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In this Rapid Communication, we show that low-energy macroscopic properties of the one-dimensional (1D)
attractive Hubbard model exhibit two fluids of bound pairs and of unpaired fermions. Using the thermodynamic
Bethe ansatz equations of the model, we first determine the low-temperature phase diagram and analytically
calculate the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing correlation function for the partially polarized
phase. We then show that for such an FFLO-like state in the low-density regime the effective chemical potentials of
bound pairs and unpaired fermions behave like two free fluids. Consequently, the susceptibility, compressibility,
and specific heat obey simple additivity rules, indicating the “free” particle nature of interacting fermions on a
1D lattice. In contrast to the continuum Fermi gases, the correlation critical exponents and thermodynamics of
the attractive Hubbard model essentially depend on two lattice interacting parameters. Finally, we study scaling
functions, the Wilson ratio and susceptibility, which provide universal macroscopic properties and dimensionless
constants of interacting fermions at low energy.
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The notion of Landau quasiparticles gives rise to the Fermi
liquid theory successfully used for describing properties of a
large variety of systems, such as Fermi liquid 3He and electrons
in metals [1]. In contrast, it is generally accepted that Fermi
liquid theory is not applicable in 1D, where the description
of the low-energy physics of strongly correlated electrons,
spins, bosonic and fermionic atoms relies on the Tomonaga-
Luttinger liquid (TLL) theory [2]. Such an understanding of
the TLL in 1D is based on collective excitations, which are
significantly different from Landau quasiparticles in higher
dimensions. However, concerning macroscopic properties,
there are many universal properties/quantities that are common
for both 2D/3D and 1D systems [3–6].

The 1D repulsive Fermi-Hubbard model describing inter-
acting fermions on a lattice provides a paradigm for under-
standing many-body physics, including spin-charge separa-
tion, fractional excitations, quantum dynamics of spinons,
a Mott insulating phase, and magnetism [7]. Very recently,
ultracold atoms trapped in optical lattices [8–12] offer promis-
ing opportunities to test such fundamental concepts [13]. In
contrast, the 1D attractive Fermi-Hubbard model [14–20] is a
notoriously difficult problem due to the complicated bound
states of multiparticles and multispins on lattices. Despite
there being a mapping by Shiba transformations between the
repulsive and attractive regions of the Hubbard model [7],
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such a mapping cannot be used for a study of the low-
energy themodynamics of the attractive Hubbard model due
to the different cutoff processes in terms of such multispin
and multicharge bound states. Of central importance to this
attractive Hubbard model is the understanding of quantum
correlations of charge bound states, for example, the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) like pairing [21,22] on a
1D lattice [23–25]. In the expansion dynamics of the FFLO
state in 1D [26], a nature of two fluids of bound pairs and free
fermions was indicated.

In this Rapid Communication, building on the thermody-
namic Bethe ansatz (TBA) equations of the attractive Hubbard
model, we analytically obtain the FFLO pairing correlation and
the universal two free quantum fluids of the FFLO-like state,
where the lattice effects are seen to drive the system differently
to the continuous Fermi gas [27–32], see Fig. 1. More detailed
studies of this model will be presented elsewhere [33,34].

The Bethe ansatz solution. The 1D single-band Hubbard
model is described by the Hamiltonian [7]

H = −
L∑

j=1,a=↑,↓
(c†j,acj+1,a + H.c.)

+ u

L∑
j=1

(2nj,↑ − 1)(2nj,↓ − 1),

where c
†
j,a and cj,a are the creation and annihilation operators

of electrons (fermionic atoms) with spin a (internal degrees of
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FIG. 1. Low-temperature phase diagram determined by the con-
tour plot of the Wilson ratio Rκ

W (5) calculated from the TBA equations
(1)–(3) for the 1D attractive Hubbard model in the μ-B plane at
T = 0.01 and u = −1. Here the setting is chosen for better visibility.
Up (down) spins are represented by red (green) balls. Different
values of this ratio uniquely present five quantum phases. Sudden
enhancement of the ratio in the vicinity of critical lines marks the
phase boundaries between different phases, see text.

freedom) (a = ↑ or a = ↓) at site j on a 1D lattice with length
L. They satisfy the anticommutation relations {cj,a,ck,b} =
{c†j,a,c†k,b} = 0 and {cj,a,c

†
k,b} = δjkδab. Meanwhile, nj,a =

c
†
j,acj,a is the density operator, ne = 1

L

∑L
j=1

∑
a nj,a is the

total fermion number per lattice site and u is the dimensionless
interaction strength between particles (u > 0 for repulsion and
u < 0 for attraction).

