1 An experimental test of the role of male mating history on paternal effects in the

2 livebearer fish, Gambusia holbrooki

- 3
- 4 Upama Aich, Michael D. Jennions, Rebecca J. Fox*
- 5
- 6 Division of Ecology & Evolution, Research School of Biology, The Australian National
- 7 University, Canberra, ACT 2600, Australia
- 8
- 9 *Author for correspondence R.J. Fox, e-mail: <u>rebecca.fox@anu.edu.au</u>

10 Abstract

11

12 Studies often show that paternal age affects offspring fitness. However, such effects could be 13 due either to age, or to a male's previous mating effort (which is necessarily confounded with 14 age). We experimentally tested whether differences in the mating history of old males affects 15 offspring performance in the mosquitofish, Gambusia holbrooki. Upon maturation, males were housed for a duration of natural field-breeding season (23-weeks) either with mating access to 16 17 females ('lifetime-mating'), or with visual but no physical access to females ('no-mating'). We 18 then paired these males with a female to test whether male mating history had significant effect 19 on their mate's breeding success or offspring performance. The daughters, but not the sons, of 20 'no-mating' treatment males matured significantly sooner, and at a significantly smaller size, 21 than those of 'lifetime-mating' treatment males. There was, however, no effect of male mating 22 history on their daughters' initial fecundity, or on proxy measures of their sons' reproductive 23 success. These results, when combined with earlier studies showing effects of male mating 24 history on sperm quality, growth and immunity, suggest that variation in paternal effects 25 currently attributed to male age could partly arise because older males have usually mated more 26 often than younger males.

27

28 **Keywords**

29

ageing, mating history, paternal effects, poeciliids, sperm quality, sexual selection

30 Introduction

31

32 Numerous studies on human and other animals have investigated whether a father's age is 33 associated with offspring performance [1-4]. Special attention has been paid to cases where a 34 relationship cannot be attributable to a reduction in male parental care. In most cases there is a 35 reported decline in offspring performance with paternal age [1-3]. For example, offspring sired 36 by older males more often have health disorders in humans [5,6], reduced early embryo 37 survival in cabbage beetles [7], slower growth and reduced longevity in mice [8,9], lower 38 fecundity in bulb mites [10], and higher mortality in ungulates [11]. These declines are 39 attributed to offspring inheriting mutations accumulated in germline of older males [5,12,13], 40 to epigenetic changes, or to substances transferred in ejaculates that alter gene expression in 41 offspring [9,14,15]. Fewer studies have, however, also report that male age has positive effects on offspring (e.g. mating with older males increases egg hatching success in insects [16,17], 42 43 and juvenile survival in fruitflies [18,19]). But to what extent does male age, rather than a factor 44 that tends to covary with age, explain the general trend for a negative correlation between male age and offspring fitness? 45

46 A key factor that might determine how paternal age affects offspring success is male's 47 past mating activity [2]. In general, older males are likely to have mated more often than younger males [20,21]. The resources invested to acquire mating, produce sperm and so on, 48 49 impose energetic and maintenance costs (i.e. reproductive effort costs) that might lower a 50 male's ability to repair germline DNA [15,22,23, but see 24]. This could lead to age-dependent paternal effects. To determine whether male mating histories actually have causal effects on 51 offspring performance it is necessary to conduct experiments. We need to manipulate male 52 mating history and then test for an effect on offspring performance. To date, few such 53 experiments have been conducted. In most studies age and mating history are conflated (e.g. 54

observational studies of birds). Here we therefore focus on testing for a direct effect of male
mating history while controlling for male age.

57	In the eastern mosquitofish (Gambusia holbrooki), we control for any effect of paternal
58	age by only using old males as sires. We calculated the effect of an experimental manipulation
59	of these males' mating history on their subsequent fertility and on components of offspring
60	fitness. Recently matured males were housed for 23 weeks either with access to females with
61	whom they could mate ('lifetime mating treatment'), or with only visual access to females ('no
62	mating treatment'). We then paired old males with a female to test for any effect of male mating
63	history on their mate's fecundity (brood size) and their offsprings' reproductive performance
64	(sons' mating potential and daughters' initial fecundity).
65	
66	Materials and Methods
67	
60	Origin and an eighten successful and a

