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Abstract

Videos for outdoor scene often show unpleasant blur ef-
fects due to the large relative motion between the camera
and the dynamic objects and large depth variations. Exist-
ing works typically focus monocular video deblurring. In
this paper, we propose a novel approach to deblurring from
stereo videos. In particular, we exploit the piece-wise pla-
nar assumption about the scene and leverage the scene flow
information to deblur the image. Unlike the existing ap-
proach [31] which used a pre-computed scene flow, we pro-
pose a single framework to jointly estimate the scene flow
and deblur the image, where the motion cues from scene
flow estimation and blur information could reinforce each
other, and produce superior results than the conventional
scene flow estimation or stereo deblurring methods. We
evaluate our method extensively on two available datasets
and achieve significant improvement in flow estimation and
removing the blur effect over the state-of-the-art methods.

1. Introduction
Image deblurring aims at recovering latent clean images

from a single or multiple images, which is a fundamen-

tal task in image processing and computer vision. Image

blur could be caused by various reasons, for example, opti-

cal aberration [30], medium perturbation [18], temperature

variation [23], defocus [33], and motion [4, 10, 17, 34, 42].

The blur not only reduces the quality of the image causing

loss of important details, but also hampers further analysis.

Image deblurring has been extensively studied and various

methods have been proposed.

In this work, we focus on image blur caused by motion.

Motion blur is widely encountered in real world applica-

tions such as autonomous driving [5, 7]. Camera and ob-

ject motion blur effects become more apparent when the

exposure time of the camera increases due to low-light con-

ditions. It is common to model the blur effect using ker-

nels [17, 21]. Under motion blur, the induced blur kernel

(a) Original blur images

(b) Kim and Lee CVPR 2015 [16]

(c) Sellent et al. ECCV 2016 [31]

(a) Ours

Figure 1. Stereo deblurring results on outdoor scenarios. (a) Two

samples from the KITTI autonomous driving benchmark dataset.

(b) Deblurring result of [16]. (c) Deblurring result of [31]. (d) Our

deblurring result. Compared with both state-of-the-art monocular

and stereo debluring methods, our method achieves the best per-

formance especially for large motion regions in the scene. Best

viewed in color on screen.

would be in 2D [16] or 3D [31]. For a scenario where both

camera motion and multiple moving objects exist, the blur
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kernel is, in principle, defined for each pixel. Therefore,

conventional blur removal methods, such as [2, 10, 26, 40]

cannot be directly applied since they are restricted to a sin-

gle or a fixed number of blur kernels, making them inferior

in tackling general motion blur problems.

On another front, stereo-based depth and motion estima-

tion have witnessed significant progress over the last decade

thanks to the availability of large benchmark datasets such

as Middlebury [29] and KITTI [7]. These benchmarks pro-

vide realistic scenarios with meaningful object classes and

associated ground-truth annotations. The success of stereo-

based motion estimation naturally prompts more advanced

stereo based deblurring solutions, promising more accurate

motion estimations to compensate for motion blurs. Very

recently, Sellent et al. [31] proposed to exploit stereo in-

formation in aiding the challenging video deblurring task,

where a piecewise rigid 3D scene flow representation is

used to estimate motion blur kernels via local homogra-

phies. It makes a strong assumption that 3D scene flow can

be reliably estimated, even under adverse conditions. While

they reported favorable results on both synthetic and real

data, all the experiments are confined to indoor scenarios.

The phenomenon around motion and blur can be viewed

as a chicken-egg problem: More effective motion blur re-

moval requires more accurate motion estimation. Yet, the

accuracy of motion estimation highly depends on the qual-

ity of the images. We would like to argue that, scene flow

estimation approaches that make use of color brightness

constancy may be hindered by the blur images. In Fig. 2,

we compare the scene flow estimation results of the state-

of-the-art solutions on different blur images. It could be

observed that the scene flow estimation performance deteri-

orates quickly w.r.t. the image blur.

