three linear matrix inequalities (LMIs) and a rank condition from Theorem 4.10.

The form ofM2 is given by the following, and was proven in Proposition 7.4 of our article
[10].

Proposition 4.20. Let β ≡ β(4) be an nc sequence with a Hankel matrix M2 satisfying the
relation

Y2 = 1− X2. (4.33)

ThenM2 is of the form

β1 βX βY βX2 βXY βXY β1 − βX2

βX βX2 βXY βX3 βX2Y βX2Y βX − βX3

βY βXY β1 − βX2 βX2Y βX − βX3 βX − βX3 βY − βX2Y

βX2 βX3 βX2Y βX4 βX3Y βX3Y βX2 − βX4

βXY βX2Y βX − βX3 βX3Y βX2 − βX4 βXY XY βXY − βX3Y

βXY βX2Y βX − βX3 βX3Y βXY XY βX2 − βX4 βXY − βX3Y

β1 − βX2 βX − βX3 βY − βX2Y βX2 − βX4 βXY − βX3Y βXY − βX3Y β1 − 2βX2 + βX4


.

(4.34)

Proof. The relation (4.33) gives us the following system inM2

βY 2 = β1 − βX2 ,

βXY 2 = βX − βX3 ,

βY 3 = βY − βX2Y ,

(4.35)

βX2Y 2 = βX2 − βX4 ,

βXY 3 = βXY − βX3Y ,

βY 4 = βY 2 − βX2Y 2 .

Plugging in the expressions for βY 2 and βX2Y 2 in the expression for βY 4 gives the form (4.34)
ofM2.

The following theorem characterizes normalized nc sequences β with a Hankel matrixM2

of rank 6 satisfying the relation Y2 = 1 − X2, which admit an nc measure, and is proven in
Theorem 7.5 of our article [10].
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Theorem 4.21. Suppose β ≡ β(4) is a normalized nc sequence with a Hankel matrixM2 of
rank 6 satisfying the relation Y2 = 1−X2. Then β admits an nc measure if and only ifM2 is
positive semi-definite and one of the following is true:

(1) βX = βY = βX3 = βX2Y = 0. Moreover, there exists an nc measure of type (4,1).

(2) There exist
a1 ∈ (0, 1), a2 ∈

(
−2
√
a1(1− a1), 2

√
a1(1− a1)

)
such that

M :=M2 − ξM(X,Y )
2

is a positive semi-definite cm Hankel matrix satisfying rank(M) ≤ card(VM ), where
VM is the variety associated to M (as in Theorem 4.10),

X =

(√
a1 0

0 −√a1

)
, Y =

√
(1− a1)

(
a
2

1
2

√
4− a2

1
2

√
4− a2 −a

2

)
, (4.36)

a =
a2√

a1(1− a1)
,

and ξ > 0 is the smallest positive number such that the rank of M2 − ξM(X,Y )
2 is

smaller than the rank ofM2.

Proof. We first consider the reverse implication. SupposeM2 is positive definite. If (2) holds
it is easy to see from the solutions of the commutative moment problems, that β admits a
representing measure. Now supposeM2 is positive definite and (1) holds, we will show that
β admits a measure. Then by Proposition (4.20),M2 is of the form

1 0 0 βX2 βXY βXY 1− βX2

0 βX2 βXY 0 0 0 0
0 βXY 1− βX2 0 0 0 0
βX2 0 0 βX4 βX3Y βX3Y βX2 − βX4

βXY 0 0 βX3Y βX2 − βX4 βXY XY βXY − βX3Y

βXY 0 0 βX3Y βXY XY βX2 − βX4 βXY − βX3Y

1− βX2 0 0 βX2 − βX4 βXY − βX3Y βXY − βX3Y 1− 2βX2 + βX4


.

We define the matrix function

B(α) :=M2 − α
(
M(1,0)

2 +M(−1,0)
2

)
,

whereM(x,y)
2 are the moment matrices generated by the atom (x, y).

We have that

B(α) =



1− 2α 0 0 βX2 − 2α βXY βXY D
0 βX2 − α βXY 0 0 0 0
0 βXY D 0 0 0 0

βX2 − 2α 0 0 βX4 − 2α βX3Y βX3Y C
βXY 0 0 βX3Y C E βXY − βX3Y

βXY 0 0 βX3Y E C βXY − βX3Y

D 0 0 C βXY − βX3Y βXY − βX3Y D − C


,
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where
C = βX2 − βX4 , D = 1− βX2 , E = βXYXY .

We have that
det
(
[B(α)]{1,X,Y,X2,XY,YX}

)
= JK(−F + 2αG), (4.37)

where

J = −(βXYXY − βX2 + βX4)

K = (−β2
XY + βX2 − β2

X2 + 2α(−1 + β2
X))

F = βXYXY (β2
X2 − βX4) + βX2(β2

X2 − 4βXY βX3Y − βX4(1 + βX2))

+2β2
X3Y + βX4(βX4 + 2β2

XY ),

G = 2βXY (βXY − 2βX3Y ) + βXYXY (2βX2 − 1− βX4) + βX2(2βX2 − 1− 3βX4)

+2β2
X3Y + βX4(1 + βX4).

Let α0 > 0 be the smallest positive number such that the rank of B(α0) is smaller than 6. By
(4.37) we get

α0 = min
(β2

XY − βX2 + β2
X2

2(−1 + βX2)
,
F

2G

)
.

Claim 1: α0 = F
2G < α1.

Since

det
(
[B(α)]{1,X2}

)
= βX4 − β2

X2 + 2α(−1 + 2βX2 − βX4),

det
(
[B(α)]{1,XY}

)
= C − β2

XY − 2α · C,
det
(
[B(α)]{1,XY,YX}

)
= (E − C)(−E − C + 2βX2Y + 2α · (E + C)),

the system

det
(
[B(α2)]{1,X2}

)
= 0, det

(
[B(α3)]{1,XY}

)
= 0, det

(
[B(α4)]{1,XY,YX}

)
= 0

has a solution

α2 =
β2
X2 − βX4

2(−1 + 2βX2 − βX4)
, α3 =

−β2
XY + βX2 − βX4

2(βX2 − βX4)
, α4 =

−2β2
XY + βXYXY + βX2 − βX4

2(βXYXY + βX2 − βX4)
.

If α1 ≤ F
2G , then since B(α1) � 0, it follows that α1 ≤ min(α2, α3, α4). Using Mathematica,

the system

α1 ≤ min(α2, α3, α4), det
(
M2|{Y}

)
> 0, det

(
M2|{XY}

)
> 0, (4.38)

det
(
M2|{X,Y}

)
> 0, det

(
M2|{1,X2}

)
> 0, det

(
M2|{1,XY,YX}

)
> 0, (4.39)

does not have solutions (see https://github.com/Abhishek-B/TTMP for the Mathematica file,
note that the Mathematica file pertains to Theorem 7.5 from [10]). Hence α0 = F

2G < α1.

https://github.com/Abhishek-B/TTMP
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Using Mathematica to calculate the kernel of B( F2G) we conclude that B( F2G) satisfies the
relations

XY+ YX = a1+ dX2, Y2 + X2 = 1

for some a, d ∈ R. We also have

β
(B)
X = β

(B)
Y = β

(B)
X3 = β

(B)
X2Y

= β
(B)
XY 2 = β

(B)
Y 3 = 0,

where β(B)
w(X,Y ) are the moments of B( F2G). This is a special case in the proof of Proposition

4.11, i.e., Case 2.2. Following the proof we see that after using only transformations of type

(x, y) 7→ (α1x+ β1y, α2x+ β2y)

for some α1, α2, β1, β2 ∈ R, we come into the basic case 1 or 2 of rank 5 with β̃X = β̃Y =

β̃X3 = 0. But every such sequence admits a measure of type (2,1) by Theorems 6.5 and 6.8 of
[10]. Hence β admits a measure of type (4, 1).

Now we show the forward implication. Suppose that β admits an nc measure, we will show
that (2) holds. By Proposition 4.19 and Theorem 4.21 (1),

M2 =
∑
i

λiM(xi,yi)(2) + ξM(X,Y )(2), (4.40)

where (xi, yi) ∈ R2, (X,Y ) ∈ (SR2×2)2, λi > 0, ξ > 0 and
∑

i λi + ξ = 1. Therefore

M2 − ξM(X,Y )
2

is a cm Hankel matrix satisfying the relations

Y2 = 1− X2 and XY = YX.