In 1968, Lieb and Wu [35] derived the Bethe ansatz (BA)
equations for the 1D Hubbard model by means of Bethe’s
hypothesis [36]. Takahashi [37,38] discovered the solutions
of the BA equations, which in general are classified as real
quasimomenta k, k-� strings and complex spin rapidities of
� strings, see Ref. [39]. These roots respectively count for
the quasimomenta of the single fermions, bound states of
different lengths of fermions and bound states of magnons with
different lengths. At high energy or momentum, such bound
states can coexist. Building on Takahashi’s string hypothesis,
we obtain the TBA equations for the 1D attractive Hubbard
model [33]:

ε(k) = g0(k) −
∞∑

n=1

an ∗ (F [ε′
n] − F [εn])(k), (1)

εn(�) = 2nB − at
n ∗ F [ε](�) −

∞∑
m=1

Anm ∗ F [εm](�), (2)

ε′
n(�) = gn(�) − at

n ∗ F [ε](�) −
∞∑

m=1

Anm ∗ F [ε′
m](�) (3)

with the notation F [x](y) = −T ln[1 + exp(−x(y)/T )] and
n = 1, . . . ,∞. The kernel function an(x) = 1

2π

2n|u|
(n|u|)2+x2 .

The driving terms are g0(y) = −2 cos y − μ − 2u − B and
gn(y) = −4Re

√
1 − (y + i n |u|)2 − n(2μ + 4u). In the above

equations, we denoted the convolutions an ∗ F [x](k) = ∫ ∞
−∞

dy an(k − y)F [x(y)] and at
n ∗ F [x](�) = ∫ π

−π
dy cos y an

(sin y − �)F [x(y)]. The functions ε, ε′
m, and εn stand for

the dressed energies for unpaired fermions, bound states of
2m fermions (the k-� strings) and length-n spin strings
of magnons, respectively. The function Anm(x) is given in
Ref. [33].

It is particularly important to observe that the longer k-�
strings are involved in the thermodynamics as temperature
increases [40]. The free energy per site is thus given by

f = u +
∫ π

−π

dk

2π
F [ε](k) +

∞∑
n=1

∫ ∞

−∞

d�

2π
ξn(�)F [ε′

n](�) (4)

with ξn(�) = ∫ π

−π
dk an(� − sin k). We also observe that in the

dilute limit,u → 0, ne → 0 withne/|u| constant [14], the TBA
equations (1)-(3) reduce to those of the Gaudin-Yang model
[7,29,39]. We note that the Shiba transformation between the
repulsive and attractive regions of the Hubbard model does
not help to obtain universal low-energy physics from the
TBA equations. This is mainly because the cutoff processes
regarding the above spin and charge bound states are quite
different [33], unlike the case of the ground state [20]. As we
shall see, in the attractive regime, the low-energy physics of
the model is no longer described by the spin-charge separated
theory, rather it is described by the FFLO-like quantum liquids
of pairs and single fermions.

Quantum phase diagram and Wilson ratio. In contrast to
the repulsive case, the ground state of the attractive Hubbard
model has charge bound states, i.e., length-1 k-� strings,
forming a lattice version of the FFLO state. The quantum
phases and phase diagram at T = 0 can be directly determined
from the TBA equations (1)–(3) in the limit T → 0, which
are called the dressed energy equations [33]. The dressed
energy equations determine five quantum phases in the μ-B
plane: vacuum I, fully-polarized phase II, half-filled phase III,
FFLO-like state IV, and fully-paired state V, see Fig. 1. The
zero-temperature phase boundaries can also be determined by
the Shiba transformation [7].

Here we show that the Wilson ratio, namely, the dimension-
less ratio of the compressibility κ and the specific heat divided
by the temperature T ,

Rκ
W = π2k2

B

3

κ

Cv/T
, (5)

provides a convenient way for revealing the full phase diagram
at low temperatures, see Fig. 1. In the above, kB is Boltzmann’s
constant. This ratio can be directly calculated from the finite
temperature TBA equations (1)–(3) with a suitable spin and
charge bound state cutoff process, see Ref. [33]. We find
that the ratio Rκ

W is capable of distinguishing all phases of
quantum states, including the FFLO-like state in the phase
diagram Fig. 1. We observe that an enhancement of this ratio
occurs near a phase transition. It gives a finite value at the
critical point unlike the divergent values of compressibility
and susceptibility for T → 0. Indeed, the phase boundaries
determined by the Wilson ratio (5) coincide with the ones
determined by the dressed energy equations at T = 0.