Here, we aim to solve the above two problems simultane-

ously in a unified framework. Our motivation is that motion

estimation and video deblur benefit from each other, i.e.,

better scene flow estimation will lead to a better deblurring

result, and a cleaner image will lead to better flow estima-

tion. We tackle a more general blur problem that is not only

caused by camera motion but also by moving objects and

depth variations in a dynamic scene. We define our prob-

lem as “generalized stereo deblur”, where moving stereo

cameras observe a dynamic scene with varying depths. We

propose a new pipeline (see Fig. 4 for simultaneously esti-

mating the 3D scene flow and deblurring images. Using our

formulation, we attain significant improvement in numerous

real challenging scenes as illustrated in Fig. 1.

The main contributions of our work are as follows:

• We propose a novel joint optimization framework to si-

multaneously estimate the scene flow and deblurred la-

tent images for dynamic scenes. Our deblurring objec-

tive benefits from the improved scene flow estimates

and the estimated scene structure. Similarly, the scene

(a) Blurry Image & GT Flow (b) Menze CVPR 2015 [25]

(c) Sellent ECCV 2016 [31] (d) Ours

Figure 2. Scene flow estimation results for an outdoor scenarios.

(a) A blur frame from the KITTI autonomous driving benchmark

datasets. (b) Estimated flow by [25]. (c) Estimated flow by [31].

(d) Our flow estimation result. Compared with both these state-of-

the-art methods that rank the 1st and 2nd on the KITTI dataset, our

method achieves the best performance especially for large motion

region in the scene. Best viewed in color on screen.

flow objective allows deriving more accurate pixel-

wise spatially varying blur kernels.

• Based on the piece-wise planar assumption, we obtain

a structured blur kernel model. More specifically, the

optical flows for pixels in the same superpixel are con-

strained by a single homography (see Section.3.1).

• As our experiments demonstrate, our method can suc-

cessfully handle complex real-world scenes depict-

ing fast moving objects, camera motions, uncontrolled

lighting conditions, and shadows.

2. Related Work

Blur removal is an ill-posed problem, thus certain as-

sumptions or additional constraints are required to regular-

ize the solution space. Numerous methods have been pro-

posed to address this problem [16, 17, 31, 34], which can be

categorized into two groups: monocular based approaches

and binocular based approaches.

Monocular based approaches often assume that the cap-

tured scene is static and has a constant depth. Based on

these assumptions, uniform or non-uniform blur kernels are

estimated from a single image [10, 12, 14]. Hu et al. [14]

proposed to jointly estimate the depth layering and remove

non-uniform blur from a single blur image. While this uni-

fied framework is promising, user input for depth layers

partition is required, and potential depth values should be

known in advance. In practical settings, blur is spatially

varying due to camera and object motion, which makes the

kernel estimation a difficult problem.
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Since blur parameters and the latent image are difficult

to be estimated from a single image, the monocular based

approaches are extended to video to remove blurs in dy-

namic scenes [32, 37]. To this end, Deng et al. [4] and He et
al. [11] apply feature tracking of a single moving object to

obtain 2D displacement-based blur kernels for deblurring.

Matsushita et al. [24] and Cho et al. [3] proposed to exploit

the existence of salient sharp frames in videos. Neverthe-

less, the method of Matsushita et al. [24] cannot remove

blurs caused by moving objects. Moreover, the work of Cho

[3] cannot handle fast moving objects which have distinct

motions from those of backgrounds. Wulff and Black [38]

proposed a layered model to estimate the different motions

of both foreground and background layers. However, these

motions are restricted to affine models, and it is difficult to

be extended to multi-layer scenes due to the requirement of

depth ordering of the layers.

Kim and Lee [15] proposed a method based on a local

linear motion without segmentation. This method incorpo-

rates optical flow estimation to guide the blur kernel estima-

tion and is able to deal with certain object motion blur. In

[16], a new method is proposed to simultaneously estimate

optical flow and tackle the case of general blur by minimiza-

tion a single non-convex energy function. This method rep-

resents the state-of-the-art in video deblurring and is used

for comparison in the experimental section.