By Theorem 4.10, M admits a measure if and only if M is psd and satisfies rankM ≤
cardVM . To conclude the proof it only remains to prove that X,Y are of the form (4.36).
M(X,Y )

2 is an nc Hankel matrix rank 4. Therefore the columns {1,X,Y,XY} are linearly
independent and hence

X2 = a11+ b1X+ c1Y+ d1XY, and Y2 = a31+ b3X+ c3Y+ d3XY,

where aj , bj , cj , dj ∈ R for j = 1, 3. By Theorem 3.1 (1) of [10], d1 = d3 = 0. By Theorem
3.1 (3) of [10], c1 = b3 = 0. Since X2 +Y2 = 1 it follows that b1 = c3 = 0 and a3 = 1− a1.
By Theorem 3.1 (4), X and Y are of the form (4.36).

As a consequence we can translate the bivariate quartic tracial moment problem for β with
M2 of rank 6 satisfying Y2 = 1−X2 into the feasibility problem of some small linear matrix
inequalities and a rank condition from Theorem 4.10. We proved this result in Corollary 7.6 of
our article [10].
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Corollary 4.22. Suppose β ≡ β(4) is a normalized nc sequence with a Hankel matrixM2 of
rank 6 satisfying the relation Y2 = 1 − X2. Let L(a, b, c, d, e) be the following linear matrix
polynomial

a βX βY b c c a− b
βX b c βX3 βX2Y βX2Y βX − βX3

βY c a− b βX2Y βX − βX3 βX − βX3 βY − βX2Y

b βX3 βX2Y d e e b− d
c βX2Y βX − βX3 e b− d b− d c− e
c βX2Y βX − βX3 e b− d b− d c− e

a− b βX − βX3 βY − βX2Y b− d c− e c− e a− 2b+ d


,

where a, b, c, d, e ∈ R. Then β admits an nc measure if and only if there exist a, b, c, d, e ∈ R
such that

1. L(a, b, c, d, e) � 0,

2. M2 − L(a, b, c, d, e) � 0,

3. (M2 − L(a, b, c, d, e)){1,X,Y,XY} � 0,

4. rank(L(a, b, c, d, e)) ≤ card(VL), where VL is the variety associated to the Hankel
matrix L(a, b, c, d, e) (see Theorem 4.10).

Proof. By Theorem 4.21, β admits an nc measure if and only if

M2 =
k∑
i=1

λiM(xi,yi)
2 + ξM(X,Y )

2 , (4.41)

where (xi, yi) ∈ R2, (X,Y ) ∈ (SR2×2)2, λi > 0, ξ > 0 and
∑

i λi + ξ = 1. By Corollary 3.2
of [10],

β
(X,Y )
X = β

(X,Y )
Y = β

(X,Y )
X3 = β

(X,Y )
X2Y

= β
(X,Y )
XY 2 = β

(X,Y )
Y 3 = 0, (4.42)

where β
(X,Y )
w(X,Y ) are the moments of M(X,Y )

2 . Using (4.41) and (4.42), we conclude that∑
i λiM

(xi,yi)
2 and ξM(X,Y )

2 are of the forms

a βX βY b c c a− b
βX b c βX3 βX2Y βX2Y βX − βX3

βY c a− b βX2Y βX − βX3 βX − βX3 βY − βX2Y

b βX3 βX2Y d e e b− d
c βX2Y βX − βX3 e b− d b− d c− e
c βX2Y βX − βX3 e b− d b− d c− e

a− b βX − βX3 βY − βX2Y b− d c− e c− e a− 2b+ d


, (4.43)



1− a 0 0 βX2 − b A1(c) A1(c) A2(a, b)
0 βX2 − b A1(c) 0 0 0 0
0 A1(c) A2(a, b) 0 0 0 0

βX2 − b 0 0 βX4 − d A3(e) A3(e) A4(b, d)
A1(c) 0 0 A3(e) A4(b, d) βXY XY − (b− d) A5(c, e)
A1(c) 0 0 A3(e) βXY XY − (b− d) A4(b, d) A5(c, e)
A2(a, b) 0 0 A4(b, d) A5(c, e) A5(c, e) A6(a, b, d)


, (4.44)
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where

A1(c) = βXY − c, A2(a, b) = 1− βX2 − (a− b),
A3(e) = βX3Y − e, A4(b, d) = βX2 − βX4 − (b− d),

A5(c, e) = βXY − βX3Y − (c− e), A6(a, b, d) = 1− 2βX2 + βX4 − (a− 2b+ d),

for some a, b, c, d, e ∈ R. Notice that the matrix (4.43) equals to L(a, b, c, d, e) and the matrix
(4.44) to M2 − L(a, b, c, d, e). Since L(a, b, c, d, e) is a cm Hankel matrix, it admits an nc
measure by Theorem 4.10 if and only if (1) and (4) of Theorem 4.22 are true. Since M2 −
L(a, b, c, d, e) is an nc Hankel matrix satisfyingY2 = 1−X2 and β̃X = β̃Y = β̃X3 = β̃X2Y =

β̃XY 2 = β̃Y 3 = 0, it admits an nc measure by the results of rank 4 and 5 cases and Theorem
4.21 (1) if and only if (2) and (3) of Theorem 4.22 are true.

4.4.2 Relation XY+ YX = 0.

In this subsection we present the results for an nc sequence β ≡ β(4) with a Hankel matrixM2

of rank 6 satisfying the relation XY+YX = 0. Theorem 4.24 characterizes when β admits an
nc measure. Corollary 4.25 we show that the existence of an nc measure is equivalent to the
feasibility problem of three linear matrix inequalities and a rank condition from Theorem 4.10.
We omit the proofs as they are similar to the Y2 = 1 − X2 case, and can be readily found in
our article [10].

The form ofM2 is given by the following, and is proven in Proposition 7.7 of our article
[10].

Proposition 4.23. Let β ≡ β(4) be an nc sequence with a Hankel matrixM2 of rank 6 satis-
fying the relation

XY+ YX = 0 (4.45)

ThenM2 is of the form

β1 βX βY βX2 0 0 βY 2

βX βX2 0 βX3 0 0 0
βY 0 βY 2 0 0 0 βY 3

βX2 βX3 0 βX4 0 0 βX2Y 2

0 0 0 0 βX2Y 2 −βX2Y 2 0
0 0 0 0 −βX2Y 2 βX2Y 2 0
βY 2 0 βY 3 βX2Y 2 0 0 βY 4


. (4.46)

Proof. The relation (4.45) gives us the following system inM2

2βXY = 0,

2βX2Y = 0,

2βXY 2 = 0,

(4.47)

2βX3Y = 0,

βX2Y 2 + βXYXY = βXY ,

2βXY 3 = 0.

Thus the solution of the system (4.47) is given by the statement of the proposition.

The following theorem characterizes normalized sequences β with a Hankel matrixM2 of
rank 6 satisfying XY+YX = 0, which admit an nc measure, and is proven in Theorem 7.8 of
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our article [10].

Theorem 4.24. Suppose β ≡ β(4) is a normalized nc sequence with a Hankel matrixM2 of
rank 6 satisfying the relation XY+ YX = 0. Then β admits an nc measure if and only ifM2

is positive semi-definite and one of the following is true:

1. βX = βY = βX3 = βY 3 = 0. There exists an nc measure of type (2,1) or (3,1).

2. There exist
a1 > 0, a3 > 0,

such that
M :=M2 − ξM(X,Y )

2

is a positive semi-definite cm Hankel matrix satisfying rank(M) ≤ card(VM ), where
VM is the variety associated to M (as in Theorem 4.10),

X =

(√
a1 0

0 −√a1

)
, Y =

(
0

√
a3√

a3 0

)
(4.48)

and ξ > 0 is the smallest positive number such that rank ofM2 − ξM(X,Y )
2 is smaller

than the rank ofM2.

As a consequence we can translate the bivariate quartic tracial moment problem for β with
M2 of rank 6 satisying XY+YX = 0 into the feasibility problem of some small linear matrix
inequalities and a rank condition from Theorem 4.10. We proved this result in Corollary 7.9 of
our article [10].

