
Advanced Entity Resolution Techniques

Jeffrey Stewart Fisher

A thesis submitted for the degree of

Doctor of Philosophy of

The Australian National University

June 2020

© Copyright by Jeffrey Stewart Fisher 2019

All Rights Reserved

Submitted – 18 June 2020

Except where otherwise indicated, this thesis is my own original work.

Jeffrey Stewart Fisher

18 June 2020

Submitted – 18 June 2020

For Ruth, Matthew and George

Submitted – 18 June 2020

Submitted – 18 June 2020

Acknowledgments

While there may only be my name on the first page of this thesis, there are many other people

without whom it would never have happened. Throughout the time it has taken to finish, there

have been numerous people who have provided advice, support, encouragement and criticism,

all of which have been very important in it reaching its conclusion.

To my colleagues, Thilina, Dinusha, Minkyoung and Banda, I really appreciated your advice

and encouragement and for passing on some of the lessons you learned. It was great to have

people in a similar situation to ask when I was stuck or wanted advice on how to proceed.

To my friends Sam, Kris, Nige, Steph, Guy, Cat, and Stef, who I have constantly had to

postpone, bail on, leave early, and otherwise neglect, I’m grateful for the encouragement and

understanding and for the fact that you are all forgiving enough to still be my friends now this

is over. Hopefully I can see a bit more of you all in the future.

To the school administrators and support staff who helped book travel, fix computers, organ-

ise offices and a whole host of other seemingly simple yet vital tasks, I’m really grateful. Special

thanks to Janette, Cathy and Alistair. Your advice, guidance and support was invaluable when

I was struggling to balance the conflicting demands of a PhD, course teaching, poor health and

new parenthood.

To Swapnil and Anish, we started this Computer Science thing at ANU at the same time,

and now we are all finishing at the same time. Having others going through the PhD journey

along side me, and knowing there was someone there to commiserate with has made the whole

thing more bearable. I’ll miss our movie nights, catch-ups, and the Shut Up and Write sessions

that brought this to a conclusion.

To my supervisors, Peter, Qing and Paul, no PhD thesis is possible without a strong panel

providing advice. I am very grateful for your guidance, support and encouragement throughout.

You each brought a very different perspective, and this lead to a much better thesis overall. Qing,

I’m particularly grateful for your help in dragging this thing over the line at the end.

Thank you to my family who have supported me through the whole process, even if a few of

you thought I was crazy (perhaps I was). Mick, Sim and Tony, you were all very good at helping

v

Submitted – 18 June 2020

me keep a healthy perspective on things. Dad, I’ve appreciated your encouragement and mum,

well, you have given me the same unconditional support and encouragement that you always

do, not to mention the meals, cups of tea and a place to stay when I needed some time out.

You also extended that to Ruth, Matthew and George and it made the long days and weekends

easier to bear knowing that you were there looking after them.

Lastly, to my long suffering wife Ruth, and my sons Matthew and George. Knowing the

burden this thesis placed on you all has been the hardest part of the journey. Despite this, you

supported me throughout, even when it got really tough at the end. I am enormously grateful,

and always will be. Thank you.

Submitted – 18 June 2020

Abstract

Entity resolution is the task of determining which records in one or more data sets correspond

to the same real-world entities. Entity resolution is an important problem with a range of

applications for government agencies, commercial organisations, and research institutions. Due

to the important practical applications and many open challenges, entity resolution is an active

area of research and a variety of techniques have been developed for each part of the entity

resolution process.

This thesis is about trying to improve the viability of sophisticated entity resolution tech-

niques for real-world entity resolution problems. Collective entity resolution techniques are a

subclass of entity resolution approaches that incorporate relationships into the entity resolution

process and introduce dependencies between matching decisions. Group linkage techniques

match multiple related records at the same time. Temporal entity resolution techniques incor-

porate changing attribute values and relationships into the entity resolution process. Population

reconstruction techniques match records with different entity roles and very limited information

in the presence of domain constraints. Sophisticated entity resolution techniques such as these

produce good results when applied to small data sets in an academic environment. However,

they suffer from a number of limitations which make them harder to apply to real-world prob-

lems. In this thesis, we aim to address several of these limitations with the goal that this will

enable such advanced entity resolution techniques to see more use in practical applications.

One of the main limitations of existing advanced entity resolution techniques is poor scal-

ability. We propose a novel size-constrained blocking framework, that allows the user to set

minimum and maximum block-size thresholds, and then generates blocks where the number of

records in each block is within the size range. This allows efficiency requirements to be met,

improves parallelisation, and allows expensive techniques with poor scalability such as Markov

logic networks to be used.

Another significant limitation of advanced entity resolution techniques in practice is a lack of

training data. Collective entity resolution techniques make use of relationship information so a

bootstrapping process is required in order to generate initial relationships. Many techniques for

temporal entity resolution, group linkage and population reconstruction also require training

vii

Submitted – 18 June 2020

viii

data. In this thesis we propose a novel approach for automatically generating high quality

training data using a combination of domain constraints and ambiguity. We also show how

we can incorporate these constraints and ambiguity measures into active learning to further

improve the training data set.

We also address the problem of parameter tuning and evaluation. Advanced entity resolu-

tion approaches typically have a large number of parameters that need to be tuned for good

performance. We propose a novel approach using transitive closure that eliminates unsound

parameter choices in the blocking and similarity calculation steps and reduces the number of

iterations of the entity resolution process and the corresponding evaluation.

Finally, we present a case study where we extend our training data generation approach

for situations where relationships exist between records. We make use of the relationship in-

formation to validate the matches generated by our technique, and we also extend the concept

of ambiguity to cover groups, allowing us to increase the size of the generated set of matches.

We apply this approach to a very complex and challenging data set of population registry data

and demonstrate that we can still create high quality training data when other approaches are

inadequate.

Submitted – 18 June 2020

Publications

Primary Publications

1. A Clustering-Based Framework to Control Block Sizes for Entity Resolution, Fisher, J., Christen,

P., Wang, Q. and Rahm, E., Proceedings of the 21st International Conference on Knowledge

Discovery and Data Mining (KDD), 279–288. ACM. 2015. (Full paper)

2. Unsupervised Measuring of Entity Resolution Consistency, Fisher, J., and Wang, Q., Proceed-

ings of the 15th International Conference on Data Mining Workshop (ICDMW), 218–221.

IEEE. 2015.

3. Active Learning Based Entity Resolution Using Markov Logic, Fisher, J., Christen, P., and Wang,

Q., Proceedings of the 20th Pacific-Asia Conference on Knowledge Discovery and Data

Mining (PAKDD), 338–349. Springer. 2016. (Full paper)

Secondary Publications

4. Data Cleaning and Matching of Institutions in Bibliographic Databases, Fisher, J., Wang, Q.,

Wong, P., and Christen, P., Proceedings of the 11th Australasian Data Mining Conference

(AusDM), 139–148. Australian Computer Society, 2013.

5. Automatic Discovery of Abnormal Values in Large Textual Databases, Christen, P., Gayler, R.,

Tran, K., Fisher, J., and Vatsalan, D., Journal of Data and Information Quality (JDIQ), 7,

1-2(2016), 7. ACM, 2016.

6. Temporal group linkage and evolution analysis for census data., Christen, V., Groß, A., Fisher, J.,

Wang, Q., Christen, P., and Rahm, E., Proceedings of the 20th International Conference on

Extending Database Technology (EDBT), 620 –631. 2017.

ix

Submitted – 18 June 2020

x

Submitted – 18 June 2020

Contents

Acknowledgments v

Abstract vii

Publications ix

1 Introduction 1

1.1 Thesis Statement . 2

1.2 Research Motivation . 2

1.3 Research Questions . 8

1.4 Research Methodology . 8

1.5 Research Contributions . 10

1.6 Thesis Outline . 12

2 Background and Definitions 15

2.1 Entity Resolution - An Example . 15

2.2 Definitions and Notation . 18

2.3 The Entity Resolution Process . 22

2.4 Common Entity Resolution Problem Domains . 31

2.5 Data Sets and Experimental Details . 34

2.6 Summary . 35

3 Related Work 37

3.1 Overview . 37

3.2 Advanced Entity Resolution Techniques . 38

3.3 Blocking . 48

3.4 Training and Bootstrapping Data . 51

3.5 Evaluating Entity Resolution . 54

3.6 Summary . 56

xi

Submitted – 18 June 2020

xii Contents

4 Addressing Scalability Through Size Constrained Blocking 59

4.1 Overview . 63

4.2 Approach . 64

4.3 Penalty Function . 69

4.4 Evaluation . 71

4.5 Discussion . 76

4.6 Summary . 78

5 Generating Training and Bootstrapping Data 81

5.1 Overview . 82

5.2 Approach . 87

5.3 Applications to Active Learning . 91

5.4 Evaluation . 93

5.5 Discussion . 98

5.6 Summary . 104

6 Eliminating Parameter Settings through Unsupervised Evaluation 107

6.1 Overview . 108

6.2 Approach . 111

6.3 Evaluation . 116

6.4 Discussion . 121

6.5 Summary . 126

7 Generating Relational Training Data - A Case Study on the Isle of Skye 129

7.1 Overview . 130

7.2 Relational Ambiguity Approach . 134

7.3 Evaluation . 140

7.4 Discussion . 145

7.5 Conclusion . 148

8 Conclusion 149

8.1 Recap of Contributions . 151

8.2 Future Work . 152

8.3 Conclusion . 154

Submitted – 18 June 2020

List of Figures

1.1 Example of skewness in attribute domains . 3

1.2 Thesis research methodology . 9

1.3 The entity resolution process and thesis contributions 11

2.1 The traditional entity resolution process. 23

4.1 Scalability of Markov logic networks . 61

4.2 Example of the split-merge blocking process . 63

4.3 Penalty function examples . 70

4.4 Blocking results and block size distributions . 72

4.5 Blocking penalty function results . 74

4.6 Blocking scalability results . 75

5.1 Bootstrapping motivating example . 83

5.2 Ambiguity example . 86

5.3 Training data generation results for UKCD . 94

5.4 Training data generation results for NCVR-280 . 95

5.5 Training data generation results for NCVR-450 . 96

5.6 Households linked by bootstrapping data . 97

5.7 Training data generation scalability results . 97

5.8 Active learning results . 98

5.9 Comparison of different ambiguity measures . 103

6.1 Triangle types . 115

6.2 Unsupervised evaluation results - CORA . 117

6.3 Unsupervised evaluation results - UKCD . 118

6.4 Unsupervised evaluation results - NCVR . 119

6.5 Unsupervised evaluation results - scalability . 120

xiii

Submitted – 18 June 2020

xiv LIST OF FIGURES

7.1 IOS parameter evaluation . 135

7.2 IOS Baseline Results Blocking 1 . 143

7.3 IOS Baseline Results Blocking 1 . 144

Submitted – 18 June 2020

List of Tables

2.1 Example entity resolution problem . 16

2.2 Table of notation . 22

2.3 Example classification matrix . 29

2.4 Data set summary statistics . 33

4.1 Blocking motivating example . 62

4.2 Blocking function examples . 64

4.3 Blocking parameter setting results . 80

5.1 Example ambiguity calculations . 86

6.1 Classification matrix for estimating recall . 109

6.2 Motivating example of transitive closure . 111

6.3 Unsupervised evaluation - blocking parameters . 115

6.4 Unsupervised evaluation - similarity calculations 116

6.5 Example where transitive closure doesn’t apply . 124

7.1 The Isle of Skye Data Set . 131

7.2 Blocking and Similarity Calculations . 136

7.3 Census Training Data . 141

7.4 Births, Deaths and Marriages Training Data . 142

xv

Submitted – 18 June 2020

xvi LIST OF TABLES

Submitted – 18 June 2020

Chapter 1

Introduction

Entity resolution, also called data matching, record linkage, deduplication and several other

names [62], is a common practical problem. It involves determining which records in one or

more data sets correspond to the same real-world entities. In many cases entity resolution is a

necessary pre-processing step to further data analysis tasks. Detecting such matching records in

two or more different data sets, allows them to be linked and analysed jointly, which may pro-

vide insights that are not apparent when each data set is analysed in isolation [16]. Alternatively,

detecting duplicate records within a single data set improves the accuracy and consistency of

the data set and the validity of conclusions that are drawn from any subsequent analysis [15].

Due to its importance, entity resolution sees widespread use in application domains such as

government agencies, commercial organisations and research institutions, for tasks including

business intelligence [85], fraud and compliance [7], and demographic studies [10].

The entity resolution process (described in detail in Section 2.3) was given a mathematical

formalisation by Felligi and Sunter [47] in the late 1960’s. This seminal work formalised the

notion that two records having similar attribute values was evidence that they might refer to the

same real-world entity. It also presented the idea that different attributes had differing levels of

importance in this decision making process. Subsequently, more sophisticated entity resolution

techniques have been developed such as collective entity resolution techniques [12, 39, 86, 165],

group linkage [34, 53, 54, 126], temporal entity resolution [21, 28, 106] and more. However, de-

spite achieving good results in academic environments [12, 146], advanced techniques such as

these suffer from a number of limitations that make them harder to apply in real-world situa-

tions. In this thesis we propose approaches to overcome several practical limitations of advanced

entity resolution techniques in order to make them easier to use on real-world problems.

The remainder of this chapter is structured as follows: in Section 1.1 we present our thesis

statement and state the problem we are trying to address. In Section 1.2 we motivate our

1

Submitted – 18 June 2020

2 Introduction

research and explain why our problem is important. In Section 1.3 we expand upon the thesis

statement and provide our detailed research questions. In Section 1.4 we describe our approach

to answering our research questions and the overall methodological framework used in this

thesis. In Section 1.5 we describe the outcomes of this thesis and the techniques and approaches

we have developed. Finally, in Section 1.6 we detail the structure of the thesis and briefly

summarise the topics and content of each of the chapters.

1.1 Thesis Statement

Entity resolution is the problem of determining which records in one or more data sets refer

to the same real-world entities. We define an advanced entity resolution technique as a technique

which extends the traditional entity resolution approach by looking at the context of a record,

including relationship information, classifying groups of records simultaneously, or incorpo-

rating temporal information. Such advanced entity resolution techniques have been shown to

perform very well in academic experiments [12, 21, 53, 165]. However, there are many limita-

tions that prevent advanced entity resolution techniques from being widely applied in practice.

In this thesis we present techniques to address three particular limitations of advanced entity

resolution techniques:

• The poor scalability of many advanced entity resolution techniques,

• The lack of training data that is required by many advanced entity resolution techniques,

and

• The need to tune the many parameters of advanced entity resolution techniques without

evaluation data.

1.2 Research Motivation

In this section we discuss the limitations of traditional entity resolution, and the approaches

taken by more sophisticated entity resolution techniques to overcome these weaknesses. We

also identify three limitations that prevent such advanced entity resolution techniques from

seeing widespread practical application as a way of justifying the work done in this thesis.

Submitted – 18 June 2020

§1.2 Research Motivation 3

100 101 102 103 104
Number of First Names with Given Frequency

100

101

102

103

104

Fr
eq

ue
nc
y
of
 In

di
vi
du

al
 F
irs

t N
am

e Frequency of First Names in NCVR

100 101 102 103 104
Number of Surnames with Given Frequency

100

101

102

103

Fr
eq
ue
nc
y
of
 In
di
vi
du
al
 S
ur
na
m
e Frequency of Surnames in NCVR

Figure 1.1: Frequencies of first names and surnames in NCVR-450. Both attributes are very
skewed with a small number of very common values, and a large number of individually rare

values.

1.2.1 Limitations of Traditional Entity Resolution

The basic ideas of traditional entity resolution were formalised by Felligi and Sunter [47] and still

form an important part of most entity resolution approaches [23]. However, despite subsequent

improvements in areas such as blocking and indexing, similarity calculations, classification and

evaluation, traditional entity resolution suffers from a number of limitations that make it inade-

quate for certain types of data or in certain problem domains.

One limitation of traditional entity resolution is that it only considers attribute values in the

entity resolution process. In some situations this may be sufficient, however for other problems

skewness in the frequency of attribute values make it hard to distinguish between records with

common attribute values. For example, even in clean data sets, distinguishing between different

records with name ‘John Smith’ may be difficult. In some data sets or domains this can be a

significant problem. In the UKCD data set used in this thesis (see Section 2.5) more than 1 in 25

people have the surname ‘Ashworth’ which makes it difficult to unambiguously match people

with this surname.

This problem gets worse as data sets get larger, since more records are likely to have similar

attribute values purely by chance. The NCVR-450 dataset (also described in Section 2.5) contains

approximately 450 thousand records and the frequency plots of first name and surname are shown

in Figure 1.1. Both distributions are highly skewed with the most common names occurring

approximately 5,000 times.

Submitted – 18 June 2020

4 Introduction

One solution is to use multiple attributes for the entity resolution process, however combi-

nations of attribute values can be repeated if the data sets are large enough. For example ‘Jeffrey

Fisher’ is not a common name, however there are 63 records in the full NCVR data set with some

variation of ‘Jeffrey Fisher’ as the name value (‘Jeff’, ‘Geoff’, ‘Fischer’, etc). These records could

potentially be distinguished by introducing a third attribute, such as address or date-of-birth, but

in practice, there are usually limits to the number of clean and reliable attributes available. Even

when there are additional attributes, they may still be insufficient. In the full NCVR data set

there are 6 different people named ‘John Smith’, aged ‘49’ living in ‘Charlotte’. In situations like

this, a more sophisticated entity resolution technique may be necessary.

Another limitation of traditional entity resolution techniques is that match decisions are

made independently. In traditional pairwise entity resolution, whether record pair 〈ri, rj〉 was

classified as a match has no influence on whether record pair 〈rj, rk〉 will be classified as a match.

However, if transitive closure holds (see Section 2.2), and it generally does, then classifying

record pair 〈ri, rj〉 as a match and record pair 〈rj, rk〉 as a match, implicitly classifies record pair

〈ri, rk〉 as a match as well, and this fact should be incorporated into the classification process.

This situation extends to relationships. If the person represented by record ri is married to

the person represented by record rj, then classifying the record pair 〈ri, rk〉 as a match, implies

that the people represented by records rk and rj must also be married, and evidence supporting

or contradicting this fact should be considered when classifying record pair 〈ri, rk〉.

As a result of the independence in matching decisions, traditional entity resolution can also

lead to situations where the output is impossible, either because transitive closure does not hold

in the output but must hold in the real-world, or because relationship information is contra-

dictory. This can potentially be corrected in a post processing step [23], however sophisticated

entity resolution techniques such as collective entity resolution can enforce transitive closure as

part of the matching process as well as take relationship information into account [12, 165].

Finally, traditional entity resolution assumes entities are static, i.e. their qualities, represented

by attribute values in the data set(s), do not change. However, for many types of entities this

assumption does not reflect reality. For example, people can change almost every characteristic,

including their name, address, age, occupation and gender. Even fixed characteristics such

as date of birth can change as a result of errors or uncertainty. Where information about the

likelihood of such changes is available, along with timestamp information for the records (i.e.

when each record was created), it is possible to include this in the entity resolution process in a

much more effective manner than that of traditional entity resolution [21, 106].

Submitted – 18 June 2020

§1.2 Research Motivation 5

Temporal aspects can also be a source of logical constraints. For example, a person cannot

die before they are born, so an individual’s death certificate should have an equal or later date

than their birth certificate. Traditional entity resolution is unable to capture such constraints in

the matching process (or constraints from any other source) and so again, in order to prevent

inconsistency in the results, more sophisticated entity resolution techniques have been developed

[156, 165].

1.2.2 Characteristics of Advanced Entity Resolution Techniques

In order to overcome the limitations discussed in the previous section, more sophisticated entity

resolution techniques have been developed. We briefly summarise the main characteristics of

important advanced entity resolution techniques here and give a detailed description in Chap-

ter 3.

Clustering techniques [71, 78, 151, 182] can incorporate transitive closure, thus introducing

dependencies between matching decisions. The naïve relational approach of Bhattacharya and

Getoor [12] incorporates relationships while still making independent matching decisions. How-

ever, collective entity resolution techniques [12, 39, 86, 165] incorporate both relationships and

dependencies in matching decisions and it is this combination which allows them to produce

good results in situations where traditional entity resolution may not work well.

Group linkage techniques [34, 53, 54, 126] take advantage of (possibly implicit) relationships

between records and attempt to match records as group or sets. While the techniques are not

applicable to every data set, they can be very effective for entity resolution problems where

such groups structures do exist such as matching households between censuses (a household

is a group of people) or product categories between internet sites (a category is a group of

products).

Temporal entity resolution [21, 28, 106] takes advantage of time stamp information (i.e. the

date the record was created) during the entity resolution process. This allows logical constraints

to be enforced (such as a person not being born after their death), and also refinement of attribute

weights and similarity scores based on the likelihood of each particular attribute changing.

Population reconstruction techniques [29, 42, 157] incorporate many of the concepts used

in both group linkage and temporal entity resolution. Birth certificates, death certificates and

marriage certificates all contain information about multiple people, thus allowing group linkage

techniques to be applied. In addition, temporal constraints exist in the domain, sometimes as

hard constraints (such as a person cannot be married before they are born), and sometimes as

Submitted – 18 June 2020

6 Introduction

soft constraints (there is usually at least a year between the births of two different children to

the same mother). In addition, an individual record on one certificate can match to multiple

different individuals on another certificate. For example, a baby boy on a birth certificate can

match to the groom, father of the groom, or father of the bride, on a marriage certificate. In

order to incorporate all these aspects, population reconstruction techniques often work in stages

or iteratively, with initial results being refined through the addition of constraints or based on

the outcome of other parts of the process.

1.2.3 Limitations of Advanced Entity Resolution Techniques

While advanced entity resolution techniques help overcome the limitations of traditional entity

resolution, they present their own problems, particularly when applied to real-world problems.

• Scalability: Poor scalability is a problem for entity resolution in general. The traditional

entity resolution problem is quadratic, i.e. O(m ∗ n) where m and n are the numbers of

records in the two data sets being compared. As a result, even early entity resolution tech-

niques employed blocking to reduce the necessary search space [47]. However, advanced

entity resolution techniques often have much poorer scalability than traditional entity res-

olution. The scalability of collective entity resolution techniques range from O(nlog2n) for

the relational clustering technique of Bhattacharya and Getoor [12], through to worse than

NP-Hard for Markov logic networks [150]. Some temporal entity resolution techniques

are only marginally slower than traditional entity resolution [28, 106], however those that

enforce constraints or consider entity evolution [21] are typically much slower. As a result,

techniques to improve scalability (blocking, indexing, hashing, etc.) that work for tradi-

tional entity resolution approaches may be inadequate when applying advanced entity

resolution techniques to large data sets.

• Lack of Training Data: Many real-world entity resolution problems do not have training

data, i.e. a statistically representative sample of pairs (or groups) of records where the true

match status is known. In the absence of such training data, collective entity resolution

techniques use some kind of bootstrapping process in order to generate the starting rela-

tionships. The approach taken is usually to match the ‘easy’ cases using heuristic measures

or attribute similarity and then try and infer the more difficult cases. However, this does

not work well in practice for many domains and can lead to the problem where the en-

tity resolution process either has too little information to make inference or has too many

Submitted – 18 June 2020

§1.2 Research Motivation 7

incorrect starting matches to achieve good results.

This is also a problem for group linkage. Many group linkage techniques are supervised

[52, 53], meaning that they require an initial set of training data in order to work correctly.

Similarly, temporal entity resolution techniques require training data to calculate parame-

ters such as agreement decay and disagreement decay [28, 106]. Again, a lack of training

data in these instances is a significant practical problem.

Since the entity resolution problem is a binary classification problem, another option is

to use active learning [159] to generate training data. However, the unbalanced nature

of the entity resolution problem (i.e. there are likely far more true non-matches than true

matches) means that care is necessary to get the right training data. While there are various

active learning techniques (density based [193], uncertainty sampling [192], etc.), they all

need to address the problem of class imbalance in order to be effectively used for entity

resolution.

• Parameter Tuning and Evaluation: Traditional entity resolution has a number of param-

eters to tune and decisions to make, including choice of attributes, similarity functions,

weightings, similarity thresholds, blocking approach, blocking attributes, etc. Advanced

entity resolution techniques typically have the same parameters, and often many addi-

tional ones. For example, the collective entity resolution approach of Bhattacharya and

Getoor [12] requires a relational similarity measure, maximum path length to determine

neighbours and a weighting parameter for the split between attribute and relational sim-

ilarity. Temporal entity resolution techniques such as that of Li et al. [106] require agree-

ment and disagreement decay parameters to be set for each attribute in addition to the

similarity functions and weights of traditional entity resolution. Population reconstruc-

tion techniques [41] may require the similarity functions and weights to be set many times

for an individual problem to account for the different information in the different data

sources. This means it is usually necessary to run the entity resolution process many

times and evaluate the results in order to fine-tune the approach for good performance.

Given the poor scalability of most advanced entity resolution techniques, and the lack of

training or evaluation data (see above), this can be an extremely time-consuming process,

particularly if a manual evaluation is required for each iteration.

Each of these limitations is much more likely to be present for real-world entity resolution

problems than in an academic environment. In an academic environment, problems with eval-

Submitted – 18 June 2020

8 Introduction

uation, model tuning, obtaining training data and scalability can potentially be overcome (or at

least minimised) by choosing an appropriate data set or data sets, something that is unlikely to

be possible in real-world applications.

1.3 Research Questions

Based on the three limitations we identified, we propose the following three research questions

as the basis for the work in this thesis.

• How can we find ways to allow advanced entity resolution techniques to be applied to

large data sets? Rather than try and optimise the performance of existing advanced entity

resolution techniques, we instead look at ways of blocking the data sets to reduce the

impact of the high computational complexity of advanced entity resolution techniques.

• How can we improve the training data generation and bootstrapping process for advanced

entity resolution techniques, particularly in situations where current techniques do not per-

form well? Collective entity resolution techniques require bootstrapping or training data

to create the initial relationships, and while the current approaches to dealing with this

problem work well in some situations, they are less successful in others. In addition, other

types of advanced entity resolution techniques such as group linkage or temporal entity

resolution require training data in order to learn models or accurately set parameters.

• How can we improve the parameter tuning and evaluation process for entity resolution?

Entity resolution techniques have a number of parameters to tune including similarity

functions and thresholds, blocking techniques and attributes, classifier parameters and so

on. Advanced entity resolution techniques have all these parameters and many additional

ones. It is often neccessary to iterate extensively in order to tune these parameters, and

given the poor scalability of many advanced entity resolution techniques and the lack of

evaluation data, this can be very time consuming and costly.

1.4 Research Methodology

The research methodology used in this thesis largely mirrors the traditional research approach

[101], with minor modifications to reflect the current practices in the computer science domain.

The main steps in the methodology are shown in Figure 1.2 and briefly described here, noting

Submitted – 18 June 2020

§1.4 Research Methodology 9

Preliminary Investigation

Formulate Research Problem

Investigate Current Approaches

Propose New Approach

Experimental Setup and Design

Experimental Study

Evaluation of Results

Figure 1.2: Thesis research methodology

that although they are presented sequentially, there is often iteration and repetition necessary as

possible approaches are tried, tested, discarded, refined, and so on:

1. Preliminary investigation. In our preliminary investigation, we developed a general

overview of entity resolution including current challenges, open questions and areas of

investigation, along with the conventions, standards, general approach and methodology

used, and so forth.

2. Formulate research problem. In the next stage, we focused on particular problems and

short-comings in current practice. Based on what we discovered in the preliminary inves-

tigation, we identified a gap between approaches used in current academic practice and

approaches that were in use in the real-world, particularly with respect to more advanced

entity resolution techniques. We also observed several factors that contributed to this dif-

ference in practice. Based on these factors, we formulated the research problems detailed

in Section 1.3.

3. Investigate current approaches (literature review). After deciding to investigate practical

limitations of advanced entity resolution techniques, we researched current approaches to

dealing with these limitations, how successful they were and any other approaches that

have been proposed but shown to be ineffective. This step is the focus of Chapter 3.

4. Propose new approach. For each of the specific limitations we observed, we developed a

new approach to solve the problem. To verify the soundness of our approach, we devel-

Submitted – 18 June 2020

10 Introduction

oped a prototype for proof of concept and small scale testing prior to the full experimental

evaluation. We also conducted a theoretical analyisis examining such aspects as computa-

tional complexity, mathematical formulation and guarantees, optimality and so forth. This

was done separately for each approach and the details are presented in Chapters 4, 5 and 6.

5. Experimental setup and design. After verifying the soundness of our proposed approach,

we designed our experimental setup. This involved developing software to implement our

approach and algorithm, as well as any base-line comparisons that were appropriate. We

also selected evaluation metrics based on conventions in the entity resolution discipline

and appropriateness for our particular problems. As with the previous step, this was done

separately for each of Chapters 4, 5 and 6.

6. Experimental study. After designing our experimental setup, we ran a full experimental

evaluation. Each contribution in this thesis has been tested on multiple data sets from

different problem domains and with different parameter settingss. This is to ensure that

the results are not only applicable to a single data set or problem domain. Where rele-

vant, we also compared our results against appropriate base-line techniques in order to

demonstrate improvements over the current approaches used. Again, these are discussed

separately in the corresponding chapters.

7. Evaluation and discussion of results. Finally, for each of our approaches, we analysed

and evaluated our results to determine whether we had addressed our original research

questions. Where we were only partially successful, we analysed the circumstances under

which our approaches were effective, whether these circumstances could be identified

in advance, and whether there are additional improvements that could be made to our

approaches in order to address the shortcomings.

1.5 Research Contributions

A diagram of the traditional entity resolution process is shown in Figure 1.3 and is described in

more detail in Section 2.3. This thesis has three main contributions which span the entire entity

resolution process.

Our first contribution is applied in the blocking and indexing step and is described in Chap-

ter 4. We propose a blocking technique that produces blocks within a size range. This limits the

Submitted – 18 June 2020

§1.5 Research Contributions 11

Figure 1.3: The entity resolution process and thesis contributions

effects of the poor scalibility of many advanced entity resolution techniques, since the process-

ing time for blocks of a fixed size is constant. By also incorporating a minimum block size, we

attempt to maximise the recall of our blocking approach by selecting the most likely candidates

for matches, subject to the efficiency requirements. This work was published in Fisher et al. [49].

Our second contribution is applied between the similarity calculation and classification steps,

and is detailed in Chapter 5. We propose a technique for generating training and bootstrapping

data for advanced entity resolution techniques, most of which are supervised in some fashion.

We show how we can exploit matching constraints that are present in many entity resolution

problems in order to improve the size of the training data set without sacrificing precision. An

early version of the work in this chapter was published in Fisher et al. [48].

Our third main contribution is an unsupervised approach for evaluating entity resolution

that makes use of transitive closure to detect inconsistencies in an entity resolution result. The

approach has two applications in the entity resolution process and is described in Chapter 6.

The first application is to perform an unsupervised evaluation using transitive closure to detect

parameter settings that produce inconsistent results in between the similarity calculation and

classification steps. This allows poor parameter choices to be discarded without proceeding to

the (often expensive) classification and evaluation steps of the entity resolution process. Our

approach can also be applied during the evaluation step to detect groups of records that require

further investigation or assessment, or which may be indicative of wider problems in the entity

resolution process. The work in this chapter was published in Fisher and Wang [50].

Submitted – 18 June 2020

12 Introduction

In addition to our three main contributions, we also present an extension of our training data

generation approach as a case study in Chapter 7. We show how the concept of ambiguity can be

extended to situations where relationships exist between records. This allows us to both validate

the matches in the training data, and also increase the size of the training set by considering

groups of records which are collectively unambiguous. We demonstrate the effectiveness of this

approach on historical registry data from the Isle of Skye in Scotland, and show that despite the

difficulty of the problem domain and the inadequacy of other techniques, we are still able to

produce a viable training data set for the problem.

1.6 Thesis Outline

The remainder of this thesis is structured as follows:

• In Chapter 2 we present background information on entity resolution. We discuss the

entity resolution process as well as common application domains. We also address some

practical matters including common notation, data sets and the experimental setup used

in this thesis.

• In Chapter 3 we provide a summary of related research. We include a brief summary of

historical developments in entity resolution. This is followed by a discussion of advanced

entity resolution techniques including collective entity resolution techniques, group entity

resolution techniques, temporal entity resolution techniques and population reconstruction

techniques. The remainder of the chapter is split into three sections, each corresponding to

one of our major contributions. The first section deals with blocking techniques, the second

section deals with training data generation and active learning, and the third section deals

with evaluating entity resolution results.

• In Chapter 4 we consider the scalability problem for advanced entity resolution techniques.

Rather than trying to improve scalability by optimising the performance of particular entity

resolution techniques, we note that generally their scalability is poor but that in practice

they run in a reasonable timeframe if the data sets are small enough. As a result, we present

a blocking framework which allows us to create disjoint blocks with fixed size constraints

(subject to some reasonable conditions). This allows entity resolution techniques to be run

sequentially (or in parallel) on small data sets, thereby limiting the performance impact of

the poor scalability.

Submitted – 18 June 2020

§1.6 Thesis Outline 13

• In Chapter 5 we address the limitation of not having training data to build and evaluate

models. Collective entity resolution techniques rely on bootstrapping or training data in

order to work effectively. Other entity resolution techniques are supervised and rely on

labeled training examples in order to learn the appropriate classification model. While

current approaches work in some situations, they have significant limitations in certain

problem domains and on certain types of data. We present a technique that makes use of

matching restrictions and ambiguity to generate training and bootstrapping data in situa-

tions where current approaches are less successful. We also present an alternative approach

to active learning [159] which can be used if resources for limited manual classifications

are available.

• In Chapter 6 we examine the dual problems of parameter tuning and evaluation of entity

resolution techniques. We present a technique for quickly eliminating unsuitable param-

eter settings in an unsupervised fashion by examining the consistency of the output from

the blocking and similarity calculation steps (as described in Section 2.3). This addresses

the problem of parameter tuning by detecting parameter settings that will result in incon-

sistent results prior to running a time-consuming entity resolution technique. By doing

this in an unsupervised fashion, it also reduces the need for evaluation in situations where

training and testing data does not exist.

• In Chapter 7 we present an extension of the training data generation technique from Chap-

ter 5 for situations where relationships exist between entities. We expand the concept of

ambiguity to groups of related records, and use this to both validate our training data and

improve the size of the training set. We evaluate the approach as a case study using popu-

lation reconstruction data and show that despite the difficulty of the problem domain, we

can generate a viable set of training data.

• Finally, in Chapter 8 we present our conclusions, summarise our research contributions

and present some possible directions for extending our work in the future.

Submitted – 18 June 2020

14 Introduction

Submitted – 18 June 2020

Chapter 2

Background and Definitions

Entity resolution is the task of determining which records in one or more data sets refer to the

same real-world entities. Entity resolution has been an active area of research since at least the

1960’s [47] and many different techniques have been developed for each stage of the entity reso-

lution process. In this chapter we define the entity resolution problem, first informally through

an example in Section 2.1, then formally in Section 2.2, along with the terms and notation we use

throughout this thesis. In Section 2.3 we provide an overview of the entity resolution process.

In Section 2.4 we describe the practical uses of entity resolution and various problem domains

where it is applied. We conclude the chapter by providing the details of our data sets and

experimental setup in Section 2.5, before presenting an overall summary in Section 2.6.

2.1 Entity Resolution - An Example

In an ideal world all data would be standardised and correct and require no preparation before

being analysed or used. In practice this is normally not the case. The phrase ‘real-world data is

dirty’ [73] is very common in data mining. One example of ’dirty’ data is having multiple records

for the same entity (which could be a person, product, research paper, etc.) in the same data set.

Entity resolution (also known as data matching, record linkage, merge/purge, duplicate detection, etc.,

[23, 47, 72, 119]) is the task of detecting such duplicate records. It also encompasses a similar

problem where two (or more) data sets need to be joined or merged, and for each record in

data set A the corresponding record (or records) in data set B needs to be found. We illustrate

the problem and some common approaches to solving it here through a short example, and

formally describe the problem in Section 2.2 below.

15

Submitted – 18 June 2020

16 Background and Definitions

Record ID Name Address Employer Spouse

r1 J. Smith Miller St. Canberra Big W r42

r2 John Smyth 42 Miller St. O’Connor Woolworths r42

r3 Jeffrey S. Fisher 42 Mills St. Campbell r72

.

r42 Mary S. 42 Miller St. O’Connor Google r1

Table 2.1: Example data set to describe the entity resolution problem.

Consider the small data set shown in Table 2.1. The entity resolution problem can be for-

mulated as follows: do records r1, r2 and r3 refer to one, two or three real-world people? The data set

in Table 2.1 also gives some indication why this might not be straightforward. Does the ‘J.’ in

the value of the Name attribute for ‘r1’ stand for ‘John’, ‘Jeffrey’ or something else? Is ‘Smyth’ a

mispelling of ‘Smith’ or a different name? Are the values in Address and Employer up-to-date? Is

r3 unemployed or do we just not know his employer? In order to deal with difficulties such as

these, many techniques have been developed and we describe three broad approaches here.

The first approach to be developed, and one still widely used in practice, is to consider the

similarity of attribute values. In this example we see that the records have similar values in the

Name attribute as well as the Address attribute (we look at exactly what similarity means below).

An idea that began with early entity resolution techniques [47] is that similar attribute values

are evidence that records may refer to the same entity.

However, attribute similarity may not be sufficient for all entity resolution problems so other

approaches also make use of relationship information. In our example we can see that both r1

and r2 have the same spouse r42. Being in the same relationship with another entity (in this

case being married to) is also evidence that two records might refer to the same real-world

entity. Collective entity resolution techniques [12, 39, 86, 150] typically make use of relationship

information in the entity resolution process.

Finally, other approaches make use of domain knowledge (usually in addition to attribute

and relationship similarity). Domain knowledge, in this case knowledge of Canberra’s geogra-

phy, informs us that ‘O‘connor’ is a suburb of ‘Canberra.’ Additionally, knowledge of Australian

corporations tells us that ‘Big W’ is a subsidiary of ‘Woolworths.’ As a result, even though these

attribute values appear to have low similarity, they may in fact be the same address and em-

ployer.

In practice, a human expert can often interpret the context, make use of domain knowledge

and other learned experience such as ‘Smyth’ being a possible variation or mispelling of ‘Smith’

Submitted – 18 June 2020

§2.1 Entity Resolution - An Example 17

to perhaps come to the conclusion that for our toy example r1 and r2 refer to the same person,

while r3 refers to someone else. However, even human experts aren’t always guaranteed to get

it right. For example, simple experiments conducted by Smalheiser et al. [166], found that two

experts did not always agree on the results of entity resolution, and that in over a third of cases

it was not possible to be certain about the result. There were even a small number of cases,

where one expert determined that the two records definitely referred to the same entity while

the other expert determined that the two records definitely referred to different entities [166].

Similar results have been found in research on active learning with imperfect oracles [32, 65],

and in population reconstruction work [148].

Capturing the same (or a superior) decision making process in an algorithm that runs on a

computer is even harder, and defining each of the approaches described above in such a way

that a computer can make an accurate assessment is a non-trivial task.

What does it mean for two attribute values to be similar and how can this be measured? In-

tuitively people might say that the name ‘Smith’ is more similar to ‘Smyth’ than it is to ‘Fisher’

but how can this concept be quantified. The general approach is to use a distance measure to

assign a numerical score as a way of quantifying the similarity between two attribute values.

Many distance measures have been proposed for this purpose including Levenshtein edit dis-

tance [105] or Jaccard similarity [119] for text attributes, and Jaro-Winkler [188] for proper nouns

such as names. Other distance measures can be used for different data types in order to preserve

the cyclical nature of date and time attributes (i.e. ‘December’ should be close to ‘January’) or to

capture physical distance in the case of geographic attributes such as latitude and longitude.

In the toy example presented in Table 2.1 the relationship information was captured as the

unique identifier of another record. However in practice, relationship information can also be

ambiguous, missing, incorrect, or captured through a pseudo-identifier such as a name. Just

as attribute similarity can be measured, so can relationship similarity. Measurements using

common neighbours, random walks and weighted rules are all used to capture how similar the

relationships between a pair of records are [1, 86, 165].

Finally, domain knowledge can be incorporated in many ways. Rules and mappings can re-

late nicknames to full names, ontologies can describe geographical hierarchies, such as ‘O‘Connor’

is a suburb of ‘Canberra,’ and look-up tables can encode abbreviations and acronyms for places,

companies or organisations. Such rules and ontologies can be created manually, or learned from

training data when it exists [139, 152]. However, these rules and knowledge bases are typically

very domain specific and cannot easily be translated from one problem domain to another.

Submitted – 18 June 2020

18 Background and Definitions

The inherent difficulty of the entity resolution problem and the variety of ways to try and

solve it have made entity resolution an active area of research. In the next section, we formalise

the notion of entity resolution and provide a definition of terms and concepts that we will use

throughout this thesis.

2.2 Definitions and Notation

We now provide a definition of entity resolution and relevant related terms that will be used fre-

quently throughout this thesis. For the most part we make use of standard database terminology

[44].

Attribute: An attribute is a property of, or fact about, an entity type. Examples include a

FirstName attribute which corresponds to a person’s first given name, or a Title attribute refering

to the title of a research paper.

In some cases the distinction between an attribute and an entity type may depend on the

data set(s) and problem in question. An address is often treated as an attribute of a person or

organisation, but if the task is to perform entity resolution on geographic data, then address

may be treated as an entity type and resolved as part of the entity resolution process.

There are also situations where relationships are modeled as attributes For example, in the

data set shown in Table 2.1 the spousal relationship is captured as an attribute.

An attribute value is the value of the attribute for a particular record of the given entity

type. For example, a particular person record might have an attribute value of ‘John’ in the

FirstName attribute. The attribute values for a particular attribute are drawn from a set of valid

values called the domain of the attribute. For example, ‘John’ and ‘Mary’ are in the domain of a

FirstName attribute but ‘75’ is not. Similarly, ‘2603’ and ‘2902’ are in the domain of an Australian

Postcode attribute, but ‘Canberra’ is not.

Record: A record is a collection of attribute values about one or more real-world entities. For

example a record might contain the Name, Age and Address of a person, or the Title, KeyWords,

Authors and Journal of a paper. We denote the reference from a record to an entity with the 7→

symbol, e.g. ri 7→ ey.

In some cases an attribute value is a refererence to another record. For example the Authors

and Journal of a paper, can be foreign keys in a relational database, sub-nodes in an XML tree,

etc. This normally implies a relationship between the entities to which each record refers.

Submitted – 18 June 2020

§2.2 Definitions and Notation 19

Entity: An entity is ‘something that has separate and distinct existence and objective or con-

ceptual reality.’1 Examples of entities include a particular person, business, academic paper, or

product. An entity type is the type or class of entities to which a specific entity belongs. For

example, individual people are entities of the person entity type.

In many cases it is obvious what constitutes an individual entity, and as a result what it

means for two entities to actually be the same. For example, if a person’s name changes, he or

she is still the same person. Similarly, if the price and category of a product change, it is still the

same product.

However, there are examples where it is less obvious what constitutes an entity and whether

two entities should be treated as the same. Examples include academic institutions or com-

mercial organisations. The Australian National University Medical School has a facility at the

Canberra Hospital. When performing entity resolution of institutions, it is not clear whether

this facility should be treated as a separate entity, as part of the Australian National University,

part of the Canberra Hospital, or part of both parent institutions. Similarly, if two companies

merge, should the new company be treated as the same entity as one or both of the original

companies, or as a new entity entirely.

As a result, we distinguish between atomic entities and compound entities. An atomic

entity is not divisible, i.e. a person, research paper, etc., while a compound entity is a collection

of other entities of different entity types (which can be either simple or compound). For example,

a household is a collection of people, an organisation is a collection of groups or divisions, etc.

In the case of compound entities they can change, and can split and merge as well as begin

and end. For example a household in a census could split into two households as a result of

a separation or children moving out of home. Similarly, two companies could merge to form

a single new company. We must be careful when performing entity resolution between such

compound entities to clearly specify exactly what constitutes an entity, and what our definitions

are for a match and non-match.

Finally, we define the notion of equivalence between entities. We say that ex ≡ ey if they are

the same real-world entity and ex 6≡ ey if they are different real-world entities. In the case of

atomic entities this is usually an easy assessment to make. Are ex and ey two different people or

both the same person?, are they two different papers or the same one? In the case of compound

entities, we may have to tailor the definition of equivalence to the specific problem we are trying

to solve.

1https://www.merriam-webster.com/dictionary/entity

Submitted – 18 June 2020

https://www.merriam-webster.com/dictionary/entity

20 Background and Definitions

Relationship: A relationship is a connection or association between two or more entities. Ex-

amples include traditional familial relationships such as ex is the father of ey, but also includes

other associations, such as ex and ey are coauthors of a publication, or live at the same address.