68 *Origin and maintenance of animals*

69

70 Juvenile male Gambusia holbrooki (n=144) were collected from the wild. Upon reaching sexual maturity (at approx. 6-8 weeks of age), males were randomly allocated to one of two 71 72 mating treatments for a period of 23-25 weeks. Half the males were individually housed in 7l aquaria with a female with whom they could mate freely ('lifetime mating treatment'). The 73 other half were individually housed in 7*l* aquaria with a female behind a mesh barrier: they had 74 access to visual and olfactory cues from females, but could not mate ('no mating treatment') 75 (figure1, also see [21]). For both treatments, females were rotated between tanks weekly to 76 77 maintain male sexual interest.

78

82	When males were 24 weeks old they were removed from their individual treatment tank. We
83	then created trios of three males of the same treatment type: 23 lifetime mating and 25 no
84	mating treatment trios. Each trio of males was then introduced into a $7l$ aquarium, along with
85	a virgin female. These females were the lab-born offspring of wild caught mothers, reared in
86	laboratory and held in single-sex groups (40 fish/90l aquaria) from maturity to ensure virginity.
87	We used three rather than one male per female to ensure natural levels of polyandry [26].
88	
89	Female reproductive output and offspring growth
90	
91	After 20 days, the 48 females were transferred to individual $1l$ tanks (gestation is >21 days)
91 92	After 20 days, the 48 females were transferred to individual $1l$ tanks (gestation is >21 days) containing plastic mesh refuge to protect offspring from matricide. They were checked twice
92	containing plastic mesh refuge to protect offspring from matricide. They were checked twice
92 93	containing plastic mesh refuge to protect offspring from matricide. They were checked twice daily and we recorded the date of birth and number of offspring. In total, 19 of 23 females
92 93 94	containing plastic mesh refuge to protect offspring from matricide. They were checked twice daily and we recorded the date of birth and number of offspring. In total, 19 of 23 females housed with lifetime mating treatment males and 22 of 25 housed with no mating treatment
92 93 94 95	containing plastic mesh refuge to protect offspring from matricide. They were checked twice daily and we recorded the date of birth and number of offspring. In total, 19 of 23 females housed with lifetime mating treatment males and 22 of 25 housed with no mating treatment males bred. Up to 10 fry/brood were photographed to measure their standard length at birth
92 93 94 95 96	containing plastic mesh refuge to protect offspring from matricide. They were checked twice daily and we recorded the date of birth and number of offspring. In total, 19 of 23 females housed with lifetime mating treatment males and 22 of 25 housed with no mating treatment males bred. Up to 10 fry/brood were photographed to measure their standard length at birth (n=251). Offspring from 30 broods (n=14 lifetime mating; 16 no mating treatment) were then

Offspring reproductive performance

To test if paternal mating history, controlling for paternal age, affects offspring reproductive
performance, we reared sons and daughters to maturity in their individual 1*l* tanks (see
Supplementary Materials for details). Each individual was photographed at maturity to measure

105 its standard length and, for males, also their relative gonopodium length (a predictor of male 106 insemination success [27]). At a standardised age of five weeks post-maturity, we measured 107 traits likely to be linked to reproductive success. In case of daughters (n=103), we counted the 108 number of eggs available for fertilisation (i.e. their initial fecundity). We also photographed eggs under a dissecting microscope alongside a reference scale, and measured the diameter of 109 110 five randomly chosen eggs using *ImageJ*. The mating potential of sons was estimated in two behavioural assays made five weeks after maturation (n=81). First, we measured attractiveness 111 112 in two-choice association trials where test females chose between the focal male and a stock 113 male [28]. Second, we measured male mating behaviour (e.g. time near female, number of 114 copulation attempts) when the male freely interacted with the test female for 10 mins (see 115 Supplementary Materials). After the mating behaviour measures were taken, sons were 116 returned to their individual tanks for 7d to allow for sperm replenishment [28]. Finally, we recorded sperm number and sperm swimming velocity as proxies for the sons' potential to 117 118 achieve fertilisation success under sperm competition (female G. holbrooki mate multiply) 119 [21,29]. We make standard assumption based on results in many species that males with more 120 sperm and faster swimming sperm are more likely to gain paternity when there is sperm competition. 121

All data were collected blind to male mating treatment. All fish were eventually euthanized in MS222 to comply with Australian legislation prohibiting the release of pest species.