Corollary 4.25. Suppose β ≡ β(4) is a normalized nc sequence with a Hankel matrixM2 of
rank 6 satisfying the relation XY+ YX = 0. Let us define a linear matrix polynomial

L(a, b, c, d, e) =



a βX βY b 0 0 c
βX b 0 βX3 0 0 0
βY 0 c 0 0 0 βY 3

b βX3 0 d 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
c 0 βY 3 0 0 0 e


,

where a, b, c, d, e ∈ R. Then β admits an nc measure if and only there exist

a ∈ (0, 1), b ∈ (0, βX2), c ∈ (0, βY 2), d ∈ (0, βX4), e ∈ (0, βY 4), (4.49)

such that

1. L(a, b, c, d, e) � 0,

2. M2 − L(a, b, c, d, e) � 0,

3. rank(L(a, b, c, d, e)) ≤ card(VL), where VL is the variety associated to the Hankel
matrix L(a, b, c, d, e) (see Theorem 4.10).



Chapter 5

The Moment Problem on Elliptic
Curves

The characterization of the quartic moment problem (both classical and tracial) has been to a
great extent successful for two reasons. Firstly, the problem maintains a manageable size, and
so can be tackled via computational approaches. Secondly, because the representing measure
is supported in a quadratic variety, and thanks to Hilbert’s theorem (Theorem 2.6), positive
linear functionals on quadratic varieties are well understood. In contrast, the solution to the
moment problem on varieties of higher degree curves, for the most part, remains elusive.

For the classic moment problem, [33, 102, 103] investigate measures supported on special
cubic varieties, while [38] completely characterizes the solutions with measures supported on
the variety y = x3. In this chapter we take the first steps to understanding the tracial moment
problem when the representative measure is supported on cubic varieties.

We focus on the smooth cubics, namely the elliptic curves, which to the best of our knowl-
edge have not been studied in association with the tracial moment problem (and not even in
the classical moment problem). We refer to this class of problems (tracial and classical) as the
elliptic moment problem.

This chapter is currently being prepared for joint publication with Zalar. Except where
specifically indicated the results here are the author’s work.

5.1 Tracial Sequences

We start by making precise what we mean by the elliptic moment problem. Suppose we have
a truncated tracial sequence β(2n), and associated Hankel matrix Mn. Suppose that Mn is
positive semi-definite, recursively generated, and in CMn we have the relation

Y2 = X3 + aX+ b1, (5.1)

or those following from (5.1) via recursive generation, i.e., V(Mn) = {(X,Y ) ∈ Rs×s :

Y 2 = X3 + aX + bIs}. We call such a Hankel matrix elliptic-pure.

Remark 5.1. Our analysis and results from this chapter also extend to the Neile curve, y2 = x3

(non-smooth, with a cusp at the origin), and so we will abuse terminology and include this
special curve in our discussion of elliptic moment problem.

73
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Let us begin by analyzing the form of nc atoms if a measure exists.

Proposition 5.2. If Mn is as described above and has a representing measure µ, then the
atoms (Xi, Yi) of size greater than 1 have the form

Xi =

(
Di1 Bi
BT
i Di2

)
, and Yi =

(
µiIni1 0

0 −µiIni2

)
,

where µi > 0, ni1, ni2 ∈ N, Bi ∈ Rni1×ni2 and Di1 ∈ Rni1×ni1 , Di2 ∈ Rni2×ni2 are diagonal
matrices.

Proof. We start by showing that (XiYi + YiXi) and Yi commute.

(XiYi + YiXi)Yi − Yi(XiYi + YiXi) = XiY
2
i − Y 2

i Xi,

= Xi(X
3
i + aXi + bIs)− (X3

i + aXi + bIs)Xi,

= 0.

And now following the proofs of Claims 1 & 2 in the proof of Proposition 4.16 provides the
form of the atoms.

With the given representation of the non-commutative atoms, Hankel matricesMn satis-
fying Y2 = X3 + aX + b1 can in some instances be simplified considerably. The next result
was first communicated to me by Zalar for Horn’s problem [21] on the Neile curve.

Lemma 5.3. SupposeMn satisfies Y2 = X3 + aX + b1 and has a representing measure µ
consisting of atoms {(X1, Y1), . . . , (Xt, Yt)} (which have the form in Proposition 5.2). If we
have

4a3 + 27(b− µ2
i )

2 ≥ 0, for i = 1, . . . , t

thenMn is a commutative Hankel matrix, and has a commutative representing measure.

Proof. We begin as before by looking at an atom (Xi, Yi) in the measure ofMn. By Proposi-
tion 5.2 we know that

Y 2
i = µ2

i

(
Ini1 0

0 Ini2

)
.

Since supp(µ) ⊆ V(Mn) (Theorem 4.5), this implies now that

X3
i + aXi + bIs = µ2

i Is ⇔ X3
i + aXi + (b− µ2

i )Is = 0. (5.2)

Let Xi = V ∗i DiVi be a diagonalization of Xi. The preceding equation implies

V ∗i (D3
i + aDi + (b− µ2

i )Is)V = 0,

and so it follows that the diagonal matrix Φ = D3
i +aDi+(b−µ2

i )Is = 0. Since each diagonal
element of Φ is a depressed cubic with the same linear and constant coefficient, namely a and
(b − µ2

i ), and we have that 4a3 + 27(b − µ2
i )

2 ≥ 0, we have a unique (perhaps repeated) real
solution. And hence, Di = φiIs, which now shows that XiYi = YiXi.

This is true of all the atoms, and hence the result follows.
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Lemma 5.3 offers a very nice reduction of the tracial elliptic moment problem. We can go
even further with this simplification by consider the different possibilities for a.

Corollary 5.4. LetMn be a positive semi-definite, recursively generated Hankel matrix which
satisfies Y2 = X3 + aX+ b1. IfMn has a representing measure µ and a ≥ 0, thenMn is a
commutative Hankel matrix, and has a commutative represeating measure µcm.

Proof. Letting {(X1, Y1), . . . , (Xt, Yt)} be the atoms of the measure. Since we assume a ≥ 0

it is clear that
4a3 + 27(b− µ2

i )
2 ≥ 0,

as (b − µ2
i )

2 ≥ 0 is also non-negative (since it is a square). Hence the result follows from
Lemma 5.3.

Proposition 5.5. LetMn satisfy Y2 = X3 + aX+ b1, and a 6= 0, then we can transform into
one of the following;

(i) a > 0 : Ŷ2 = X̂3 + X̂+ τ1,

(ii) a < 0 : Ŷ2 = X̂3 − X̂+ τ1.

Proof. (i): When a > 0, we can apply a linear transformation (Proposition 4.9) to achieve

X = (a
1
2 )X̂, and Y = (a

3
4 )Ŷ.

Under this scaling we have

(a
3
2 )Ŷ2 = (a

3
2 )X̂3 + (a

3
2 )X̂+ b1,

and the result follows with τ = b/a
3
2 .

(ii): Since a < 0, we know a = −
√
|a|2. Together with the transformation

X = (|a|
1
2 )X̂, and Y = (|a|

3
4 )Ŷ,

the result is proved as in (i).

It is clear now that when Y2 = X3 + X + τ1 is satisfied inMn, we always have a com-
mutative Hankel matrix, and hence the entire class of problems is reduced to the commutative
case.

We will return to this in Section 5.3. For now we will explore moment matrices Mn

satisfying Y2 = X3−X+ τ1, and demonstrate some properties through illustrative examples.
These examples were generated by Zalar in our study of Horn’s problem [21], which is closely
related to the moment problem.
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5.2 Mn generated by single atom (X, Y )

In this section we will provide an example of a Hankel matrix M3, generated by (X,Y ) ∈
(SR3×3)2, satisfying the relations

Y2 = 1 and
48

9
X3 − 39

9
X = 1, (5.3)

which must have an atoms of size 3 (or higher) in any representing measure. The relation
Y2 = 1 is always present when we have only one atom (cf., Propositions 5.2 and 4.9).

Example 5.6. Let (X,Y ) ∈ (SR3×3)2 be

X =


1
4

1
6

2
3

1
6 −1

3
1
2

2
3

1
2

1
12

 , Y =

 1 0 0

0 1 0

0 0 −1

 . (5.4)

Claim 1. The Hankel matrix M(X,Y )
3 generated by (X,Y ) satisfies the relations (5.3), and

any representing measure µ forM(X,Y )
3 must have an atom of size 3 (or higher).

