Non-negative Polynomials, Sums of
Squares & The Moment Problem

Abhishek Bhardwaj

A thesis submitted for the degree of
Doctor of Philosophy
The Australian National University

July 2020



© Abhishek Bhardwaj 2020



Except where otherwise indicated, this thesis is my original work.

Abhishek Bhardwaj
19 July 2020






To my parents






Acknowledgements

There are many people I wish to thank for their support throughout this PhD, and in particular
this last year.

First and foremost, I wish to thank my mentor Igor Klep. Since my undergraduate days, he
has shared with me his vast expertise, given me guidance and encouragement when I needed
it, and most importantly, has instilled in me an everlasting passion for mathematics. The work
presented here came together during a short visit last year, and was the most wonderful time in
my PhD.

I have also sincerely enjoyed working with Aljaz Zalar, who has graciously allowed me
to include our joint work in this thesis. Exploring the unknown and doing research for fun
together has been a wonderful experience.

I wish to thank my advisor Martin Helmer, thanks to whom I was able to complete this
work at ANU.

I am grateful to all my family, especially my parents, who have continued to support and
encourage me, and over this last year have patiently tolerated me when I was unreasonable and
stressed. Despite all the challenges and difficulties they faced over these last four years, they
always prioritized my endeavors.

To my friends here in Canberra, in particular, The MSIBeerzCrew - Chenni, Jaklyn (the
glue), Anthony, Kyle (alt-left), Mark, Adam (on-probation), Cale (the spotter), Yossi (type II);
The Modern Crew - Chris, Aaron, Nathan, Dan, Pete, Ashleigh, Mitch, Alfonso, Dyllan; you
have made Canberra the most interesting place in the world. To Kam and Thomas, you always
revitalized me during my visits to Sydney.

A special thanks to my best friend Johanna, who has always been there for me, and helped
me to see the best in myself.

vii






Abstract

This thesis studies polynomial optimization, that is, the problem of minimizing the value of a
polynomial over a semi-algebraic set. Such polynomial optimization problems arise in a wide
variety of contexts, both in mathematics, and more generally in science and engineering.

In the first part of this thesis, we study a polynomial optimization problem which arises
when solving the separability problem in Quantum Information Theory. Our approach is via
sums of squares decompositions for polynomials, which provide a natural relaxation for poly-
nomial optimization. Our focus is on the development of practical computational methods to
address these problems. We review classical sum of squares relaxations, and give a compari-
son of the computational complexities between some of the modern state-of-the-art relaxations.
Using the insights gained from this analysis we develop a MATLAB package which is able to
solve the separability problem in cases which were beyond the reach of previously existing
software implementations.

In the second part of this thesis, we study the tracial moment problem, which can be thought
of as a dual problem to non-commutative polynomial optimization. For the bivariate quartic
tracial moment problem, the problem is well understood when the associated Hankel matrix
(which has size 7 x 7) is positive definite, or positive semi-definite and of rank at most 4.
Here we examine the Hankel matrix when it is of rank 5 or 6 and show that there are four
canonical cases to study. In two out of the four rank 6 cases, we reformulate the existence of
a representing measure, to a feasibility problem of three small linear matrix inequalities and a
rank constraint. Our results significantly improve previous approaches to the bivariate quartic
tracial moment problem.

Finally, we also study the tracial moment problem on elliptic curves, giving a reduction
to the classical moment problem in two out of the three cases. Furthermore, for the classical
moment problem on elliptic curves, we give sufficient conditions for a representing measure p
to exist.
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Chapter 1

Introduction

Optimization is one of the most widely applicable branches of mathematics across science. It is
ubiquitous in statistics [58], biology [68], cosmology [41], engineering [72, 89], and computer
science [77] to name a few. In this thesis we will study the special subclass of polynomial

optimization problems: given polynomials p, g1, ..., gx € R[z1,...,z,] = R[z], compute
p™™ = min p(x),
zER™ (1.1)

In other words, find the minimum (or more generally the infimum) of the polynomial p, over
the semi-algebraic set K = {x € R" : g1(z) > 0,...,gx(x) > 0} which is the non-negativity
set of the polynomials g1, ..., g;. Many problems from different areas of mathematics can
be formulated in this way; some notable examples are the max-cut problem, testing matrix
copositivity, and the stable set problem. However, it is well known that problem (1.1) is NP-
hard [40, 70, 75]. In the first part of this thesis (Chapters 2 and 3) we focus on approximating
the solution to (1.1) via a sum of squares relaxations.

Sums of squares relaxations arise out of the following consideration, ‘given a polynomial
p € Rlx|, if there are polynomials hy,...,h; € Rlz], such that the polynomial p can be
decomposed as p = h? + --- + h2, then p is non-negative on R™’. Thus, a sum of squares
decomposition provides a certificate of non-negativity. Furthermore, sum of squares decompo-
sitions make problem (1.1) easier, as such decompositions can be efficiently computed using
the recent advances in semi-definite programming. As we can see, an essential component here
is understanding when such a decomposition into a sum of squares is possible. This topic has
a rich history, beginning with the work of Hilbert in the late 1800’s [46]. For the univariate
case, it has been known for a long time that if a univariate polynomial p(x) is non-negative
on R, then it can be written as a sum of squares (two squares to be precise), a result often
credited to Gauss. But in 1885, during his thesis defense, Minkowski conjectured that there
are non-negative homogeneous polynomials which are not sums of squares. Fascinated by this,
in 1888 Hilbert published [46] proving that this conjecture was in fact true. He further charac-
terized the only cases where non-negativity is equivalent to the existence of a sum of squares
decomposition.

This was the inspiration for Hilbert’s 17** problem, presented at the 1900 International
Congress of Mathematicians in Paris, which questioned whether every non-negative polyno-
mial could be decomposed as a sum of squares of rational functions. This question was an-
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2 Introduction

swered in the affirmative by Artin in 1927 [3], and these results are usually regarded as the
birthplace of Real Algebraic Geometry [13].

Since then, our understanding of sum of squares decompositions has grown considerably.
In Chapter 2 we present these developments in more detail. The most groundbreaking being
the Positivstellensatz, presented by Stengle [92] and now known to have been understood ear-
lier by Krivine [55], which gives the most general conditions for decomposing non-negative
polynomials into a sum of squares. We consider also the Positivstellensitze of Schmiidgen and
Putinar, which under some additional natural assumptions, improve upon the result of Krivine.
The representations due to the results of Schmiidgen or Putinar are undoubtedly simpler, and
computationally advantageous in the context of optimization. We also show how to pose the
existence of a sum of squares decomposition as a semi-definite program.

Hilbert’s theorem proved the existence of non-negative polynomials which could not be
written as sums of squares, however his proof was not constructive. The first known example,
the Motzkin polynomial (Example 2.7), was discovered almost eight decades later [69]. In their
recent work, Blekherman, Smith and Velasco [12] showed how to construct (random) non-
negative polynomials, over varieties of non-minimal degrees, which are not sums of squares.
The work of [51] further refines this process into an algorithm (Algorithm 1) to construct non-
negative biquadratic polynomials which are not sums of squares and have a carefully chosen set
of zeros. Biquadratic polynomials which are non-negative but not sums of squares are in direct
correspondence with positive maps that are not completely positive from operator algebras
(pncp maps for short). Our interest in this correspondence is motivated by the separability
problem from Quantum Information Theory, which asks to determine if a given quantum state
p is entangled. A general approach to solving the separability problem relies on pncp maps,
which can be constructed using Algorithm 1.

The underlying optimization problem in Algorithm 1 requires minimizing a non-negative
polynomial. When we restrict to strictly positive polynomials, there are many methods to
decompose a polynomial into a sum of squares which are guaranteed to work, and work well.
On the contrary, when we consider non-negative polynomials, many of these methods (while
useful) start to become limited and require additional information on intricate algebraic objects,
which in most cases is difficult to obtain. Hence, the construction of pncp maps from Algorithm
1, requires a computationally suitable sum of squares relaxation for non-negative polynomials.

In Chapter 3 we examine several new relaxations to construct pncp maps. Our contributions
towards this are as follows. Through our experiments we find the most stable, and the most
efficient relaxation for Algorithm 1. In addition to this, we also illustrate how these randomly
constructed pncp maps can help to detect entanglement in a quantum state represented by a
density matrix p € R™*™. Our findings are nicely collected into a MATLAB package PnCP,
designed for constructing random positive maps which are not completely positive. Moreover,
PnCP can be used to check if a quantum state is entangled (see Algorithm 2 and Examples 3.15
and 3.16). While there are existing software packages for detecting quantum entanglement,
they rely on a criterion (Criterion 3.13) which is no longer sufficient in higher dimensions; in
contrast PnCP is applicable for arbitrary dimensions. As such we expect PnCP to significantly
aid in the study of many problems in Quantum Information Theory.

In the second part of this thesis (Chapters 4 and 5) we study the dual theory of moments.
The moment problem is a classical question in analysis, which asks when a linear functional on



the space of univariate polynomials is represented by integration. Equivalently, for a sequence,
B, of real (or complex) numbers, does there exist a representing measure ji, such that the terms
of 3 are the moments of ;?

Initiated by Stieltjes, the power moment problem in particular requires a real sequence

(Br)2 to satisfy
b
5= [ aldn
a

and 1s well studied. Let

Bo B ... bn B B2 ... Ban
A, = B.l /6?2 ‘ Bn,ﬂ ,and AlD = 5.2 5‘3 . Bn.H
P Bny1 - Pon Brnt1 Bny2 oo Pontr
For the interval [a,b] = [0, 00), Stieltjes [93] gave necessary and sufficient conditions for a

solution to the power moment problem using the Hankel matrices A,, and A,(ql); there exists a

representing measure /., such that 3; = [ x* dy if and only if det(A,) > 0 and det(AY)) >
0 for every n > 0. Similar solutions for [a,b] = (—o0, 0), and [a,b] = [0, 1] are given by
Hamburger [43] and Hausdorff [45] respectively, with each of these problems now named after
the solver.

There are of course many generalizations, the first natural extension perhaps being to con-
sider the problem on R". To be precise, given a sequence () indexed by v = (y1,...,7) €
N, we ask if there is a positive Borel measure ¢ on R™ such that

8, = / & dp, (12)
R
with the standard multi-index notation 7 = x?l ---x;". The general solution to this exten-
sion, the Riesz-Haviland Theorem [32, Theorem 1.1], provides a connection to non-negative
polynomials through a duality relation: A sequence (f3) enr, represents the moments of a
positive Borel measure 1 on R" (i.e., (3,) satisfies (1.2)), if and only if 27 pyBy > 0 for
every polynomial p = ) p,2” € R[z] which is non-negative on R".

For the bivariate case (R?) in particular, there is a great deal of understanding and success
for the truncated moment problem, which considers (1.2) with the truncation of (3, ),en2, i.e.,

Brie = /2 a'wy® dp, 1+ 2 < 2d, (1.3)
R

and d € N. Stochel has shown in [95] that the truncated moment problem (1.3) is in fact
more general than the full problem (1.2). In light of this, we only concern ourselves with the
truncated moment problem.



4 Introduction

Consider the following (generalized) Hankel matrix

1 X Y .o Xe 0 yd
1 /Boo  Bipo Boa oo Bao - Bod
X | B0 B0 Bra oo Bario - Bia
Y | Bop B Bo2 .- Bar - Bodt1
Ma(B) == : : : - : - :
X4 Bao  Batro  Bar oo Boo ... Bad
Y \Boa  Bia  Boa+1 - Baa - Bozd

Hankel matrices have been integral to the study of the moment problem. Curto and Fialkow
paved the way forward through their seminal works [26, 27, 28, 29, 30, 31], in which they
connected the solution of the truncated moment problem (1.3) to extensions of My(/3). They
developed a new functional calculus for the truncated moment problem, which studies polyno-
mial equations defined on the columns and rows of M 4(/3) (hence the suggestive column/row
labels for M(3)). This technique provided a complete characterization of the quartic mo-
ment problem (M3z(3), see Theorem 4.10), and is now an essential tool in studying not only
the moment problem, but also some of its further generalizations.

Extending this problem further, Burgdorf and Klep introduced the tracial moment prob-
lem in [16], a non-commutative counterpart to (1.2). For a simple statement of the problem,
consider the sequence (ﬂw( X7y)) generated as

Bucxr) = [ (A, B)) du(A, B), 49
(SRtXt)2

where SR** is the space of symmetric real matrices, 1 a measure on this space, w(X,Y) are
monomials of the non-commutative variables X and Y, and tr is the trace functional. The
tracial moment problem is the converse : Given a sequence (ﬂw( X’y)), is there at € N with a
measure . on (SR"*)? such that (8,,(x y)) satisfies (1.4)?

Like the moment problem, the tracial moment problem is intertwined with optimization of
non-commutative polynomials. Burgdorf and Klep have studied this connection well [15, 18],
and in fact for the quartic tracial moment problem with sequences ( Bu( X7y)) that have their
corresponding tracial Hankel matrix positive definite, they solved the problem entirely [16]
(an alternative proof can be found in [19]). The tracial moment problem is further shown
to be connected to many other important problems such as Connes’ embedding conjecture in
operator algebras [24, 52], or the now confirmed BMV conjecture [8, 14, 53, 91].

In the author’s MSc thesis [9], we explored the quartic tracial moment problem when
the associated Hankel matrix is singular and positive semi-definite, equivalently, when the
representing measure y must be contained in some quadratic variety. We used the extension
approach of Curto and Fialkow to establish sufficient conditions for a solution to exist. During
the PhD, collaboration with Aljaz Zalar led to refinements of these results, and moreover we
established necessary conditions for the solution to exist, with our results published in [10].



In Chapter 4, we present some of these new results, developed during the PhD, on the
quartic tracial moment problem, which provide a novel computational framework to search for
solutions. We show that the quartic tracial moment problem reduces to the analysis of four
canonical column relations in the Hankel matrix Mo. We also illustrate that in many cases, the
atoms of a potential representing measure have a nice form. This atomic approach enables us
to completely characterize when a solution exists if the Hankel matrix M has rank 5. Finally,
in the rank 6 case, we show that the quartic tracial moment problem can be reformulated into
a feasibility problem of three small linear matrix inequalities and a rank constraint.

Chapter 5 generalizes this study to truncations of all orders d, where the representing mea-
sure lies on a cubic variety. This is the first presentation of the truncated tracial moment prob-
lem on cubic varieties. In particular, we study measures over Elliptic curves, which are the
smooth cubics. Our first contribution is a reduction of the truncated tracial moment problem
on elliptic curves, in two out of the three cases, to the classical (commutative) truncated mo-
ment problem on elliptic curves. The classical truncated moment problem has previously been
studied on cubic varieties in special cases. For instance [33, 102, 103] study extremal cases of
the sextic moment problem, with [102] giving special focus to harmonic cubic polynomials,
and Fialkow [38] solves the classical truncated moment problem with representing measures
supported on y = 2. Elliptic varieties however remain largely unstudied, and to the best of
our knowledge our presentation is the first analysis on elliptic varieties, even for the classical
truncated moment problem. Our second contribution is an analysis of sufficient conditions for
a representing measure to exist on elliptic curves in the classical setting. We also illustrate the
distinctions with the quartic moment problem in Example 5.15.

Sums of squares relaxations and the dual theory of moments have become an increasingly
popular approach to polynomial optimization problems. Indeed many state-of-the art opti-
mization software such as SOStools, GloptiPoly3, RealCertify etc., are based on these ideas.
The results of this thesis help to further our understanding of these concepts, highlight new
directions for future research, and expand the horizon of applications to the realm of Quantum
Information Theory.






Chapter 2

Sums of Squares & Optimization

This chapter establishes a basic background for studying optimization through sums of squares
(SOS) relaxations. The material presented is well understood and classical, with most texts on
SOS theory having a similar presentation.

There is a vast amount of literature on the topic, but the survey of Laurent [59] is perhaps
the best introduction, covering a broad range of topics. We follow the overall structure of [59]
for sums of squares, and naturally adjust things for our purposes. We present proofs only when
they are instructive, and otherwise refer the reader to appropriate literature.

We first settle on some notation which we use throughout the thesis. We denote by N
(resp., R, C) the set of non-negative integers (resp., real numbers, complex numbers). We
write R[x1, ..., x,| for the ring of polynomials in n variables and coefficients from R, and
often abbreviate to R[z], with + = (z1,...,2,). When working with a small number of
variables, for instance two, we normally write R|[x, y] instead of R[x1, x2]. We use bold face
letters x,y,z,... for vectors. For « = (aq,...,a,) € N”, 2% represents the monomial
x{* - -z, which has degree |a| = a1 + -+ + . A polynomial p(z) € Rz] is of the
form p(x) = > cyn Pax®, with only finitely many non-zero p,, (unless working with specific
examples, we usually just write p instead of p(x)). When p,, # 0, we call p,z® a term of p.
The degree of a polynomial p is defined as deg(p) := max{|a| : po # 0}. The set R[z]4 is the
set of all polynomials with degree less than or equal to d.

We write R**? for the set of real matrices of size s x t, and SR*** for the set of symmetric
real matrices of size s X s. We equip R*** (SR***) with the trace inner product

(A, B) = tr(ATB),

for matrices A, B € R¥*%,
We note that, in general, every polynomial p € R[z]o4 can be written (in a non-unique
way) as

p(x) = x;Qxq, @2.1)

where Q € SR**® and xg is the vector of all monomials with degree at most d. A matrix
Q € SR*** is called positive semi-definite if for all non-zero vectors x € R® we have

XTQX > 0. (2.2)
We write Q > 0. Similarly, @ is called positive definite (QQ = 0) if (2.2) is strict whenever

7



8 Sums of Squares & Optimization

x # 0. There are many equivalent formulations of positive semi-definiteness. Some important
ones are the following: if ) € SR*** then the following are equivalent

(1) @ =0,

(2) there exists a V' € R¥* such that

Q=Vv"V, 2.3)

3 Q= Zle aiaZT for some vectors a; € R,

(4) all eigenvalues of () are non-negative.

2.1 Polynomials and Non-negativity.

We say that p € R[z] is non-negative if the evaluation p(a) > 0 for all a € R™. In this case we
write p > 0 (and similarly p > 0 when p is positive). We say that p has an SOS decomposition,
or that p is SOS, if there exist q1, . . ., gx € R[x] such that

p=ai+-+
We use the standard notation

Pn={p € Rlz1,...,24] : p > 0},
Yo ={p € R[z1,...,2,] : pis SOS},
and
Prnd=PnNR[z1,..., 4],
Ynd=2Zn NRx1,...,20]q.
The following simple result is helpful when searching for SOS decompositions, as we will see

in Example 2.7.

Lemma 2.1 (Lemma 3.1, [59]). If p € %, then deg(p) is even. Moreover for any q; € R|x]
such thatp =", g2, we have deg(g;) < deg(p)/2.

A polynomial p is called homogeneous if all of its terms have the same degree. Let p be
a polynomial of degree d, i.e., p = ZMS 4Pax®, the homogenization of p is the polynomial

p € Rz, z,,41] defined as p = E‘ ol<d paxo‘xijla | As an example, consider the univariate
quadratic
f(x) =2® +z+1 € Rz].

The homogenization of f is given by
fla,y) =2 + 2y + y* € Rlz,y).

The following result shows that being non-negative or SOS is preserved under homogenization.
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Proposition 2.2. A polynomial p € R|x]oq is non-negative (resp. is SOS) if and only if the
homogenization p € R|x, xy41]2q is non-negative (resp. is SOS).

Proof. When p is non-negative or SOS, the statement is clear (evaluate x, .1 = 1). Suppose
that

is non-negative on R". Notice that we may write

Bz, apn) = 274y ) pa< - > : 2.4)

X
la|<2d il

When z,, 41 # 0, it is clear that p is non-negative, as both x%‘il and p are non-negative. On the
other hand when z,, 1 = 0, we instead write p(z) = pag + - - - + po, Where each p; is a term
of degree . Expanding (2.4) we find

~ P2d Po
p:mic—ll—l 2d Tt 0 =p2q > 0,
anrl xn—&—l

where the last inequality holds because the highest degree term must be non-negative since p
is non-negative. The SOS property is proved similarly. 0

It is clear to see that any SOS polynomial is non-negative on R"”, the interesting question
is when are these sets equal, i.e., X, 4 = P, 4? Two instances of this have been known for a
long time.

Theorem 2.3 (Gauss). Let p € R[z| be a univariate polynomial. If p(a) > 0 for all a € R,
then p is SOS. In fact p is a sum of two squares.

Theorem 2.4. Let p € R[z] be a quadratic polynomial. If p(a) > 0 for all a € R"™, then p is
SOS.

Remark 2.5. While there is a standard proof of Theorem 2.3 using the Fundamental Theorem
of Algebra and the identity (a? + b2)(c? + d?) = (ac+ bd)? + (ad — be)?, we recommend [67]
for a far more interesting and general proof based on the Hahn-Banach Seperation theorem and
Caratheodory’s theorem on convex combinations.

Hilbert completely characterized when ¥, 4 = P, 4 [46], by proving that equality holds in
exactly one other case.

Theorem 2.6 (Hilbert). ¥, ; = P, 4 if and only if (n, d) is one of the following, (1,d), (n,2)
or (2,4).

While this theorem proved the existence of non-negative polynomials which could not be
written as sums of squares, the first concrete example, the Motzkin polynomial, was discovered
much later in 1967 [69].
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Example 2.7 (Motzkin polynomial). Let M (z,y) = z*y? + 22y* — 32%y% + 1. To see that
M(z,y) > 0, seta = zy%, b = 2%y and ¢ = 1, then the arithmetic geometric mean inequality
gives
2,12, 2

a® + l; +c > Va2,
that is

ay? 4yt 41> 3222
Now suppose that M is SOS. Using Lemma 2.1, we know that any decomposition M =
g} + -+ + ¢, requires g, to be of the form

QT(l'a y) = CLrl‘3 + bszy + Cr-ryQ + dry3 + erxz + fray + gry2 + hex + 00y + o

Comparing coefficients, we see that ) a? = 0 and so a, = 0. Similarly we find e, =
gr = 0, and so (comparing coefficients for 22y? terms) >, (f2 + 2e,9,) = Y., f? = -3, a
contradiction. Hence M (z,y) ¢ Xo.

Some other examples of polynomials which are non-negative but not SOS, such as the
Robinson or Choi-Lam, can be found in [86].
2.2 SOS Programming

Definition 2.8. Given a finite set G = {g1,...,gx} of R[z], the basic semi-algebraic set
associated to G is defined as

Kq = {{L‘ ERn:gl(l') > 0,---7919(1') > O}‘

Let us see now how the theory of sums of squares can be helpful in optimization. Recall
our general optimization problem

M — i : 2.5
p min p(z) (2.5)
We may rewrite this as 4
p™" = max v,
veR (2.6)

s.t. forall x € K¢, p(x) —v >0,

in other words, finding the minimum of p on K is equivalent to finding the largest scalar
~ such that the polynomial (p — ) is non-negative on K. This reformulation may seem
unnecessary, however when K = R", it allows to us to approximate p" by replacing the
condition “(p — ) > 0” with “(p — ~) is SOS”, i.e.,

p°?% = max 7,
vER .7)

s.t. p — v is SOS.