125

126 *Statistical analyses*

127

128 The effect of a male's mating treatment on female reproductive success was evaluated using129 three response variables: 1) whether or not a female gave birth (yes/no); 2) gestation period;

130 and 3) brood size. The effect of male mating treatment on offspring was evaluated using: 4) size at birth; 5) early growth rate; 6) early survival, and 7) size at maturity; and for daughters: 131 8) adult growth; 9) fecundity; and 10) egg size; and for sons: 11) 'mating behaviours'; 12) 132 133 relative gonopodium length (residuals of log-log regression on standard length); 13) sperm velocity; and 14) sperm count. 'Mating behaviours' was the first principle component extracted 134 135 from information on male attractiveness in two choice trials and three mating behaviours (see Supplementary Material). We also tested for an effect of male mating treatment on the offspring 136 137 sex ratio.

We ran generalized linear, generalized linear-mixed and linear-mixed effect models in R v3.6.0 [30]. In all models, male mating treatment ('lifetime mating' or 'no mating') was a fixed effect, and, where relevant, female body size was a covariate. When analysing postmaturation offspring traits, we included offspring size as a covariate and the interaction between male mating treatment and offspring sex. In all models for offspring traits we included maternal ID as a random factor because we measured several offspring per brood. The supplementary material contains further details about the methods and analyses.

145

146 **Results**

147

Summary statistics and model parameter estimates for the effect of male mating treatment on female fecundity and offspring performance are shown in table 1. There was no effect of male mating treatment on the probability that a female gave birth, her gestation period or brood size; nor was there any effect on offspring size at birth, early survival, or early growth rate. Male mating treatment also had no effect on offspring sex ratio ($\chi 2= 0.133$, df= 1, p= 0.715).

153 There was a clear sex-specific effect of male mating treatment on both time to, and size 154 at, maturation (mating treatment*sex, both p<0.01). The daughters of no mating treatment

males matured significantly sooner, and at a smaller size, than those of lifetime mating
treatment males. There were no such effects on the size and time to maturation of sons (figure
2a,b).

158 There was no effect of male mating treatment on daughters' growth, number of eggs or 159 egg diameter; nor were there any effects on sons' sperm count, sperm velocity, relative 160 gonopodium length, or mating behaviour (table 1). Details are provided in tables S1, S2. Table 1. Parameter estimates and test statistics for the effect of male mating treatment on
female reproductive output and offspring traits in eastern mosquitofish (*G. holbrooki*). Mating
treatment values are for 'no mating' treatment. Offspring sex values are for sons. Full model
outputs are provided in the supplementary material, Tables S1, S2.

Trait	Predictor Estima		SE	Test statistic		Р	
Female fecundity							
Bred (Yes/No)	Mating treatment	-0.111	0.832	χ2	0.018	0.894	
Gestation period	Mating treatment	-0.010	0.059	χ2	0.029	0.864	
Brood size	Mating treatment	0.156	0.192	χ2	0.656	0.418	
Offspring traits							
Size at birth	Mating treatment	-0.107	0.121	F	0.784	0.382	
	Sex	0.118	0.088	F	1.781	0.184	
	Mating treatment *Sex	-0.134	0.114	F	1.361	0.245	
Survival to 21d	Mating treatment	0.179	1.167	χ2	0.023	0.878	
Early growth	Mating treatment	0.001	0.024	F	0.002	0.968	
	Sex	-0.026	0.013	F	4.231	0.041	
	Mating treatment *Sex	0.029	0.016	F	3.073	0.082	
Size at maturity	Mating treatment	-1.238	0.627	F	3.881	0.057	
	Sex	-1.744	0.470	F	13.57	<0.001	
	Mating treatment *Sex	1.720	0.607	F	7.921	0.005	
Time to maturity	Mating treatment	-0.130	0.048	χ2	7.466	0.006	
	Sex	-0.020	0.027	χ2	0.577	0.447	
	Mating treatment *Sex	0.118	0.035	χ2	11.41	<0.001	
Daughter traits							
Egg Number	Mating treatment	0.950	1.155	F	0.823	0.422	
Egg size	Mating treatment	-0.023	0.049	F	0.212	0.650	
Adult growth rate	Mating treatment	0.005	0.010	F	0.238	0.630	
Son traits							
Sperm velocity	Mating treatment	-3.161	3.797	F	0.656	0.431	
Sperm count	Mating treatment	25.97	146.97	F	0.030	0.866	
Gonopodium size	Mating treatment	-0.004	0.008	F	0.288	0.599	
Mating behaviour	Mating treatment	-0.523	0.291	F	3.061	0.099	