Proof. It is easy to check that the atom (5.4) generates the followingM(X,Y )
3

M(X,Y )
3 =

(
M(X,Y )

2 B3

BT
3 C3

)
,

where

M(X,Y )
2 =

1 X Y X2 XY YX Y2



1 1 0 1
3

13
24 − 1

18 − 1
18 1

X 0 13
24 − 1

18
3
16

2
27

2
27 0

Y 1
3 − 1

18 1 2
27 0 0 1

3

X2 13
24

3
16

2
27

169
384

5
288

5
288

13
24

XY − 1
18

2
27 0 5

288
13
24 − 83

216 − 1
18

YX − 1
18

2
27 0 5

288 − 83
216

13
24 − 1

18

Y2 1 0 1
3

13
24 − 1

18 − 1
18 1

,
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B3 =

X3 X2Y XYX XY2 YX2 YXY Y2X Y3



1 3
16

2
27

2
27 0 2

27 0 0 1
3

X 169
384

5
288

5
288

13
24

5
288 − 83

216
13
24 − 1

18

Y 5
288

13
24 − 83

216 − 1
18

13
24 − 1

18 − 1
18 1

X2 65
256

43
864

43
864

3
16

43
864 − 97

1296
3
16

2
27

XY 43
864

3
16 − 97

1296
2
27 − 97

1296
2
27

2
27 0

YX 43
864 − 97

1296 − 97
1296

2
27

3
16

2
27

2
27 0

Y2 3
16

2
27

2
27 0 2

27 0 0 1
3

,

C3 =

X3 X2Y XYX XY2 YX2 YXY Y2X Y3



X3 2413
6144

43
1536

43
1536

169
384

43
1536 −1079

3456
169
384

5
288

X2Y 43
1536

169
384 −1079

3456
5

288
9809
31104

5
288

5
288

13
24

XYX 43
1536 −1079

3456
9809
31104

5
288 −1079

3456 − 235
2592

5
288 − 83

216

XY2 169
384

5
288

5
288

13
24

5
288 − 83

216
13
24 − 1

18

YX2 43
1536

9809
31104 −1079

3456
5

288
169
384

5
288

5
288

13
24

YXY −1079
3456

5
288 − 235

2592 − 83
216

5
288

13
24 − 83

216 − 1
18

Y2X 169
384

5
288

5
288

13
24

5
288 − 83

216
13
24 − 1

18

Y3 5
288

13
24 − 83

216 − 1
18

13
24 − 1

18 − 1
18 1

,

A computational check with Mathematica reveals the kernel ofM(X,Y )
3 to be of dimension

7 with columns dependencies

0 = Y2 − 1,

0 = X3 − 13

16
X− 3

16
1,

0 = XY2 − X,

0 = YX2 + X2Y+ XYX− X2 − 13

16
Y+

1

6
X+

85

144
1, (5.5)

0 = YXY− YX− XY+
1

6
Y+ X− 1

6
1,

0 = Y2X− X,
0 = Y3 − Y.

The only possible commutative atoms in the measure forM(X,Y )
3 are those which satisfy all

these relations. However, there are no such atoms. This can be easily seen by noticing that the
only candidates are

P1 = (1, 1), P2 = (−1

4
, 1), P3 = (−3

4
, 1), P4 = (1,−1), P5 = (−1

4
,−1), P6 = (−3

4
,−1),
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which are the points in the intersection of the relations (5.3). Substituting these points in the
function

f(x, y) = 3x2y − 13

16
y − x2 +

1

6
x+

85

144
,

(the commutative collapse of (5.5)) we get

35

18
, − 5

36
,

7

9
, −175

72
,

10

9
, −35

36
,

respectively. Hence none of the points Pi, i = 1, . . . , 6, satisfy the relation (5.5), and so
there are no commutative atoms in the measure for M(X,Y )

3 . Now notice that for any atom
(X ′, Y ′) ∈ (SR2×2)2 in the measure, Y ′ must be of the form

Y ′ =
(
1 0
0 −1

)
.

So if there are only atoms of size at most 2 in the measure for M(X,Y )
3 , then βY = 0. In

the example above βY = 1
4 . Hence there must be atoms of size 3 (or higher) present in the

measure.

We believe that the technique we have used to generate Example 5.6 is much more general.
Let us consider a larger Hankel matrixM4 generated with (X,Y ) ∈ (SR3×3)2, satisfying the
relations

Y2 = 1 and
1

64
(X+ 2 · 1)(X+ 1)(X− 1)(X− 2 · 1) = 0, (5.6)

for which any representing measure must contain an atom of size 4 (or higher).

Example 5.7. Let (X,Y ) ∈ (SR4×4)2 be

X =


0 −3

2 0 −1
2

−3
2 0 −1

2 0

0 −1
2 0 −3

2

−1
2 0 −3

2 0

 , Y =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (5.7)

Claim 2. Then the Hankel matrix M(X,Y )
4 generated by (X,Y ) satisfies the relations (5.6),

and any representing measure forM(X,Y )
4 must contain an atoms of size 4 (or higher).

Proof. It is easy to check that the atom (5.7) satisfies the relations (5.6). A computation of the
kernel ofM(X,Y )

4 reveals it to be of dimension 18 and among those dependencies we have the
following relation

5X− 5XY− 5YX− 2X3 + X3Y+ X2YX+ XYX2 + YX3 = 0. (5.8)

As before, the only possible commutative atoms in the measure for M(X,Y )
4 are those that

satisfy all of the dependencies in the kernel. The only possibilities for such atoms are

P1 = (−2, 1), P2 = (−1, 1), P3 = (1, 1), P4 = (2, 1),

P5 = (−2,−1), P6 = (−1,−1), P7 = (1,−1), P8 = (2,−1),
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which are the points in the intersection of (5.6). The commutative collapse of (5.8)

f(x, y) = 4x3y − 10xy − 2x2 + 5x,

evaluated at these points gives

−6, 3,−3, 6, 18,−9, 9,−18,

respectively. Hence none of the points Pi, i = 1, . . . , 8, satisfies the relation (5.8). So there are
no commutative atoms in the measure forM(X,Y )

4 . For any atom (X ′, Y ′) ∈ (SR3×3)2 in the
measure, Y ′ must be of the form

Y ′ =

1 0 0
0 1 0
0 0 −1

.
So if there are only atoms of size at most 3 in the measure for M(X,Y )

3 , then βY ≤ 1
3 . In

the example above βY = 1
2 . Hence there must be atoms of size 4 (or higher) present in the

measure.

5.3 Commutative Sequences

In this section we analyze the commutative truncated moment problem with variety y2 =

x3 + ax + b. Our results here provide (numerical) sufficient conditions which can be used to
test for the existence of a measure. It should be noted that these are not necessary conditions,
as demonstrated by Example 5.15.

We will use below the extension principle of Curto and Fialkow, and so we state it here for
convenience.

Theorem 5.8 (Proposition 3.9, [26]). Let A ∈ Rs×s. If there exists a t with 0 ≤ t ≤ (s − 1),
and a vector x ∈ Rt such that [A]tx = 0, then for y =

(
x 0(s−t)

)T
we have

Ay = 0.

LetMn be elliptic-pure, i.e., positive semi-definite, recursively generated, and satisfying
Y2 = X3 + aX+ b1 with all others following from recursive generation,

XiYj+2 = (Xi+3 + aXi+1 + bXi)Yj (i, j ≥ 0, i+ j + 3 ≤ n). (5.9)

We have in this case V(Mn) = {(x, y) : y2 = x3 + ax + b}. In the commutative setting we
are fortunate enough to write a basis B for CMn as

B = {1,X,Y,X2,XY,Y2,X2Y,XY2,Y3, . . . ,X2Yn−2,XYn−1,Yn}, (5.10)

and so rank(Mn) = 3n. We know that if a representing measure exists, then there is a positive,
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recursively generated, Hankel matrix extension

Mn+1 =

(
Mn Bn+1

BT
n+1 Cn+1

)
. (5.11)

Moreover, we know that if we can construct such an extension, which is flat then a representing
measure does indeed exist. We follow the approach of [38] and examine conditions for a flat
extension to exists. Our discussion will follow the same structure as [38], split into different
subsections.