Problems with such SOS constraints, i.e., of the form (2.7), are called SOS relaxations or



§2.2 SOS Programming 11

SOS programs. Since Y, 4 € P, 4, we must have pSOS < pmi". Furthermore, by Hilbert’s
theorem (Theorem 2.6) there are polynomials where the inequality is strict; every polynomial
q € P,\X, obviously satisfies —oo = ¢°9% < 0 < ¢*.

At this point it is natural to wonder about one very important question, “is p
to compute than p™*"?”

SOS any easier

2.2.1 Using Semi-definite Programs

While computing p™" is known to be NP hard [70, 75], pSOS on the other hand can be
computed efficiently thanks to recent advances in computational mathematics. Recall that
every polynomial p € R[z]y4 can be written as

p(w) = x4 Qxa,

for some Q € SR**®. For polynomials which are sums of squares, the following theorem gives
information about Q).

Theorem 2.9 (pg. 106, [23]). A homogeneous polynomial p € R[x]oq is SOS if and only if we
can write

p(w) = x4 Qxa,

where @ is a positive semi-definite matrix.

Proof. Suppose (@ is positive semi-definite. Then we have the decomposition Q@ = V'V and
p(z) = xLVTVxy,
= [[Vxal?,
hence p is SOS. Conversely, if p is SOS, then we have that

p(x) = qi(x)? + - + qr(x)>

For each ¢; there is some coefficient vector a; such that we can write ¢;(z) = xdTai (note that
we use the monomial vector x; due to Lemma 2.1). Substituting this we see

k

plz) = (xgai)(xga),
=1
k
= (xqa)(xja)’,
=1

k
= xi(aia] )xa,
=1

k
:Xg E aiaiT Xd-
i=1
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Setting Q = (Zle aiaiT> proves the result. O

Consequently, finding an SOS decomposition for a polynomial p € R[x]s; amounts to
finding a positive semi-definite matrix () which satisfies the constraints

p(x) — x5 Qx4 = 0. (2.8)

There are two important points to take note of here. Firstly, (2.8) gives a system of linear
constraints with the entries of () as variables. Secondly, we must have () positive semi-definite.
So finding such a @) requires solving the linear program generated by (2.8) over the set of
positive semi-definite matrices. This is precisely semi-definite programming [1, 97, 98, 100].
Semi-definite programs are a generalization of linear programs, and have the standard pri-

mal form
s*= sup (C,X),
X eSR®*®
s.t. <Aj,X>:bj, j=1,...,k, (2.9)
and X >~ 0,

with the matrix variable X, problem data C, Ay, ..., Ay € SR¥*%, and b = (by,...,b;) € R*.
When C' = 0445, (2.9) is called a feasibility program. Finding an SOS decomposition for any
p € R[x]94 can be written as the following semi-definite feasibility program,

Q= 0,

(2.10)
s.t. (Aa, Q) = Pa, |af < 2d

where
Liff+vy=aq,

0, otherwise

(Aa)sy = {

Semi-definite programming has quickly become an invaluable tool for optimization. SOS
programs in particular, are almost exclusively solved using semi-definite programming. The
theory of semi-definite programming diverges too much from the core content of this thesis.
We refer the reader to the books [1, 100] and the surveys [97, 98] for a more comprehensive
discussion of semi-definite programming.

We simply state here that given some € > 0, there are efficient methods and algorithms
which can find e-optimal solutions in polynomial time, given some mild regularity. In particu-
lar, the dependence of the complexity of these methods on ¢, is polynomial in log(%) (cf. the
references above, or Section 4.1 of [83] for a classical discussion of this). Therefore approxi-
mate solutions to p°©° are much easier to compute than approximate solutions to p™™.

2.2.2 Lasserre’s Hierarchy

Until now we have only considered SOS programs for global optimization (K5 = R"). Let us
consider SOS programs for optimization when we have constraints (K g # R™).

As an alternative, instead of checking “p — v is SOS”, we can first “divide out” the con-
straints by squares. With the constraint set K¢ = {z € R" : g1(z) > 0,...,gr(x) > 0}, we
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obtain the following SOS program for the problem (2.6)

pSOS = max 1,
vER
k
stopa) —y =1+ > al@)gl), 2.11)
i=1

7"aCI17---aCIk€En-

Notice that (2.11) is not solvable with semi-definite programming because the constraints are
now of arbitrary degree, so there is no bound for the dimension of the matrices required in an
SDP program. This can be remedied by bounding the degrees of the unknown polynomials
T, q1, ..., qk giving us a sequence of approximations to p™" with the following SDP,
SOS
= ma
Paq ’YEH? Y,

k
stopl@)—y=r+>_ q@)gi(@), (2.12)
=1

T5q1,---,qk € Env
deg(q;gi) < 2d.

Lasserre [57] has shown that pg OS 5 p™min a5 d — oo under some natural conditions, and this

hierarchy of approximations are often referred to as Lasserre’s hierarchy.

2.2.2.1 Duality

Let B(R™) be the space of probability measures on R™ (positive, normalized, Borel measures).
Lasserre replaced the global optimization problem (2.5) (Kg = R"™) with the following

mom — i d . 2.13
pn = win [ o) duta) @.13)

The equivalency of (2.5) and (2.13) of the problem can be seen as follows: p(z) > p™" and
hence [ pdu > p™™ since y is normalized, and conversely if %" is a global minimizer, we
M — § min, the Dirac measure at ™" giving p™" = [ pdjimin > p"".

If we now consider the polynomial p € R[x]o4, we see that

| or@ dute) = 3 o [ 2 dut@) = 3 pase

la]<2d la<2d

man

may consider p

where 8, = [ z® du(z) are the moments of 1. We may thus replace the optimization problem
(2.13) with

la|<2d (2.14)
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which is known as the moment relaxation. Clearly this requires an understanding of when
a sequence (4 )acn represents the moments of a measure p € B(R™) (in other words, an
understanding of the moment problem). We refer the reader to [57, 59] for a more detailed
discussion of this duality, with computational considerations, formulations for the constrained
setting and comparisons with the SOS relaxations.

2.3 SOS Representations

Hilbert’s theorem (Theorem 2.6) classified all polynomials (in terms of the number of variables
n, and degree d) where non-negativity was equivalent to being SOS. But as we have seen for
constrained optimization problems, there are alternatives to the SOS condition that can be more
useful. In this section we present some of the key relaxations which have had a significant
impact in SOS programming. We also briefly discuss some more recent results.

2.3.1 The 17" Problem

Theorem 2.10 (Artin’s Solution to Hilbert’s 17" Problem, [3]). For any p € R[z], ifp > 0
on R"™, then p is a sum of squares of rational functions, i.e., there are polynomials r, q; € R[z],

with r # 0, such that
r’p=> .
i

The solution to Hilbert’s 17" problem is one of the most general representation result for
non-negative polynomials. In Chapter 3 we will see an application where the SOS program
from Theorem 2.10 performs tremendously well.

For positive polynomials, Polya gave a concrete denominator, 2, for Theorem 2.10 when
restricted to the standard simplex A,, = {z € R" : z; > 0and 1 + - - - + z,, = 1}.

Theorem 2.11 (Polya, [79]). Let p € Rx| be homogeneous and positive on A, then for
sufficiently large N, the coefficients of

2N

($1++$n) p(wla"’7$n)7

are positive.

Since z; > 0 in Theorem 2.11, we can use the change of variables z; = ,/z; and obtain an
SOS decomposition. Reznick and Powers [81] have in recent years extended Polya’s theorem
to non-negative polynomials, with specialized zeros.

Definition 2.12. Let p € P, 4 be non-negative on A,,. Then p has a simple zero at the unit
vector e; if the coefficient of x;l is zero and the coefficient of x?_lwi is non-zero for every
1.
Theorem 2.13 (Corollary 1, [81]). Suppose p € Py, 4 is homogeneous and non-negative on
A, with the only zeros being simple zeros at the unit vectors ej,, ... ,ej,. Then there is an
N € N such that

(214 +2,)Vp
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has non-negative coefficients.

Further refinements of this result are given in [22], where the zeros are allowed to be on
faces of the simplex. Although restricted to positive homogeneous polynomials, computation-
ally speaking, Theorem 2.11 is particularly useful because the certification can be written as a
linear program.

Reznick generalizes the use of a similar denominator beyond the simplex for strictly posi-
tive polynomials.

Theorem 2.14 (Theorem 3, [84]). Suppose that a homogeneous polynomial p € R|x| is strictly
positive. Then there isan { € Nand qi, . .., q; € R[z] such that

k

(@ +---+a)p=> a
=1

One might try and use this result for non-negative p by considering (p +&(z? + - - - +22))
for some € > 0, and then take limit as e — 0. However, in the same paper Reznick even gives
a lower bound on ¢, which is inversely dependent on the infimum of p (Theorem 2 [84]). Due
to this £ — 00, as ¢ — 0. Therefore the denominator (22 + - - - + z2)¢ only works well when
p > 0.

Moreover, Delzell has shown in his thesis [35], that there are non-negative polynomials

p € R[z1,...,x,] with n > 3, such that in any decomposition
k
2 2
r’p=>q,
i=1

the zeros z; of p are shared by 7, i.e., (2;) = p(z;) = 0. Such common zeros are known in as
“bad points”. The example (Example 3 [35])

flx,y,2) = 20+ 2%y? — 322yt2? 4 410

is non-negative (arithmetic-geometric mean inequality), and in particular has the origin as a
bad point, hence there is no £ € N such that (22 4 - - - + 22)* f is SOS.
Reznick has also shown that in general no finite set of denominators is enough.

Theorem 2.15 (Corollory 2, [85]). Suppose that Py g\Xy.q # 0. Then for any finite set
{r1,...,ri}, there is a polynomial p € Py, 4 such that

rip # SOS,
foralli=1,... k.

2.3.2 The Positivstellenséitze

Recall the semi-algebraic set Ko = {z € R" : g1(z) > 0,...,gx(z) > 0}, which is the
non-negativity set of G = {gi,...,gr}. If a polynomial p is non-negative on K, are there



16 Sums of Squares & Optimization

any SOS representations that p is guaranteed to satisfy? To understand the answer, let us first
define a preordering.

Definition 2.16. Given a finite set G = {g1, ..., gr} C R[z], the preordering associated to G
is defined as

Ta = Z Oagit gt i oq €5y
aec{0,1}*

The most general decomposition a non-negative polynomial will admit, is given by the
Positivstellensatz (we present the statement from [65, 2.2.1]). This result was long credited to
Stengle [92], but it is now known that core ideas of the result were presented by Krivine in [55]
a decade earlier. The Positivstellensatz is a powerful result. We can even obtain a solution to
Hilbert’s 17" problem by applying statement (2) with K = R".

Theorem 2.17 (The Positivstellensatz). Suppose G is a finite subset of R|x], K¢, T are the
semi-algebraic set, and preordering associated to G, and p € R[zx]. Then the following are
true

(1) p> 0on Kg < there exists r,q € T such that rp =1+ q.

(2) p > 0on Kg < there is an integer m > 0 and r, q € T such that rp = p*™ + q.
(3) p=0on Kqg < there is an integer m > 0 such that —p*™ € Tg.

(4) Kg=0& —1€Tg.

We present here the proof of the equivalency of (1)-(4) from [65]. This proof is very
accessible, even to the unfamiliar reader, requiring nothing more than the basic definitions
to understand. It is also instructive as it shows how each statement can be used. Note that
the following proof does not establish the Positivstellensatz, only that the four statements are
equivalent; the interested reader is referred to [65] to see that the four equivalent statements
are indeed true.

Proof. [(1)=(2)] Suppose that p > 0 on K. We extend dimensions from n to n + 1 with
(x,y) = (x1,...,2pn,y) € R Rlz,y] = Rlz1,...,zn,y].

We take
G ={g,....9s,yp— 1, —yp + 1},

so that
KG’ = {(xvy) € Rn+1 : yp(.ilf) = 1792 > 072 = 17"'75}'

Thus on K¢ we have p(z,y) = p(z) > 0, so by (1), there is a1/, ¢’ € T such that
' (z,y)p() =1+ (2,y).

Replacing y with ﬁ in this equation and clearing denominators by multiplying with p(z)?™
and m sufficiently large, we obtain

r(z)p(x) = p(x)*™ + q(x),
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with
1 1
2m. ./ 2m /
r(z) =plx)"r' | z,— |, q¢(z) =p(x)™"q | z,— | .
@ =p(ae (21505 ate) =9t d (o555
It is enough now to show that r, ¢ € Tz for sufficiently large m. By the definition of T(r we

know that
(z,y) = o(,y)g1(@) - gs(2) (yp(x) — 1)+ (—yp(a) + 1)°+2,

with o(z,y) € Sp41, say o(z,y) = Y. hj(x,y)?. Replacing y as before, the terms with
es+1 = 1l or eg12 = 1 vanish. For all the other terms, it is clear that with m large enough,

1
2m
p(x)"o | x,— | € R|x].
@7 (2:507) <Rl
We have the same for ¢, and so r, q € T.
[(2)=(3)] Suppose p = 0 on K. Using (2) on p and —p yields

rp=p"" +q, —rep = p" + g2, 1iqi € T, i = 1,2,
The product of these gives
—ryrop? = p?(Mtm2) g p2ig, 4 p?M2gy 4 gy,

meaning that

with m = mq + mao, and

2m1

r = r1rop® + p* e + p*™2q1 + 1o,

which belongs to Tz since preorderings are closed under addition, multiplication and contain
all squares.

[(3)=(4)] Since K = (), we know that 1 = 0 on K. Applying (3) with p = 1 shows
that —1 € T.

[(4)=()] Let G’ = GU{—p}. Since p > 0 on K¢, K = ), hence —1 € T by (4).
Moreover, since G' = G U {—p}, it follows T = Tz — pT. Thus, —1 = g — rp, ie.,
rp=1+4qwithr,q € Tg. O

Just like Theorem 2.10, the Positivestellensatz sees remarkable improvement when we
work with strictly positive polynomials. When the set K is compact, we have the following
Positivstellensatz of Schmiidgen.

Theorem 2.18 (Schmiidgen’s Positivstellensatz [90]). Suppose that Kq is compact. If p €
R[x] is strictly positive on K¢, then p € Tg.

As noted in [65], there is a gap in Schmiidgen’s original proof, but the result is still true
(see [65]). The SOS program arising from Theorem 2.18 is computationally simpler than the
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program from the Positivstellensatz. However, Theorem 2.18 can not be extended to the realm
of non-negative polynomials as shown by the following,

Proposition 2.19. Let n > 3, and suppose Kg has a non-empty interior. Then there exists a
q € R[z], such that ¢ > 0 on K¢, but q ¢ T¢.

The above is a particular instance of a more general result by Scheiderer [87].

Definition 2.20. For G = {g1, ..., gx}, the quadratic module generated by G is the set

k
Me=M(g1,...,95) = {T+Zqz‘gii7ﬂq@' Gzn}-
=1

Furthermore, Mg is called Archimedean if there is an N € N such that

n
N — fo € Me.
=1

Observe that the preordering 7 is simply the quadratic module generated by all possible
products of the g;’s. Thus every preordering is a quadratic module, and hence quadratic mod-
ules are more fundamental objects than preorderings. Furthermore, quadratic modules are a
natural object to study for SOS representations. Notice that the SOS program (2.11) is nothing
more than a test of membership into M.

Theorem 2.21 (Putinar’s Positivstellensatz [82]). Let G be a finite subset of R[x|, and suppose
that M is Archimedean. Given a polynomial p € R|x], ifp > 0 on K¢, thenp € M.

Theorem 2.21 implies the asymptotic convergence of the relaxations (2.11) as shown by
Lasserre in [57]. Degree bounds for such decompositions are discussed in [73]. Theorem 2.21
is also used in [71] to develop a new ‘Jacobian’ relaxation, which we utilize in Chapter 3.

While the Positivstellensétze of Schmiidgen and Putinar (Theorem 2.18, 2.21) provide im-
proved, denominator-free SOS representations, they come at the cost of restricting to positive
polynomials (among other things). Fortunately, there are some recent advances towards poly-
nomials with zeros.

Schiederer extends Putinar’s Positivstellensatz to non-negative polynomials with finitely
many zeros, by considering local positivity and smoothness conditions on the zeros [88, Corol-
lary 3.6]. Marshall further explores and refines this approach in [64], and considers degree
bounds for applications to optimization in [66].

The basic idea is that for a polynomial p € R[z] which is non-negative on K¢, in any
neighborhood of a zero, the polynomial is positive. Hence smoothness at the zero implies the
Hessian is positive definite. With these ideas in mind, Marshall shows that if there is a local
system of parameters {t1,...,tg, tk41,...,t;}, such that we can write p = p; + pa + -+ -,
(where each p; is a term of degree ¢) with

p1 = aity + -+ agty, a; >0,

and p2(0,...,0,tk41,...,1;) is positive definite, then p € M [64, Theorem 2.3].
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There are also other representation results, which diverge from the Positivstellensédtze and
instead rely on first and second order optimality conditions. We present these in Chapter 3 in
the context of completely positive maps.






Chapter 3

Detecting Quantum Entanglement

This chapter presents a modified version of the manuscript “Practical Construction of Positive
Maps which are not Completely Positive” (https://arxiv.org/abs/2001.01181). We show how
non-negative (and sum of squares) polynomials arise in Quantum Information Theory. We
also give an account of modern sums of squares relaxations, and show how they can be used
to detect entanglement in quantum states.

3.1 Constructing Positive & Completely Positive Maps

Given two matrix spaces .4 and B, a linear map ® : A — B with the involution-preserving
property ®(A*) = ®(A)* for all A € A, is called positive if for all A = 0, &(A) > 0. For a
given ! € N, such linear maps induce the ampliation

) R 9 A-RX @B, MoA— Me®A),

where ® is the standard Kronecker tensor product of matrices. If () is positive then we call
® [-positive. If U is positive for all [ € N, then ® is called completely positive. Positive and
completely positive maps arise naturally in matrix theory and operator algebras (e.g., positive
linear functionals) [76, 101], frequently in quantum information theory [47, 74, 96], and have
recently even been used in semi-definite programming [54].

We study these maps via their correspondence to non-negative and sum of squares polyno-
mials. Restricting these involution-preserving maps to the space of symmetric matrices, each
linear map ® : SR™*"™ — SR™*™ gives rise to a biquadratic, bihomogeneous polynomial

pe € R[x1, ..., Tn, Y1, ..., Ym], With

pa(z,y) = y' P’ 2)y.
It is known (see, e.g., [51]) that @ is positive if and only if pe is non-negative on R, and
® is completely positive if and only if pe is a sum of squares (SOS) on R+,

The connection between non-negative and SOS polynomials plays a central role in real al-
gebraic geometry. There are many results concerning this interplay, see for instance the surveys
[6, 59, 60, 80] or the book [65]. In particular, [12] explores the connection between varieties
of minimal degrees and non-negative polynomials. Their main theorem (given below) shows
that on varieties of minimal degrees, non-negative quadratic forms have an SOS decomposition

21
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with linear forms.

Theorem 3.1 (Thereom 1.1, [12]). Let X C P™ be a real irreducible non-degenerate projective
sub-variety, with homogeneous coordinate ring R, such that the set X (R) of real points is
Zariski dense. Every non-negative real quadratic form on X is a sum of squares of linear
forms in R if and only if X is a variety of minimal degree.

Moreover, when X is not of minimal degree, [12] gave a construction for generic quadratic
forms which are non-negative on X but not SOS. In [51] the authors specialize this construction
(Procedure 3.3 of [12]) to biquadratic, bihomogeneous polynomials over the Segre Variety,
which is the image of the Segre embedding o : P?~! x Pm~1 — P~ (and is well known
to not be of minimal degree for n, m > 3). This formalization of the method in [12], gives an
algorithmic construction of positive maps which are not completely positive (pncp maps for
short).

Letting n,m > 3,t = n+m — 2 and N = n + m, the algorithm of [12, 51] can be
summarized as follows (see Section 3.2.1 for full details):

Algorithm 1: KMSZ Construction
1. Generate random points x € R", y € R™
2. Use 2, y to create bilinear forms {hy, ... , h;} over RV
3. Generate f ¢ (hq, ... ,h:) sothat f # SOS on R
4. Choose ¢ small enough so that Fs = §f + h2 +---+ h? > 0on RV

Steps 1-3 are simple linear algebra computations, our contribution in this work is to find the
most practical technique for Step 4, and to establish benchmarks for this type of construction.

This is an expository and experimental chapter in which we introduce the MATLAB pack-
age PnCP, currently the only implementation of Algorithm 1. We survey recent optimization
techniques for verifying Step 4 and specify relaxations theoretically superior to those pre-
sented in [51]. We implement and test these methods in PnCP. Our package and test data are
made available at https://github.com/Abhishek-B/PhD-Thesis-Supplementary-Material
(as well as the official repository of PnCP, https://bitbucket.org/Abhishek-B/pncp/). We also
consider rationalizations of the forms obtained with Algorithm 1 to construct exact certificates
of non-negativity (PnCP is able to construct pncp maps with rational coefficients).

PnCP is developed as a consequence of the rising interest in quantum information and its
purpose is to help identify entangled (quantum) states (see Section 3.5 for definitions); pncp
maps preserve their positivity on separable states, however they may fail to preserve positivity
on entangled states, which provides the following classification criterion.

Criterion 3.2 (The general criteria, [4] section 8.4). A quantum state p € SR**® is entangled
if there is a pncp map @ such that the ampliation (I @ ®)(p) # 0.

As an example, consider the Bell State, which has density matrix (see Section 3.5)

N | =

1
0
0
1

o O O O
O O O O

1

0 2x2 2x2
€ R @ R**%.

0

1


https://github.com/Abhishek-B/PhD-Thesis-Supplementary-Material
https://bitbucket.org/Abhishek-B/pncp/
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and let T" be the standard transpose map (clearly positive, and known to be pncp). Then the
partial ampliation (I ® T) : R?*2 @ R?*2 — R2*2 ® R2*2 applied to p gives,

(TeT)p) =

o O O =
o = O O
o O = O
— o O O

which has a negative eigenvalue of —1/2, and serves as evidence of entanglement in the Bell
State. While the transpose map was sufficient in this simple example, in general finding a
suitable map is difficult. With the help of PnCP one can generate many such maps to test for
entanglement (see the examples in Section 3.5 for details).

The chapter is organized as follows. Section 3.2 reviews some notation and algebraic ge-
ometry background for the optimization involved in Step 4. In Section 3.3 we present some
of the relaxations we surveyed and thought to be promising for using in Step 4. We also
present our implementation of these methods using MATLAB and show their performance via
computational efficiency (w.r.t. time) and success rate. Section 3.4 details issues in generat-
ing pncp maps with rational coefficients using Algorithm 1. We also show the difference in
computational requirements for constructing maps with floating point coefficients and those
with rational coefficients. Section 3.5 explains how we use PnCP to identify entanglement in
quantum states. We demonstrate this usefulness through illustrative examples.

3.2 Background

In this section we present the necessary mathematical background and notation for understand-
ing Algorithm 1, and then present the full Algorithm 1, for self-containment and convenience.