As depth can significantly simplify the deblurring prob-

lem, the multi-view methods have been proposed to lever-

age on depth information. Building upon the work of Ezra

and Nayar [28], Li et al. [22] extended the hybrid cam-

era with an additional low-resolution video camera where

two low-resolution cameras form a stereo pair and provide

a low-resolution depth map. Tai et al. [35] used a hybrid

camera system to compute a pixel-wise kernel with optical

flow. Xu et al. [39] inferred depth from two blur images

captured by a stereo camera and proposed a hierarchical es-

timation framework to remove motion blur caused by in-

plane translation. Just recently, Sellent et al. [31] proposed

a video deblurring technique based on stereo video, where

3D scene flow is estimated from blur images using a piece-

wise rigid 3D scene flow representation.

3. Formulation

Our goal is to handle the blurs in stereo videos caused

by the motion of the camera, objects, and large depth varia-

tions in a scene. To this end, we formulate our problem as a

joint estimation of scene flow and image deblurring for dy-

namic scenes. In particular, we rely on the assumptions that

the scene can be approximated by a set of 3D planes [41]

belonging to a finite number of objects1 performing rigid

1The background can be regarded as a single ’object’ due to the camera

motion.

motions [25]. Based on these assumptions, we define our

structured blur kernel as well as the energy functions for

deblurring in the following sections.

3.1. Blur Image Formation based on the Structured
Pixel-wise Blur Kernel

Blur images are formed by the integration of light inten-
sity emitted from the dynamic scene over the aperture time
interval of the camera. This defines the image frame in the
video sequence as

Bm(x) =
1

τ

∫ m+ τ
2

m− τ
2

L(m,x)dm =
1

τ

∫ m+ τ
2

m− τ
2

Lm(x+ um)dm

(1)

where Bm is the blur frame, L ∈ [−T, T ] × Ω is a con-

tinuous latent video sequence over a time interval [−T, T ],
τ is the duty cycle, um is the optical flow at m. We denote

Lm(x) = L(m,x). This leads to the discretized version of

blur model in Eq. (1) as

Bm(x) = Ax
mLm, (2)

where Ax
m is the blur kernel vector for the image at location

x. We obtain the blur kernel matrix A by stacking Ax. This
leads to the blur model for the image as Bm = AmLm. In
order to handle multiple types of blurs, Kim et al. [15] ap-
proximated the pixel-wise blur kernel using bidirectional
optical flows

km,x(u, v) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ(uṽm+ − vũm+)

τm||ũm+|| , if u ∈ [0,
τm
2

ũm+], v ∈ [0,
τm
2

ṽm+]

δ(uṽm− − vũm−)
τm||ũm−|| , if u ∈ (0,

τm
2

ũm−], v ∈ (0,
τm
2

ṽm−]

0, otherwise
(3)

where kt,x is the blur kernel at x, δ denotes the Kronecker

delta, ũm+ = (ũm+, ṽm+) and ũm− = (ũm−, ṽm−) are

the bidirectional optical flows at frame m. In particular,

um+ = um→m+1 and um− = um→m−1. They jointly es-

timated the optical flow and the deblurred images. In our

setup, the stereo video provides the depth information for

each frame. Based on our piece-wise planar assumptions

on the scene, optical flows for pixels lying on the same

plane are constrained by a single homography. In partic-

ular, we represent the scene in terms of superpixels and fi-

nite number of objects with rigid motions. We denote S
and O as the set of superpixels and moving objects, respec-

tively. Each superpixel i ∈ S is associated with a region

Ri in the image with a plane variable ni,k ∈ R
3 in 3D

(nT
i,kX = 1 for X ∈ R

3), where k ∈ {1, · · · , |O|} denotes

that superpixel i is associated with object k inheriting its

corresponding motion parameters ok = (Rk, tk) ∈ SE(3),
where Rk ∈ R

3×3 is the rotation matrix and tk ∈ R
3 is the

translation vector. Note that (ok,ni,k) encodes the scene
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(a) Original Blurry image (b) Kim and Lee [16]

(c) Sellent et al. [31] (d) Ours

Figure 3. Blur kernel estimation on an outdoor scenario. (a) A blur

frame from the KITTI autonomous driving benchmark datasets.

