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The combination of multiple observational probes has long been advocated as a powerful technique to
constrain cosmological parameters, in particular dark energy. The Dark Energy Survey has measured 207
spectroscopically confirmed type la supernova light curves, the baryon acoustic oscillation feature, weak
gravitational lensing, and galaxy clustering. Here we present combined results from these probes, deriving
constraints on the equation of state, w, of dark energy and its energy density in the Universe. Independently
of other experiments, such as those that measure the cosmic microwave background, the probes from this

+0.09

single photometric survey rule out a Universe with no dark energy, finding w = —0.80777. The geometry
is shown to be consistent with a spatially flat Universe, and we obtain a constraint on the baryon density of
Q, = 0.06970% that is independent of early Universe measurements. These results demonstrate the
potential power of large multiprobe photometric surveys and pave the way for order of magnitude advances
in our constraints on properties of dark energy and cosmology over the next decade.

DOI: 10.1103/PhysRevLett.122.171301

Introduction.—The discovery of the accelerating
Universe [1,2] revolutionized 20th century cosmology by
indicating the presence of a qualitatively new component in
the Universe that dominates the expansion in the last
several billion years. The nature of dark energy—the
component that causes the accelerated expansion—is
unknown, and understanding its properties and origin is
one of the principal challenges in modern physics. Current
measurements are consistent with an interpretation of dark
energy as a cosmological constant in general relativity. Any
deviation from this interpretation in space or time would
constitute a landmark discovery in fundamental physics [3].

Dark energy leaves imprints on cosmological observa-
tions, typically split into two regimes: (1) it modifies the
geometry of the Universe, increasing distances and vol-
umes in the Universe over time via the accelerated
expansion, and (2) it suppresses the growth of cosmic
structure. However, these effects can be mimicked by the
variation of other cosmological parameters, including the
dark matter density and curvature, or other physical models
and systematics that are degenerate within a single probe.
Consequently, measuring dark energy properties requires a
combination of cosmological probes that are sensitive to
both classes of effects to break these parameter and model
degeneracies [4—6].

Historically, the most powerful cosmic probe has
been the cosmic microwave background (CMB) [7-9],
relic radiation from the surface of last scattering only
400,000 years after the big bang. Low-redshift probes
measure the Universe over the last several billion years,
when dark energy dominates the expansion. Comparing or
combining constraints between the CMB and lower redshift
measurements requires us to extrapolate predictions to the
present-day Universe starting from initial conditions over
13 billion years ago. This is a powerful test of our models,
but it requires precise, independent constraints from low-
redshift experiments. Low-redshift probes include Type Ia
supernova (SNe Ia) measurements, which treat the SNe Ia
as standardizable candles and employ redshift and flux
measurements to probe the redshift-luminosity distance

relation [10], baryon acoustic oscillations (BAO), which
use a “standard ruler” scale in the cosmic density field,
imprinted by sound waves at recombination, to probe
several redshift-distance combinations [11,12], galaxy
clustering, which measures the density field up to some
bias between galaxy density and the underlying dark matter
density, and redshift-space distortions (RSD) in the cluster-
ing [13], the counts of galaxy clusters, representing the
most extreme density peaks in the Universe [14], strong
gravitational lensing [15], and weak gravitational lensing,
which probes changes in the gravitational potential along
the line of sight using coherent distortions in observed
properties of galaxies or the CMB, e.g., to measure the dark
and baryonic matter distribution [16].

We report here the first results from the Dark Energy
Survey (DES) combining precision probes of both geom-
etry and growth of structure that include BAO, SNe Ia, and
weak lensing and galaxy clustering from a single experi-
ment. DES has previously shown separate cosmological
constraints using weak lensing and galaxy clustering [17],
BAO [18], and SNe Ia [19]. We now combine these probes
and begin to fully realize the power of this multiprobe
experiment to produce independent measurements of the
properties of dark energy.