We use the following notation; for any integer n > 0, [n] = {1,... ,n} and for a subset
I C [n], |I| denotes its cardinality. For k € N, [n], = {I C [n] : |I| = k}.

A subset I C R[z] is called an ideal if (R[z]-I) C I. The set (gi,...,gx) is the ideal
generated by {g1,...,gx} C Rlz], which is the smallest ideal containing {g1,... ,gx}. Ac-
cording to the Hilbert Basis Theorem [25], every ideal has such a finite generating set. The
variety of an ideal is the set of common complex zeros for the ideals’ generators

V) =V({g1,...,95) ={z €C" : gj(x) =0, Vj=1,...,k},

or more generally
V(I)={zeC" : p(x)=0, Vpe I}

The real variety of I is simply the restriction of V(1) to the reals. We denote this with V®(I).
If the variety V'(I) is a finite set, then [ is called zero dimensional (this is not the same as
requiring V(1) to be finite). A variety V({g1,... ,9,)) =1 V C C" is called smooth, or

non-singular if the associated (r x n) Jacobian matrix (g—g;(a)) ~ has rank n — dim(V') at
7/7‘7

every point a € V (cf. [25, Chapter 9]). For every ideal I € R|x], its radical is the ideal

VI={peR[z] : p" €I forsome r € N}.
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For more details see [25]. Recall from Chapter 2, with any finite set G = {g1, ... , gx} C R[]
we have the semi-algebraic set, and the preorder generated by G resp.,

Kg={zeR" : gj(x)>0,Vj=1,..,k},
3.1
Ta=4 > sl g i s, €%,

y€{0,1}*

3.2.1 Constructing Positive Maps

We will describe now Algorithm 1 in full detail, along with its relation to the Segre variety. As
before letting

. mon—1 m—1 nm—1
T+ PP x PP prn

(k1o i mp)yyr ot ym]) 2 [T11 s 21Y2 o 1 Ym s e B Y

be the Segre embedding, then it is known that (the Segre variety) o, ,, (P" ™! x P"™1) is the
variety of the ideal Iy, ,,, € C[211, 212, - ., Z1ms - - - , Znm] generated by all 2 x 2 minors of the
matrix (2;);; [44]. Asin [51] we will write

V(Inm) = {[z11: - Zom] €P" L f(2) = 0 forevery f € Im},
for the Segre variety, where
z = (211, 212y« 9 Rlmy e -y an),

and VR (I, ) for the subset of its real points. Finally, as explained in [51], biquadratic forms
in Rz, y]2 2 are in a bijective correspondence with quadratic forms in R[z]/1,, ,,. Let us write

PVer(Inm)) ={f € Rlz|/Inm: f(z) >0 forallz € Vr(Inm)},
S(Venm)) = {f €R[z]/Tnm: f =Y f forsome f; € R[z]/Inm},
i
then the construction is as follows.
Algorithm 1. Letn > 2, m > 2,
d = n+m—2 = dim oy, ,, (P ' xP™ 1) and e = (n—1)(m—1) = codim o, ,,, (P" " xP™~1).

To obtain a quadratic form in P (Vi (I, m)) \ £(VR(In,m)) proceed as follows:

Step 1 Choose e 4 1 random points x(?) € R™ and y(¥) € R and calculate their Kronecker
tensor products z(?) = x() @ y() ¢ R?™,

Step 2 Construction of linear forms hy, . . ., hg.
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Step 2.1 Choose d random vectors vi,...vg € R™" from the kernel of the matrix
(z(l) . z(€+1))* .
The corresponding linear forms hq, ..., hq are
hj(z) =v;-z€R[z] forj=1,...,d
If the number of points in the intersection

ker((vl . vd)*) ﬂ V(ILnm)

is not equal to deg(V (1)) = ("™ 2) or if the points in the intersection are

not in linearly general position, then repeat Step 1.

Step 2.2 Choose a random vector vy from the kernel of the matrix
(z(l) e z(e))>k .
(Note that we have omitted z(e“).) The corresponding linear form hy is
ho(z) = vy - z € R[z].

If b intersects Ay, . . ., by in more than e points on V' (I, ., ), then repeat Step 2.2.
Let a be the ideal in R[z]/I,, ,, generated by hg, h1, ..., hq.

Step 3 Construction of a quadratic form f € (R[z]/I,.) \ o

Step 3.1 Letgy(2),..., Iy (2) be the generators of the ideal I, ,, i.e., the 2 x 2 minors
2 2

Zija—ziuzkj forl <@ <k <n,1 <j <l <m.Foreachi=1,...,ecompute
a basis {WEZ), e wl(i?_l} C R™™ of the kernel of the matrix
Vg1 (1)
(0
Ve

(Note that this kernel is always (d + 1)-dimensional, since the variety V (I, ,,) is
d-dimensional (in P""~!) and smooth.)

Step 3.2 Let e; denote the ¢-th standard basis vector of the corresponding vector space,
i.e., the vector with 1 on the i-th component and 0 elsewhere. Choose a random
vector v € R"*™” from the intersection of the kernels of the matrices

(Z(z‘)@ng) z(i)®wg}r> fori=1,...,¢
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with the kernels of the matrices
(e; @ e, —ej®el-)>k forl <i < j<nm.

(The latter condition ensures v is a symmetric tensor in R™ @ R™™. Note also
that we have omitted the point z(¢t1)))

For1l <4,k <nand1l < j, I < mdenote
Eijr=(ei®e)) @ (ex@e) + (exr@e) @ (e;@e;) € R
Let

A={vi®vj+v;®v;: 0<i<j<d},
B ={Ejju — B3 1 <i<k<n1<j<l<m}.
If visin
span(AUB),

then repeat Step 3.2. Otherwise the corresponding quadratic form f
f(z) =v* - (2® 2) € R[2]/Tnm,
does not belong to a.

Step 4 Construction of a quadratic form in R[z]/I;, ,,, that is positive but not a sum of squares.

Calculate the greatest dg > 0 such that dg f + Z?:o h% is nonnegative on Vi (I, ).
Then for every 0 < § < &g the quadratic form

d
(6f +D_hi)(z)
i=0
is nonnegative on Vi (I, ) but is not a sum of squares.

As is explained in [51], with random data this algorithm works with probability 1 without
implementing verifications (for Step 2.1, etc.). However, implementing this algorithm with
truly generic data is difficult at best. Hence, in practice this algorithm will not work with
probability 1, but with some other (likely smaller) probability.

3.3 Relaxations & Performance

We focus in this section on the general optimization problem of Step 4, and the underlying
principles for finding a solution.

We first look at minimization techniques which we can use to ensure non-negativity, and
then consider their relaxations which make them computationally feasible. We also describe
how we implement these techniques in PnCP for practical success.
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Recall the general minimization problem

min p(x
z€RN p( ) (3.2)

Step 4 of Algorithm 1 involves solving a maximization problem similar to (3.2). To be more
specific, in Algorithm 1 Step 4, we need to solve the following problem

max ¢
6>0 (3.3)
s.t. Fs(x,y) > 0.

The recommended SOS relaxation in [51] for (3.3) is the following

max 9,
6>0

s.t. (Z(:L‘iyj)Q)ng(m,y) € Xntm, 3.4)
e N.

As we know (cf., Chapter 2 Section 2.2.1), relaxation problems such as the one above can be
stated and solved as an appropriate optimization program (semi-definite, second order cone,
quadratically constrained, etc.). In recent years, there have been many developments in opti-
mization for computing minima, and the majority of solvers can handle the broad class of these
problems.

We now present alternate SOS relaxations to solving problem (3.2). We present the theory
in this section with regards to an arbitrary function p € R[z]. We then give a description of
how the results apply to our function of interest F5 and problem (3.3).

To test the success rate of each relaxation, we do the following. We generate 50 random
forms using Algorithm 1: Step 1 - Step 3 (with standard rand functions from MATLAB).
Then we employ Step 4 with each relaxation, and note how many forms are identified as
positive, but not completely positive.

3.3.1 Rational Functions

Let us begin by considering Artin’s solution to Hilbert’s 17" problem [13], which we restate
for convenience.

Theorem 3.3 (Solution to Hilbert’s 17¢" Problem). For any p € R[z), if p > 0 on R™, then p
is a sum of squares of rational functions, i.e., there are polynomials g, q; € R[x], with g # 0,

such that
gr=> q.
i

This result provides the most fundamental SOS relaxation. For Step 4, instead of minimiz-
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ing F5, we look for a decomposition into sums of rational squares, i.e.,

max 9,
6>0

s.t. O'(IL‘, y)F(S(:Ea y) € Enera (35)

o(x,y) € Xptm.-

If for some 0, F}5 is non-negative, then by Theorem 3.3 the SOS decomposition in (3.5) always
exists. Of course to solve the general problem (3.5) using semi-definite programming, we must
first bound the degree of o(z,y) # 0.

Note that (3.5) is a quadratically constrained optimization program (non-linear in the deci-
sion variables, § and the coefficients of o), which can be solved with solvers such as PENLAB
[37], but our early tests indicated that this approach is not ideal. So we instead implement (3.5)
with a “bisection” approach. This is already the suggested method in [51], which tries to solve
(3.4), and increases / if a solution is not found. While bisecting may seem like a simple idea,
given some tolerance ¢, bisection achieves an e-optimal solution in log, (%) calls to a feasibility
oracle. And so it has comparable dependence on the tolerence € as interior-point methods for
semi-definite programming.

For the Hilbert method (3.5), let G be the Gram matrix of 0. We fix § = 29, d = 1, and
solve the following
find o(z,y) € Xptm.d;
s.t. tr(G) =1,
O'((If, y)Fg(CE, y) = En+m.

If a solution is not found, we first bisect over §, and if still there is no solution we increase d
and repeat. We set the limits of ¢ to be 276 and d to be 2.

The SOS decomposition and related optimization problems are generated using the sym-
bolic computation package YALMIP [62, 63]. Our MATLAB code & data for the experiments,
is available on https://github.com/Abhishek-B/PhD-Thesis-Supplementary-Material (as
well as the official repository of PnCP, hitps://bitbucket.org/Abhishek-B/pncp/), so that the
reader may verify the results of our experiments.

To solve the required semi-definite program we use the MOSEK solver [2] with our im-
plementations. Verification of the SOS decomposition is done with the YALMIP command
sol.problem==0 (where sol is what we name our solution), as well as requiring the resid-
ual of the problem to be small (< O(1076)).

All of the experiments were carried out on a standard Dell Optiplex 9020, with 12GB of
memory, an Intel ®Core™ i5-4590 CPU @ 3.30GHzx4 processor, S00GB of storage and
running Ubuntu 18.04 LTS.


https://github.com/Abhishek-B/PhD-Thesis-Supplementary-Material
https://bitbucket.org/Abhishek-B/pncp/
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Performance of Hilbert relaxation
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Figure 3.1: Performance of the Hilbert Relaxation (3.5) on problems of different sizes (3,m),
tested on 50 randomly constructed biquadratic forms for each size.

The success rate of this relaxation for problems of small size is remarkable, as seen in Fig-
ure 3.1. Moreover, we observe from the average residual (which includes the failed examples
as well) in Table 3.1, that if we were to allow the residual to be slightly larger (say < O(107?)),
we would see a higher success rate. This would also reduce computation times, increasing the
appeal of this relaxation.

Hilbert Relaxation
(n,m) Success (%) | Time (s) Residual
(3,3) 98 63.31 7.19 x 10~7
(3,4) 80 423.99 2.02 x 1076
(3,5) 38 2098.93 1.17 x 107°

Table 3.1: Average performance of relaxation (3.5)

Remark 3.4. After running a few experiments it becomes apparent that in the Hilbert method,
we should initialize d = 2. While there are instances where d = 1 has a solution, it works with
very small § and hence requires a long runtime due to the number of bisections. We also add
tr(G) = 1 in our constraints to avoid the trivial solution of o = 0.

The relaxation (3.4) is a simplified version of (3.5), which fixes the denominator

o(xz,y) = <Z(a:iyj)2)4.

We refer to this simplification as the Coordinate Norm Relaxation (CNR) and implement it
similar to the Hilbert method. Since o is known, we maximize ¢ and “bisect” over ¢ < 2.
The verification of a solution is also similar, with the additional requirement § > O(10~%) as
otherwise § becomes indistinguishable from numerical error.
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Performance of CNR
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Figure 3.2: Performance of the Coordinate Norm Relaxation (3.4) on problems of different
sizes (3,m), tested on 50 randomly constructed biquadratic forms for each size.

As we can see (Figure 3.2 or Table 3.2), this relaxation is incredibly fast (it is in fact the
fastest relaxation). On problems of smaller size, it is not as successful compared to the Hilbert
method, but we can see from the residuals, that if we relax our verification criteria, we might
improve the success rate of the CNR quite dramatically.

CNR

(n,m) Success (%) | Time (s) Residual Average §
(3,3) 50 2.65 4.89 x 1076 | 1.83
(3,4) 50 8.75 5.53 x 1076 | 0.13
(3,5) 44 56.61 1.34 x 107° | 0.09

Table 3.2: Average performance of relaxation (3.4)

If we consider the variables z;; = x; ® y; over the Segre variety, then the CNR can be

written as

max d,
6>0

s.t. (Z z%)ng(z) € Yntm,
e N.

For polynomials with zeros, this denominator has been used in practice (see [61] for instance),
but there is little theoretical justification for its use (see Theorem 2.14 and the discussion fol-
lowing it). Algorithm 1 works by fixing some zeros of Fj in Step 1, hence the relaxation (3.4)
while practically efficient, is not guaranteed to work, jeopardizing the entire construction.
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3.3.2 Critical Points Ideal

A more modern relaxation comes from the gradient ideal Iy = <%, e am > The first

order optimality test Vp(z) = 0 implies that minima exist in the gradient variety V&(I) =
{z € R" : Vp(x) = 0} (note that we may easily transform the equality constraint Vp(z) = 0,
into the equivalent pair of inequality constraints Vp(z) > 0, —Vp(z) > 0). In [72] it is shown
that one may consider searching for minimizers in the quotient ring R[z]/Iy instead of R[z].
Their main theorem is the following.

Theorem 3.5 (Theorem 8, [72]). Assume that the gradient ideal Iy is radical. If the real
polynomial p(x) is non-negative over V& (p), then there exist real polynomials ¢;(x) and ¢;(x)

such that
S n ap
(@) =Y ai(e)+ Y bj(x) 5
i=1 j=1
and each q; € >,

Note that this is quite similar to (2.11), with the radicality of Iy providing a guarantee on
the existence of the decomposition. Algorithms for extracting the minimum and minimizers of
polynomials are also presented in [72] and tested on several notable examples. In cases where
it is unknown if Iy is radical, one may use the following alternative result of [72].

Theorem 3.6 (Theorem 9, [72]). Suppose p(z) € R|x] is strictly positive on its real gradient
variety V%Q. Then p(x) is a SOS modulo its gradient ideal I+ .

Extending Theorem 3.5 and Theorem 3.6, [36] considers the ideal generated by the KKT
system related to f when minimizing over a semi-algebraic set. To this end let {g;, ... ,gx} C
R[z] generate K and Tz (3.1). The KKT system associated to minimizing p on K¢ is

ogr
Pi 831:Z zT: "Ox; 0,
gr =0,
/\rgr = 07

forr=1,... ,kandi=1,...,n. Asin [36], we let

Ixkr = (P, s Py A1g1, - - Ak
Vieer = {(z,\) € R" x R* = g(z,\) =0, Vg € Ixkr},
H={(z,\) eR" xRF : g.(x) >0, r=1,... ,k},

and the KKT preorder generated by G (now in the larger ring Rz, A]) is
Txxr = T + Ikkr.

Theorem 3.7 (Theorem 3.2, [36]). Assume Igkr is radical. If p(z) is non-negative on VIERKTH’H,
then p(z) belongs to Tkkr.
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If the radicality of Ixkr is not known, then similar to Theorem 3.5 positivity of p(z) on the
appropriate subset of VIE{KT, ensures membership in Txgr.

Theorem 3.8 (Theorem 3.5, [36]). If p(z) > 0 on Vi, N H, then p(z) belongs to Tkkr.

For our application we work on the sphere S™¥~! (this can be replaced by any other suitable
compact set) and the minimizers (z*, y*) must now satisfy

:Z:c?wLZyJQ-*l:O’
i=1 =1
VF(;(x,y) - )\VS(.%,y) = 0.

This allows us to use the following KKT relaxation, where we write w for the variables (z,y),

max
6>0
st Fs(w Z@ <gi§ w) — A;j(@) — M(w)s(w) € Spym  (B.6)

Notice that we do not search for membership of Fs modulo Igkr into all of T(5, instead
to simplify things we search only for elements of Tz with v = (0, ..., 0). Since Fj is known
to have zeros, for this relaxation to be successful Ixgt must be radical. While the random
nature of Fjs implies a high probability of IxkT being radical, verifying this is computationally
difficult, especially given the floating point construction of Fj.

This relaxation also has non-linear constraints, arising from the products of decision vari-
ables (coefficients of ¢; and ). Hence, we implement this with the same “bisection” approach
and verification criteria as (3.5). We fix 6 = 2°,d = 1, and solve

find ¢;,n € }R[w}d,
s.t. Fs(w) — p(w)T (VFs(w) — AVs(w)) — Ap(w)s(w) € Sppom.
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Performance of KKTr
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Figure 3.3: Performance of the KKT Relaxation (3.6) on problems of different sizes (3,m),
tested on 50 randomly constructed biquadratic forms for each size.

To our surprise, this method fails completely on the (relatively) larger problems, and has
quite poor performance even on the smaller ones of size (3, 3). This suggests that the random
construction alone is not enough to guarantee the radicalness of Ixkrt. Unlike the previous two
relaxations, the residuals here do not indicate any room for improvement. In our tests, increas-
ing the relaxation degree d offers some success, but this also greatly increases the computation
time, making this relaxation impractical for the problem at hand.

KKT Relaxation
(n,m) Success (%) | Time (s) Residual
(3,3) 40 97.15 16.95
(3,4) 0 581.06 33.07
(3,5) 0 1879.94 56.57

Table 3.3: Average performance of relaxation (3.6)

3.3.3 Jacobian relaxation

We now present an exact relaxation which (in theory) always works for our problem of in-
terest. This approach is similar to the KKT relaxation, only now to establish the dependence
between derivatives of the constraints and the function, we consider determinants of an asso-
ciated Jacobian matrix. Consider problems of the form (3.2) with a single constraint g. We
define

B(z) = (Vp(z) Vy(z)),
to be the matrix with columns being the gradient vectors of p and g. Let
polx) = ) detBp(x), (3.7)

E€[N]2
sum(E)=¢
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where By, is the submatrix of B with rows listed in E, and sum(E) is the sum of the elements
in E. As shown in [71], (3.2) is equivalent to

min p(x
meRNp( )

s.t. g(x) =0, (3.8)
we(x) =0, £=3,... 2N —1.

We call this the Jacobian system related to (3.2). Letting J = (g, ¢3, ... ,pan—1) and
JW = {q e J:deg(q) <2d},
we can write the SOS relaxation for (3.8) as

max -y,
>0

sit. p(x) —y —qx) € Ly, (3.9)
q(z) € J9.

Moreover, letting p* be the solution of (3.8), p@ of the corresponding SOS relaxation (of
order d) and p"™"" the minimum of (3.2). Then the following holds.

Theorem 3.9 (Theorem 2.3, [71]). Assume that V(g) is non-singular, then p* > —oo and
there is a D € N such that p(d) = p* forall d > D. Moreover, if pmm is achievable, then
pld) = p™" forall d > D.

For us, the minimum of Fj is always achieved on SV 1, and it is clear that V(s) = SV 1
is non-singular. It follows that we can solve the Jocabian system (3.9) associated to F exactly.
This relaxation is given as

max 6,
6>0

s.t. Fs(x,y) — q(z,y) € Xpim, (3.10)
q(z,y) € J.

Due to non-linearity in the constraints of (3.10), we employ the bisection approach similar to
the other methods and solve

find g(x,y) € J@,
s.it. Fs(z,y) —q(x,y) € Eptm,

again with the limits of § being 276 and d being 2.

Remark 3.10. The functions ¢y in (3.7) are quartic polynomials in our problem of interest. We
could instead write this relaxation over the Segre variety in the variables z;; = z; ® y; which
would lead to quadratic constraints y. However, as detailed in [71] the generators of the Segre
variety introduce an exponential number of constraints, and would in turn make (3.10) more
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difficult to solve numerically. This trade-off between the degree and the number of constraints
is also present in the KKT relaxation.

Performance of Jacobian relaxation
100 3000

— 2500

=4

60 —

40 -

Average Success Rate (%}
werage Computation Time (s)

— 1000

A

20 -
— 500

(3,3 (3.4
Figure 3.4: Performance of the Jacobian Relaxation (3.10), tested on 50 randomly constructed
biquadratic forms. Problems of size (3,5) were too difficult for this relaxation.

Unsurprisingly, this is quite slow. The solve time on test cases of size (3,5) was close
to one hour, and so we do not test the Jacobian relaxation on this set. We can also see (Fig-
ure/Table 3.4) that this relaxation exhibits low success rates and high residuals. Similar to
KKT, the Jacobian relaxation is somewhat impractical in our context.

Jacobian Relaxation
(n, Success (%) | Time (s) Residual
(3,3) 38 476.63 18.64
(3,4) 24 2578.73 25.06

Table 3.4: Average performance of relaxation (3.10)

Remark 3.11. It should be noted again that these tests were conducted with limited freedom
on the degrees of the relaxations. Based on our experience, we recommend using the Hilbert
method with a high relaxation degree (d = 3) if memory is not a concern and the user wants
more successful constructions. When memory becomes an issue, the CNR seems to be a better
choice; although its success rate is lower, the speed of computation makes generating random
examples more practical.

3.4 Rationalization

Constructing PnCP maps over floating point numbers provides quick numerical tests which can
indicate positivity, but ideally we would like to have rational PnCP maps with exact certificates
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of positivity. Recall from Chapter 2, that the semi-definite programs arising from our SOS
relaxations are feasibility problems of the form,

g=0

. 3.11)
st. (4,G)=0b;, i=1,...,m

where A; and b; are obtained from the problem data (see [75] for a nice presentation of this).
The following theorem, first proved in [78], provides a means to obtain rational solutions of
(3.11) from numerical ones.

Theorem 3.12 (Theorem 3.2, [20]). Let G be a positive definite feasible point for (3.11) satis-
Jying
p:= min (eig(G)) > [|({(As, G) — bi)il| =: €,

then there is a (positive definite) rational feasible point G. This can be obtained in two step;
(1) Compute a rational approximation G with T := ||G — G|| satisfying 2 + €2 < p2,
(2) Project G onto the affine subspace L defined by the equations (Ai, G) = b; to obtain G.