As with entities, relationships also have a relationship type which characterises the nature of

the relationship. Examples include coauthor, parent of, spouse of, and more.

Some relationships are symmetric, for example if ex is a coauthor of ey, then ey is also a

coauthor of ex. In other cases, a relationship may be asymmetric, for example if ex is the father

of ey, ey is not the father of ex. However, in such cases there is normally an inverse relationship

which captures the same or similar information, for example if ex is the father of ey, then ey is

the child of ex.

Just as with entities, relationships can also have attributes that are properties of, or facts

about, the relationship. Particularly common are temporal attributes such as start and end

points. For example, a marriage relationship begins when the couple get married and ends

when they get divorced or one partner dies and these dates and times might be recorded as

attributes of the marriage relationship. Other examples of attributes might indicate the strength

or frequency of a relationship, for example the number of publications two people have coau-

thored, or the amount of money involved in a contractual business relationship.

Entity resolution: The entity resolution problem is formulated as follows: given two data sets

R1 and R2 (with possibly R1 ≡ R2), for each pair of records 〈ri, rj〉 : ri ∈ R1, rj ∈ R2, determine

whether 〈ri, rj〉 is a true match or a true non-match. As such, entity resolution is a binary

classification problem [23].

Match and non-match: In situations where we have atomic (i.e. not compound) entities, then

then given a record pair 〈ri, rj〉 such that ri 7→ ex and rj 7→ ey we define 〈ri, rj〉 to be a true match

if ex ≡ ey and 〈ri, rj〉 to be a true non-match if ex 6≡ ey.

The goal of entity resolution is to classify record pairs as true matches or true non-matches.

However, most entity resolution models are imperfect, i.e. the classification result may not reflect

the actual real-world situation. As such, we distinguish between true matches and classified

matches and true non-matches and classified non-matches where true matches and true non-

matches are the state of the real-world entities, i.e. ex ≡ ey or ex 6≡ ey, and classified matches

and classified non-matches are the output of the entity resolution process. We discuss this

distinction further in Section 2.3.4 when we look at ways of evaluating entity resolution.

Submitted – 18 June 2020

§2.2 Definitions and Notation 21

As discussed above, when dealing with compound entities, it can be necessary to alter the

definition of match and non-match (for both true and classified matches and non-matches) to

suit the particular situation or problem. For example, we might say two households match

if 75% of their members (i.e. individuals, atomic entities) match using the above definition of

match for atomic entities.

We note that some entity resolution approaches (particularly historical ones) had a third

category of potential match (or similar name) [66], which indicated the need for further analysis,

often a manual clerical review [47]. However, this was an intermediate step in the process and

the final outcome in these approaches was still a separation into the two classes, match and

non-match.

Constraints: It is quite common for entity resolution to take place in the presence of constraints

(i.e. not every pair of records can be a match, or some pairs of records must be a match). While

some of these constraints are domain and problem specific, we define three common types of

constraints.

Given two data sets R1 and R2, noting that possibly R1 ≡ R2, we define the following

constraints:

• One-to-Many (1-to-M): A one-to-many constraint implies that given ri, rj ∈ R1 and rk ∈ R2,

then if 〈ri, rk〉 is a true match and 〈rj, rk〉 is a true match then we must have i = j. A real-

world example where this constraint might occur is when performing entity resolution

between a data set of birth certificates and a data set of marriage certificates, since an

individual can (potentially) be married multiple times but is only born once. The many-

to-one (M-to-1) case is symmetric.

• One-to-One (1-to-1): A one-to-one constraint implies that given ri, rj ∈ R1 and rk, rl ∈ R2,

then if 〈ri, rk〉 is a true match and 〈rj, rk〉 is a true match then we must have i = j. We also

have that if 〈ri, rk〉 is a true match and 〈ri, rl〉 is a true match then we must have k = l. A

real-world example of this situation might be performing entity resolution between birth

certificates and death certificates, where each individual person can only be born once,

and can only die once.

• Transitive Closure: Transitive closure in entity resolution reflects the fact that true match

is normally transitive. Formally, given three records ri, rj, rk ∈ R1 ∪ R2, then if 〈ri, rj〉 is a

true match and 〈rj, rk〉 is a true match then we must have 〈ri, rk〉 is also a true match. The

same does not necessarily hold for true non-matches.

Submitted – 18 June 2020

22 Background and Definitions

Common Notation

R A set of records. Individual records are denoted ri ∈ R.
A The set of attributes associated with each record ri ∈ R.

ri.aj The value of attribute aj for record ri, where ri ∈ R and aj ∈ A.

Italics The name of an attribute or relationship type, e.g. FirstName, MarriedTo.
‘Quoted’ The literal value of an attribute, e.g. ‘John’, ‘S503’.

Chapter 4: Blocking

〈ai, f j〉 A blocking key, consisting of an attribute ai ∈ A and function f j.

vi,j,y
A blocking key value, obtained by applying function f j to the value of
attribute ai for record ry. I.e. vi,j,y = f j(ry.ai).

B A set of blocks. Individual block are denoted bi ∈ B.
V(bi) The set of blocking key values associated with block bi.
|bi| The size of (number of records in) block bi.

ζ(v1, v2) The similarity of blocking key values v1 and v2.
ς(b1, b2) The overall similarity between blocks b1 and b2.

Chapter 5: Training Data Generation

Ψ(ri, rj)
A similarity function that calculates a similarity measure for
record pair 〈ri, rj〉.

ψij The similarity value of record pair 〈rj, rj〉 for ri, rj ∈ R.

ψmin The minimum similarity threshold for matches in the bootstrapping.
αi The ambiguity value of record ri.

αmax The maximum ambiguity threshold for matches in the bootstrapping.

G
Graph where each node ni corresponds to a record ri ∈ R and each edge
〈ni, nj〉 has weight ψij.

Mp(ni) The pth highest edge weight among the adjacent edges of node ni ∈ G.

Chapter 6: Parameter Tuning and Evaluation

ψij The similarity value of record pair 〈rj, rj〉 for ri, rj ∈ R.

ψmin Minimum similarity threshold for likely matches.

G
Graph where each node ni corresponds to a record ri ∈ R and each edge
〈ni, nj〉 has weight ψij.

G+ A subgraph of G such that {〈ni, nj〉 ∈ G : ψij ≥ ψmin}.

∆co A consistent triangle.
∆ip An incomplete triangle.

∆ic An inconsistent triangle.

Table 2.2: Table of notation used in this thesis.

2.3 The Entity Resolution Process

The entity resolution process typically consists of a number of steps, as illustrated in Figure 2.1,

and we provide a brief overview of the major ones here. In addition to the steps described,

different techniques and situations may require additional stages, such as data standardisation

[23], a clerical review of possible matches [47], active learning to generate training data [159],

Submitted – 18 June 2020

§2.3 The Entity Resolution Process 23

Figure 2.1: The traditional entity resolution process.

etc. It is also worth noting that while the ideal process is sequential (as shown in Figure 2.1), it

is often neccessary to iterate and tune various parameters and models throughout the process

which can require repetition and refinement of each step.

2.3.1 Blocking and Indexing

For most entity resolution tasks, the majority of record pairs will be true non-matches. Consider

two data sets containing m records and n records that are individually clean (i.e. there are no

duplicates in either data set). The maximum number of true matches is the lesser of m and n,

while the number of potential matches is m × n. A similar situation occurs when deduplicating

a single data set with n records. The number of unique record pairs is n×(n−1)
2 . However, for

true matches to outnumber true non-matches, over half the records in the data set need to refer

to the same entity, which is not the case in most real-world entity resolution problems.

Because the entity resolution problem is inherently quadratic, i.e. O(m × n) or O(n2) in the

deduplication case, but as described above, the majority of comparisons are (almost always)

true non-matches, i.e. O(m × n −min(m, n)) or O(n) in the deduplication case, the basic idea of

blocking and indexing is to quickly eliminate record pairs which have very little or no possibility

of being true matches, and limit the detailed comparisons to so-called candidate pairs, i.e. record

pairs that might be true matches [23].

While we refer to this step as Blocking and Indexing, since these are the two approaches we use

throughout this thesis, there are many other techniques that have been shown to be effective at

selecting the candidate pairs for detailed comparison including locality sensitive hashing [107],

canopy clustering [112], suffix arrays [2] and more. We summarise the two broad categories of

Submitted – 18 June 2020

24 Background and Definitions

techniques that are used in this thesis, blocking and indexing, and give a further review of relevant

techniques in Chapter 3.

Blocking: The idea of blocking is to subdivide the records into different blocks, and only

compare pairs of records in each block. For example, traditional blocking [47] involves selecting

one or more attributes and separating the records into blocks based on the values of these

attributes. One block is created for each unique combination of values in the selected attributes

and all records with the same combination of values are placed in the same block. For example,

blocking a data set using a FirstName attribute, would generate one block for each unique value

of FirstName, and all records with the same value of FirstName would be placed in the same

block, i.e. all the records with FirstName ‘John’ in one block, ‘Mary’ in another block, and so

on. Blocking a dataset on the combination of FirstName and Surname would create one block

for each unique combination of FirstName and Surname, so the records with FirstName-Surname

‘John-Smith’ would be in one block, ‘Mary-Miller’ in another block, ‘Mary-Smith’ in a third

block, and so forth. Once the blocks have been created, each pair of records in the same block

becomes a candidate pair.

Beyond the traditional approach of blocking based on attribute values, several other tech-

niques have been proposed. For example phonetic encodings such as Soundex [124], Phonex

[104] and Double Metaphone [135] attempt to group similar sounding words (usually proper

nouns like given names or street names) into blocks to account for potential mispellings and

name variations.

Indexing: The idea behind indexing is to somehow order the records into an index. Then,

two records become a candidate pair if and only if they are within a certain distance (using some

distance metric) in this index. For example, sorted neighbourhood [73] works by using one or

more attribute values as a sorting key, such as a concatenation of FirstName and LastName. This

‘sorting key’ is then used to order the records and all pairs of records within a fixed window

size in this index become candidate pairs.

2.3.2 Similarity Calculation

Once blocking, indexing or another similar technique has been used to produce candidate pairs,

the next step in the entity resolution process is to compare the records. This involves calculating

a similarity score for each candidate record pair produced by the blocking step. There are many

different techniques for this stage of the process, however the basic idea of them is to calculate a

numerical measure of similarity between the two records.

Submitted – 18 June 2020

§2.3 The Entity Resolution Process 25

The first step in this process is usually to calculate the similarity between the individual

attribute values in the records. A number of different similarity functions have been developed

for this process for use on different types of data. Each attribute similarity function takes as

input two attribute values and returns a numerical value between 0 and 1. The higher the

numerical score, the more similar the two attribute values. We describe four common attribute

similarity functions here which we make use of throughout the thesis.

Edit Distance: Edit Distance [105] - sometimes called Levenstein edit distance - uses the idea

that the distance between two text strings can be measured by counting the number of insertions,

deletions and substitutions that are required to transform one string into the other. It is highly

customisable and allows different costs to be associated with the different operations, or entirely

new operations such as transpositions to be added in order to tailor it to a specific problem. One

disadvantage of edit distance is that it is relatively slow, being quadratic, i.e. O(|s1||s2|), where

|s1| and |s2| are the lengths of the strings being compared.

Exact Match: Exact Match is a binary similarity function that tests whether two strings are

identical or not. It is useful in domains where there are only a small number of values (for

example a Gender attribute). It is calculated as follows:

SExt(s1, s2) =











1.0 s1 = s2

0.0 s1 6= s2

(2.1)

Jaccard Similarity: Jaccard similarity (also known as q-gram similarity) makes use of q-

grams, which are substrings of length q. The Jaccard similarity is computed as:

SJac(s1, s2) =
|Q1 ∩ Q2|

|Q1 ∪ Q2|
(2.2)

where Q1 and Q2 are the sets of q-grams contained in strings s1 and s2 respectively [119]. It is

fast (O(|s|) in the length of the longer string if the set membership test can be done in constant

time) and simple to implement, and works particularly well in longer multi-word strings of text

where there is a possibility that the words might be in different orders. For example, the Jaccard

similarity for s1 = ‘Jeffrey Fisher’ and s2 = ‘Fisher Jeffrey’ with q = 2 is computed as follows:

Q1 = {’Je’, ’ef’, ’ff’, ’fr’, ’re’, ’ey’, ’y ’, ’ F’, ’Fi’, ’is’, ’sh’, ’he’, ’er’} and Q2 = {’Fi’, ’is’, ’sh’,

’he’, ’er’, ’r ’, ’ J’, ’Je’, ’ef’, ’ff’, ’fr’, ’re’, ’ey’}. Thus |Q1 ∩ Q2| = 11, and |Q1 ∪ Q2| = 15. Thus,

SJac(s1, s2) = 11/15 or 0.73.

Submitted – 18 June 2020

26 Background and Definitions

Jaro and Winkler: The Jaro string comparison technique [83], and the Winkler modifications

[188], were specifically designed to account for errors that are commonly found in proper nouns.

In particular, they are used when comparing the names of people. The Jaro similarity of two

strings is calculated as:

SJar(s1, s2) =
1

3

(

c

|s1|
+

c

|s2|
+

c − t

c

)

(2.3)

where c is the number of agreeing characters between the two strings within half the length of

the longer string, and t is the number of transpositions in the two strings.

The Winkler modifications [188] improves the Jaro similarity measure by giving increased

weight to agreeing characters at the beginnings of the strings, long strings with multiple char-

acters in common, and strings differing by commonly substituted characters.

In addition to the above measures that are designed to work on strings of text, additional

comparison measures have been proposed for geographical attributes such as latitude and lon-

gitude, date and time attributes (which should be cyclical), age attributes and other data types.

See Christen [23] or Naumann and Herschel [119] for other examples.

Just as the similarity of attribute values can be measured, so too can the similarity of rela-

tionships be measured. In some cases relationship similarity may be binary, for example two

records either have the same spouse record or they don’t, but in other cases the relationship

information may be more complex and require measuring techniques that reflect this complex-

ity, e.g. two author records may have only partial overlap in co-authors, and the relationship

similarity should reflect the extent of the overlap. Relationship similarity is calculated for two

records by looking at other records they have a relationship to, such as the coauthor records on

a research paper or the members of a household in a census record. Like attribute similarity,

relationship similarity is normalised to a value between 0 and 1 with higher values indicating

higher similarity of relationships.

Common Neighbours: The common neighbours method of calculating relational similarity

is analagous to the Jaccard similarity (described above) for attributes. It looks at the neighbours

(i.e. related records) of a pair of records and is calculated as:

SCN(r1, r2) =
|N1 ∩ N2|

|N1 ∪ N2|
(2.4)

where N1 and N2 are the sets of related records of record r1 and r2 respectively. [12]. For

exmaple, if r1 is has a relationship with records r3, r4, and r5 and r2 has a relationship with

Submitted – 18 June 2020

§2.3 The Entity Resolution Process 27

records r4, r5, r6, and r7, then N1 ∩ N2 = {r4, r5} and N1 ∪ N2 = {r3, r4, r5, r6, r7}, thus

SCN(r1, r2) = 2/5 or 0.4.

Adamic/Adar: The Adamic/Adar approach [1] extends the common neighbours approach to

account for the fact that not all relationships are equally informative. A common neighbour with

a large number of relationships is not as strong evidence for a match as a common neighbour

with only two relationships (i.e. the records being compared). In this way it has many similarities

with the idea of TF-IDF [169] used in information retrieval where agreement on rare terms is

much stronger evidence than agreement on terms common in most documents.

The Adamic/Adar relationship similarity of two records is given by:

SAda(r1, r2) = ∑
ri∈N1∩N2

1

log(|Ni|)
(2.5)

where N1, N2 and Ni are the sets of related records of records r1 and r2 and record ri respectively.

Typically, the comparison step involves calculating the similarity between many different

attributes, and potentially also relationships, which means the final output of a record pair

comparison is a weight vector or similarity vector, containing the similarity scores of the in-

vidual attribute comparisons. The weight vector for records ri and rj could take the form

Ψij = [ψ1, ψ2, . . . , ψ|A|, ψr] where ψx is the attribute similarity of records ri and rj in at-

tribute ax for each ax ∈ A, and ψr is the relationship similarity of records ri and rj. As described

in the next section, such weight vectors are used in the classification step to determine whether

the record pair is a match or non-match.

2.3.3 Classification

Once the record pairs have been compared, they have to be classified as either matches or non-

matches. As with the other steps in the entity resolution process, there are many different

techniques that can be used and we describe three broad approaches here.

Simple Pairwise Threshold: The simplest approach to classification is to use a threshold

ψmin based on the average similarity values in the weight vector. For example if ψmin = 0.7, all

record pairs where the average similarity value in the corresponding weight vector is greater

than or equal to 0.7 are classified as a match, and record pairs where the average similarity is

less than 0.7 are classified as a non-match. Formally, record pair ri and rj, with corresponding

Submitted – 18 June 2020

28 Background and Definitions

weight vector Ψij, is classified as a match if:

∑
ψx∈Ψij

ψx

|Ψij|
≥ ψmin (2.6)

and a non-match if:

∑
ψx∈Ψij

ψx

|Ψij|
< ψmin (2.7)

This approach can be extended to incorporate a weighted average, and the weights can be

probabilistically determined if information regarding the size of the domain of each attribute

and the error rate of each attribute are known (or can be estimated) [47].

Machine Learning Methods: Since entity resolution is essentially a binary classification

problem, any machine learning technique that has been developed for classification problems

can be applied to entity resolution. Techniques such as support vector machines [54], neural

networks [158], logistic regression [53], decision trees [35] and others can all be used. However,

these techniques are usually supervised techniques meaning that training data is required in

order to learn the features of the weight vectors or raw record pair data. In practice training

data is often unavailable for real-world entity resolution problems, and not easy (or cheap) to

create [23]. We discuss the problem of the lack of training data and how to partially overcome it

in Chapter 5.

Clustering Methods: This group of techniques treats entity resolution as a clustering prob-

lem rather than a binary classification problem. The general idea of clustering is to partition a

data set into one or more clusters, where the intra-cluster distance is low and the inter-cluster

distance is high [68]. The goal of these approaches to entity resolution is usually to have one

cluster per entity and group all the records associated with that entity into the cluster. Various

approaches have been used including hierarchical clustering [186], density based clustering [18]

and others.

The clustering result can be converted to the equivalent classification result as follows: for

any record pair 〈ri, rj〉, if ri and rj are in the same cluster they are a classified match, and if ri

and rj are in different clusters they are a classified non-match. It is important to note that unless

the classification method guarantees transitive closure (described in Section 2.2), then a reverse

transformation may not be possible (i.e. we may not be able to convert a classification result into

a consistent clustering result).

Submitted – 18 June 2020

§2.3 The Entity Resolution Process 29

Classification Result
Match Non-Match

Actual State
Match TM FN

Non-Match FM TN

Table 2.3: Classification matrix for entity resolution, showing the four combinations of classifier
output and actual real-world state.

2.3.4 Evaluation

Since entity resolution is usually treated as a typical binary classification problem, all the tra-

ditional measures such as accuracy, precision, recall, etc. are applicable [168]. In addition, other

steps of the entity resolution process have different evaluation measures, for example the effec-

tiveness of the blocking is usually assessed by measures such as pairs completeness, pairs quality

and reduction ratio [134]. We describe the common evaluation measures for the entire process

here, and then describe measures for individual steps in subsequent chapters where they are

relevant.

We made the distinction between true match (TM) and classified match (TM + FM) in Section 2.2

and it is relevant here. As shown in the classification matrix described in Table 2.3, for each

individual record pair 〈ri, rj〉 that is classified, there are four possible outcomes:

• True Match (TM): The output of the classifier applied to ri and rj is a match and this also

reflects the actual real-world state, i.e. ei ≡ ej.

• False Match (FM): The output of the classifier applied to ri and rj is a match, but this is

not the case in the real-world state, i.e. ei 6≡ ej.

• False Non-Match (FN): The output of the classifier applied to ri and rj is a non-match, but

the real-world state is a match, i.e. ei ≡ ej.

• True Non-Match (TN): The output of the classifier applied to ri and rj is a non-match and

this reflects the real-world state, i.e. ei 6≡ ej.

Based on these four combinations of classifier output and real-world state, we describe the

following evaluation metrics:

Accuracy: Accuracy (Ac) is calculated as [23]:

Ac =
TM + TN

TM + TN + FM + FN
(2.8)

Submitted – 18 June 2020

30 Background and Definitions

While accuracy is a very common measure for traditional classification problems, it turns out to

be less useful for entity resolution. As described in Section 2.3.1, entity resolution is typically

an unbalanced problem, which means that it is generally easy to achieve very high accuracy by

simply classifying everything as a non-match.

Precision: Precision (Pr) is calculated as [23]:

Pr =
TM

TM + FM
(2.9)

Precision measures the proportion of classified matches that are actually true matches.

Recall: Recall (Re) is calculated as [23]:

Re =
TM

TM + FN
(2.10)

Recall measures the proportion of true matches that are classified as matches by the classifier.

Both precision and recall are widely used in practice, however there is a trade-off between

them. For example, it is possible to achieve perfect recall by classifying every record pair as a

match, however this normally leads to very poor precision (since only a small proportion of the

classified matches will actually be true matches). It is also usually possible to achieve very high

or even perfect precision, by only classifying a very small number of record pairs as matches

where there is exceptionally high confidence. Again, however, this usually leads to low recall

(since most true matches will be incorrectly classified as non-matches).

F-measure: Because of the inherent trade-off between precision and recall, another widely

adopted evaluation metric is the F-measure (F-m), also known as the FScore [168], which is the

unweighted harmonic mean of precision (Pr) and recall (Re). It is calculated as [23]:

F-m =
2PrRe

Pr + Re
(2.11)

Since it is possible to trade off between precision and recall, F-measure provides a balanced

metric and in order to achieve a high F-measure, it is necessary to score well in both precision

and recall. However for practical problems, it is quite possible for one of precision or recall to be

more important. This can be achieved by weighting them accordingly in the equation in order

to achieve the desired balance.

Alternatively, F-measure can be expressed as the weighted arithmetic mean of precision and

Submitted – 18 June 2020

§2.4 Common Entity Resolution Problem Domains 31

recall [70], according to the formula:

F-m = pRe + (1 − p)Pr (2.12)

where:

p =
FN + TM

FN + FM + 2TM
(2.13)

This provides another way the relative importance of precision and recall can be changed to suit

the particular problem.

2.4 Common Entity Resolution Problem Domains

We describe three main domains where entity resolution is applied and note that there is some

overlap between them.

2.4.1 Government Agencies

Entity resolution is very important to government agencies for a variety of different tasks. One

example is identifying people who pose a risk to national security before they are allowed into

the country. In such cases these people may be actively trying to hide their identity, which

requires government agencies to try and detect them through alternate means. In other cases,

simple data quality problems may prevent a person of interest from being noticed without

suitable entity resolution processess [46].

In the health domain, individual people often have medical records stored with many differ-

ent providers, e.g. doctors, hospitals, specialist clinics, etc. This presents problems for medical

research, which often requires gathering and connecting records from the different data sets to

build up a complete picture of an individual’s health and medical record. In Australia, many

state governments have record linkage centres2 and similar examples exist in other countries.3

Software tools such as FEBRL [26] were originally created for health record linkage, even if they

now see wider application. While it is not currently a widespread practice, it is easy to imagine

a future where emergency departments at hospitals might attempt to perform real-time entity

resolution to determine a patient’s current medications, co-morbidity or other complications

that could have potentially life-threatening consequences if unknown.

2http://www.cherel.org.au/, https://www.santdatalink.org.au/resources
3http://www.statcan.gc.ca/eng/health/link

Submitted – 18 June 2020

32 Background and Definitions

Finally, entity resolution is also widely applied by governments in areas of criminal investi-

gation, fraud detection and tax evasion.4 Examples include linking the owners of bank accounts

to tax records to determine people who are paying too little tax, checking tax records against

social security records to work out people falsely claiming unemployment benefits, or identi-

fying bank accounts attached to criminal networks to enable detection of money laundering

schemes. In Australia during 2011, the government used entity resolution to detect the fact that

many recipients of unemployment benefits were on the high roller registers at casinos around

the country and by doing this was able to bring down a major money laundering operation [7].

2.4.2 Commercial Organisations

Entity resolution also sees widespread use in the commercial world for a variety of different

purposes. A common scenario is matching customer, supplier or product databases following a

corporate merger. However, it is also common for companies to buy and sell data sets (or the

meta-data from data sets) for advertising, market research or other business purposes [141].

Another corporate example which relies heavily on entity resolution is for credit verification.

It is common in many countries that anyone applying for a loan, credit card, phone, or other long

term contractual arrangement has their credit history verified to make certain they do not have

a history of unpaid bills or bankruptcy.5 In these cases it is necessary to match the customer

details provided to existing records in order to determine their history. As with government

fraud and compliance, it is adversarial in nature, in that people with poor credit histories may

try and avoid detection by providing nicknames, out of date information, etc., which makes

entity resolution more difficult. However, the results of incorrect entity resolution can also have

significant negative consequences on unrelated members of the public [115] which makes it very

important that the entity resolution is correct.

Companies can also make use of entity resolution for regulatory compliance and business

reasons. One example of this is described by Jeff Jonas [85] in regards to Las Vegas casinos,

where a casino has to identify patrons who are not legally allowed to be there because they

are on various state or federal lists, problem gamblers who the casino has a responsibility to

deny entry to and card counters or cheats, who the casino wishes to deny entry to for business

reasons.

4Author experience.
5https://www.vedacheck.com/

Submitted – 18 June 2020

§2.4 Common Entity Resolution Problem Domains 33

Data Set Number of Records Number of Entities Applicable Constraints

Cora 1295 112 Transitive closure

UKCD 155,888 151,082 One-to-one, transitive closure

NCVR-450 447,898 296,366 One-to-one

NCVR-full 8,237,785 8,087,018 Transitive closure

IOS 119043 54545 One-to-one, transitive closure

Table 2.4: Summary statistics and important characteristics of the data sets used in this Thesis.

2.4.3 Research Institutions

Entity resolution is also a frequent task in research institutions, as both part of data preparation

in many research domains, and also for the institutions themselves. Many research domains

require linking different data sets, and this often requires entity resolution. In the social sciences,

studying populations, including family networks [10], occupations [91], cause of death [93] and

similar topics requires population reconstruction [25] from historical birth, death, marriage and

(potentially) census data, usually without unique identifiers. In addition, these data sets can

be used in medicine, to study genetic factors, especially when linked with cause of death, or

other risk factors that influence medical conditions and mortality. Compiling these data sets

is a significant entity resolution challenge, but one which many countries are working with

academia to try and solve, due to the social and medical benefits from doing so.6

At the institution level, bibliographic databases such as SCOPUS7 and Thomson Reuters

Web of Science8 can have a significant impact on an institution’s reputation. Publication and

citation counts from such databases are a major contributing factor in many university ranking

schemes [13]. Making sure that the databases are up-to-date and correctly reflect an institution’s

research output is a significant entity resolution task. However, failure to perform it correctly

can have a major impact on an institution’s reputation and ability to attract both students and

academics and the task has been the subject of a variety of entity resolution work [166]. In

addition, measures such as the H-Index [74] are widely used as part of promotion schemes

within research institutions, which also requires research output to be correctly attributed in

bibliographic databases.

6https://www.lscs.ac.uk/projects/digitising-scotland/, https://adrn.ac.uk/
7https://www.scopus.com/home.uri
8http://apps.webofknowledge.com

Submitted – 18 June 2020

34 Background and Definitions

2.5 Data Sets and Experimental Details

Throughout this thesis we make use of three main data sets to evaluate our techniques. Two

of the data sets are freely available (CORA and NCVR), while the UKCD is proprietry. All

the data sets have been used to evaluate different entity resolution techniques in the past. A

numerical summary of the characteristics of each data set is given in Table 2.4, and a more

detailed description is provided below.

1. Cora: This is a public bibliographic data set of scientific papers that has previously been

used to evaluate entity resolution techniques [165]. This data set contains 1,295 records

and truth data is available.

2. UKCD: This data set consists of census data for the years 1851 to 1901 in 10 year intervals

for the town of Rawtenstall and surrounds in the United Kingdom. It contains 155,888

individual records of approximately 32,000 households. A portion of this data (nearly

5,000 records) has been manually linked by domain experts. Fu et al. [53] have used this

data set for household based group linkage where the task is to link households across

time.

3. NCVR: This data set consists of voter registration data for the state of North Carolina in the

United States of America [24].9 It contains 8.2 million records consisting of the full name,

address, age and other personal information of voters registered in the state. For most

of our experiments we make use of a subset of this data set containing 447,898 records,

named NCVR-450. For testing the scalability of our techniques we make use of the full

data set.

In Chapter 7, we present an extension of our technique from Chapter 5 and we evaluate this

extension on an additional data set:

4. IOS: This data set is made of birth, death, marriage and census records from the Isle of

Skye in the United Kingdom. The data covers the period from 1861 to 1901, with census

data recorded at 10 year intervals, and all birth, death and marriage records from the

period. A portion of the records have been manually linked by historians [60, 148], however

their approach favoured precision over recall so there are likely additional matches that are

not recorded in the ground truth.

9ftp://alt.ncsbe.gov/data/

Submitted – 18 June 2020

§2.6 Summary 35

Experimental Settings and Hardware: All code for experiments was written in Python version

3.4 and run on a server with 6-core 64-bit Intel Xeon 2.4 GHz CPUs, 128 GBytes of memory

running Ubuntu 16.04. Timing was done using the functionality from the built-in Python time

module.

2.6 Summary

Entity resolution is a very important data preprocessing task, that involves determining which

records in one or more data sets correspond to the same real-world entities. It has a wide va-

riety of practical applications for government agencies, commercial organisations and research

institutions. In the next chapter we summarise recent literature that is relevant to advanced en-

tity resolution techniques, blocking, generating training data and evaluation of entity resolution

results.

Submitted – 18 June 2020

36 Background and Definitions

Submitted – 18 June 2020

Chapter 3

Related Work

Entity resolution has been an active area of research since the 1950s. Recent advances in com-

puting power have meant that more and more sophisticated techniques have become viable and

the field has grown enormously in recent years. In this chapter we present a very brief overview

of some important historical work on entity resolution, along with several surveys or books that

describe the current state of the discipline. We follow this with an in depth description of vari-

ous advanced entity resolution techniques. Finally, we present research related to the particular

aspects of entity resolution that we focus on in this thesis.

The remainder of this chapter is structured as follows: in Section 3.1 we provide details of

works that summarise the entire entity resolution process or provide a good overview of the

entire process for those readers who desire more information than was provided in Chapter 2.

In Section 3.2 we summarise the main advanced entity resolution techniques that are central

to this thesis, along with recent developments or extensions that have been proposed. We then

proceed to detail related work specific to each of the individual chapters in the thesis. Section 3.3

details recent research in blocking and constrained clustering, which is relevant for Chapter 4.

Section 3.4 details work on active learning and generation of training data, which is relevant

to Chapter 5 as well as the stable marriage problem which is relevant to our approach. In

Section 3.5 we summarise research on evaluation of entity resolution and parameter tuning as

well as correlation clustering which is relevant to Chapter 6. Finally, in Section 3.6 we summarise

the related work and discuss the gaps we have identified which justify the need for the research

described in the rest of this thesis.

3.1 Overview

The mathematical formulation of entity resolution began with Howard Newcombe in the late

1950s [120, 121]. The problem was given a probabilistic foundation by Felligi and Sunter [47] in

37

Submitted – 18 June 2020

38 Related Work

the late 1960s. In this seminal work, the authors provide many of the concepts and conventions

that are still in use today. It contains a formal process for evaluating pairwise comparisons into

three categories, ‘link’, ‘non-link’ and ‘possible link’ and a methodology for constructing a set

of rules which minimise the size of the ‘possible link’ set for a given error level. The authors

also discuss problems that can occur, such as sampling variability, and violation of indepedence

assumptions that are critical to the probabilistic interpretation. Finally, there is a discussion

of practical issues such as blocking methods to reduce the comparisons required. While the

methodology has been expanded upon and refined by many subsequent works, the key ideas

such as similarity in attribute values indicating two records are more likely to be about the same

entity, and the concept that some attributes give a stronger indication of a match than others,

are the foundation of most modern entity resolution techniques.

Subsequently, additional techniques have been developed for each aspect of the entity reso-

lution problem. Since it is an active and broad field of research, there are many survey papers

and even books that detail the entity resolution process as a whole. Survey papers from Garcia-

Molina [58], Brizan and Tansel [15] and Winkler [189] surveyed the entity resolution problem

around 2005. A book by Talbert [172] details the entity resolution process and how it relates

to information quality. Christen [23] surveyed and summarised the state of current entity res-

olution techniques in 2012. Naumann and Herschel [119] provide a description of the entity

resolution process along with a brief summary of some common techniques that are used at

each stage. Getoor and Machanavajjhala [62] provide a tutorial on the entity resolution process

along with a description of some outstanding challenges in the field. Köpcke et al. [99] provide

a comparitive evaluation of different entity resolution frameworks.

In addition to the overarching problem of entity resolution, many smaller subdomains exist

including privacy preserving entity resolution [155, 177, 178], real-time entity resolution [12, 27,

145, 173], parellel entity resolution [88, 94, 98], and more. Where the work in this thesis has

applications in these subdomains we provide a brief summary of the ideas involved. However,

a full discussion of these subdomains is outside the scope of this thesis.

3.2 Advanced Entity Resolution Techniques

We begin our treatment of advanced entity resolution techniques by first discussing collective

entity resolution, a topic which became an active area of research around 2006. Collective entity

resolution extends traditional pairwise matching in two ways. Firstly, it incorporates relation-

Submitted – 18 June 2020

§3.2 Advanced Entity Resolution Techniques 39

ships between entities in the matching process. Secondly, matching decisions are no longer

made independently, i.e. the results from one decision can affect another. There were four ap-

proaches to collective entity resolution that were all developed around the same time and largely

began work in the field. In addition to discussing collective entity resolution techniques, we also

present recent research in the area of group linkage, temporal entity resolution and techniques

for population reconstruction.

3.2.1 Relational Clustering Based Technique

The approach of Bhattacharya and Getoor [12] provides a formal definition of the entity reso-

lution problem and describes three types of approaches to solving it. The pairwise (i.e. non-

relational) approach, the naïve relational approach and the full collective approach. The pair-

wise approach corresponds to the traditional entity resolution approach of Felligi and Sunter

[47]. Where relationships are incorporated at all, they are treated as attributes. For exam-

ple, a marriage relationship might be incorporated through several attributes such as Spouse’s

First Name, Spouse’s Age, etc. The naïve relational approach extends this to include references

to other records, and a measure of relational similarity, but the calculated similarity values

are not updated as the matching takes place. In other words, the matches are still performed

independently. The full collective approach is an unsupervised clustering algorithm which it-

eratively matches the nodes with the highest combined attribute and relational similarity, and

then updates the similarity with neighbouring nodes. As a result, earlier matching decisions

can influence later decisions. From a practical perspective this means bootstrapping is required,

and in their experiments the authors perform exact matching based on attribute values for this.

Where there is ambiguity present, the attribute values of related entities are also incorporated

into bootstrapping process.

Bhattacharya and Getoor [12] calculate relational similarity as:

sim(r1, r2) = (1 − α)× simA(r1, r2) + α × simR(r1, r2)

where simA(r1, r2) and simR(r1, r2) are the attribute and relational similarity scores respectively

between records r1 and r2 and α is a weighting parameter with 0 ≤ α ≤ 1.

The paper tests the methodology on portions of three bibliographic datasets, the largest of

which has approximately 60,000 references to 10,000 authors. The authors note good results for

these domains, but importantly observe that the improvements are not substantial in well de-

Submitted – 18 June 2020

40 Related Work

fined and unambiguous domains. The experiments also show that increasing the neighbourhood

size greatly increases computational complexity but has minimal impact on accuracy.

3.2.2 Random Walk Based Techniques

The second collective entity resolution approach we discuss uses random walks on graphs to

perform entity resolution and was proposed by Kalashnikov and Mehrotra [86]. Similar to the

approach of Bhattacharya and Getoor [12], the first step in the approach is using attribute based

similarities to resolve easy matches to bootstrap the process. Once this is complete a graph is

constructed where nodes represent entities and edges represent relationships between entities.

Where there is ambiguity about the correct entities involved in a relationship, a choice node

is created which incorporates the probability (either calculated based on similarity or evenly

split) of the relationship being with each potential candidate. Entity resolution is performed by

computing the chance of a random walk from one side of the choice node reaching the other

side of the choice node. This is done iteratively, and after each iteration the probabilities on

the choice nodes are updated. Because random walks contain a probabilistic component, this

captures the intuition that a path through nodes that are highly connected has less importance

than one through nodes with very few connections. As with the approach of Bhattacharya and

Getoor [12], the authors also note that paths beyond a certain length contribute very little to the

accuracy of the outcome, but come with significant computational cost.

The experiments are conducted on real and synthetic bibliographic datasets, that range in

size up to 573,000 author references and 176,000 author entities. The authors note that after

attribute matching was conducted, approximately 87% of the references were unambiguous,

leading to 75,000 choice nodes being created. The authors also test the approach on a movie

dataset with relationships between people (directors) and films. They demonstrate that the

approach is useful for disambiguating references in both domains. However, the approach

benefits from a certain proportion of unambiguous relationships to bootstrap the process. It also

requires many user decisions about thresholds in the initial match phase in order to construct

the graph as well as decisions about maximum path length, which optimisations to use, etc.

Nuray-Turan et al. developed an extension of this techique [123] which turns the approach

into a supervised technique when training data is available. This allows for different paths (both

in length and relationship types) to have different weightings in the random walk process. These

weights can be learned from the training data and then applied to the full dataset to improve

the results.

Submitted – 18 June 2020

§3.2 Advanced Entity Resolution Techniques 41

This technique improves the accuracy results over the original Kalashnikov and Mehrota

[86] technique. They also compare it against a modified version of the Bhattacharya and Getoor

approach [12], although this is not a fair comparison since they do not update the neighbourhood

meaning it is much closer to the naïve relational method than the collective technique. However,

in order to achieve a significant improvement in accuracy, they require training data, which

is usually not available for entity resolution (see Chapter 5), and they also require a complex

environment with variety in the types of relationships and the importance of each in the entity

resolution problem.

3.2.3 Context and Information Propogation Based Technique

The third technique for collective entity resolution was proposed by Dong et al. [39]. It has many

similarities with the above approaches in that it applies an algorithm iteratively to incorporate

the results of previous decisions into subsequent decisions. It also makes use of relationship

information to inform the matching process.

The authors describe three main ideas behind their approach. They firstly try and exploit

context information, even in different attributes. For example, the fact that both the name value

‘Stonebreaker, M.’ and the e-mail value ‘stonebreaker@csail.mit.edu’ contain the sequence of

characters ‘stonebreaker‘ still provides positive evidence that the entities in question might be the

same, even though the character sequence occurs in different attributes. The second feature of

the approach propogates information from references. For example, an article entity is connected

to a unique set of author entities. As a result, if two article entities are matched, the author

entities should also be matched. The final feature of the approach is reference enrichment.

If two different entities are matched, then the values for their attributes can be combined to

create a more complete picture of the new, composite entity. These features are particularly

useful for domains where entity types are defined in multiple places, with varying degrees of

completeness of information in each place. For example, personal information management

systems, or bibliographic databases that are created by crawling the web, often have incomplete

representations of entities and are suited for this type of approach.

The authors test this approach on both a personal information management dataset and

the Cora bibliographic dataset, in both cases achieving better results than the baseline systems.

Of particular interest is the note that when working on the Cora bibliographic dataset, which

contains very noisy venue information, the propagation of information from article entities to

venue entities significantly increased the recall. However, it also incorrectly merged many dif-

Submitted – 18 June 2020

42 Related Work

ferent venue entities together. This result illustrates one of the risks of automated merging since

entities that appear completely different end up being merged together because of an error in a

reference.

3.2.4 Markov Logic

The fourth collective entity resolution technique we discuss is Markov logic networks (MLNs)

which have been used to perform inference on various tasks including entity resolution [165],

co-reference resolution [138] and information extraction [137].

Proposed by Richardson and Domingos [150], MLNs combine first order logic with proba-

bility theory with the aim of utilising the strong points of both fields. First order logic provides

a compact and expressive representation for information including both entities and relation-

ships. Complex rules can be represented as logical formulae, and the language of first order

logic allows a concise and intuitive representation of domain knowledge. However, traditional

first order logic is brittle since a single contradiction in a knowledge base invalidates it entirely.

MLNs use probability theory to overcome this weakness. Probability theory and the treatment

of uncertainty provides tools for performing inference with noisy or inconsistent data. It is com-

bined with first order logic, by giving each logical formula a weight representing its likelihood

of being true. Inference is then performed by a combination of Markov chain Monte Carlo simu-

lation for resolving soft constraints or preferences, and logical satisfiability solvers for resolving

hard constraints.

Aside from overcoming the brittleness of first order logic, Richardson and Domingos [150]

suggest several advantages to this approach. The weights for the formulae can be learned from

a database if training data is available. Hard constraints, such as transitive closure in entity

resolution, or those being incorporated from domain knowledge, can be included as formulae

with infinite (or negative infinite) weight. While there are many approaches to inference in

domains with either hard or soft constraints, far less attention has been paid to the problem

where they are combined [136]. MLNs partially address this deficiency through a combination

of a logical walk-sat-solver to move between solution spaces, and Gibbs sampling to move within

solution spaces [150].

The technique does have disadvantages. The predicates and formulae have to be specified

prior to performing inference (as opposed to learning them directly from the data) and if there

is no training data available, the results can be sensitive to the formulae weighting. Additionally,

inference in MLNs is slow, even at an approximate level, and is intractible to solve exactly [150].

Submitted – 18 June 2020

§3.2 Advanced Entity Resolution Techniques 43

This means that for entity resolution, the challenge becomes one of reducing the size of the

network in order to obtain reasonable running times. We propose a blocking technique that can

control the size of blocks, and thus the network size, in Chapter 4.

A number of techniques have been proposed to determine the parameters of an MLN using

a variety of different methods [79, 96, 163]. However, these techniques all rely on training data

being available which is often not the case for entity resolution [23]. Moreover, due to the

fact that the classes of matches and non-matches are typically unbalanced, it can become very

expensive to generate training data [184] (see Chapter 5 for further details).

MLNs have been applied to the entity resolution problem by Singla and Domingos [165].

They provide some theoretical evaluations of the problem and conclude that one of the limita-

tions of traditional entity resolution techniques is that they make independent match decisions.

For this to be valid, the data must be independent and identically distributed which is not true

in most cases. They provide potential candidates for evidence predicates for entity resolution

using Markov logic and test their approach on the BibServ and Cora datasets.

Overall, their experiments show that MLN based entity resolution can achieve high quality

results (in terms of the evaluation measures described in Section 2.3), however they also high-

light the poor scalability of the technique. Even though their datasets are very small, at most

10,000 records, they still have to perform canopy clustering (essentially traditional blocking with

overlapping blocks [22]) in order to make the inference tractible. We confirm this problem with

some simple experiments of our own, the results of which are shown in Figure 4.1 in the next

chapter.

Rastogi et al. [146] attempt to improve the scalability of entity resolution techniques. They

treat the matching component as a black box, but make use of an MLN based approach in their

experiments. Their approach extends the canopy clustering used by Singla and Domingos [165]

by including message passing, where information is passed between canopies if it is relevant

to the matching decisions. This approach is perfect for MLN based matchers, since they build

up evidence through individual formulae. Where a matching decision has high evidence, but

still insufficient for a match to be made, this accumulation of evidence can be passed between

canopies so that in combination, sufficient evidence can be found.

The authors note that there are no theoretical guarantees of optimality in the matching pro-

cess, but state that in their experiments, there was minimal or no loss in matching quality. Since

MLN based techniques perform collective entity resolution (match decisions are influenced by

other match decisions), it is possible for gradual evidence to accumulate across the canopies and

Submitted – 18 June 2020

44 Related Work

for one decision to influence another very far removed from it in the network. However, in prac-

tice this is extremely unlikely. Both Bhattacharya and Getoor [12] and Kalashnikov and Mehrotra

[86] showed that in their experiments neighbours more than one link removed had little influ-

ence on the results, and in most domains it would require a very specific set of circumstances

for matching decisions to propogate further than this.

The main criticism of the approach proposed by Rastogi et al. [146] however, is that while

they improve scalability to the point where they can run an MLN based matcher on a dataset of

approximately 58,000 records, this is still quite small in the context of modern datasets. While

they don’t provide the specifics of their implementation, it is likely they are making use of

Alchemy [97], the same software used by Singla and Domingos [165] since they cite that work

in the context of the entity resolution process. It is possible that using the more recent, and

generally more efficient package of Tuffy [122] along with their canopy clustering and message

passing technique could improve scalability further. However, it is still unlikely that the speedup

would be sufficient to work with datasets of millions of records or more.