The work presented here demonstrates our ability to
extract and combine diverse cosmological observables
from wide-field surveys of the evolved Universe.
Previous dark energy constraints have relied on combining
the likelihoods of many separate and independent experi-
ments to produce precise constraints on cosmological
models including dark energy. For this traditional approach
each experiment has performed an independent analysis to
validate measurements and has separate calibration meth-
odologies and requirements, thus ensuring that many
potential systematics are uncorrelated between probes.
The DES analysis presented here, however, uses a common
set of both calibration methodologies and systematics
modeling and marginalization across probes, which enables
a consistently validated analysis. Perhaps most importantly,
this common framework allows us to standardize
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requirements like blinding across these probes, which is
essential to minimize the impact of experimenter bias [20].
This approach provides a very robust, precise cross-check
of traditional multiprobe analyses, which currently provide
tighter overall constraints.

The fundamental interest in understanding the nature of
dark energy has spurred the development of multiple large
photometric surveys that image the sky, capable of inde-
pendently combining multiple cosmic probes. The current
generation of surveys includes the Hyper-Suprime Cam
Survey (HSC) [21], the Kilo-Degree Survey (KiDS) [22],
and the focus of this work, DES [23]. The next generation
of these surveys will include the Large Synoptic Survey
Telescope (LSST) [24], a ground-based telescope that will
observe the entire southern hemisphere with very high
cadence, and space telescopes Euclid [25] and the Wide-
Field InfraRed Survey Telescope (WFIRST) [26]. In
parallel with imaging surveys, the distribution of galaxies
measured by spectroscopic surveys (i.e., BOSS [27],
eBOSS [28], and the planned 4MOST [29], DESI [30],
and PFS [31] surveys) provides powerful constraints on the
distance-redshift relation via BAO measurements and the
growth of structure via redshift space distortions. The union
of these results over the following several years, and into
the next decades, will ensure that we are able to take
advantage of the benefits of multiple independent, self-
consistent, and blinded multiprobe analyses like we present
here for DES.

Cosmic probes.—The Dark Energy Survey: DES cosmic
probes span a wide range of redshifts up to z ~ 1.3, and
include weak gravitational lensing and galaxy clustering
due to large-scale structure [17], SNe Ia [19], and BAO
[18]. Each probe constrains dark energy independently and
their combination is more powerful. These probes utilize a
subset of data from DES taken during its first three
observing seasons (August 2013 to February 2016).
Spectroscopically confirmed SNe Ia are identified from
images in all three seasons (DES Y3) in 27 deg’® of
repeated deep-field observations, while weak lensing and
large-scale structure information is derived from images
taken only in the first season (DES Y1), ending February
2014 and covering 1321 deg? of the southern sky in grizY
filters. DES uses the 570-megapixel Dark Energy Camera
(DECam [32]) at the Cerro Tololo Inter-American
Observatory (CTIO) 4m Blanco telescope in Chile. By
the end of DES observations in January 2019, we anticipate
an order of magnitude increase in the number of useable
SNe, while the area of sky used for the other probes will
increase by a factor of three to 5000 deg?. Analysis of the
later years of survey data is ongoing.

Data are processed through the DES Data Management
system [33-36]. This system detrends and calibrates the
raw images, creates coadded images from individual
exposures, and detects and catalogs astrophysical objects.
This catalog is further cleaned and calibrated to create a

high-quality (“Gold”) object catalog [37] from which weak
lensing and large-scale structure measurements are made.
The deep fields are also processed through a separate
difference imaging pipeline to identify transients [38,39].
The photometric and astrometric calibrations [37] are
common to all cosmology probes discussed below.

Weak gravitational lensing and large-scale structure:
For weak gravitational lensing measurements, we use the
measured shapes and positions of 26 million galaxies in the
redshift range 0.2 < z < 1.3, split into four redshift bins.
The galaxy shapes are measured via the METACALIBRATION
method [40,41] using riz-band exposures [42]. Photometric
redshifts for the objects are determined from a modified
version of the BPZ method [43], described and calibrated
in Ref. [44].