For our problems, there are two key issues with using this rationalization. Firstly, our
semi-definite programs will never satisfy the strict feasibility requirements of G being positive
definite. This is because by construction, the form Fs will always have non-trivial zeros chosen
in Step 1 of Algorithm 1. To tackle this, there are many facial reduction methods available to
allow this rationalization for positive semi-definite G. To put it simply, these methods work by
‘removing’ the rational zeros, and allowing us to work with a smaller positive definite G. One
such reduction is presented in [51], see also [56] for instance. However, we should note that in
general even this strategy will not work in our setting. This is because, even though our initial
choice of zeros for Fs may be rational, it is still possible for F; to have some irrational zeros,
which then can not be removed via facial reduction.

More importantly, the numbers b; are obtained from the coefficients of the polynomial
being tested, in our case Fj5. This means that the affine subspace L is being defined by floating
point numbers, and any sort of rationalization of G will perturb this subspace.

In PnCP we combat this by restricting the randomization in the linear algebra steps of Algo-
rithm 1; we restrict the choices of the initial points x;, y;, so that the generated linear/quadratic
forms have rational entries with small (single digit) denominators. To be more specific, for the
constructing the initial points x@ y(@ instead of using rand in MATLAB to generate uni-
form random numbers, we use randi to generate pseudorandom integers, with the integers
belonging to the interval [—3, 3]. This ensures that the points z() has single digit entries, and
as a result the required kernels of Step 2 and Step 3, have rational entries where the numerators
and denominators normally have a small number of digits (two or three). For the linear forms
h; and the quadratic form f, we choose the random vectors in Step 2 and Step 3 as a ran-
dom linear combination of vectors that span the required kernels, with the linear combinations
having coefficients —1, 0, or 1.

As expected this reduces the base success rate of Algorithm 1, but it successfully constructs
Fs with rational coefficients. We also observe a significant increase in computation time to
construct forms with rational coefficients; we test this by constructing 50 random forms with
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rational coefficients, and comparing the timing costs to constructing forms with floating point
coefficients.

As we can see below, constructing rational forms is far more expensive than floating point
forms. In fact, the average time taken to construct forms with floating point coefficients re-
mains almost constant (~2 seconds). In constrast, the construction time for forms with rational
coefficients can take close to 10 minutes.

Average Construction Time
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Figure 3.5

This rational construction can be used in PnCP with the command Gen_PnCP and set-
ting the ‘rationalize’ argument to 1. Currently, PnCP provides numerical verification of the
constructed rational Fj, via the techniques of Section 3.3. This construction can be used in
conjunction with the many rational SOS packages (such as RationalSOS, RealCertify, multiv-
s0s, etc.) to obtain exact certificates of non-negativity.

3.5 Detecting Quantum Entanglement

We will now show how we can use PnCP for detecting quantum entanglement. We start with
a brief (and simplified) exposition into quantum states, the core object of interest for us, pre-
senting some terminology and commonly known facts (for a more detailed introduction we
refer the reader to [4, 50, 99], or any graduate text on Quantum Information Theory). We then
state two entanglement criteria, and then give an example demonstrating how PnCP is used to
implement the most general one.

A quantum state is a vector ¢ € R™, and with any quantum state there is an associated
(normalized) density matrix ¢’ =: p € SR™™ (normalized to have unit trace). A density
matrix

p= pidid], (3.12)
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with {¢;} an orthonormal system, p; > 0 and ) _, p; = 1, represents a quantum system in one
of several states ¢; with associated probabilities p;. We use the following terminology; p is a
pure state if p = ¢¢’ , otherwise if p is of the form (3.12), then it is a mixed state. It should be
noted that any (symmetric) positive semi-definite matrix p with tr(p) = 1 is a density matrix.
It is known that pure states satisfy tr(p?) = 1 while for mixed states tr(p?) < 1.

Given a composite quantum system SR> = SR™*"™ @ SR™*™ and a state p""™ €

SR™™X™ we call p"™ simply separable if

p"" = p" @ p™, with p' € SR™', and ||p|| =1,

separable if
P =D pipl P, pi=0, Y pi=1,
i i
and entangled if its not separable. A problem of interest in quantum information theory is
the so called separability problem; given a state (density matrix) p in a composite system,
determine if it is entangled.

There are many different criteria and measures of entanglement throughout the literature.
For pure states, things are relatively simple and separability can be determined by checking if
the state is in the image of the Segre embedding. For mixed states however, the situation is
more complicated.

In low dimensional composite systems, we have the Peres-Horodecki criterion, also known
as the positive partial transpose (PPT) criterion; for p™™ = ). p;pl @ p* define the partial
ampliation map (I @ ®)(p™™) = >, pipl @ ®(pi").

Criterion 3.13 (PPT, [4] section 8.4). For a quantum state p € SR™™*"" if (I ® T')(p) has
a negative eigenvalue, i.e., (I @ T')(p) # 0, then p is entangled.

For systems of size (n, m) = (2, 2) or (2, 3), this criteria is both necessary and sufficient.
In higher dimensional systems, we lose the sufficiency of this test, i.e., there are entangled
states pent With (I @ T')(pent) = 0 (see [49] for the first such example). In this situation we
instead have the more general entanglement criteria.

Criterion 3.14 (The general criterion, [4] section 8.4). A quantum state p € SR™ ™™ is
entangled if there is a pncp map ® such that the ampliation (I @ ®)(p) # 0.

The PPT entanglement criterion is a special case of Criterion 3.14, with ® being the trans-
pose map. With PnCP we can apply this test with many different random & in the following
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way;

Algorithm 2: Entanglement Detection
Input: p, S
Output: Status
1 = 0; Status = “Unknown”’;
while ; < S do
Generate random P;
Compute I ® ®(p);
if I ® ®(p) / 0 then
Status = “Entangled”;
break;
else
| i=i+1;
end

end

Example 3.15. As an example consider the following state,

[1/3 0 0 0 1/3 0 0 0 1/3]
O 000 O O0O0OO0O O
0O 000 O O0O0OO0O O
0O 000 O O0O0OO0O O
A=1|1/3 0 0 0 1/3 0 0 0 1/3
O 000 O O0OO0OO0O O
0O 000 O O0O0OO0O O
0O 000 O O0OO0O O
1/3 0 0 0 1/3 0 0 0 1/3)
= %ZEi’j & Ei,j e R3*3 & RSX?’,
2y

where each F; ; € R3*3 is the unit matrix with 1 in row 4, column j and zeros everywhere
else. This state is modeled after the Bell states, and is entangled. We use PnCP to generate the
following non-negative, non-SOS polynomial with the command Ent _PnCP,

Fy(x,y) = 522y} + datyiys + 122120yF — 222120192 + 3621 20y1y3 + ST123Y3
+2z123y1Y2 + 6T1T3Y1Y3 + Qx%yg + Qx%ygyg + 609013:23/% — T4z 1221293
+4x1w3y§ + 22123Y2y3 — 3:Jc%y32, + 28x1x2y32, — 2x1x3y§ + 19w%y%
—6625y1y2 + 2423y1y3 — 4T273YT + 24T073y1Y2 — 102273Y1Y3 + 94T3Y5
—363:%3/23/3 + 3Ox2x3y% + 2x913Yy2y3 + 5x§y§ — 23:21:33/% + Sx?;y%
+225y1y2 + 2051Ys + 223y5 + 2313

and the associated PnCP map @,
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5 0 8 1
®(E)=1(0 2 1|, ®E13+E3:)=]|1 4 1
2 1 -3 3 1 —2
3 1 1] 12 —11 18
®(E33)= |1 2 0|, ®(E12+Ex)=|-11 60 —37
10 1 | 18 —37 28
19 -33 12 —4 12 —5
P(E22)=|—-33 94 18|, ®(Ep3+E32)= |12 30 1
12 —18 5 | 5 1 2

Since we construct ® on SR®**3, we make the canonical extension to R3*3 by setting
®(E; ;) = 3®(E; ; + Ej;) fori # j. With this extension, we find that

[ 10 0 4 12 —-11 18 8 1 3
0 4 2 —-11 60 =37 1 4 1
4 2 -6 18 =37 28 3 1 =2

1]12 -11 18 38 —66 24 —4 12 =5
(I®®)(A)==|-11 60 -37 —66 188 —36 12 30 1

6118 —37 28 24 -36 10 -5 1 -2
8 1 3 —4 12 -5 6 2 2
1 4 1 12 3 1 2 4 0
3 1 -2 -5 1 -2 2 0 2

with (numerical) eigenvalues —8.45, —2.78, —0.83, —0.06,0.23,2.17, 3.28, 7.14, 41.96.

Example 3.16. We consider now an example of a bound entangled state, which are known to
be entangled whilst having a positive partial transpose (see [48] or [50, Section 6.11]). We take
the example from [42], with

-1 -1 5 -1 -1 -1 -1 -1 -1 -1 -1 5
ER4X4®R3X3.

Note that tr(o?) = 0.2 < 1, and so o is a mixed state (meaning we cannot simply check if it
is in the image of the Segre embedding). PnCP generates the following
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7 17/2  —=5/2] -6 -3 3
(I)(El,l) = 17/2 13/2 —7/2 , q)(ELg + E371) =1-3 -2 3|,
—5/2 —7/2 2 | '3 3 0
3 -1 0] —1/2 15/2  —6
®(Es3)= -1 0 —1|, ®(Eia+Es)=|15/2 15 —17/2],
0 -1 3| 6 —17/2  9/2
30 -1 (2 -3 0
D(Fyo)= | 0 17/2 —4|, ®(Bas+FEss)=|-3 -2 3
1 -4 3 0 3 -2
We find the ampliation (I ® ®)(o) to be
[ 133 162 -101 —-17v —-18 13 —-17 —-18 13 19 —30 13
162 308 —182 —-18 —52 22 —-18 =52 22 —-30 -—-52 10
—101 —182 129 13 22 =21 13 22 =21 13 10 15
—-17 —18 13 163 36 —29 —-17 —-18 13 67 84 —17
—18 —52 22 36 104 —44 —-18 —-52 22 84 26 —20
1 13 22 —-21 —-29 —-44 51 13 22 =21 —-17 -20 3
120 | —17  —18 13 —-17 —18 13 67 36 7 19 —-18 1 |’
—18 52 22 —18 —-52 22 36 104 —-44 -—-18 50 —26
13 22 —21 13 22 =21 7 —44 75 1 —26 15
19 —-30 13 67 84 -—-17 19 -—-18 1 139 72 =29
—-30 52 10 84 26 —20 —-18 50 —-26 72 128 -—80
| 13 10 15 =17 —-20 3 I =26 15 =29 =80 75 |

with (numerical) eigenvalues of —0.14, 0.00, 0.06, 0.10, 0.27,0.37,0.60,0.79,1.01, 1.81, 2.76, 4.69.
For this example, PnCP took ~10 seconds to numerically check the entanglement status of the

state, with majority of the time spent constructing the rational ®. If we desired only an indica-

tion of entanglement, we could repeat this with ® having floating point entries, and the whole
process would be significantly quicker.

Remark 3.17. With Example 3.16, PnCP only claims that the given state is entangled, it
does not claim that ¢ is bound entangled, i.e., it does not check whether o is distillable [7].
Distillation of quantum states is beyond the scope of this thesis.

There are many other entanglement criteria that rely on testing some condition with a PnCP
map. As we can see from the examples, PnCP provides a means to implement these criteria by
being able to generate random (rational) pncp maps.

3.6 Improvements for PnCP
In this chapter we presented PnCP; a MATLAB package for constructing positive maps which

are not completely positive, with a focus on the practicality of this construction and its appli-
cation to testing entanglement of quantum states.
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PnCP is an open-source package available from https://bitbucket.org/Abhishek-B/pncp/.
The package implements state of the art optimization techniques to numerically ensure posi-
tivity of the constructed maps. PnCP is even able to construct pncp maps with rational coeffi-
cients, which can be used in conjunction with existing software to obtain not only numerical,
but exact certificates of positivity.

We use the KMSZ construction which additionally provides a priori knowledge of some of
the zeros of the constructed polynomial. While there is work on optimizing polynomials with
zeros [22, 81], there are restrictions on the zeros in these methods. Whether it is possible to
adapt the zeros of the KMSZ construction to suit these methods, is something we wish to study
in the future.

As the only package for this kind of construction, we intend to maintain and improve
PnCP in various means; implementing better non-negativity tests as they become available,
optimizing the existing code (perhaps even pursuing parallel computing where possible), and
including more entanglement criteria to improve the classification of quantum states.

Our main focus moving forward will be to strengthen PnCP as a classification tool for
quantum states; primarily by implementing a rational SOS decomposition method which will
automatically provide exact certificates of positivity.


https://bitbucket.org/Abhishek-B/pncp/

Chapter 4

Truncated Tracial Moment Problem

The truncated tracial moment problem is a non-commutative analogue of the classical trun-
cated moment problem. It is the study of positive linear functionals on the space of non-
commutative polynomials that can be represented using traces of evaluations on tuples of real
symmetric matrices. This chapter concerns the bivariate quartic tracial moment problem. As
we have seen in Chapter 2 (Section 2.2.2.1), the classic moment problem is dual to polynomial
optimization; likewise the truncated tracial moment problem is dual to trace optimization of
non-commutative polynomials (see [18] for an introduction to this).

The author’s MSc thesis [9] studied the bivariate quartic tracial moment problem when
the associated Hankel matrix M is singular. Using the rank analysis approach of Curto and
Fialkow, [9] gave a complete characterization of the bivariate quartic tracial moment prob-
lem when M is of rank at most 4. Furthermore, [9] gave sufficient conditions for when a
representing measure exists.

While [9] studied sufficient conditions for the existence of a representing measure, it did
not cover necessary conditions. During the PhD, we searched for these necessary conditions
in collaboration with AljaZ Zalar, and our results are published in [10]. This chapter is based
on our publication [10], and we will present here our novel, computationally oriented results;
which provide a significant improvement (see below) to any existing algorithmic search for a
representing measure.

For a more comprehensive discussion of bivariate quartic tracial moment problem, we refer
the reader to [10], which includes the results of this chapter, as well as other (more technical)
results, such as a complete characterization of the rank 5 case.

In Section 4.1 we present necessary definitions and preliminary results for the study of
the truncated tracial moment problem. Section 4.2 gives the reduction of the bivariate quartic
tracial moment problem with M of ranks 5 and 6 to four basic cases. This reduction helps to
simplify future analysis of the tracial moment problem on quadratic varieties, by reducing it to
the four canonical quadratics. Furthermore, our analysis is detailed and comprehensive, so it
can easily be implemented to transform any given My of rank 5 or 6 into one with canonical
relations.

Section 4.3 contains an analysis of the form of atoms in a potential representing measure;
the results in this section were proved by Zalar in our article [10]. This atomic representation
result was pivotal in analyzing the bivariate quartic tracial moment problem for ranks 5 and
6. In particular, a complete characterization of the rank 5 cases was obtainable thanks to this
representation.

43
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Section 4.4 gives the solution of the bivariate quartic tracial moment problem in two of the
four rank 6 basic cases. The results include a consideration of the sizes of atoms in the minimal
representing measure, and show that atoms of size 2 (i.e., 2 X 2 matrices) are sufficient. It is
also shown how the problem can be rephrased as a feasibility problem of small linear matrix
inequalities and a rank condition. This is reformulation is one of the main contributions of
this thesis; ordinarily, the search for a representing measure is carried out via flat extensions,
however this approach is teemed with numerical instabilities, and for larger size problems
quickly becomes computationally intractable. In comparison, the computational complexity of
the posed linear matrix inequalities remains the same, and these can be efficiently solved.

Remark 4.1. Note that all results in this chapter which have previously appeared in the au-
thor’s MSc thesis will be cited as [9]. The results obtained during the PhD and subsequently
published in the peer reviewed journal article [10], will be cited as such when required.

4.1 Preliminaries

4.1.1 Non-commutative bivariate polynomials

We denote by (X,Y") the free monoid generated by the non-commuting letters X, Y and call
its elements words in X, Y. Consider the free algebra R(X,Y’) of polynomials in X, Y with
coefficients in R. Its elements are called non-commutative (nc) polynomials. Endow R(X,Y’)
with the involution p — p* fixing R U {X, Y} pointwise. For a word w € (X,Y), w* is its
reverse, and v € (X, Y') is cyclically equivalent to w, which we denote by v X w, if and only
if v is a cyclic permutation of w. The length of the longest word in a polynomial f € R(X,Y)
is the degree of f and is denoted by deg(f) or | f|. We write R(X,Y"), for all polynomials of
degree at most k. For an nc polynomial f, its commutative collapse f is obtained by replacing
the nc variables X, Y, with commutative variables z, y.

4.1.2 Bivariate truncated tracial moment problem

Given a sequence of real numbers § = ") = (Bw)|w|<2n> indexed by words w of length at
most 2n such that

B, = B, wheneverv X w and By = By~ forall lw| < 2n, “.1)

we want to know if there exist ¢ € N, and a probability measure (positive, normalized, Borel
measure) 1 on (SR**")2 such that

Bo= [ T4, B) du(A,B).
(SRt X t)2
By the tracial version [15, Theorem 3.8] of the Bayer-Teichmann theorem [5], this is equivalent

to the following simpler problem.
Given [ as above, does there exist N € N, t; € N, \; € (0,00) with Zf\il Ai = 1 and
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pairs of matrices (4;, B;) € (SR"**)2 such that

N
Buw =Y NTr(w(A;, By)), 4.2)
i=1
where w runs over the indices of the sequence 5 and Tr denotes the normalized trace, i.e.,
1 txt
Tr(A) = n tr(A) forevery A € R™".

If such data exist, we say that 5 admits a representing measure. The bivariate quartic tracial
moment problem is the above with n = 2. The pair (4;, B;) € (SR%*%)? atoms of size t; and
the numbers \; are densities. We say that . is a representing measure of rype (mq,ma, ..., m;)
if it consists of exactly m; € N U {0} atoms of size ¢ and m, # 0.

Example 4.2. As a very simple example, consider the following sequence

03 = (01,0x,0y,0x2,0xy,0yx,0y2)

1 111
=(1,1,=,2,=,=,2).
(7727727272)

For this sequence, one can write

1 1
O = 5 Tr(w(As, Br)) + S Tr(w(Az, Be)),

where
(A1, B1) = (1,0) € (SR™1)2, (@,Bﬂ:((f é)(é ?))e(SRM)Q.

Then we know that #(2) has a representing measure z; which consists of two atoms, with equal
densities (\; = %). Since the pair (A1, By) have size 1, and the pair (Ag, By) have size 2, p;
is of type (1, 1). We could also take the alternative representing measure g2, which consists of
equal densities (\; = % again), and the atoms

(606 0)- (G060 eomsr

Because there are now no atoms of size 1, and two atoms of size 2, the representing measure
e is of type (0, 2).

As seen in Example 4.2, given a representing measure, we can always present the atoms

using matrices of a larger dimension. A representing measure of type (mgl), mgl)7 . ,m,(%))
is minimal, if there does not exist another representing measure of type (m§2), méz),. v mg))
such that

2 1
ro <ty or (rg= rl,mg) < m,(%)) or (ro= Tl,mg) = m%),m£2)_1 < mfﬂl)_l)
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or ... or (7‘2 = rl,mg) = mg), .. .,méz) = mél),mgz) < mgl))-

We say that 8 admits a non-commutative (nc) measure, if it admits a minimal measure of type

(mq, ma,...,m,) withr > 1. If 81 = 1, then we say 3 is normalized. We may always assume
that /3 is normalized (otherwise we replace Tr with = Tr). If 3, = Sy for all w € (X, Y)
B1

with |w| < 2n, we call § a commutative (cm) sequence and the moment problem reduces to

the classical one solved by Curto and Fialkow. Otherwise we call 5 a non-commutative (nc)
sequence.

Remark 4.3. The following helps to simplify the problem at hand; Replacing a vector (A4;, B;)
with any vector

(UiAz‘UiT, UiBZ-UiT) c (SRtiXti)2

where U; € R%*% is an orthogonal matrix, preserves (4.2).

We associate to the sequence [ the (generalized) Hankel matrix M,, = M., () of order
n with rows and columns indexed by words in R(X,Y),, in the graded reverse lexicographic

order, in which we first sort elements by degree, and then in reverse lexicographic order (cf.,
[25, Chapter 2, Definition 6]). To illustrate,

1< X<V <X2< XY <YX<Y?’<X3<X?YW<XYX<XY?’<..

The entry in row U and column V is SBy+y, i.e.,

1 X Y .. Xn ... Y™
1 /6 Bx By ... Bxn ... Pyn
X | Bx Bx2  Bxy ... PBxntr ... PBxyn
Y [ By Bxy By: ... Bxny ... PBynn
M (B) = : : : : : ’ 4.3)
XTL BX" ﬁXn+1 ﬁXnY e ﬁXQn e ﬁXnyn
Yn /BYn BXY" BY”+1 e BX"Y" . e By2n

and in the special case of n = 2,

1 X Y X2 XY YX Y2
1 /5 Bx By Bx2 Bxy Bxy By
X | Bx Bx2 Bxy  Bxs Bx2y Bx2y  Bxvye2
Y [ By Bxy By: Bxey  Bxye Bxye By
Ma= X2 | Bxz Bxs Bxzy By Bxsy Bxsy  Bxae2 | @b
YX | Bxy Bxey Bxyz Bxsy Bxey2 Bxvxy Bxys
XY | Bxy Bxey Bxyz Bxsy Bxvxy Bxzy2  Bxys
Y2 \By2  Bxyz Bys  Bxeyz  Bxys Bxys By

where we have replaced the subscripts of the entries By+«y with cyclically equivalent mono-
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mials, in accordance with the (degree-)lexicographic ordering. We will label the row/column
vectors of M,,(3) with bold characters X, Y, etc. to distinguish from the nc variables XY,
etc.

Observe that M,, is symmetric. Let Sy, S C {1,X,Y,X? XY, YX,..., X" ..., Y"}. We
will denote by [M,,]s, s, the submatrix of M,, consisting of the rows indexed by the elements
of 57 and the columns indexed by the elements of So. In case S := S7 = S5, we write
My]s == [My]s,s for short, and if S = R(X,Y);, (with & < n) we write [M,,]. For any
matrix A with its rows and columns indexed by words in R(X,Y"), writing w(X, Y) we mean
the column/row of A indexed by the word w. Similarly for vectors. If 5 admits a measure,
then M, is positive semi-definite; see Proposition 4.4. If M, represents a cm sequence, we
call it a cm Hankel matrix. Otherwise M, is a nc Hankel matrix. By [17, Corollaries 3.19,
3.20], 5 admits a measure if and only if there exists a Hankel matrix M, 1 extending M,
which admits a rank preserving extension M,, ;1. Furthermore, by [17, Corollary 3.2] in
this case the atoms of size at most rank(M,, ;) are sufficient. When n = 2, if My is positive
definite, then 5 admits a measure since all trace-positive polynomials of degree 4 are cyclically
equivalent to sums of hermitian squares [16]. This is the duality established by [17, Theorem
4.4]. Moreover, the measure consists of at most 15 atoms of size 2 [15, Remark 3.9].