(b) Blur kernel of [16]. (c) Blur kernel of [31]. (d) Our blur kernel.

Compared with these monocular and stereo deblurring methods,

our method achieves more accurate blur kernels.

flow information [25]. Given the parameters (ok,ni,k), we

can obtain the homography defined for superpixel i as

Hi = K(Rk − tkn
T
i,k)K

−1 (4)

where K ∈ R
3×3 is the intrinsic matrix. The optical flow

is then defined as

ui,j = Hixi,j − xi,j (5)

where xi,j is the coordinate of pixel j in superpixel i. This

shows that the optical flows for pixels in a superpixel are

constrained by the homography. Thus, it leads to a struc-

tured version of blur kernel defined in Eq. (3). In Fig. 3, we

compare our blur kernel estimation with the Kim and Lee

[16] and Sellent et al. [31]. Our kernels are more structural,

which also leads to more accurate scene flow estimation.

3.2. Energy Minimization

We formulate the problem in a single framework as a

discrete-continuous optimization problem to jointly esti-

mate the scene flow and deblur the images. In particular,

our energy minimization model is formulated as

E =
∑
i∈S

φi(ni,o,L)

︸ ︷︷ ︸
data term

+
∑
i,j

φi,j(ni,nj ,o)

︸ ︷︷ ︸
scene flow

smoothness term

+
∑
m

φm(L)

︸ ︷︷ ︸
latent image

regularisation

(6)

which consists of a data term, a smoothness term for scene

flow, and a spatial regularization term for latent clean im-

ages. Our model is initially defined on three consecutive

pairs of stereo video sequences. It can also allow the input

with two pairs of frames. Details are provided in Section 5.

The energy terms are discussed in the following sections.

In Section 4, we solve the optimization problem in an

alternative manner to handle mixed discrete and continuous

variables, thus allowing us to jointly estimate the scene flow

and deblur the images.

3.3. Data Term

Our data term involves mixed discrete and continuous

variables, and are of three different kinds. The first kind en-

codes the fact that the corresponding pixels across the six

latent images should have similar appearance (brightness

constancy). This lets us write the term as

φ1
i (ni,k,ok,L) = θ1|L(x)− L∗(H∗x)|1, (7)

where the superscript ∗ ∈ {stereo,flowf,b, crossf,b} de-

notes the warping direction to other images and (·)f,b de-

notes the forward and backward direction, respectively (see

Fig. 4). We adopt the robust �1 norm to enforce its robust-

ness against noise and occlusions.

Our second potential, similar to one term used in [25], is

defined as

φ2
i (ni,k,ok) =

{
θ2ρα1

(||H∗x− x∗||2) if x ∈ Πx,

0 otherwise.

where ρα(·) = min(| · |, α) denotes the truncated �1 penalty

function. More specifically, it encodes the information that

the warping of feature points x ∈ Πx based on H∗ should

match its extracted correspondences in the target view. In

particular, Πx is obtained in a similar manner as [25].

The third data term, making use of the observed blur im-

ages, is defined as

φ3
i (ni,k,ok,L) = θ3

∑
m

∑
∂∗

‖∂∗Am(ni,k,ok)Lm − ∂∗Bm‖22

where ∂∗ are the Toeplitz matrices corresponding to the
horizontal and vertical derivative filters. This term encour-

ages the intensity changes in the estimated blur images to

be close to that of the observed blur images.

3.4. Smoothness Term for Scene Flow

Our energy model exploits a smoothness potential that

involves the discrete and continuous variables. It is similar

to the ones used in [25]. In particular, our smoothness term

includes three different types. The first one is to encode

the compatibility of two superpixels that share a common

boundary by respecting the depth discontinuities. To this

end, we define our potential function as

φ1
i,j(ni,nj) = θ4

∑
x∈Bi,j

ρα2(ωi,j(ni,nj ,x)) (8)

where ω(ni,x) is the disparity of pixel x in superpixel i in

the reference disparity map, ωi,j(ni,nj ,x) = ω(ni,x) −
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Figure 4. Illustration of our ’generalized stereo deblurring’ method. We simultaneously compute four scene flows (in two directions and

in two view), and deblur six images. In case the input contains only two images, we use the reflection of the flow forward as the flow

backward in the deblurring part.