For measurements of the angular galaxy clustering, we
utilize the positions of a sample of luminous red galaxies
that have precise photometric redshifts selected with the
REDMAGIC algorithm [45]. This results in a sample of
650,000 galaxies over the redshift range 0.15 < z < 0.9,
split into five narrow redshift bins. Residual correlations of
number density with survey conditions in the REDMAGIC
sample are calibrated in Ref. [46]. The precise redshifts of
REDMAGIC galaxies allow us to infer information about the
more poorly constrained photo-z bias uncertainty in the
weak lensing catalog. The photo-z calibration methodology
is consistent between the weak lensing and REDMAGIC
samples [44,47-49].

We use measurements from each of these galaxy samples
to construct a set of three two-point correlation function
observables that we label “3 x 2pt.”” These include the
galaxy shear autocorrelation (cosmic shear), the galaxy
position-shear crosscorrelation (galaxy-galaxy lensing),
and the galaxy position autocorrelation (galaxy clustering).
The analysis was described in a series of papers that include
the covariance and analysis framework [50,51], the mea-
surements and validation [46,52—-54], and the cosmological
results [17]. We utilize the “3 x 2pt” likelihood pipeline
from this set of papers as implemented in CoOsSMOSIS [55].
This combination of probes produces a tight constraint on
the amplitude of matter clustering in the Universe and on
the properties of dark energy over the last six billion years.

Type Ia supernovae: The DES-SN sample is comprised
of 207 spectroscopically confirmed SNe Ia in the redshift
range 0.07 < z < 0.85. The sample-building and analysis
pipelines are discussed in a series of papers that detail the
SN Ia search and discovery [36,38,39], spectroscopic
follow-up [56], photometry [57], calibration [58,59], simu-
lations [60], and technique of accounting for selection bias
[61,62]. The analysis methodology and systematic uncer-
tainties are presented in Ref. [63]. These results are used to
constrain cosmology [19] and the Hubble constant [64]. In
Refs. [19,63,64] the DES-SN sample is combined with a
“Low-z” (z < 0.1) sample, which includes SNe from
the Harvard-Smithsonian Center for Astrophysics surveys
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[65,66] and the Carnegie Supernova Project [67]. Selection
effects and calibration of these low-redshift samples is
discussed in Ref. [10]. Here we fit for DES-SN alone, and
only include the Low-z sample for comparison to Ref. [19].
We compute the SNe likelihood using the SNe module [10]
implemented in CosMOSIS, which is able to reproduce the
results in [19].

Baryon acoustic oscillations: A sample of 1.3 million
galaxies from the DES Y1 “Gold” catalog in the redshift
range 0.6 < z < 1.0 was used to measure the BAO scale in
the distribution of galaxies. Details of the galaxy sample
selection are in Ref. [68]. Calibrations of the galaxy
selection function are consistently derived for the BAO
and “3 x 2pt” samples. This BAO measurement was
presented in Ref. [18] and provides a likelihood for the
ratio between the angular diameter distance to redshift 0.81,
D, (z = 0.81), and the sound horizon at the drag epoch, r,.
This analysis used 1800 simulations [69] and three methods
to compute the galaxy clustering [70-72]. The BAO like-
lihood is implemented in CosMOSIS. The galaxy samples
used in the “3 x 2pt” angular clustering measurements and
in the BAO analysis share a common footprint in the sky
and overlap significantly in volume over the redshift range
0.6 < z < 0.9, which will produce some nonzero correla-
tion between the two measurements. However, the inter-
section of the galaxy populations is only about 14% of the
total BAO galaxy sample and we detect no significant BAO
constraint when using the “3x2pt” galaxy clustering mea-
surements. We thus ignore this negligible correlation when
combining the two probes.

External data for comparison: We use external con-
straints that combine state-of-the-art CMB, SNe Ia, and
spectroscopic BAO measurements to compare our results
against. For the CMB data, we utilize full-sky temperature
(T) and polarization (E- and B-mode) measurements from
the Planck survey, combining 77T (¢ € [2,2508]), and
EE, BB and TE (¢ € [2,29]) (commonly referred to as
“TT 4 LowP”) [73] with weak lensing measurements
derived from the temperature data [74]. We use the
Planck likelihood from Ref. [75].