4.1.3 Riesz functional and truncated Hankel matrix

For a polynomial p € R(X,Y )a,, let p = (ay ). be its coefficient vector with respect to the
degree-lexicographic ordered basis

{1,X,V,X* XY,YX,Y? ... X" .. Y™}

of R(X,Y)a,. Any sequence 3 = B2 By . Bxen, ..., By2n, which satisfies (4.1) de-
fines the Riesz functional Lgn) : R(X,Y),, — R which is given by

L5<2n>(p) = Z awfBw, Wherep = Z AW,
|lw|<2n |lw|<2n

Notice that £, = L,B(2n) (w) forevery |w| < 2n, and M,, is the unique matrix such that for
p,q € R(X,Y),, we have that

<Mnﬁ7 q\> - Lﬁ(?ﬂ) (pq*)a

where (p,q) = pT4, and ¢* denotes the involution * applied to ¢. In particular, the row
w1 (X, Y) and column wy (X, Y) entry of M,, is equal to

T T

ang(X,Y),wl(X,Y)> = Lyom (waw?).
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If 5(2") admits a measure, i.e., (4.2) holds for every [, then for p € R(X,Y") of degree at
most n we have that

m
(Manp, D) = Lgen (pp™) = > NTr (p(Ai, By) (p(Ai, By))*) > 0,
i=1
where \;, A;, B; are as in (4.2). This proves the following proposition, which is also well

understood in the commutative setting.

Proposition 4.4. If 52" admits a measure, then M,, is positive semi-definite.

4.1.4 Support and Recursive Generation

We write 0,,x, for the m X n matrix with zero entries. Usually we will omit the subindex
m X mn, when the size is clear from context.
Let C 4, denote the column space of M, i.e.,

Cm, =span{l, X, Y,... . X" .., Y"}.

For a polynomial p € R(X,Y),, of the form p = > a,,w(X,Y’), we define
P(X,Y) = 3 auu(X, V).
w

Note that p(X,Y) € Crq,,. We express linear dependencies among the columns of M,, as
pl(va) = 07 .. apm(X’Y) = O)

for some p1,...,pm € RX,Y),, with m € N. We define the free zero set Z(p) of p €
R(X,Y) by
Z(p) == {(A,B) € (SR"")?:t €N, p(A, B) = O4xt} ,

and the variety V(M,,) as

V@) =vM,) = (] Z(D). (4.5)
PER(X,Y )
p(X,Y)=0

Theorem 4.5 (1) (resp. (3)) is a real tracial analogue of [26, Proposition 3.1] (resp. [27,
Theorem 1.6]) and was first established in [9, Lemma 4.1.1] (resp. [9, Theorem 4.1.3]).

Theorem 4.5 (Theorem 2.2, [10]). Suppose B admits a representing measure consisting
of finitely many atoms (A;, B;) € (SR'*')2, t; € N, with the corresponding densities \; €
(0,1). Let p € R(X,Y), be a polynomial. Then the following are true:

1. We have
U&xuyv)czp) & pXY)=0 inM,.

%
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2. Suppose the sequence (2"12) = (Bw)|w|<n+1 is the extension of 3 generated by

B = Z NTr(w(A;, By)).

Let M, 11 be the corresponding Hankel matrix. Then:

pX,Y)=0inM, = pXY)=0 inM,q;.

3. (Recursive generation) For ¢ € R(X,Y), such that (pq) € R(X,Y),, we have

pX,Y)=0 inM, = (pg)(X,Y)=(qp)(X,Y)=0 in M,,.

Column relations forced upon M,, with an application of Theorem 4.5 (3) will be impor-
tant in solving bivariate quartic tracial moment problem and we will refer to them as the RG
relations. If M,, satisfies RG relations, we say M., is recursively generated. The first conse-
quence of the RG relations is the following important observation about an nc Hankel matrix

M.,

Corollary 4.6 (Lemma 4.1.5, [9]). Suppose n > 2 and let B*™ be a sequence such that
Bx2y2 # Bxyxy. Then the columns 1,X,Y, XY of M,, are linearly independent.

Corollary 4.7 (Corollary 4.2.1, [9]). Suppose n > 2 and let B*™ be a sequence such that
Bx2y2 # Bxyxy. If My, is of rank at most 3, then 3 does not admit a measure.

4.1.5 Flat extensions

For a matrix A € SR**®, an extension A € SR(E+)X(s+4) of the form
~ A B
i= (5 o)

for some B € R**" and C' € R“*", is called flat if rank(A) = rank(A). This is equivalent
to saying that there is a matrix W € R**%“ such that B = AW and C = WTAW. The
connection between flat extensions and the bivariate truncated tracial moment problem is the
following.

Theorem 4.8 (Theorem 3.19, [17]). Let 3 = 8™ be a sequence satisfying (4.1). If M,,(B)
is positive semi-definite and is a flat extension of M, _1(83), then [3 admits a representing
measure.

4.1.6 Affine linear transformations

An important result for converting a given moment problem into a simpler, equivalent moment
problem is the application of affine linear transformations to a sequence 5. For a, b, c,d, e, f €
R with bf — ce # 0, let us define

O(X,Y) = (¢1(X,Y),$2(X,Y)) := (als+bX +cY,dls+eX + fY), (X,Y) € (SR**%)?,
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where I is the identity matrix in SR**®. Let 5 (2n) be the sequence obtained by the rule

Buw = Lgem (wo ¢) forevery |w| < n.

Notice that L., (p) = Lgen (po ¢) forevery p € R(X,Y),.
The following is the tracial analogue of [30, Proposition 1.9], which will allow us to make
affine linear changes of variables.

I:EOposition 4.9 (Proposition 3.1.5, [9]). Suppose 6(2”) and 5(2”) are as above and M, and
M,, the corresponding Hankel matrices. Let Jy : R(X,Y), — R(X,Y), be the linear map
given by

Jgp :=po .
Then the following hold:
1 My, = (J5) " My Js.

2. Jy is invertible.

3 M, =0 M, = 0.

4. rank(M,,) = rank(M,,).

5. The formula 1 = [ o ¢ establishes a one-to-one correspondence between the sets of
representing measures of 3 and (3, and ¢ maps supp(u) bijectively onto supp(fi).

6. M, admits a flat extension if and only if M,, admits a flat extension.

7. Forp e R(X,Y),, we have p(X,Y) = (Js)T(po ¢)(X,Y).

4.1.7 Classical bivariate quartic real moment problem

The classical bivariate quartic moment problem has been solved by Curto and Fialkow in a
series of papers, e.g., [26, 27, 28, 29, 30, 31, 32, 39]. The main technique used was the analysis
of the existence of a flat extension of the Hankel matrix M. Curto and Fialkow’s solution to
the singular bivariate quartic real moment problem is given in Theorem 4.10 below. Given
a polynomial p € R[z,yls we write Zep(p) = {(z,y) € R%: p(z,y) = 0} for the variety
generated by p.

Theorem 4.10. Suppose 5 = BW is a commutative sequence with the associated Hankel
matrix Ma. Let
V= m Zem(9)

gER[z,y]2

g(X,Y)=0
be the variety associated to Ms and p € R|x,y| a polynomial with deg(p) = 2. Then
has a representing measure supported in Z.,,(p) if and only if Ms is positive semi-definite,
recursively generated, satisfies rank(My) < card(V) and has a column dependency relation
p(X,Y) =0.

Moreover, assume that My, is positive semi-definite, recursively generated and satisfies the

column dependency relation p(X,Y). The following statements are true:
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1. Ifrank(My) < 3, then My always admits a flat extension to a Hankel matrix M3 and
hence B admits a 3-atomic minimal measure.

2. Ifrank(My) = 4, then (3 does not necessarily come from a cm measure.

3. If rank(My) = 5, then (8 always admits a cm measure, but My does not necessarily
admit a flat extension to a Hankel matrix M. There exists an affine linear transforma-
tion such that Vis one of 2> +y> = 1, y = 2%, 2y = 1, 22 = L or xy = 0. In the
first four cases Mo always admits a flat extension to a Hankel matrix Ms and hence 3
admits a 5-atomic measure. However, in the last case there always exists a measure with
6 representing atoms, but not necessarily 5.

4. Ifrank(Msg) = 6, then Mo always admits a flat extension to a Hankel matrix M3 and
hence (8 admits a 6-atomic measure.

4.2 Ranks 5 and 6 - Canonical forms

When the Hankel matrix for the bivariate quartic tracial moment problem has rank 5 or 6,
it suffices to study some basic cases satisfying “nice” column relations. We proved this in
Proposition 4.1 of [10].

Proposition 4.11. Suppose an nc sequence 8 = Y has a Hankel matrix My of rank 5 or
6. Let Lg be the Riesz functional belonging to 3. If B admits an nc measure, then there exists
an affine linear transformation ¢ such that a sequence B given by Bw = Lg(w o @) for every
|lw(X,Y)| <4, has a Hankel matrix My such that:

1. If My is of rank 5, then M\g satisfies XY + YX = 0 and one of the following relations:

Basic case I X2 +Y?2 =1,
Basic case 2 Y? =1,
Basic case 3 Y? — X2 =1,
Basic case 4 Y? = X2,

2. If Ms is of rank 6, then //\/\12 satisfies one of the following relations:

Basic relation 1 Y? =1 — X2,
Basic relation 2 Y? =1 + X2,
Basic relation 3 XY + YX = 0,
Basic relation 4 Y? = 1.

To prove Proposition 4.11 we need some lemmas. We proved the following in Lemma 4.2
of [10].

Lemma 4.12. Suppose an nc sequence 3 = B9 has a Hankel matrix Mo of rank 5 or 6
satisfying the relation

Y? = a1l 4 apX + agY + asX? + a5XY + a6 YX, (4.6)
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where a; € R for each i. Let Lg be the Riesz funtional belonging to 3. If 3 admits an nc
measure, then there exists an affine linear transformation ¢ of the form

(b(X, Y) = (Ole 4+ asl, a3 + 0441), “4.7)

where a; € R for each i, ay # 0, ag # 0, such that the sequence B given by Ew = Lg(w o ¢)
forevery lw(X,Y)| < 4, has a Hankel matrix Mo satisfying one of the following relations:

Relation 1 Y? =1 — X2,

Relation 2 Y? =1,

Relation 3 Y? =1 + X2,

Relation 4 Y? = X2.

Moreover, relation 4 is equivalent to
Relation 4 XY + YX = 0.

Proof. By comparing the rows XY, YX on both sides of (4.6) we conclude that a5 = ag. We
rewrite the relation (4.6) as

(Y — a5X)? = a11 + aoX + az¥Y + (aq + af) X2

Applying an affine linear transformation ¢ (X,Y’) = (X,Y — a3X) to B we get 3 with the
Hankel matrix My, satisfying the relation

Y? = a1 + (ag + a3a5)X + asY + a4X2. 4.8)

We separate three possibilities according to the sign of a4 € R.

Case 1: a4 < 0. The relation (4.8) can be rewritten as

e (s ety

Applying an affine linear transformation ¢o(X,Y) = (1/|ag| X — 221230 'y %) to B we

R

get 3 with M, satisfying the relation

2 2
V2o _x2 4 (a1 L9 M)I 4.9)
4 4(14
If C; :=a; + a?’ + M < 0, then by comparing the row Y2 on both sides of (4.9) we
get
0 < Bys + Bx2y2 = C1- Py2 <0,

where we used that Sy+ > 0, Sx2y2 > 0, By2 > 0. But then Sy1 = Sx2y2 = fBy2 = 0,
which contradicts the rank of My being 5 or 6. Therefore C; > 0. Applying an affine linear
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transformation ¢3(X,Y") = ( \/%, \/%) to B we get 3 with M, satisfying

Y2 =1- X2

which is the relation 1.

Case 2: a4 = 0. Multiplying (4.8) with Y we get
Y2 = a1Y + (ag + azas)XY + a3 Y2 (4.10)

By comparing the rows XY, YX on both sides of (4.10) we conclude that a2 4+ azas = 0. We

can rewrite (4.8) as
2

as\ 2 as
e
( 2 “t
Applying an affine linear transformation ¢4(X,Y) = (X,Y — %) to 3 we get 3 with My

satisfying
2

Y2 = <a1 + %)]1. @.11)

IfCy:=a —|— < 0, then by comparing the row Y? on both sides of (4.11) we get

3
0< Bys = (az+° )/BY2<O

where we used that Sy4 > 0, By2 > 0. But then fSy4 = Sy2 = 0 and hence also Sx2y2 = 0,
which contradicts the rank of ./\/lg being 5 or 6. Therefore 02 > 0. Applying an affine linear

transformation ¢5(X,Y) = (X, \/Y;) to B we get 3 with Ms satisfying

Y2 =1,

which is the relation 2.

Case 3: a4 > 0. The relation (4.8) can be rewritten as

as as + azas a3 (az + azas)?
¥ ) = (vam s ) (4 G - )
( 5 VasX + NG + (a1 + 1 .y

Applying an affine linear transformation ¢6(X,Y) = (y/azX + ‘IQ;\F/‘E% Y — %) to B we get
B with My satisfying

2

2
Y2 =X+ (a1 + 2 - (a2 + asa5)” ).

4.12
4 day ( )

(a2+azas)?

2
We separate three possibilities according to the sign of C3 := a1 + %3 — Ta,

Case 3.1: C5 > 0. Applying an affine linear transformation ¢7(X,Y") = ( \/%, \/%) to B we
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get B with ./T/l\z satisfying
Y? =1+ X2,

which is the relation 3.

Case 3.2: C5 = 0. The relation (4.12) is
Y? = X?

which is the relation 4. Applying an affine linear transformation ¢g(X,Y) = (X - Y, X +Y)
to 3 we get 3 with My satisfying
XY + YX = 0,

which is the relation 4.

Case 3.3: C3 < 0. Applying an affine linear transformation ¢ (X,Y) = (Y, X) to 3 we come
into Case 3.1. O

Lemma 4.13 (Lemma 4.4.1, [9]). Suppose an nc sequence = [ 4) has a Hankel matrix My
of rank 5 with linearly independent columns 1, X, Y, XY. Then one of the following cases
occurs:

Case 1: The set {1,X,Y,XY,YX} is the basis for Crp, and the columns X%, Y? belong to the
span{1, X, Y}.

Case 2: The set {]1, X,Y, X2, XY} is the basis for C ..
Case 3: The set {]1, X,Y, Y?, YX} is the basis for C ..

Lemma 4.14 (Lemma 4.5.1, [9]). Suppose an nc sequence 3 = BW has a Hankel matrix
Moy of rank 6 with linearly mdependent columns ]1 X, Y, XY. There exists an affine linear
transformation ¢ such that a sequence B given by Bw = Lg(w o ¢) for every lw(X,Y)| <4,
has a Hankel matrix M2 such that:

Case 1: The set {]1, X,Y, X2 XY, YX} is the basis for C/%.
Case 2: The set {]1, X,Y, X2, XY, Yz} is the basis for CM\2.

Lemma 4.15 (Section 4.5, [9]). Suppose an nc sequence 3 = ﬁ(4) has a Hankel matrix Mo
satisfying one of the relations

Y24+X2=1 or Y2-X2=1 or Y?’=X2

B3
If B admits an nc measure i, then the extension Mg := (M2 ) generated by | satisfies

BL Cs
the relations
XY = YX? and XY? = VY2X.

In particular, the rows XY, YX are the same in the columns X2Y, YX2 and the columns XY?2,
Y2X.
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Finally we give the proof of Proposition 4.11 (1).

Proof of Proposition 4.11 (1). By Proposition 4.6 the columns 1, X, Y, XY of My are linearly
independent. By Lemma 4.13 there are three cases to consider.

Case 1: The set {1,X,Y, XY, YX} is the basis for C,, and the columns X2, Y2 belong to
the span {1, X, Y}.

By assumption there are constants a;, b;,c; € R for j = 1,2 such that
X?=al+ b X+ Y and Y? =asl + byX + pY.

By multiplying the first relation with X and the second with Y it follows that if 5 admits an nc
measure, then ¢y = by = 0. Let

X Y )
2’ 2
\/al—i-%l \/ag—l-%s

Applying an affine linear transformation ¢2 o ¢ to S we get 5 with /T/l; satisfying

Dy -2), e =(

¢1(X7Y):(X_57 2

X?=Y?=1.
Equivalently, the relations are
Y2-X?2=0, Y?’=1.

ligally applying an affine linear transformation ¢3(X,Y") = (%, %) to 3 we get 3 with
M satisfying
XY +YX=0 X2+VY2=1.

Hence we are in a basic case 1 of Proposition 4.11.
Case 2: The set {1,X,Y,X? XY} is the basis for Cy,.

By assumption there are constants a;, b;, ¢;,d;,e; € R for j = 1,2 such that
YX =a1l+ 01X+ Y+ X2 4+ e XY,  Y? =aol + boX + Y + doX? + e9XY.

By comparing the rows XY, YX of the both sides of equations we conclude that e; = —1 and
ez = 0, so that the relation are

XY +YX =11+ X+ 1Y +diX2 and Y2 = aol + boX + oY + doX?. (4.13)

By Lemma 4.12 there exists an affine linear transformation ¢, of the form (4.7) such that after
applying ¢4 to 3 the second relation in (4.13) of the corresponding matrix Mo becomes one
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of the following:
Y2=1 or Y?=1-X> or Y?2=X% or Y?=1+X> (4.14)
while the first relation in (4.13) becomes
XY + YX = a3l + b3X + e3Y + dsX?, (4.15)

where as, bs, c3,d3 € R. We separate four possibilities according to the relation in (4.14).

Case 2.1: Y2 = 1 in (4.14). The relation (4.15) can be rewritten in the form

Y(X - 2) + (X = )Y = a5l +bsX + dsX>.

Applying an affine linear transformation ¢5(X,Y) = (X — 2,Y) to § we get 3 with My
satisfying
XY + YX = ag1 + by X + dsX? and Y2 =1, (4.16)

where ay4, by, dy € R. Multiplying the first relation in (4.16) with X on left (resp. right) we get
X2Y 4+ XYX = a4 X + b,X2 4+ 4, X3 = XYX + YX2.

Hence, X?Y = YX?. Multiplying the first relation in (4.16) with Y on right and using the
second relation in (4.16), we get

X + YXY = a4Y + b4 XY + dsX3Y. 4.17)

Comparing the rows XY, YX on both sides of (4.17) gives by = 0. We now separate two
possibilities depending on dy.

Case 2.1.1: d4 = 0 in (4.16). The relations (4.16) are
XY 4+ YX = aq1, Y?=1.
Using the second relation we can rewrite the first relation in the form

(X-SYV)Y+Y(X-3Y) =o.

Applying an affine linear transformation ¢¢(X,Y) = (z — %ty,y) to 3 we get B with M3
satisfying
XY+YX=0, Y:=1.

Hence we are in the basic case 2 of Proposition 4.11 (1).
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Case 2.1.2: d4 # 0 in (4.16). The relations (4.16) are

2 1

XY 4+ YX) = -1 and Y2 =1.
d
4

X
dy

Summing together the first relation and the second relation multiplied by chQ we get
4

1 1 1 a4
Y- (XY 4+ YX)+ X2 = (= — 22)1. 4.18
d? d4( +YX) + (dg d4) (4.18)

Now we rewrite (4.18) in the form

Ly _xp2o(l_@
(d—4Y—X) _(di d4)]1.

Applying an affine linear transformation ¢7(X,Y) = (iy - X, Y) to ,6v’ we get ﬂ with My
satisfying
1 aq

——)1 and Y?’=1.

2 _ .
=G

Hence we are in Case 1.

Case 2.2: Y2 = 1 — X? in (4.14). Multiplying the relation (4.15) from the left by X (resp.
Y) and comparing the rows XY, YX on both sides using Lemma 4.15 we conclude that c3 = 0
(resp. b3 = 0). Thus the relation of Ms are

XY 4+ YX = a3l + dsX? and Y?+X?2=1.

Summing together the first relation and the second relation multiplied by o we get

aY? + (XY + YX) + (a — d3)X? = (a + a3)1. (4.19)
Choosing
1 \/7 ds
=\ J4+dZ+ =
a=g +d3 + 5
we see that

a>0, a—d3>0 and (a —dsg)a =1,

and thus (4.19) can be rewritten in the form

(Vo — dsX +/aY)? = (a + a3)1.

Applying an affine linear transformation ¢g(X,Y) = (X, va — dsX + v/aY) to 3 we get 3
with My satisfying

Y? = (a+a3)l and XY+ YX = ayl + dsX, (4.20)

where a4,dy € R. Since My is positive semi-definite of rank 5, o + a3 > 0 and after
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normalization the relations (4.20) become
Y2 =1 and XY+ YX = a5l + d5X>,

where a5, ds € R. Hence we are in Case 2.1.

Case 2.3: Y2 = X? in (4.14). As in the first paragraph of Case 2.2 we conclude that the
relations of Mo are
XY 4+ YX = a3l +dsX? and Y? =X2

Applying an affine linear transformation ¢g(X,Y) = (X +Y,Y — X) to B we get B with Mo
satisfying
(2 —d3)X? — (24 d3)Y? =4a31 and XY+ YX =0,

If d3 = 2, then after normalization we come into Case 2.1. If d3 = —2, then we come into
Case 2.1 after we apply a transformation (X,Y") — (Y, X) to change the roles of X and Y and
normalize. Otherwise we apply an affine linear transformation

$10(X,Y) = (V]2 — d3] X, /|2 + ds|Y)

to E and get 3 with My satisfying
XY+YX=0

and one of the following:
X2 4+Y2=4a31 or X?2-Y?=4dasl or —X?—Y?=4asl. 4.21)

The first and the last cases are equivalent, since the third relation can be rewritten as X2 +Y? =
—4a31. Thus we separate two possibilities in (4.21).

Case 2.3.1: X2 + Y2 = 4a31 in (4.21). It is easy to see that a3 > 0 (by My being positive
semi-definite of rank 5, since otherwise Sy2 = Sx2y2 = Sy+ = 0). Thus after the normaliza-
tion we are in the basic case 1 of Proposition 4.11.

Case 2.3.2: X2 — Y2 = 4qa31 in (4.21). We may assume that a3 < 0 (otherwise we change the
roles of X and Y). If a3 < 0, then after normalization we come into the basic case 3. Otherwise
a3 = 0 and we are in the basic case 4.

Case 2.4: Y2 = 1 + X? in (4.14). As in the first paragraph of Case 2.2 we conclude that the
relations of Mo are

XY 4+ YX = a3l + dsX? and Y? =1 + X2,

and after applying an affine linear transformation ¢g(X,Y) = (X +Y,Y — X) to 3 to get 5’
with My satisfying

(2 —d3)X? — (2+d3)Y? = (4a3 — 2d3)1 and XY+ YX=2-1.
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If d3 = 2, then after normalization we come into Case 2.1. If d3 = —2 then we come into
Case 2.1 after we apply a transformation (X, Y’) — (Y, X) to change the roles of X and Y and
normalize. Otherwise we apply an affine linear transformation

o11(X,Y) = (V]2 — d3| X, V]2 + d3]Y)
to B and get 5 with M, satisfying
XY + YX = 24/|(4 — d3|1
and one of the following
X24+v2=a1 or X2-VY?=a1 or —-X?’-VY%’=al, (4.22)

where a = 4a3 — 2ds. The first and the last cases are equivalent, since the third relation can be
rewritten as X? 4+ Y2 = —@1. Thus we separate two possibilities in (4.22).