In Subsection 5.3.1, we will show the following result, which shows that a compatible
block Bn+1 always exists for elliptic-pure problems.

Proposition 5.9. IfMn is elliptic-pure, then there is a Hankel block Bn+1 ≡ Bn+1[θ, φ, ψ]

which is compatible with a recursively generated Hankel extensionMn+1. Moreover, we have
Ran(Bn+1) ⊆ Ran(Mn).

Once this is established, in Subsection 5.3.2 we will then examine the hypothetical block
Cn+1, to see what conditions it must satisfy forMn+1 to be flat. From this examination we
will obtain the following

Theorem 5.10. Let n ≥ 3. Suppose that Mn is positive and Elliptic-pure. Then there is a
quartic polynomials Q(θ), such that a flat extension Mn+1 of Mn exists if Q(θ) has a real
root.

5.3.1 Constructing Bn+1

Our first step is to construct Bn+1 which satisfies Bn+1 =MnW for some matrix W , i.e., the
range inclusion Ran(Bn+1) ⊆ Ran(Mn). Positivity ofMn+1 and Theorem 5.8 imply that
the relations in CMn hold also in CMn+1 , and so we have the following relations inMn+1

XiYj+2 = (Xi+3 + aXi+1 + bXi)Yj (i, j ≥ 0, i+ j + 3 ≤ n). (5.12)

Using recursive generation we now have the following column relations in Bn+1

Xn+1 = Xn−2(Y2 − aX− b1)

XnY = Xn−3(Y3 − aXY− bY)

...

X3Yn−2 = Yn − aXYn−2 − bYn−2.

(5.13)

Due to recursive generation, these columns inherit the required Hankel structure from the cor-
responding columns in Mn. To define X2Yn−1,XYn, and Yn+1 we use ‘old moments’ as
follows; 〈

Bn+1
˜xiyn+1−j , x̃kyl

〉
= βi+k,n+1−i+l, (5.14)

where i = 0, 1, 2, and l, k ≥ 0, with l + k ≤ n − 1. Now every column in Bn+1 has the
Hankel structure in all rows up to degree n−1. For a column w(X,Y) ofBn+1, let [w(X,Y)]S
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(respectively [w(X,Y)]k) be the restriction to rows from the set S (respectively rows of degree
at most k). First we must ensure that the moment structure from [X3Yn−2]n−1 carries into
[X2Yn−1]n−1.

Lemma 5.11. With the notation and definitions as above, for i ≥ 1, j ≥ 0, i+ j ≤ n− 1〈
Bn+1x̃3yn−2, ˜xi−1yj+1

〉
=
〈
Bn+1x̃2yn−1, x̃iyj

〉
.

Proof. We have,〈
Bn+1x̃3yn−2, ˜xi−1yj+1

〉
=
〈
Mn(ỹn − ax̃yn−2 − bỹn−2), ˜xi−1yj+1

〉
=
〈
Mnỹn, ˜xi−1yj+1

〉
− a

〈
Mnx̃yn−2, ˜xi−1yj+1

〉
−b
〈
Mnỹn−2, ˜xi−1yj+1

〉
= βi−1,n+j+1 − aβi,n+j−1 − bβi−1,n+j−1

and 〈
Bn+1x̃2yn−1, x̃iyj

〉
= βi+2,n+j−1.

So it is enough to show βi+2,n+j−1 = βi−1,n+j+1 − aβi,n+j−1 − bβi−1,n+j−1 where i, j ≥
0, i+ j ≤ n− 1. Since i+ j + 1 ≤ n, inMn we have

βi+2,n+j−1 =
〈
Mnx̃3yn−3, ˜xi−1yj+2

〉
=
〈
Mn(ỹn−1 − ax̃yn−3 − bỹn−3), ˜xi−1yj+2

〉
=
〈
Mnỹn−1, ˜xi−1yj+2

〉
−a
〈
Mnx̃yn−3, ˜xi−1yj+2

〉
−b
〈
Mnỹn−3, ˜xi−1yj+2

〉
= βi−1,n+j+1 − aβi,n+j−1 − bβi−1,n+j−1.

We now define the (potential) moments inX2Yn−1,XYn,Yn+1 in the rows of degree n (the
other columns have these defined through recursive generation). To keep the Hankel structure,
we propagate the moments from X3Yn−2 along the cross diagonals; for k = 0, 1, 2, i, j ≥
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0, i+ j = n and 0 ≤ j ≤ n− 3 + k we have〈
Bn+1

˜xkyn+1−k, x̃iyj
〉

=
〈
Bn+1x̃3yn−2, ˜xi+k−3yj−k+3

〉
=
〈
Bn+1ỹn, ˜xi+k−3yj−k+3

〉
−a
〈
Bn+1x̃yn−2, ˜xi+k−3yj−k+3

〉
−b
〈
Bn+1ỹn−2, ˜xi+k−3yj−k+3

〉
= βi+k−3,n+j−k+3

−aβi+k−2,n+j−k+1 − bβi+k−3,n+j−k+1.

(5.15)

To complete the definition of Bn+1, we parameterize it via the following〈
Bn+1x̃2yn−1, ỹn

〉
=
〈
Bn+1x̃yn, x̃yn−1

〉
=
〈
Bn+1ỹn+1, x̃2yn−2

〉
= θ,〈

Bn+1x̃yn, ỹn
〉

=
〈
Bn+1ỹn+1, x̃yn−1

〉
= φ,〈

Bn+1ỹn+1, ỹn+1
〉

= ψ.

(5.16)

So the component of Bn+1 with rows of degree n, now has the structure

Bn+1 =

Xn+1 XnY . . . X2Yn−1 XYn Yn+1



Xn β2n+1,0 β2n,1 . . . . . . . . . βn,n+1

Xn−1Y β2n,1 . .
.

. .
.

. .
.

. .
.

βn−1,n+2

...
... . .

.
. .
.

. .
.

. .
. ...

X2Yn−2
... . .

.
. .
.

. .
.

. .
.

θ

XYn−1
... βn+1,n . .

.
. .
.

θ φ

Yn βn+1,n . .
.

. .
.

θ φ ψ

,

where βi,2n+1−i = βi−3,2n+3−i − aβi−2,2n+1−i − bβi−3,2n+1−i for 3 ≤ i ≤ 2n+ 1.

Having created Bn+1 ≡ Bn+1[θ, φ, ψ], let us now examine the condition Ran(Bn+1) ⊆
Ran(Mn). Clearly Xn+1, . . . ,X3Yn−2 ⊆ CMn , so consider the three remaining columns.
Given a basis B for CMn , let J = [Mn]B, which implies that J is positive definite. For
k, l ≥ 0 we let X̂kYl be the compression of XkYl ∈ [Mn, Bn+1] to the rows indexed by
elements in B. Note that columns of J are of the form X̂pYq with p, q ≥ 0, p+ q ≤ n, p ≤ 2.
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Since J is invertible, for 0 ≤ i ≤ 2, j = n+ 1− i we may write

J c(ij) = X̂iYj , or,

X̂iYj =
∑
p,q≥0
p+q≤n
p≤2

c(ij)
pq X̂pYq (c(ij)

pq ∈ R). (5.17)

Lemma 5.12. With the notation and definition as above, we have

XiYj =
∑
p,q≥0
p+q≤n
p≤2

c(ij)
pq XpYq

in [Mn, Bn+1] for 0 ≤ i ≤ 2, j = n+ 1− j.

Proof. To prove the claim it is enough to show〈
Bn+1x̃iyj , x̃kyl

〉
=
∑
p,q≥0
p+q≤n
p≤2

c(ij)
pq

〈
Mnx̃pyq, x̃kyl

〉
(5.18)

for k, l ≥ 0, k + l ≤ n, k ≥ 3, which is to say that the rows of the column on the left and the
rows of the sum of columns on the right are equal in Bn+1. InMn this is given by (5.17), and
so (5.18) is true when k, l ≥ 0, k + l ≤ n, k ≤ 2.

To prove (5.18) we attempt induction on ρ = k + l ≥ 3 (with k ≥ 3).
Base Case: ρ = 3⇒ k = 3, l = 0.