167 Discussion

168

Many studies have focused on the effect of male age on reproductive traits, such as sperm count and mating success [2]. Fewer studies look at the effects on offspring fitness [4,30], but almost none of these studies have conclusively shown that male age itself affects offspring performance. This is because age is always confounded with other variables, most notably a male's mating history. We therefore experimentally tested for the effect of lifetime mating activity on the offspring performance of old males of same age [20,21].

175 We manipulated the access of male G. holbrooki to females over their natural adult 176 lifespan to test whether, for old fathers, total lifetime mating activity affects their offspring. 177 Any effect of mating activity is presumably due to either the transmission of non-genetic 178 information from father to offspring, or because greater mating activity increases the rate of inheritance of germline mutations [14,15,31]. We hypothesised that males who had been 179 180 prevented from mating prior to breeding would produce higher performing offspring than 181 males who had experienced a lifetime of mating activity. In partial support of this prediction 182 we found a strong effect of fathers' mating history on their daughters' maturation rate. The daughters of males with no previous mating activity matured significantly sooner, albeit at a 183 184 smaller size (1mm smaller which is unlikely to have a large effect on fecundity), than the daughters of males who had experiencing a lifetime of mating (both P<0.01). This suggests 185 186 that a father's mating history might alter traits potentially linked to the fitness of his daughters. 187 In contrast, we did not find any effect of paternal mating activity on the putative fitness-related traits that we measured in sons. There was no difference in sperm traits, morphology or mating 188 behaviour between the sons of males with a lifetime of mating activity or no prior mating 189 190 activity. Our results, in conjunction with other studies, suggest that cross-generational paternal effects on traits often linked to fitness (such as body size) can be sex-specific [32,33]. The 191

mechanisms that generate sex-specific paternal effects are largely unknown, but they include
differences in the timing and plasticity of events during gamete maturation, and epigenetic
changes in gene expression on sex chromosomes unique to males and females [33,34].

195 Many studies have shown that a male's mating history can affect the fitness of females with whom he mates [34,35]. We did not, however, observe any effect of a male's past mating 196 197 activity on female breeding success in G. holbrooki. One explanation could be that studies investigating the effect of male mating history on female reproductive output mainly use 198 199 insects where ejaculates provide nutrients to females [35,36]. In contrast, in G. holbrooki, 200 females do not receive any obvious direct nutritional benefits from males. Our finding is 201 consistent with our recent study where female G. holbrooki housed with either a large or small 202 male (where larger males have bigger ejaculates [37]) showed no difference in reproductive 203 output [38]. Finally, there might a publication bias against non-significant results obscuring 204 evidence that male mating history does not affect female reproductive output [39].

205 The current study, when combined with our previous work showing that male mating 206 activity affects sperm traits and proxies of male condition (e.g. immunity) in G. holbrooki 207 [21,25], highlights the wider difficulty of directly attributing poor performance by the offspring of older males to the age of their father. Male age and mating activity are naturally confounded. 208 209 Here we have not directly investigated the effect of male age. Ideally, future studies should 210 examine the independent main effects of male age and mating activity in males that are young 211 or old (i.e. in a 2x2 design). Only then can we determine the relative role of past mating activity 212 and male age on the fitness of a male's progeny.

213

214

215

217 **Figure legends**

218

Figure 1. Experimental protocol to determine how male mating history affects offspring
performance in eastern mosquitofish (*Gambusia holbrooki*). Females are represented by fish
with a black gravid spot, and males by fish with an extended anal fin (the gonopodium).