ω(nj ,x) are the distance of disparity for pixel x ∈ Bi,j on

the boundary.

The second potential is to encourage the neighbor super-

pixels to orient in the same direction. It is expressed as

φ2
i,j(ni,nj) = θ5ρα3

(
1− |nT

i nj |
‖ni‖ ‖nj‖

)
. (9)

The third potential is to encode the fact that the mo-
tion boundaries are co-aligned with disparity discontinu-
ities. This potential can be expressed as

φ3
i,j(ni,k,nj,k′)

= θ6

⎧⎨
⎩

exp
(
− λ
|Bi,j |

∑
x∈Bi,j

ωi,j(ni,nj ,x)
2 |nT

i nj |
‖ni‖‖nj‖

)
if k �= k′,

0 else.

where |Bi,j | denotes the number of pixels shared along

boundary between superpixels i and j.

3.5. Regularization Term for Latent Images

Spatial regularization has proven its importance in image

deblurring [19, 20]. In our model, we use the total variation

term to suppress the noise in the latent image while preserv-

ing edges, and penalize spatial fluctuations. Therefore, our

potential takes the form

φm = |∇Lm|. (10)

Note that the total variation is applied to each color channel.

4. Solution
The optimization of our energy function defined in

Eq. (6), involving both discrete and continuous variables,

is challenging to solve. Recall that our model involves two

set of variables, namely scene flow variables and latent im-

ages. Fortunately, given one set of variables, we can solve

the other efficiently. Therefore, we perform the optimiza-

tion iteratively by the following steps,

• Fix latent image L, solve scene flow by optimizing

Eq. (11) (See Section 4.1).

• Fix scene flow parameters, n and o, solve latent image

by optimizing Eq. (12) (See Section 4.2).

In the following sections, we describe the details for each

optimization step.

4.1. Scene flow estimation

We fix latent images, namely L = L̃, Eq. (6) reduces to

min
n,o

∑
i∈S

φ1,2,3
i (ni,o, L̃) +

∑
i,j

φ1,2,3
i,j (ni,nj ,o). (11)

which becomes a discrete-continuous CRF optimization

problem. We use the sequential tree-reweighted message

passing (TRW-S) method in [25] to find the solution.

4.2. Deblurring

Given the scene flow parameters, namely ñ, and õ, the

blur kernel matrix, Am is derived based on Eq. (3), and

Eq. (5). The objective function in Eq. (6) becomes convex

with respect to L and is expressed as

min
L

∑
i∈S

φ1
i (ñi, õ,L)+φ3

i (ñi,k, õk,L)+
∑
m

φm(L). (12)
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In order to obtain sharp image L, we adopt the con-

ventional convex optimization method [1] and derive the

primal-dual updating scheme as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pr+1
m =

pr
m + γ∇Lr

m

max(1,abs(pr
m + γ∇Lr

m))

qr+1
m,∗ =

qr
m,∗ + γθ1(L

r
m − Lr

m,∗)
max(1,abs(qr

m,∗ + γθ1(Lr
m − Lr

m,∗))

Lr+1
m = argmin

Lm

∑
i

θ3
∑
∂∗

‖∂∗AmLm − ∂∗Bm‖22 +
∥∥[Lm − η((∇pr+1

m )T + θ1(q
r+1
m,+∗ − qr+1

m,−∗)
T )]− Lr

m

∥∥2
2η

(13)

where pm, qm,∗ are the dual variables, γ and η are the step

variants which can be modified at each iteration, and r is

the iteration number.

5. Experiments
To demonstrate the effectiveness of our method, we eval-

uate it on two datasets: the synthetic chair sequence [31]

and KITTI dataset [6]. We discuss our results on both

datasets in the following sections.