In CMn ,Y2 = X3+aX+b1, so rowX3 equals the row combinationY2−aX−b1, and by the
definition ofXn+1, . . . ,X3Yn−2, these columns have rowX3 equal to the same combination
in Bn+1. We will show that these rows are also equal in the columns X2Yn−1,XYn,Yn+1.
Let i = 0, 1, 2, j = n+ 1− i and consider the equation〈

Bn+1x̃iyj , x̃3
〉

=
〈
Bn+1x̃iyj , (ỹ2 − ax̃− b1̃)

〉
.

Case 1 (n = 3):
From (5.15) we have〈

B4x̃iyj , x̃3
〉

=
〈
B4x̃iy4−i, x̃3

〉
=
〈
B4x̃3y, x̃iy3−i

〉
=
〈
M3(ỹ3 − ax̃y − bỹ), x̃iy3−i

〉
= βi,6−i − aβi+1,4−i − bβi,4−i

=
〈
B4x̃iy4−i, (ỹ2 − ax̃− b1̃)

〉
where the last step is using (5.14).
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Case 2 (n > 3):

(using (5.14))
〈
Bn+1x̃iyj , x̃3

〉
= βi+3,n+1−i

=
〈
Mnx̃3y, x̃iyn−i

〉
=
〈
Mn(ỹ3 − ax̃y − bỹ), x̃iyn−i

〉
= βi,n+3−i − aβi+1,n+1−i − bβi,n+1−i

=
〈
Bn+1x̃iyj , (ỹ2 − ax̃− b1̃)

〉
So we see now that when ρ = 3 the row X3 is equal to the row combination Y2 − aX− b1 in
[Mn, Bn+1]. As (5.18) holds for Y2 − aX− b1 and Y2,X,1 ∈ B, it also holds for X3, and so
(5.18) is true for ρ = 3.
Inductive Step: Suppose now that (5.18) is true for 3 ≤ ρ < k + l. First we consider〈

Bn+1
˜xiyn+1−i, x̃kyl

〉
= βi+k−3,n+l−i+3 − aβi+k−2,n+l+1−i − bβi+k−3,n+l+1−i (5.19)

for k, l ≥ 0, k + l ≤ n, k ≥ 3, 0 ≤ i ≤ 2.
Case 1: (k + l < n)

(from (5.14))
〈
Bn+1

˜xiyn+1−i, x̃kyl
〉

= βi+k,n+l+1−i

(k + l ≤ n− 1) =
〈
Mnx̃kyl+1, x̃iyn−i

〉
(RG inMn) =

〈
Mn

˜xk−3yl+3, x̃iyn−i
〉

−a
〈
Mn

˜xk−2yl+2, x̃iyn−i
〉

−b
〈
Mn

˜xk−3yl+1), x̃iyn−i
〉

= βi+k−3,n+l−i+3 − aβi+k−2,n+l+1−i − bβi+k−3,n+l+1−i

Case 2: (k + l = n)

(from (5.15))
〈
Bn+1

˜xiyn+1−i, x̃kyl
〉

=
〈
Bn+1x̃3yn−2, ˜xk+i−3yl−i+3

〉
(k + l = n) =

〈
Mnx̃3yn−2, ˜xk+i−3yl−i+3

〉
=
〈
Mnỹn, ˜xk+i−3yl−i+3

〉
−a
〈
Mnx̃yn−2, ˜xk+i−3yl−i+3

〉
(RG inMn) −b

〈
Mnỹn−2, ˜xk+i−3yl−i+3

〉
= βi+k−3,n+l−i+3 − aβi+k−2,n+l+1−i − bβi+k−3,n+l+1−i
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And so (5.19) is proved. Coming back to (5.18) we have

(self adjointness)
∑
p,q≥0
p+q≤n
p≤2

c(ij)
pq

〈
Mnx̃pyq, x̃kyl

〉
=
∑
p,q≥0
p+q≤n
p≤2

c(ij)
pq

〈
Mnx̃kyl, x̃pyq

〉

=
∑
p,q≥0
p+q≤n
p≤2

c(ij)
pq

(〈
Mn

˜xk−3yl+2, x̃pyq
〉

−a
〈
Mnx̃k−2yl, x̃pyq

〉
−b
〈
Mnx̃k−3yl, x̃pyq

〉)
= χ.

Using self adjointness again we see

χ =
∑
p,q≥0
p+q≤n
p≤2

c(ij)
pq

(〈
Mnx̃pyq, ˜xk−3yl+2

〉

−a
〈
Mnx̃pyq, x̃k−2yl

〉
−b
〈
Mnx̃pyq, x̃k−3yl

〉)
=
(〈
Bn+1

˜xiyn+1−i, ˜xk−3yl+2,
〉

−a
〈
Bn+1

˜xiyn+1−i, x̃k−2yl
〉

−b
〈
Bn+1

˜xiyn+1−i, x̃k−3yl
〉)

= βk+i−3,n+l−i+3

−aβk+i−2,n+l+1−i

(from (5.14)) −bβk+i−3,n+l+1−i

(from (5.19)) =
〈
Bn+1

˜xiyn+1−i, x̃kyl
〉

where the change from Mn to Bn+1 is from (5.18) if (k − 3) ≤ 2, or by induction since
ρ = (k − 3) + (l + 2) = k + l − 1 < k + l. This shows that (5.18) is always true, and so
Lemma 5.12 is proved.

We have now shown the following result.

Proposition 5.13. IfMn is elliptic-pure, then there is a Hankel block Bn+1 ≡ Bn+1[θ, φ, ψ]

which is compatible with a recursively generated Hankel extensionMn+1. Moreover, we have
Ran(Bn+1) ⊆ Ran(Mn).
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5.3.2 Examining Cn+1

We concentrate now on the remaining block Cn+1. The analysis below will shed insights into
when flat extensions ofMn exist, and lead to a constructive proof of Theorem 5.14.

Since Ran(Bn+1) ⊆ Ran(Mn), we know that there exists aW such thatBn+1 =MnW ,
and thatMn+1 is positive semi-definite if and only if

Cn+1 ≥ Ĉ ≡ BT
n+1W (= W TMnW ),

furthermoreMn+1 is a flat extension ofMn if and only if Cn+1 = Ĉ.

Recall that we have the following column relations inMn+1

Xn+1 = Xn−2(Y2 − aX− b1),

XnY = Xn−3(Y3 − aXY− bY),

...

X3Yn−2 = Yn − aXYn−2 − bYn−2.

(5.20)

In particular, these relations must hold in [BT
n+1, Cn+1]. The construction of Bn+1 shows

that they also hold in [BT
n+1, Ĉ], which implies that Cn+1 and Ĉ are the same in the columns

Xn+1, . . . ,X3Yn−2.

Positivity and symmetry of Ĉ imply that Ĉ has a Hankel structure if and only if the fol-
lowing hold

Ĉn,n = Ĉn+1,n−1, (5.21)

Ĉn+1,n = Ĉn+2,n−1, (5.22)

Ĉn+1,n+1 = Ĉn+2,n, (5.23)

where the first two equations are matching moments in the columns X3Yn−2 with X2Yn−1,
and the last one is checking different locations of the moment β2,2n. The element in row n,
column n of Cn+1 is

〈Cn+1x̃2yn−1, x̃2yn−1〉,

and Cn+1 ≥ Ĉ implies

〈Cn+1x̃2yn−1, x̃2yn−1〉 ≥ Ĉn,n (5.24)

We build and analyse Ĉ to examine (5.21)-(5.23). Let J = [Mn]B, where B is a basis for
Mn. Write

J =

[
M x

xT ∆

]
where M is the submatrix ofMn, with rows and columns indexed by B except Yn,

Yn =

[
x

∆

]
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and thus ∆ = β0,2n. Since both J and M are positive definite, we have ∆ > xTM−1x. Let

J −1 =

[
P v

vT ε

]
with

P = M−1(1 + εxxTM−1), v = −εM−1x, ε = (∆− xTM−1x)−1

Let Ŵ = J −1[Bn+1]B. So we have [Mn]BŴ = [Bn+1]B, and we use this to define W .
For each XiYj , if XiYj ∈ B then we let row XiYj in W be the corresponding row of Ŵ . If
XiYj /∈ B, then we set row XiYj of W to be a row of zeros. We know that Bn+1 = MnW ,
and due to the column dependencies in [Mn, Bn+1], we have that BT

n+1W = [Bn+1]TBŴ . It
follows

Ĉ = [Bn+1]TBŴ . (5.25)