222

Figure 2. *Gambusia holbrooki*, the effect of mating history of old fathers on offspring
reproductive traits: (a) the time (in days) for daughters (n=103, Venus symbol) and sons (n=81,
Mars symbol) of fathers experiencing either 'lifetime mating' or 'no mating' to reach sexual
maturity; and (b) the body size (standard length in mm) of these daughters (n=103, Venus
symbol) and sons (n=81, Mars symbol) at sexual maturity. Box-plots show median (black line)
and interquartile range of data.

229

230

231 **References**

- Bonduriansky R, Maklakov A, Zajitschek F, Brooks R. 2008 Sexual selection, sexual
 conflict and the evolution of ageing and life span. *Funct. Ecol.* 22, 443-453.
- 234 (doi:10.1111/j.1365-2435.2008.01417.x)
- 235 2. Johnson SL, Gemmell NJ. 2012 Are old males still good males and can females tell
 236 the difference? Do hidden advantages of mating with old males off-set costs related to
- fertility, or are we missing something else? *Bioessays* **34**, 609-619.
- 238 (doi:10.1002/bies.201100157)
- 239 3. Roach DA, Carey JR. 2014 Population biology of aging in the wild. *Annu. Rev. Ecol.*240 *Evol. Syst.* 45, 421-443. (doi:10.1146/annurev-ecolsys-120213-091730)

241	4.	Johnson SL, Zellhuber-McMillan S, Gillum J, Dunleavy J, Evans JP, Nakagawa S,
242		Gemmell NJ. 2018 Evidence that fertility trades off with early offspring fitness as
243		males age. Proc. Royal Soc. B. 285, 20172174. (doi:10.1098/rspb.2017.2174)
244	5.	Sartorius GA, Nieschlag E. 2009 Paternal age and reproduction. Hum. Reprod. 16,
245		65-79. (doi:10.1093/humupd/dmp027)
246	6.	Ramasamy R, Chiba K, Butler P, Lamb DJ. 2015 Male biological clock: a critical
247		analysis of advanced paternal age. Fertil. Steril. 103, 1402-1406.
248		(doi:10.1016/j.fertnstert.2015.03.011)
249	7.	Liu XP, Xu J, He HM, Kuang XJ, Xue FS. 2011 Male age affects female mate
250		preference and reproductive performance in the cabbage beetle, Colaphellus
251		bowringi. J. Insect Behav. 24, 83-93. (doi:10.1007/s10905-010-9237-5)
252	8.	Garcia-Palomares S, Navarro S, Pertusa JF, Hermenegildo C, Garcia-Perez MA,
253		Rausell F, Cano A, Tarín JJ. 2009 Delayed fatherhood in mice decreases reproductive
254		fitness and longevity of offspring. Biol. Reprod. 80, 343-349.
255		(doi:10.1095/biolreprod.108.073395)
256	9.	Xie K, Ryan DP, Pearson BL, Henzel KS, Neff F, Vidal RO, Hennion M, Lehmann I,
257		Schleif M, Schröder S, Adler T. 2018 Epigenetic alterations in longevity regulators,
258		reduced life span, and exacerbated aging-related pathology in old father offspring
259		mice. PNAS 115, E2348-E2357. (doi:10.1073/pnas.1707337115)
260	10.	Prokop ZM, Stuglik M, Żabińska I, Radwan J. 2007 Male age, mating probability,
261		and progeny fitness in the bulb mite. Behav. Ecol. 18, 597-601.
262		(doi:10.1093/beheco/arm012)
263	11.	Ruiz-López MJ, Espeso G, Evenson DP, Roldan ER, Gomendio M. 2010 Paternal
264		levels of DNA damage in spermatozoa and maternal parity influence offspring