The phases IV and V in Fig. 1 reveal significant features,
namely, the quasi-long-range order and free-fermion quantum
criticality. A constant Wilson ratio implies that the two types
of fluctuations are on an equal footing, regardless of the
microscopic details of the underlying many-body systems.
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FIG. 2. (a) Wilson Ratio R
κc

W vs magnetic field for fixed μ = −0.08 and u = −7 in the strong-coupling regime. The sharp peaks at phase
transitions distinguish different quantum phases V, IV, II, and III, respectively. The constant values of the ratio show Fermi liquid nature in
these phases. (b) and (c) show the scaling invariant behavior of the susceptibility and compressibility for a fixed B = 12.142. The numerical
TBA results (lines) perfectly confirm the analytical scaling functions (6) and (7) (symbols).

Regarding the sudden change of the Wilson ratio near a
phase transition, we observe that the particle number and
energy fluctuations become temperature dependent, see
Fig. 2(a). At the critical point, the vanishing of the Fermi points,
i.e., ε1(0) = 0 and ε′

1(0) = 0, in the Fermi sea of pairs and
of unpaired fermions leads to a universality class of quantum
criticality. In the critical regime, the scaling functions of ther-
modynamic properties can be cast into universal forms. From
the TBA equations (1)–(3), we obtain the scaling functions of
compressibility and susceptibility:

κ(μ,B,T ) = κ0(μ,B) + T
d
z
+1− 2

νz λκF
(

μ − μc

T 1/νz

)
, (6)

χ (μ,B,T ) = χ0(μ,B) + T
d
z
+1− 2

νz λχK
(

μ − μc

T 1/νz

)
. (7)

Here the scaling functions F(x) = K(x) = Li−1/2(x) indicate
a free-fermion criticality classified by the dynamical critical
exponents z = 2 and correlation critical exponent ν = 1/2,
see [33]. The terms κ0 and χ0 are the regular part and the

factors λκ,χ are phase dependent constants. Figures 2(b) and
2(c) show such universal scaling behavior of the susceptibility
and compressibility across the phase boundary (V,IV). Similar
scaling invariant behavior occurs whenever the model param-
eters are driven across the phase boundaries in Fig. 1.

FFLO correlation. For the fully paired state V, the pairing
correlation length is larger than the average interparticle
spacing. In this phase, the single-particle Green’s function
decays exponentially, whereas the singlet pair correlation
function decays as a power of distance [15]. However, once
the external field exceeds the critical line between phases
IV and V, the Cooper pairs start to break apart. Thus both
of these correlation functions decay as a power of distance,
indicating a quasi-long-range correlation. In the phase IV,
Cooper pairs and excess fermions form a 1D analog of the
FFLO pairing-like state [24,25]. However, analytical result
for the FFLO pairing correlations for the Hubbard model is
still lacking. For obtaining a universal form of the FFLO-like
correlation function, we first focus on the case of low density
ne � 1 and low energy. In the FFLO-like phase IV, the spin
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wave bound states ferromagnetically couple to the Fermi sea of
the unpaired fermions. Thus the spin wave fluctuations can be
ignored at low temperatures due to this ferromagnetic nature.
Then we simplify the TBA equations (1)–(3) as [33]

ε(k) ≈ k2 − μ1 − a1 ∗ F [ε′
1](k), (8)

ε′
1(�) ≈ α1(�2 − μ2) − a1 ∗ F [ε](�) − a2 ∗ F [ε′

1](�). (9)

The free energy (4) reduces to f ≈ u + ∫ π

−π
dk
2π

F [ε](k) +∫ ∞
−∞

d�
2π

β1F [ε′
1](�) [41]. In this new set of TBA equations (8)

and (9), we have introduced two effective chemical potentials,

μ1 = μ − 2|u| + B + 2,
(10)

μ2 = 1

α1
[2μ + 4(

√
u2 + 1 − |u|)],

for understanding the FFLO correlation and free-fermion
nature of the attractive Hubbard model. In the above equations,
the parameters αn and βn reflect the interacting effect of
the length-n k-� bound states on a lattice. They are given
by

αn =
∫ π

−π

dk cos2 k
2n|u| cos2 k(n2u2 − 3 sin2 k)

π (n2u2 + sin2 k)3
,

βn =
∫ π

−π

dk an(sin k).