For the remainder of this section, the compression [XiYj ]B represents the column in [Bn+1]B.
Lets start with (5.24). The column [X2Yn−1]B is of the form[

w

θ

]
(from the form of Bn+1 ≡ Bn+1(θ, φ, ψ)), where [w1, . . . , w3n−1] consists of ‘old’ moments.
Let r1, . . . , r3n−1 be succesive row vectors of P (in J −1) and vT = [v1, . . . , v3n−1]. So

J −1[X2Yn−1]B = [c1(θ), . . . , c3n(θ)]T

where ci(θ) = 〈ri, w〉 + viθ for 1 ≤ i ≤ 3n − 1, and c3n(θ) = 〈v, w〉 + εθ. We can now
compute 〈

Ĉx̃2yn−1, x̃2yn−1
〉

=
(
[Bn+1]TBJ −1[Bn+1]B

)
n,n

= [X2Yn−1]TBJ −1[X2Yn−1]B

= [w1, . . . , w3n−1, θ]

 c1(θ)
...

c3n(θ)


=

3n−1∑
i

wici(θ) + θ (〈v, w〉+ εθ)

= εθ2 + 2 〈v, w〉 θ + ω

where ω =
∑3n−1

i 〈ri, w〉wi = 〈Pw,w〉. Let f(θ) = εθ2 + 2 〈v, w〉 θ+ ω, then Ĉn,n = f(θ).
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We also have 〈
Cn+1x̃2yn−1, x̃2yn−1

〉
=
〈
Cn+1x̃3yn−2, x̃yn

〉
(RG inMn+1) =

〈
Mn+1ỹn, x̃yn

〉
−a
〈
Mn+1x̃yn−2, x̃yn

〉
−b
〈
Mn+1ỹn−2, x̃yn

〉
= β1,2n − aβ2,2n−2 − bβ1,2n−2

= φ− aβ2,2n−2 − bβ1,2n−2

which reduces (5.24) to
φ− aβ2,2n−2 − bβ1,2n−2 ≥ f(θ).

Let us examine (5.21) more closely. We know that X3Yn−2 = Yn − aXYn−2 − bYn−2 in
CMn , this implies

Ĉn+1,n−1 =
〈
Ĉx̃3yn−2, x̃yn

〉
= β1,2n − aβ1,2n−2 − bβ0,2n−2

= φ− aβ1,2n−2 − bβ0,2n−2

meaning that (5.21) holds if

Ĉn+1,n−1 = φ− aβ1,2n−2 − bβ0,2n−2 = f(θ) = Ĉn,n. (5.26)

Considering (5.22) (Ĉn+1,n = Ĉn+2,n−1), we start with

Ĉn+2,n−1 =
〈
M̂x̃3yn−2, ỹn+1

〉
=
〈
M̂(ỹn − ax̃yn−2 − bỹn−2), ỹn+1

〉
(symmetry in M̂ ) =

〈
M̂ỹn+1, (ỹn − ax̃yn−2 − bỹn−2)

〉
=
〈
Bn+1ỹn+1, (ỹn − ax̃yn−2 − bỹn−2)

〉
= ψ − aβ1,2n−1 − bβ0,2n−1.

We may compute from (5.25)

Ĉn+1,n = [XYn]TBJ −1[X2Yn−1]B

= [XYn]TB

 c1(θ)
...

c3n(θ)
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where [XYn]TB = [q1, . . . , q3n−2, θ, φ], and qi are ‘old’ moments. So

Ĉn+1,n =
3n−2∑
i

qici(θ) + θc3n−1(θ) + φc3n(θ)

and (5.22) requires

ψ − aβ1,2n−1 − bβ0,2n−1 =
3n−2∑
i

qici(θ) + θc3n−1(θ) + φc3n(θ). (5.27)

Finally, for (5.23) (Ĉn+1,n+1 = Ĉn+2,n) we have

Ĉn+2,n = [Yn+1]TBJ −1[X2Yn−1]B,

where [Yn+1]TB = [p1, . . . , p3n−3, θ, φ, ψ], and pi are ‘old’ moments. This gives

Ĉn+2,n =
3n−3∑
i

pici(θ) + θc3n−2(θ) + φc3n−1(θ) + ψc3n(θ).

To compute Ĉn+1,n+1, we set

[XYn]TB = [u1, . . . , u3n−2, θ, φ]

= [u(θ)T , φ]

where ui are old moments. Then similar to before we get

Ĉn+1,n+1 = εφ2 + 2φ〈u(θ), v〉+ 〈Pu(θ), u(θ)〉

and (5.23) is equivalent to

εφ2+2φ〈u(θ), v〉+〈Pu(θ), u(θ)〉 =

3n−3∑
i

pici(θ)+θc3n−2(θ)+φc3n−1(θ)+ψc3n(θ). (5.28)

Notice that φ = q(θ), where q is a quadratic function of θ. Substituting this into (5.27)
shows thatψ = c(θ), where c is a cubic function of theta. Finally, substituting these expressions
for φ and ψ into (5.28) show that it is equivalent to finding the root of a quartic polynomial
Q(θ). This observation proves the following.

Theorem 5.14. Let n ≥ 3. Suppose that Mn is positive and Elliptic-pure. A flat extension
Mn+1 ofMn exists if the quartic polynomial Q(θ) has a real root.

Some remarks are in order. Firstly, notice that compared to [38] the requirements for
generating a flat extension are more complex. Even in [38] (Remark 2.5) it is noted that the
number of constraints for flat extensions increases when k > 3 for the variety y = xk. From
our analysis, we suspect that when we work with the variety yk = x3, the number of constraints
may remain the same, but their complexity grows with k.
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Secondly, notice that in the elliptic-pure setting the existence of a flat extension and repre-
senting measure are not equivalent conditions. This is not surprising to us, since for a ≥ 0, the
commutative and tracial problems are equivalent, and we have observed this behavior in [10].

Example 5.15. Consider now the following example. We take (the unnormalized)M3 gener-
ated by the atoms

{(xi, yi), (xi,−yi)} (5.29)

where

xi =
1

i
, yi =

√
x3
i −

524287

262144
xi + 1, i = 1, . . . , 5. (5.30)

It is clear thatM3 satisfies the relation Y2 = X3− 524287
262144X+1 (Theorem 4.5 (1)). Moreover,

we know that a representing measure exists.
A numerical representation ofM3 is given by

10 4.57 0 2.93 0 3.24 2.37 0 0.87 0

4.57 2.93 0 2.37 0 0.87 2.16 0 0.26 0

0 0 3.24 0 0.87 0 0 0.26 0 1.58

2.93 2.37 0 2.16 0 0.26 2.07 0 0.08 0

0 0 0.87 0 0.26 0 0 0.08 0 0.39

3.24 0.87 0 0.26 0 1.58 0.08 0 0.39 0

2.37 2.16 0 2.07 0 0.08 2.03 0 0.03 0

0 0 0.26 0 0.08 0 0 0.03 0 0.10

0.87 0.26 0 0.08 0 0.39 0.03 0 0.10 0

0 0 1.58 0 0.39 0 0 0.10 0 0.83


,

while B4 takes the (numerical) form

2.16 0 0.26 0 1.58

2.07 0 0.08 0 0.39

0 0.08 0 0.39 0

2.03 0 0.03 0 0.10

0 0.03 0 0.10 0

0.03 0 0.10 0 0.83

2.02 0 0.01 0 0.03

0 0.01 0 0.03 10θ

0.01 0 0.03 10θ 10φ

0 0.03 10θ 10φ 10ψ


.

A Mathematica computation reveals Q(θ) (5.28) to be a quadratic equation

θ2 + c = 0, (5.31)

in which c is a positive rational. From this it is easy to see that no real solutions for θ exists,
and hence, by the converse of Theorem 5.14, no flat extension to M4. The exact forms of
M3, B4 and Q(θ) can be found in the associated Mathematica notebook https://github.com/

https://github.com/Abhishek-B/PhD-Thesis-Supplementary-Material
https://github.com/Abhishek-B/PhD-Thesis-Supplementary-Material
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Abhishek-B/PhD-Thesis-Supplementary-Material.