3.2.5 Group Entity Resolution

Group linkage can be used in domains where hierarchies of records exist. Since these hierarchies

are usually one to many relationships, best results are achieved by matching not just between

individual records, but between groups of records as well. An example of this is historical

census matching, where only matching individuals may achieve suboptimal results. However,

when results for individuals are combined with comparisons between households the overall

results can be improved significantly.

The group linkage task has been studied previously. On et al. [126] formalises the notion of

group linkage as matching a set of references, tied together in some way, with other sets of refer-

ences. The process described extends traditional entity resolution by performing pairwise entity

resolution on the individual records to determine potential matching pairs, and then matching

groups, where a high proportion of records in each group are matching pairs. The process is

computationally intensive, so they provide blocking techniques to perform this efficiently.

The approach by Fu et al. [54] uses multiple instance learning. Group links are treated as

bags and record links are treated as instances within a bag. The problem becomes a bag level

classification problem. The technique is supervised, making use of training examples of both

positive and negative bags to train a support vector machine classifier. The experiments were

performed on both real and synthetic data. The real data is the UKCD dataset used in this thesis

Submitted – 18 June 2020

§3.2 Advanced Entity Resolution Techniques 45

and described in Section 2.5.

The two works above treat groups of records as sets, but make no allowance for any struc-

tural information that might be present within groups. Fu et al. [53] further extend the group

linkage approach by taking this structural information within groups into account in a graph

matching technique. A graph is constructed for each group, containing relationship information

between the different records as edge attributes. For example, in the experiments on household

census data, the edges have attributes for age difference, generational difference and role pair, all of

which are (in theory) static over time. The task then becomes a graph matching problem, where

vertex similarity (pairwise similarity) and edge similarity (relationship structure) are combined

to match the groups.

The approach of Christen et al. [34] extends the group linkage approach by also considering

how groups evolve over time. It attempts to solve the problem by assigning a label to each node

in the entity relationship graph (essentially a simple blocking approach) and then performs

graph matching based on the labelled graphs. The approach also works in an iterative fashion

whereby the high quality matches are identified first using strict matching criteria, and then in

each subsequent iteration, the matching criteria are relaxed in order to increase the recall of the

approach.

Mcconville et al. [114] propose an approach for entity resolution in graphs which starts by

making use of string similarity to detect duplicate nodes. However, the approach makes use of

community detection algorithms to determine and exploit the community structure in the simi-

larity graph, meaning the approach can be applied to group linkage problems where the groups

are not clearly defined in the data. Nanayakkara et al. [118] also employ a clustering based

approach to generate groups for use in group linkage. The proposed approach makes use of

temporal constraints, modelled as plausibility values, to capture both hard and soft constraints,

in order to incorporate domain knowledge. For example, a minimum time between births of

children for a single mother, minimum and maximum age of a mother at time of birth, etc.

3.2.6 Temporal Entity Resolution

At a conceptual level, temporal information does not change the entity resolution task. A times-

tamp attribute captures the date a recorded was created (in other words, the date the information

in the record was current) and it is another attribute that can be used in the similarity calcula-

tion when determining whether two entities are the same. However in practice, this attribute

can be incorporated in a more effective fashion. Rather than having its own similarity function,

Submitted – 18 June 2020

46 Related Work

differences in the values of the timestamp are used to modify the results of other similarity

calculations.

There are various ways of dealing with this situation. The technique described in Li et

al. [106] is to discount similarity scores based on the time difference between the records using

measures of agreement decay and disagreement decay. The motivating idea is that the longer the

time difference between two records, the more likely that some of the attributes or relationships

have changed meaning the similarity scores should be adjusted.

A variation of this approach is used by Christen and Gayler [28] for query time entity reso-

lution with temporal information. After potential matches have been determined, the similarity

scores are adjusted based on the time difference between the query record and the potential

match. Where the information is available, a time history for the entity can be constructed

which can also be used to adjust the similarity scores. These factors are then combined to de-

termine the most likely entity in the database to match to the query record. Similarly, work by

Hu et al. [76, 77] extends the agreement and disagreement decay model to include supporting

attributes which allows the authors to refine the parameters for the specific circumstances of

individual records.

Chiang et al. [21] extend the approach of Li et al. [106] but add an additional phase to the

process. Traditional (non-temporal) entity resolution is conducted first, and then a technique

for detecting evolving entities is applied. This technique is effective, however it is very compu-

tationally intensive and does not scale well to large datasets. Along similar lines, the work of

Althoff et al. [3] aims to build up time-lines of entities and incorporate such aspects as changes

of name, occupation and other attribute values. This is very similar to the problem of entity

tracking on the web [185] and building of temporal knowledge graphs [64] and many of the

same approaches are used in both domains.

3.2.7 Population Reconstruction

Population reconstruction is an entity resolution problem that involves matching historical

records from sources such as birth, death and marriage registers, land titles and other histori-

cal sources. The reconstructed populations can then be analysed to answer questions in areas

such social sciences, genetics and medicine [92]. However, the entity resolution problem is more

complex than a traditional pairwise matching problem. There is often a limited amount of in-

formation available from each individual record, for example a birth certificate might have the

name and date-of-birth of the newborn, along with the name and possibly the age of each of

Submitted – 18 June 2020

§3.2 Advanced Entity Resolution Techniques 47

the two parents. With such a sparse attribute set for each individual it can be very difficult to

unambiguously resolve each person on a certificate, particularly if the name happens to be a

common one. As a result, it is extremely important to make use of the relationship information

in order to solve this problem.

Eframova et al. [41] extend the traditional entity resolution approach by looking at common

attributes across the different types of records (birth records, death records, etc.). In a subsequent

work by the same authors [42], additional information such as name popularity, geographical

distance, and coreference frequency are added to improve the entity resolution results. Rahmani

et al. [142] attempt to solve the problem by weakly linking the records (i.e. by using a low

similarity threshold for matches) and then by performing a random walk on the linked graph

that is created in a similar manner to the collective entity resolution technique of Kalashnikov

and Mehrotra [86].

Schraagen and Kosters [157] treat this problem as a graph consistency problem. The ap-

proach operates in two phases, firstly a seeding algorithm uses a strict condition to generate

candidate matches, after which event consistency is used to detect problems in the seeded results

or identify other candidates to be matched. Consistency checking is done through incorporat-

ing conditions that reflect the particular domain, for example a minimum of one year between

births in a family or the requirement of a marriage record before a birth record. In this way,

family records can be built up with few or no string comparison operations which improves the

efficiency of the technique.

Kouki et al. [102, 103] applied a technique based on probabilistic soft logic (which is similar in

many respects to Markov logic networks [150]) which uses logical rules to express the different

roles, relationship types and possible links that can occur in population reconstruction. However

the technique has improved scalability over Markov logic networks while still capturing the

expressive power of first order logic to capture domain rules and the statistical inference from

probabilistic graphical models.

The approach proposed by Malmi et al. [111] attempts to solve this problem using a combi-

nation of binary classification and collective classification techniques in order to construct family

trees to study social demographics. The approach refines the binary classification approach by

incorporating domain constraints on the number of spouses an individual is likely to have and

adopts a greedy algorithm for choosing the most likely candidates.

Christen [25] proposed a technique that attempts to solve this problem in several stages,

firstly by comparing individuals to generate initial matches, then by applying temporal and

Submitted – 18 June 2020

48 Related Work

one-to-one or one-to-many constraints (such as a person cannot be born after their death), and

each person should have at most one death record. After the constraints have been applied, the

author makes use of relationship similarity and group linkage techniques in order to further

improve the quality of the results.

3.3 Blocking

One limitation of many advanced entity resolution techniques is their poor scalability. While

blocking has been used to overcome this problem for traditional entity resolution (as have other

techniques such as indexing [73], hashing [107], etc), for advanced entity resolution techniques, a

greater degree of control over block sizes is important, in particular the size of the largest block.

Many techniques such as collective entity resolution techniques also require disjoint blocks

which eliminates techniques such as canopy clustering [112]. We provided a basic overview

of blocking and indexing in Section 2.3, and several recent surveys of blocking techniques have

been conducted [22, 43, 99, 132, 134, 170]. In the following we briefly describe some key prior re-

search that relates to our own blocking techniques described in Chapter 4, in particular, blocking

techniques that adopt an iterative approach or that aim to control the size of blocks.

Several iterative blocking techniques for entity resolution have been proposed in recent years

[37, 145, 187]. Whang et al. [187] proposed an iterative blocking process in order to perform

entity resolution. Rather than processing each block individually, the approach propagates the

results from processed blocks (i.e. where records have been compared) to inform decisions in

subsequent blocks. Once two records are determined to be a match, they are merged, and the

resulting new record is propagated into other blocks where the combination of attributes may

cause previously undetected matches to be found. The results of previous comparisons are

stored so that comparisons are not repeated unnecessarily. However, these techniques give no

control over the size of the blocks that are produced.

Das Sarma et al. [37] also developed an iterative blocking approach that combines splitting

and merging to efficiently block large-scale data sets for entity resolution. The work makes

use of labelled training examples to generate blocking schemas in an automated fashion. The

technique includes a post-processing step where small blocks are merged to increase recall based

on a heuristic. While this technique gives some control of the block sizes, it does not enforce

hard size contraints and requires labelled training examples which are often unavailable for

real-world entity resolution problems (see Chapter 5).

Submitted – 18 June 2020

§3.3 Blocking 49

Papadakis et al. have proposed various iterative approaches to reducing redundancy in the

number of comparisons required [128, 129, 130, 131, 133]. These approaches are based on the

idea that in order to achieve high quality results, it is often necessary to block the data set

several times using different functions or attributes. However, there may be considerable overlap

between different blocking runs which typically results in repeated comparisons and so the

authors have proposed various approaches to minimise or eliminate this duplication. While

such approaches may increase the overall efficiency of the entity resolution process, they still

do not give control over the size of the blocks being created, which limits their utility when

combined with advanced entity resolution techniques with poor scalability.

Blocking and indexing techniques that place limitations on the number of comparisons that

are permitted have been proposed in the context of real-time entity resolution where operational

requirements may not permit large blocks. Ramadan et al. [145] modified the sorted neighbour-

hood approach [23] for real-time entity resolution to allow for updating a blocking key value

tree in response to a query. The authors examined an adaptive window-size approach to vary

the number of candidate records returned for comparison based on either a similarity or a size

threshold. The similarity between neighbouring nodes can be pre-calculated to reduce query

times. The same authors also propose a forest based approach [143] with similar properties that

attempts to reduce the impact of typographical errors while still satisfying operational require-

ments. Vieira et al. [181] proposes a similar approach using a cluster index and a similarity index

and which aims to reuse previous similarity calculations to minimise the query time. However,

these approaches do not enforce minimum and maximum size constraints nor do they gener-

ate individual blocks which makes them unsuitable for applications such as collective entity

resolution.

The approach of Kirsten et al. [94] aims to provide some degree of control of the block

sizes for parallelisation of entity resolution. However, where blocks are too large for a single

match task, their approach simply splits the matching process across multiple cores in the entity

resolution step so that all records in a single block are still compared. This makes their approach

unsuitable for advanced entity resolution techniques that utilise a graph based approach, where

there is no clear method for partitioning the groups while still maintaining the entity resolution

quality.

Verroios and Garcia-Molina [179] consider the problem of top-K entity resolution, i.e. find-

ing the K entities with the most records in a data set. This approach is suitable where it is only

important to resolve the most popular entities and the rest can be ignored. The approach relies

Submitted – 18 June 2020

50 Related Work

on locality sensitive hashing to place constraints on the size of the blocks generated. Although

locality sensitive hashing can be computationally expensive, because the technique is only inter-

ested in the K largest entities, records that can be determined to be outside the top K entities,

can be discarded very quickly, thus speeding up the overall processing time. While the authors

demonstrate the effectiveness and efficiency of the approach, it is not applicable for general en-

tity resolution problems due to its focus on a (relatively) small subset of the entities in the data

set.

3.3.1 Constrained Clustering

Since there are many similarities between size constrained blocking for entity resolution and

the problem of constrained clustering, we briefly summarise recent research on this topic as

well. Size constrained clustering, extends the traditional clustering problem by requiring each

cluster to also satisfy size constraints (such as a minimum and maximum number of records in

the cluster). For further information on other aspects of constrained clustering see the work of

Dinler and Teral [38] and Gupta [67]. However, we note that as a rule, current size constrained

clustering techniques are only evaluated on data sets with a few thousand points or less due

to poor overall scalability. Many of them also require a distance calculation to be performed

for every pair of records. This means that while the ideas are relevant to blocking for entity

resolution, the techniques themselves are of limited value.

Zhu et al. [194] examined the clustering problem under size constraints, although not in

the context of entity resolution. The authors proposed an approach to produce clusters of a

certain size, which can also be relaxed to a size range. Nevertheless, the authors only tested

their approach on small data sets that have less than one thousand records or no more than

three clusters. Their approach also requires computing the complete similarity between all pairs

of records in a data set, which limits its usefulness for blocking in entity resolution tasks where

the aim is specifically to avoid this complete pairwise comparison. Work by Malinen and Fränti

[110] and Rebollo-Monedero et al. [147] have the same limitations.

Ganganath et al. [57] proposed a modification of the traditional K-Means clustering algo-

rithm that uses prior knowledge to create the initial cluster centroids. Given such prior knowl-

edge, they are able to create clusters of the specified size. As with other constrained clustering

algorithms, their approach is only tested on relatively small data sets. In addition, the prior

knowledge to create the clusters is not necessarily available in the context of entity resolution.

Klami and Jitta [95] examine a variant of size constrained clustering, where all clusters should

Submitted – 18 June 2020

§3.4 Training and Bootstrapping Data 51

be approximately the same size and this size should be constant with respect to the number of

data points. Solutions to this problem could be useful for blocking since larger data sets would

produce more clusters rather than larger clusters. Similar to the blocking approach we discuss

in Chapter 4, the authors use an iterative approach where clusters are formed and then modified

or rejected if improved clustering arrangements can be found. However, the approach is only

tested on data sets with less than 1,000 points and relies on extensive sampling in order to

produce a clustering result, which limits its usefulness for entity resolution. Subsequent work

by the same authors [84] expands on the techniques, but still suffers from the same limitations

in the context of entity resolution.

3.4 Training and Bootstrapping Data

Another limitation of advanced entity resolution techniques is that most require either training

data or a bootstrapping process in order to work. In Chapter 5 we propose a technique for

generating such training data that relies on domain constraints such as one-to-one and one-

to-many matching restrictions. In this section, we briefly summarise recent literature that is

related to entity resolution techniques that can deal with a one-to-one matching constraint and

the so-called stable marriage problem (defined in Section 3.4.2) which is a similar problem to entity

resolution with one-to-one matching constraint. We also summarise recent research on active

learning since it is an alternative method for creating training data for entity resolution and the

technique we propose in Chapter 5 can incorporate an active learning component.

3.4.1 Entity Resolution with Constraints

As we discussed in Section 2.2, entity resolution often has to satisfy certain constraints. One

common constraint is a so called one-to-one constraint, where each record in a data set can

match to at most one record in another other data set. Because matching decisions are made

independently, traditional threshold based entity resolution techniques cannot incorporate one-

to-one matching constraints. However, collective entity resolution techniques exist which can

deal with one-to-one constraints in entity resolution problems by making collective decisions.

For example, Markov logic networks [150] can incorporate a hard constraint such as one-to-

one constraint using a formula with infinite weight. Similarly, other entity resolution processes

that can incorporate constraints have been developed by Arasu et al. [6] which make use of a

domain independent specification language in order to express any restrictions that may apply

Submitted – 18 June 2020

52 Related Work

on the matching process. The work of Burdick et al. [17] uses a similar approach and can also

incorporate constraints such as one-to-one matching and transitive closure in the logical rules.

The work of Shen and Wang [162] also makes use of rules, but adds weights in order to better

resolve cases where constraints are conflicting.

3.4.2 The Stable Marriage Problem

There are many parallels between one-to-one matching constraints and the stable marriage prob-

lem [55, 82]. In the stable marriage problem a group of n men and n women each have a ranking

(or preferences) of the other group in terms of their desirability of marriage. The problem is to

find an optimal pairing of the men and women, given these preferences. To see how this relates

to entity resolution, if we view the two data sets to be linked as the sets of men and women

in the stable marriage problem, and the similarity between records as the preferences (i.e. we

assign preferences for each record in order of decreasing similarity), then we end up with a very

similar problem to the stable marriage problem. The fact that each person in the stable marriage

problem can only be married to one person is equivalent to a one-to-one matching constraint in

the entity resolution problem.

However, relaxations of the traditional stable marriage probem would normally apply to the

equivalent entity resolution problem. The preference lists may be incomplete (due to blocking or

other efficiency requirements) and we also may not have a complete pairing (i.e. not every record

has a true match in the other data set). The case of incomplete preference lists has been studied

in the context of stable marriage [81]. Additionally, the one-to-many constraint has been studied

in the stable marriage context by looking at single preference list variants of the problem [80].

The algorithm for finding a solution to the stable marriage problem as proposed by Gale and

Shapley [55] has quadratic complexity (i.e. O(n)2 where n is the number of pairs) and relaxations

of the problem such as incomplete preference lists, ties in the preference lists (which in the case of

entity resolution is equivalent to identical similarity values) and incomplete pairings all increase

the computational complexity to the point where it becomes largely intractible for problem sizes

that are relevant to entity resolution tasks. Works by Király [90] and Munera et al. [117] both

propose approximation algorithms for solving more difficult versions of the problem. Finally,

Chen et al. [19] proposed an algorithm for another variant of the problem where each candidate

can have multiple preference lists. In an entity resolution context this is equivalent to having

multiple similarity scores between each record, which may be appropriate for some problems.

Submitted – 18 June 2020

§3.4 Training and Bootstrapping Data 53

3.4.3 Active Learning

Active learning [160] has been used in many fields as a way to generate training data so that

supervised classification techniques can be applied. Active learning belongs to the class of

semi-supervised approaches to classification problems, and uses an oracle (e.g. a domain expert,

crowd sourcing, etc.) to manually label examples in order to create a set of training data.

Active learning techniques vary in the way examples are selected for manual classification.

Variance reduction based techniques aim to reduce generalisation errors by minimising output

variance and have been applied to classification models such as neural networks [108] and con-

ditional random fields [161]. Density based techniques such as those proposed by Xu et al. [191]

and Settles and Craven [161] aim to ensure that the examples chosen for manual classification

are not only uncertain, but also somehow representative of the underlying distribution. This

means that the expert does not waste time classifying outliers, which may be uncertain, but

have minimal impact on the overall classification quality.

Active learning has been successfully applied to the entity resolution problem [5, 11, 153,

184]. As described in Section 2.3, one particular problem when using active learning for entity

resolution is that the classes of matches and non-matches are typically very unbalanced. As

a result, a challenge with each of these techniques is to select representative examples of each

class to present to the expert for manual classification, since randomly selecting record pairs for

manual classification may produce no matches. Because of this, an active learning approach for

entity resolution needs to employ a strategy to ensure that enough examples of both matches and

non-matches are presented to the oracle for labelling, for the classifier to learn the characteristics

of both classes.

This challenge has been addressed in several ways. The approach used by Arasu et al. [5]

assumes monotonicity of precision (i.e. record pairs with higher similarity are more likely to be

matches than record pairs with lower similarity). The active learning approach selects candi-

date pairs with decreasing similarity scores until a pre-defined precision threshold is reached.

The monotonicity of precision assumption means that by starting with the most similar record

pairs, the approach starts with the best ratio of matches to non-matches and stops selecting new

candidate pairs for manual classification once the ratio drops below a certain threshold.

The approach proposed by Dal Bianco et al. [36] is similar to that of Arasu et al. [5] in

that it relies on monotonicity of precision. However, the approach uses a two stage sampling

strategy to focus the majority of the manual labelling effort on the so-called ’fuzzy zone’, i.e.

Submitted – 18 June 2020

54 Related Work

those record pairs where the classifier has most difficulty in determining whether they are a

match or non-match.

The approach proposed by Wang et al. [184] looks at clusters of record pairs (based on

attribute similarity values) and attempts to determine whether each cluster consists of matches

or non-matches by manually labelling some examples. If manually labelling record pairs from a

cluster yields both matches and non-matches, the cluster is subdivided and more examples are

manually labelled until a required level of purity (i.e. labelled examples are nearly all matches

or nearly all non-matches) is reached. The work of Qian et al. [140] uses a rule learning based

approach, which tries to make sure the rules are different enough to cover a wide variety of

match scenarios in order to increase recall.

The concept of ambiguity is also applied in active learning [154], although it usually means

something different to what we propose in Chapter 5. In the context of active learning, ambiguity

usually refers to uncertainty about whether the classification should be a match or non-match,

rather than which candidate to match to. For a threshold based classifier, it means that the

similarity between two records is very close to the threshold, while for a probabilistic classifier

it means that the probability that a record pair is a match is close to 0.5. While some approaches

do look at the distribution [161], it is looking at the probability of each class label, rather than

the probability of each potential matching candidate.

Finally, while traditional active learning techniques make use of an all-knowing domain

expert to perform the manual classification, from a practical perspective this may not always be

possible. Variations have been proposed which deal with noisy oracles, i.e. experts who return

the wrong classification result [40]. Instead of a domain expert, other techniques make use of

crowd-sourcing to perform the labelling [180, 183]. While the technique we propose in Chapter 5

does not explicitly deal with these variations, there is no reason why different forms of oracles

could not be used instead of the traditional domain expert.

3.5 Evaluating Entity Resolution

Another limitation of entity resolution in general, and advanced entity resolution techniques in

particular is that it can be very difficult to evaluate the quality of the entity resolution outcome.

This is particularly problematic since entity resolution often requires iteration and refinement

as parameters are tuned and techniques are tried, tested and discarded. This may result in

an evaluation of each iteration, which can be very time consuming and costly. Measures that

Submitted – 18 June 2020

§3.5 Evaluating Entity Resolution 55

are traditionally used to evaluate entity resolution include precision, recall, the F-measure, and

accuracy [23, 30, 100] (described in Section 2.3). Menestrina [116] summarised various clus-

tering measures for entity resolution and proposed the new measure generalized merge distance

which can be customized to suit an individual entity resolution problem. Maidasani et al. [109]

summarised a number of different pairwise, clustering and edit-distance based measures for

evaluating entity resolution results. Recent work by Hand and Christen [70] describe problems

with the interpretation and use of the F-measure, and propose how it can instead be mathe-

matically expressed as the weighted arithmetic mean of precision and recall. O’Hare et al. [125]

proposed a blocking evaluation metric that also takes into account the outcome of the linkage

stage in the evaluation. However, all these measures rely on ground truth data being available.

In the absence of such ground truth data, a costly manual evaluation of the results is required

to determine whether the results from the entity resolution process are good enough. A fully

unsupervised evaluation technique for entity resolution results remains an open challenge [23].

3.5.1 Correlation Clustering

There are many similarities between the problem of correlation clustering and the triagle count-

ing approach for evaluating entity resolution we propose in Chapter 6. Bansal et al. [9] studied

the problem of correlation clustering, i.e. given a graph with positive and negative edges, find

a clustering that minimises disagreements or maximises agreements. Subsequent work has ad-

vanced this area in fields such as community detection in graphs [51] and image segmentation

[89]. Further optimisations have been proposed that extend the algorithms to large scale prob-

lems that are more relevant to entity resolution [8]. Also in the entity resolution domain, Wang

et al. [182] proposed a technique that makes use of graph consistency to ensure that group-

wise entity resolution results are consistent with pair-wise entity resolution results. The authors

proved the problem is co-NP-complete and proposed two approximate algorithms, one focus-

ing on effectiveness and one on efficiency. Both algorithms aim to produce a consistent entity

resolution result, but do not consider whether inconsistent results can provide additional infor-

mation. For a complete summary of current work in correlation clustering see the survey paper

by Pandove et al. [127].

Singla and Domingos [164] proposed an approach that uses propagation of information to

improve the entity resolution process. The approach uses conditional random fields to make

matching decisions and allows for results from one decision to be propagated to inform other

match decisions. However, the approach still resolves transitive closure as a post processing step

Submitted – 18 June 2020

56 Related Work

to ensure consistency, rather than investigating whether any inconsistencies detected could be

used to improve the entity resolution process.

3.6 Summary

Entity resolution is an active area of research. While many of the key ideas were developed in the

1950s and 1960s, recent advances in computing power, along with rapid growth in the amount of

data being collected have seen entity resolution attract significant research effort. In this chapter

we have provided a brief overview of the historical development of entity resolution, followed

by a description of many advanced entity resolution techniques that are central to this thesis,

including collective entity resolution, group linkage, temporal entity resolution and population

reconstruction. We have also summarised selected works from those aspects of entity resolution

that are particularly relevant to the research questions we address in this thesis, along with the

techniques we propose in Chapters 4, 5 and 6.

As a general rule, most of the advanced entity resolution techniques we described suffer

from at least one of the limitations that we presented in Section 1.2, and many suffer from all

three. Most of the techniques have poor scalability, and in several cases, the scalability is very

poor. When they are evaluated in an academic environment, the impact of the poor scalability

is limited due to the size of the data sets chosen for evaluation purposes. However, in real-

world applications, this is unlikely to be possible and the size of the data sets can be orders of

magnitude greater than what the technique was originally demonstrated on. However, as the

academic experimental evaluations show, if the techniques are applied on sufficiently small data

sets, they can be very effective. As a result, blocking techniques that allow control of the block

sizes could be very effective when used with advanced entity resolution techniques.

While some current blocking techniques provide a degree of control over block sizes, they

often do not enforce hard size constraints, and in many cases do not produce disjoint blocks.

This makes them unsuitable for advanced entity resolution techniques with poor scalability or

which require disjoint blocks. While many size constrained clustering techniques do provide

both features, the clustering techniques themselves have poor scalability which makes them

unsuitable for blocking for entity resolution.

Many of the advanced entity resolution techniques described in Section 3.2 are supervised,

meaning they require labelled training data before they can be applied. In addition, while

some collective entity resolution techniques such as those of Bhattacharya and Getoor [12] and

Submitted – 18 June 2020

§3.6 Summary 57

Kalashnikov and Mehrotra [86] are unsupervised, they require a bootstrapping step in order to

generate the initial relationship information used in the entity resolution process. In academic

environments, problems with training data can again be overcome by appropriate choice of data

sets (i.e. choosing a data set where ground truth data is available). However, for real-world

entity resolution applications, this may not be possible.

Current approaches to generating training data often resort to active learning, and a suitable

domain expert (or crowd sourcing, etc) may not be available in real-world applications. In

addition, as we show in Chapter 5, the current approaches to bootstrapping collective entity

resolution work well in some situations, but are not effective in others so more sophisticated

techniques are needed before they can be used. Approaches to solving the stable marriage

problem are relevant for this problem, however they also have poor scalability which again

limits their appropriateness for entity resolution.

Finally, many of the advanced entity resolution techniques are very complex, with a number

of choices and many parameters that require tuning in order to achieve good results. While

domain expertise and experience can assist with this process, in the absence of evaluation data

(see above), tuning becomes very challenging because it is difficult to determine whether the

results of a particular setting are good enough. Current approaches to evaluation all rely on the

ability to calculate (or estimate) the confusion matrix (described in Chapter 2) which in practice

can be very difficult for entity resolution.

As a result, even though entity resolution has been the subject of a large amount of research,

there are still improvements to be made, particularly with respect to the application of sophisti-

cated entity resolution techniques in real-world scenarios. In the next three chapters, we present

techniques to address some of these gaps.

Submitted – 18 June 2020

58 Related Work

Submitted – 18 June 2020

Chapter 4

Addressing Scalability Through Size

Constrained Blocking

As described in Chapters 1 and 3, one of the biggest practical limitations of many advanced

entity resolution techniques is their poor scalability. Pairwise comparison of each record makes

traditional entity resolution a quadratic problem, and many advanced entity resolution tech-

niques have scalability that is worse (and often much worse). The motivation for the work in

this chapter came from experiments testing the scalability of Markov logic networks [150], the

results of which are shown in Figure 4.1. We observe that beyond a certain network size (in this

case approximately 1,000 records), scalability becomes exponential. Given 1,000 records is very

small by the standards of modern data sets, applying a technique like Markov logic networks

on real-world entity resolution problems presents a significant challenge.

Many of the advanced entity resolution techniques discussed in Chapter 3 are only evaluated

on data sets which are relatively small (tens or hundreds of thousands of records at most),

meaning that the impact of poor scalability can be limited. It also means that the iterative

nature of the entity resolution process (discussed further in Chapter 6), where parameters and

techniques are tuned and refined through repeated application, testing and evaluation, can also

be completed in a reasonable amount of time. However, in many real-world entity resolution

problems, data sets are larger, and possibly much larger, than those typically used in academic

experimental evaluations. This significantly reduces the feasibility of many advanced entity

resolution techniques for real world applications.

From the early days of probabilistic record linkage [47], different techniques have been em-

ployed to get around the quadratic scalability of the entity resolution problem. We gave an

overview of blocking and indexing in Section 2.3 and recent advances relevant to this chapter

were summarised in Chapter 3. However, we note that there are two key features that are impor-

59

Submitted – 18 June 2020

60 Addressing Scalability Through Size Constrained Blocking

tant for blocking approaches specifically aimed at advanced entity resolution techniques, control

of the block size (particularly the maximum block size) and the ability to create disjoint blocks.

Indexing techniques such as sorted neighbourhood [73] provide the first but not the second,

while many blocking techniques give the reverse [47, 124, 135]. In addition, a blocking tech-

nique still needs to ensure that both records in each true match pair end up in the same block,

otherwise the blocks generated will not be useful in the rest of the entity resolution process. In

other words, any blocking technique still needs to produce a sufficient level of block quality (as

measured by pairs completeness - see Section 4.4).

The reason why control of the block size is important is easy to see. If scalability of a

technique is quadratic or worse, then we need to be able to limit the worst-case scenario in

order to ensure entity resolution can be performed in a time frame of practical use. However,

it is also important not to have too small blocks, since this can reduce pairs completeness (see

Section 4.4) to the point where too many true matches are missed in the blocking step. The

block size distribution of many blocking methods is very skewed (see Figure 4.4 for examples of

block size distributions and Figure 4.6 for examples of the largest block size), and this severely

degrades the performance of even traditional entity resolution. In the case of many advanced

entity resolution techniques, running them on blocks of tens or hundreds of thousands of records

may simply never finish. However, simply adding additional attributes to the blocking approach

to split blocks (or applying another scalability improving technique such as indexing or hashing

to each block) may result in too many missed comparisons.

The reason why disjoint blocks are important is perhaps less obvious. However, many entity

resolution techniques rely on a graph based model of the underlying data (exactly how the data

is represented in the graph varies between techniques). Techniques in this category include

collective entity resolution techniques [12, 39, 86, 150] and many extensions and adaptations

[20, 45, 123]. As a result, even though an indexing technique such as sorted neighbourhood [73]

limits the pairwise comparisons to records that are ‘close’ in the index, it essentially still creates

a single graph or network for each of the above techniques. For a data set of any realistic size,

this still gives a computationally intractable problem.

This second problem can be overcome by subdividing the index into sub-sections, however

this simply creates different problems. If the sub-sections don’t overlap, then subdividing the

index potentially misses matches at the edges of a sub-section. If the sub-sections do overlap

then there is repetition of work (since the same records are being compared multiple times) and

there is also the problem of how to combine potentially inconsistent results since a record pair

Submitted – 18 June 2020

61

800 1000 1200 1400
Number of Records

0

200

400
Ti
m
e
ta
ke
n
(s
)

Scalability of Markov Logic Networks

Figure 4.1: Experimental results showing the running time of entity resolution using a Markov
Logic Network with different numbers of records.

might be classified as a match in one sub-section, and a non-match in another (for example due

to the presence of different relationship information).

In this chapter, we present a blocking approach that aims to solve both these problems

simultaneously. Our approach works in an iterative fashion, where we first split a data set into

blocks using a blocking key (defined in Section 4.2), then cluster any blocks that are too small.

Any blocks that are still too large are split again using a different blocking key, small ones are

again clustered, and so on, repeatedly splitting and clustering until all the blocks are within a

specified size range.

While the main purpose of this technique is to provide a practical blocking approach for

advanced entity resolution techniques, there are several other problem domains where the tech-

nique would also be useful:

• In real-time entity resolution [12, 27, 145, 173], operational requirements mean that only

a certain number of comparisons can take place within a specific (or limited) time-span

(e.g. sub-second). Therefore, blocking is important to ensure that these comparisons are

with the candidate records that most likely correspond to matches. In such cases, having

a maximum block size ensures that operational requirements can be satisfied.

• In privacy-preserving record linkage [177], there may be privacy requirements on both the

minimum and maximum block size. For example, to guarantee k-anonymous privacy [176]

Submitted – 18 June 2020

62 Addressing Scalability Through Size Constrained Blocking

it is necessary that each block contains at least k records. In addition, if all blocks have

a similar size this reduces the vulnerability of the entity resolution process to frequency-

based attacks [177]. In this situation it is important to produce blocks in the specified size

range.

• Finally, for parallel or distributed entity resolution [88], it is important for load balancing

that the blocks be of similar sizes, so that each processor or machine takes approximately

the same amount of time. In such cases it is also important that blocks be disjoint so that

each block can be sent to a single processor or machine.

It is also worth noting at this point what we are not trying to do with this technique, namely

we are not trying to produce a blocking technique that improves upon traditional blocking

evaluation metrics such as Pairs Completeness or Reduction Ratio (both defined in Section 4.4).

Instead our aim is to produce a technique that achieves similar blocking quality to commonly

applied blocking or indexing approaches, while also controlling the block size and satisfying the

requirement for disjoint blocks.

Motivating Example: Throughout this chapter we make use of the data set in Table 4.1 to

motivate the problem and illustrate our technique. The data set consists of seven (fictitious)

records. Each record has four attributes: Record ID, First Name, Surname and Postcode (Zip-

Code). Our goal is to split this data set into disjoint blocks, where each block has either two or

three records in it.

Record ID First Name Surname Postcode

r1 John Smith 2000

r2 Johnathon Smith 2009

r3 Joey Schmidt 2009

r4 Joe Miller 2902

r5 Joseph Milne 2902

r6 Paul 3000

r7 Peter Jones 3000

Table 4.1: Example data set.

The remainder of the chapter is structured as follows: in Section 4.1 we provide the high

level outline of our blocking approach. In Section 4.2 we present the notation, definitions and

algorithms for our technique. In Section 4.3 we present a refinement of the technique that allows

for more control of the blocking process by relating block size to block quality in situations

where there is more flexibility in the size of the blocks that can be used in the subsequent

Submitted – 18 June 2020

§4.1 Overview 63

entity resolution process. In Section 4.4 we evaluate our approach on three real-world data sets

and compare the results to several common blocking and indexing techniques. In Section 4.5 we

discuss the computational complexity of our approaches as well as some practical considerations

for their use. Finally, in Section 4.6 we present our conclusions and possible directions for

extending our approach in the future.

4.1 Overview

Johnathon, Smith, 2009

John, Smith, 2000

Joey, Schmidt, 2009

Joe, Miller, 2902

Joseph, Milne, 2902

Peter, Jones, 3000

Paul, , 3000

John, Smith, 2000

Johnathon, Smith, 2009

Joey, Schmidt, 2009

Joe, Miller, 2902

Joseph, Milne, 2902

John, Smith, 2000

Johnathon, Smith, 2009

Joey, Schmidt, 2009

Joe, Miller, 2902

Joseph, Milne, 2902

Peter, Jones, 3000

Paul, , 3000

 Paul, , 3000

John, Smith, 2000

Johnathon, Smith, 2009

Joey, Schmidt, 2009

Joseph, Milne, 2902

John, Smith, 2000

Johnathon, Smith, 2009

Joey, Schmidt, 2009

Joe, Miller, 2902

Joseph, Milne, 2902

Peter, Jones, 3000

Joe, Miller, 2902

<’Jo’>

<’Pa’>

<’Pe’>

<’Pa’, ’Pe’>

<’Jo’> <’S530’>

<’S253’>

<’M460’>

<’M450’>

<’M460’, ’M450’>

<’S530’, ’S253’>

minS = 2, S = 3max

Blocking Keys = <FN, F2>, <SN, Sdx>

Original data set
characters of first name

Split using first two Merge using q−gram
of first name

Split using Soundex
encoding of surname of surname

Merge using q−gram

Figure 4.2: Example of algorithm flow using the data set from Table 4.1.

The idea behind our approach is to recursively split and merge blocks until we end up with

all blocks in the desired size range. To do this we use a sequence of blocking keys to split a

set of records into blocks, and a measure of similarity to merge small blocks back together. For

example a blocking key might be the first two characters of a Firstname attribute. This would

separate the records by placing all records with the same two characters of Firstname in the same

block (‘John’ and ‘Joe’ together, ‘Mary’ and ‘Madeline’ together, etc.). Blocks that are in the

desired size range are finished, and we do not modify them further. Blocks that are too small

are clustered, based on the similarity between their blocking key values (as measured by some

simple metric) and blocks that are too large are split again using a different blocking key. The

newly created blocks are clustered if they are too small, split again if they are too large and so

on. This continues until either all blocks are in the desired size range or we run out of blocking

keys in our sequence to perform the splitting. The general process is shown in Figure 4.2 and

described in more detail in the next section.

Submitted – 18 June 2020

64 Addressing Scalability Through Size Constrained Blocking

4.2 Approach

The idea behind our approach is to recursively split and merge blocks until we end up with all

blocks in the desired size range. We present two versions of our approach which differ in how

the merging is conducted during the clustering phases.

4.2.1 Definitions and Notation

We assume that a data set R consists of records, each of which is associated with a set of

attributes A. The value of an attribute a ∈ A in a record r ∈ R is denoted as r.a.

To split a set of records Rx ⊆ R into blocks we make use of one or more blocking keys. A

blocking key, ki,j = 〈ai, f j〉 is a pair consisting of an attribute ai ∈ A and a function f j. The function

f j takes as input an attribute value and returns another value, such as a phonetic encoding, a

substring, or a reversed string. For a given blocking key ki,j = 〈ai, f j〉, we generate a blocking

key value (BKV) for record ry ∈ Rx by applying function f j to ry.ai, denoted vi,j,y = f j(ry.ai). For

example, possible functions include the first two characters (F2), exact value (Ext) or a Soundex

encoding (Sdx) [43].

To illustrate this using the example in Table 4.1, we use the following blocking keys: the

first two characters of the First Name attribute 〈FN, F2〉, the Soundex encoding of the Surname

attribute 〈SN, Sdx〉 and the exact value of the Postcode attribute 〈PC, Ext〉. The BKV of 〈FN,

F2〉 applied to r1 is ‘Jo’ (the first two characters of ‘John’), the BKV of 〈SN, Sdx〉 applied to r1 is

‘S530’ (the Soundex encoding of ‘Smith’) and the BKV of 〈PC, Ext〉 applied to r1 is ‘2000’. The

result of each blocking key applied to each record in Table 4.1 is shown in Table 4.2.

Record ID First Name 〈FN, F2〉 Surname 〈SN, Sdx〉 Postcode 〈PC, Ext〉

r1 John ‘Jo’ Smith ‘S530’ 2000 ‘2000’

r2 Johnathon ‘Jo’ Smith ‘S530’ 2009 ‘2009’

r3 Joey ‘Jo’ Schmidt ‘S530’ 2009 ‘2009’

r4 Joe ‘Jo’ Miller ‘M460’ 2902 ‘2902’

r5 Joseph ‘Jo’ Milne ‘M450’ 2902 ‘2902’

r6 Paul ‘Pa’ 3000 ‘3000’

r7 Peter ‘Pe’ Jones ‘J520’ 3000 ‘3000’

Table 4.2: The output of sample blocking functions applied to the data set in Table 4.1.

To split a set of records Rx into blocks we use a blocking key ki,j to generate a BKV vi,j,y

for each ry ∈ Rx and we create one block for each unique BKV generated. We insert each

record into the block corresponding to its BKV. This means two records ry, rz ∈ Rx will be

Submitted – 18 June 2020

§4.2 Approach 65

inserted into the same block if and only if they generate the same BKV using blocking key ki,j,

i.e. f j(ry.ai) = f j(rz.ai). During our approaches we also need to merge blocks. This results in a

single block being associated with multiple BKVs. We denote the set of BKVs associated with

block bi as V(bi).

Based on a pre-defined list of blocking keys K = 〈ki,j, kl,m, . . .〉, we aim to adaptively split R

into a set of blocks B by using the BKVs generated by one or more blocking keys in K. However,

we also need to control the size of the blocks we produce. The size of a block b, denoted as |b|,

is the number of records in the block. To control the size of blocks, we use two size parameters:

smin and smax with smin ≤ smax, to specify the minimum and maximum block sizes that are

permitted, respectively.

Problem statement. Given a data set R, two size parameters smin and smax, and a list of blocking

keys K = 〈ki,j, kl,m, . . .〉, the problem we study is to use K to partition the records in R into a set

B of non-overlapping blocks such that for each b ∈ B, smin ≤ |b| ≤ smax, and within each block

the number of true matches is maximised and the number of true non-matches is minimised.

In practice, smin and smax can be set in accordance with operational requirements such as

computational limitations for the entity resolution step. As is common with other blocking

techniques, we can also improve the robustness of our approaches by running them multiple

times with different lists of blocking keys for a single entity resolution task [22]. This reduces the

impact that a single typographical error or incorrect value has on the entity resolution process

[23]. In future work we intend to further investigate the impact of different blocking keys and

whether the optimal list of keys can be discovered automatically.

We propose two recursive clustering approaches for generating blocks within a specified size

range. The idea behind our approaches was illustrated in Figure 4.2. We iteratively split and

merge blocks until the size parameters smin and smax are satisfied. The first approach processes

blocks in order of decreasing block similarity (i.e., similarity-based), and the second approach

in order of increasing block size (i.e., size-based).

4.2.2 Similarity Functions

During clustering we aim to merge small blocks, with the aim of bringing true matches together

into the same block. We merge blocks based on their associated BKV(s). However, this merging

step requires a way of measuring the similarity between two BKVs. It also requires that the

functions in each blocking key which generate the BKVs, preserve some degree of attribute

Submitted – 18 June 2020

66 Addressing Scalability Through Size Constrained Blocking

similarity in the BKVs they produce, i.e. similar attribute values should result in similar BKVs.

In addition, once blocks are merged, each block can be associated with multiple BKVs as shown

in Figure 4.2, so we also require a way of combining the pairwise similarities between BKVs into

an overall block similarity measure.

To calculate the similarity between two BKVs v1 and v2, denoted as ζ(v1, v2) we use tra-

ditional string comparison functions such as Jaro-Winkler or Jaccard similarity [23]. To com-

bine the pairwise similarity between BKVs into an overall block similarity measure, denoted as

ς(b1, b2), we make use of three traditional approaches for calculating the distance between clus-

ters [190]: (1) single link ς(b1, b2) = max(T), (2) average link ς(b1, b2) = mean(T) and (3) complete

link ς(b1, b2) = min(T), where T = {ζ(v1, v2) : v1 ∈ V(b1) ∧ v2 ∈ V(b2)}.

However, traditional string comparison techniques do not always give good results for block-

ing keys using functions such as Soundex encodings or the first two characters of an attribute.

For example, neither of the above similarity functions give a good indication of the similarity

between the Soundex codes ‘S530’ and ‘S550.’ In order to obtain a better similarity measure, we

use the original unencoded attribute values and apply a traditional string comparison function

on them instead. For example, to calculate the similarity between BKVs ‘S530’ and ‘S550’, we

take the attribute values that encode to ‘S530’ (such as ‘Smith’ and ‘Smythe’) and compute their

similarity with attribute values that encode to ‘S550’ (such as ‘Simon’ and ‘Simeon’), using a

traditional string comparison metric. If possible, we calculate all pairwise combinations of such

values in the data set(s) to get a weighted average similarity between pairs of Soundex codes.

However, if the full pairwise calculation is computationally infeasible, we randomly sample

a selection of original values for each code and take the average similarity between these. In

practice we found that even small sample sizes still produced results that were nearly identical

to those of the complete calculation. We discuss this further in Section 4.4.