For external SNe Ia measurements, we use the Pantheon
compilation [10]. Pantheon combines SNe Ia samples from
Pan-STARRS1, SDSS, SNLS, various low-z data sets, and
HST. The Pantheon data set is based on the Pan-STARRS1
Supercal algorithm [76] that establishes a global calibration
for the 13 different SNe Ia samples, with a total of 1048
SNe in 0.01 < z < 2.26.

Finally, external spectroscopic BAO measurements are
taken from BOSS DR12 [13], the 6dF Galaxy Survey [77],
and the SDSS Main Galaxy Sample [78]. These mea-
surements of the BAO scale span a redshift range of
0.1 <z<0.6.

Constraints on dark energy.—We present here a dark
energy analysis that combines for the first time the DES
probes described above. DES is able to strongly constrain

dark energy models without the CMB by probing over a
wide redshift range (z < 1) the growth of structure and
distance-redshift relation, which are both sensitive to the
presence of dark energy. The dark energy equation of state
w relates the pressure (P) to the energy density (p) of the
dark energy fluid: w = P/p, where w = —1 is equivalent to
a cosmological constant A in the field equations. We probe
the nature of dark energy in two ways: (1) we constrain the
dark energy density relative to the critical density today,
Q,, assuming that dark energy takes the form of a
cosmological constant and allowing nonzero curvature
(the oCDM model), and (2) we measure w as a free
parameter (the wCDM model) with fixed curvature
(€ = 0). The total energy density of the Universe today
is composed of the sum of fractional components
1 =Q; +Q,, + Q,, where the components are: curvature
(Qy), the total matter (€2,,), and dark energy (€,). The
radiation density is assumed to be negligible over the
redshift ranges probed by DES.

In both oCDM and wCDM models, we explore the
ability of DES to constrain these properties of dark energy
and compare this to the state-of-the-art constraints combin-
ing measurements from many external surveys. We follow
the analysis methods and model definitions from Ref. [17],
which includes varying the neutrino mass density in all
models. External data are re-analyzed to make direct
comparisons meaningful, including matching parameter
choices and priors to the DES analysis. The cosmological
parameters and their priors are slightly changed from
Ref. [17] and listed in Table I. Noncosmological parameters
and their priors are identical to Table I of Ref. [17], with
the absolute magnitude —19.5 < M < —18.9 for SNe.
Cosmological parameters and the intrinsic alignment model
(for “3 x2pt”) are shared between probes. The joint
posterior is the product of the individual posteriors of
the three probes, which are assumed to be sufficiently

TABLE 1. Cosmological parameter constraints in the oCDM
and wCDM models using only DES data. We report the 1D peak of
the posterior and asymmetric 68% confidence limits. The margin-
alized parameters with informative priors (and prior ranges)
are: the primordial perturbation amplitude 10°A, € [0.5, 10.0],
the Hubble constant H € [55,90] kms~! Mpc~!, the spectral
index n; €[0.87,1.07], and the neutrino mass density
Q, 1% € [0.0006,0.01].

Parameter oCDM wCDM  wCDM (Ext) Flat prior
Q, 0.2997003% 03001 0% 0.303:05%% 101, 0.9]
Q, 0.069°00%  0.06410%55  0.0487050! [0.03, 0.12]
Q 0.252909% 0 0 [-0.1, 0.5]
Q, 0471013 0.70010%;  0.6970¢7  Derived
w -1 -0.8010%)  —1.02597  [-2,-0.33]
Sg 0.801700%8  0.786700%  0.814700!°  Derived
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FIG. 1. Constraints on the present-day dark energy density Q,

and matter density Q,,, relative to the critical density, in an oCDM
model with marginalized curvature and neutrino mass density.
We compare the constraint from DES data alone (black contours),
including information from weak gravitational lensing, large-
scale structure, SNe Ia, and photometric BAO, to the best
available external data (green contours), combining information
from the CMB, SNe Ia, and spectroscopic BAO. We identify the
flat model (€2, = 0) with a dotted line and distinguish accelerat-
ing and decelerating universes with a dashed line. Contours
represent the 68% and 95% confidence limits (CL).

independent at this precision, as motivated in the previous
section.