Case 2.4.1: X2 4 Y? = al. Itis easy to see that @ > 0 (by M; being positive semi-definite of
rank 5, since otherwise By2 = Bx2y2 = Bys = 0). Hence after normalization we come into
Case 2.2.

Case 2.4.2: Y? — X? = a1. We may assume that @ > 0 (otherwise we change the roles of X
and Y). If a = 0, we are in Case 2.3. Otherwise we apply a transformation

$12(X,Y) = <X7X _ MY)

a

to § and get B with ./\//1\2 satisfying

4—d
\y2+( M)XQ 0 and XY+ VYX=—al +ax2

a2

It is easy to see that 1 — M < 0 (by ./\/l2 being positive semi-definite of rank 5, since

otherwise fBy+ = Bx2y2 = Byz = fBx2 = 0) and after a further normalization of X the
relations of the corresponding matrix My become

Y2-X2=0 and XY+ YX=—-al—aX? forsomead € R.
Hence we come into Case 2.3.

Case 3: The set {]1, X,Y, Y2, YX} is the basis for C,,.

Applying an affine linear transformation (X,Y’) — (Y, X) we come into Case 2. O
Now we prove Proposition 4.11 (2).

Proof of Proposition 4.11 (2). By Lemma 4.14 we have to consider 2 different cases.
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Case 1: The set {1,X, Y, X? XY, YX} is the basis for Cp1,.
By assumption there are constants a;, ? = 1,. .., 6, such that
Y2 = 11 + aoX + asY + asX? + a5XY + agYX.

By Lemma 4.12 the statement of Proposition 4.11 follows.

Case 2: The set {1,X,Y,X? XY, Y?} is the basis for Cps,.

By assumption there are constants a;, 7 = 1,..., 6, such that
YX = a11 + aoX + a3Y + asX? + asXY + agY?. (4.23)
By comparing the rows XY, YX of the both sides of equation we conclude that a5 = —1. We

separate two cases.

Case 2.1: a4 # O or ag # 0. By symmetry we may assume that ag 7% 0. We rewrite the
relation (4.23) as

1
y2= g B2x By Myxr Byy .y - yx,
ag ag ag ag ag a6

By Lemma 4.12 the statement of Proposition 4.11 follows.

Case 2.2: a4 = ag = 0. We rewrite the relation (4.23) as
X+Y)Y +YX+Y)—2Y? = a11 4 ap(X +Y) + (a3 — az)Y.

Applying an affine linear transformation ¢;(X,Y) = (X + YY) to § we get B with Mo
satisfying
XY + YX — 2Y? = a11 + a2X + (a3 — az)Y.

By Lemma 4.12 the statement of Proposition 4.11 (2) follows. O

4.3 Atoms in the minimal measure of ranks 5 and 6

Every nc sequence 3 = 3®) which admits an nc measure with My in one of the basic cases
of rank 5 or one of the first three basic cases of rank 6 given by Proposition 4.11, admits a
minimal measure with all the atoms of special form. This form is crucial in the analysis of
each basic case.

The next result and its proof are due to Zalar, and are proved in Proposition 5.1 of our
article [10].

Proposition 4.16. Suppose an nc sequence B = 8 has a Hankel matrix M satisfying one
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of the column relations
XY+YX=0 or Y?’=1-X* or Y?’=1+X2 (4.24)

If B admits an nc measure, then the atoms are of the following two forms:
1. (:L'l,yz) S R2.

2. (X;,Y;) € (SR*:%24)2 for some t; € N such that

vily;  Bi il 0
X, = (it d Y, = i
’ <BT _’Y’LItz) an ‘ ( 0 _/'[/ZItl

7

where v; > 0, u; > 0 and B; are t; X t; matrices.

Proof. Suppose p is any nc measure representing 3. By Theorem 4.5 every atom (X, Y;) in p
satisfies the relation (4.24).

Claim 1: We may assume that X;Y; + Y; X, and Y; are diagonal matrices.

Observe that X;Y; + Y; X; is symmetric and commutes with Y;. Therefore after a orthogo-
nal transformation we may assume that X;Y; 4+ Y; X; and Y; are diagonal matrices.

Claim 2: We may assume that the atoms (X, Y;) of size greater than 1 are of the forms

Diy1 B wily, 0
X; = ! Z) and Y; = < i ) , 4.25)
: (B? Dis TN 0 il (

where p; > 0, nj1,ne € N, D;p € R™1%™i1 and D;5 € R™2%™2 are diagonal matrices and

B; € Rmitxniz,

By an appropriate permutation we may assume that Y; is of the form
4; /L(-i)ln» _ 0
1/2' = @ < J 0 v _M;i)lmij> @Omxma
]:
where ¢;, n;;, m;j, m € NU {0}, ugi) > 0 and ,ug? # u%) for j1 # jo. Let
Xi= (X;gn))pr

be the corresponding block decomposition of X;. Since X;Y; 4+ Y; X, is diagonal, it follows
that
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1. for 1 < p,r < {; and p # r we have that

[XiYi + YiXi]op-1,20—1 = (M;(f) + N?Ei))Xé;iD)—l,?r—l =0 = Xé;)—l,%—l =0,
[(X3Yi + YiXilop—1,20 = (1 () — Mp)Xé;Z) 12- =0 = Xé;)—l,zr =0,

XY+ YiXilapar = — () + 1) X5,

i)
2p,2r — =0 = Xé;)gr =0.

2. for 1 < p < ¥¢; we have that

[XiYi + YiXilop—1,2041 = Mz(gi)Xégq,%H =0 = X2(271,2£i+1 =0,
[(XiYi + YiXilop 2t 41 = *“z(f)Xéz?,zeiH =0 = Xz(;),%ﬂ =0,
[XaYi + YiXi]ae,11,2p-1 = ué)Xé?H op1=0 = X2(2+1,2p—1 =0,
[XiYi + YiXilog, 11,20 = —MI())XéZH,zp =0 = X2(2+1,2p =0.

3. for 1 < p =r < /; we have that

[(XiY + YiXi|op—12p-1 = Qu(’)XQ(p) 12p—1 is diagonal = XQ(i) 1.2p—1 is diagonal,

P
[Xiyi + YiXi]Zp,Zp = _2M( )X( 0

p Xopop, 1s diagonal = x Y

2p.2p 18 diagonal.

So X is of the form
l; -
X(Z]) X(ZJ) (’L)
X; = 12 X .
Z j=1 ( X(”) x5 @ titl

Thus we can replace the atom (X, Y;) with the atoms of the form

_ (i) (i) _ (i)
Xij = ( X(Zl') T X(%j)) and Y3 = (MJ = (i()) ) (429
(Xi37)" X9 0 —H; Iy

or

X=X, and Yi=0. (4.27)
By orthogonal transformation the atom (4.27) can be replaced by the atom

~

X;; = DY

041 and }71-]-:0,

where DZLI is a diagonal matrix and further on by atoms of size 1 of the form (x,0), where z

runs over the diagonal of DZ)H Hence we may assume that the atoms of size greater than 1 in
the representing measure for 3 are of the form (4.26). Furthermore, by appropriate orthogonal

transformation we may assume that they are of the form (4.25). This proves the claim.

Claim 3: We may assume that the atoms (X, Y;) of size greater than 1 are of the forms

vilt,  B; > <uiIt. 0 >
X; = g and Y; = ’ ,
' < Bl —l, ' 0 —uly,
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where v; > 0, p; > 0 and B; are t; X t; matrices for some ¢; € N.

First we prove Claim 3 in case we have XY + YX = 0 in (4.24). Let us prove that we
may assume invertibility of X;. After applying an orthogonal transformation to (X;,Y;) we
Yii Yo
Yh Y
it follows that Yig)A(i = 0. Since )?z is invertible, Y;2 = 0. Hence we can replace the atom
(X;,Y;) with the atoms (0, Y;1) and (X;, Yi3). Since the atom (0, Y;1) can be further replaced
with the atoms of size 1, we may assume the X is invertible.

0 O N
have X; = <O )?) where X is invertible and Y; = ( ) From X,;Y; + V;X; =0
i

Observe that in (3) from the proof of Claim 2 we have

0 = [X;Y; + YiXilop—1,2p-1 = 2#1(;))(2(2—1,2;9—1 = X2(2—1,2p—1 =0,

0 = [X;Y; + YiXi|opop = _2M(i)X(i) - xW

p “*2p2p 2p,2p = 0-

Therefore X; in (4.25) is of the form X; = ( 0 Bi) with B; € R™1*™2 and n;; = n;g by

BI' o
the invertibility of X;. This proves Claim 3 in case we have XY + YX = 0 in (4.24).

It remains to prove Claim 3 in case we have Y? = 1 + X? in (4.24). By Claim 2 and after
an appropriate permutation we may assume that X;, Y; are of the form (4.25) with

pi r;
Din =& >\§~Z)Isij and  Djp = @’YJ(I)Ivijy
j=1 j=1

where p;, s;5,7;,v;; € Nand

)\gi) > /\g) >0 > )\}(,? and ’y%i) > ’yéi) > > ’Yg)-
Let A
B; = (B;(;Q)pr

be the corresponding block decomposition of B;, where
BZ(J,;’) c Rsivari

forp=1,...,p;,r=1,...,7;. Calculating XZ-2 we get that

X2 —

)

( D} + B;BI'  DyB;+ BT Di2>
BI'Djy + DisB;  BI'B; + D%

Since X7 is a diagonal matrix, we conclude that
Dy B; + B Dy = 0.

Thus
[Di1 Bi + B! Digpr = ()\I(DZ) + %@)B;g? =0,
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for 1 <p < p;, 1 <r < r;. We conclude that

)‘1(01) =0 or B]E,Q =0.

So in every row and every column in the block decomposition of B; at most one block BZ(,Z})

i) _

is possibly non-zero, i.e., BI(,T) may be non-zero if and only if )\( fyﬁ 7 So after a suitable

permutation X; has the following block decomposition

M I, B“ i
Xi= D <( ()T )@ e (W,

9% B
LSTETY Ap ' FE—=yr Vr
A 4 =0
%
S O ()
1<r<rg

M # = p

The corresponding block decomposition of Y; is of the form

- @ <ué o )@ B (ul,)

e o5
LTS Ay E =yt Vr
)\;1)+,Y§1):0 P
D B (mh)
1<r<rg
)\(”# Z) Vp

Thus we can replace the atom (X, Y;) with the atoms of the form

~ (@) r (4) ~ 4
K= ()Sw %;’“ and Y;; = (“ZI% 0 > (4.28)
(Bprr ) _)\p IUZ"I‘ 0 _MZI’U’LT
or _ _
Xij = )\]()Z) and Yvij = s
or

Xij =" and Yy =—p,.

Hence we may assume that the atoms (X, Y;) of size greater than 1 in the representing measure
for M are of the form (4.28). Now

v (WL, + BB o
' 0 (BW) By + (A1

Vir

Since

1+ p2)I,, 0
x2=1+y? = (FEA,
' ‘ ( 0 (1 i/"’?)l’l)—”«) ’
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it follows that

BR(BINT = (147 = A5, (4.29)
(BI)TB) = (14 5 — A1, (4.30)

We separate two cases according to the value of 1 + M? — ()\I(,i)).
Case 1: 14 12 — (A7) = 0.

It follows that B]E,Q = 0. Then Xj; is diagonal and commutes with Y;. Therefore the atom
(X;,Y;) can be replaced by the atoms ()\,(f), pi) and ( —)\g), — ).

Case 2: 1+ 12 — ()\I(f)) # 0.
From (4.29) and (4.30) it follows that

s;p, = rank(B ) (Bl < min(rank(BY ,ran BY < min(s;p, vir) (4.31)
P k ]()’;*) ]()r) T k 1()7" k ]()r) T P

vir = rank((B{))" BY)) < min(rank((B)T), rank(B{)) < min(vi, s;p). (4.32)
It follows from (4.31) and (4.32) that s;, = v;,- in (4.28) which proves Claim 3 and concludes
the proof of Proposition 4.16. O

4.4 M, in the basic cases 1 and 2 of rank 6

In this section we solve the bivariate quartic tracial moment problem for M5 in the basic
cases 1 and 2 of rank 6 given by Proposition 4.11. In Subsections 4.4.1 and 4.4.2 each case is
presented separately, characterizing when M admits an nc measure, see Theorems 4.21 and
4.24. Corollaries 4.22 and 4.25 translate the existence of an nc measure into the feasibility
problem of three linear matrix inequalities and a rank condition from Theorem 4.10.

The following proposition states that if 5 has a Hankel matrix My of rank 6 in the ba-
sic cases 1, 2 or 3 given by Proposition 4.11 (2) and S admits an nc measure, then it has a
representing measure with the atoms of size at most 2.

The following three propositions are due to Zalar and were proved in Proposition 7.1, 7.2
and 7.3 of our article [10].

Proposition 4.17. Let us fix a basic case relation 1, 2 or 3 given by Proposition 4.11 (2) and
denote it by R. If an nc sequence [3 with a Hankel matrix Mo () of rank 6 satisfying R admits
an nc measure, then it admits an nc measure with atoms of size at most 2.

The following two propositions say more about the minimal measure.

Proposition 4.18. Let us fix a basic case relation 1, 2 or 3 given by Proposition 4.11 (2) and
denote it by R. If a sequence 3 with a Hankel matrix My satisfying R admits an nc measure

of type (k, 1), then
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1. 2<k<5ifRisequaltoY? =1 — X% or Y2 =1 + X2
2. 2<Ek<6ifRisequalto XY +YX = 0.

Proposition 4.19. Let us fix a basic case relation 1 or 2 given by Proposition 4.11 (2) and
denote it by R. If every sequence 3 with Bx = By = Bxs = Bx2y = B = 0 and a Hankel
matrix Ma(3) of rank 6 with column relation R, admits an nc measure with exactly one atom
of size 2 and some atoms of size 1, then every sequence E which admits an nc measure and has
a Hankel matrix Mvg of rank 6 with the column relation R, admits an nc measure with exactly
one atom of size 2 and some atoms of size 1.

4.4.1 Relation Y? =1 — X2,

In this subsection we present results for an nc sequence 5 with a Hankel matrix M of rank 6
satisfying the relation Y? = 1 —X2. Theorem 4.21 characterizes when /3 admits an nc measure.
Corollary 4.22 shows that the existence of an nc measure is equivalent to the feasibility problem
of three linear matrix inequalities (LMIs) and a rank condition from Theorem 4.10.

The form of M3 is given by the following, and was proven in Proposition 7.4 of our article
[10].

Proposition 4.20. Let 5 = W be an nc sequence with a Hankel matrix My satisfying the

relation
Y2 =1-X>2 (4.33)
Then Mo is of the form
ﬁl /BX BY 5}(2 5XY BXY Bl - /8X2
BX 5}(2 ﬂXY ﬂxS BXQY 5X2Y BX - ﬂxii
ﬁY IBXY 51 - ﬁx2 5X2Y IBX - /8X3 /BX - ,3X3 /BY - /BXQY
ﬁXQ ﬁXS BXQY 6X4 ﬁXSY BX3Y BXZ - :3X4
/BXY 5X2Y /BX - /BX?’ /BX3Y ﬁxQ - 5)(4 »BXYXY BXY - BX?’Y
Bxy Bx2y Bx — Bxs Bx3y Bxyxy Bx2 — Bxa Bxy — Bxsy
ﬁl - /6X2 /BX - ﬂXS ﬂY - 5X2Y ﬂXZ - /BX4 /BXY - /BXSY ﬂXY - BXSY ﬁl - QﬂXZ + /BX4
4.34)

Proof. The relation (4.33) gives us the following system in Mo

ﬁYQ :/81*/8)(27 ﬁ){QY2 IBXQ 7/8X47
Bxy2 = Bx — Bxs, (4.35) Bxys = Bxy — Bxsy,
Bys = By — Bxzy, Pys = By2 — Bxzy2.

Plugging in the expressions for Sy-2 and Bx2y2 in the expression for By gives the form (4.34)
of M2 . O

The following theorem characterizes normalized nc sequences [ with a Hankel matrix Mo
of rank 6 satisfying the relation Y2 = 1 — X2, which admit an nc measure, and is proven in
Theorem 7.5 of our article [10].
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Theorem 4.21. Suppose 3 = Y is a normalized nc sequence with a Hankel matrix My of
rank 6 satisfying the relation Y?> = 1 — X2. Then (8 admits an nc measure if and only if My is
positive semi-definite and one of the following is true:

(1) Bx = By = Bxs = Bxey = 0. Moreover, there exists an nc measure of type (4,1).

(2) There exist

ar € (0,1), az € (—2\/a1(1 —a1),2v/a1(1 — a1)>

such that
M = My — eMESY)

is a positive semi-definite cm Hankel matrix satisfying rank(M) < card(Vys), where
Vs is the variety associated to M (as in Theorem 4.10),

_ (V@ 0 . — 5 %\/4—&2
X_<O —ﬁ)’ Y =4/(1 a1)<§ P . . (4.36)
CL1(1—(I1)7

and & > 0 is the smallest positive number such that the rank of My — §MgX’Y) is
smaller than the rank of M.

Proof. We first consider the reverse implication. Suppose M3 is positive definite. If (2) holds
it is easy to see from the solutions of the commutative moment problems, that 5 admits a
representing measure. Now suppose My is positive definite and (1) holds, we will show that
[ admits a measure. Then by Proposition (4.20), M is of the form

1 0 0 Bx2 Bxy Bxy 1—Bxe
0 Bx2  Pxy 0 0 0 0
0 fBxy 1- By 0 0 0 0
6X2 0 0 /8X4 BXBY BX3Y /BX2 - ﬂX4
Bxy 0 0 Bx3y Bx2 — Bxa Bxyxy Bxy — Bxsy
Bxy 0 0 Bx3y Bxyxy Bx2 — Bxa Bxy — Bxsy
1-8x2 0 0 Bxz — Bxs PBxy — PBxsy Bxy — PBxsy 1—2B8x2 + Bxa

We define the matrix function
B(a) == My — a(MEY + M),

where /\/l;z’y) are the moment matrices generated by the atom (x, y).

We have that
1—2a 0 0 PBxz—2«a Bxy Bxy D
0 Bx2 —a Bxy 0 0 0 0
0 Bxy D 0 0 0 0
B(OL) = | Bx2 — 2« 0 0 fBxe—2a« Bxsy Bxsy C ,
Bxy 0 0 Bxsy C E Bxy — Bxsy
Bxy 0 0 Bxsy E C Bxy — Bxsy
D 0 0 C Bxy — Bxsy Bxvy — Bxsy D-C
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where

C=px2—Pxs, D=1-px2, E=pxyxy.
We have that

det ([B(a)lj1 x,vxe xvyx}) = JK(=F +2aG), (4.37)
where

J = —(Bxyxy — Bx2 + Bx4)

K = (=B%y + Bx2 = B2 + 20(=1+ %))

F = Bxyxy (Bxz — Bx1) + Bx2(B%2 — 4Bxy Bxsy — Bxa(1+ Bx2))
+2B8%sy + Bxa(Bxs + 2B%y),

G =2Bxy(Bxy — 2Bx3y) + Bxyxy(28x2 — 1 — Bx4) + Bx2(2Bx2 — 1 — 3Bx4)
+28%sy + Bxa(1+ Bxa).

Let oy > 0 be the smallest positive number such that the rank of B(«y) is smaller than 6. By
(4.37) we get

ngy _/BX2 +5§(2 i)
2(—1—{—5)(2) "2G )

o = min (
. . _ F
Claim 1: ap = 55 < a1.

Since

det ([B(e)]qnx2y) = Bxs — By + 2a(—1+ 2Bx2 — Bxs),
det ([B(a)l1.xvy) = C — By —2a- C,
det ([B(a)]nxvyxy) = (B = C)(=E = C + 2Bxey +2a - (E + 0)),

the system

det ([B(a2)]nx2y) =0, det ([B(az)lfrxyy) =0, det ([B(a)]f1xv,vxy) =0

has a solution

o — B2 — Bxa e — —B%y + Bx2 — By s — —2B%y + Bxvxy + Bxz — Bxa
2T (1 +28x2 — Bxa) 2(8x> — Bx+) 2(Bxyxy + Bxz — Bx1)

If a; < %, then since B(a) > 0, it follows that a; < min(ag, as, ay). Using Mathematica,
the system

ay < min(ag, as, 044), det (MQ’{Y}) >0, det (MQ‘{XY}) >0, (4.38)
det (MQ’{X’Y}) >0, det (M2|{1,X2}) >0, det (M2|{1,XY,YX}) > 0, (4.39)

does not have solutions (see https://github.com/Abhishek-B/TTMP for the Mathematica file,
note that the Mathematica file pertains to Theorem 7.5 from [10]). Hence g = % < a.
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Using Mathematica to calculate the kernel of B(%) we conclude that B(%) satisfies the
relations
XY 4+ YX = al +dX%, Y?+X%2=1

for some a,d € R. We also have
B =8y = B3 = By = 85k = 87 =0,

where 51(”@( vy are the moments of B(%) This is a special case in the proof of Proposition
4.11, i.e., Case 2.2. Following the proof we see that after using only transformations of type

(z,y) = (a1z + Py, asx + Pay)

f~0r some a1, g, B1, B2 € R, we come into the basic case 1 or 2 of rank 5 with EX = By =
Bxs = 0. But every such sequence admits a measure of type (2,1) by Theorems 6.5 and 6.8 of
[10]. Hence (8 admits a measure of type (4, 1).

Now we show the forward implication. Suppose that 5 admits an nc measure, we will show
that (2) holds. By Proposition 4.19 and Theorem 4.21 (1),

My =3 AME(2) 4 eMED(2), (4:40)

where (z;,y;) € R, (X,Y) € (SR*?)2,\; > 0,¢ > 0and >, \; + & = 1. Therefore
My — §M§X’Y)
is a cm Hankel matrix satisfying the relations
Y?2=1-X? and XY =YX

By Theorem 4.10, M admits a measure if and only if M is psd and satisfies rank M <
card Vys. To conclude the proof it only remains to prove that X, Y are of the form (4.36).
MgX’Y) is an nc Hankel matrix rank 4. Therefore the columns {1, XY, XY} are linearly
independent and hence

X2=l+ X+ Y +diXY, and Y? = asl + b3X + e3Y + dsXY,

where aj,bj,c;j,d; € R for j = 1,3. By Theorem 3.1 (1) of [10], d; = d3 = 0. By Theorem
3.1 (3)of [10], ¢; = b3 = 0. Since X2 + Y2 = 1 it follows that by = ¢3 =0 and a3 = 1 — a;.
By Theorem 3.1 (4), X and Y are of the form (4.36). ]

As a consequence we can translate the bivariate quartic tracial moment problem for 3 with
M, of rank 6 satisfying Y? = 1 — X? into the feasibility problem of some small linear matrix
inequalities and a rank condition from Theorem 4.10. We proved this result in Corollary 7.6 of
our article [10].
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Corollary 4.22. Suppose 8 = Y is a normalized nc sequence with a Hankel matrix My of
rank 6 satisfying the relation Y* = 1 — X2, Let L(a, b, c,d, €) be the following linear matrix
polynomial

a Bx By b c c a—b

Bx b c Bxs Bx2y Bxz2y Bx — Bxs
By c a—b Bxz2y Bx —Bxs Bx —PBxs Py — Bxzy

b Bxs Bxz2y d e e b—d ,
c Bx2y Bx — Bxs e b—d b—d c—e

c szy ﬂx*,@xs € b—d b—d c—e
a—b Bx —PBxs Py —Bx2y b-—d c—e c—e a—2b+d

where a, b, c,d,e € R. Then B admits an nc measure if and only if there exist a,b,c,d,e € R
such that

]. L(a/7 b7 c, d? 6) t 0’
2. M2 - L(aa b7 ¢, d7 6) t 0’
3. (MQ — L(a, b, c,d, 6)){1,X,Y,XY} ~ 0,

4. rank(L(a,b,c,d,e)) < card(Vy), where Vy, is the variety associated to the Hankel
matrix L(a, b, c,d, e) (see Theorem 4.10).