4.2.3 Similarity-Based Blocking Approach

The similarity-based blocking approach is described in Algorithm 4.1. To begin, we set n = 1

and take the set of records as R. We generate a set B of blocks using the nth blocking key in

K (line 1). One block is created for each unique BKV. Next, B is partitioned into three disjoint

sets B−, B∗ and B+, with bi ∈ B− if |bi| < smin, bi ∈ B∗ if smin ≤ |bi| ≤ smax and bi ∈ B+ if

|bi| > smax (line 2). We place each pair of blocks in B− ∪ B∗ into a priority queue Q, in order of

their decreasing block similarity (lines 4-7). We retrieve from Q the pair of blocks (bi, bj) with

maximum ς(bi, bj) (line 9). We merge bi and bj into bij where V(bij) = V(bi) ∪ V(bj). We then

Submitted – 18 June 2020

§4.2 Approach 67

Algorithm 4.1: SimilarityBasedClustering(R, K, ς, n, smin, smax)

Input:
- Set of records: R
- List of blocking keys: K
- Block similarity function: ς
- Current recursion depth: n // Set as n = 1 for first call to algorithm
- Minimum block size: smin

- Maximum block size: smax

Output:
- Set of correct sized blocks: B∗

1: B = GenerateBlocks(R, K[n]) // Generate blocks using the nth blocking key in K
2: B−, B∗, B+ = SizePartition(B, smin, smax) // Partition B into too small, correct size, too large blocks
3: Q = GeneratePriorityQueue() // Create empty queue, ordered by similarity
4: for bi in B− ∪ B∗ do:
5: for bj in B− ∪ B∗ \ bi do:
6: if |bi |+ |bj| ≤ smax then:
7: Q.Insert(ς(bi , bj), bi , bj) // Insert correct sized pairs into the queue
8: while Q 6= ∅ do:
9: sim, bi , bj = Q.Pop() // Get the first pair from the queue
10: bij = MergeBlocks(bi , bj)
11: for bk in B− ∪ B∗:
12: if |bij|+ |bk | < smax then:
13: Q.Insert(ς(bij, bk), bij, bk) // Put back in queue with new block similarity
14: if |bij| < smax then:
15: B∗ = B∗ ∪ bij // Add to correct size blocks
16: for bi in B+ do: // Process the too large blocks
17: Bi = SimilarityBasedClustering(bi , K, ς, n + 1, smin, smax) // Call recursively with n + 1
18: B∗ = B∗ ∪ Bi

19: return B∗

calculate ς(bij, bk) for all bk s.t. |bk|+ |bij| ≤ smax and reinsert these new pairs of blocks into Q

(line 13). We then proceed with the pair of blocks with the second highest block similarity (loop

back to line 9), and continue this process until no more merges are possible. For each bi ∈ B+

(i.e. blocks that are too large, |bi| > smax) we call the algorithm recursively with bi as the new

set of records and using the next blocking key in K to generate new BKVs (lines 16-18).

Figure 4.2 illustrates this process applied to the example data set in Table 4.1 with K = 〈〈FN,

F2〉, 〈SN, Sdx〉〉 and smin = 2 and smax = 3. We start by splitting the records into blocks using the

first blocking key 〈FN, F2〉 (the first two characters of FirstName). The blocks that have a size

smaller than two (smin) are clustered and merged. Any blocks with size greater than three (smax)

are split using the second blocking key 〈SN, Sdx〉 (the Soundex encoding of Surname). Then,

in a second merging phase, blocks that are smaller than size two (smin) are again clustered. In

this case this finishes the algorithm since all blocks are now in the correct size range. However,

if there were still blocks with size greater than three they would be split using a third blocking

key, for example 〈PC, Ext〉, any resulting small blocks would again be clustered and merged,

and so forth. This continues until no blocks remain with size greater than three or we run out

of blocking keys in K.

The main drawback of the similarity-based approach is the need to calculate ς(bi, bj) for

Submitted – 18 June 2020

68 Addressing Scalability Through Size Constrained Blocking

Algorithm 4.2: SizeBasedClustering(R, K, ς, n, smin, smax)

Input:
- Set of records: R
- List of blocking keys: K
- Block similarity function: ς
- Current recursion depth: n // Set as n = 1 for first call to algorithm
- Minimum block size: smin

- Maximum block size: smax

Output:
- Set of correct sized blocks: B∗

1: B = GenerateBlocks(R, K[n]) // Generate blocks using the nth blocking key in K
2: B−, B∗, B+ = SizePartition(B, smin, smax) // Partition B into too small, correct size, too large blocks
3: Q = GeneratePriorityQueue() // Create empty queue, ordered by block size
4: for bi in B− do:
5: Q.Insert(bi) // Put the small blocks into the queue
6: while Q 6= ∅ do:
7: bi = Q.Pop() // Get the first block from the queue
8: bj = Argmax(ς(bi , bk)), ∀bk ∈ B− ∪ B∗ such that |bi |+ |bk | ≤ smax // Get nearest block of correct size
9: bij = MergeBlocks(bi , bj)
10: if |bij| < smin then:
11: Q.Insert(bij) // Put new block back into the queue
12: else:
13: B∗ = B∗ ∪ bij // Add to correct size blocks
14: for bi in B+ do: // Process the too large blocks
15: Bi = SizeBasedClustering(bi , K, ς, n + 1, smin, smax) // Call recursively with n + 1
16: B∗ = B∗ ∪ Bi

17: return B∗

each pair of blocks in B− ∪ B∗ and store them in Q. In addition, as blocks are merged, the block

similarity needs to be calculated between the new block and all remaining blocks. This reduces

the scalability of the approach and also leads to high memory overhead since Q can become

large, O(|B|2). Next we present an alternative approach with better scalability that removes the

need to store all pairwise combinations of blocks in memory.

4.2.4 Size-Based Blocking Approach

The size-based blocking approach is described in Algorithm 4.2. The initial setup for this ap-

proach is identical to that of the similarity-based blocking approach. However, in the size-based

case the priority queue Q contains individual blocks, which are ordered by increasing block size

(line 5). This is an important distinction since it significantly reduces the size of Q from O(|B|2)

to O(|B|). In the main loop of the algorithm (lines 6-13) we remove the smallest block bi from

Q (line 7), determine the block bj such that |bi|+ |bj| ≤ smax and ς1(bi, bj) is maximised (line

8). Essentially we find the most similar block to bi such that their combined size would be less

than smax. We merge bi and bj into bij (line 9) and if |bij| ≤ smin, we reinsert bij into Q. We then

proceed to the next smallest block (loop back to line 6) and continue this process until no blocks

remain with size less than smin. As with the similarity-based approach, for each block in B+ the

algorithm is called recursively with n = n + 1 and using the next blocking key in K.

Submitted – 18 June 2020

§4.3 Penalty Function 69

4.3 Penalty Function

The basic idea behind our blocking approaches is to split and merge blocks using a sequence

of blocking keys until all blocks are in the desired size range. While this is effective in most

situations, there are circumstances where a greater level of control in the blocking approach is

required.

Consider that for English names, both ‘John’ and ‘Jonathon’ are common. However, because

‘John’ is an abbreviation or nickname of ‘Jonathon’, we would likely prefer to compare the ‘John

Smiths’ and the ‘Jonathon Smiths’, than the ‘John Smiths’ and the ‘John Millers’. However, in

order for this to happen, the total number of records with either ‘John’ or ‘Jonathon’ as a first

name value must be less than smax, since otherwise the corresponding blocks will not be merged.

Since they are both common names, this may not be the case and true matches may be missed

in the blocking process (since the ‘Johns’ and ‘Jonathons’ will end up in different blocks).

In order to prevent such situations, we now present a penalty function that combines block

size and block similarity to determine whether or not to merge two blocks. This allows blocks to

be merged even if their combined size is greater than smin, provided the similarity (as measured

by ς) is high enough.

The penalty function Φ is as follows:

Φ
(

bi, bj

)

= 1 − α
−

(

|bi |+|bj |

sscale
−β

)

for α ≥ 1 and β ∈ R.

Two blocks bi and bj will be merged if they satisfy the inequality ς(bi, bj) ≥ Φ(bi, bj). As the

combined block size gets larger, the similarity threshold required for merging also increases,

and vice versa.

The penalty function involves two parameters, α and β, which together with sscale (related

to smin and smax), produce the desired merging behaviour. We describe the purpose of each

parameter here:

• α determines the trade-off between similarity and size. Higher values of α produce a

stricter similarity threshold as the block size increases. In the limit as α → ∞, Φ becomes

a hard size restriction. In this case block similarity does not affect the merging decisions.

• β constrains the clustering by enforcing either a minimum block size (β > 0) or a minimum

similarity threshold (β < 0). If β = 0 then there are no size or similarity restrictions on the

merging. We note that β can only create one of these two types of restrictions for a given

Submitted – 18 June 2020

70 Addressing Scalability Through Size Constrained Blocking

0 1000 2000 3000 4000 5000

Size of combined block

0.0

0.2

0.4

0.6

0.8

1.0

S
im

il
ar
it
y
th
re
sh
ol
d

(a) - Penalty function varying α

α = 1.05

α = 1.2

α = 2

α = 10

α = 100
sscale

0 1000 2000 3000 4000 5000

Size of combined block

0.0

0.2

0.4

0.6

0.8

1.0

S
im

il
ar
it
y
th
re
sh
ol
d

(b) - Penalty function varying β

β = -2

β = -1

β = 0

β = 1

β = 2
sscale

0 1000 2000 3000 4000 5000

Size of combined block

0.0

0.2

0.4

0.6

0.8

1.0

S
im

il
ar
it
y
th
re
sh
ol
d

(c) - Penalty function combinations

α = 1.50, β = -2

α = 1.05, β = -20

α = 2.00, β = 0

α = 100, β = 0.8
sscale

Figure 4.3: Penalty function example configurations.

clustering problem, since there may be no solution if both a minimum block size and a

minimum similarity threshold are specified.

• sscale is a scaling parameter that is useful for computational reasons. In practice, including

sscale removes the need to repeatedly calculate extremely large exponents of numbers very

close to 1 when computing Φ(bi, bj). Eliminating sscale by changing α and β gives a math-

ematically identical function, but with α extremely close to 1 in practice. Including sscale

improves computational performance and prevents machine precision from influencing

results. We explain how to set sscale below.

We next provide the idea behind the penalty function with reference to the examples in

Figure 4.3. In each example sscale is set to 1,000 (the vertical dashed line). Consider the case

where α = 2 and β = 0 represented by the (green) curved dashed line from (0, 0) to the top

right corner in each example. Before merging two blocks bi and bj where |bi| + |bj| = sscale

(i.e. |bi|+ |bj| = 1,000), the similarity between the blocks must be at least 1 − 1
21 = 0.5. Before

merging two blocks with a combined size of 2 ∗ sscale, the similarity must be at least 1− 1
22 = 0.75.

A size of 3 ∗ sscale requires similarity greater than 0.875, and so on.

The value of α determines the rate at which the required similarity approaches 1.0, with

higher values approaching more quickly than lower values as shown in Figure 4.3 (a). Changing

the value of β has the effect of moving the curve to the left or right as shown in Figure 4.3 (b).

For example, β = −1 and α = 2 set a minimum similarity for merging to be 1 − 1
21 = 0.5. If

β = 1 and α = 2, then blocks will be merged regardless of similarity until the combined size is

at least 1,000 (equal to sscale). By combining different values of α and β we can obtain a wide

variety of merging conditions as shown in Figure 4.3 (c).

We now explain how best to choose the values of α, β and sscale in order to achieve the desired

Submitted – 18 June 2020

§4.4 Evaluation 71

merging behaviour. In applications where minimum block size is not a hard requirement, the

default we use on a data set is sscale = 0.5 ∗ smax, α = 2 and β = 0. This sets a similarity threshold

of 0.75 to merge blocks with combined size greater than smax and prevents blocks with very low

similarity from being merged regardless of size. If minimum block size is important, then the

default parameters we use are sscale = smin, α = (2 ∗ smax)/(smax − smin) and β = 1. This causes

blocks to be merged regardless of similarity up to a combined size of smin, and sets a similarity

threshold of 0.75 to merge blocks with a combined size larger than smax. In both cases, with

some knowledge of the data, the value of α can be scaled to increase or decrease the similarity

threshold of 0.75 as desired.

To incorporate the penalty function, Algorithms 4.1 and 4.2 have to be slightly modified. In

Algorithm 4.1 we replace the size restrictions on bi and bj in lines 4 - 6 with the penalty function

condition, and the same for bk and bij in lines 11 and 12. In Algorithm 4.2 all blocks are inserted

into Q in line 5, not just blocks with size less than smin. Similarly bij is always reinserted into Q

in line 11, regardless of size. Additionally, in line 8, we replace the size restriction on bk with

the penalty function condition on bi and bk.

4.4 Evaluation

To evaluate our approaches we compared performance with standard blocking [47], Soundex

encoding [43], and sorted neighbourhood based indexing [73], on each of the three data sets

detailed in Section 2.5. For evaluation measures we used pairs completeness and reduction

ratio [23] and a combination of the two measures similar to F-Measure: Pairs Completeness

(PC) = sM
nM

, Reduction Ratio (RR) = 1 − sM+sN
nM+nN

and the combined F-Measure (FM) = 2∗PC∗RR
PC+RR ,

where nM, nN , sM, sN correspond to the total number of matched pairs, the total number of non-

matched pairs, the number of true matched candidate record pairs and the number of true

non-matched candidate pairs, respectively.

We do not explicitly model block quality. However, since merging blocks can only improve

improve PC, we merge blocks until smax is reached, regardless of block quality. If minimum

block size is not a hard requirement, then block size and pairs completeness can be balanced

using the penalty function, where a minimum similarity threshold will prevent blocks with a

low likelihood of containing true matches from being merged, regardless of block size.

The experimental results on the Cora, UKCD, and NCVR-450 data sets are shown in Fig-

ure 4.4. For Cora we set smin = 50, smax = 100 and K = 〈〈Title, Ext〉, 〈Author, Ext〉〉. For UKCD

Submitted – 18 June 2020

72 Addressing Scalability Through Size Constrained Blocking

Cora UKCD NCVR

S
td

S
d
x

S
n
h

S
iz
e

S
im S
td

S
d
x

S
n
h

S
iz
e

S
im S
td

S
d
x

S
n
h

S
iz
e

S
im

40

50

60

70

80

90

100

P
ai
rs

C
om

p
le
te
n
es
s
(%

)

PC - Cora, UKCD, NCVR

Cora UKCD NCVR

S
td

S
d
x

S
n
h

S
iz
e

S
im S
td

S
d
x

S
n
h

S
iz
e

S
im S
td

S
d
x

S
n
h

S
iz
e

S
im

80

85

90

95

100

R
ed
u
ct
io
n
R
at
io

(%
)

RR - Cora, UKCD, NCVR

Cora UKCD NCVR

S
td

S
d
x

S
n
h

S
iz
e

S
im S
td

S
d
x

S
n
h

S
iz
e

S
im S
td

S
d
x

S
n
h

S
iz
e

S
im

60

70

80

90

100

F
-M

ea
su
re

(%
)

FM - Cora, UKCD, NCVR

Standard Soundex Size-based Sim-based
0

25

50

75

100

125

150

B
lo
ck

si
ze

Cora Block Size Distribution

Standard Soundex Size-based Sim-based

100

101

102

103

104

B
lo
ck

si
ze

UKCD Block Size Distribution

Standard Soundex Size-based Sim-based

100

101

102

103

104

B
lo
ck

si
ze

NCVR Block Size Distribution

Figure 4.4: The distribution of block sizes produced by our techniques along with baseline
comparisons.

we set smin = 500, smax = 1, 000 and K = 〈〈Surname, Ext〉, 〈First Name, Ext〉, 〈Birth Parish,

Ext〉〉. For NCVR-450 we set smin = 500, smax = 1, 000 and K = 〈〈Surname, F2〉, 〈First Name,

F2〉〉.

The main focus of our approach was to improve scalability while still achieving high quality

blocking. On all three data sets, we achieve equal or better F-Measure values than the three

baseline approaches. This indicates that our approaches achieve comparable blocking quality to

other common blocking techniques. To evaluate the impact on scalability, We show the distribu-

tion of block sizes generated by our approaches in Figure 4.4. As can be seen from the results,

both our approaches produce blocks in the required size range, 500 - 1,000 records for UKCD

and NCVR-450, and 50 - 100 records for Cora. While the size-based approach tends to distribute

the block sizes throughout the interval [smin, smax], the similarity-based approach tends to gener-

ate the majority of blocks with size close to smax. This means it creates fewer blocks overall and

makes it appropriate for parallel collective entity resolution applications since the time taken to

process each block will likely be about the same.

We tested different parameter settings for our approaches to examine how sensitive they are

to changing smin, smax, and the block similarity measure ς, and the results are shown in Table 4.3

(at the end of the chapter). In most cases, the choice of block similarity measure ς has minimal

Submitted – 18 June 2020

§4.4 Evaluation 73

effect on the results. However, the complete link block similarity measure did not work well

with the size-based approach, particularly on the Cora data set. Changing smin and smax affects

the trade-off between PC and RR as expected.

We tested the penalty function and the results are shown in Figure 4.5. For Cora we set

sscale = 50 and smax = 100, and for UKCD and NCVR-450 we set sscale = 500 and smax = 1, 000.

When β = 0 (no minimum block size or minimum similarity threshold), the penalty function

generally achieves the best combination of PC and RR values, the exception being for low values

of α where the similarity threshold is very low, even for large blocks which results in poor RR

values. High values of α and negative values of β mean the similarity threshold to perform any

merging is high. This essentially negates the clustering steps of the algorithms, which results

in poor PC values for data sets with lower data quality. High values of α in combination with

positive values of β produce generally balanced blocks. We note that for the UKCD data set,

setting α = 1.1 performs very poorly. It repeatedly merges many blocks in each iteration of

the algorithm and either runs out of blocking keys (resulting in poor RR values), or has to use

attributes that have poor data quality (resulting in poor PC values). For the NCVR-450 data set,

the penalty function produces very similar results regardless of the settings for α and β. The

merging of blocks has less impact on the NCVR-450 data set, since it is relatively clean so merges

do not increase PC values substantially, and also large enough that it requires many merges to

reduce RR values significantly.

We also tested the scalability of our approaches using subsets of different sizes of the entire

NCVR data set. We set smin = 500, smax = 1, 000 and K = 〈〈Surname, F2〉, 〈First Name, F2〉〉 and

the results are shown in Figure 4.6. As can be seen, the scalability is nearly linear in practice.

We discuss scalability and computational complexity further in Section 4.5.

We compared the total number of candidate pairs generated as well as the largest block

generated by the different approaches and the results are shown in Figure 4.6. Controlling

the maximum block size ensures that the total number of candidate pairs increases linearly

with the size of the data set which means that once the data set becomes large, our techniques

generate fewer candidate pairs than the traditional and Soundex based approaches. As a result,

even though our approaches increase the time required for blocking compared to the baseline

approaches, in general this will be more than made up for by a reduction in the time required

to perform the comparison step. We show an example of this in Figure 4.6 (d) assuming 10,000

comparisons per second (approximately what we achieved in experiments in Chapter 7). The

total running time is clearly dominated by the comparison step rather than the blocking step. As

Submitted – 18 June 2020

74 Addressing Scalability Through Size Constrained Blocking

−4 −2 0 2 4

β

70

75

80

85

90

95

100

F
-M

e
a
su

re
(%

)

(a) - Penalty function size-based - Cora

α = 1.1

α = 1.5

α = 2

α = 5

α = 15

−4 −2 0 2 4

β

70

75

80

85

90

95

100

F
-M

e
a
su

re
(%

)

(d) - Penalty function similarity-based - Cora

α = 1.1

α = 1.5

α = 2

α = 5

α = 15

−4 −2 0 2 4

β

50

60

70

80

90

100

F
-M

e
a
su

re
(%

)

(b) - Penalty function size-based - UKCD

α = 1.1

α = 1.5

α = 2

α = 5

α = 15

−4 −2 0 2 4

β

50

60

70

80

90

100

F
-M

e
a
su

re
(%

)

(e) - Penalty function similarity-based - UKCD

α = 1.1

α = 1.5

α = 2

α = 5

α = 15

−4 −2 0 2 4

β

95

96

97

98

99

100

F
-M

e
a
su

re
(%

)

(c) - Penalty function size-based - NCVR-450

α = 1.1

α = 1.5

α = 2

α = 5

α = 15

−4 −2 0 2 4

β

95

96

97

98

99

100

F
-M

e
a
su

re
(%

)

(e) - Penalty function similarity-based - NCVR-450

α = 1.1

α = 1.5

α = 2

α = 5

α = 15

Figure 4.5: Penalty function results for Cora, UKCD, and NCVR-450. For each data set we
display how different combinations of α and β affect the F-Measure values.

Submitted – 18 June 2020

§4.4 Evaluation 75

0 2000 4000 6000 8000
Size - Number of records (’000s)

108

109

1010

1011

C
an

d
id
at
e
p
ai
rs

(a) - Candidate pairs generated - NCVR

Standard

Soundex

Sorted neighbourhood

Size-based

Similarity-based

0 2000 4000 6000 8000
Size - Number of records (’000s)

103

104

105

L
ar
ge
st

b
lo
ck

(N
u
m
b
er

of
re
co
rd
s)

(b) - Largest block - NCVR

Standard

Soundex

Sorted neighbourhood

Size-based/Sim-based

0 2000 4000 6000 8000
Size - Number of records (’000s)

0

200

400

600

800

1000

1200

1400

T
im

e
-
S
ec
on

d
s

(c) - Blocking time - NCVR
Standard

Soundex

Sorted neighbourhood

Size-based

Similarity-based

0 2000 4000 6000 8000
Size - Number of records (’000s)

104

105

106

107

T
im

e
-
S
ec
on

d
s

(d) - Total running time - NCVR

Standard

Soundex

Sorted neighbourhood

Size-based

Similarity-based

Figure 4.6: Scalability tests using different proportions of the NCVR data set.

Submitted – 18 June 2020

76 Addressing Scalability Through Size Constrained Blocking

a result, even though our techniques require additional time in the blocking step, this is more

than made up for by the time saved in the comparison step.

In addition, the worst case block size is controlled by our approaches. Since many advanced

entity resolution techniques have scalability worse than linear (i.e. worse than O(n)), the run-

ning time is heavily dependent on the size of the largest block. As such, the time saving will be

even greater than that indicated by the reduction in the number of candidate pairs and shown

in Figure 4.6 (d). In addition to the applications for advanced entity resolution techniques,

controlling the worst-case block size means that our techniques are suitable for real-time entity

resolution where operational requirements limit the number of comparisons that can be per-

formed [145] and privacy preserving record linkage where an uneven block size distribution can

lead to patterns that can be exploited by a potential attacker, even when data is encoded [33].

Finally, as we discussed in Section 4.2.2, for blocking key functions such as Soundex encod-

ings or the first two characters of an attribute value, we calculate the similarity of the resulting

BKVs by considering the original attributes values. Where possible, we calculated the weighted

pair-wise similarity of all values of the attribute, however where this was computationally in-

feasible, we sampled from the attribute values instead. To determine whether this sampling

process had a significant impact on the results, we investigated the impact of the sample size in

the similarity calculations, using the NCVR-450 data set and Soundex encodings. Even with a

sample size of 1, the clustering still produced similar results to the complete calculation and the

reduction in F-Measure was less than 0.1% in all cases. As a result, we conclude that the sample

size does not significantly affect the performance.

4.5 Discussion

We now discuss the characteristics of the two approaches and present their computational com-

plexities. Depending on the settings of smin and smax, it is possible that our approaches may

generate some blocks that are outside the desired size range. For example, if smin = 0.8 ∗ smax,

some blocks may have a size in the range 0.5 ∗ smax to 0.8 ∗ smax. Merging any two of these blocks

would result in a block size greater than smax, so none of them end up being merged. However,

if smin and smax satisfy smax ≥ 2 ∗ smin then we are guaranteed that at most one block at the end

will be smaller than smin because if two blocks were left, they could be merged as their combined

size would still be below smax.

If blocks are left at the end of either algorithm which are larger than smax, then there must

Submitted – 18 June 2020

§4.5 Discussion 77

exist some unique combination of BKVs that occurs more frequently than smax and our only

option is to add another blocking key to K.

The similarity-based blocking approach ensures that pairs of blocks with high block similar-

ity are merged together. In practice, the approach often creates many blocks that are close in size

to smax which makes it effective for load balancing in parellel ER applications [88]. However, if

there is a block left at the end which is too small, it may be quite small in comparison to smin,

which may make this approach less suitable in applications such as privacy preserving record

linkage [177] where smin is particularly important. The running time of the similarity-based

approach is also typically longer than that of the size-based approach.

In practice, if smax ≥ 2 ∗ smin, the size-based approach tends to produce blocks that are more

evenly distributed within the size range, with potentially a single block that is too small. Since

the merging is done iteratively from smallest to largest, if there is a block that is smaller than

smin, its size is typically close to smin, although this closeness is not mathematically guaranteed.

This means that for situations where minimum block size is important the size-based approach

is a good candidate. However, the size-based blocking approach is not as successful when there

are multiple large blocks with different BKVs from values that are quite similar. For example,

depending on the blocking keys used, the first names ‘John’ and ‘Jonathon’ may generate differ-

ent BKVs but should likely be combined into one block. However, because blocks are processed

in order of size and both blocks may be large, neither block will be considered until late in the

merging process. By the time they are compared one of them may have already grown too large

(due to other merges) for them to be merged. This situation can potentially be overcome by the

penalty function.

The selection of the blocking keys in K is important for both approaches and has a significant

effect on the running time and the blocking quality. At present we rely on domain expertise to

select the blocking keys, taking into account such factors as completeness, size of the domain,

distribution of values and general data quality. As part of our future work we intend to inves-

tigate methods for automatically selecting blocking keys, such as those developed by Kejriwal

and Miranker [87] and Ramadan and Christen [144].

In the worst case, the time complexity is O(|R|3log(|R|)) and O(|R|3) for the similarity-based

approach and size based approach respectively. For the similarity-based approach, Q can contain

O(|R|2) blocks (line 7) and during the loop (lines 8 - 15) we have to perform O(|R|) insertions

into Q of time complexity O(log(|R|)) (line 13). For the size-based approach the size of Q is at

most O(|R|) (line 5) but calculating Argmax(ς(bi, bk)) (line 8) is potentially O(|R|2) so we end

Submitted – 18 June 2020

78 Addressing Scalability Through Size Constrained Blocking

up with an overall complexity of O(|R|3).

In practice the similarity-based approach is significantly slower than the size-based approach.

In addition the running time of both approaches is much more dependent on the number of

unique BKVs generated by the blocking keys in K rather than the size of R. This is because

we create one block for each BKV during clustering so the running time of the similarity-based

approach becomes O(|B|3log(|B|)) and the size-based approach becomes O(|B|3). In the worst

case, each record generates a unique BKV and we end up with the asymptotic complexity above.

However, we note that certain functions have hard limits on the number of unique BKVs they

can generate. There are at most 676 (i.e. 262) combinations of two letters, so selecting the first

two letters of an attribute value will create at most 676 blocks to consider in the clustering stage.

Similarly, phonetic encodings such as Soundex and Double Metaphone [43], also have hard

limits on the maximum number of unique BKVs they can create. Finally, some optimisation

techniques such as pre-calculating and caching similarity values can be performed to improve

the efficiency of both techniques.

4.6 Summary

In practice, poor scalability is a limitation of all entity resolution techniques and considerable

research has been done in order to address this problem. Because the scalability of many ad-

vanced entity resolution techniques is even worse than traditional entity resolution, when using

a blocking based technique, it is important to limit not only the average block size, but also the

worst case block size. In addition, because of the graph based nature of many advanced eni-

tity resolution techniques, it is important that any blocking technique applied produce disjoint

blocks.

In order to address these problems we have developed two recursive clustering approaches

which can generate blocks for entity resolution in a given size range. The blocks are also disjoint,

meaning they can be evaluated independently, or in parallel, with only limited communication

between blocks. Even in the case of Markov logic networks, where the scalability is worse

than NP-Hard, they can perform in practice on blocks of a limited size in a few seconds. By

setting an appropriate maximum (and minimum) block size, we can make sure that operational

requirements are satisfied in terms of the running time of the entity resolution process. Our

approaches also limit the size of the largest block, which means that we do not end up in the

situation where a single block significantly worsens the efficiency.

Submitted – 18 June 2020

§4.6 Summary 79

We also proposed a penalty function which allows us to control the trade-off between block

size and block quality, and fine tune either approach. This allows us to merge blocks beyond

the maximum block size, and then split them on a second blocking key. This approach can be

important for variations of a common name or attribute value, (a firstname of ‘Jon’ and ‘John’

for example) but can be tailored for other situations and requirements as well.

Finally, we have evaluated our approaches on three data sets. Our experimental results

show that both our techniques perform well in comparison to the baseline approaches and give

similar values of pairs completeness and reduction ratio while still satisfying our block size

requirements. While there is a trade-off in terms of increased processing time on the blocking

step, for most entity resolution techniques this will be more than made up for in the comparison

and matching steps due to the reduced number of comparisons and in particular, the reduced

size of the largest block.

4.6.1 Future Work

There are two main directions we intend to investigate in the future. At the moment we rely on

domain expertise to select the blocking functions and blocking attributes. While this is common

for most blocking techniques, poor choices in the blocking stage can lead to unusable entity

resolution results (this is something we discuss in further detail in Chapter 6). Kejriwal and

Miranker [87] and Ramadan and Christen [144] presented approaches for automatic selection of

blocking keys for entity resolution and a similar approach would have value for our work as

well.

Secondly, our work is likely of value for real-time entity resolution problems [12, 27, 145, 173],

where only a fixed number of comparisons can be performed before a response needs to be

provided. Because we can control both the minimum and maximum block size, we can ensure

these operational requirements are met. However, this requires solving two additional problems:

what to do with blocking key values we haven’t seen before and how to update our blocks as

new information arrives. We intend to investigate whether a balanced tree data structure would

allow us to maintain both our size and our disjoint properties while being fast enough to update

and query to be usable for real-time situations.

Submitted – 18 June 2020

8
0

A
dd

re
ss

in
g

S
ca

la
bi

li
ty

T
hr

ou
gh

S
iz

e
C

on
st

ra
in

ed
B

lo
ck

in
g

Cora

smin - smax 20 - 50 20 - 100 50 - 100
Block similarity measure ς Single Average Complete Single Average Complete Single Average Complete

Size-based
PC 83.45 84.19 80.90 92.95 92.24 81.95 92.95 91.55 85.90
RR 96.86 97.03 97.01 96.20 96.35 96.50 93.64 93.61 93.63
FM 89.66 90.16 88.23 94.55 94.25 88.63 93.29 92.57 89.60

Similarity-based
PC 87.77 88.27 85.52 92.95 92.95 92.95 93.07 92.97 92.95
RR 96.51 96.61 96.71 95.64 96.09 96.14 92.80 93.28 93.55
FM 91.93 92.25 90.77 94.28 94.49 94.52 92.93 93.12 93.25

UKCD

smin - smax 50 - 100 100 - 200 500 - 1,000
Block similarity measure ς Single Average Complete Single Average Complete Single Average Complete

Size-based
PC 89.64 88.72 87.49 93.65 93.32 91.57 97.44 96.77 95.92
RR 99.95 99.95 99.95 99.89 99.89 99.90 99.47 99.48 99.48
FM 94.51 94.00 93.31 96.67 96.49 95.55 98.44 98.11 97.67

Similarity-based
PC 90.43 90.24 89.33 93.76 93.82 93.18 97.32 97.27 97.42
RR 99.94 99.94 99.95 99.88 99.89 99.89 99.38 99.44 99.45
FM 94.95 94.84 94.34 96.72 96.76 96.42 98.34 98.34 98.42

NCVR-450

smin - smax 500 - 1,000 2,500 - 5,000 5,000 - 10,000
Block similarity measure ς Single Average Complete Single Average Complete Single Average Complete

Size-based
PC 96.17 96.25 96.15 96.49 96.53 96.48 96.63 96.64 96.63
RR 99.81 99.82 99.82 99.07 99.08 99.09 98.19 98.16 98.19
FM 97.96 98.00 97.95 97.76 97.79 97.77 97.40 97.39 97.40

Similarity-based
PC 96.17 96.35 96.32 96.50 96.57 96.55 96.67 96.68 96.66
RR 99.79 99.80 99.81 98.96 99.01 99.07 98.00 98.03 98.05
FM 97.95 98.04 98.03 97.71 97.77 97.79 97.33 97.35 97.35

Table 4.3: Effects of parameter settings on PC, RR and F-Measure for Cora, UKCD, and NCVR-450, showing different configu-
rations of smin, smax and the three different block similarity measures (ς) single link, average link, and complete link. The best

value(s) in each row is shown in bold.

S
u

b
m

it
te

d
–

18
Ju

n
e

20
20

Chapter 5

Generating Training and Bootstrapping

Data

Many advanced entity resolution techniques require bootstrapping or training data. Collective

entity resolution techniques such as those of Bhattacharya and Getoor [12] and Kalashnikov and

Mehrotra [86] start with an initial set of matches and then propogate the results of these and sub-

sequent match decisions throughout the entity relationship graph in order to make subsequent

match decisions. Markov logic networks [165] are a supervised classification technique and rely

on training data to inform the logical formulae and their weights. Many group linkage tech-

niques are fully supervised [52, 54] and temporal entity resolution techniques require training

data to set the weights for agreement and disagreement decay [28, 106]. In academic environ-

ments, data sets can be chosen where ground truth data (and thus training data) is available, thus

allowing such techniques to be developed and evaluated. However, for many real-world entity

resolution problems, training data is not available, making many of these techniques difficult

or impossible to apply. In this chapter we propose a technique that uses ambiguity to gener-

ate bootstrapping and training data in situations where one-to-one and one-to-many matching

constraints exist. This allows supervised advanced entity resolution techniques to be applied,

as well as providing a better performing bootstrapping approach for collective entity resolution

techniques.

The remainder of this chapter is structured as follows: in Section 5.1 we describe the boot-

strapping problem in more detail. We discuss why it is particularly important for collective

entity resolution techniques and also how it applies to other advanced entity resolution tech-

niques. In Section 5.2 we summarise our notation and provide mathematical definitions for our

measures of ambiguity and formally present our approach. In Section 5.3 we detail how our

notion of ambiguity can be applied to active learning to generate training data for other entity

81

Submitted – 18 June 2020

82 Generating Training and Bootstrapping Data

resolution techniques. We perform an experimental evaluation of our techniques in Section 5.4.

In Section 5.5 we discuss various aspects of our approach in more detail as well as some practical

considerations, before providing our conclusions and some possible extensions of our work in

Section 5.6.

5.1 Overview

Many advanced entity resolution techniques are fully supervised (i.e. they use labelled exam-

ples to train a classification model before using it to classify unseen or unknown examples).

Markov logic networks [165], group linkage techniques [52, 54], and population reconstruction

techniques [103, 111] all rely on having labelled training examples of matches (and often non-

matches) on which to train the classification model. These techniques cannot be applied without

training data.

In addition, as we discussed in Chapter 3, even though collective entity resolution approaches

such as those of Bhattacharya and Getoor [12] and Kalashnikov and Mehrotra [86] are unsuper-

vised, they still require a bootstrapping step, where an initial set of matches is used to generate

the underlying graph that these techniques use for enitity resolution.

As we noted in Section 3.2, the defining features of collective entity resolution techniques are

that match decisions are not made independently for individual record pairs, and relationships

between entities are used in the matching process. However, incorporating relationships leads

to a practical problem. Prior to entity resolution commencing, there may be no relationships

present beyond those contained (explicitly or implicitly) within a single record. Consider the

case where a bibliographic data set is being deduplicated. Each paper is related to its authors,

and the authors are related to each other, but no relationship connects them to any other paper

or author records. Similarly, when matching census data sets, the members of an individual

household are related to each other as part of a single census record, however there are no

relationships to individuals in different households, or different census periods.

To illustrate this point, consider the example shown in Figure 5.1 where we show part of two

households from the UKCD data set, described in Section 2.5. We also show the entity relation-

ship graph created by the two households in the initial state. Each record within a household

is related to all others, either explicitly (solid line) or implicitly (dotted line). However, if we

calculate an initial (i.e. before entity resolution commences) relationship similarity between two

records, for example ‘1871_6718’ and ‘1881_21469’, it is 0 by every measure described in Sec-

Submitted – 18 June 2020

§5.1 Overview 83

Household ID 1422, 1871 Census
Record ID Surname First Name Rel. to Head Year of Birth Occupation

1871_6718 Hyslop Adam Head 1834 Coal Dealer
1871_6719 Hyslop Mary Wife 1833 House Wife
1871_6720 Hyslop Sarah Daughter 1860 Scholar
1871_6721 Hyslop John Son 1861 Scholar
. . .

Household ID 4452, 1881 Census
Record ID Surname First Name Rel. to Head Year of Birth Occupation

1881_21469 Hyslop Adam Head 1834 Ag. Labourer
1881_21470 Hyslop Mary Wife 1833
1881_21471 Hyslop Sarah Daughter 1861 Weaver
1881_21472 Hyslop John Son 1862 Stone Cutter
. . .

1871_6718

1871_6719 1871_6720

1871_6721

1881_21469

1881_21470 1881_21471

1881_21472

Household 4452, 1881 CensusHousehold 1422, 1871 Census

Figure 5.1: Parts of two households from the UKCD data set, and their corresponding represen-
tations in an entity-relationship graph.

tion 2.3. In order to have a non-zero measure of relationship similarity, two records must have a

common neighbour (or neighbour of neighbour, etc.), which is not possible if they are in separate

connected components of the graph.

If relational similarity between every pair of records in different households is initially 0,

then for the approach of Bhattacharya and Getoor [12] to work, the weighting of the attribute

similarity component has to be higher than the stopping threshold (essentially meaning that

attribute similarity alone is sufficient to generate matches) and pairs of records with highly

similar attribute values will be matched regardless of their relationship information. This either

leads to many false matches, or the problem being solved is such that attribute similarity alone

is sufficient to match records, so collective entity resolution is not required.

Similarly, when trying to apply the random walk based approach of Kalashnikoff and Mehro-

tra [86] no path exists between two records in different households, since they are in separate

components of the entity relationship graph. Therefore a random walk starting at a node, has a

probability of 0 of reaching any node in another household.

However, if it was possible to somehow match two records (for example the two records

selected above, 1871_6718 and 1881_21469), this would allow both the above collective entity

resolution techniques to match the remaining records in the two households.

Submitted – 18 June 2020

84 Generating Training and Bootstrapping Data

This results in a chicken and egg situation, where in order to match any pair of records,

we need to first match some other records, and so the collective entity resolution process never

starts. The way collective entity resolution techniques such as those described above deal with

this problem is by incorporating some form of bootstrapping or training data at the beginning

of the entity resolution process. Essentially, they generate an initial set of matches (and in some

cases also non-matches) from which to start the process.

The collective entity resolution approach of Bhattacharya and Getoor [12] solves this problem

by essentially starting the process by merging records with identical attribute values (i.e. exact

matches). Where the attribute values are common, e.g. a person named ’John Smith’, then they

also require exact values in the attributes of related records. In this way they can generate an

initial set of matches from which to begin the clustering process.

The approach of Kalashnikov and Mehrotra [86] starts by performing traditional pairwise

entity resolution down to a preset similarity threshold. Any reference that has only a single

potential option with similarity above the threshold is treated as a match. Where there are

multiple potential options with similarity above the threshold a choice node is created. This

allows the process to start by matching some portion of the references to begin the process.

Where this initial matching resolves a high proportion of the references, the results are very

good, however they degrade as this proportion decreases suggesting that data sets with highly

skewed attribute values may be problematic.

There are two conflicting requirements for the bootstrapping process and they mirror the

trade-off between precision and recall described in Section 2.3. The first requirement is that the

identified matches should actually be true matches (high precision). The initial bootstrapping

results are propagated and used to infer additional matches. If the initial matches are incorrect,

then anything inferred from them is more likely to also be incorrect. The second requirement

is that the bootstrapping process needs to identify enough matches for the entity resolution

process to start (high recall). Essentially, the two records in each true match pair need to be in

the same connected component of the entity relationship graph after the bootstrapping process,

or they can never be matched in the actual collective entity resolution process. These two re-

quirements effectively mean that the bootstrapping process needs to identify a critical mass of

definite matches to start the entity resolution process.

When it is possible to identify such a critical mass of definite matches, collective entity

resolution techniques can be very effective. When deduplicating a bibliographic data set, there

is no (theoritical) limit to the number of matches each paper or author may have. In addition,

Submitted – 18 June 2020

§5.1 Overview 85

since each author can write any number of papers, and each paper can have any number of

authors, there is a possibility of building up long relationship chains. By iteratively making

match decisions and propagating the resulting information, it is possible that records which

initially start far apart in the entity relationship graph may eventually be matched.

By contrast, when linking the two census data sets shown in Figure 5.1, each individual only

has (at most) one true match in the other data set. In addition, many of the households are

relatively stable (i.e. they don’t change significantly between census periods) so in these cases

the individuals in a single household will all be in a single household in the other census period.

This means there is no possibility of using a long path to gradually propagate information and

infer matches. The bootstrapping process needs to match at least one pair of individuals in each

household or they will never be matched in the entity resolution process.

A similar situation applies to population reconstruction, where a birth, death or marriage

certificate might only include details of a small number of entities (usually three on a birth

certificate, between two and four on a death certificate and six for a marriage certificate). Unless

at least one entity on each certificate can be matched in the bootstrapping, none of the records

on the certificate will ever be matched in the subsequent entity resolution process. However,

the characteristics of the data sets and problems that make current bootstrapping processes

less effective in domains such as group linkage and population reconstruction, also present

additional features that can be used to improve the generation of the initial set of matches. We

discuss these characteristics further in the next section.

5.1.1 One-to-One and One-to-Many Matching Constraints

Many entity resolution problems take place in the presence of one or more constraints (such as

those defined in Section 2.2). A common constraint is that each record in a data set can match

at most one (or sometimes must match exactly one) record in another data set. For example,

when matching two customer databases that are individually clean (i.e. assumed not to contain

duplicate records for the same entity), then each customer should be unique in a given database,

meaning a record in one of the data sets can match at most one record in the other data set. This

one-to-one matching constraint is not guaranteed by the traditional entity resolution process,

nor is it guaranteed by collective entity resolution techniques such as relational clustering [12]

or random walks [86]. Similar one-to-one or one-to-many constraints apply in other problem

domains such as matching flight arrivals to immigration watchlists (one-to-one or one-to-many),

matching two voter databases (one-to-one) [24], matching different census periods (one-to-one)

Submitted – 18 June 2020

86 Generating Training and Bootstrapping Data

r1 r2 r3

r4 r5 r6 r7

0.8

0.8

0.75

0.7

0.90.9

0.7

Figure 5.2: Ambiguity example as described in
detail in Section 5.2.1.

Node AmbMax AmbRatio AmbCount
r1 1.0 1.0 1
r2 0.85 0.83 2
r3 0.8 0.78 1
r4 0.95 0.94 1
r5 0.9 0.88 1
r6 0.0 0.0 0
r7 0.8 0.78 1.

Table 5.1: Ambiguity calculations (see
Sect. 5.2.1)

[4], and matching birth, death and marriage certificates (one-to-one or one-to-many) [156].

In these situations, it is important to consider both the similarity between records and

whether there are alternative matching candidates. In other words, is there ambiguity about

which candidate a record matches. While this complicates the matching process, it also pro-

vides additional information that can be exploited to generate training and bootstrapping data.

Using a very high attribute similarity threshold as a crude bootstrapping approach can lead to

a small number of matches being identified, however, lowering the threshold enough that recall

improves can lead to a large number of false matches, particularly in domains where important

attributes are very skewed (see Section 1.2.1). However, when there is a one-to-one matching

constraint, we can exclude records with multiple candidates and use a lower similarity thresh-

old for the bootstrapping, provided ambiguity is low. This approach can also be combined with

other bootstrapping techniques such as looking at the attribute values of related entities in order

to identify unambiguous record pairs.

Consider the situation shown in Fig. 5.2 where the nodes in the graph represent records

from two data sets, the edges represent potential matches, and the edge weights represent the

similarity values between two records. Record r1 has two potential matches, r4 and r5, and is

equally similar to both. As such, it is ambiguous whether r1 should be matched to r4 or r5

(and the one-to-one matching constraint means it can not be matched to both of them). Record

r6 however has only a single candidate (r5), and a high similarity of 0.9 so the ambiguity is

very low. In Table 5.1 we calculate the ambiguity for each record in Figure 5.2 using the three

ambiguity measures described in Section 5.2.1.

In the remainder of this chapter, we show how we can incorporate one-to-one and one-to-

many constraints when generating bootstrapping and training data. By excluding records with

high ambiguity, we can consider record pairs with lower attribute similarity as potential matches

in the bootstrapping.