At low-energy physics, only length-1 k-� strings are involved.
In this region, the lattice parameters α1 and β1 approach
2 when u tends to zero. However, for large |u|, the band
of pairs becomes flat [33]. The TBA equations (8) and (9)
are reminiscent of the “feedback interaction” equation in the
Landau-Fermi liquid theory [3,42]. The driving term in (9)

can be expressed as h̄2

2m
α1(k2 − μ2) = p2

0α1

2m
− h̄2

2m
α1μ2 with

2m = h̄ = 1, which is the first-order coefficient describing the
excitation energy of a single bound pair. The lattice parameter
αn characterizes the effective mass of length-n k-� strings
(bound state of 2n atoms on a lattice).

In light of the conformal field theory approach
[43–45] and using the TBA equations (8) and (9), we cal-
culate the asymptotic form of the FFLO correlation func-
tion of the attractive Hubbard model in the low-density
region [46]:

Gp(x,t) = 〈†
↑(x,t)†

↓(x,t)↑(0,0)↓(0,0)〉

≈ Ap,1
cos(π (n↑ − n↓)x)

|x + i vu t |2θ1 |x + i vb t |2θ2

+Ap,2
cos(π (n↑ − 3n↓)x)

|x + i vu t |2θ3 |x + i vb t |2θ4
, (11)

with the exponents θ1 ≈ 1/2, θ2 ≈ 1/2 + n2
|u|β1

, θ3 ≈ 1
2 −

4 n2
|u|β1

, and θ4 ≈ 5
2 − 4 n1

|u| − 3 n2
|u|β1

. Here, n2,1 = N2,1/L are the
dimensionless densities of pairs and unpaired fermions,
respectively. The sound velocities are given by vb =√

α1

β1
πn2(1 + 1

|u|β1
(2n1 + n2)) and vu = √

2πn1(1 + 4
|u|n2). In

the above equation the coefficients Ap,1 and Ap,2 are constant
factors. In this phase IV, the spatial oscillation in the pairing
correlation is a characteristic of the FFLO state, where the

imbalance n↑ − n↓ in the densities of spin-up and spin-down
fermions gives rise to a mismatch in Fermi surfaces between
both species of fermions. In 1D, the spatial oscillation signature
in pair correlation is a consequence of the backscattering
for bound pairs and unpaired fermions, see also the results
for the Gaudin-Yang model [47]. Here, we observe that
the critical exponent θ2 depends essentially on the lattice
parameter β1. So do the critical exponents in other types of
correlation functions [34]. The Fourier transform of GP (x,0+)
gives G̃p(k) ∼ [sign(k − π (n↑ − n↓))]2sp |k − π (n↑ − n↓)|νp

with 2sP ≈ 0 and νp ≈ n2/(|u|β1).
Two free fluids and spin gapped phase. At low temperatures,

we find a significant two-fluid nature in phase IV. For the
ground state, the energy can be regarded as two TLLs of
unpaired fermions and of pairs due to the quasi-long-range
correlation. Without losing generality, we consider a physical
regime of low density (ne small), low temperature, and finite
strong magnetic field. This region is reachable in cold atoms
[13]. In this regime, the chemical potentials for the unpaired
fermions and pairs are given explicitly by

μ1 = πn2
1A

2
1 + 4π2α1

3β3
1 |u|n

3
2A

3
2, (12)

μ2 = π2 n2
2

β2
1

A2
2 + 4π2

3α1|u|n
3
1A

3
1 + 2π2

3β3
1 |u|n

3
2A

3
2, (13)

where A1 = 1 + 2n2
|u| + ( 2n2

|u| )
2

and A2 = 1 + 2n1+n2
β1|u| +

( 2n1+n2
β1|u| )

2
indicate interacting effects among pairs and

unpaired fermions like that of the Fermi gas [48]. The
effective chemical potential μ2 in the 2D interacting Fermi
gases shows a crossover from a Bose-Einstein condensate to
a Bardeen-Cooper-Schrieffer superconductor in ultracold
fermions [49]. Moreover, from the relations (10), we
demonstrate the free-particle nature of two fluids through the
additivity rules in compressibility and susceptibility:

κ = κ1 + 2

α1
κ2,

1

χ
= 1

χ1
+ α1

2

1

χ2
, (14)

where κr = (∂r nr/∂μr )|B and χr = (∂r nr/∂μr )|n with r =
1,2 for unpaired fermions and pairs, respectively. We see
that the effective binding energy eb = −(2u + 2)n1 − 4(u +√

u2 + 1)n2 of a bound pair is absorbed into the effective
chemical potentials. The compressibility and susceptibility can
be explicitly calculated from the chemical potentials (12) and
(13) via the relations

1

κ1
= J(

∂μ1

∂n2
− α1

2
∂μ2

∂n2

) ,
1

κ2
= − 1

α1

J(
∂μ1

∂n1
− α1

2
∂μ2

∂n1

) ,

χ1 = 1(
∂μ1

∂n1
− 1

2
∂μ1

∂n2

) , χ2 = − 1(
∂μ2

∂n1
− 1

2
∂μ2

∂n2

) , (15)

where the Jacobi determinant J = −α1
2 ( ∂μ1

∂n1

∂μ2

∂n2
− ∂μ2

∂n1

∂μ1

∂n2
).

The explicit forms are given in Ref. [33]. The additivity rules in
the thermodynamic properties reveal a significant free-particle
feature in the phase of multiple quantum liquids on a 1D
lattice. Furthermore, using the TBA equations (1)–(3) and the
BA equations with the length-1 k-� strings, we show that the
specific heat, i.e., a measure of the energy fluctuations, is given
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FIG. 3. (a) Compressibility κ and (b) spin susceptibility χ vs magnetic field B for the attractive Hubbard model with u = −1 and μ =
−0.8282. The black dashed lines show the result obtained from the additivity rules (14) with the relations (15) in phase IV. All compressibility
and susceptibility curves at low temperature merge into their zero temperature ones given by the additivity rules (14). (c) The red dashed line
shows the susceptibility at the critical magnetic field Bc. For B < Bc, the susceptibility shows an exponential decay with the energy gap (16).
For B > Bc, the susceptibility is almost temperature independent for the gapless phase, see the region left of the green dashed line. Here the
parameters are u = −7 and μ = −0.08 for the strong-coupling regime.

by Cv = πT
3 ( 1

vu
+ 1

vb
). Here, the sound velocities vb,u are as

given above.
A second-order phase transition occurs when the system

is driven across the phase boundary in the μ-B plane, see
Fig. 1. Figures 3(a) and 3(b) show the compressibility and
susceptibility versus magnetic field at different temperatures.
They are temperature independent in phase IV, whereas the
specific heat depends linearly on the temperature, having thus
a common feature of the Fermi liquid in higher dimensions. We
observe that in phase IV the compressibility and susceptibility
curves at different temperatures collapse into the zero temper-
ature ones obeying the additivity rules (14). Figure 3(c) shows
the susceptibility versus temperature for different magnetic
fields. For B > Bc, the susceptibility displays a flat region
in the χ -T plane, the small region to the left of the green
dashed line, indicating the two free fluids. For B < Bc, the
susceptibility illustrates the exponential decay as temperature
decreases (blue lines). In this case, the susceptibility is given
by χs = T −1/2

4
√

π
e−�/T with the energy gap

� = −R2 + 4(2π − R3/3)

3|u|π2

(
1 + 2|u|πμ

2π − R3/3

)3/2

, (16)

indicating the behavior of dilute magnons. Here we have
denoted R = Re

√
μ + 2u + B + 2.

In summary, for the attractive Hubbard model, we have
analytically calculated the FFLO pair correlation and critical
exponents, along with scaling functions of thermal and mag-
netic properties for which the lattice effect becomes prominent.
We have obtained the effective chemical potentials of the
bound pairs and of the unpaired fermions and demonstrated the
additivity rules of the susceptibility and the compressibility in
the FFLO-like state. While we have found that the susceptibil-
ity and the compressibility are temperature independent, the
specific heat depends linearly on the temperature in this phase.
These results provide strong evidence for the existence of two
free fluids of bound pairs and of unpaired fermions, which
were predicted in expansion dynamics of the FFLO state in
1D [26].
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