Proof. By Theorem 4.21, 8 admits an nc measure if and only if

k
Mo = 3" MM emGY), (4.41)
=1
where (z;,y;) € R, (X,Y) € (SR**?)2, \; > 0,¢ > 0and Y, \; + £ = 1. By Corollary 3.2
of [10],
B = ) = g5 = s = s = 85 =0, (4.42)

where 51(5(()?/ 3),) are the moments of MgX’Y). Using (4.41) and (4.42), we conclude that

52 MM and e MEXY) are of the forms

a Bx By b c c a—>b
Bx b c Bxs Bx2y Bxzy Bx — Bxs
By c a—1b Bx2y Bx —Bxs PBx —PBxs Py — PBx2y
b Bxs Bxzy d e e b—d , (4.43)
c Bxz2y Bx — Bxs e b—d b—d c—e
c Bx2y Bx — Bxs e b—d b—d c—e
a—b Bx —PBxs Py —Bx2y b—d c—e c—e a—2b+d
1-a 0 0 Bx2 —b Ai(c) Ai(c) Az (a,b)
0 ﬂxz — b A1(C) 0 0 0 0
0 A1(C) Az(a, b) 0 0 0 0
Bx2 —b 0 0 Bxa —d As(e) As(e) As(b,d) |, (4.44)
A1 (C) 0 0 A3 (6) A4(b, d) ﬂxyxy — (b — d) A5 (C, 6)
A1 (C) O 0 A3 (6) ﬁxyxy — (b — d) A4(b7 d) A5 (C, e)
Az(a,b) 0 0 Aa(b,d) As(c,e) As(c,e) Ag(a,b,d)
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where

Ai(c) = Bxy —¢, As(a,b) =1—PBx2—(a—b),
Asz(e) = Bxsy —e, A4(b,d) = Bx2 — Bxs — (b—d),
As(c,e) = Bxy — Bxsy — (c—e), Ag(a,b,d) =1—2Bx2 + Bxa — (a —2b+d),

for some a, b, ¢, d, e € R. Notice that the matrix (4.43) equals to L(a, b, ¢, d, €) and the matrix
(4.44) to My — L(a,b,c,d,e). Since L(a,b,c,d,e) is a cm Hankel matrix, it admits an nc
measure by Theorem 4.10 if and only if (1) and (4) of Theorem 4.22 are true. Since Mo —
L(a,b,c,d, e) is an nc Hankel matrix satisfying Y2 = 1—X2 and Bx = By = Bxs = By2y =
B Y2 = Byi‘s = 0, it admits an nc measure by the results of rank 4 and 5 cases and Theorem
4.21 (1) if and only if (2) and (3) of Theorem 4.22 are true. ]

4.4.2 Relation XY + YX = 0.

In this subsection we present the results for an nc sequence 3 = 3(*) with a Hankel matrix Mo
of rank 6 satisfying the relation XY + YX = 0. Theorem 4.24 characterizes when 3 admits an
nc measure. Corollary 4.25 we show that the existence of an nc measure is equivalent to the
feasibility problem of three linear matrix inequalities and a rank condition from Theorem 4.10.
We omit the proofs as they are similar to the Y? = 1 — X? case, and can be readily found in
our article [10].

The form of M, is given by the following, and is proven in Proposition 7.7 of our article
[10].

Proposition 4.23. Let 5 = Y be an nc sequence with a Hankel matrix Mo of rank 6 satis-
fying the relation
XY+YX=0 (4.45)

Then M is of the form

pr Bx By  Bxe 0 0 By
ﬁX Bx2 O Bxﬁ O O 0
By 0 PByz 0 0 0 Bys
Bx2 Pxs 0 Bxa 0 0 Bxay2 |. (446)
0 0 0 O ,Bx2y2 _Bx2y2 0
0 0 0 0 —Bx2y2  PBxzy2 0
BYZ 0 6Y3 ﬂXZY2 0 0 BY4
Proof. The relation (4.45) gives us the following system in Mo
28xy =0, 2Bxsy =0,
28x2y =0, (4.47) Bxz2y2 + Bxyxy = Bxy,
25)()/2 — 0, 25Xy3 == 0
Thus the solution of the system (4.47) is given by the statement of the proposition. O

The following theorem characterizes normalized sequences 5 with a Hankel matrix M of
rank 6 satisfying XY + YX = 0, which admit an nc measure, and is proven in Theorem 7.8 of
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our article [10].

Theorem 4.24. Suppose 5 = ™) is a normalized nc sequence with a Hankel matrix My of
rank 6 satisfying the relation XY 4+ YX = 0. Then (3 admits an nc measure if and only if Mo
is positive semi-definite and one of the following is true:

1. Bx = By = Bx3s = Bys = 0. There exists an nc measure of type (2,1) or (3,1).
2. There exist
a1 >0, a3>0,
such that
M = My — MGV

is a positive semi-definite cm Hankel matrix satisfying rank(M) < card(Vys), where
Vs is the variety associated to M (as in Theorem 4.10),

and & > 0 is the smallest positive number such that rank of My — EM&X’Y) is smaller
than the rank of Mo.

As a consequence we can translate the bivariate quartic tracial moment problem for 5 with
M of rank 6 satisying XY + YX = 0 into the feasibility problem of some small linear matrix
inequalities and a rank condition from Theorem 4.10. We proved this result in Corollary 7.9 of
our article [10].

Corollary 4.25. Suppose 3 = Y is a normalized nc sequence with a Hankel matrix My of
rank 6 satisfying the relation XY + YX = 0. Let us define a linear matrix polynomial

a PBx Py b 0 0 ¢

Bx b 0 Bxks 0 0 O

By 0 ¢ 0 00 Bys
L(a,b,c,dyje)=|b Bxs 0 d 00 0 [,

0 0 0 0O 00 O

0 0 0 0 00 o0

c 0 Bys 0 00 e

where a, b, c,d,e € R. Then B admits an nc measure if and only there exist

a€(0,1), be(0,Bx2), ce€(0,By2), de(0,8x1), e€(0,pys), (4.49)
such that
1. L(a,b,c,d,e) = 0,

2. My — L(a,b,c,d,e) = 0,

matrix L(a,b, c,d, e) (see Theorem 4.10).

3. rank(L(a,b,c,d,e)) < card(Vy), where Vi, is the variety associated to the Hankel



Chapter 5

The Moment Problem on Elliptic
Curves

The characterization of the quartic moment problem (both classical and tracial) has been to a
great extent successful for two reasons. Firstly, the problem maintains a manageable size, and
so can be tackled via computational approaches. Secondly, because the representing measure
is supported in a quadratic variety, and thanks to Hilbert’s theorem (Theorem 2.6), positive
linear functionals on quadratic varieties are well understood. In contrast, the solution to the
moment problem on varieties of higher degree curves, for the most part, remains elusive.

For the classic moment problem, [33, 102, 103] investigate measures supported on special
cubic varieties, while [38] completely characterizes the solutions with measures supported on
the variety y = 3. In this chapter we take the first steps to understanding the tracial moment
problem when the representative measure is supported on cubic varieties.

We focus on the smooth cubics, namely the elliptic curves, which to the best of our knowl-
edge have not been studied in association with the tracial moment problem (and not even in
the classical moment problem). We refer to this class of problems (tracial and classical) as the
elliptic moment problem.

This chapter is currently being prepared for joint publication with Zalar. Except where
specifically indicated the results here are the author’s work.

5.1 Tracial Sequences

We start by making precise what we mean by the elliptic moment problem. Suppose we have
a truncated tracial sequence 5(*™), and associated Hankel matrix M,,. Suppose that M,, is
positive semi-definite, recursively generated, and in C4,, we have the relation

Y? = X3 4 aX + b1, (5.1
or those following from (5.1) via recursive generation, i.e., V(M,) = {(X,Y) € R** :

Y? = X3 + aX + bl,}. We call such a Hankel matrix elliptic-pure.

Remark 5.1. Our analysis and results from this chapter also extend to the Neile curve, y*> = x>

(non-smooth, with a cusp at the origin), and so we will abuse terminology and include this
special curve in our discussion of elliptic moment problem.

73
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Let us begin by analyzing the form of nc atoms if a measure exists.

Proposition 5.2. If M, is as described above and has a representing measure i, then the
atoms (X;,Y;) of size greater than 1 have the form

D;y  B; wily, 0
Xi= |- Z), and Y-z(zn“ ),
’ (BZT D ’ 0 —idn,

where p; > 0,141, n;0 € N, B; € R"1X"2 gud Dy € R"1%"i1 Do € R™2%™2 gre diagonal
matrices.

Proof. We start by showing that (X;Y; + Y; X;) and Y; commute.
(X:Y; + Y;X0)Yi = Yi(X:Y; + YiXi) = X;Y? - Y X;,

= Xi(X? +aX; +bl) — (X2 +aX; +bI)X;,
= 0.

And now following the proofs of Claims 1 & 2 in the proof of Proposition 4.16 provides the
form of the atoms. O

With the given representation of the non-commutative atoms, Hankel matrices M, satis-
fying Y? = X3? + aX + b1 can in some instances be simplified considerably. The next result
was first communicated to me by Zalar for Horn’s problem [21] on the Neile curve.

Lemma 5.3. Suppose M,, satisfies Y?> = X3 + aX + bl and has a representing measure [
consisting of atoms {(X1,Y1), ..., (X, Yy)} (Which have the form in Proposition 5.2). If we
have

403 +27(b — p2)> >0, for i=1,...,t

then M, is a commutative Hankel matrix, and has a commutative representing measure.

Proof. We begin as before by looking at an atom (X, Y;) in the measure of M,,. By Proposi-

tion 5.2 we know that
I, 0
Y‘2 _ 2 nq1 .
‘ H < 0 Ini2>

Since supp(p) € V(M,,) (Theorem 4.5), this implies now that
X2+ aX;+bl, =121, & X2 +aX;+ (b—p2)I, =0. (5.2)
Let X; = V;*D;V; be a diagonalization of X;. The preceding equation implies
Vi (DS +aDi + (b— i)V =0,

and so it follows that the diagonal matrix ® = D} +aD; + (b—u?)Is = 0. Since each diagonal
element of ® is a depressed cubic with the same linear and constant coefficient, namely a and
(b — u?), and we have that 4a® + 27(b — pu?)? > 0, we have a unique (perhaps repeated) real
solution. And hence, D; = ¢;1,, which now shows that X,;Y; = Y; X;.

This is true of all the atoms, and hence the result follows. O



§5.1 Tracial Sequences 75

Lemma 5.3 offers a very nice reduction of the tracial elliptic moment problem. We can go
even further with this simplification by consider the different possibilities for a.

Corollary 5.4. Let M,, be a positive semi-definite, recursively generated Hankel matrix which
satisfies Y2 = X3 4+ aX 4 bl. If M,, has a representing measure v and a > 0, then M,, is a
commutative Hankel matrix, and has a commutative represeating measure [icpy.

Proof. Letting {(X1,Y7),..., (Xt Y;)} be the atoms of the measure. Since we assume a > 0
it is clear that
4a® +27(b — p2)? > 0,

as (b — u?)z > 0 is also non-negative (since it is a square). Hence the result follows from
Lemma 5.3. O

Proposition 5.5. Let M,, satisfy Y? = X3 4 aX + b1, and a # 0, then we can transform into
one of the following;

(i) a>0:Y2=X3+X+71,
(i) a<0:Y2=X3 X471

Proof. (i): When a > 0, we can apply a linear transformation (Proposition 4.9) to achieve

~ ~

X=(a2)X, and Y= (a?)Y.

Under this scaling we have

~

(a2)¥? = (a2)X® + (a2)X + b1,

and the result follows with 7 = b/ as.

(i%): Since a < 0, we know a = —y/|a|?. Together with the transformation
X=(la?)X, and Y= ()Y,

the result is proved as in (7). O

It is clear now that when Y2 = X3 + X + 71 is satisfied in M,,, we always have a com-
mutative Hankel matrix, and hence the entire class of problems is reduced to the commutative
case.

We will return to this in Section 5.3. For now we will explore moment matrices M,,
satisfying Y2 = X3 — X + 71, and demonstrate some properties through illustrative examples.
These examples were generated by Zalar in our study of Horn’s problem [21], which is closely
related to the moment problem.
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5.2 M, generated by single atom (X, Y)

In this section we will provide an example of a Hankel matrix M3, generated by (X,Y) €
(SR3*3)2, satisfying the relations

48 39
Y2=1 and gx?’ — KX =1, (5.3)

which must have an atoms of size 3 (or higher) in any representing measure. The relation
Y? = 1 is always present when we have only one atom (cf., Propositions 5.2 and 4.9).

Example 5.6. Let (X,Y) € (SR3*3)2 be

11 2
i 6 3 10 O
_ 1 11 _
X=|35 -3 3 , Y=101 0 54
2 1 1 00 -1
3 2 12
Claim 1. The Hankel matrix MéX’Y) generated by (X,Y') satisfies the relations (5.3), and
any representing measure (i for M:(gX’Y) must have an atom of size 3 (or higher).

(X,Y)

Proof. Itis easy to check that the atom (5.4) generates the following M

XY
M) = ( Mg By )

BT 4
where

1 X Y X2 XY YX @ Y?

1 1 0 2 -4 1L 1

X110 5 -% 15 = 3= 0

1 1 2 1

I R A
2 = X | 31 i 37 34 9ss  ws a4 |
XY|-5 % 0 =5 3 —o15 —1
YX|-% % 0 5% 355 31 i

Y2 \ 1 0 T B % —-% 1
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Cs =

5§3
X2Y
XYX
XY?
YX2
YXY
Y2X

3{3

3&3

16
169
384

288
65
256
43
864
43
864

16

2413
6144
43
1536
43
1536
169
384
43
1536
1079
3456
169
384

288

X2y
27

288

13
24

43
864

16

97
1296

27

X2y
43
1536

169
384

1079
3456

288

9809
31104

288

ot

288

24

XYX
27

288

_ 83
216

43
864

97
1296

_ 97
1296

27

XYX

43
1536

1079
3456

9809
31104

288

1079
3456

235
2592

288

_ 83
216

o B Fleo

oy

169
384

288

288

13
24

288

_ 83
216

13
24

18

YX2  YXY Y2X
2
Z 0 0
5 83 13
288 216 24
13 1 1
24 18 18
43 _ 97 3
864 1296 16
97 2 2
1296 27 27
3 2 2
16 27 27
2
3= 0 0
YX2 YXY  Y2X
43 _ 1079 169
1536 3456 384
9809 5 5
31104 288 288
1079 235 5
3456 2592 288
5 _83 13
288 216 24
169 5 5
384 288 288
5 13 _ 83
288 24 216
5 .8 13
288 216 24
13 1 1
24 1 18
(X,)Y)

A computational check with Mathematica reveals the kernel of M
7 with columns dependencies

The only possible commutative atoms in the measure for ./\/ng’Y)

0=Y>-1,

0=x? - x 2
16 16

0=XY?-X,

1 1
0:YX2+X2Y+XYX—X2—£Y+6X+

0= YXY — ¥YX — XY + Y + X — 11,

6
0=Y*’X-X,
0=Y>-Y.

1

6

‘»—‘ Wl
0]

wie © O Nb o=

3{3

288

13
24

_ 383
216

3 to be of dimension

85
1,

44

5.5

are those which satisfy all

these relations. However, there are no such atoms. This can be easily seen by noticing that the
only candidates are

fﬁ ::(171)7 fb

1 3
(_171)7 P3 = (_Zal)7 P4 = (17_1)7 P5
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which are the points in the intersection of the relations (5.3). Substituting these points in the

function 13 1 85
— .2, 2. .2 -
f(z,y) =37y 6V et

(the commutative collapse of (5.5)) we get

8 5 7 175 10 3
18" 369 727 97 36’
respectively. Hence none of the points P;, ¢ = 1,...,6, satisfy the relation (5.5), and so
there are no commutative atoms in the measure for /\/ng’Y). Now notice that for any atom
(X', Y") € (SR?*2)2 in the measure, Y’ must be of the form

;{1 0
o (o),

So if there are only atoms of size at most 2 in the measure for ng,y)’ then By = 0. In
the example above By = i. Hence there must be atoms of size 3 (or higher) present in the
measure. O

We believe that the technique we have used to generate Example 5.6 is much more general.
Let us consider a larger Hankel matrix M, generated with (X,Y) € (SR3*3)2, satisfying the
relations

Y?=1 and X+2-)X+1)(X-1)(X-2-1) =0, (5.6)

1
=
64
for which any representing measure must contain an atom of size 4 (or higher).

Example 5.7. Let (X,Y) € (SR***)2 be

_3 _1
0 =3 0 =3 100 0
3 1
-5 0 =5 0 010 0
X = g g Y = 5.7
0o -3 0o =3 | 001 0 S
1 3 0 0 0 -1
-5 0 =5 0
Claim 2. Then the Hankel matrix MSLX’Y) generated by (X,Y) satisfies the relations (5.6),
and any representing measure for MiX’Y) must contain an atoms of size 4 (or higher).

Proof. 1t is easy to check that the atom (5.7) satisfies the relations (5.6). A computation of the
kernel of Mle’Y) reveals it to be of dimension 18 and among those dependencies we have the
following relation

5X — BXY — 5YX — 2X° + X°Y 4 X°YX + XYX? + YX° = 0. (5.8)
As before, the only possible commutative atoms in the measure for .MELX’Y) are those that

satisfy all of the dependencies in the kernel. The only possibilities for such atoms are

Plz(_271)7 PQZ(_171)7 P3:(171)7 P4:(271);
P5 = (_2’_1)> PG - (_1)_1)) P7 - (]-7 _1)7 PS - (27 _1)7
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which are the points in the intersection of (5.6). The commutative collapse of (5.8)
f(z,y) = 423y — 10zy — 22% + 5z,
evaluated at these points gives
-6,3,-3,6,18,-9,9, —18,

respectively. Hence none of the points P;,7 = 1, ..., 8, satisfies the relation (5.8). So there are
no commutative atoms in the measure for MELX’Y). For any atom (X', Y”) € (SR®*3)? in the
measure, Y/ must be of the form
10 0
Y'={01 0|.
0 0 -1

So if there are only atoms of size at most 3 in the measure for MgX’ , then By < % In
the example above Oy = % Hence there must be atoms of size 4 (or higher) present in the
measure. O

Y)

5.3 Commutative Sequences

In this section we analyze the commutative truncated moment problem with variety y? =
z® 4+ azx + b. Our results here provide (numerical) sufficient conditions which can be used to
test for the existence of a measure. It should be noted that these are not necessary conditions,
as demonstrated by Example 5.15.

We will use below the extension principle of Curto and Fialkow, and so we state it here for
convenience.

Theorem 5.8 (Proposition 3.9, [26]). Let A € R**5. If there exists at with0 <t < (s — 1),
and a vector x € R" such that [A];x = 0, then fory = (x O(S_t))T we have

Ay = 0.

Let M,, be elliptic-pure, i.e., positive semi-definite, recursively generated, and satisfying
Y2 = X3 4 aX + b1 with all others following from recursive generation,

XY = (X3 4 oX XYY (4,5 > 0,5+ +3 < n). (5.9)

We have in this case V(M,,) = {(z,y) : y*> = 23 + ax + b}. In the commutative setting we
are fortunate enough to write a basis B for Cp4,, as

B={1,X,Y, X% XY, Y2, X?Y,XY? VY3,... , X2Y"2, XYY"}, Y"}, (5.10)

and so rank(M,,) = 3n. We know that if a representing measure exists, then there is a positive,
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recursively generated, Hankel matrix extension

Mn Bn—i—l)

M1 = < BT, O 5.11)

Moreover, we know that if we can construct such an extension, which is flat then a representing
measure does indeed exist. We follow the approach of [38] and examine conditions for a flat
extension to exists. Our discussion will follow the same structure as [38], split into different
subsections.

In Subsection 5.3.1, we will show the following result, which shows that a compatible
block B,,1 always exists for elliptic-pure problems.

Proposition 5.9. If M,, is elliptic-pure, then there is a Hankel block By+1 = Bp41[0, ¢, ]
which is compatible with a recursively generated Hankel extension M,,11. Moreover, we have
Ran(B+1) C Ran(M,,).

Once this is established, in Subsection 5.3.2 we will then examine the hypothetical block
Ch+1, to see what conditions it must satisfy for M,, 1 to be flat. From this examination we
will obtain the following

Theorem 5.10. Let n > 3. Suppose that M, is positive and Elliptic-pure. Then there is a
quartic polynomials Q(0), such that a flat extension M, 11 of M, exists if Q(0) has a real
root.

5.3.1 Constructing B,

Our first step is to construct B,, 1 which satisfies B, 11 = M, W for some matrix W, i.e., the
range inclusion Ran(B,,+1) € Ran(M,,). Positivity of M, and Theorem 5.8 imply that
the relations in C4,, hold also in C 4, , ,, and so we have the following relations in M, 1

XOYIH2 = (X3 4 aXT 4 0XD)YT (4,5 > 0,i+ 5 +3<n). (5.12)
Using recursive generation we now have the following column relations in B,

Xt = X"2(Y? - aX — b1)

XY = X" 3(Y3 — aXY — bY)
(5.13)

X3Y" 2 = Y — aXY"? 2 — pY" 2,

Due to recursive generation, these columns inherit the required Hankel structure from the cor-
responding columns in M,,. To define X?Y"~! XY", and Y"*! we use ‘old moments’ as
follows;

<Bn+19€"y"+17”’71‘ yl> = Bitknt1—itls (5.14)

where ¢ = 0,1,2, and [,k > 0, with [ + k < n — 1. Now every column in By has the
Hankel structure in all rows up to degree n — 1. For a column w (X, Y) of By, 41, let [w(X,Y)]s
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(respectively [w(X, Y)]) be the restriction to rows from the set .S (respectively rows of degree
at most k). First we must ensure that the moment structure from [X3Y"~2],,_; carries into
[XQY'n— l]n— 1.