Submitted – 18 June 2020

§5.2 Approach 87

5.2 Approach

We start by defining our terms and notation. We assume two data sets R1 and R2, and a

function Ψ(ri, rj) which calculates the similarity between a pair of records 〈ri, rj〉 where ri ∈ R1

and rj ∈ R2. We denote the output of Ψ applied to record pair 〈ri, rj〉 as ψij, with 0 ≤ ψij ≤ 1 for

all 〈ri, rj〉 s.t. ri ∈ R1 and rj ∈ R2.

Based on R1, R2 and Ψ, we construct a bipartite graph G = (N, E), with N = N1 ∪ N2 where

each node ni ∈ N1 corresponds to a record ri ∈ R1 and each node nj ∈ N2 to a record rj ∈ R2.

An edge exists between every pair of nodes from the two data sets, formally E = N1 × N2. We

denote the edge between nodes ni and nj as eij. Each edge eij ∈ E has weight ψij, corresponding

to Ψ(ri, rj). In essence, G is the similarity graph for R1 × R2.

In order to calculate the ambiguity of record ri ∈ R1, we examine the edges adjacent to the

corresponding node ni ∈ N. For each record ri ∈ R1 we define M1(ri) = ψij where eij ∈ E and

∀eil ∈ E, j 6= l, ψij ≥ ψil . In other words, for record ri ∈ R1, rj is the most similar record in R2.

The case for record ri ∈ R2 is symmetric.

We can generalise this notion to Mp(ri) where Mp(ri) is the weight of the edge adjacent to ni

which connects it to the node in the other data set, corresponding to the record with pth highest

similarity. For example, M2(ri) = ψik where eik ∈ E, rj is the record such that M1(ri) = ψij and

∀eil ∈ E, j 6= k 6= l, ψij ≥ ψik ≥ ψil .

5.2.1 Measures of Ambiguity

When considering the case of one-to-one or one-to-many matching constraints, we use the am-

biguity of a record to determine whether it is ‘safe’ (i.e. unambiguous) to match with the most

similar record from the other data set, or whether there are other potential candidates. For a

given record ri ∈ R, we consider its corresponding node ni ∈ N and propose the following three

measures of ambiguity:

1. The first measure of ambiguity considers the size of the difference between the highest

and second highest edge weights among edges adjacent to ni. The intuition behind this

approach is that if the best candidate is significantly more similar than the second best can-

didate, then it is much more likely that the best candidate is the correct match. Formally:

AmbMax(ri) = 1 − M1(ri) + M2(ri) (5.1)

Submitted – 18 June 2020

88 Generating Training and Bootstrapping Data

2. The second measure of ambiguity considers the ratio of the weights of the highest and

second highest edges among those adjacent to ni. The intuition behind this approach is

similar to AmbMax, however it may be more appropriate for lower values of M1(ri), for

example if the similarity function Ψ is not well chosen. Formally:

AmbRatio(ri) =
M2(ri)

M1(ri)
(5.2)

3 The third measure of ambiguity counts the number of potential matches for ni. Intuitively,

the more potential candidates there are the more difficult it is to pick the correct one.

Formally, given a minimum similarity threshold ψmin:

AmbCount(ri, ψmin) = q − 1 (5.3)

where q is the number such that ∀p where 1 ≤ p ≤ q, Mp(ri) ≥ ψmin and ∀p such that

p > q, Mp(ri) < ψmin. In other words, q is the number of edges adjacent to ni with weight

greater than or equal to ψmin. We subtract one from the number of options so that an

ambiguity value of 0 indicates no ambiguity (i.e. there is only a single option).

For all three measures of ambiguity, a higher value indicates that there are multiple candi-

dates for a true match. The first two measures are normalised to values between 0 and 1. As

opposed to AmbMax and AmbRatio, which only consider the two best candidates for matching,

AmbCount considers how many candidates exist. It is possible to normalise AmbCount to a

value between 0 and 1, such as by dividing through by the maximum value across the entire

data set, however we did not find this particularly useful in practice.

Because AmbMax and AmbRatio only consider two edges whereas AmbCount considers the

total number of edges satisfying a similarity condition, we found AmbCount ended up being

useful in a different way to the other two measures. As such, we use AmbMax and AmbRatio

for unsupervised generation of training data, whereas AmbCount was more applicable to active

learning. We discuss normalisation, the selection of an ambiguity measure, and the various

benefits of each measure in Section 5.5.4.

We illustrate these ambiguity concepts with reference to the example in Figure 5.2. Calcu-

lating AmbMax(r1) = 1 − 0.8 + 0.8 = 1.0, in other words r1 is highly ambiguous, which makes

sense given its two possible candidates for matching are both equally similar. AmbMax(r7) =

1 − 0.9 + 0.7 = 0.8, still ambiguous but less so than r1. In practice an ambiguity of 0.8 may

Submitted – 18 June 2020

§5.2 Approach 89

Algorithm 5.1: Static Generation of Bootstrapping Data

Input:
- A bipartite similarity graph G: N, E - constructed from data sets R1 and R2;
- An ambiguity measure equation (5.1) or (5.2) A;
- A minimum similarity threshold ψmin;
- A maximum ambiguity threshold αmax ;

Output:
- Set of matching record pairs to use as training data M

1: foreach ri in R1 ∪ R2 do:
2: αi = CalculateAmbiguity(A, ri) // Calculate the ambiguity of each record
3: M = ∅ // Create an empty set of matches
4: foreach eij in E do:
5: if M1(ri) 6= eij or M1(rj) 6= eij:
6: continue

7: if ψij ≥ ψmin and αi ≤ αmax and αj ≤ αmax : // Filter the record pairs based on ψmin and αmax .
8: M.add(〈ri , rj〉) // Add similar and unambiguous record pairs to the training set.
9: return M

be enough for us to be satisfied that we can perform the match, although this is dependent

on the data set and the similarity function Ψ. Calculating AmbRatio(r2) = 0.75/0.9 = 0.83

and AmbRatio(r4) = 0.75/0.8 = 0.94. The result for r2 may be usable, but the ambiguity of r4

suggests that we likely cannot be confident about the correct match for this record.

5.2.2 Using Ambiguity to Generate Bootstrapping and Training Data

In order to generate bootstrapping data, we extend a threshold based technique by incorporating

ambiguity. We present two versions of our approach. The first approach is static where the

candidate pairs are filtered based on a maximum ambiguity threshold and a minimum similarity

threshold. This approach is described in Algorithm 5.1.

The second approach is iterative and the candidate pairs are ordered according to some

criteria (for example a combination of similarity and ambiguity), and kept in a priority queue.

After selecting the first pair from the queue, we update the ambiguity values of any affected

pairs before selecting the next pair. This allows us to start by selecting the most similar and

unambiguous record pairs, and by resolving these first the ambiguity of other candidate pairs

may reduce, allowing them to also be matched. This selection and update process repeats until

there are no more pairs satisfying our criteria, or we have a sufficient number of matches for our

purpose. This approach is described in Algorithm 5.2.

5.2.3 Static Generation of Bootstrapping Data

The intuition behind the static approach is that if each record in a candidate pair has only

the other record as a good candidate for matching, then we can be confident that they should

Submitted – 18 June 2020

90 Generating Training and Bootstrapping Data

Algorithm 5.2: Iterative Generation of Bootstrapping Data

Input:
- A bipartite similarity graph G: N, E - constructed from data sets R1 and R2;
- An ambiguity measure equation (5.1) or (5.2) A;
- A minimum similarity threshold ψmin;
- A maximum ambiguity threshold αmax ;

Output:
- Set of matching record pairs to use as training data M

1: foreach ri in R1 ∪ R2 do:
2: αi = CalculateAmbiguity(A, ri)
3: Q = CreatePriorityQueue() // Create an empty priority queue
4: foreach eij in E do:
5: πij = CalculatePriority(ψij, αi , αj) // Calculate priority of record pair 〈i, j〉
6: Q.insert(〈1 − πij, i, j〉) // Insert into Q, ordered by priority
7: M = ∅ // Empty set for the matches
8: while Q not empty do:
9: πij = Q.pop() // Get the first element in the queue
10: if (ψij < ψmin) or (αi > αmax and αj > αmax):
11: continue // Ambiguity too high or similarity too low
12: else:
13: M.add(〈ri , rj〉) // Add the record pair to M
14: N.remove(ni) // Remove ni and adjacent edges
15: N.remove(nj) // Remove nj and adjacent edges
16: UpdateAmbiguityValues(A, ri , rj) // Update the ambiguity values
17: RemoveFromQueue(Q, ni , nj) // Remove priorities for ni and nj

18: UpdatePriorities(Q, ni , nj) // Update remaining priorities in Q
19: return M

be matched. In order to determine which candidate pairs satisfy these conditions, the static

approach filters the record pairs according to a similarity threshold ψmin and an ambiguity

threshold αmax. We begin by calculating the ambiguity for each record in R1 ∪ R2. Then for each

edge eij ∈ E we check a series of conditions. Firstly, we test that ri is the most similar record to

rj, and vice-versa (line 5). Then we check that ψij ≥ ψmin and that the ambiguity of both ri and

rj is less than αmax (line 7). Any record pair that satisfies all these conditions is added to the set

of matches M (line 8).

It is important to note that provided αmax is strictly less than 1.0, the combination of condi-

tions in lines 5 and 7, guarantees the one-to-one matching constraint holds for each record that

is part of a record pair in M. For a record ri ∈ R1 ∪ R2, the only way its corresponding node

can have multiple edges satisfying the condition in line 5 is if each edge has the same similarity

value. However, by both the AmbMax and AmbRatio ambiguity measures described in Sec-

tion 5.2.1, such records have ambiguity 1.0 since M1(ri) = M2(ri) (and possibly = M3(ri) etc.).

As such, provided αmax is strictly less than 1.0, such nodes will be excluded by the conditions in

line 7.

Submitted – 18 June 2020

§5.3 Applications to Active Learning 91

5.2.4 Iterative Generation of Bootstrapping Data

The iterative approach to generating boostrapping data is described in Algorithm 5.2. The idea

is similar to that of the static approach in that we try to select record pairs that are similar

and unambiguous to use as matches. However, there are key differences between the two ap-

proaches. The iterative approach begins by calculating the initial ambiguity score for each record

in R1 ∪ R2 (lines 1 and 2). Then, for each edge in E, we calculate a priority score πij based on a

combination of the similarity score ψij and the ambiguity of ri and rj and insert these scores into

a priority queue (lines 5 and 6).

The loop in lines 8 to 18 is the main part of the algorithm which iterates until the priority

queue Q is empty. In each iteration of the loop we remove a record pair from the queue and

check whether it satisfies the similarity and ambiguity requirements (line 10). If the requirements

are not satisfied, we skip to the next pair in the queue. If the requirements are satisfied (line

12), we add the record pair to our match set (line 13). Once a record pair has been matched,

the one-to-one matching constraint means that the two records in the pair should no longer

be considered for other matches, nor should they affect the ambiguity of other records. The

remainder of the loop (lines 14 to 18) is spent updating the queue and the ambiguity values of

other records to reflect this. We remove the two nodes from the graph along with any other

edges that connect to either of them (lines 14 and 15). We then recalculate the ambiguity of all

records that have been affected by the removal of nodes ni and nj, and re-order the queue if

required.

In practice, the iterative approach takes longer to run than the static approach, since ambi-

guity and priority values and the queue all have to be updated after a match is found. However,

for entity resolution problems where the majority of records have a true match in the other data

set, finding a match can reduce the ambiguity of other records, potentially allowing them to

also be matched. This means the iterative approach tends to achieve higher recall than the static

approach. We discuss these differences further in Section 5.5.

5.3 Applications to Active Learning

Active learning (described in Section 3.4) is a commonly used approach to generating training

data. Unlike the bootstrapping approaches used by collective entity resolution techniques, and

the approaches we presented in the previous section, active learning is a semi-supervised tech-

nique, meaning it requires a degree of manual classification. The idea behind active learning

Submitted – 18 June 2020

92 Generating Training and Bootstrapping Data

Algorithm 5.3: Active Learning Based Generation of Bootstrapping Data

Input:
- A bipartite similarity graph G: N, E - constructed from data sets R1 and R2;
- An ambiguity measure equation (1) or (2) A;
- A minimum similarity threshold ψmin;
- A maximum ambiguity threshold αmax ;
- The maximum number of manual classifications bmax ;
- The number of manual classifications per iteration s;

Output:
- Set of matching record pairs to use as training data M

1: M = RunStaticApproach(G, A, ψmin, αmax) // Run the static approach to get an initial set of matches
2: bcurrent = 0 // Set the current number of classifications to 0
3: while bcurrent < bmax do: // Run while there is budget remaining
4: foreach ri in R1 ∪ R2 do:
5: αi = CalculateAmbiguity(AmbCount, ψmin, ri) // Calculate AmbCount for each node
6: S = GetAmbiguousRecords(R1 ∪ R2, s) // Get the s most ambiguous records
7: foreach ri in S do:
8: mi = ManuallyMatch(ri) // Manually select the appropriate true match
9: M.add(mi)
10: UpdateGraph(G, M) // Remove from G matched nodes and adjacent edges
11: bcurrent = bcurrent + s // Update the budget used
12: M = M.union(RunStaticApproach(G, A, ψmin, αmax)) // Rerun the static approach for newmatches
13: return M

is that an oracle (which could be a domain expert, a crowd sourcing initiative, etc. [160]) is

presented with example pairs and asked to label them as match or non-match. In this way a

training set is built up and used to learn the overall model. Because such manual classification

is typically resource intensive, the aim of active learning is to try and minimise the number of

manual classification decisions that are required in order to produce a satisfactory classifier. The

problem can alternatively be posed as how to produce the best classifier given a fixed budget

(i.e. a maximum number) of manual classifications.

As described in Section 2.3, entity resolution can be described as a binary classification

problem. However, the two classes, match and non-match are typically very imbalanced with

non-matches often outnumbering matches by several orders of magnitude, particularly for large

data sets. We give a simple scenario showing this in Section 6.1. Any strategy that is used to

select record pairs for manual classification needs to account for this class imbalance and ensure

that enough matches are selected to provide training examples for both classes. This means that

active learning techniques from other domains using density [161, 191], ambiguity [154], and

other approaches (see Section 3.4), may require adaptation or may not work well at all for entity

resolution.

For situations where one-to-one and one-to-many matching restrictions apply, we propose

using AmbCount as a possible selection strategy. However, instead of only using manually

classified record pairs to build the training data, we combine the active learning approach with

our static approach. This mean that unambiguous pairs can be matched automatically, and

Submitted – 18 June 2020

§5.4 Evaluation 93

manual effort is reserved for those records where there is ambiguity.

The reason we only use AmbCount, is because AmbMax and AmbRatio only consider the

two best candidates for matching, whereas AmbCount measures how many candidates there

are. This means that by choosing nodes with high values of AmbCount, we can select nodes

for manual classification which will remove many edges from G. In this way, we maximise the

number of additional matches that can be gained from each manual classification, due to a

reduction in ambiguity of the neighbouring nodes.

Our active learning approach is shown in Algorithm 5.3 and works as follows. We start

by running our static approach to get an initial set of matches (line 1). Then the bulk of our

work is done inside the loop (lines 4-12) which runs while there is manual classification budget

remaining. We calculate the ambiguity for each node using AmbCount (line 5) and get the s

most ambiguous nodes remaining (line 6). For each of these nodes we use our manual classifier

to select the corresponding matching record (line 8) and add it to our set of matches (line 9).

Note that in the event there is no matching record, we skip this step, but still remove the node

from G. We then update our graph, by removing all nodes that have been successfully matched,

along with their adjacent edges (line 10). We update our budget (line 11), before re-running

the static approach to find any matches that have become unambiguous as the result of manual

classification (line 12).

The idea behind our active learning approach is that by selecting the nodes with the highest

value of AmbCount, we achieve the greatest flow on effect on the ambiguity of other nodes

which maximises the likelihood of additional matches being detected by our static approach.

Finally, for the sake of clarity, it is worth noting that our definition of ambiguity is different

to the definition that is traditionally used in active learning [154]. We use the term ambiguity

as we defined it in Section 5.2.1, in other words there is ambiguity about which record out of a

number of possible candidates is the correct match. Active learning traditionally uses ambiguity

to refer to examples that are very hard to classify, in other words, ambiguous examples are ones

where the classifier has difficulty determining which class they belong to.

5.4 Evaluation

Of the three data sets that we use in this thesis, only the UKCD data set and the NCVR data

set have meaningful one-to-one or one-to-many matching constraints. The CORA data set has

the constraint that a single author cannot match with two different authors on the same paper,

Submitted – 18 June 2020

94 Generating Training and Bootstrapping Data

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Precision - UKCD Static AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Precision - UKCD Iterative AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Precision Results - UKCD

STC

GTC

SOS

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

Recall - UKCD Static AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

Recall - UKCD Iterative AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Recall Results - UKCD

STC

GTC

SOS

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-M

ea
su
re

F-Measure - UKCD Static AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-M

ea
su
re

F-Measure - UKCD Iterative AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-M

e
a
s
u
re

F-Measure Results - UKCD

STC

GTC

SOS

Figure 5.3: Precision (top row), recall (middle row), and the f-measure (bottom row) results
for the UKCD data set. Shown are the results for the static approach (left), iterative approach

(middle), and baselines (right).

however in practice this restriction is too narrow to allow our approaches to work.

As a result, instead of evaluating our approaches on CORA, we use a version of the NCVR-

450 data set, which contains only those records that have a true match. This is referred to as

NCVR-280 in the results. This allows us to evaluate whether the proportion of records with a

true match has an impact on our results, and we discuss this further in the next section. We also

evaluate our techniques on the UKCD and NCVR-450 data sets as in other chapters.

To evaluate our approaches, we compare them against three different baseline approaches.

To ensure a fair comparison, we use the same blocking methods for our approaches and all

three baselines. We also use the same attributes, weightings and string comparison functions to

calculate similarity for each baseline approach as we do for our approaches. This means that

our approaches and each of the baseline approaches have identical sets of candidate pairs and

similarity values as inputs. The three baseline approaches are:

1. Simple threshold based classifier (STC): the first baseline is traditional entity resolution

Submitted – 18 June 2020

§5.4 Evaluation 95

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Precision - NCVR-280 Static AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Precision - NCVR-280 Iterative AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Precision Results - NCVR-280

STC

GTC

SOS

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

Recall - NCVR-280 Static AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

Recall - NCVR-280 Iterative AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Recall Results - NCVR-280

STC

GTC

SOS

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-M

ea
su
re

F-Measure - NCVR-280 Static AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-M

ea
su
re

F-Measure - NCVR-280 Iterative AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-M

e
a
s
u
re

F-Measure Results - NCVR-280

STC

GTC

SOS

Figure 5.4: Precision (top row), recall (middle row), and the f-measure (bottom row) results for
the NCVR-280 data set. Shown are the results for the static approach (left), iterative approach
(middle), and baselines (right). We note that for both of our approaches, for all similarity values,

the precision results are very close to 1.0.

where all candidate pairs with similarity above the threshold ψmin are treated as matches.

2. Greedy threshold based classifier (GTC): the second baseline is similar to the simple

threshold based classifier except we also enforce the one-to-one matching constraint. This

is done in a greedy fashion, i.e. by selecting record pairs in order of descending similarity

(ψij) with ties being broken arbitrarily.

3. Single option set (SOS): our third baseline mirrors the bootstrapping approach of Kalash-

nikov and Mehrotra [86] in that for a candidate pair to be classified as a match, each

record in the pair must have only a single option (the other record) with similarity above

the threshold ψmin.

We note that while we do not separately implement the bootstrapping approach of Bhat-

tacharya and Getoor [12], the basic idea is captured in the first baseline approach when ψmin = 1.0.

Submitted – 18 June 2020

96 Generating Training and Bootstrapping Data

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Precision - NCVR-450 Static AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Precision - NCVR-450 Iterative AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Precision Results - NCVR-450

STC

GTC

SOS

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

Recall - NCVR-450 Static AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

Recall - NCVR-450 Iterative AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Recall Results - NCVR-450

STC

GTC

SOS

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-M

ea
su
re

F-Measure - NCVR-450 Static AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-M

ea
su
re

F-Measure - NCVR-450 Iterative AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-M

e
a
s
u
re

F-Measure Results - NCVR-450

STC

GTC

SOS

Figure 5.5: Precision (top row), recall (middle row), and the f-measure (bottom row) results for
the NCVR-450 data set. Shown are the results for the static approach (left), iterative approach

(middle), and baselines (right).

For our evaluation, we use precision, recall and the f-measure, which are described in Sec-

tion 2.3. However, we note that as described in Section 5.1, the primary goal of generating both

training data and bootstrapping data is to generate ‘enough’ high quality matches. This means

that we prioritise precision in our evaluation, provided recall is not extremely low (we discuss

this further in the next section). The results of both the static approach, the iterative approach

and the baseline approaches are shown in Figures 5.3, 5.4 and 5.5 for the UKCD, NCVR-280 and

NCVR-450 data sets respectively. We limit our reporting to just AmbMax, to avoid presenting

several figures that are almost identical. We discuss the differences between the ambiguity mea-

sures in the next section, as well as describing some situations where the differences in results

could be more significant.

For the UKCD data set, we also evaluate the proportion of households that have at least a

single true match, since this is important for being able to bootstrap collective entity resolution

techniques such as those of Bhattacharya and Getoor [12] and Kalashnikov and Mehrotra [86].

Submitted – 18 June 2020

§5.4 Evaluation 97

The results are shown in Figure 5.6.

0.6 0.7 0.8 0.9 1.0

ψmin

0.0

0.2

0.4

0.6

0.8

1.0

H
ou
se
h
ol
d
s
M
at
ch
ed

(P
ro
p
or
ti
on
) UKCD Households Matched - Static

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0

ψmin

0.0

0.2

0.4

0.6

0.8

1.0

H
ou
se
h
ol
d
s
M
at
ch
ed

(P
ro
p
or
ti
on
) UKCD Households Matched - Iterative

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0

ψmin

0.0

0.2

0.4

0.6

0.8

1.0

H
ou
se
h
ol
d
s
M
at
ch
ed

(P
ro
p
or
ti
on
) UKCD Households Matched - Baselines

STC

GTC

SOS

Figure 5.6: Proportion of households in the UKCD data set where at least one record is correctly
matched.

In addition to testing the quality of our approaches, we also test their scalability with respect

to queue size, similarity threshold and ambiguity threshold. The scalability results are shown in

Figure 5.7.

0.7 0.8 0.9
αmax

100

101

102

103

T
im

e
(s
ec
on
d
s)

Scalability - αmax

Static

Iterative

0.6 0.7 0.8 0.9 1.0
ψmin

100

101

102

103

T
im

e
(s
ec
on
d
s)

Scalability - ψmin
Static

Iterative

0 5 10

Edges in G (millions)

0

50

100

150

200

250
T
im

e
(s
ec
on
d
s)

Scalability - Edges in G

Static

Iterative

Figure 5.7: The scalability of our approaches, showing the impact on running time of αmax, ψmin

and the number of edges in G respectively.

5.4.1 Evaluation of Active Learning

In addition to testing our static and iterative approaches, we also evaluated our active learning

approach by running it on the NCVR-280 and NCVR-450 data sets. We evaluated the numbers

of true and false matches that occurred as the result of each manual classification, for different

values of ψmin and αmax and for different maximum budgets. This allowed us to test how

effective our strategy was at overcoming the class imbalance problem that is inherent in active

learning based entity resolution. It also allowed us to determine how much of an impact the

manual classification process had on reducing the overall ambiguity of the remaining records

(i.e. whether a manual classification leads to additional manual classifications due to the reduced

ambiguity of other records). The results of our experiments are shown in Figure 5.8.

Submitted – 18 June 2020

98 Generating Training and Bootstrapping Data

0 200 400 600 800 1000
Budget

0

500

1000

1500

T
ru
e
M
at
ch
es

Active Learning Results - NCVR-280

ψmin =0.9, αmax =0.9

ψmin =0.7, αmax =0.9

ψmin =0.9, αmax =0.7

ψmin =0.7, αmax =0.7

0 200 400 600 800 1000
Budget

0

2

4

6

8

F
al
se

M
at
ch
es

Active Learning Results - NCVR-280

ψmin =0.9, αmax =0.9

ψmin =0.7, αmax =0.9

ψmin =0.9, αmax =0.7

ψmin =0.7, αmax =0.7

0 200 400 600 800 1000
Budget

0

200

400

600

800

1000

T
ru
e
M
at
ch
es

Active Learning Results - NCVR-450

ψmin =0.9, αmax =0.9

ψmin =0.7, αmax =0.9

ψmin =0.9, αmax =0.7

ψmin =0.7, αmax =0.7

0 200 400 600 800 1000
Budget

0

5

10

15

20
F
al
se

M
at
ch
es

Active Learning Results - NCVR-450

ψmin =0.9, αmax =0.9

ψmin =0.7, αmax =0.9

ψmin =0.9, αmax =0.7

ψmin =0.7, αmax =0.7

Figure 5.8: Number of true matches and number of false matches produced by the active learn-
ing approach for different manual classification budgets for the NCVR-280 data set (top row)

and NCVR-450 data set (bottom row).

5.5 Discussion

Overall, our experimental evaluation demonstrates the effectiveness of using ambiguity as part

of the training data generation process. On all three data sets we achieve very high precision

values for all tested values of ψmin and αmax. Recall depends on the choice of αmax to a much

greater extent than precision. We test a range of values for αmax, however in all our experiments

the most significant impact on precision comes from introducing any ambiguity threshold (i.e.

αmax = 0.95). Tighter restrictions on ambiguity (achieved by lowering αmax) do improve preci-

sion, but at the cost of a much greater impact on recall due to the removal of true matches.

The baseline approaches did well in some circumstances. The SOS baseline achieves a high

precision in most cases, since it is effectively a binary measure of ambiguity. The GTC baseline

does particularly well on the NCVR-280 data set, but it does very poorly on the UKCD data

Submitted – 18 June 2020

§5.5 Discussion 99

set. Even though the F-Measure results for the UKCD data set are similar to our approaches,

a precision between 0.6 and 0.8 is unlikely to be effective for bootstrapping or training data

generation, due to the propagation of incorrect information from the false matches. The STC

baseline does not work particularly well for anything except the NCVR-280 data set with ψmin

very close to 1.0.

It is worth commenting on the SOS baseline recall results, since they contradict the general

entity resolution principle that a reduction in ψmin should increase recall. Using the SOS baseline,

a candidate pair is only matched if both records have no alternative option with similarity above

ψmin. However, lowering the value of ψmin increases the number of alternatives, and thus actually

reduces the number of candidate pairs that can be matched.

We also note that even though the differences in precision values are small in many cases,

this can in fact be significant for bootstrapping purposes. Given the potential for incorrect

matches to propagate throughout the subsequent classification process, even a small number

of false matches can have a significant impact on the final results. For example, in the UKCD

data set, incorrectly matching two records means that other records from the same household

are also likely to be incorrectly matched (due to the relationship information generated by the

initial incorrect match), so the impact on precision in the final matching process can be much

greater than just the single incorrect match during bootstrapping.

The experiments evaluating the proportion of UKCD households where at least one member

was successfully matched, shown in Figure 5.6, show a similar pattern to the recall results in

Figure 5.3. This is to be expected since these experiments essentially measure group recall. Both

the STC and GTC baselines manage to match at least one member of almost all the households.

However, this is done at the expense of including many false matches. Despite the high recall,

this likely makes them unsuitable for bootstrapping purposes, since the contradictory informa-

tion will lead to poor results in the entity resolution stage. The SOS baseline approach performs

better when ψmin is close to 1.0, although it is still below the results achieved by our approaches

with αmax equal to 0.95. As with the overall results, for our approaches recall reduces very

quickly with a stricter ambiguity threshold (i.e. a lower value of αmax), with only very small

improvements in precision.

The results for NCVR-280 are better than the results for NCVR-450 for all approaches, both

of ours and the three baselines. NCVR-280 was created by removing the records from NCVR-450

that did not have a true match. Given these records cannot improve recall (they are not part of a

true match) and they can only decrease precision (if they are incorrectly matched with another

Submitted – 18 June 2020

100 Generating Training and Bootstrapping Data

record), then removing them will always result in an improvement in the results. However, this

also demonstrates an important consideration for our approaches. For ambiguity to assist in

choosing records that can be ‘safely’ matched, unambiguous candidate pairs need to actually be

matches, rather than record pairs with very similar (and likely unusual) attribute values purely

by coincidence. If the proportion of records with a true match is too low, then such coincidental

matches are likely to make up a larger proportion of the matches.

The difference in results between the NCVR-280 data set and the NCVR-450 data set, il-

lustrates the main consideration when choosing between the static approach and the iterative

approach. The idea behind the iterative approach is that by resolving the unambiguous matches

first, this will mean that other matches are less ambiguous and can be safely matched, which in

turn reduces the ambiguity of further matches, and so on. However, this does not work if a large

proportion of records do not have a true match. Such records cannot be (correctly) matched, so

when they contribute to the ambiguity of other records, this ambiguity cannot be reduced except

through a false match. Given that in all our experiments our approaches produce few (if any)

false matches, the benefit of using the iterative approach on data sets with a low proportion of

records with a true match is greatly reduced. In such cases, the static approach should be used

due to its better efficiency.

5.5.1 Complexity and Optimisations

The results of our scalability experiments are shown in Figure 5.7. The experiments are con-

ducted on the NCVR-280 data set, with control values of αmax = 0.9, ψmin = 0.9 and

|E| = 14.15 million. Both approaches scale approximately linearly with respect to the number

of edges in G, i.e. they are O(|E|). The choice of αmax and ψmin has only a minor effect on the

running time of the static approach. However, for the iterative approach, ψmin directly affects

the size of the queue that needs to be processed with corresponding impact on the processing

and update time. In addition, αmax directly affects the number of edges that can be pruned from

G in the iterative approach (as discussed below).

The complexity of the static approach is O(|E|). This means that in the absence of any

blocking it is O(|R1||R2|). Calculating the ambiguity for each node is O(|E|), since for each

record ri ∈ R1 ∪ R2 we have to calculate M1(ri) and M2(ri), which requires examing every edge

twice. Lines 4 to 8 of Algorithm 5.1 also require examining each edge in E and the conditions

can all be checked in constant time, so this is again O(|E|).

In the absence of any blocking, and with no minimum similarity threshold set, Algorithm 5.2

Submitted – 18 June 2020

§5.5 Discussion 101

has a space complexity of O(|R1||R2|) (the length of the queue) and a time complexity of

O(|R1||R2| × (|R1| + |R2|) × log2(|R1||R2|)). The time complexity is due to each element in

the queue potentially requiring a delete or update operation for every record in the two data

sets, with both types of operation being logarithmic in the length of the queue.

While the asymptotic time and space complexities for Algorithm 5.2 are poor in the worst

case, as we show in Figure 5.7, scalability is better than this in practice due to optimisations

which were made to improve performance. As is common in entity resolution, blocking has

been applied to reduce the number of edges in G. The queue has also been reduced by removing

any edge from G where the weight cannot impact the ambiguity of a node. Any edge with

weight less than ψmin − (1 − αmax) cannot affect ambiguity and can safely be removed prior

to constructing the queue. As a result, as αmax gets smaller, more edges have to be retained

which increases the running time. In addition, if significantly larger data sets were being used

than the NCVR data set, then further optimisations could be made. Alternatively, a tighter

blocking approach such as sorted neighbourhood [73] or the size constrained blocking described

in Chapter 4 can be used to further reduce the number of candidate record pairs.

5.5.2 Active Learning Evaluation

Our active learning approach is effective at overcoming the class imbalance problem and gen-

erating true matches to form part of the training set. However, the results for NCVR-280 are

significantly better than those of NCVR-450. This is to be expected since every record in NCVR-

280 has a true match so each manual classification will likely produce at least one true match

(the record pair involved in the manual classification, and any additional record pairs that be-

come unambiguous once the manual classification is performed). However, the number of true

matches per manual classification increases with increased budget, so our approach requires a

certain critical mass of manual classifications in order to reduce average ambiguity to the point

where many additional true matches can be obtained.

This leads to two important considerations. Firstly, that a high value of αmax may be required,

especially if the manual classification budget is low. Otherwise the active learning process may

not reduce average ambiguity to the point where many true matches are found beyond those

obtained through the manual classification process itself. Secondly, since our approach relies on

selecting the true match (where it exists) from a set of possible matches, it is likely that each

manual classification will be more resource intensive than for traditional active learning where

the manual investigation only requires classifying a single record pair. As such, we suggest that

Submitted – 18 June 2020

102 Generating Training and Bootstrapping Data

the practical applications of our approach are limited to entity resolution problems where most

of the records have a true match in the other data set. This means that it is likely that each

manual classification will obtain at least one true match. If this is not the case, the additional

effort required for each manual classification is unlikely to be worthwhile.

5.5.3 Modifications for 1-to-Many Matching Situations

Algorithms 1 and 2 assume a one-to-one matching constraint, i.e. each record in either data set

can match at most one record in the other data set. While this is a common situation [23], it may

not always apply. For example, one of the data sets to be linked may be sufficiently dirty that

we have to consider the possibility of duplicates and therefore a one-to-one matching constraint

may not be appropriate. Alternatively, matching birth certificates to marriage certificates should

capture the restriction that a person can only be born once but can potentially be married mul-

tiple times. As a result, while the bride or groom on a marriage certificate should match to the

baby on at most one birth certificate, the baby on a birth certificate can match to the bride or

groom on multiple marriage certificates.

We can incorporate one-to-many constraints in our static approach. Assuming the constraint

applies to the records in R1 (the reverse is symmetric) we modify Algorithm 1 as follows. In line

1, we only calculate ambiguity for each ri in R1. In line 5 we only test whether M(ri) 6= eij and

in line 7 we remove the final part of the condition, i.e. aj ≤ tamb and only consider the weight of

eij and the ambiguity of ri.

While it is possible to modify the iterative approach in a similar fashion, there is no benefit

to doing so. For one-to-many matching constraints, the ambiguity of a record does not change

as the result of other matches so there is no advantage to processing the records in a certain

order. This means that with the same parameter settings, the results from the two approaches

will be identical. As a result, only the static approach should be used due to its better efficiency.

5.5.4 Choice of Ambiguity Measure and Normalisation

Based on our experimental evaluation, AmbMax and AmbRatio give very similar results on

each data set. The top half of Figure 5.9 shows the f-measure results for the two different

ambiguity measures using the iterative approach on the UKCD data set. The two sets of results

are essentially identical and a similar pattern was observed for the results for precision and

recall on the UKCD data set, as well as for all three measures on the other data sets. As such,

Submitted – 18 June 2020

§5.5 Discussion 103

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-M

ea
su
re

F-Measure - UKCD Iterative AmbMax

AmbMax

0.95

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-M

ea
su
re

F-Measure - UKCD Iterative AmbRatio

AmbRatio

0.95

0.9

0.8

0.7

0.0 0.2 0.4 0.6 0.8 1.0
M1(ri)

0.0

0.2

0.4

0.6

0.8

1.0

A
m
b
M
ax

AmbMax

M2(ri) = 0.1

M2(ri) = 0.3

M2(ri) = 0.5

M2(ri) = 0.7

M2(ri) = 0.9

0.0 0.2 0.4 0.6 0.8 1.0
M1(ri)

0.0

0.2

0.4

0.6

0.8

1.0

A
m
b
R
at
io

AmbRatio

M2(ri) = 0.1

M2(ri) = 0.3

M2(ri) = 0.5

M2(ri) = 0.7

M2(ri) = 0.9

Figure 5.9: Comparison of AmbMax and AmbRatio. The top two figures show the f-measure results
for AmbMax and AmbRatio respectively on the UKCD data sets with the iterative approach.
The bottom two figures show how the values of AmbMax and AmbRatio change with respect
to M1(ri) and M2(ri) (the two most similar records). If M1(ri) and M2(ri) are both greater than

0.7, the difference between the two ambiguity measures is relatively small.

we limit our reporting of results to AmbMax and conclude that either technique can be used in

most situations.

However, as shown in the bottom half of Figure 5.9, there are combinations of M1(ri) and

M2(ri) where the values of AmbMax and AmbRatio are further apart. This occurs when the

similarity values are low, especially if they are below 0.5. While such situations are unusual in

entity resolution, they can occur if the similarity functions are poorly chosen or the data set(s)

are extremely dirty. As such, we retain both measures of ambiguity to provide an alternative

option should this type of scenario occur.

We found that AmbCount was not useful in generating boostrapping data. In practice, any

number of candidates beyond one, meant that there was ambiguity and the actual number of

extra candidates was less important. This essentially meant that AmbCount worked as a crude

Submitted – 18 June 2020

104 Generating Training and Bootstrapping Data

version of the other two ambiguity measures. We also considered whether some measure of the

full distribution of similarity values would be useful for AmbMax or AmbRatio, but for the same

reason that AmbCount was unsuccessful, this also yielded poor results.

5.5.5 Generating Negative Training Examples

While the collective entity resolution techniques of Bhattacharya and Getoor [12] and Kalash-

nikov and Mehrotra [86] only require positive training examples (i.e. matches) to use as boot-

strapping data, collective entity resolution techniques such as MLNs [150] also require negative

training data (i.e. non-matches). Many other advanced entity resolution techniques are also su-

pervised including group linkage techniques [52, 54], and population reconstruction techniques

[103, 111]. In addition, traditional supervised classification techniques such as support vector

machines [54], decision trees [35] or neural networks [158] can also be used on many entity

resolution problems. Supervised techniques such as these typically require both positive and

negative training examples.

While the class imbalance means it is generally very easy to find non-matches, if blocking,

indexing or some other scalability improving technique is used and appropriately chosen, then

these would normally need to be verified to check they are in fact non-matches. In order to

automatically generate negative training data, we again make use of the one-to-one matching

condition and take all the candidate pairs where (at least) one record in the pair was matched

in the bootstrapping process, but the pair itself is not in M. Formally, the set of non-matches

NM = {eij ∈ E : 〈ri, rj〉 /∈ M ∧ ∃rk ∈ R1 ∪ R2 s.t. (〈ri, rk〉 ∈ M ∨ 〈rj, rk〉 ∈ M)}. In essence, if

we determine that records ri and rj are a match, then the one-to-one condition means that each

other candidate pair involving either ri or rj must be a non-match.

5.6 Summary

A lack of training data is a problem for entity resolution in general [23] and is particularly

problematic for many advanced entity resolution techniques. Collective entity resolution tech-

niques [12, 86] require bootstrapping to create the initial entity relationship graphs. Many other

advanced entity resolution techniques such as Markov logic networks [150], group linkage tech-

niques [54] and temporal entity resolution techniques [106] are fully supervised and require

labelled training data (examples of matches and non-matches) in order to build the classification

model. Getting such training and boostrapping data can be very difficult for many real-world

Submitted – 18 June 2020

§5.6 Summary 105

entity resolution problems and the unbalanced nature of the entity resolution problem (there are

likely far more true non-matches than true matches) makes random selection of training records

unfeasible.

However, many entity resolution problems contain domain constraints in the form of one-to-

one or one-to-many matching restrictions. This can be because the data sets being matched do

not contain duplicates, or it can be due to the nature of the domain itself, for example matching

birth certificates to death certificates. In such cases, these constraints can be leveraged to assist in

generating training data, by not only checking the similarity between the records in a candidate

pair, but also checking whether there is any ambiguity, i.e. whether there are any alternative

matching options for the records in a candidate pair.

In this chapter we proposed two approaches for generating bootstrapping and training data

for entity resolution. Our approaches incorporate ambiguity into the decision making process

thus allowing much greater confidence that selected record pairs are actually true matches.

Our static approach is computationally fast (it has the same computational complexity as a

simple threshold based classifier) and achieves very good results in most circumstances. For

data sets where there is a high proportion of matching records, we have also developed an

iterative approach, where records are processed in order based on their ambiguity and similarity

values. As pairs are matched, the ambiguity values of remaining unmatched records are updated

which can in turn lead to more matches being found. This iterative approach is computationally

slower, due to the need to recalculate ambiguity values and update priorities, however it achieves

improved recall in situations where a high proportion of records have a match.

We have also shown how ambiguity can be incorporated into active learning for entity reso-

lution problems with one-to-one or one-to-many constraints. By selecting the most ambiguous

records for manual classification and propogating the results, each manual classification can

lead to multiple other matches becoming unambiguous, increasing the number of matches in

the training data.

We have tested our approaches on multiple data sets and in comparison to three baseline

techniques for generating training data. Our approaches achieve very high precision on all data

sets. This allows the output of our approaches to be used to bootstrap or train a classification

model with confidence that there are few or no false matches included in the training data. This

is particularly important for collective entity resolution techniques where the impact of such

incorrect matches can be widespread due to the results of initial match decisions being used to

inform subsequent match decisions.

Submitted – 18 June 2020

106 Generating Training and Bootstrapping Data

5.6.1 Future Work

In the future, there are several directions in which we hope to extend the work. We evaluate

our approaches on the UKCD and NCVR data sets in this chapter, and we evaluate an extension

of our approaches in Chapter 7, however the data sets are from a limited number of domains,

so confirming the applicability of our approaches in other situations would further demonstrate

their validity.

We also intend to investigate whether the idea of ambiguity can be incorporated into the

entity resolution process along with attribute and relationship similarity. In our approaches,

we use it as part of a training data generation process but assume that a further classification

step will be run using a model that has been bootstrapped (or trained) on the results of our

approaches. Incorporating ambiguity into the actual entity resolution process could be appro-

priate, particularly for classifiers that take an iterative approach, i.e. they resolve cases based on

some ordering of increasing difficulty.

We also intend to investigate the optimal balance between precision and recall for different

advanced entity resolution techniques. In our evaluation we have prioritised precision, since

provided the training set is large enough, having false matches included in the training set is

likely much more of a problem than a reduction in the overall number of matches. However, for

a given problem and advanced entity resolution technique, there will be an optimal weighting

of precision and recall, and calculating some examples of this will assist in setting parameters

such as ψmin and αmax on new problems, as well as fine tuning our overall approach.

A natural extension of ambiguity is to incorporate relationships and related entities into the

definition. In Chapter 7 we propose an extension of our approach where we use relationships to

validate our training data, and also to consider the ambiguity of groups of records.

Finally, as noted in Chapter 3, there are many similarities between one-to-one matching re-

strictions in entity resolution and the so called stable marriage problem [55]. We hope to investigate

whether any of the algorithms used to solve the stable marriage problem and its variants, can

be adapted to work in the entity resolution domain.

Submitted – 18 June 2020

Chapter 6

Eliminating Parameter Settings through

Unsupervised Evaluation

In Section 2.3 we described the entity resolution process, along with a some of the techniques

that can be applied at each stage. While we described the process as being sequential, in practice

it is often necessary to perform it iteratively as various techniques are tried, tuned, evaluated and

discarded until the overall results are satisfactory. While this may be necessary from a practical

perspective, each iteration of the entity resolution process can be very slow.

In this chapter we propose an unsupervised technique for evaluating entity resolution. Our

technique relies on transitive closure to detect inconsistent entity resolution results prior to the

classification step. This allows parameter settings and choices that will not produce good results

to be discarded without spending resources on the classification and evaluation steps. While

the primary purpose of our technique is to reject unsuitable parameter settings, it can also be

employed as part of the overall evaluation to detect inconsistencies that need to be investigated

further.

This chapter is structured as follows: in Section 6.1 we motivate the problem by presenting

some examples and discussing problems that can occur. In Section 6.2 we present the main ideas

behind our unsupervised evaluation technique, provide the notation and formal definitions, and

the mathematical and algorithmic details of our approach. In Section 6.3 we perform a full ex-

perimental evaluation of our approach on the data sets described in Section 2.5. In Section 6.4

we discuss our results, as well as some additional aspects of our approach in more detail includ-

ing computational complexity, normalisation and some limitations of the approach. Finally, in

Section 6.5 we summarise our work and present some ideas of how it could be extended in the

future.

107

Submitted – 18 June 2020

108 Eliminating Parameter Settings through Unsupervised Evaluation

6.1 Overview

While an iterative approach to entity resolution may be necessary, it leads to two problems

in practice. Firstly, as discussed in Chapter 4, the scalability of entity resolution is generally

poor. If each iteration takes a long time, then iterative parameter tuning can be extremely slow.

The second problem, which we described in Chapter 5, is that for real-world entity resolution

applications it is common that there is no training data available, and evaluating an entity

resolution result is usually difficult and costly. The difficulty and cost of evaluation is made

worse by an iterative approach, since the results of each iteration need to be evaluated separately.

6.1.1 Parameter Tuning

Each step in the entity resolution process typically requires many decisions, however we discuss

the characteristics of two steps in more detail here.