Remark 5.16. It is interesting to note that (5.31) is a quadratic polynomial and not quartic.
Through discussions with Zalar, we know that this can be understood by looking closer at the
generating atoms (5.29) for Example 5.15. Since we use yi and −yi in (5.29), the odd degree
moments of y are equal to zero. Hence, the change of variables z = y2, reduces Example
5.15 to the moment problem with z = x3. A solution of which is dependent on a quadratic
polynomial as shown in [38].

https://github.com/Abhishek-B/PhD-Thesis-Supplementary-Material
https://github.com/Abhishek-B/PhD-Thesis-Supplementary-Material




Chapter 6

Conclusions and Future Work

To conclude, we summarize the thesis and our results. As is natural in mathematics, solutions
to certain problems tend to raise more questions. We present several conjectures, questions and
future research directions in this chapter. Many of these seem to be quite difficult problems,
but we hope to study these in the near future.

6.1 Summary

This thesis studied aspects of the polynomial optimization problem

pmin = min
x∈Rn

p(x),

s.t. g1(x) ≥ 0, . . . , gk(x) ≥ 0.

In Chapter 2 we gave necessary background for approximations of pmin via sum of squares.
We discussed elementary properties of polynomials, formulating the SOS programs as semi-
definite programs, and presented major results for SOS representations, such as Artin’s solution
to Hilbert’s 17th problem and the many Positivstellensätze. We discussed specializations of
these results to strictly positive polynomials, and some recent advances towards understanding
SOS representations for non-negative polynomials.

In Chapter 3 we compared state-of-the-art SOS relaxations for constructing non-negative,
bihomogeneous, biquadratic polynomials which are not SOS. Our results are collected in the
MATLAB package PnCP, an entanglement detection tool for quantum states. PnCP is the first
computational package which not only employs entanglement criteria which are applicable for
quantum states in arbitrary dimensions, it does so with state-of-the-art optimization algorithms.

The Truncated Tracial Moment Problem (dual to optimization of non-commutative polyno-
mials) was presented in Chapter 4. We presented excerpts from the published, peer reviewed,
journal article “The singular bivariate quartic tracial moment problem” [10], a collaborative
project with Dr. Aljaž Zalar. It was shown that the bivariate quartic tracial moment problem
reduces to four canonical cases whenM2 has ranks 5 and 6. Furthermore, we presented re-
sults that in some rank 6 cases, the bivariate quartic tracial moment problem is equivalent to
the feasibility of 3 LMI’s and a rank condition.

Chapter 5 extends the study of the Tracial Moment Problem to arbitrary truncation orders,
with the representing measure contained in an elliptic variety. We reduced the Tracial prob-
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lem to the classic Moment Problem in two out of three canonical cases. Moreover, in the
commutative setting we gave sufficient conditions for a representing measure to exist.

6.2 Open Questions

6.2.1 SOS Representations

As we saw in Chapter 2, for non-negative polynomials p ∈ R[x] and ` ∈ N, (x2
1+· · ·+x2

n)`p is
not guaranteed to be SOS. However, the results of Chapter 3 indicate that for randomly gener-
ated polynomials, the denominator (x2

1 + · · ·+x2
n)` generally works, i.e., Theorem 2.14 works

for generic non-negative polynomials. It would be interesting to formalize this understanding.
We conjecture the following on bad points (cf. Chapter 2).

Conjecture 6.1. The set B = {p ∈ R[x] : p has a bad point at the origin} is closed.

An affirmation of this conjecture would allow us to guarantee the theoretical success of
the CNR relaxation of Chapter 3 and greatly improve the reliability of PnCP. Furthermore, if
true Conjecture 6.1 would allow existing SOS and optimization software to also use the CNR
relaxation.

A natural approach to Conjecture 6.1 is to examine the cone

CNn,d =

f ∈ R[x1, . . . , xn]d :

(
n∑
i=1

x2
i

)N
f = SOS

 ,

and to understand the asymptotic relationship between CNn,d and the cone of non-negative poly-
nomials Pn,d. In [11] Blekherman studies a similar problem, and analyses the volumes of
Pn,m and Σn,m. He showed that (asymptotically) there are many more non-negative forms,
than there are SOS forms. It is readily seen that

Σn,m ⊆ C0
n,m ⊆ · · · ⊆ CNn,m ⊆ · · · ⊆ Pn,m,

and while it is known that
⋃
N C

N
n,m 6= Pn,m, the density of CNn,m (for a fixed N ) has not yet

been studied. Specifically, we ask the following.

Question 6.2. What is the aysmptotic relationship between the volumes of CNn,m and Pn,m?
In particular, given some fixed ε > 0, is there some (possibly large) Nε such that (in an
appropriate topology) CNn,m is dense in Pn,m for N > Nε?

6.2.2 Tracial Moment Problem

We have made many advances in understanding the Tracial Moment Problem, particularly in
the bivariate quartic setting, in [10]. In future works we would like to resolve the non-singular
bivariate quartic tracial moment problem with rank 6 and column relation Y2 = 1. While this
appears to be a difficult task, we believe techniques from [34] can help. We ask in the particular
the following question.
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Question 6.3. Given an generalized nc Hankel matrixM2(β) how can we check if there is an
extensionM3(β) such thatM3(β) has a flat extension? More generally, how can we check
if a given generalized Hankel matrix Mn(β) admits an extension to Mn+1(β) which then
admits a flat extensionMn+2(β)?

It is also shown in Chapter 4, that in two of the rank 6 cases, the minimal measure consists
of atoms of size at most 2. After reviewing some examples in [10], we conjecture that this is
true for all quartic tracial sequences β(4).

Conjecture 6.4. Given a quartic moment sequence β(4) (equivalentlyM2(β)) with a finitely
atomic representative measure µ, the atoms have size at most 2, i.e., 2×2 matrices can generate
the moment sequence.

While we have also made advances for the Tracial Moment Problem on elliptic varieties,
the case of the relation Y2 = X3 − X+ b1 is not well understood. We would like to examine
the atoms in this case more closely, with the aim of find sufficient conditions for the existence
of a measure.

Our immediate aim for the commutative elliptic-pure Moment Problem, is to find necessary
conditions for the existence of a measure. The work of [94] may prove useful for this. It is
known that if β(2n) admits a representing measure, then there is some k ∈ N such thatMn+k

admits a flat extension Mn+k+1. Our first approach to obtaining necessary conditions is to
find an upper bound on k.
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positive maps than completely positive maps., Int. Math. Res. Not. 2019 (2019), no. 11,
3313–3375.

52. Igor Klep and Markus Schweighofer, Connes’ embedding conjecture and sums of hermi-
tian squares, Advances in Mathematics 217 (2008), no. 4, 1816–1837.

53. , Sums of Hermitian squares and the BMV conjecture, Journal of Statistical
Physics 133 (2008), no. 4, 739–760.

54. , An exact duality theory for semidefinite programming based on sums of squares,
Mathematics of Operations Research 38 (2013), no. 3, 569–590.

55. Jean-Louis Krivine, Anneaux préordonnés, Journal d’analyse mathématique 12 (1964),
no. 1, 307–326.

56. Santiago Laplagne, Facial reduction for exact polynomial sum of squares decomposition,
Mathematics of Computation 89 (2020), no. 322, 859–877.

57. Jean B. Lasserre, Global optimization with polynomials and the problem of moments,
SIAM Journal on optimization 11 (2001), no. 3, 796–817.

58. , Moments, positive polynomials and their applications, vol. 1, World Scientific,
2010.

59. Monique Laurent, Sums of squares, moment matrices and optimization over polynomi-
als., Emerging applications of algebraic geometry. Papers of the IMA workshops Op-
timization and control, January 16–20, 2007 and Applications in biology, dynamics,
and statistics, March 5–9, 2007, held at IMA, Minneapolis, MN, USA, New York, NY:
Springer, 2009, pp. 157–270.



101

60. , Optimization over polynomials: selected topics., Proceedings of the Interna-
tional Congress of Mathematicians (ICM 2014), Seoul, Korea, August 13–21, 2014. Vol.
IV: Invited lectures, Seoul: KM Kyung Moon Sa, 2014, pp. 843–869.

61. Thanh Hieu Le and Marc Van Barel, An algorithm for decomposing a non-negative poly-
nomial as a sum of squares of rational functions, Numerical Algorithms 69 (2015), no. 2,
397–413.
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