Lemma 5.11. With the notation and definitions as above, fori > 1,7 > 0,i +j7<n—1

<Bn+1x3y“‘2,xi‘1yﬂ'+1> = <Bn+1x2y”‘1,@>-

Proof. We have,

—_—~—

<Bn+11‘3y”*2, xiflyj+1> _ <Mn(gfﬁ — azyn2 — byn—2), xi—lyj+1>
_ <Mn§ﬁ’ xi—lyj+1> —u <Mnxy”‘2, xz’—lyj+1>

b (Mg 2,0ttt

= Bicintrj+r1 — aBintj—1 — bBi—1ntj-1

and

<Bn+1x2y"*1, :cly3> = Bit2,n+j—1-

So it is enough to show Bi 12 n1j—1 = Bi—1n+j+1 — aBintj—1 — bBi—1,n+j—1 Where 1,5 >
0,i+j<mn-—1.Sincei+ j+1 < n,in M, we have

Bivamijo1 = <Mnx3yn—3’$i—1yj+2>
_ <Mn(;r_zt/l — azyn3 — b;ztg)yxiflyj+2>
_ <anjr_z:/1’xiflyj+2>
_a <Mnxyn73’ xiflyj+2>

A <Mnyn—3’ xi—lyj+2>

= Bicintj+1 — @Bintj—1 — bBi—1ntj—1-

We now define the (potential) moments in X2Y" !, XYY", Y**+! in the rows of degree n (the
other columns have these defined through recursive generation). To keep the Hankel structure,
we propagate the moments from X3Y”~2 along the cross diagonals; for k = 0,1,2,4,j >
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0,i4+j7=mnand0<j <n—3+ k we have
<Bn+1mkﬁ_kaﬁ/yj> = <Bn+1x§:_y\7:2,$i+ki§’;j/_k+3>
— <Bn+1ﬁ, xi+kf§,\y]/'—k+3>

—a <Bn+1l»yn727 $i+k73yjfk+3>

(5.15)
A <Bn+117L\‘/2, xi+kf5’>\z;g/‘—k+3>
= Bitk—3n+j—k+3
—aBitk—2n+j—k+1 — OBitk—3n+j—k+1-
To complete the definition of B, 1, we parameterize it via the following
<Bn+1$2y"_1 375> = <Bn+1@7L :ry"—1>
< 1YL, 2y 2>
=4,
(5.16)
<Bn+1xy Y > < By, ayn 1>
= o,
<Bn+1yn+1 n+1> .
So the component of B,, 1 with rows of degree n, now has the structure
X+ o xry L. X2yt xyr oyt
X" Bont10  Bona .- e e Brn+1
XY | Banna Brn—1,n42
Bn+1 == X d
XZyan : 0
Xyn—1 : Broim - 9 ¢
Y” Br+1n 0 10) P
where 3; 2n41—i = Bi—3.2n+3—i — @Bi—2.2n+1—i — bBi—32n11—; for 3 < i < 2n + 1.
Having created By,+1 = Bj+1[0, ¢, ], let us now examine the condition Ran(B),+1) C
Ran(M,,). Clearly X"+ . ,XSY” 2cec M,,» SO consider the three remaining columns.

Given a basis B for Cpy,,, let J = [M,]p, which implies that 7 is positive definite. For
k,1 > 0 we let X*Y! be the compression of X¥Y! € [M,,, B,11] to the rows indexed by
elements in B. Note that columns of 7 are of the form XPY? with p,q > 0,p+¢g < n,p < 2.
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Since J is invertible, for 0 < ¢ < 2,j = n + 1 — ¢ we may write

Jl) = 3@, or,

~— ; i
XiYJ = Z c}(,qj)Xqu (cz(,q]) € R). (5.17)
1,420
p+q<n
p<2

Lemma 5.12. With the notation and definition as above, we have

Xy = Y xrye
p,q=0

ptq<n
p<2

in [MmBm_l]forO <i<2j=n+1-7j

Proof. To prove the claim it is enough to show

(Bunaiyd aby') = 37 i) ( Muavys, aky!) (5.18)
p,q420
pF+qsn
p<2

for k,1 > 0,k +1 < n,k > 3, which is to say that the rows of the column on the left and the
rows of the sum of columns on the right are equal in B, ;1. In M,, this is given by (5.17), and
so (5.18)istrue when k,1 > 0,k + 1 < n,k < 2.
To prove (5.18) we attempt induction on p = k + 1 > 3 (with k > 3).
Base Case: p=3 =k =3,l=0.
InCpy,, Y? = X3+aX+b1, so row X3 equals the row combination Y2 —aX —b1, and by the
definition of X" 1 ...  X3Y"2, these columns have row X? equal to the same combination
in B,, 1. We will show that these rows are also equal in the columns X2Y"~! XY”, Y+,
Let:=0,1,2,5 = n+ 1 — ¢ and consider the equation

<Bn+1xiyj, m3> = <Bn+1miyj, (y~2 —ar — bT)> )

Case 1 (n = 3):
From (5.15) we have

<B4x"yj,:/v\§> = B4xiy4—i,;§>

Ma(y® - azy - bj), a1 )
i6—i — aBiv1,4—i — bBia—

Byaiy*i, (42 — aF — bT)>

I
SN D TN T

where the last step is using (5.14).
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Case 2 (n > 3):

(using (5.14)  (Buy1a'y), %) = By

_ <Mnx3y’xiyn7i>

= (Ma(y® - azy — b)), o'y~ )

= Bint+3—i — Bit1ntr1—i — bBint1—i
= (Buaaiyl, (4?2 - a7 - b1) )

So we see now that when p = 3 the row X? is equal to the row combination Y? — aX — b1 in
[M,, Bpi1]. As (5.18) holds for Y2 — aX — b1 and Y2, X, 1 € B, it also holds for X3, and so
(5.18) is true for p = 3.

Inductive Step: Suppose now that (5.18) is true for 3 < p < k + [. First we consider

<Bn+1$’y”+1 i xky> Bitk—3n+1—i+3 = Bitk—2,n+1+1—i — DBitk—3ntit1—i (5.19)

fork,l >0, k+1<nk>30<i<2.
Casel: (k+1<n)

(from (5.14)  (Burwly™ -, 0byl) = B

k+1<n-1) = <Mna;kyl+1,@:i>
RG in M,,) - <Mnxk_3yl+3, as/g_/\’:>

~——

—a <Mnx’“*2yl+2, xiynfi>

—b <Mnxk—3yl+1)’ wiyn—i>
= Bitk—3ntl—i+3 — OBitk—2,n+i+1—i — DBith—3n+it1—i

Case2: (k+1=mn)

—_——

Bpy1 23y 271.k:+i—3yl—z’+3>

(from (5.15)) <Bn+1x yntl—i :nk >

<M PByn—2, ghti-dyi- z+3>

(k+1=mn) =
— (M7 xk+i—3yl—i+3>
—a <Mn;y?/*2, xk+i73yl7i+3>
(RG in M,) _p <Mny/n\f2’ xk+i73ylfi+3>

= Bitk—3nt+i—i+3 — ABitk—2,n+1+1—i — OBitk—3ntit1—i
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And so (5.19) is proved. Coming back to (5.18) we have

(self adjointness) Z ci(,zj) <./\/lnx/17\y/q, xfk\gjl> = Z cg]j) <./\/lnxfk\gjl,3;p\y/q>
p,q20 p,q20

p+q<n pt+q<n
p<2 p<2

= 3 (< Mizh—3y1+2, @q>

2,9>0
p+q<n
p<2

—a <Mn$k—2yl7x}7§q>
—b <./\/lna:k_3yl,ﬁ’\y/‘1>>

Using self adjointness again we see

x= Y i << Mna;/p\y/qjxk—?)yl—i-2>
p,q=0

p+g<n
p<2

—a <Mnl/=537q7 xk72yl>
—b <Mn1/-p\y/q’ xk—3yl>>

_ (<Bn+1xiyn+1—i7 xk—:’,/zz/jua >
—a <Bn+1$iyn+1—i’ xk—2yl>

b <Bn+1xiyn+17i’ $k73yz>>

= Brti—3n+l—i+3

—afkti—2ntl+1—i
(from (5.14)) —bBkti—3 ntit1—i

(from (5.19)) — <Bn+1xiy”+1_i,;;l>

where the change from M,, to By, is from (5.18) if (k — 3) < 2, or by induction since
p=(k—-3)+(1+2)=k+1—1< k+ 1. This shows that (5.18) is always true, and so
Lemma 5.12 is proved. ]

We have now shown the following result.

Proposition 5.13. If M,, is elliptic-pure, then there is a Hankel block By, 11 = By11[0, ¢, ]
which is compatible with a recursively generated Hankel extension My, 1. Moreover, we have
Ran(Bj+1) C Ran(M,,).
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5.3.2 Examining C,,

We concentrate now on the remaining block C), ;1. The analysis below will shed insights into
when flat extensions of M,, exist, and lead to a constructive proof of Theorem 5.14.

Since Ran(By,+1) € Ran(M,,), we know that there exists a W such that B,,;1 = M,, W,
and that M, 1 is positive semi-definite if and only if

Cpi1 > C = Bl W (=W M,W),

furthermore M, 11 is a flat extension of M,, if and only if C},+1 = C.

Recall that we have the following column relations in M,

X = X"2(Y? — X — bl),

XY = X"3(Y? — aXY — bY),
(5.20)

X3Y" 2 = Y — aXY"? 2 — pY" 2,

In particular, these relations must hold in [BZ ;, C,,11]. The construction of B;,11 shows
that they also hold in [B/ |, C], which implies that C,, ;1 and C' are the same in the columns
Xt X3y 2,

Positivity and symmetry of C imply that C has a Hankel structure if and only if the fol-
lowing hold

~ ~

Cn,n = Un4+1n-1; (521)
é\’n—Q—l,n = 6n+27n—17 (522)
é\n—&—l,n—i-l == é\n—‘,—Q,n; (523)

where the first two equations are matching moments in the columns X3Y”~2 with X2y"~1,
and the last one is checking different locations of the moment (33 o,,. The element in row 7,
column n of C),11 is

—_—~

<Cn+1x2y"*1, $2yn71>’

and Cp 41 > c implies

—_~—

(Crra?yn=1,22yn1) > Crp (5.24)
We build and analyse C to examine (5.21)-(5.23). Let J = [M,]B, where B is a basis for
M,,. Write
M =z
SN

where M is the submatrix of M,,, with rows and columns indexed by B except Y",

[l
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and thus A = 3 2,. Since both J and M are positive definite, we have A > T M1z, Let

with

P=M'14cxa™™), v=—-eM12, e=(A—-2"Mz)"!
Let W = J Y [Bns1]s. So we have [/\/ln]B/W = [Bn+1]s, and we use this to define .
For each X'Y7, if X'Y/ € B then we let row X‘Y/ in W be the corresponding row of W. If
XiyYs ¢ 13, then we set row X?Y7 of W to be a row of zeros. We know that Bpy1 = MW,
and due to the column dependencies in [M,,, B;,11], we have that BL W= [BHH]'{;W. It

follows
C = [Bnu1|EW. (5.25)

For the remainder of this section, the compression [X*Y/] 5 represents the column in [B,,11]5.
Lets start with (5.24). The column [X2Y" 1| is of the form

w

0
(from the form of By, 11 = Bp+1(6, ¢, 1)), where [w1, ... ,ws,—1] consists of ‘old” moments.
Let71,...,73,_1 be succesive row vectors of P (in 7~ ') and v* = [vy,... ,v3,_1]. So

T Y = [e1(6), - s ean(6))”

where ¢;(0) = (r;,w) + v;f for 1 < i < 3n — 1, and c3,(0) = (v, w) + 6. We can now
compute

(Ot a2y 1) = ((BualT 7 Bunils),
— XY LT XY
c1(0)

=[wy,... ,w3p—1,0] :

an(e)
3n—1

= Z wici(0) + 0 ((v, w) + €6)
:502+2<v,w>9+w

where w = S5y whw; = (Pw, w). Let f(0) = €62 42 (v,w) 6 + w, then Ch.,, = f(6).

(3
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‘We also have

<Cn+1$2yn—17x2yn—l> — <Cn+1x3yn—27§yvn>
(RG in M) = (Mg 2y

—a <Mn+19€y”_2a CE?\J%>

b (M2, o)
= B12n — aB2,2n—2 — bB1,2n—2
= ¢ —aB22n—2—bB12,—2

which reduces (5.24) to
¢ —af2on—2 — bf12n—2 > f(0).

Let us examine (5.21) more closely. We know that X3Y" "2 = Y” — aXY" 2 — bY" 2 in
Cum,, » this implies

Crsln—1 = <5$3y"‘275yvn>
= B1,2n - aﬁ1,2n72 - 550,27%2
= ¢ — aPian—2 — bBo2n—2

meaning that (5.21) holds if

anJrl,nfl =¢—abran—2 —bBo2n—2 = f(0) = Crn. (5.26)

)

Considering (5.22) (énﬂ,n = anJrg,n,l), we start with

~

(TG — a2 - ), 77

—~—— -~

(symmetry in ]\/4\) = <]\/Zg)/,7_;r/17 (y" — axyn—2 — byn—2)>

—_— —~—

= <Bn+1yn+1v (gﬁ - axy”—2 - byn—2)>
=1 —aB12n-1 — bBo2n-1-

We may compute from (5.25)

Crsin = [XY"BT X2V )5
c1(0)
= [XY"5 |
an(e)
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where [XY"]}; =1[q1,.-. ,q3n—2,0, ¢, and g; are ‘old’ moments. So

3n—2
Cntin = Z qici(0) + Oczn—1(0) + pc3n(0)

and (5.22) requires

3n—2
Y —af12n-1 — bBo2n—1 = Z qici(0) + Oczn—1(0) + Ppcsn(6). (5.27)

Finally, for (5.23) (Cpiy1n+1 = Chnyan) we have
Crion = [YTET XY™ 5,
where [Y" ™)L = [p1,... ,p3n_3,0, ¢, 9], and p; are ‘old’ moments. This gives

3n—3
Chyon = Z pici(0) + Oczn—2(0) + dean—1(0) + ez g).-

To compute Cy, 41 5,41, We set

[XY”]%: = [ul, cee 5, U3p—2, 9, ¢]
= [u(6)", 4]

where u; are old moments. Then similar to before we get
Cotrntr = €67 + 20(u(9), v) + (Pu(9), u(9))

and (5.23) is equivalent to

3n—3
£¢® +2¢(u(8),v) + (Pu(6),u(d)) = Z pici(0)+0c3n—2(0)+dczn—1(0) +1pcsng)- (5.28)

Notice that ¢ = q(f), where q is a quadratic function of #. Substituting this into (5.27)
shows that ¢ = ¢(6), where ¢ is a cubic function of theta. Finally, substituting these expressions
for ¢ and v into (5.28) show that it is equivalent to finding the root of a quartic polynomial
Q(#). This observation proves the following.

Theorem 5.14. Let n > 3. Suppose that M, is positive and Elliptic-pure. A flat extension
M1 of M, exists if the quartic polynomial Q(6) has a real root.

Some remarks are in order. Firstly, notice that compared to [38] the requirements for
generating a flat extension are more complex. Even in [38] (Remark 2.5) it is noted that the
number of constraints for flat extensions increases when k > 3 for the variety y = z*. From
our analysis, we suspect that when we work with the variety y* = 23, the number of constraints
may remain the same, but their complexity grows with k.
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Secondly, notice that in the elliptic-pure setting the existence of a flat extension and repre-
senting measure are not equivalent conditions. This is not surprising to us, since for a > 0, the
commutative and tracial problems are equivalent, and we have observed this behavior in [10].

Example 5.15. Consider now the following example. We take (the unnormalized) M3 gener-
ated by the atoms

{(@i, i), (i, —vi) } (5.29)
where
1 524287
Ti i’ Yi \/:Ez 262144171 + 1, 2 1,... ,5. (530)

It is clear that M satisfies the relation Y2 = X3 — gggfﬁjx + 1 (Theorem 4.5 (1)). Moreover,
we know that a representing measure exists.

A numerical representation of M3 is given by

10 457 0 293 0 324 237 0 087 O
457 293 0 23vr 0 087 216 0 026 O
0 0 324 0 087 O 0 026 0 1.58
293 237 0 216 0 026 207 0 008 O
0 0 087 0 026 O 0 008 0 039
324 087 0 026 0 158 008 0 039 0 |’
237 216 0 207 O 008 203 0 003 O
0 0 026 0 008 O 0 003 0 010
087 026 0 008 O 039 003 0 010 O
0 0 158 0 039 0 0 010 0 0.83

while B, takes the (numerical) form

216 0 026 0 1.58
207 0 008 0 0.39
0 008 0 039 0
203 0 003 0 0.10
0 003 0 010 O
003 0 010 0 0.83
202 0 001 0 0.03
0 001 0 0.03 106
0.01 0 0.03 100 10¢
0 0.03 100 10¢ 10y

A Mathematica computation reveals Q(6) (5.28) to be a quadratic equation
0% +c =0, (5.31)

in which c is a positive rational. From this it is easy to see that no real solutions for 6 exists,
and hence, by the converse of Theorem 5.14, no flat extension to M. The exact forms of
M3, By and Q(#) can be found in the associated Mathematica notebook https://github.com/


https://github.com/Abhishek-B/PhD-Thesis-Supplementary-Material
https://github.com/Abhishek-B/PhD-Thesis-Supplementary-Material
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Abhishek-B/PhD-Thesis-Supplementary-Material.

Remark 5.16. It is interesting to note that (5.31) is a quadratic polynomial and not quartic.
Through discussions with Zalar, we know that this can be understood by looking closer at the
generating atoms (5.29) for Example 5.15. Since we use y; and —y; in (5.29), the odd degree
moments of y are equal to zero. Hence, the change of variables z = y?, reduces Example
5.15 to the moment problem with z = 2. A solution of which is dependent on a quadratic
polynomial as shown in [38].


https://github.com/Abhishek-B/PhD-Thesis-Supplementary-Material
https://github.com/Abhishek-B/PhD-Thesis-Supplementary-Material




Chapter 6

Conclusions and Future Work

To conclude, we summarize the thesis and our results. As is natural in mathematics, solutions
to certain problems tend to raise more questions. We present several conjectures, questions and
future research directions in this chapter. Many of these seem to be quite difficult problems,
but we hope to study these in the near future.

6.1 Summary

This thesis studied aspects of the polynomial optimization problem

I — min p(z
P :EGR"p( )’
s.t.gi(x) >0,...,gx(x) > 0.
In Chapter 2 we gave necessary background for approximations of p"*"
We discussed elementary properties of polynomials, formulating the SOS programs as semi-
definite programs, and presented major results for SOS representations, such as Artin’s solution
to Hilbert’s 17¢" problem and the many Positivstellensitze. We discussed specializations of
these results to strictly positive polynomials, and some recent advances towards understanding

SOS representations for non-negative polynomials.

via sum of squares.

In Chapter 3 we compared state-of-the-art SOS relaxations for constructing non-negative,
bihomogeneous, biquadratic polynomials which are not SOS. Our results are collected in the
MATLAB package PnCP, an entanglement detection tool for quantum states. PnCP is the first
computational package which not only employs entanglement criteria which are applicable for
quantum states in arbitrary dimensions, it does so with state-of-the-art optimization algorithms.

The Truncated Tracial Moment Problem (dual to optimization of non-commutative polyno-
mials) was presented in Chapter 4. We presented excerpts from the published, peer reviewed,
journal article “The singular bivariate quartic tracial moment problem” [10], a collaborative
project with Dr. AljaZ Zalar. It was shown that the bivariate quartic tracial moment problem
reduces to four canonical cases when My has ranks 5 and 6. Furthermore, we presented re-
sults that in some rank 6 cases, the bivariate quartic tracial moment problem is equivalent to
the feasibility of 3 LMI’s and a rank condition.

Chapter 5 extends the study of the Tracial Moment Problem to arbitrary truncation orders,
with the representing measure contained in an elliptic variety. We reduced the Tracial prob-
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lem to the classic Moment Problem in two out of three canonical cases. Moreover, in the
commutative setting we gave sufficient conditions for a representing measure to exist.

6.2 Open Questions

6.2.1 SOS Representations

As we saw in Chapter 2, for non-negative polynomials p € R[z] and £ € N, (z+4---+22)pis
not guaranteed to be SOS. However, the results of Chapter 3 indicate that for randomly gener-
ated polynomials, the denominator (2 + - - - + x2)* generally works, i.e., Theorem 2.14 works
for generic non-negative polynomials. It would be interesting to formalize this understanding.
We conjecture the following on bad points (cf. Chapter 2).

Conjecture 6.1. The set B = {p € R[z| : p has a bad point at the origin} is closed.

An affirmation of this conjecture would allow us to guarantee the theoretical success of
the CNR relaxation of Chapter 3 and greatly improve the reliability of PnCP. Furthermore, if
true Conjecture 6.1 would allow existing SOS and optimization software to also use the CNR
relaxation.

A natural approach to Conjecture 6.1 is to examine the cone

n N
Ny = fGR[m,..-,wn]d:(Zx?) f=508%,
=1

and to understand the asymptotic relationship between Cflv 4 and the cone of non-negative poly-
nomials P, 4. In [11] Blekherman studies a similar pr(;blem, and analyses the volumes of
Pn,m and X, . He showed that (asymptotically) there are many more non-negative forms,
than there are SOS forms. It is readily seen that

EmeCO C...gcyfxmg...gme

nm =

and while it is known that |, C,]X m 7 Pn,m, the density of C’é\fm (for a fixed V) has not yet
been studied. Specifically, we ask the following.

Question 6.2. What is the aysmptotic relationship between the volumes of C,]Xm and Py m?
In particular, given some fixed ¢ > 0, is there some (possibly large) N, such that (in an
appropriate topology) Cé\{m is dense in Py, , for N > N.?

6.2.2 Tracial Moment Problem

We have made many advances in understanding the Tracial Moment Problem, particularly in
the bivariate quartic setting, in [10]. In future works we would like to resolve the non-singular
bivariate quartic tracial moment problem with rank 6 and column relation Y2 = 1. While this
appears to be a difficult task, we believe techniques from [34] can help. We ask in the particular
the following question.
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Question 6.3. Given an generalized nc Hankel matrix Ms([3) how can we check if there is an
extension M3(3) such that M3(B) has a flat extension? More generally, how can we check
if a given generalized Hankel matrix My, () admits an extension to My1(8) which then
admits a flat extension M, 12(3)?

It is also shown in Chapter 4, that in two of the rank 6 cases, the minimal measure consists
of atoms of size at most 2. After reviewing some examples in [10], we conjecture that this is
true for all quartic tracial sequences 3(4).

Conjecture 6.4. Given a quartic moment sequence 39 (equivalently My(B)) with a finitely
atomic representative measure [i, the atoms have size at most 2, i.e., 2X 2 matrices can generate
the moment sequence.

While we have also made advances for the Tracial Moment Problem on elliptic varieties,
the case of the relation Y? = X3 — X + b1 is not well understood. We would like to examine
the atoms in this case more closely, with the aim of find sufficient conditions for the existence
of a measure.

Our immediate aim for the commutative elliptic-pure Moment Problem, is to find necessary
conditions for the existence of a measure. The work of [94] may prove useful for this. It is
known that if 3™ admits a representing measure, then there is some k£ € N such that M,,
admits a flat extension M, x+1. Our first approach to obtaining necessary conditions is to
find an upper bound on k.
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