The aim of the blocking and indexing step is to filter the record pairs, and remove as many

pairs as possible, where there is little or no chance of them being true matches. As discussed

in Chapters 2 and 3, numerous approaches for this have been proposed, which are effective in

different situations and on different types of data. Each of these techniques require the choice

of one or more attributes to use. Some attribute types also require additional processing such

as truncation (selecting only some characters from an attribute value) or phonetic encoding

[104, 124, 135]. Many techniques also require tuning of other parameters such as window size

for sorted neighbourhood indexing [73], number and choice of hash functions for locality sensi-

tive hashing based techniques [107], block size parameters for our own technique presented in

Chapter 4, etc.

In the similarity calculation step, the aim is to compute a measure of similarity for each

candidate pair. In practice this is done by applying one or more similarity functions to some

or all of the attribute values of the two records. We described several similarity functions in

Section 2.3, but there are many others. The entity resolution software package FEBRL [26]

contains 21 different similarity functions, many of which have additional parameters of their

own. It is also possible that customised similarity functions may be required (see Chapter 7 for

a situation that required a custom similarity function).

While experience and domain expertise can assist in choosing techniques, blocking methods,

similarity functions, parameters weights, and so forth, in practice it can be very difficult to

select optimal (or even good) settings without significant experimentation and testing. When

Submitted – 18 June 2020

§6.1 Overview 109

Classification Result
Match Non-Match

Actual State
Match 9.5 × 105 5.0 × 104

Non-Match 5.0 × 104 1012 − 1.05 × 106

Table 6.1: Example classification matrix resulting from the comparison of two data sets of one
million records each, with precision of 0.95 and recall of 0.95.

evaluation data is available, and on small data sets, this does not necessarily present a big

problem, however for real-world applications this can be very time-consuming.

6.1.2 Evaluating Entity Resolution

We discussed the common entity resolution evaluation metrics in Section 2.3, and noted that

three of the most widely used are precision, recall and the f-measure [23].

Calculating precision requires (at least an estimate of) the number of true matches and the

number of false matches in the classification result. If each of the classified matches are eval-

uated manually by a domain expert, it may be possible to determine whether they are true

matches or false matches, thus allowing precision to be calculated. If resources do not allow a

manual analysis of all classified matches, a random sampling can be employed, which will lead

to an estimate of precision, albeit with appropriate statistical confidence. It is also worth not-

ing that beyond the problem of sampling error, experimental results of Smalheiser et al. [166],

have shown that a manual evaluation is not guaranteed to be correct, which further affects the

reliability of the precision estimate.

It is much harder to estimate recall due to the unbalanced classes (described in Section 2.3.1).

In order to calculate recall, it is necessary to determine the number of true matches and false

non-matches in the entity resolution result. As described above, it may be possible to estimate

the number of true matches through a manual evaluation of the classified matches. However

the false non-matches are much more difficult to estimate.

There are two situations which can lead to a false non-match in the entity resolution results,

both of which are very difficult to detect. Firstly, the record pair may be classified as a non-match

during the classification step. To understand why detecting these cases is a problem, assume

two data sets are being compared where each consists of one million records and also assume

that each record has a single true match in the other data set. If the classifier has precision of 0.95

and an actual (but unknown) recall of 0.95, then this results in the classification matrix shown in

Table 6.1. Based on this classification matrix, the ratio of false non-matches to true non-matches

Submitted – 18 June 2020

110 Eliminating Parameter Settings through Unsupervised Evaluation

is approximately 1 : 2.0 × 107 or one to twenty million. This ratio means that it will almost

certainly be impossible to manually evaluate enough randomly selected classified non-matches

to get a statistically valid estimate of recall.

The common solution to this problem is to use a blocking or indexing technique, so that

not all pairwise combinations of records are actually classified, thus making it easier to evaluate

enough classified non-matches to estimate recall. However, this leads to the second situation

where false non-matches can occur. Any pair of records that is not selected as a candidate pair

by the blocking approach is treated as a non-match because it is never actually classified by

the classifier. This means that in order to estimate recall, it is necessary to evaluate the pairs

completeness (defined in Section 4.4) of the blocking approach, which again requires examining

all record pairs from the two data sets.

6.1.3 Advanced Entity Resolution Techniques

In the context of advanced entity resolution techniques, both the scalability problem and the

evaluation problem are even worse than for traditional entity resolution. The scalability of most

advanced entity resolution techniques is worse than traditional entity resolution, meaning the

classification step is likely to be slower. In addition, advanced entity resolution techniques often

have more parameters and choices than traditional entity resolution, meaning more iterations

are required. Finally, the types of data and problems where such advanced entity resolution

techniques are appropriate, can make the evaluation very slow as well. Examining the context of

each record to determine whether a record pair is a match or non-match requires an examination

of all the related records and their circumstances, rather than just the record pair required for

traditional entity resolution (see discussions in Section 7.1.2 about the creation of the ground

truth data set used in Chapter 7).

What this means for entity resolution, and advanced entity resolution in particular, is that

while an iterative approach to the entity resolution process may be neccessary, each iteration

may be very slow, both in terms of computational time, and in terms of evaluation time. Any

approach that can detect potential problems before the classification and evaluation steps, and

thereby rule out various parameter settings, can significantly improve the speed of iteration and

cut down on the time and cost of the entity resolution process. We present an approach for

doing this in the remainder of the chapter.

Submitted – 18 June 2020

§6.2 Approach 111

R. ID Surname First Name M. Init. Date of Birth Country of Birth Postcode Updated

r1 Miller Jane S. 14-Feb-1984 United Kingdom 2600 2012
r2 Miller Jane S. 14-Feb-1984 United Kingdom 2000 2013
r3 Smith Jane S. 14-Feb-1984 United Kingdom 2000 2014
r4 Stephens Marie P. 21-June-1977 New Zealand 2902 2012
r5 Johnson Marie P. 21-June-1977 New Zealand 2001 2014

Table 6.2: Example of how transitivity can identify problems in the entity resolution process.
The data set shows five records about two different people, both of whom have changed their

surname and address.

6.2 Approach

In this chapter we present a technique to perform an unsupervised evaluation of the entity

resolution process. The aim of our technique is to detect problems as early as possible in the

process and without requiring a full evaluation. In order to do this we make use of the concept

of transitive closure. Transitive closure (described in Section 2.2) reflects the idea that transitivity

usually holds between matches. For example if records ri and rj are a match, and records rj and

rk are also a match, then we must have that records ri and rk are a match. Since transitive closure

usually holds in the ground truth (we discuss situations where it may not hold in Section 6.4),

we can look for situations where transitive closure does not hold in the results (either results

from intermediate steps or the final entity resolution output) and use this to tell us when we

have problems in the blocking and indexing step or the similarity calculation step.

To demonstrate how this works, consider the data in Table 6.2. In it we show five records

about two different entities (people). Both people have changed their surname and address over

a two year period. The only difference is that the first person (records r1, r2 and r3) updated

their details after changing their address but before changing their name. Imagine the scenario

where entity resolution is carried out using the following settings:

• Traditional blocking is performed twice. Once on the attribute surname and once on the

attribute postcode. This results in each record being placed in two different blocks.

• Similarity calculation is done using the unweighted average of exact match applied to

attributes First Name, Surname, Date of Birth and Postcode.

• Classification is done using a simple threshold based classifier with the similarity threshold

set to 0.7.

The blocking approach means only records with either the same value of surname or the same

value of postcode will be selected as candidate pairs. This means that r1 and r2 are a candidate

Submitted – 18 June 2020

112 Eliminating Parameter Settings through Unsupervised Evaluation

pair (since they both have the same value of Surname - ‘Miller’), and that r2 and r3 are a candidate

pair (since they both have the same value of Postcode - ‘2000’). However, records r1 and r3 are not

a candidate pair since they do not match on either of the attributes used for blocking. Similarly,

records r4 and r5 are not a candidate pair since they also do not match on any of the attributes

used for blocking.

In the classification step, each of the candidate pairs produced by the blocking step will be

classified by the classifier. This means 〈r1, r2〉 will be classified as a match (the similarity is 0.75)

and 〈r2, r3〉 will be classified as a match (since the similarity is also 0.75).

The outcome of this entity resolution process does not reflect the ground truth for this ex-

ample data set. The blocking step should have placed records r1 and r3 together in at least

one block, and it should have also placed records r4 and r5 together in at least one block. The

classification results are correct for all pairs actually classified by the classifier, since record pair

〈r1, r2〉 is classified as a match, as is 〈r2, r3〉, and no other comparisons are made.

Now consider a second (similar) scenario that uses First Name as a blocking attribute in place

of Surname, and keeps all other settings the same.

For this scenario, r1, r2 and r3 are all placed in the same block, since they have the same value

of First Name - ‘Jane’. Similarly, r4 and r5 will be placed in the same block, since they have the

same value of First Name - ‘Marie’, thus each of record pairs 〈r1, r2〉, 〈r1, r3〉, 〈r2, r3〉 and 〈r4, r5〉

are candidate pairs. In the comparison step however, the similary value of 〈r1, r2〉 is 0.75, the

similarity value of 〈r2, r3〉 is also 0.75, whereas the similarity of 〈r1, r3〉 is 0.5 as is the similarity

of 〈r4, r5〉.

This means that again the output of the entity resolution process does not reflect the ground

truth. Record pair 〈r1, r2〉 is classified as a match (since the similarity of the two records is 0.75

which is greater than the 0.7 threshold). Record pair 〈r2, r3〉 is also classified as a match for the

same reasons. However, record pairs 〈r1, r3〉 and 〈r4, r5〉 are both classified as non-matches, since

their similarity is only 0.5, which is less than the required threshold.

In both scenarios, transitive closure implicitly matches records r1 and r3 even though in the

first scenario they did not occur in the same block together, and in the second scenario their

similarity was below the required threshold. As such, we can tell that in the first scenario

there must be problems with our blocking (since true matches are not being compared in the

comparison step), and that in the second scenario there must be problems with our comparison

or classification steps, since true matches are being classified as non-matches.

Short of performing an evaluation of every single record pair, there is little chance of de-

Submitted – 18 June 2020

§6.2 Approach 113

tecting the errors with records r4 and r5, and even with a such an evaluation, they may not be

detected. However, the problems within the results for records r1, r2 and r3 are much easier to

detect, since we only have to look at the classified matches (in practice usually far fewer record

pairs than the classified non-matches) and we can also focus on the cases where transitive closure

does not hold, either in the blocking or the comparison and classification steps. Any parameter

settings or choices leading to a high level of inconsistency in the results can be investigated or

discarded, allowing us to focus on those options which may lead to good results.

It is worth noting however, that our technique doesn’t determine what is wrong with the

entity resolution result, only that something is wrong. The situation described in the first scenario

indicates a matching pair is not included in the candidate pairs generated by the blocking and

indexing step. The situation described in the second scenario indicates that at least one of the

match decisions relating to the three records does not reflect the ground truth. If the number

of such cases is relatively small, then investigating the instances where they occur can help to

fine tune the blocking and indexing and similarity calculation steps. If the number of such

cases is large, then this likely indicates the need to significantly revise at least one aspect of the

entity process, for example choose different similarity functions, a different blocking approach,

different attributes, etc.

6.2.1 Definitions

We assume a data set R made up of records ri ∈ R. Each record is associated with a set of

attributes A. We assume the traditional entity resolution process shown in Figure 2.1. We treat

the blocking and indexing step and the similarity calculation step as black boxes. We assume

the output of the blocking and indexing step is a set of (possibly overlapping) blocks B, where

each block bn ∈ B is a subset of R. We assume the output of the similarity calculation step is a

set S, with each sij ∈ S being a triple 〈i, j, ψij〉 where ψij is the similarity between records ri and

rj for each pair of records ri, rj ∈ R where there exists a bn ∈ B such that ri, rj ∈ bn.

Similarity values are calculated during the similarity calculation step using traditional string

comparison functions (see Section 2.3.2) applied to one or more attributes in A. Relational

similarity can also be incorporated through the use of appropriate relational similarity measures

(again see Section 2.3.2). We assume all similarity values are normalised, i.e. ψij ∈ [0, 1] for all

ri, rj ∈ R. If blocking or indexing has been applied then S may not be complete, i.e. for some

(and in practice most) pairs of records ri, rj ∈ R, sij /∈ S.

For advanced entity resolution techniques the classification step is generally computationally

Submitted – 18 June 2020

114 Eliminating Parameter Settings through Unsupervised Evaluation

expensive so we aim to detect potential problems with transitive closure prior to this stage. We

use a similarity threshold ψmin (where 0 ≤ ψmin ≤ 1) to determine likely matches, in essence a

simple threshold based classifier (as described in Section 2.3.3). If we have existing knowledge

about a suitable value for ψmin, we can set the threshold accordingly, otherwise we can test many

different values and assess the results of each (like we do in our evaluation in Section 6.3). For

ri, rj ∈ R, if sij ∈ S and ψij ≥ ψmin then we assume ri and rj have a high likelihood of being

classified as a match during the classification step. In the simplest case this may be the actual

classification model used as well [47].

We construct a graph G where each node ni ∈ G corresponds to a record ri ∈ R, and an edge

〈ri, rj〉 in G corresponds to the similarity value sij ∈ S, with the edge weight being the value of

ψij. For a given ψmin, we also define a sub-graph of G, G+ = {〈ri, rj〉 ∈ G : ψij ≥ ψmin}. In

essence, G+ corresponds to the graph of likely matches in R.

Finally, we define three types of triangles (shown in Figure 6.1) that exist on the graph G+

with similarity threshold ψmin:

• A consistent triangle - denoted ∆co - is a triple of records 〈ri, rj, rk〉 such that ri, rj, rk ∈ R,

sij, sik, skj ∈ S and ψij ≥ ψmin, ψik ≥ ψmin and ψkj ≥ ψmin.

• An incomplete triangle - denoted ∆ip - is a triple of records 〈ri, rj, rk〉 such that ri, rj, rk ∈ R,

sij, sjk ∈ S but sik /∈ S and ψij ≥ ψmin and ψjk ≥ ψmin. Note that because sik /∈ S, ψik is never

calculated.

• An inconsistent triangle - denoted ∆ic - is a triple of records 〈ri, rj, rk〉 such that ri, rj, rk ∈ R,

sij, sik, sjk ∈ S, ψij ≥ ψmin, ψjk ≥ ψmin but ψik < ψmin.

In the next section we describe how the proportions of the different triangle types in the

entity resolution result can give us insight into where we may have problems in the process,

without relying on ground truth or a full evaluation.

6.2.2 Triangle Counting Approach

The basic idea of our approach is to perform simple threshold based entity resolution and then

look at situations where transitive closure does not hold in the final result in order to detect

problems. In order to assess transitive closure, we make use of the three triangle types described

in the previous section: consistent triangles, incomplete triangles and inconsistent triangles. The three

different triangle types are shown in Figure 6.1. Assuming that transitive closure holds in the

Submitted – 18 June 2020

§6.2 Approach 115

r1

r2

r3 r1

r2

r3 r1

r2

r3

Consistent Triangle Incomplete Triangle Inconsistent Triangle

Likely Match: (ψij ≥ ψmin)

Likely Non-match: (ψij < ψmin)

Figure 6.1: Three triangle types for evaluating entity resolution.

Algorithm 6.1: Unsupervised evaluation of entity resolution

Input:
- A set of records ri ∈ R
- A set of blocks bk ∈ B
- A set of similarity values 〈ri , rj, ψij〉 ∈ S
- A minimum similarity threshold ψmin;
Output:
- Normalised proportions of Consistent (CO), Incomplete (IP) and Inconsistent triangles (IS).

1: G = ConstructGraph(R, S)
2: G+ = GetSubGraph(G, ψmin) // Limit to likely matches
3: C = BreadthFirstSearch(G+) // Get connected components
4: foreach ci in C do:

5: ∆co
i , ∆

ip
i , ∆is

i = CountTriangleTypes(ci) // Label each component with the triangle counts
6: CO, IP, IS = NormaliseCounts(C)
7: return CO, IP, IS

ground truth, then for the output of the entity resolution process to reflect the ground truth, it

should only contain consistent triangles. If the output contains a high proportion of incomplete

triangles, then there are problems with the blocking process, while if the output contains a high

proportion of inconsistent triangles, then there are problems with the similarity calculations.

Our approach is detailed in Algorithm 6.1. We start by constructing G, based on the set of

records R, the set of similarity values S, and the specified similarity threshold ψmin (line 1). We

next construct the sub-graph G+, which only contains edges 〈ri, rj〉 where sij ∈ S and ψij ≥ ψmin

(line 2). We then use a breadth-first search to find the connected components of G+ (line 3).

For each component in G+, we count the number of consistent (∆co), incomplete (∆ip), and

inconsistent (∆ic) triangles in G (line 5). These counts are then normalised for each component

(line 6).

Data set Approach Type Attributes

UKCD 1 Traditional Blocking First Name + Birth Parish
UKCD 2 Traditional Blocking Gender + Surname
UKCD 3 Traditional Blocking Gender + Birth Year
NCVR 1 Sorted Neighbourhood Indexing First Name
NCVR 2 Sorted Neighbourhood Indexing Surname + First Name + Zip Code

Table 6.3: The blocking approaches used in our evaluation.

Submitted – 18 June 2020

116 Eliminating Parameter Settings through Unsupervised Evaluation

Data set Approach Similarity Functions

CORA 1 〈Author, qgram, 0.2〉, 〈Title, qgram, 0.4〉, 〈Publication, qgram, 0.2〉, 〈Year, qgram, 0.2〉
CORA 2 〈Title, qgram, 1.0〉
CORA 3 〈Author, qgram, 0.5〉, 〈Title, qgram, 0.5〉
CORA 4 〈Publication, qgram, 0.5〉, 〈Year, qgram, 0.5〉

UKCD 1
〈Surname, qgram, 0.3〉, 〈First Name, qgram, 0.3〉,

〈Occupation, qgram, 0.15〉, 〈Birth Year, age_difference, 0.25〉
NCVR 1 〈First Name, Jaro, 1.0〉

NCVR 2
〈First Name, Jaro, 0.25〉, 〈Surname, Jaro, 0.25〉,

〈Age, age_difference, 0.25〉, 〈Zip Code, qgram, 0.25〉

Table 6.4: The combinations of 〈attribute, similarity function, weighting〉 triplets used in our
evaluation.

We discuss normalisation further in Section 6.4. However, the standard approach we use

for normalising is as follows: given the set of connected components C, for each component

ci ∈ C, let ∆co
i , ∆

ip
i and ∆is

i be the numbers of consistent, incomplete and inconsistent triangles,

respectively, let |ci| be the number of nodes in ci and let |ei| be the number of edges in ci. Let

C3 = {ci ∈ C : |ci| ≥ 3}. The normalised proportions of each triangle type are calculated as

follows:

Consistent triangles (CO) =
1

p ∑
ci∈C3

∆co
i

|ei|
(6.1)

Incomplete triangles (IP) =
1

p ∑
ci∈C3

∆
ip
i

|ei|
(6.2)

Inconsistent triangles (IS) =
1

p ∑
ci∈C3

∆is
i

|ei|
(6.3)

where p is a scaling factor to ensure that CO + IP + IS = 1. We note that components with 1

or 2 nodes do not appear in the results, since they do not contain any triangles.

6.3 Evaluation

We evaluated our technique on each of the three data sets described in Section 2.5. Since CORA

is a very small data set (1295 records) we have used CORA to show the impact of different

similarity functions without blocking or indexing being applied. For the UKCD data sets, we

used multiple blocking methods but kept the similarity functions unchanged. For the NCVR

data set, we tested the combinations of two different indexing parameters and two different

similarity functions. We also note that some settings are deliberately chosen in such a way as to

be unsuitable in order to demonstrate the effect this has on the results. The blocking or indexing

Submitted – 18 June 2020

§6.3 Evaluation 117

0.70.80.91.0

Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
CORA Triangle Proportions for Sim. Calc.: 1

0.70.80.91.0

Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
CORA Evaluation for Sim. Calc.: 1

Precision

Recall

F-Measure

0.70.80.91.0

Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
CORA Triangle Proportions for Sim. Calc.: 2

0.70.80.91.0

Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
CORA Evaluation for Sim. Calc.: 2

Precision

Recall

F-Measure

0.70.80.91.0

Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
CORA Triangle Proportions for Sim. Calc.: 3

0.70.80.91.0

Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
CORA Evaluation for Sim. Calc.: 3

Precision

Recall

F-Measure

0.70.80.91.0

Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
CORA Triangle Proportions for Sim. Calc.: 4

0.70.80.91.0

Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
CORA Evaluation for Sim. Calc.: 4

Precision

Recall

F-Measure

Figure 6.2: Normalised proportions of Consistent Triangles (green), Incomplete Triangles (yellow)
and Inconsistent Triangles (red), as well as the corresponding values of precision, recall and the

f-measure for the CORA data set.

Submitted – 18 June 2020

118 Eliminating Parameter Settings through Unsupervised Evaluation

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
UKCD Triangle proportions for Blk. Methods 1 and 2

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
UKCD Evaluation for Blk Methods 1 and 2

Precision

Recall

F-Measure

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
UKCD Triangle proportions for Blk. Methods 1 and 3

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
UKCD Evaluation for Blk Methods 1 and 3

Precision

Recall

F-Measure

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
UKCD Triangle proportions for Blk. Methods 2 and 3

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
UKCD Evaluation for Blk Methods 2 and 3

Precision

Recall

F-Measure

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
UKCD Triangle proportions for Blk. Method 2

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
UKCD Evaluation for Blk Method 2

Precision

Recall

F-Measure

Figure 6.3: Normalised proportions of Consistent Triangles (green), Incomplete Triangles (yellow)
and Inconsistent Triangles (red), as well as the corresponding values of precision, recall and the

f-measure for the UKCD data set.

Submitted – 18 June 2020

§6.3 Evaluation 119

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
NCVR Triangle Proportions for Blk.: 1, Sim. Calc.: 1

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
NCVR Evaluation for Blk.: 1, Sim. Calc.: 1

Precision

Recall

F-Measure

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
NCVR Triangle Proportions for Blk.: 1, Sim. Calc.: 2

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
NCVR Evaluation for Blk.: 1, Sim. Calc.: 2

Precision

Recall

F-Measure

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
NCVR Triangle Proportions for Blk.: 2, Sim. Calc.: 1

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
NCVR Evaluation for Blk.: 2, Sim. Calc.: 1

Precision

Recall

F-Measure

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
NCVR Triangle Proportions for Blk.: 2, Sim. Calc.: 2

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0
NCVR Evaluation for Blk.: 2, Sim. Calc.: 2

Precision

Recall

F-Measure

Figure 6.4: Normalised proportions of Consistent Triangles (green), Incomplete Triangles (yellow)
and Inconsistent Triangles (red), as well as the corresponding values of precision, recall and the

f-measure for the NCVR (full) data set.

Submitted – 18 June 2020

120 Eliminating Parameter Settings through Unsupervised Evaluation

0.50.60.70.80.91.0

Similarity threshold - ψmin

0

200

400

600

800

1000

1200

1400

T
im

e
(s
ec
on
d
s)

Scalability - ψmin
Total

Breadth-First Search

Triangle Counting

0 20 40 60 80 100

Number of edges (millions)

0

25

50

75

100

125

150

175

200

T
im

e
(s
ec
on
d
s)

Scalability - edges in G

Total

Breadth-First Search

Triangle Counting

Figure 6.5: Scalability - evaluated on the NCVR data set, showing the impact of ψmin and the
number of edges in G on the running time.

approaches are shown in Table 6.3 and the similarity functions are shown in Table 6.4 - where

they are described as a triplet of 〈attribute, similarity f unction, weighting〉.

For our evaluation, we present the normalised proportions of consistent, incomplete and

inconsistent triangles for different values of ψmin, and for different combinations of blocking

parameters and similarity calculations. The results are shown in Figures 6.2, 6.3 and 6.4. We also

show the corresponding values of precision, recall and the f-measure (described in Section 2.3).

In addition, we evaluated the scalability of our approach using the NCVR data set. We

examined the impact of the density of the graph by changing the threshold ψmin, shown in

Figure 6.5, and also the number of edges in G. Increasing the number of edges in G resulted

in a small increase in running time. For most settings of ψmin the algorithm was efficient, but

for values of ψmin below a certain point (in this case 0.7), the presence of very large components

slows the algorithm down significantly. However, the algorithm is efficient for the values of ψmin

that are of practical interest (typically > 0.7). We discuss this further in the next section.

Finally, we make two notes about the experimental setup. Firstly, since transitive closure

does not apply to the NCVR-450 data set, (see discussion in the next section,) for the evaluation

we instead made use of the full NCVR data set.

Secondly, for the UKCD data set, there is a one-to-one matching constraint between records

in each census period (i.e. a record from the 1851 census can match to at most one record from

the 1861 census and so forth). However, because there are six census periods in the data set

(every ten years between 1851 and 1901), transitive closure is still applicable provided the three

records are all from different census periods. Incorporating this required a minor modification

Submitted – 18 June 2020

§6.4 Discussion 121

to the GetSubGraph function called in line two of Algorithm 6.1 in order to ensure the one-to-

one matching constraints were not violated (either directly or through transitive closure). As

such, when constructing, G+, we adopted a greedy approach starting with the edges of G with

the highest value of ψ and only adding them to G+ if they would not violate the one-to-one

matching constraint. Ties were resolved arbitrarily (i.e. based on a randomly assigned record

id).

6.4 Discussion

As with most aspects of the entity resolution problem, there is no one-size-fits-all rule such as

‘consistent triangle proportions above a certain threshold are guaranteed to produce the best

results.’ However, the proportions of the different triangle types provide another tool for evalu-

ating entity resolution results and we can eliminate several of the results presented above very

quickly. We can also make some additional judgements to help refine the entity resolution

process going forwards.

CORA: Each of results 1, 2 and 3 are potentially worth investigating further. We make

a note that for number 2, the number of matches only increases from approximately 12, 000

to approximately 20, 000 as ψmin decreases from 1.0 to 0.7, and from approximately 18, 500 to

approximately 20, 000 between ψmin values of 0.9 and 0.7. This suggests there may be a tipping

point up to which the majority of triagles are consistent, and it may be worth experimenting

with lower values of ψmin to determine where this point occurs.

The results of number 4 are problematic, since it is not immediately obvious that they are

significantly worse than numbers 1, 2 and 3. However, for values of ψmin ≤ 0.72, a single large

component includes over half the records in the data set. This suggests that even though the

output is reasonably consistent, it is likely that is has matched far too many records to be of

practical value.

UKCD: The most obvious point with respect to the UKCD results is the high proportion

of inconsistent triangles when blocking techniques 1 and 3 are combined. This suggests that

these two blocking approaches do not significantly overlap. Furthermore, when each of them

is combined with blocking approach 2, there is a very low proportion of inconsistent triangles

for most values of ψmin. This suggests that blocking approach 2 is capturing almost all the

matches that are included in 1 and 3, which is borne out by the final set of results (which was

run subsequently to the first three), where only blocking approach 2 is used. Going forward,

Submitted – 18 June 2020

122 Eliminating Parameter Settings through Unsupervised Evaluation

this suggests that blocking approaches 1 and 3 can be discarded, since they do not add anything

that is not already captured by blocking approach 2.

Another observation about the results from the UKCD data set relates to the significant rise

in consistency for values of ψmin in the range 0.9 to 0.85. This coincides with the weighting of

0.15 associated with the occupation attribute in the similarity calculations. It suggests that there

are a large number of records which are identical except for their values in this attribute. This

means that for the classification step, it is very important to determine whether such records

should be a match or not, since it will have a significant impact on the results.

NCVR: The main observation is that even at values of ψmin close to 1.0 there are large propor-

tions of incomplete triangles. This suggests that there are many clusters forming that are larger

than the window size of the sorted neighbourhood indexing (20 records for each approach). If

these large clusters are realistic with respect to the problem then the window size needs to be

increased to make sure that all such record pairs are actually compared. Otherwise, it suggests

that the similarity functions are inadequate to solve the particular problem. In the case of the

NCVR data set it is most likely to be the latter, since the size of the data set and the frequency of

the most common values of each of the reliable attributes First Name, Surname and Age are more

likely to produce a false match than a true match, even when they are identical. This suggests

that capturing some measure of relational similarity or performing group linkage on households

may be required to achieve good results.

It is also worth making a note about the high proportion of inconsistent triangles in the

second and fourth rows of Figure 6.4. This is due to the use of the age_difference function

(which we define in Chapter 7). Because age changes, for all data sets we evaluate, we convert

the Age attribute to Year of Birth prior to comparison. However, this means that the value of

Year of Birth can be incorrect by one year (since we do not know whether the record comes from

before or after the individual’s birthday). To account for this, the age_difference function

returns similarity of 1.0 even for a difference in Year of Birth of one year. However, this leads to

the situation where the results are inconsistent - even when ψmin is set to 1.0, since records are

being matched with other records both one year older and one year younger than themselves,

and which are identical in the other attributes involved in the similarity calculation. More

sophisticated matching techniques are required to resolve these cases.

Submitted – 18 June 2020

§6.4 Discussion 123

6.4.1 Complexity Analysis and Scalability

We briefly analyse the computational complexity of our approach. Breadth-first search is O(|R|+

|S|) and triangle counting is O(|S|
3
2) [171]. In practice triangle counting is dependent on the de-

gree of nodes in the graph (both average and worst-case degree). This matches our practical

evaluation in our Section 6.3, where the running time is shown to be very dependent on the

choice of ψmin, (i.e. how many edges are in G+). As such, while a superlinear complexity is not

ideal, for most values of ψmin that are of practical use (i.e. ψmin ≥ 0.7), the algorithm scales very

well.

6.4.2 Normalisation

Since a triangle is formed by three points, we observe that the maximum number of triangles

in a component ci is (|ci |
3). This means that the number of triangles in a component is O(|ci|

3).

As such, without normalisation a single large component can completely dominate the results.

While the presence of a large component in and of itself may be a sign of problems (since in

most problem domains it is rare to have hundreds or thousands of records that refer to the

same entity in a data set), it can still lead to problems. A component with ten nodes potentially

contains 120 times as many triangles as a component with three nodes.

We considered two possible methods of normalisation. The first, and the one presented in

the results, is to make the contribution of each component proportional to its size. As described

in Section 6.2, this can be done by dividing the contribution of each component by the number

of edges it contains (which is O(|ci|
2)) to end up with a weighting that is proportional to the

number of nodes in the component, i.e. O(|ci|).

However, an alternative method of normalisation is to have each component carry the same

weighting regardless of size. This can be achieved by dividing the contribution of each compo-

nent by the total number of triangles in it. The normalisation factors shown in Equations 6.1, 6.2

and 6.3 instead become:

Consistent triangles (CO) =
1

|C3|
∑

ci∈C3

∆co
i

∆co
i + ∆

ip
i + ∆is

i

(6.4)

Incomplete triangles (IP) =
1

|C3|
∑

ci∈C3

∆
ip
i

∆co
i + ∆

ip
i + ∆is

i

(6.5)

Submitted – 18 June 2020

124 Eliminating Parameter Settings through Unsupervised Evaluation

Household ID Entity IDs

h1 e1, e2, e3, e4

h2 e1, e2, e3, e5

h3 e1, e2, e5, e6

Table 6.5: An example of three households where transitive closure doesn’t apply for household
matches in the ground truth, based on a match definition of 75% or greater overlap in the entities

in the two households.

Inconsistent triangles (IS) =
1

|C3|
∑

ci∈C3

∆is
i

∆co
i + ∆

ip
i + ∆is

i

(6.6)

where |C3| is the number of components in C3.

6.4.3 Limitations

There are some limitations to our approach and we briefly discuss some situations where it is

not appropriate.

Firstly, for some entity resolution problems, transitive closure does not apply. In some cases

this is due to the presence of one-to-one matching constraints, which we defined in Section 2.2

and discussed in more detail in Chapter 5. If there are only two data sets to be matched and

a one-to-one matching constraint applies to all records, then there is no possibility of a single

record being part of multiple true matches, so transitive closure cannot apply.

As discussed in Section 2.2, there are also some situations where transitive closure may not

hold in the ground truth. Consider the three households shown in Table 6.5. If the definition

of a match for two households is that at least 75% of the individual entities (in this case people)

in each household are also in the other household, then transitive closure does not hold in the

ground truth when matching these three households. Household h1 matches to household h2,

since they both contain entities e1, e2 and e3, and household h2 matches household h3, since

they both contain entities e1, e2 and e5, but household h1 does not match household h3, since

the only common entities are e1 and e2, which is a 50% overlap and does not meet the required

threshold of 75%. For entity resolution problems like this, we cannot assume that a high level of

inconsistency in the results means there are problems in the entity resolution process.

Finally, while a high level of inconsistency in the results implies problems with the entity

resolution process, the reverse is not true, i.e. a low level of inconsistency does not always imply

a lack of problems. For example, setting ψmin to 1.01 will result in no triangles being formed

(since G+ has no edges), which is a perfectly consistent result that is likely of no practical

Submitted – 18 June 2020

§6.4 Discussion 125

value. Similarly, in the absence of blockingand indexing, setting ψmin to 0.00 will result in G+

being a complete graph, so all the traingles are consistent triangles. This again is a perfectly

consistent result which is likely of no practical use. While these are extreme cases, less extreme

examples are easy to construct and we show some in Section 6.3 along with a discussion of

how to potentially identify them. Nevertheless, we recommend using our approach to test and

validate choices in conjunction with traditional expertise.

6.4.4 Incorporating Into Advanced Entity Resolution Techniques

Our approach uses a simple threshold based classifier ψmin as a means of determining likely

matches. This is a reasonable first approximation since all the advanced entity resolution tech-

niques described in Chapter 3 make use of similarity in some way. However, those techniques

incorporate additional features which go beyond a simple threshold based classifier, and the

output of such classification steps may not mirror the results we obtain.

Nevertheless, there are a number of reasons why it is important that the blocking and similar-

ity calculation steps are well chosen, even when used as part of more advanced entity resolution

techniques. From a computational perspective, resolving inconsistencies in transitive closure

using techniques such as Markov logic networks [165] is extremely expensive computationally.

For other techniques such as the random walk based collective entity resolution technique of

Kalashnikov and Mehrotra [86], inconsistencies in the output from the initial stage increase the

number of choice nodes in the graph which increases the running time of the technique. From

a blocking perspective, if each block is processed independantly, then any deficiencies in the

blocking may never be corrected in the classification step. In addition, techniques such as the

group linkage technique of Fu et al. [54] rely on a threshold based classifier to provide the poten-

tial entity-to-entity matches, before trying to classify the groups, so any problems in the initial

stage will likely impact the final results.

Finally, when using our approach in conjuction with advanced entity resolution techniques,

our approach can also be applied to the output of the classification step where classified matches

are used in place of similarity values - thus removing the need of ψmin. While this has the

downside of requiring the (potentially expensive) classification step be run before problems are

detected, many of the same general rules apply in that a high level of inconsistency in the final

results, likely indicates something has gone wrong in the process. As such it gives us another

tool to evaluate an entity resolution result without resorting to a full manual evaluation.

Submitted – 18 June 2020

126 Eliminating Parameter Settings through Unsupervised Evaluation

6.5 Summary

Entity resolution is often performed in an iterative fashion. Techniques are chosen, parameters

set, results are obtained and evaluated, and then the whole process is repeated until the final

outcome is good enough for whatever the task is. While this may be necessary from a practical

perspective, the process can be computationally very slow. In addition, if the process is per-

formed without evaluation data, a common scenario for real-world entity resolution problems,

then a manual evaluation to determine whether the results obtained are good enough can be

very time consuming, and thus expensive.

While this situation holds true for traditional entity resolution, it can be even worse for

many advanced entity resolution techniques where the classification step of the entity resolution

process can be extremely time-consuming. Evaluating the results for complex entity resolution

problems involving groups of entities or multiple entity and relationship types can also require

examining the context of records which further increases the effort and cost associated with the

evaluation for each iteration.

In this chapter we presented a technique based on transitive closure to detect entity resolu-

tion results with a high degree of inconsistency in either the blocking results or the similarity

calculation results. This technique can be run prior to the classification step in order to de-

tect potential problems and eliminate parameter settings or choice of techniques that will not

produce consistent results. By examining the proportions of different types of triangles in the

results graph, we can detect high levels of inconsistency. Where a pair of records are being im-

plicitly matched through transitive closure but were never compared in the similarity calculation

step, there must be a problem with the blocking or indexing approach used. Where they were

compared but were below the required similarity threshold, there must be a problem with the

similarity calculation. If either situation occurs frequently in the entity resolution results then

this can be quickly detected and the parameters or techniques changed until a satisfactory level

of consistency is obtained.

Finally, we reiterate that although a high level of inconsistency indicates problems with

the entity resolution process, a consistent output is not a guarantee of good results. A fully

consistent result can be obtained by matching every pair of records or by matching no pairs of

records, however neither result is likely to be of value. We discuss some less extreme examples

in the evaluation along with potential ways of detecting such situations, but still suggest that our

approach should be used to test and validate choices in conjunction with traditional expertise.

Submitted – 18 June 2020

§6.5 Summary 127

6.5.1 Future Work

While the approach for evaluating entity resolution in an unsupervised fashion is effective, there

are a number of possibilities for extending the work or to look at similar types of measures as a

way to minimise the manual evaluation effort that is required.

In our current approach, the measure ψij is treated as a single value, where for those situ-

ations that are producing inconsistent results, it might be useful to see the breakdown across

different attributes and similarity functions. This would make it easier to detect situations like

the one present in the UKCD experiments, where the Occupation attribute was causing prob-

lems in the similarity calculation step. The same approach could be applied to the blocking and

indexing step, where investigating which combination of techniques was producing the largest

proportion of the incomplete triangles would allow for a better assessment of why the problems

were occuring.

Just as it would be possible to separate ψij into different components based on the attributes

used, so it would also be possible to have different values of ψmin in different parts of a graph.

Along similar lines, the entity resolution problem can be reframed as a community detection

problem in graphs [51], and while many of the algorithms for this are computationally expen-

sive, there are potentially approaches from this area that could be adapted to our problem.

While our approach was effective at detecting a high degree of inconsistency, as we men-

tioned in Section 6.4, consistent results are not guaranteed to be useful. In the extreme cases

this is relatively easy to detect, however, we found that for the less obvious cases two addi-

tional pieces of information were very effective in spotting problems, namely the total number

of matches and the size of the largest cluster. While they can be evaluated separately as we did

in our experimental evaluation, we intend to investigate whether they can be incorporated into

the measures, potentially through the normalisation process. This would maintain the relatively

simple output of our approach while also allowing us to identify less obvious problems.

Submitted – 18 June 2020

128 Eliminating Parameter Settings through Unsupervised Evaluation

Submitted – 18 June 2020

Chapter 7

Generating Relational Training Data - A

Case Study on the Isle of Skye

As we discussed in Chapter 1, a significant limitation of many advanced entity resolution tech-

niques is that they require training data or a boostrapping process. In many real-world entity

resolution applications, such training data is unavailable and it can be expensive and time con-

suming to produce. In Chapter 5, we presented an approach that made use of one-to-one and

one-to-many matching constraints, as well as the concept of ambiguity, to produce training data

consisting of similar and unambiguous record pairs. We showed that this approach is very ef-

fective at producing high quality training data (our precision results were all very close to 1.0)

and worked better than the baseline approaches. However, as discussed in Chapter 3, many ad-

vanced entity resolution techniques also make use of relationship information. Collective entity

resolution techniques [12, 39, 86, 165], group linkage techniques [34, 53, 54, 126] and popula-

tion reconstruction techniques [29, 42, 157] all use relationship information as part of the entity

resolution process. This means that the problem domains where advanced entity resolution

techniques such as these are appropriate, also provide additional features that can be used as

part of the training data generation process. In addition, many of these problem domains are

very challenging, and the additional features may be required to achieve good results.

In this chapter, we extend our training data generation technique from Chapter 5 to incor-

porate relationship information. We use the relationship information to validate the matches

produced by our approach, and we also extend the concept of ambiguity to groups of records,

allowing us to add matches to the training set which may be individually ambiguous, but where

the group as a whole0 has only one candidate group for matching.

To demonstrate the extension of our technique from Chapter 5, we present a case study using

nineteenth century historical registry data from the Isle of Skye in Scotland, United Kingdom.

129

Submitted – 18 June 2020

130 Generating Relational Training Data - A Case Study on the Isle of Skye

As we discussed in Chapter 3, population reconstruction techniques link registry data such as

birth, death and marriage certificates, as well as census data [157]. Where available, other official

or unofficial records can also be incorporated including legal documents such as land title, loan

documents and wills [42], court or other criminal records [113], parish registers [174], and even

private correspondance or other writings [61]. By linking such records, it is possible to build

up details of major life events for individuals and family trees. Increasingly, governments and

other organisations around the world are becoming interested in creating such linked data sets

(both historical and contemporary) and have sponsored projects or setup units to create them1.

The output of these projects provides a valuable research resource in fields such as history [113],

social sciences [175] and medicine [63, 75].

The data sets used in this case study form part of the Digitising Scotland project2. While the

population reconstruction aspect of the project only considers census records and birth, death

and marriage certificates, the full scope of the project is broader than this and includes codifying

occupation and cause of death details as well as incorporating address data.

The remainder of the chapter is structured as follows. In Section 7.1 we describe the back-

ground to the problem, the data sets involved, and the challenging nature of the problem. In

Section 7.2 we show why current approaches to generating training data are unlikely to be suc-

cessful for this problem, and describe the adaptations we made to our approach from Chapter 5.

In Section 7.3 we describe our experimental setup, our results, and the results of the baseline

approaches. In Section 7.4, we discuss our experimental results, how they performed for each

matching case, and other observations we made while evaluating the performance of our tech-

nique. Finally, in Section 7.5 we provide a brief summary of our work in this chapter.

7.1 Overview

The Isle of Skye is a large island off the West coast of the Scottish mainland in the United

Kingdom. It is approximately 80 kilometers long and 40 kilometers wide.3 The island nature

of the Isle of Skye makes it relatively isolated, and this was particularly true in the nineteenth

century. This geographic isolation and relatively stable population has meant that the Isle of

Skye has been used for research case studies in diverse areas including infant mortality [59, 149],

linguistics [167], ecology [14] and others.

1https://www.ipdln.org/data-linkage-centres
2https://digitisingscotland.ac.uk/
3https://www.google.com/maps/place/Skye/@57.2341925,-7.0039461,8z

Submitted – 18 June 2020

§7.1 Overview 131

Data Set Number of Records First Record Last Record Unlinked Records

Births 17,614 1861 1901 1627

Deaths 12,285 1861 1901 2267

Marriages 2,668 1861 1901 857a

Census 1861 19,605 1861 1861 6917

Census 1871 18,102 1871 1871 2258

Census 1881 17,684 1881 1881 1911

Census 1891 16,476 1891 1891 1788

Census 1901 14,609 1901 1901 3155

Table 7.1: The different components of the Isle of Skye data set.

aThis figure is the number of bride and groom records that are not linked, so a single marriage certificate could
be counted twice if neither is linked.

This geographic isolation also makes the Isle of Skye particularly useful as a test case for

population reconstruction. A major challenge for population reconstruction is individuals mov-

ing, either to another area, which makes them much harder to reliably link, or outside the scope

of the data set altogether [31]. In the case of the Isle of Skye during the nineteenth century,

many individuals were born, lived their entire lives, and died on the island, allowing a complete

timeline of important life events to be constructed for individuals [69].

7.1.1 Isle of Skye Data Sets

The data set for this case study is split into eight separate files, and basic statistics about each

are shown in Table 7.1. There is one file each for birth, death and marriage records, as well as

five census files, one for each of the years 1861, 1871, 1881, 1891 and 1901.

In addition, there is a quasi-ground truth data set containing records that have been man-

ually linked by historians [148]. This ground truth data set contains 54,545 individual records,

representing life events that the historians have determined are about the same individual. Each

record contains record ids from the eight other data sets. Every birth, death and census record

appears once in the ground truth data, and every marriage record appears twice in the ground

truth data, once for the bride and once for the groom.

In all cases, the data sets are dirty. There are many missing or abbreviated values, even in

seemingly critical attributes like First Name and Surname. They also contain apparent errors,

although it is not clear whether this is due to errors in the original records or in the transcription

process.

Submitted – 18 June 2020

132 Generating Relational Training Data - A Case Study on the Isle of Skye

7.1.2 Ground Truth Data Set

The ground truth data set used in this case study was created by historians [148]. They describe

the process as ongoing, and detail many of the challenges that we discuss in the next section

including the small domain sizes of attributes such as First Name and Surname. The approach

used by the historians to create the ground truth data relies on similar ideas to those of Fu et al.

[53] including age and generational differences between individuals being fixed over time. The

approach also makes use of an idea similar to the concept of ambiguity that we presented math-

ematically in Chapter 5. They discuss how finding a single unambiguous match (for example

due to a rare or unique name) not only assists in matching the individual, but also any related

entities, an idea we make use of when generating training data in this chapter. The authors

describe the process as being ongoing, and while successful in terms of the quality of the results

they achieve, their approach requires a very high degree of manual intervention and evaluation.