5.1. Experimental Setup

Initialization. Our model is formulated on three consecu-

tive stereo pairs. In particular, we treat the middle frame in

the left view as the reference image. We adopt the Stere-

oSLIC [41] to generate the superpixels. Given the stereo

images, we apply the approach in [8] to obtain sparse fea-

ture correspondences. The traditional SGM [13] method is

applied to obtain a disparity map which is used to initial-

ize the plane parameters. The motion hypotheses are gen-

erated using RANSAC as implemented in [8]. In order to

obtain the model parameters {θ} and {α}, we performed

block-coordinate-descent on a subset of 30 randomly se-

lected training images.

Evaluations. Since our method estimates the scene flow

and deblurs the images, we evaluate these two tasks sepa-

rately. For the scene flow estimation results, we evaluate

both the optical flow and disparity map by the same error

metric, which is by counting the number of pixels having

errors more than 3 pixels and 5% of its ground-truth. We

adopt the PSNR to evaluate the deblurred image sequences

for left and right view separately. Thus, for each sequence,

we report three values: disparity errors for three stereo im-

age pairs, flow errors in forward and backward directions,

and PSNR values for six images.

Baseline Methods. As for our scene flow results, we com-

pare with piece-wise rigid scene flow method (PRSF) [36],

which ranks the first on KITTI stereo and optical flow

benchmark. Note that PRSF is used as a preprocessing stage

in [31]. We then compare our deblurring results with the

Table 1. Quantitative comparisons on the Blurred KITTI dataset.

KITTI Dataset
Disparity Flow PSNR

m m+1 Left Right Left Right

Vogal et al. [36] 8.20 8.50 13.62 14.59 / /

Kim and Lee [16] / / 38.89 39.45 28.25 29.00

Sellent et al. [31] 8.20 8.50 13.62 14.59 27.75 28.52

Ours
2 Frames 7.02 8.55 11.44 19.34 30.24 30.71
3 Frames 6.82 8.36 10.01 11.45 29.80 30.30

state-of-the-art deblurring approach for monocular video

sequence [16], and the approach for stereo videos [31].

5.2. Experimental Results

Results on KITTI. To the best of our knowledge, there

are no realistic benchmark datasets that provide blur and

its corresponding ground-truth clear images and scene flow.

In this paper, we take advantage of the KITTI dataset [6]

to create a synthetic Blurred KITTI dataset (will be pub-

licly available) on realistic scenery. It contains 199 scenes,

each of which includes 6 images of size 375× 1242. Since

the KITTI benchmark does not provide dense ground-truth

flow, we use a state-of-the-art scene flow method [25] to

generate dense ground-truth flows. Given the dense scene

flow, the blur images are generated by using the piecewise

linear 2D kernel, please refer to [16] and [31] for more de-

tails. The blur is caused by both objects motion and camera

motion with occlusion and shadow.

We evaluated results by averaging errors and PSNR

scores over m−1 to m+1 stereo image pairs. Table 1 shows

the PSNR values, disparity errors, and flow errors averaged

over the Blurred KITTI dataset. Our method consistently

outperforms all baselines. We achieve the minimum error

scores of 10.01% for optical flow and 6.82% for disparity

in the reference view. In Fig. 5, we show qualitative results

of our method and other methods on sample sequences from

our dataset. Fig. 6 and Fig. 7 show the scene flow estimation

and deblurring results of the Blurred KITTI dataset.

We then choose a subset of 50 more challenging se-

quences with large motion from the 199 scenes as test im-

ages, which contains daily traffic scenes covering urban ar-

eas (30 sequences), rural areas (10 sequences) and highway

(10 sequences). Table 2 shows the PSNR values, dispar-

ity errors, and flow errors averaged over 50 test sequences

on Blurred KITTI dataset. Fig. 8 (left) shows the perfor-

mance of our deblurring stage with respect to the number

of iterations. While we use 5 iterations for all our exper-

iments, our experiments indicate that only 3 iterations are

sufficient in most cases to achieve optimal performance un-

der our model.