Figure 1 shows our constraints on €, in the oCDM
model, where w = —1. We combine our “3 x 2pt,” SNe la
(without the external Low-z sample), and photometric BAO
measurements to constrain Q, and Q,,. This is compared to
the constraint from the external data sets. The DES best-fit
x* is 576 with 498 degrees of freedom (dof) [79]. Using
DES data we are able to independently confirm the
existence of a dark energy component in the Universe
(Q, > 0) at ~40 significance. This is the first time a
photometric survey has independently made a significant
constraint on the energy density of both dark energy and
dark matter without assuming a flat model based on early
Universe constraints. It represents an important milestone
for future analyses from DES and surveys like Euclid,
LSST, and WFIRST.

In Fig. 2, we show the constraint on w and ,,, assuming
the wCDM model. We show the same comparison with
external data as in Fig. 1, but also include a case where we
supplement DES-discovered SNe la with the Low-z SNe
sample to anchor the SNe redshift-distance relation at low
redshift following Ref. [19]. This low-redshift SNe anchor
contributes significantly to both the DES + Low-z and

0.0

- DES (3x2pt+SNe+Phot. BAO)
—02Fk =" DES SNe 1 i
== DES + Low-z SNe

0.4l ™ EXT(CMB+SNe+Spec. BAO) |1 1

0.30 0.35
Qpn

FIG. 2. Constraints on the dark energy equation of state w and
Q, in a wCDM model with fixed curvature (€; = 0) and
marginalized neutrino mass density. We compare constraints
from the DES data alone (black contours) to the best available
external data (green contours), as in Fig. 1, but also show the
impact of including a low-redshift SNe Ia data set (Low-z) to
anchor the DES SNe Ia as done in Ref. [19] (blue contours). Each
component of the DES analysis was fully blinded.

external constraints on w. In all cases, the existing data are
consistent with a cosmological constant (w = —1). The
DES best-fit ¥ is 577 with 498 dof. This subset of the final
DES data constrains w to within a factor of three of the
combined external constraint. This result illustrates the
prospects for multiple independent, precise low-redshift
constraints on dark energy from upcoming large-scale
photometric experiments.

The constraints on all cosmological model parameters
are summarized in Table 1. Nuisance parameter constraints
are not qualitatively changed from individual probe fits.
The DES-only “3 x 2pt” and SNe data are consistent and
individually contribute similar constraining power for w
and Q,. In the oCDM model, DES constrains the total
matter density to 7% (68% CL), the baryon density to
15%, and the correlation amplitude to 3%, described by

Sg = 051/Q,,/0.3, where o3 measures the current-day
clustering amplitude. The constraints are comparable in
wCDM. Fixing @, =0, we find the Sg constraint is
improved by a factor of 1.2, but there is otherwise no
significant improvement in other parameters. The param-
eter constraints beyond dark energy are driven by the
“3 x 2pt” measurement. In particular, the baryon density
constraint is due to sensitivity to the shape of the matter
power spectrum from baryon damping [80]. The constraint
on , from the CMB, by contrast, is also sensitive to the
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impact of baryons on the acoustic oscillations. Thus future
low-redshift survey data will provide another avenue to test
the predictions of our models from early Universe obser-
vations like the CMB with measurements of €, from
surveys like DES.

Outlook.—The most precise constraints on dark energy
properties require combining cosmological probes that
include information from both geometry and growth across
cosmic history. Thus far such diverse information was
collected from different experiments, which were subject to
different calibration and systematic errors. We have com-
bined for the first time in DES the purely cosmographic SN
and BAO measurements with the growth-sensitive weak
lensing and galaxy clustering measurements to independ-
ently place strong constraints on the nature of dark energy.
These results share a common set of calibration frameworks
and blinding policy across probes. DES has independently
constrained Q,,, Q,, Q,, og, and w, while marginalizing
over a free neutrino mass. We expect future DES results to
provide a further factor of 2—4 improvement in these
constraints due to increased area, depth, and number of
SNe in the final analyses, which will then be followed by
subsequent order of magnitude advances from more sensi-
tive photometric surveys of the 2020s.
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