The same authors extended the initial data set creation in a further study that attempted to

investigate population movement off the island [60]. By searching for individuals born on the

Isle of Skye in the censuses and death records of Scotland, England and Wales, they were able

to identify a number of people who had left the island. By doing this, they were able to reduce

the number of individuals who were unmatched in the Isle of Skye data sets and increase the

confidence in other results.

Finally, it is important to note that the construction of the ground truth data has favoured

precision over recall, so it is likely that the total number of individuals on the Isle of Skye was

lower than 54,545 for the period 1861 to 1901. As shown in Table 7.1, many of the records in

each data set have not been linked to any other record. While it is possible for example that

a child born on the Isle of Skye, moved away before they could be recorded in a census, or an

individual moved to the isle just before dying, the high proportions of such records, suggests

that the links in the ground truth data set are only a portion of the true links, something that

the data set creators note in the data definitions document.

7.1.3 Challenges

There are several challenges that make obtaining training data for these data sets extremely

difficult. The general challenges of population reconstruction described by Christen et al. [31]

apply here, but of particular note is the poor data quality, and the nature of the problem domain.

A major challenge is simply poor data quality. There are many missing attribute values in

Submitted – 18 June 2020

§7.1 Overview 133

all the data sets, although the census records are generally of a higher quality than the birth,

death and marriage certificates. For example, 419 birth records are missing the First Name

of the baby. While this may be correct, for example if the baby died during or immediately

after birth, or a name had not been chosen at the time of registration, missing information in

key attributes causes problems with blocking and similarity calculations. In addition, there

are attributes which would be valuable for both generating training data and the subsequent

entity resolution process, but which have such a high proportion of missing values that they are

effectively rendered useless. An example is the attribute Mother’s Occupation in the births data

set, which has less than 10% completeness.

Another challenge is that the domains of many attributes are very small, with a very skewed

distribution. In the birth records, the ten most common values of First Name account for approx-

imately half the records, and the situation is the same for the Surname attribute. In addition,

the most common value of First Name, ‘John’ and the most common value of Surname, ‘Macdon-

ald’, each make up nearly 10% of their respective attribute values. The situation is similar for

occupations. For the attribute Father’s Occupation over 30% have a variation of ‘farmer’ (‘fmr’,

‘crofter’, ‘cr’, etc.) as the attribute value and another 20% have a variation of ‘fisherman’ (‘fish’,

‘seaman’, ‘sea’, etc.) as the attribute value. In addition, due to the different ways of recording

what is essentially the same occupation, traditional string comparison methods are unlikely to

work well on these attributes. The domain size of the Address attribute is small since there are

only a small number of villages on the Isle of Skye, so most records have similar address values.

To further complicate matters, even within a single household, living children were sometimes

given the same first name [56], meaning that even if a birth certificate could be linked to a house-

hold in a census, it may still be impossible to link the baby to the correct household member

with certainty.

The presence of attributes such as First Name, Surname, Occupation and Age, on each record

type (birth records, census records, etc.) initially suggests that traditional approaches to generat-

ing training data should be viable for this problem. However, the limited size and the skewness

of the domain in many attributes, combined with a high proportion of missing values, mean that

none of the approaches presented in Chapter 5 are effective. Even active learning (described in

Chapter 3) may not be viable given that the ground truth data set has taken multiple domain

experts more than a decade to create and still likely contains missing and incorrect matches.

However, by extending our training data generation approach from Chapter 5 to include rela-

tionship information, we can produce a set of high quality training data for this problem.

Submitted – 18 June 2020

134 Generating Relational Training Data - A Case Study on the Isle of Skye

7.2 Relational Ambiguity Approach

The approach we use to generate training data for this case study is similar to the one we

presented in Chapter 5, and it exploits one-to-one and one-to-many matching constraints and

the concept of ambiguity in order to generate training data for this problem. However, rather

than comparing candidate record pairs and looking for examples where there is only a single

record pair with similarity above a certain threshold (i.e. the match is unambiguous), we use

relationship information to validate the training examples. We then expand our training data

by matching the related records of the validated training examples. As a final step, we compare

groups of records, and where a particular group has only a single valid candidate then the

records within the groups can be matched. Essentially, even though the individual records

may have many candidates for matching, collectively they are sufficiently unique to resolve this

ambiguity.

7.2.1 Preliminaries

The first part of our work was to confirm that traditional techniques for generating training data

would not be effective on this problem. To this end, we performed blocking and similarity calcu-

lations as for traditional entity resolution (and a necessary step towards using the bootstrapping

approaches described in Chapter 5). Our first observation with respect to the blocking is that

there are not many reliable attributes to use. The primary entity on every record type has First

Name, Surname, Gender. The attribute Year of Birth can be derived for each record, noting that for

census, marriage and death records it may be incorrect by one year. Census, marriage and death

records also have Occupation and Address attributes, however Occupation is problematic for many

different groups of people. Married women and children are often given their husband’s or

father’s occupation on the census (e.g. ‘Farmers Wife’, ‘Farmers Daughter’) and typically have

no occupation listed on death certificates. There is also no standard in the way particular oc-

cupations are recorded, even after data cleaning. This means that blocking based on Occupation

is likely to miss a significant number of true matches. The Address attribute is typically more

complete, however the value of this can change as people move, meaning it is also risky to use

for blocking purposes. As a result, we primarily rely on the attributes First Name, Surname and

Gender to perform blocking. We test three blocking schemes using sorted neighbourhood based

indexing and traditional blocking and the details are described in Table 7.2.

The similarity calculation step suffers from the same problems as blocking since there are

Submitted – 18 June 2020

§7.2 Relational Ambiguity Approach 135

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0IOS Triangle Proportions Blocking: B1 Sim: S1

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0IOS Triangle Proportions Blocking: B1 Sim: S2

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0IOS Triangle Proportions Blocking: B2 Sim: S1

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0IOS Triangle Proportions Blocking: B2 Sim: S2

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0IOS Triangle Proportions Blocking: B3 Sim: S1

0.70.80.91.0
Similarity Threshold

0.0

0.2

0.4

0.6

0.8

1.0IOS Triangle Proportions Blocking: B3 Sim: S2

Figure 7.1: Triangle proportions for the IOS data set using different combinations of blocking
attributes and similarity functions detailed in Table 7.2. The plots show the normalised propor-
tions of Consistent Triangles (green), Incomplete Triangles (yellow) and Inconsistent Triangles (red),

produced using the unsupervised evaluation approach described in Chapter 6.

Submitted – 18 June 2020

136 Generating Relational Training Data - A Case Study on the Isle of Skye

Blocking Approaches

B1 SN Key = Gender + Surname + First Name + Year of Birth - Window = 200

B2 SN Key = Gender + First Name + Surname - Window = 200

B3 TB Gender + First Name ∪ Gender + Surname

Similarity Calculations

S1 〈First Name, Jaro, 0.4〉, 〈Surname, Jaro, 0.4〉, 〈Year of Birth, AgeDiff., 0.2〉

S2
〈First Name, Jaro, 0.25〉, 〈Surname, Jaro, 0.25〉, 〈Year of Birth, AgeDiff., 0.2〉

〈Birth Parish, qgram, 0.15〉, 〈Occupation, qgram, 0.15〉

Table 7.2: The blocking approaches and similarity calculations tested on the case study data
sets. We used a combination of Sorted Neighbourhood indexing (SN) and traditional blocking
(TB). For traditional blocking, we blocked separately on each attribute combination and took all
resulting candidate pairs. Similarity calculations methods are described by triples of 〈Attribute,

similarity-function, weighting〉 values.

few reliable attributes available. The common attributes also vary depending on the certificate

types in question, so the similarity calculation between the baby on a birth certificate and a

census record is different to the similarity calculation between the baby on a birth certificate

and a death certificate. In order to address this problem, all our similarity calculations use the

following two principles:

1. Where an attribute is not present for a particular record type, or one or both of the records

does not have a value in the attribute, then remove it from the similarity calculation for

that record pair only.

2. Normalise the similarity calculation based on the attributes that were used.

What this means in practice is that where both records in a candidate pair have values for an

attribute we use it in the similarity calculation, however the similarity score is not reduced for

missing attributes or attribute values.

The attributes, functions and weightings we use in the similarity calculations are described in

Table 7.2. The similarity functions are described in Chapter 2, with the exception of AgeDifference,

which is the function we use to calculate the similarity in the Age attribute (or Year of Birth at-

tribute), given it may be incorrect by one year. It is calculated as:

SAgeDi f f (a1, a2) =























1 |a1 − a2| ≤ 1

(6 − |a1 − a2|)× 0.2 1 < |a1 − a2| < 6

0 6 ≤ |a1 − a2|

(7.1)

Submitted – 18 June 2020

§7.2 Relational Ambiguity Approach 137

where a1 and a2 are the age values being compared. An age difference of 0 or 1 gives similarity

of 1.0. As the age difference increases, similarity decreases linearly until it is 0.0 when the age

difference is 6 or more years.

We test six different combinations of blocking and similarity functions made up by com-

bining three blocking or indexing approaches and two similarity calculation approaches. We

evaluate them using our unsupervised evaluation approach described in Chapter 6 to determine

which ones are the most likely to be useful. The results are shown in Figure 7.1.

Our main observation about the results is that none of them are particularly convincing. The

best results appear to be the first or third blocking approach combined with the first similarity

calculation, where a high proportion of consistent triangles are achieved. However, both these

options show a high proportion of inconsistency with similarity close to 1.0, which is driven

partly by differences in the Year of Birth attribute and partly by missing values (as explained

below). The differences in the Year of Birth attribute means that long chains of records are being

matched together which cannot represent real entities. Within the chains, individual matches

only differ by one year in the Year of Birth attribute, but across the chain the difference in year

of birth is greater than one, which cannot reflect the real-world situation (since year of birth is

incorrect by at most one year). It is likely that some of these are caused by data errors, where

the Age attribute was incorrect and thus the derived Year of Birth attribute is incorrect by more

than one year. However, the high proportion of these cases, even for a similarity threshold of 1.0,

suggests that there are likely to be false matches included, which is a problem when generating

training data.

It is also worth discussing the very high proportion of inconsistent triangles in all approaches

that use similarity calculation ‘S2’, since at first these appear quite unusual. It is due to our

decision to exclude attributes from the similarity calculation where one of the records has no

value in the attribute - something that occurs in the attributes First Name, Surname and Year of

Birth, but is much more common in the Occupation attribute, hence the results for ‘S2’ appearing

much worse than the results for ‘S1’.

7.2.2 Using Relationships to Generate Training Data

The poor results from the unsupervised evaluation of the blocking and indexing step, and the

similarity calculation step are not surprising, given the challenges discussed in the previous

section. As such, after conducting the initial experiments to confirm that trying to generate

training data using the traditional bootstrapping approaches described in Chapter 5 is unlikely

Submitted – 18 June 2020

138 Generating Relational Training Data - A Case Study on the Isle of Skye

to be effective, we now propose a refinement of the technique we presented in Chapter 5 that can

deal with this situation. The refined technique still uses one-to-one matching constraints and

ambiguity (defined in Chapter 5) in order generate matches, however it also uses relationship

information to both extend and validate the matches that we generate.

Since each record type has different attributes and levels of completeness, we treat each

match type separately, census-to-census, birth-to-census, etc. with the aim of creating different

sets of matches for each match type. We first compare the census data sets, and then proceed

with other match types.

The refinement of the training data generation process presented in Chapter 5 works as

follows for the census-to-census matches:

1. The first step was to generate an initial set of unambiguous matches. We used traditional

blocking based on the value of First Name and separately based on the value of Address. We

compared each census data set with the subsequent one (i.e. the 1861 census was compared

to the 1871 census, 1871 to 1881, and so forth) and where there was only a single candidate

for matching detected, we treated the pair of records as a potential match. To compare two

records, we used a strict similarity requirement on each of the following attributes: First

Name, Surname, Year of Birth, Gender and Birth Parish.

2. The second step of our approach was to validate the potential matches we identified in the

first step. For each potential match, we considered the households of the two records and

looked for potential matches between other individuals in the households. If there were at

least four potential matches between household members, or more than half the members

of each household had a potential match in the other household, we treated the original

potential match as validated and added it to our training set. We also added any additional

potential matches among other household members to the training set (provided they

were also unambiguous). If there were insufficient potential matches between the two

households to validate the original potential match, we discarded it.

3. The final step in the training data generation was to extend the concept of ambiguity to

groups. The idea was essentially identical to the approach we described in Chapter 5

however instead of just considering individual records, we looked for households that

collectively had only a single candidate for matching in the following census. We used

the same criteria to select candidates households as we did for the group validation, i.e.

at least three records in the household needed to have a potential match with the other

Submitted – 18 June 2020

§7.2 Relational Ambiguity Approach 139

household, or more than 50% of the records in the household needed to have a potential

match. Where a household had only a single candidate household in the following census

by these criteria, all the potential pairwise matches were added to the training set.

The approach we used to generate training data for the other record types followed the same

three steps, i.e. first - identify potential matches, second - validate potential matches using

relationship information, third - identify unambiguous group matches. However, because the

groups on the birth, death and marriage certificates are typically smaller than the households in

the census data sets, we had to tailor our matching requirements and validation requirements

to the match type.

Birth-to-census matches: since we do not have a value for Year of Birth or Birth Parish for

parents on a birth certificate, we required both parents to have a potential match in the census

household during the validation step and the group matching step. We also added a constraint

that each parent must be at least 20 years older than the child. In other words, if a baby was born

in 1865, when trying to match his or her parents to records in the census, we only considered

people born prior to 1845. While this certainly excluded a small number of true matches, the

great majority of parents were over the age of 20 at the time of their child’s birth and this

constraint eliminated a lot of false positives.

Death-to-census matches: for death certificates, the situation was more difficult than for

birth certificates, since there is no guarantee that anyone else on the death certificate (either of

the deceased’s parents or the deceased’s spouse) was alive during the previous census. As such,

to perform validation we only required that a single related individual have a potential match.

Similarly to the birth certificates, we do not have values for the Year of Birth or Birth Parish of any

related entities. Instead, to improve the validation process, we make use of the Address attribute,

since it is the only relatively complete and reliable attribute that can be extended to the relatives

of the deceased.

Marriage-to-census matches: similar to the situation with death certificates, there is no guar-

antee that anyone besides the bride and groom was alive to be recorded in the census, either

before or after the marriage. It was also common to change household at the time of, or shortly

after, a marriage, meaning that using the parents’ details for validation of matches with the

census data is more difficult. As a result, to validate potential matches in step two, we only

considered the bride and groom records, and selected marriage records as training data where

there was a match for both the bride and groom to census records in the same household.

Submitted – 18 June 2020

140 Generating Relational Training Data - A Case Study on the Isle of Skye

Finally, we note that for all match types, we limited matches to the either the following census

or the previous census as appropriate. Birth-census matches and marriage-census matches used

the following census, and death-census matches used the previous census.

7.3 Evaluation

We evaluated our approach by calculating the precision, recall and the f-measure (each described

in Chapter 2) for each of the different match types. As with our experimental evaluation in

Chapter 5, the primary considerations when producing training and bootstrapping data was to

generate enough high quality matches that the resulting entity resolution process can learn a

classification model. To this end, we prioritise precision over recall in the evaluation. Where

recall is potentially too low to be useful, we discuss the reasons and the potential consequences

in the next section.

The census-to-census results are shown in Table 7.3 and the births-to-census, deaths-to-

census and marriages-to-census results are shown in Table 7.4. The Potential Candidates row

corresponds to our approach from Chapter 5. The Validated Matches row is the results after some

of the potential matches have been removed because the related records of the potential match

are not likely to themselves be matches. For the census data sets we also tried to match the

related records, and the additional matches this generated are shown in the Related Matches row.

Because birth records and death records only have one entity that appears in the ground truth

data set (the new-born or the deceased), there cannot be additional related matches generated

for these data sets. For the marriages data set, the validation process that we applied essen-

tially means that either both the bride and groom are matched, or neither is matched, so related

matches are also impossible in this case. The Group Matches row indicates additional matches

that were found based on groups of records that collectively had low ambiguity. Finally, the

Total Matches row records the overall results of our relational training data generation process.

In addition to our approach from Chapter 5, we also tested the baseline approaches from that

chapter, including the simple threshold classifier (STC), the greedy threshold classifier (GTC)

and the single option set approach described by Kalashnikov and Mehrotra [86] (SOS). We tested

these for different values of ψmin on each of the two best performing blocking and similarity

calculation techniques shown in Figure 7.1. The results for blocking technique B1 and similarity

calculation technique S1 are shown in Figure 7.2, and the results for blocking technique B3 and

similarity calculation technique S1 are shown in Figure 7.3.

Submitted – 18 June 2020

§
7.3

E
valu

ation
1
4
1

1861-1871 1871-1881 1881-1891 1891-1901

Total True Matches 10,764 9,647 10,249 8,484

Potential Candidates
Matches 2,056 2,232 2,276 1,932

TM | FM 1,748 308 1,859 373 2,080 196 1,688 244
Pr | Re | F-m 0.8500 0.162 0.273 0.833 0.193 0.313 0.914 0.203 0.332 0.874 0.199 0.324

Validated Matches
Matches 1,065 1,225 1,290 998

TM | FM 1,057 8 1,212 13 1,289 1 994 4
Pr | Re | F-m 0.992 0.098 0.179 0.989 0.126 0.223 0.999 0.126 0.223 0.996 0.117 0.210

Related Matches
Matches 674 634 622 637

TM | FM 657 17 606 28 611 11 628 9
Pr | Re | F-m 0.975 0.061 0.115 0.956 0.063 0.118 0.982 0.060 0.112 0.986 0.074 0.138

Group Matches
Matches 1,743 1,825 1,576 1,274

TM | FM 1,683 60 1,735 90 1,526 50 1,220 54
Pr | Re | F-m 0.966 0.156 0.269 0.951 0.180 0.302 0.968 0.149 0.258 0.958 0.144 0.250

Total Matches
Matches 3,482 3,684 3,488 2,909

TM | FM 3,397 85 3,553 131 3,426 62 2,842 67
Pr | Re | F-m 0.976 0.316 0.477 0.964 0.368 0.533 0.982 0.334 0.499 0.977 0.335 0.499

Table 7.3: The number of matches produced at each stage of the training data generation for the census data sets. At each stage
we show the number of identified matches, the split between True Matches and False matches and the precision, recall and the

f-measure values.

S
u

b
m

itted
–

18
Ju

n
e

2020

1
4
2

G
en

er
at

in
g

R
el

at
io

n
al

Tr
ai

n
in

g
D

at
a

-
A

C
as

e
S

tu
dy

on
th

e
Is

le
of

S
ky

e

Births - Census Deaths - Census Marriages - Census

Total True Matches 13,559 7,546 4,435

Potential Candidates
Matches 1,831 1,393 818

TM | FM 1,773 58 1,119 274 664 154
Pr | Re | F-m 0.968 0.131 0.230 0.803 0.148 0.250 0.812 0.150 0.253

Validated Matches
Matches 1,285 574 265

TM | FM 1,282 3 566 8 259 6
Pr | Re | F-m 0.998 0.095 0.173 0.986 0.075 0.139 0.977 0.058 0.110

Group Matches
Matches 2,116 246 178

TM | FM 2,038 78 232 14 168 10
Pr | Re | F-m 0.963 0.150 0.260 0.943 0.031 0.060 0.944 0.038 0.073

Total Matches
Matches 3,401 820 443

TM | FM 3,320 81 798 22 427 16
Pr | Re | F-m 0.976 0.245 0.392 0.973 0.106 0.191 0.964 0.096 0.175

Table 7.4: The number of matches produced at each stage of the training data generation for the births, deaths and marriages
data sets. At each stage we show the number of identified matches, the split between True Matches and False matches and the

precision, recall and the f-measure values.

S
u

b
m

it
te

d
–

18
Ju

n
e

20
20

§7.3 Evaluation 143

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Baseline Precision - Census - Census - B1 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

Baseline Recall - Census - Census - B1 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-m

ea
su
re

Baseline F-measure - Census - Census - B1 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Baseline Precision - Births - Census - B1 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

Baseline Recall - Births - Census - B1 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-m

ea
su
re

Baseline F-measure - Births - Census - B1 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Baseline Precision - Deaths - Census - B1 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

Baseline Recall - Deaths - Census - B1 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-m

ea
su
re

Baseline F-measure - Deaths - Census - B1 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Baseline Precision - Marriages - Census - B1 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

Baseline Recall - Marriages - Census - B1 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-m

ea
su
re

Baseline F-measure - Marriages - Census - B1 - S1

STC

GTC

SOS

Figure 7.2: Baseline precision, recall and the f-measure results using blocking method B1 and
similarity calculation method S1.

Submitted – 18 June 2020

144 Generating Relational Training Data - A Case Study on the Isle of Skye

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Baseline Precision - Census - Census - B3 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

Baseline Recall - Census - Census - B3 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-m

ea
su
re

Baseline F-measure - Census - Census - B3 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Baseline Precision - Births - Census - B3 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

Baseline Recall - Births - Census - B3 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-m

ea
su
re

Baseline F-measure - Births - Census - B3 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Baseline Precision - Deaths - Census - B3 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

Baseline Recall - Deaths - Census - B3 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-m

ea
su
re

Baseline F-measure - Deaths - Census - B3 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Baseline Precision - Marriages - Census - B3 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

Baseline Recall - Marriages - Census - B3 - S1

STC

GTC

SOS

0.7 0.8 0.9 1.0
ψmin

0.0

0.2

0.4

0.6

0.8

1.0

F
-m

ea
su
re

Baseline F-measure - Marriages - Census - B3 - S1

STC

GTC

SOS

Figure 7.3: Baseline precision, recall and the f-measure results using blocking method B3 and
similarity calculation method S1.

Submitted – 18 June 2020

§7.4 Discussion 145

7.4 Discussion

Given that for training data generation, a very high precision is more important than a high

recall, the overall results are promising, suggesting that for this type of problem, expanding the

concept of ambiguity to include related records may be very effective. However, the results do

vary significantly across each of the different match types, and we analyse this in more detail

now.

The census data sets were the easiest to generate training data for, and there are a number

of reasons why this was the case. The groups in the census data sets are often much larger

than those on the other record types, which allows many more related entities to be assessed

as part of both the validation process and the group ambiguity linkage process. The fact that

the related entities also contributed to the match data (since all the census records are in the

ground truth) meant that a single individual match could result in matching the rest of the

household, thus improving the recall. Finally, because the census records have a consistent set

of attributes, which are more likely to be complete than for some of the other record types, both

the identification of unambiguous records and the validation process was easier.

The births data set was easier to generate training data for than we initially expected. A

significant factor was the year of birth attribute which is correct for the birth record itself, and

appears to be more accurate for young people in the census data (we discuss this in more detail

below). In addition, although there are generally only two related entities for a birth record

(the mother and the father), they are often both alive and part of the same household in the

following census. These factors meant that a lot of children could be identified unambiguously

in the next census period. Although, there is no age data for the parents, requiring a 20 year

age gap between the child and parents in the validation process, greatly reduced the number of

false validations that occurred.

The deaths data set was much harder to generate training data for, although the matches we

created are still of high quality (the overall precision is still above 97%). Even though a death

certificate contains the details of up to four related individuals (the mother, father, spouse and

informant), in practice this turned out to be significantly less useful than the parent details on a

birth certificate. One reason is that for older people (and the majority of the death records are

either old people or very young people), the parents are generally not living themselves, and

the spouse is often deceased as well, meaning there is no related entity to use for validation or

group linkage (since they do not appear in the census records if they are deceased). In addition,

Submitted – 18 June 2020

146 Generating Relational Training Data - A Case Study on the Isle of Skye

even where the parents were alive during the previous census, unless they were living in the

same household as the deceased, they are not part of the same census household and so cannot

be used for validation purposes. This means that the majority of the death-to-census matches

in the training data we generated are for young people (where at least the parents and child

formed part of the same household in the previous census period). As such, the training data

is not likely to be representative of the overall deaths-to-census matches and additional work is

required for this case.

Similarly to the death data set, the marriage data set was also difficult to generate large

quantities of training data for. While each marriage record contains the details of six individuals

(the bride, groom, and both sets of parents), because only the bride and groom are guaranteed

to be alive at the time of marriage, the other individuals are less useful for validation and group

matching purposes. Similarly, because it was common for one or both of the bride and groom to

change household at the time of or shortly after the marriage, we could either look for the bride

and groom together in subsequent census periods, or look for each of them with their parents

in previous census periods. Because the bride and groom are both guaranteed to be alive at the

time of the marriage, we opted to look for the couple together in subsequent census periods.

However, the recall of the approach is not particularly high, and it might be necessary to try

alternative validation and matching scenarios in order to increase the number of matches in the

training set.

For the results of our non-relational training data generation technique described in Chap-

ter 5, only the births-to-census matches achieve a precision greater than 95%, meaning that it

would be risky to use them as a training set without the additional validation step we performed.

The results of the baseline approaches from Chapter 5 are all very poor, with precision normally

below 60% and only the single option set approach of Kalashnikov and Mehrotra [86] achieving

a precision greater than 80%, and that only for the births-to-census matches with blocking tech-

nique B3. Based on the results from Figure 7.1 as well as our own impression of the difficulty

of the problem, this is not surprising, but it does highlight how traditional approaches may be

inadequate for certain data sets or problem domains.

7.4.1 Observations

Overall, the improved version of the training data generation approach described in Chatper 5

was effective at dealing with the difficulties of the problem. Using relationship information

to validate potential matches identified by the similarity calculation step proved effective at

Submitted – 18 June 2020

§7.4 Discussion 147

removing the majority of the false matches. In addition, extending the concept of ambiguity

to groups allowed for more matches to be added to the training data. While the three stage

approach - select potential matches, validate potential matches, select group matches - was

most effective when used to identify census-to-census matches, it was still much more effective

than any of the baseline techniques when applied on other match types (birth-to-census, etc.).

However, this did require customisation of the matching and validation conditions for each

match type. While it may be impossible to have a completely generalised technique for problems

of this difficulty and complexity, it does suggest that it’s application may only be justified in

situations where other approaches are inadequate.

The Year of Birth attribute is completely wrong for many records, particularly for older peo-

ple. While we expected this to be the case to some degree, after analysing some of the matches

we missed in the ground truth, it differs by over ten years in many cases, suggesting that an

individual might know they were ‘old’ but not really more precisely than that. For individuals

under the age of 25, this appears to be less of a problem, but even then, the value may not be

completely accurate. Adapting our approach so that the implications of a difference in age were

treated differently depending on how old a person was may have helped link more of the census

groups. It may also have assisted in linking the deaths records, although given the scarcity of

information on many of the death records, there is a risk this would have resulted in too many

incorrect matches in the training set. Another option for the census records would be to use

the ordering of ages in a household rather absolute ages, although this causes problems where

individuals leave the group (and in some cases join the group, such as lodgers or servants).

Some attributes such as Address and Birth Parish were more useful than we expected, how-

ever only if they could be validated with additional information (such as by looking at related

individuals). Other attributes such as Occupation and Relationship to Head of Household could have

been incorporated to a greater extent, if more processing was done to standardise the values.

However doing this with any degree of accuracy is a challenging process [91] or would require

a large amount of manual effort.

Finally, we note that although incorporating relationships into the training data generation

process improved both the quality (precision) and quantity (recall) there are still some limitations

of our technique. Aside from the problems with the death records discussed above, we were

not able to match a large proportion of the groups, either from census-to-census, or from any of

the births, deaths or marriages data sets to the census. This means that techniques such as the

relational clustering approach of Bhattacharya and Getoor [12], which need the bootstrapping

Submitted – 18 June 2020

148 Generating Relational Training Data - A Case Study on the Isle of Skye

process to create a path between each of the two records in a true match, will not perform

well with this training data set. How to overcome this limitation is something we intend to

investigate in the future.

7.5 Conclusion

Many advanced entity resolution techniques require training data or a bootstrapping process

in order to work. In practice, however, this can be a significant limitation, because for many

real-world entity resolution problems, training data does not exist and it can be very expensive

to create. In Chapter 5, we presented a technique that uses ambiguity to generate training and

bootstrapping data for entity resolution problems with one-to-one and one-to-many matching

constraints. We evaluated the technique on the data sets described in Section 2.5, and showed

that it was more successful than the baseline techniques at generating training data when such

matching constraints exist. However, many advanced entity resolution techniques incorporate

relationships between records in the entity resolution process. When generating training data for

these techniques, our ambiguity based approach can be extended to also include relationships

in the training data generation process.

In this chapter, we have undertaken a case study on population registry data from the Isle

of Skye in Scotland, United Kingdom. We showed how we can expand our ambiguity based

approach from Chapter 5 to include relationships, and that these can be used to both validate

the potential matches in the training data, and also expand the size of the training data set.

Related records can be themselves be matched, and in addition, groups of related records can

be unambiguous, even where the individual records have multiple candidates for matching. We

evaluated our extended approach on a data set and problem domain which are extremely chal-

lenging. We showed that even though all the baseline approaches are inadequate, our approach

can produce a high quality set of training data for each of the different match types.

Submitted – 18 June 2020

Chapter 8

Conclusion

Entity resolution, also called record linkage, deduplication and many other names, is the com-

mon data pre-processing problem of determining which records in one or more data sets corre-

spond to the same real-world entities. Entity resolution has a variety of applications in domains

such as government agencies, research institutions and commercial organisations.

Traditional entity resolution techniques were formulated in the late 1960s [47], and since

that time, each aspect of the entity resolution process has been an active area of academic re-

search. This has resulted in many entity resolution techniques becoming very sophisticated in

order to solve specific types of problems, and to overcome limitations of traditional entity res-

olution approaches. Collective entity resolution techniques [12, 39, 86, 165] were developed to

incorporate relationships into the entity resolution process as well as capture dependencies in

matching decisions. Group linkage techniques [34, 53, 54, 126] deal with entity resolution prob-

lems where records are grouped together in some fashion and considering the groups as well

as the individual records is much more effective than traditional entity resolution approaches.

Population reconstruction techniques [29, 42, 157] deal with complex roles and relationships

between records and often have to operate with very limited information. Temporal entity res-

olution techniques [21, 28, 106] incorporate time stamp data into the entity resolution process

and capture the likelihood of change within different attribute values.

While techniques such as these have been shown to be very effective in academic experi-

ments, there are many difficulties that need to be overcome in order to use them on real-world

entity resolution problems. In this thesis we have aimed to address three particular limitations

of advanced entity resolution techniques. While these difficulties also apply to traditional entity

resolution, they are much more problematic for advanced entity resolution techniques.

• Scalability: The scalability for even traditional entity resolution techniques is poor, and

advanced entity resolution techniques are typically even worse. The scalability of collective

149

Submitted – 18 June 2020

150 Conclusion

entity resolution techniques range from O(nlog2n) for the relational clustering technique

of Bhattacharya and Getoor [12] when used with an ideal blocking algorithm, through to

worse than NP-Hard for Markov logic networks [150]. Some temporal entity resolution

and group linkage techniques are only marginally slower than traditional entity resolution

[28, 54], however techniques that enforce constraints or consider entity evolution [21, 53,

126] typically have very poor scalability. In such cases, traditional techniques for improving

the scalability of entity resolution may be insufficient to make the problem tractible when

applied to very large data sets.

• Lack of Training Data: Many real-world entity resolution problems do not have training

data. In the absence of such training data, collective entity resolution techniques [12, 86]

need some kind of bootstrapping phase in order to generate the starting relationships.

Many group linkage techniques are supervised [52, 53], meaning that they require an ini-

tial set of training data in order to work correctly. Similarly for temporal entity resolution

techniques, training data is also required in order to calculate parameters such as agree-

ment decay and disagreement decay [28, 106] so a lack of training data in these instances

is a significant problem.

• Parameter Tuning and Evaluation: Traditional entity resolution has a number of param-

eters to tune, including choice of attributes, similarity functions, weightings, similarity

thresholds, blocking or indexing approach, blocking or indexing attributes, etc. Advanced

entity resolution techniques typically have the same parameters and often many addi-

tional ones. While experience and domain expertise can assist in choosing appropriate

techniques and setting parameters, it is often still necessary to run the entity resolution

process multiple times in order to fine-tune the approach for good performance. Given

the poor scalability of most advanced entity resolution techniques, and the normal lack of

training or evaluation data (see above), this can be an extremely time-consuming process,

particularly if a manual evaluation is required for each iteration.

Each of these limitations is much more likely to be present for real-world entity resolution

problems than in an academic environment. In an academic environment, problems with eval-

uation, model tuning, obtaining training data and scalability can potentially all be overcome (or

at least minimised) by choosing an appropriate data set or data sets on which to evaluate the

techniques, something that is unlikely to be possible in real-world applications.

Submitted – 18 June 2020

§8.1 Recap of Contributions 151

8.1 Recap of Contributions

In this thesis, we make three main contributions, each aimed at partially addressing one of

the limitations of advanced entity resolution techniques that we described in Chapter 1, and

summarised in the previous section.

• Our first contribution is described in Chapter 4 and aims to create an improved blocking

process for advanced entity resolution techniques. In order to achieve this, we proposed

a blocking technique that produces blocks within a size range. This technique will limit

the effects of the poor scalibility of many advanced entity resolution techniques, since the

processing time for blocks of a fixed size is constant. Our proposed approach also produces

disjoint blocks which allows graph based advanced entity resolution techniques to operate

on individual blocks rather than having to work with the entire data set(s) at once.

• Our second contribution was an approach to generate training and bootstrapping data

which is detailed in Chapter 5. Since many advanced entity resolution techniques either

require training or boostrapping data, or work better when it is available, our proposed

approach is suitable for such techniques. We showed how we can exploit matching con-

straints that are present in many entity resolution problems in order to improve the size

of the training data set without sacrificing precision. We also showed how our concept

of ambiguity can be applied to active learning in order generate additional training data

when a limited number of manual classifications are available.

• Our third contribution was an unsupervised approach to evaluating entity resolution

which is described in Chapter 6. Our technique makes use of transitive closure to de-

tect inconsistencies in entity resolution results. This approach can be applied between the

similarity calculation and classification steps in the entity resolution process in order to de-

tect parameter settings that will result in a high degree of inconsistency, allowing them to

be discarded prior to the classification step and without the need for a manual evaluation.

The approach can also be applied as part of the evaluation step in order to detect groups

of records that require further investigation or assessment, and which may be indicative of

wider problems in the entity resolution process.

In addition to our three main contributions, we extended the training data generation ap-

proach presented in Chapter 5 to incorporate relationship information. We demonstrated that

Submitted – 18 June 2020

152 Conclusion

even on a very difficult problem, where other approaches to generating training data were not

effective, by exploiting one-to-one matching constraints, and validiting potential matches by

considering related records, we were able to generate a high quality set of training data for each

matching scenario. We evaluated this approach as a case study, using historical registry data

from the Isle of Skye in Scotland, United Kingdom. This case study is detailed in Chapter 7.

8.2 Future Work

While our work has made significant progress in overcoming some of the practical difficulties

that limit the widespread use of advanced entity resolution techniques in real-world situations,

there is still room for further improvement. In addition, many of our techniques can be modified

for application in other domains or on related problems. We briefly summarise some directions

we intend to extend our work in the future.

8.2.1 Blocking

Our current approach to blocking relies on domain expertise to select the blocking functions

and blocking attributes. While this is common for most blocking techniques, as we discussed in

Chapter 6, it can lead to poor entity resolution results. In addition, choosing blocking functions

and blocking attributes requires knowledge of both the problem domain and the entity reso-

lution techniques being applied and there may be no individual with expertise in both areas.

Kejriwal and Miranker [87] and Ramadan and Christen [144] presented approaches for auto-

matic selection of blocking keys for entity resolution and a similar approach would have value

for our work as well.

We also intend to test our work on other problem areas. In particular, real-time entity resolu-

tion scenarios [12, 27, 145, 173] only allow a fixed number of comparisons in a certain time-frame.

Since our approach controls the maximum size of each block, we can guarantee this requirement

is met. However, real-time entity resolution problems also typically feature dynamic data sets,

which presents two additional problems that need to be overcome before our blocking approach

can be applied. Firstly, what to do with blocking key values that were not present in the original

data set, and secondly how to update blocks while still ensuring that size constraints are satis-

fied. We intend to investigate whether a balanced tree data structure would allow us to maintain

both the size and disjoint properties while being fast enough to update and query in real-time

situations.

Submitted – 18 June 2020

§8.2 Future Work 153

8.2.2 Training Data Generation

There are a number of directions that we hope to extend our work on training data generation,

and the use of ambiguity in the future. We intend to investigate whether ambiguity can be

incorporated into the entity resolution process in addition to attribute and relational similarity

measures. This could be particularly effective for classifiers that take an iterative approach to

entity resolution, where they resolve easier cases first based on some ordering of increasing

difficulty. Ambiguous record pairs could be deferred until later in the process in the hope that

resolving other records pairs might reduce the ambiguity and allow the correct match to be

more easily determined.

In addition, as was demonstrated in the Isle of Skye case study (see Chapter 7), ambiguity is

useful at the group level as well as the individual record level. In the future we hope to formalise

the notion of group-based ambiguity and incorporate it into a group based entity resolution

approach for situations where one-to-one and one-to-many matching constraints apply.

Finally, as noted in Chapter 3, there are many similarities between one-to-one matching re-

strictions in entity resolution and the so called stable marriage problem [55]. We hope to investigate

whether any of the algorithms used to solve the stable marriage problem and its variants, can

be adapted to work in the entity resolution domain.

8.2.3 Unsupervised Evaluation

There are also directions we intend to extend the unsupervised evaluation approach from Chap-

ter 6. In our current approach, the similarity threshold ψij is treated as a single value. However,

for inconsistent triangles, a breakdown of the similarity values by attribute could potentially help

determine why the similarity calculation method is leading to inconsistencies. For example this

might make it easier to detect the problem that occured with the UKCD experiments where the

Occupation attribute was resulting in a high proportion of inconsistent triangles for similarity

values greater than 0.75. Similarly for the blocking approach, knowing the block combinations

that were leading to incomplete triangles would make it easier to adjust the blocking techniques

accordingly.

Just as it would be possible to separate ψij into different components based on the attributes

used, so it would also be possible to have different values of ψmin in different parts of the

graph. Along similar lines, the entity resolution problem can be reframed as a community

detection problem in graphs [51], and while many of the algorithms for this are computationally

Submitted – 18 June 2020

154 Conclusion

expensive, there are potentially approaches from this area that could be adapted to our problem.

While our approach was effective at detecting a high degree of inconsistency, as we discussed

in Section 6.4, consistent results are not guaranteed to be useful. In extreme cases this is relatively

easy to detect, however, we found that for less obvious cases two additional pieces of information

were very effective in spotting problems, namely the total number of matches and the size of the

largest cluster. While they can be evaluated separately as we did in our experimental evaluation,

we intend to investigate whether they can be incorporated into the measures, potentially through

the normalisation process. This would maintain the relatively simple output of our approach

while still allowing us to identify additional, less obvious, problems.

8.3 Conclusion

Entity resolution is an important data pre-processing task. In real-world applications it is often

necessary when integrating, preparing or maintaining data sets prior to analysis or as part of

ongoing business. It has been an active field of academic research since the late 1960s and

numerous techniques have been developed for each part of the entity resolution process or to

apply to particular types of entity resolution problems.

However, despite these techniques achieving good results in controlled experiments in aca-

demic environments, there is a significant gap between the work done in academia and real-

world entity resolution applications. In particular, advanced entity resolution techniques do not

see as wide-spread practical application as would be suggested by the quality of results they

achieve in academic research.

We identified three limitations of advanced entity resolution techniques that can all be con-

trolled or overcome in a research environment but which are much more problematic in many

real-world applications, name poor scalability of advanced entity resolution techniques, a lack

of training and bootstrapping data required by many advanced entity resolution techniques,

and the high degree of parameter tuning and model refinement required by advanced entity

resolution techniques.

In this thesis, we have presented three techniques to partially overcome these limitations. We

developed a blocking technique to strictly control the size of blocks and thus limit the impact

of poor scalability. We developed a technique to generate training and bootstrapping data in

situations where one-to-one or one-to-many matching constraints apply. Finally we developed

an unsupervised evaluation technique which allows parameter settings and techniques that pro-

Submitted – 18 June 2020

§8.3 Conclusion 155

duce entity resolution results with a high degree of inconsistency to be quickly identified and

discarded. It is our hope that due to these techniques and similar ones developed in the future,

real-world application of advanced entity resolution techniques will be more feasible for future

practitioners.

Submitted – 18 June 2020

156 Conclusion

Submitted – 18 June 2020

Bibliography

1. Adamic, L. A. and Adar, E., 2003. Friends and neighbors on the Web. Social Networks, 25,

3 (2003), 211–230. Elsevier. (cited on pages 17 and 27)

2. Aizawa, A. and Oyama, K., 2005. A fast Linkage Detection Scheme for Multi-Source

Information Integration. In Web Information Retrieval and Integration (WIRI), 30–39. IEEE.

(cited on page 23)

3. Althoff, T.; Dong, X. L.; Murphy, K.; Alai, S.; Dang, V.; and Zhang, W., 2015. TimeMa-

chine: Timeline Generation for Knowledge-Base Entities. In Proceedings of the 21st Interna-

tional Conference on Knowledge Discovery and Data Mining (KDD), 19–28. ACM. (cited on

page 46)

4. Antonie, L.; Inwood, K.; and Ross, J. A., 2015. Dancing with Dirty Data: Problems in the

Extraction of Life-Course Evidence from Historical Censuses. In Population Reconstruction,

217–241. Springer. (cited on page 86)

5. Arasu, A.; Götz, M.; and Kaushik, R., 2010. On Active Learning of Record Matching

Packages. In Proceedings of the 36th International Conference on Management of Data (ICMD),

783–794. ACM. (cited on page 53)

6. Arasu, A.; Ré, C.; and Suciu, D., 2009. Large-Scale Deduplication with Constraints Using

Dedupalog. In Proceedings of the 25th International Conference on Data Engineering (ICDE),

952–963. IEEE. (cited on page 51)

7. Australian Broadcasting Commission, 2011. Centrelink high-rollers ordered to pay back

millions. Https://www.abc.net.au/news/2011-04-17/centrelink-high-rollers-ordered-to-

pay-back/2613392 Accessed: 2018-11-22. (cited on pages 1 and 32)

8. Bagon, S. and Galun, M., 2011. Large Scale Correlation Clustering Optimization. arXiv

preprint arXiv:1112.2903, (2011). (cited on page 55)

9. Bansal, N.; Blum, A.; and Chawla, S., 2004. Correlation Clustering. Machine Learning, 56,

1-3 (2004), 89–113. Springer. (cited on page 55)

157

Submitted – 18 June 2020

158 BIBLIOGRAPHY

10. Bass, J.; Silcot, S.; and Smith, L., 2015. Founders and Survivors Linkage Strategy. In

Population Reconstruction. Springer. (cited on pages 1 and 33)

11. Bellare, K.; Iyengar, S.; Parameswaran, A. G.; and Rastogi, V., 2012. Active Sampling

for Entity Matching. In Proceedings of the 18th International Conference on Knowledge Discovery

and Data Mining (KDD). ACM. (cited on page 53)

12. Bhattacharya, I. and Getoor, L., 2007. Collective Entity Resolution in Relational Data.

Transactions on Knowledge Discovery from Data (TKDD), 1, 1 (2007), 5–es. ACM. (cited on

pages 1, 2, 4, 5, 6, 7, 16, 26, 38, 39, 40, 41, 44, 56, 60, 61, 79, 81, 82, 83, 84, 85, 95, 96, 104, 129,

147, 149, 150, and 152)

13. Bothwell, E., 2016. World University Rankings 2016-2017: results announced.

Https://www.timeshighereducation.com/news/world-university-rankings-2016-2017-

results-announced Accessed: 2018-11-22. (cited on page 33)

14. Bourn, N. A., 1995. The ecology, conservation and population genetics of three species of Zygaenid

moths, Zygaena lonicerae, Zygaena purpuralis and Zygaena filipendulae in North West Scotland.

Ph.D. thesis, University of Aberdeen. (cited on page 130)

15. Brizan, D. G. and Tansel, A. U., 2006. A. Survey of Entity Resolution and Record Link-

age Methodologies. Communications of the International Information Management Association

(IIMA), 6, 3 (2006), 5. (cited on pages 1 and 38)

16. Brook, E.; Rosman, D.; and Holman, C., 2008. Public good through data linkage: mea-

suring research outputs from the Western Australian Data Linkage System. Australian and

New Zealand Journal of Public Health, 32, 1 (2008), 19–23. Wiley Online Library. (cited on

page 1)

17. Burdick, D.; Fagin, R.; Kolaitis, P. G.; Popa, L.; and Tan, W.-C., 2016. A Declarative

Framework for Linking Entities. Transactions on Database Systems (TODS), 41, 3 (2016), 17.