Results on Sellent et al. [31] dataset We further evaluate

our approach on the dataset in [31] where the blur images

are generated by 3D kernel model. Those sequences con-

tain four real and four synthetic scenes and each of them in-

cludes six blur images with its sharp images, where ground-
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(a) Blur Image (b) Kim and Lee [16] (c) Sellent et al. [31] (d) Ours
Figure 5. Numerous outdoor blurry frames and our deblurring result compare with several baselines. Best Viewed on Screen.
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Figure 6. Flow estimation errors on the Blurred KITTI dataset.

Our method clearly outperforms both monocular and stereo video

deblurring methods.

truth scene flow is only available for the synthetic scene

“Chair”. We thus report the quantitative comparison in Ta-

ble 3 on the scene “Chair” between our method and state-

of-the-art methods, where the evaluation results are aver-

10 20 30 40 50 60
PSNR(dB)
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Kim and Lee (CVPR 2015)
Sellent (ECCV 2016)
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Figure 7. The distribution of the PSNR scores on the Blurred

KITTI dataset. The probability distribution function for each

PSNR was estimated using kernel density estimation with a nor-

mal kernel function. The heavy tail of our method means larger

PSNR can be achieved using our method.

aged over 4 images. We also present the qualitative re-

sults in Fig. 9 for real images in this dataset. Fig. 8 (right)
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Figure 8. Deblurring performance with respect to iterations. (left)

Our method gains an improvement of 0.3dB between the first and

the last iteration on the 50 challenging dataset. (right) Comparison

between our method and other baselines on the ’Chair’ sequence.

Table 2. Quantitative comparisons on 50 challenging sequences.

Our Dataset
Disparity Flow PSNR

m m+1 Left Right Left Right

Vogal et al. [36] 6.67 6.70 7.26 7.90 / /

Kim and Lee [16] / / 25.83 26.36 29.58 30.30

Sellent et al. [31] 6.67 6.70 7.26 7.90 28.73 29.44

Ours
2 Frames 4.98 5.82 6.12 13.06 32.22 32.62
3 Frames 4.90 5.76 6.16 6.17 31.80 32.28

shows the performance comparison in deblurring between

our method and other baselines with respect to iterations

on scene “Chair”. These results affirm our assumption that

simultaneously solving scene flow and video deblur bene-

fit each other and that a simple combination of two stages

cannot achieve the targeted results.

(a) Blur Images (b) Our results

Figure 9. Sample deblur results on the real image dataset from

Sellent et al.[31]. Best Viewed on Screen.

Results on another blur model: We have also tested our

method on another blur generation model, where the blurred

image is an average of consecutive three frames [9, 27]. The

results are shown in Table 4 and Fig. 10 respectively, where

our method again achieves the best performance.

Runtime: In all experiments, we simultaneously compute

two direction scene flow and restoration six blur images.

Table 3. Performance comparisons on scene “Chair” [31].
Chair video Disparity(%) Flow Error(%) PSNR(dB)

Menze [25] 1.17 9.33 /

Vogel [36] 1.34 2.13 /

Kim [16] / 9.08 19.95

Sellent [31] 1.34 2.13 23.07

Ours
2 Frames 1.28 1.22 23.13

3 Frames 1.15 1.18 23.26

Table 4. Quantitative evaluation on the KITTI dataset where the

blur images are generated by averaging three consecutive frames.
Kim [16] Sellent et al. [31] Ours

PSNR(dB) 23.21 23.31 23.89
SSIM 0.781 0.764 0.786

(a) Blur Image (b) Kim and Lee [16]

((c) Sellent et al. [31] (d) Ours

Figure 10. Quantitative evaluation on the KITTI dataset, where the

blur images are generated by averaging three consecutive frames.

Our MATLAB implementation with C++ wrappers requires

a total runtime of 40 minutes for processing one scene(6

images, 3 iterations) on a single i7 core running at 3.6 GHz.

6. Conclusion
In this paper, we present a joint optimization frame-

work to tackle the challenging task of stereo video deblur-

ring where scene flow estimation and video deblurring are

solved in a coupled manner. Under our formulation, the

motion cues from scene flow estimation and blur informa-

tion could reinforce each other, and produce superior results

than conventional scene flow estimation or stereo deblurring

methods. We have demonstrated the benefits our framework

on extensive synthetic and real stereo sequences.
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