265	mortality in an endangered ungulate. Proc. Roy. Soc. B. 277, 2541-2546.
266	(doi:10.1098/rspb.2010.0333)
267	12. Pizzari T, Dean R, Pacey A, Moore H, Bonsall MB. 2008 The evolutionary ecology
268	of pre- and post-meiotic sperm senescence. Trends Ecol. Evol. 23, 131-140.
269	(doi:10.1016/j.tree.2007.12.003)
270	13. Milekic MH, Xin Y, O'Donnell A, Kumar KK, Bradley-Moore M, Malaspina D,
271	Moore H, Brunner D, Ge Y, Edwards J, Paul S. 2015 Age-related sperm DNA
272	methylation changes are transmitted to offspring and associated with abnormal
273	behavior and dysregulated gene expression. Mol. Psychiatry. 20, 995-1001.
274	(doi:10.1038/mp.2014.84)
275	14. Bonduriansky R, Day T. 2018 Extended Heredity: a new understanding of inheritance
276	and evolution. Princeton NJ: Princeton University Press.
277	15. Evans J, Wilson A, Pilastro A, Garcia-Gonzalez F. 2019 Ejaculate-mediated paternal
278	effects: evidence, mechanisms and evolutionary implications. Reprod. 157, R109-
279	R126. (doi:10.1530/REP-18-0524)
280	16. Pervez A, Omkar, Richmond AS. 2004 The influence of age on reproductive
281	performance of the predatory ladybird beetle, Propylea dissecta. J. Insect Sci. 4, 22.
282	(doi:10.1093/jis/4.1.22)
283	17. Avent TD, Price TAR, Wedell N. 2008 Age-based female preference in the fruit fly
284	Drosophila pseudoobscura. Anim. Behav. 75, 1413-1421.
285	(doi:10.1016/j.anbehav.2007.09.015)
286	18. Krishna MS, Santhosh HT, Hegde SN. 2012 Offspring of older males are superior in
287	Drosophila bipectinata. Zool. Stud. 51, 72-84.
288	19. Priest NK, Mackowiak B, Promislow DEL. 2002 The role of parental age effects on
289	the evolution of aging. Evol. 56, 927-935. (doi:10.1111/j.0014-3820.2002.tb01405.x)

- 20. Reinhardt K. 2007 Evolutionary consequences of sperm cell aging. *Q. Rev. Biol.* 82, 375-393. (doi:10.1086/522811)
- 292 21. Vega-Trejo R, Fox RJ, Iglesias-Carrasco M, Head ML, Jennions MD. 2019 The
- effects of male age, sperm age and mating history on ejaculate senescence. *Funct.*
- *Ecol.* **33**, 1267-1279. (doi:10.1111/1365-2435.13305)
- 295 22. Chen JH, Hales CN, Ozanne SE. 2007 DNA damage, cellular senescence and
 296 organismal ageing: causal or correlative? *Nucleic Acids Res.* 35, 7417-7428.
- 297 (doi:10.1093/nar/gkm681)
- 298 23. Simon L, Lewis SEM. 2011 Sperm DNA damage or progressive motility: which one
- is the better predictor of fertilization *in vitro*? *Syst. Biol. Reprod. Mec.* **57**, 133-138.
- 300 (doi:10.3109/19396368.2011.553984)
- 301 24. Simmons LW, Lovegrove M, Lymbery SJ. 2018 Dietary antioxidants, but not
- 302 courtship effort, affect oxidative balance in the testes and muscles of crickets. *J. Exp.*
- 303 *Biol.* 221, jeb184770. (doi: 10.1242/jeb.184770)
- 304 25. Iglesias-Carrasco M, Fox RJ, Vincent A, Head ML, Jennions MD. 2019 No evidence
- that male sexual experience increases mating success in a coercive mating system.

306 *Anim. Behav.* **150**, 201-208. (doi:10.1016/j.anbehav.2019.02.012)

- 30726. Fox RJ, Head ML, Jennions MD. 2019 Disentangling the costs of male harassment
- and the benefits of polyandry for females. *Behav. Ecol.* **30**, 872-881. (doi:
- 309 10.1093/beheco/arz024)
- 310 27. Head ML, Vega Trejo R, Jacomb F, Jennions MD. 2015. Predictors of male
- 311 insemination success in the mosquitofish (Gambusia holbrooki). *Ecology & Evolution*
- **5**, 4999-5006, (doi: 10.1002/ece3/1775)

313	28. Vega-Trejo R, O'Dea RE, Jennions MD, Head ML. 2014 The effects of familiarity
314	and mating experience on mate choice in mosquitofish, Gambusia holbrooki. Behav.
315	Ecol. 25, 1205-1211. (doi:10.1093/beheco/aru113)
316	29. Vega-Trejo R, Jennions MD, Head ML. 2016 Are sexually selected traits affected by
317	a poor environment early in life? BMC Evol. Biol. 16, 263. (doi:10.1186/s12862-016-
318	0838-2)
319	30. R Core Team. 2019 R: a language and environment for statistical computing. Vienna,
320	Austria: R Foundation for Statistical Computing. http://www.R-project.org.
321	31. Caballero-Campo P, Lin W, Simbulan R, Liu X, Feuer S, Donjacour A, Rinaudo PF.
322	2018 Advanced paternal age affects sperm count and anogenital distance in mouse
323	offspring. Reprod. Sci. 25, 515-522. (doi:10.1177/1933719118759441)
324	32. Garcia-Gonzalez F, Dowling DK. 2015 Transgenerational effects of sexual
325	interactions and sexual conflict: non-sires boost the fecundity of females in the
326	following generation. Biol. Lett. 11, 20150067. (doi:10.1098/rsbl.2015.0067)
327	33. Scorza P, Duarte CS, Hipwell AE, Posner J, Ortin A, Canino G, Monk C, Program
328	collaborators for environmental influences on child health outcomes. 2019 research
329	review: intergenerational transmission of disadvantage: epigenetics and parents'
330	childhoods as the first exposure. J. Child Psychol. Psychiatry. 60, 119-32.
331	34. Champagne FA. 2013 Effects of stress across generations: why sex matters. Bio.
332	Psychiatry. 73, 2-4. (doi:10.1016/j.biopsych.2012.10.004)
333	35. Torres-Vila LM, Jennions MD. 2005 Male mating history and female fecundity in the
334	Lepidoptera: do male virgins make better partners? Behav. Ecol. Sociobiol. 57, 318-
335	326. (doi:10.1007/s00265-004-0857-7)

- 336 36. Dubey A, Saxena S, Mishra G. 2018 Mating experience influences mate choice and
 337 reproductive output in an aphidophagous ladybird, *Menochilus sexmaculatus*. *Anim.*338 *Biol.* 68, 247-263. (doi:10.1163/15707563-17000128)
- 339 37. O'Dea RE, Jennions MD, Head ML. 2014 Male body size and condition affects sperm
 340 number and production rates in mosquitofish, *Gambusia holbrooki. J. Evol. Biol.* 27,
- 341 2739-2744. (doi:10.5061/dryad.sf651)
- 342 38. Iglesias-Carrasco M, Fox RJ, Vega-Trejo R, Jennions MD, Head ML. 2019 An
- 343 experimental test for body size-dependent effects of male harassment and an elevated
- 344 copulation rate on female lifetime fecundity and offspring performance. J. Evol. Biol.
- **345 32**, 1262-1273. (doi:10.1111/jeb.13526)
- 346 39. Jennions MD, Lortie CJ, Riosenberg MS, Rothstein HR. 2013. Publication and related
 347 biases. In: J Koricheva, J Gurevitch, K Mengersen (eds) *Handbook of Meta-analysis*
- 348 *in Ecology and Evolution*. pp 207-236. Princeton University Press, Princeton.
- 349 40. Aich U, Jennions MD, Fox R. 2020. Data from: An experimental test of the role of
- 350 male mating history on paternal effects in the livebearer fish, *Gambusia holbrooki*.
- 351 Dryad Digital Repository. (doi:10.5061/ dryad.h9w0vt4f5)
- 352
- 353

Figure 1. Experimental protocol to determine how male mating history affects offspring performance in eastern mosquitofish (*Gambusia holbrooki*). Females are represented by fish with a black gravid spot, and males by fish with an extended anal fin (the gonopodium).

358 359 360

Figure 2. *Gambusia holbrooki*, the effect of mating history of old fathers on offspring reproductive traits: (a) the time (in days) for daughters (n=103, Venus symbol) and sons (n=81, Mars symbol) of fathers experiencing either 'lifetime mating' or 'no mating' to reach sexual maturity; and (b) the body size (standard length in mm) of these daughters (n=103, Venus symbol) and sons (n=81, Mars symbol) at sexual maturity. Box-plots show median (black line) and interquartile range of data.