ACM. (cited on page 52)

18. Chaudhuri, S.; Ganti, V.; and Motwani, R., 2005. Robust Identification of Fuzzy Dupli-

cates. In Proceedings of the 21st International Conference on Data Engineering (ICDE), 865–876.

IEEE. (cited on page 28)

Submitted – 18 June 2020

BIBLIOGRAPHY 159

19. Chen, J.; Niedermeier, R.; and Skowron, P., 2018. Stable Marriage with Multi-Modal

Preferences. In Proceedings of the 19th Conference on Economics and Computation, 269–286.

ACM. (cited on page 52)

20. Chen, Z.; Kalashnikov, D. V.; and Mehrotra, S., 2007. Adaptive Graphical Approach

to Entity Resolution. In Proceedings of the 7th Conference on Digital Libraries, 204–213. ACM.

(cited on page 60)

21. Chiang, Y.-H.; Doan, A.; and Naughton, J. F., 2014. Tracking Entities in the Dynamic

World: A Fast Algorithm for Matching Temporal Records. Proceedings of the Very Large Data

Bases Endowment (VLDB), 7, 6 (2014), 469–480. (cited on pages 1, 2, 4, 5, 6, 46, 149, and 150)

22. Christen, P., 2012. A Survey of Indexing Techniques for Scalable Record Linkage and

Deduplication. Transactions on Knowledge and Data Engineering (TKDE), 24, 9 (2012), 1537–

1555. IEEE. (cited on pages 43, 48, and 65)

23. Christen, P., 2012. Data Matching: Concepts and Techniques for Record Linkage, Entity Resolu-

tion, and Duplicate Detection. Springer. (cited on pages 3, 4, 15, 20, 22, 23, 26, 28, 29, 30, 38,

43, 49, 55, 65, 66, 71, 102, 104, and 109)

24. Christen, P., 2014. Preparation of a real temporal voter data set for record linkage and

duplicate detection research. Technical report, Australian National University. (cited on

pages 34 and 85)

25. Christen, P., 2016. Application of Advanced Record Linkage Techniques for Complex

Population Reconstruction. arXiv preprint arXiv:1612.04286, (2016). (cited on pages 33

and 47)

26. Christen, P.; Churches, T.; and Hegland, M., 2004. Febrl – A Parallel Open Source Data

Linkage System. In Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and

Data Mining (PAKDD), vol. 3056, 638–647. Springer. (cited on pages 31 and 108)

27. Christen, P. and Gayler, R., 2008. Towards Scalable Real-Time Entity Resolution using

a Similarity-Aware Inverted Index Approach. In Proceedings of the 7th Australasian Data

Mining Conference (AusDM), vol. 87, 51–60. Australian Computer Society. (cited on pages

38, 61, 79, and 152)

Submitted – 18 June 2020

160 BIBLIOGRAPHY

28. Christen, P. and Gayler, R. W., 2013. Adaptive Temporal Entity Resolution on Dynamic

Databases. In Advances in Knowledge Discovery and Data Mining, 558–569. Springer. (cited

on pages 1, 5, 6, 7, 46, 81, 149, and 150)

29. Christen, P.; Gayler, R. W.; Tran, K.-N.; Fisher, J.; and Vatsalan, D., 2016. Automatic

Discovery of Abnormal Values in Large Textual Databases. Journal of Data and Information

Quality (JDIQ), 7, 1-2 (2016), 7. ACM. (cited on pages 5, 129, and 149)

30. Christen, P. and Goiser, K., 2007. Quality and Complexity Measures for Data Linkage

and Deduplication. In Quality Measures in Data Mining, 127–151. Springer. (cited on page

55)

31. Christen, P.; Vatsalan, D.; and Fu, Z., 2015. Advanced Record Linkage Methods and

Privacy Aspects for Population Reconstruction – A Survey and Case Studies. In Population

Reconstruction, 87–110. Springer. (cited on pages 131 and 132)

32. Christen, P.; Vatsalan, D.; and Wang, Q., 2015. Efficient Entity Resolution with Adaptive

and Interactive Training Data Selection. In Proceedings of the 15th International Conference on

Data Mining (ICDM), 727–732. IEEE. (cited on page 17)

33. Christen, P.; Vidanage, A.; Ranbaduge, T.; and Schnell, R., 2018. Pattern-Mining Based

Cryptanalysis of Bloom Filters for Privacy-Preserving Record Linkage. In Proceedings of

the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 530–542.

Springer. (cited on page 76)

34. Christen, V.; Groß, A.; Fisher, J.; Wang, Q.; Christen, P.; and Rahm, E., 2017. Temporal

group linkage and evolution analysis for census data. In Proceedings of the 20th International

Conference on Extending Database Technology (EDBT), 620–631. (cited on pages 1, 5, 45, 129,

and 149)

35. Cochinwala, M.; Kurien, V.; Lalk, G.; and Shasha, D., 2001. Efficient data reconciliation.

Information Sciences, 137, 1–4 (2001), 1–15. Elsevier. (cited on pages 28 and 104)

36. Dal Bianco, G.; Galante, R.; Gonçalves, M.; Canuto, S.; and Heuser, C., 2015. A Prac-

tical and Effective Sampling Selection Strategy for Large Scale Deduplication. Transactions

on Knowledge and Data Engineering (TKDE), 27, 9 (2015), 2305–2319. IEEE. (cited on page

53)

Submitted – 18 June 2020

BIBLIOGRAPHY 161

37. Das Sarma, A.; Jain, A.; Machanavajjhala, A.; and Bohannon, P., 2012. An Automatic

Blocking Mechanism for Large-scale De-duplication Tasks. In Proceedings of the 21st Con-

ference on Information and Knowledge Management (CIKM), 1055–1064. ACM. (cited on page

48)

38. Dinler, D. and Tural, M. K., 2016. A Survey of Constrained Clustering. In Unsupervised

Learning Algorithms, 207–235. Springer. (cited on page 50)

39. Dong, X.; Halevy, A.; and Madhavan, J., 2005. Reference Reconciliation in Complex

Information Spaces. In Proceedings of the 31st International Conference on Management of Data

(ICMD), 85–96. ACM. (cited on pages 1, 5, 16, 41, 60, 129, and 149)

40. Du, J. and Ling, C., 2010. Active Learning with Human-Like Noisy Oracle. In Proceedings

of the 10th International Conference on Data Mining (ICDM), 797–802. IEEE. (cited on page

54)

41. Efremova, J.; Ranjbar-Sahraei, B.; Oliehoek, F. A.; Calders, T.; and Tuyls, K., 2014. A

Baseline Method for Genealogical Entity Resolution. In Proceedings Workshop on Population

Reconstruction. (cited on pages 7 and 47)

42. Efremova, J.; Ranjbar-Sahraei, B.; Rahmani, H.; Oliehoek, F. A.; Calders, T.; Tuyls, K.;

and Weiss, G., 2015. Multi-Source Entity Resolution for Genealogical Data. In Population

Reconstruction, 129–154. Springer. (cited on pages 5, 47, 129, 130, and 149)

43. Elmagarmid, A. K.; Ipeirotis, P. G.; and Verykios, V. S., 2007. Duplicate Record Detection:

A Survey. Transactions on Knowledge and Data Engineering (TKDE), 19, 1 (2007), 1–16. IEEE.

(cited on pages 48, 64, 71, and 78)

44. Elmasri, R. and Navathe, S. B. N., 2011. Database Systems: Models, Languages, Design, and

Application Programming. Pearson. (cited on page 18)

45. Fan, X.; Wang, J.; Pu, X.; Zhou, L.; and Lv, B., 2011. On Graph-Based Name Disambigua-

tion. Journal of Data and Information Quality (JDIQ), 2, 2 (2011), 10. ACM. (cited on page

60)

46. Felche, K., 2013. Harnessing the Power of Data in Government through Analytics. Keynote

presentation at the 11th Australasian Data Mining Conference (AusDM). (cited on page

31)

Submitted – 18 June 2020

162 BIBLIOGRAPHY

47. Fellegi, I. P. and Sunter, A. B., 1969. A Theory for Record Linkage. Journal of the American

Statistical Association (JASA), 64, 328 (1969), 1183–1210. Taylor & Francis. (cited on pages 1,

3, 6, 15, 16, 21, 22, 24, 28, 37, 39, 59, 60, 71, 114, and 149)

48. Fisher, J.; Christen, P.; and Wang, Q., 2016. Active Learning Based Entity Resolution

Using Markov Logic. In Proceedings of the 20th Pacific-Asia Conference on Knowledge Discovery

and Data Mining (PAKDD), 338–349. Springer. (cited on page 11)

49. Fisher, J.; Christen, P.; Wang, Q.; and Rahm, E., 2015. A Clustering-Based Framework to

Control Block Sizes for Entity Resolution. In Proceedings of the 21st International Conference

on Knowledge Discovery and Data Mining (KDD), 279–288. ACM. (cited on page 11)

50. Fisher, J. and Wang, Q., 2015. Unsupervised Measuring of Entity Resolution Consistency.

In Proceedings of the 15th International Conference on Data Mining Workshop (ICDMW), 218–

221. IEEE. (cited on page 11)

51. Fortunato, S., 2010. Community detection in graphs. Physics Reports, 486, 3-5 (2010),

75–174. Elsevier. (cited on pages 55, 127, and 153)

52. Fu, Z.; Christen, P.; and Boot, M., 2011. A Supervised Learning and Group Linking

Method for Historical Census Household Linkage. In Proceedings of the 9th Australasian

Data Mining Conference (AusDM), vol. 125. Australian Computer Society. (cited on pages 7,

81, 82, 104, and 150)

53. Fu, Z.; Christen, P.; and Zhou, J., 2014. A Graph Matching Method for Historical Census

Household Linkage. In Proceedings of the 18th Pacific-Asia Conference on Knowledge Discovery

and Data Mining (PAKDD). Springer. (cited on pages 1, 2, 5, 7, 28, 34, 45, 129, 132, 149,

and 150)

54. Fu, Z.; Zhou, J.; Christen, P.; and Boot, M., 2012. Multiple Instance Learning for Group

Record Linkage. In Proceedings of the 16th Pacific-Asia Conference on Knowledge Discovery and

Data Mining (PAKDD). Springer. (cited on pages 1, 5, 28, 44, 81, 82, 104, 125, 129, 149,

and 150)

55. Gale, D. and Shapley, L. S., 1962. College Admissions and the Stability of Marriage. The

American Mathematical Monthly, 69, 1 (1962), 9–15. Taylor & Francis. (cited on pages 52,

106, and 153)

Submitted – 18 June 2020

BIBLIOGRAPHY 163

56. Galley, C.; Garrett, E.; Davies, R.; and Reid, A., 2011. Living same-name siblings and

British historical demography. Local Population Studies, 86, 1 (2011), 15–36. Local Population

Studies Society. (cited on page 133)

57. Ganganath, N.; Cheng, C.-T.; and Tse, C. K., 2014. Data Clustering with Cluster Size

Constraints Using a Modified k-means Algorithm. In Proceedings of the 6th International

Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). IEEE.

(cited on page 50)

58. Garcia-Molina, H., 2004. Entity Resolution: Overview and Challenges. In Proceedings of

the 23rd International Conference on Conceptual Modeling, 1–2. Springer. (cited on page 38)

59. Garrett, E. and Davies, R., 2003. Birth spacing and infant mortality on the Isle of Skye,

Scotland, in the 1880s; a comparison with the town of Ipswich, England. Local Population

Studies, 71 (2003), 53–74. Local Population Studies Society. (cited on page 130)

60. Garrett, E. and Reid, A., 2015. Introducing ‘Movers’ into Community Reconstructions:

Linking Civil Registers of Vital Events to Local and National Census Data: A Scottish

Experiment. In Population Reconstruction, 263–283. Springer. (cited on pages 34 and 132)

61. Georgala, K.; van der Burgh, B.; Meeng, M.; and Knobbe, A., 2015. Record Linkage in

Medieval and Early Modern Text. In Population Reconstruction, 173–195. Springer. (cited on

page 130)

62. Getoor, L. and Machanavajjhala, A., 2012. Entity resolution: Tutorial. In Proceedings of

the Very Large Data Bases Endowment (VLDB), 1527–1527. (cited on pages 1 and 38)

63. Glasson, E.; De Klerk, N.; Bass, A.; Rosman, D.; Palmer, L.; and Holman, C., 2008. Co-

hort Profile: The Western Australian Family Connections Genealogical Project. International

Journal of Epidemiology, 37, 1 (2008), 30–35. Oxford University Press. (cited on page 130)

64. Gottschalk, S. and Demidova, E., 2018. EventKG: A Multilingual Event-Centric Temporal

Knowledge . In Proceedings of the 15th International European Semantic Web Conference, 272–

287. Springer. (cited on page 46)

65. Gruenheid, A.; Nushi, B.; Kraska, T.; Gatterbauer, W.; and Kossmann, D., 2015. Fault-

Tolerant Entity Resolution with the Crowd. arXiv preprint arXiv:1512.00537, (2015). (cited

on page 17)

Submitted – 18 June 2020

164 BIBLIOGRAPHY

66. Gu, L. and Baxter, R., 2006. Decision Models for Record Linkage. In Data Mining, 146–160.

Springer. (cited on page 21)

67. Gupta, S., 2017. A Survey on Balanced Data Clustering Algorithms. International Journal for

Women Researchers in Engineering, Science & Management, (2017), 2611–2614. (cited on page

50)

68. Han, J.; Kamber, M.; and Pei, J., 2012. Data Mining: Concepts and Techniques. Waltham,

MA: Morgan Kaufmann, 3 edn. (cited on page 28)

69. Han, Q., 2015. Visualising Complex Linked Data. Australian National Univer-

sity https://cs.anu.edu.au/courses/csprojects/15S2/Reports/Quanwei_Han_ Report.pdf.

(cited on page 131)

70. Hand, D. and Christen, P., 2018. A note on using the F-measure for evaluating record

linkage algorithms. Statistics and Computing, 28, 3 (2018), 539–547. (cited on pages 31

and 55)

71. Hassanzadeh, O. and Miller, R., 2009. Creating probabilistic databases from duplicated

data. The International Journal on Very Large Data Bases, 18, 5 (2009), 1141–1166. Springer.

(cited on page 5)

72. Hernandez, M. A. and Stolfo, S. J., 1995. The Merge/Purge Problem for Large Databases.

In Proceedings of the 21st International Conference on Management of Data (ICMD), 127–138.

ACM. (cited on page 15)

73. Hernandez, M. A. and Stolfo, S. J., 1998. Real-world Data is Dirty: Data Cleansing

and The Merge/Purge Problem. Data Mining and Knowledge Discovery, 2, 1 (1998), 9–37.

Springer. (cited on pages 15, 24, 48, 60, 71, 101, and 108)

74. Hirsch, J., 2005. An index to quantify an individual’s scientific research output. Proceedings

of the National Academy of Sciences of the United States of America, 102, 46 (2005), 16569–16572.

National Academy of Sciences. (cited on page 33)

75. Holman, C. D. J.; Bass, J. A.; Rosman, D. L.; Smith, M. B.; Semmens, J. B.; Glasson, E. J.;

Brook, E. L.; Trutwein, B.; Rouse, I. L.; Watson, C. R.; et al., 2008. A decade of data

linkage in Western Australia: strategic design, applications and benefits of the WA data

Submitted – 18 June 2020

BIBLIOGRAPHY 165

linkage system. Australian Health Review, 32, 4 (2008), 766–777. Commonwealth Scientific

and Industrial Research Organisation. (cited on page 130)

76. Hu, Y.; Wang, Q.; Vatsalan, D.; and Christen, P., 2016. Regression classifier for Improved

Temporal Record Linkage. In Proceedings of the 14th Australasian Data Mining Conference

(AusDM). Australian Computing Society. (cited on page 46)

77. Hu, Y.; Wang, Q.; Vatsalan, D.; and Christen, P., 2017. Improving Temporal Record

Linkage Using Regression Classification. In Proceedings of the 21st Pacific-Asia Conference on

Knowledge Discovery and Data Mining (PAKDD), 561–573. Springer. (cited on page 46)

78. Hussain, B.; Hassanzadeh, O.; Chiang, F.; Lee, H. C.; and Miller, R. J., 2013. An

Evaluation of Clustering Algorithms for Duplicate Detection. Technical report, University

of Toronto, Department of Computer Science. (cited on page 5)

79. Huynh, T. N. and Mooney, R. J., 2008. Discriminative Structure and Parameter Learning

for Markov Logic Networks. In Proceedings of the 25th International Conference on Machine

learning (ICML). ACM. (cited on page 43)

80. Irving, R. W.; Kavitha, T.; Mehlhorn, K.; Michail, D.; and Paluch, K., 2004. Rank-

Maximal Matchings. In Proceedings of the 15th Annual Symposium on Discrete Algorithms,

68–75. ACM SIAM. (cited on page 52)

81. Irving, R. W.; Manlove, D. F.; and Scott, S., 2003. Strong Stability in the Hospitals/Resi-

dents Problem. In Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer

Science (STACS), vol. 2607, 439–450. Springer. (cited on page 52)

82. Iwama, K. and Miyazaki, S., 2008. A Survey of the Stable Marriage Problem and Its Vari-

ants. In Proceedings of the 2008 International Conference on Informatics Education and Research

for Knowledge-Circulating Society, 131–136. IEEE. (cited on page 52)

83. Jaro, M. A., 1989. Advances in Record-Linkage Methodology as Applied to Matching the

1985 Census of Tampa, Florida. Journal of the American Statistical Association, 84 (1989),

414–420. Taylor & Francis. (cited on page 26)

84. Jitta, A. and Klami, A., 2018. On controlling the size of clusters in probabilistic clustering.

In Proceedings of the 32nd Conference on Artificial Intelligence, 3350–3357. AAAI. (cited on page

51)

Submitted – 18 June 2020

166 BIBLIOGRAPHY

85. Jonas, J., 2006. Threat and Fraud Intelligence, Las Vegas Style. Security & Privacy, 4, 6

(2006), 28–34. IEEE. (cited on pages 1 and 32)

86. Kalashnikov, D. and Mehrotra, S., 2006. Domain-Independent Data Cleaning via Anal-

ysis of Entity-Relationship Graph. Transactions on Database Systems (TODS), 31, 2 (2006),

716–767. ACM. (cited on pages 1, 5, 16, 17, 40, 41, 44, 47, 57, 60, 81, 82, 83, 84, 85, 95, 96,

104, 125, 129, 140, 146, 149, and 150)

87. Kejriwal, M. and Miranker, D. P., 2013. An Unsupervised Algorithm for Learning Block-

ing Schemes. In Proceedings of the 13th International Conference on Data Mining (ICDM),

340–349. IEEE. (cited on pages 77, 79, and 152)

88. Kim, H. and Lee, D., 2007. Parallel Linkage. In Proceedings of the 16th Conference on Informa-

tion and Knowledge Management (CIKM), 283–292. ACM. (cited on pages 38, 62, and 77)

89. Kim, S.; Nowozin, S.; Kohli, P.; and Yoo, C. D., 2011. Higher-Order Correlation Clus-

tering for Image Segmentation. In Proceedings of the 25th Conference on Advances in Neural

Information Processing Systems (NIPS), 1530–1538. Curran Associates. (cited on page 55)

90. Király, Z., 2013. Linear Time Local Approximation Algorithm for Maximum Stable Mar-

riage. Algorithms, 6, 3 (2013), 471–484. Multidisciplinary Digital Publishing Institute. (cited

on page 52)

91. Kirby, G.; Carson, J.; Dunlop, F.; Dibben, C.; Dearle, A.; Williamson, L.; Garrett, E.;

and Reid, A., 2015. Automatic Methods for Coding Historical Occupation Descriptions to

Standard Classifications. In Population Reconstruction, 43–60. Springer. (cited on pages 33

and 147)

92. Kirby, G.; de Kerckhove, C.; Shumailov, I.; Carson, J.; Dearle, A.; Dibben, C.; and

Williamson, L., 2014. Comparing Relational and Graph Databases for Pedigree Datasets.

Proceedings Workshop Population Reconstruction, (2014). (cited on page 46)

93. Kirby, G.; Derkani, M. H.; Dearle, A.; Carson, J.; Dunlop, F.; Dibben, C.; and

Williamson, L., 2015. Automatic extraction of multiple underlying causes from textual

death records. In Proceedings of the Farr Institute 1st International Conference: Data Intensive

Health Research and Care. Farr Institute. (cited on page 33)

Submitted – 18 June 2020

BIBLIOGRAPHY 167

94. Kirsten, T.; Kolb, L.; Hartung, M.; Gross, A.; Köpcke, H.; and Rahm, E., 2010. Data

Partitioning for Parallel Entity Matching. Proceedings of the Very Large Data Bases Endowment

(VLDB), 3, 2 (2010). (cited on pages 38 and 49)

95. Klami, A. and Jitta, A., 2016. Probabilistic Size-constrained Microclustering. In Proceedings

of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI). AUAI Press. (cited on

page 50)

96. Kok, S. and Domingos, P., 2005. Learning the Structure of Markov Logic Networks. In

Proceedings of the 22nd International Conference on Machine learning (ICML), 441–448. ACM.

(cited on page 43)

97. Kok, S.; Singla, P.; Richardson, M.; Domingos, P.; Sumner, M.; Poon, H.; and Lowd, D.,

2005. The Alchemy system for statistical relational AI. (2005). University of Washington,

Seattle. (cited on page 44)

98. Kolb, L. and Rahm, E., 2013. Parallel Entity Resolution with Dedoop. Datenbank-Spektrum,

13, 1 (2013), 23–32. Springer. (cited on page 38)

99. Köpcke, H. and Rahm, E., 2010. Frameworks for entity matching: A comparison. Data and

Knowledge Engineering, 69, 2 (2010), 197–210. Elsevier. (cited on pages 38 and 48)

100. Köpcke, H.; Thor, A.; and Rahm, E., 2010. Evaluation of entity resolution approaches on

real-world match problems. Proceedings of the Very Large Data Bases Endowment (VLDB), 3,

1-2 (2010), 484–493. (cited on page 55)

101. Kothari, C. R., 2004. Research methodology: Methods and techniques. New Age International.

(cited on page 8)

102. Kouki, P.; Pujara, J.; Marcum, C.; Koehly, L.; and Getoor, L., 2017. Collective Entity

Resolution in Familial Networks. In Proceedings of the 17th International Conference on Data

Mining (ICDM), 227–236. IEEE. (cited on page 47)

103. Kouki, P.; Pujara, J.; Marcum, C.; Koehly, L.; and Getoor, L., 2018. Collective entity

resolution in multi-relational familial networks. Knowledge and Information Systems, (2018),

1–35. Springer. (cited on pages 47, 82, and 104)

Submitted – 18 June 2020

168 BIBLIOGRAPHY

104. Lait, A. and Randell, B., 1993. An Assessment of Name Matching Algorithms. Technical

report, Department of Computer Science, University of Newcastle upon Tyne. (cited on

pages 24 and 108)

105. Levenshtein, V. I., 1966. Binary codes capable of correcting deletions, insertions, and

reversals. In Soviet physics doklady, vol. 10, 707–710. (cited on pages 17 and 25)

106. Li, P.; Dong, X.; Maurino, A.; and Srivastava, D., 2011. Linking Temporal Records.

Proceedings of the Very Large Data Bases Endowment (VLDB), 4, 11 (2011), 956–967. (cited on

pages 1, 4, 5, 6, 7, 46, 81, 104, 149, and 150)

107. Liang, H.; Wang, Y.; Christen, P.; and Gayler, R., 2014. Noise-Tolerant Approximate

Blocking for Dynamic Real-Time Entity Resolution. In Proceedings of the 18th Pacific-Asia

Conference on Knowledge Discovery and Data Mining (PAKDD), 449–460. Springer. (cited on

pages 23, 48, and 108)

108. MacKay, D. J., 1992. Information-Based Objective Functions for Active Data Selection.

Neural computation, 4, 4 (1992), 590–604. MIT Press. (cited on page 53)

109. Maidasani, H.; Namata, G.; Huang, B.; and Getoor, L., 2012. Entity resolution evalua-

tion measures. (2012). (cited on page 55)

110. Malinen, M. and Fränti, P., 2014. Balanced K-Means for Clustering. In Proceedings of

the 9th Joint International Workshops on Statistical Techniques in Pattern Recognition (SPR) and

Structural and Syntactic Pattern Recognition (SSPR), 32–41. Springer. (cited on page 50)

111. Malmi, E.; Gionis, A.; and Solin, A., 2018. Computationally Inferred Genealogical Net-

works Uncover Long-Term Trends in Assortative Mating. arXiv preprint arXiv:1802.06055,

(2018). (cited on pages 47, 82, and 104)

112. McCallum, A.; Nigam, K.; and Ungar, L. H., 2000. Efficient Clustering of High-

Dimensional Data Sets with Application to Reference Matching. In Proceedings of the 6th In-

ternational Conference on Knowledge Discovery and Data Mining (KDD), 169–178. ACM. (cited

on pages 23 and 48)

113. McCalman, J.; Smith, L.; Silcot, S.; and Kippen, R., 2015. Building a Life Course Dataset

from Australian Convict Records: Founders & Survivors: Australian Life Courses in His-

Submitted – 18 June 2020

BIBLIOGRAPHY 169

torical Context, 1803–1920. In Population Reconstruction, 285–298. Springer. (cited on page

130)

114. McConville, R.; Liu, W.; and Hong, J., 2017. Vertex Deduplication Based on String Sim-

ilarity and Community Membership. In Proceedings of the 6th International Workshop on

Complex Networks and their Applications, 178–189. Springer. (cited on page 45)

115. McGrath, P., 2016. Veda Advantage accused of providing incorrect credit information, re-

fusing to fix errors. Https://www.abc.net.au/news/2016-05-25/veda-advantage-provided-

incorrect-credit-reports/7444392 Accessed: 2018-11-18. (cited on page 32)

116. Menestrina, D.; Whang, S.; and Garcia-Molina, H., 2010. Evaluating Entity Resolution

Results. Proceedings of the Very Large Data Bases Endowment (VLDB), 3, 1–2 (2010), 208–219.

(cited on page 55)

117. Munera, D.; Diaz, D.; Abreu, S.; Rossi, F.; Saraswat, V. A.; and Codognet, P., 2015.

Solving Hard Stable Matching Problems via Local Search and Cooperative Parallelization.

In Proceedings of the 29th Conference on Artificial Intelligence, 1212–1218. AAAI. (cited on

page 52)

118. Nanayakkara, C.; Christen, P.; and Ranbaduge, T., 2018. Temporal graph-based clus-

tering for historical record linkage. arXiv preprint arXiv:1807.02262, (2018). (cited on page

45)

119. Naumann, F. and Herschel, M., 2010. An Introduction to Duplicate Detection, vol. 3 of

Synthesis Lectures on Data Management. Morgan and Claypool. (cited on pages 15, 17, 25,

26, and 38)

120. Newcombe, H. and Kennedy, J., 1962. Making Maximum Use of the Discriminating Power

of Identifying Information. Communications of the ACM, 5, 11 (1962), 563–566. ACM. (cited

on page 37)

121. Newcombe, H.; Kennedy, J.; Axford, S.; and James, A., 1959. Automatic Linkage of Vital

Records. Science, 130, 3381 (1959), 954–959. American Association for the Advancement of

Science. (cited on page 37)

122. Niu, F.; Ré, C.; Doan, A.; and Shavlik, J., 2011. Tuffy: Scaling up Statistical Inference in

Submitted – 18 June 2020

170 BIBLIOGRAPHY

Markov Logic Networks using an RDBMS. Proceedings of the Very Large Data Bases Endow-

ment (VLDB), 4, 6 (2011), 373–384. (cited on page 44)

123. Nuray-Turan, R.; Kalashnikov, D. V.; and Mehrotra, S., 2013. Adaptive Connection

Strength Models for Relationship-Based Entity Resolution. Journal of Data and Information

Quality (JDIQ), 4, 2 (2013), 8. ACM. (cited on pages 40 and 60)

124. Odell, M. and Russell, R., 1918. The Soundex Coding System. US Patents, 1261167 (1918).

(cited on pages 24, 60, and 108)

125. O’Hare, K.; Jurek, A.; and de Campos, C., 2018. A New Technique of Selecting an Optimal

Blocking Method for Better Record Linkage. Information Systems, (2018), 151–166. Elsevier.

(cited on page 55)

126. On, B.-W.; Koudas, N.; Lee, D.; and Srivastava, D., 2007. Group Linkage. In Proceedings of

the 23rd International Conference on Data Engineering (ICDE), 496–505. IEEE. (cited on pages

1, 5, 44, 129, 149, and 150)

127. Pandove, D.; Goel, S.; and Rani, R., 2018. Correlation clustering methodologies and their

fundamental results. Expert Systems, 35, 1 (2018), e12229. Wiley Online Library. (cited on

page 55)

128. Papadakis, G.; Ioannou, E.; Niederée, C.; Palpanas, T.; and Nejdl, W., 2011. Eliminating

the Redundancy in Blocking-based Entity Resolution Methods. In Proceedings of the 11th

International Conference on Digital Libraries, 85–94. ACM. (cited on page 49)

129. Papadakis, G.; Ioannou, E.; Niederée, C.; Palpanas, T.; and Nejdl, W., 2012. Beyond

100 Million Entities: Large-scale Blocking-based Resolution for Heterogeneous Data. In

Proceedings of the 5th International Conference on Web Search and Data Mining (WSDM), 53–62.

ACM. (cited on page 49)

130. Papadakis, G.; Ioannou, E.; Palpanas, T.; Niederee, C.; and Nejdl, W., 2013. A Blocking

Framework for Entity Resolution in Highly Heterogeneous Information Spaces. Transactions

on Knowledge and Data Engineering (TKDE), 25, 12 (2013), 2665–2682. IEEE. (cited on page

49)

131. Papadakis, G.; Koutrika, G.; Palpanas, T.; and Nejdl, W., 2014. Meta-Blocking: Taking

Submitted – 18 June 2020

BIBLIOGRAPHY 171

Entity Resolution to the Next Level. Transactions on Knowledge and Data Engineering (TKDE),

26, 8 (2014), 1946–1960. IEEE. (cited on page 49)

132. Papadakis, G. and Palpanas, T., 2016. Blocking for Large-Scale Entity Resolution: Chal-

lenges, Algorithms, and Practical Examples. In Proceedings of the 32nd International Confer-

ence on Data Engineering (ICDE), 1436–1439. IEEE. (cited on page 48)

133. Papadakis, G.; Papastefanatos, G.; Palpanas, T.; and Koubarakis, M., 2016. Scaling En-

tity Resolution to Large, Heterogeneous Data with Enhanced Meta-blocking. In Proceedings

of the 19th International Conference on Extending Database Technology (EDBT), 221–232. (cited

on page 49)

134. Papadakis, G.; Svirsky, J.; Gal, A.; and Palpanas, T., 2016. Comparative Analysis of

Approximate Blocking Techniques for Entity Resolution. Proceedings of the Very Large Data

Bases Endowment (VLDB), 9, 9 (2016), 684–695. (cited on pages 29 and 48)

135. Philips, L., 2000. The Double-Metaphone Search Algorithm. C/C++ User’s Journal, 18, 6

(2000). CMP Media. (cited on pages 24, 60, and 108)

136. Poon, H. and Domingos, P., 2006. Sound and Efficient Inference with Probabilistic and

Deterministic Dependencies. In Proceedings of the 21st Conference on Artificial Intelligence,

vol. 6, 458–463. AAAI. (cited on page 42)

137. Poon, H. and Domingos, P., 2007. Joint Inference in Information Extraction. In Proceedings

of the 22nd Conference on Artificial Intelligence, vol. 7, 913–918. AAAI. (cited on page 42)

138. Poon, H. and Domingos, P., 2008. Joint Unsupervised Coreference Resolution with Markov

Logic. In Proceedings of the 13th Conference on Empirical Methods in Natural Language Process-

ing, 650–659. Association for Computational Linguistics. (cited on page 42)

139. Prasad, K.; Faruquie, T.; Joshi, S.; Chaturvedi, S.; Subramaniam, L.; and Mohania, M.,

2009. Data Cleansing Techniques for Large Enterprise Datasets. In Proceedings of the 1st

Service Research and Innovation Institute (SRII) Global Conference, 135–144. IEEE. (cited on

page 17)

140. Qian, K.; Popa, L.; and Sen, P., 2017. Active Learning for Large-Scale Entity Resolution.

In Proceedings of the 26th Conference on Information and Knowledge Management (CIKM), 1379–

1388. ACM. (cited on page 54)

Submitted – 18 June 2020

172 BIBLIOGRAPHY

141. Rahm, E., 2014. Discovering Product Counterfeits in Online Shops: A Big Data Integration

Challenge. Journal of Data and Information Quality (JDIQ), 5, 1-2 (2014), 3. ACM. (cited on

page 32)

142. Rahmani, H.; Ranjbar-Sahraei, B.; Weiss, G.; and Tuyls, K., 2016. Entity resolution in

disjoint graphs: An application on genealogical data. Intelligent Data Analysis, 20, 2 (2016),

455–475. IOS Press. (cited on page 47)

143. Ramadan, B. and Christen, P., 2014. Forest-Based Dynamic Sorted Neighborhood Index-

ing for Real-Time Entity Resolution. In Proceedings of the 23rd Conference on Information and

Knowledge Management (CIKM), 1787–1790. ACM. (cited on page 49)

144. Ramadan, B. and Christen, P., 2015. Unsupervised Blocking Key Selection for Real-Time

Entity Resolution. In Proceedings of the 19th Pacific-Asia Conference on Knowledge Discovery

and Data Mining (PAKDD), 574–585. Springer. (cited on pages 77, 79, and 152)

145. Ramadan, B.; Christen, P.; Liang, H.; and Gayler, R. W., 2015. Dynamic Sorted Neigh-

borhood Indexing for Real-Time Entity Resolution. Journal of Data and Information Quality

(JDIQ), 6, 4 (2015), 15. ACM. (cited on pages 38, 48, 49, 61, 76, 79, and 152)

146. Rastogi, V.; Dalvi, N.; and Garofalakis, M., 2011. Large-Scale Collective Entity Match-

ing. Proceedings of the Very Large Data Bases Endowment (VLDB), 4 (2011), 208–218. (cited on

pages 1, 43, and 44)

147. Rebollo-Monedero, D.; Solé, M.; Nin, J.; and Forné, J., 2013. A modification of the

k-means method for quasi-unsupervised learning. Knowledge-Based Systems (KBS), 37, 0

(2013), 176 – 185. Elsevier. (cited on page 50)

148. Reid, A.; Davies, R.; and Garrett, E., 2002. Nineteenth-Century Scottish Demography

From Linked Censuses and Civil Registers: A ‘Sets of Related Individuals’ Approach. His-

tory and Computing, 14, 1-2 (2002), 61–86. Edinburgh University Press. (cited on pages 17,

34, 131, and 132)

149. Reid, A. and Garrett, E., 2012. Doctors and the causes of neonatal death in Scotland in

the second half of the nineteenth century. Annales de démographie historique, 123, 1 (2012),

149–179. Editions Belin. (cited on page 130)

Submitted – 18 June 2020

BIBLIOGRAPHY 173

150. Richardson, M. and Domingos, P., 2006. Markov logic networks. Machine Learning, 62,

1-2 (2006), 107–136. Springer. (cited on pages 6, 16, 42, 47, 51, 59, 60, 104, and 150)

151. Saeedi, A.; Peukert, E.; and Rahm, E., 2017. Comparative Evaluation of Distributed

Clustering Schemes for Multi-source Entity Resolution. In Proceedings of the 21st European

Conference on Advances in Databases and Information Systems, 278–293. Springer. (cited on

page 5)

152. Sarawagi, S., 2008. Information Extraction. Foundations and Trends in Databases, 1, 3 (2008),

261–377. Now Publishers. (cited on page 17)

153. Sarawagi, S. and Bhamidipaty, A., 2002. Interactive Deduplication Using Active Learn-

ing. In Proceedings of the 8th International Conference on Knowledge Discovery and Data Mining

(KDD), 269–278. ACM. (cited on page 53)

154. Scheffer, T.; Decomain, C.; and Wrobel, S., 2001. Active Hidden Markov Models for

Information Extraction. In Proceedings of the 4th International Symposium on Intelligent Data

Analysis, 309–318. Springer. (cited on pages 54, 92, and 93)

155. Schnell, R., 2016. Privacy-preserving record linkage. In Methodological Developments in

Data Linkage, 201–225. Wiley Online Library. (cited on page 38)

156. Schraagen, M., 2014. Historical record linkage using event sequence consistency. In Pro-

ceedings Workshop on Population Reconstruction. (cited on pages 5 and 86)

157. Schraagen, M. and Kosters, W., 2014. Record Linkage Using Graph Consistency. In

Proceedings of the 10th International Conference on Machine Learning and Data Mining in Pattern

Recognition, 471–483. Springer. (cited on pages 5, 47, 129, 130, and 149)

158. Sehgal, V.; Getoor, L.; and Viechnicki, P. D., 2006. Entity Resolution in Geospatial

Data Integration. In Proceedings of the 14th International Symposium on Advances in Geographic

Information Systems, 83–90. ACM. (cited on pages 28 and 104)

159. Settles, B., 2010. Active Learning Literature Survey. Computer Sciences Technical Report

1648, University of Wisconsin, Madison. (cited on pages 7, 13, and 22)

160. Settles, B., 2012. Active learning. Synthesis Lectures on Artificial Intelligence and Machine

Learning, 6, 1 (2012), 1–114. Morgan & Claypool. (cited on pages 53 and 92)

Submitted – 18 June 2020

174 BIBLIOGRAPHY

161. Settles, B. and Craven, M., 2008. An Analysis of Active Learning Strategies for Sequence

Labeling Tasks. In Proceedings of the 13th Conference on Empirical Methods in Natural Language

Processing, 1070–1079. Association for Computational Linguistics. (cited on pages 53, 54,

and 92)

162. Shen, Z. and Wang, Q., 2014. Entity Resolution with Weighted Constraints. In Proceedings

of the 18th East European Conference on Advances in Databases and Information Systems, 308–322.

Springer. (cited on page 52)

163. Singla, P. and Domingos, P., 2005. Discriminative Training of Markov Logic Networks. In

Proceedings of the 20th Conference on Artificial Intelligence, vol. 5, 868–873. AAAI. (cited on

page 43)

164. Singla, P. and Domingos, P., 2005. Object Identification with Attribute-Mediated Depen-

dences. In Proceedings of the 9th European Conference on Principles and Practice of Knowledge

Discovery in Databases, 297–308. Springer. (cited on page 55)

165. Singla, P. and Domingos, P., 2006. Entity Resolution with Markov Logic. In Proceedings of

the 6th International Conference on Data Mining (ICDM), 572–582. IEEE. (cited on pages 1, 2,

4, 5, 17, 34, 42, 43, 44, 81, 82, 125, 129, and 149)

166. Smalheiser, N. R. and Torvik, V. I., 2009. Author name disambiguation. Annual Review of

Information Science and Technology, 43, 1 (2009), 1–43. Wiley Online Library. (cited on pages

17, 33, and 109)

167. Smith-Christmas, C. and Smakman, D., 2009. Gaelic on the Isle of Skye: older speakers’

identity in a language-shift situation. International Journal of the Sociology of Language, 2009,

200 (2009), 27–47. Walter de Gruyter. (cited on page 130)

168. Sokolova, M. and Lapalme, G., 2009. A systematic analysis of performance measures for

classification tasks. Information Processing & Management, 45, 4 (2009), 427–437. Elsevier.

(cited on pages 29 and 30)

169. Spärck Jones, K., 1972. A statistical interpretation of term specificity and its application

in retrieval. Journal of Documentation, 28, 1 (1972), 11–21. MCB University Press. (cited on

page 27)

Submitted – 18 June 2020

BIBLIOGRAPHY 175

170. Steorts, R. C.; Ventura, S. L.; Sadinle, M.; and Fienberg, S. E., 2014. A Comparison of

Blocking Methods for Record Linkage. In Proceedings of the 6th International Conference on

Privacy in Statistical Databases, 253–268. Springer. (cited on page 48)

171. Suri, S. and Vassilvitskii, S., 2011. Counting Triangles and the Curse of the Last Reducer.

In Proceedings of the 20th International Conference on World Wide Web (WWW), 607–614. ACM.

(cited on page 123)

172. Talburt, J., 2011. Entity Resolution and Information Quality. Morgan Kaufmann. (cited on

page 38)

173. Tauer, G.; Date, K.; Nagi, R.; and Sudit, M., 2019. An incremental graph-partitioning

algorithm for entity resolution. Information Fusion, 46 (2019), 171–183. Elsevier. (cited on

pages 38, 61, 79, and 152)

174. Thorvaldsen, G.; Andersen, T.; and Sommerseth, H. L., 2015. Record Linkage in the

Historical Population Register for Norway. In Population Reconstruction, 155–171. Springer.

(cited on page 130)

175. Torres, C. and Dillon, L. Y., 2015. Using the Canadian Censuses of 1852 and 1881 for

Automatic Data Linkage: A Case Study of Intergenerational Social Mobility. In Population

Reconstruction, 243–261. Springer. (cited on page 130)

176. Vatsalan, D. and Christen, P., 2013. Sorted Nearest Neighborhood Clustering for Effi-

cient Private Blocking. In Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery

and Data Mining (PAKDD), 341–352. Springer. (cited on page 61)

177. Vatsalan, D.; Christen, P.; and Verykios, V. S., 2013. A taxonomy of privacy-preserving

record linkage techniques. Information Systems, 38, 6 (2013), 946–969. Elsevier. (cited on

pages 38, 61, 62, and 77)

178. Vatsalan, D.; Sehili, Z.; Christen, P.; and Rahm, E., 2017. Privacy-Preserving Record

Linkage for Big Data: Current Approaches and Research Challenges. In Handbook of Big

Data Technologies, 851–895. Springer. (cited on page 38)

179. Verroios, V. and Garcia-Molina, H., 2017. Top-K Entity Resolution with Adaptive

Locality-Sensitive Hashing. Technical report, Stanford InfoLab. (cited on page 49)

Submitted – 18 June 2020

176 BIBLIOGRAPHY

180. Vesdapunt, N.; Bellare, K.; and Dalvi, N., 2014. Crowdsourcing Algorithms for Entity

Resolution. Proceedings of the Very Large Data Bases Endowment (VLDB), 7, 12 (2014), 1071–

1082. (cited on page 54)

181. Vieira, P.; Salgado, A. C.; and Lóscio, B. F., 2016. A Dynamic Indexing for Incremen-

tal Entity Resolution over Query Results. International Journal of Computational Linguistics

Research, 7, 3 (2016), 92–103. Digital Information Research Foundation. (cited on page 49)

182. Wang, H.; Li, J.; and Gao, H., 2015. Efficient entity resolution based on subgraph cohesion.

Knowledge and Information Systems, (2015), 1–30. Springer. (cited on pages 5 and 55)

183. Wang, J.; Kraska, T.; Franklin, M. J.; and Feng, J., 2012. CrowdER: Crowdsourcing

Entity Resolution. Proceedings of the Very Large Data Bases Endowment (VLDB), 5, 11 (2012),

1483–1494. (cited on page 54)

184. Wang, Q.; Vatsalan, D.; and Christen, P., 2015. Efficient Interactive Training Selection for

Large-Scale Entity Resolution. In Proceedings of the 19th Pacific-Asia Conference on Knowledge

Discovery and Data Mining (PAKDD), 562–573. Springer. (cited on pages 43, 53, and 54)

185. Weikum, G.; Ntarmos, N.; Spaniol, M.; Triantafillou, P.; Benczúr, A. A.; Kirkpatrick,

S.; Rigaux, P.; and Williamson, M., 2011. Longitudinal Analytics on Web Archive Data:

It’s About Time! In Proceedings of the 5th Conference on Innovative Data Systems Research,

199–202. www.cidrdb.org. (cited on page 46)

186. Whang, S. E.; Marmaros, D.; and Garcia-Molina, H., 2013. Pay-As-You-Go Entity Res-

olution. Transactions on Knowledge and Data Engineering (TKDE), 25, 5 (2013), 1111–1124.

IEEE. (cited on page 28)

187. Whang, S. E.; Menestrina, D.; Koutrika, G.; Theobald, M.; and Garcia-Molina, H.,

2009. Entity Resolution with Iterative Blocking. In Proceedings of the 35th International Con-

ference on Management of Data (ICMD), 219–232. ACM. (cited on page 48)

188. Winkler, W., 1990. String Comparator Metrics and Enhanced Decision Rules in the Fellegi-

Sunter Model of Record Linkage. In Proceedings of the Section on Survey Research Methods,

354–359. American Statistical Association. (cited on pages 17 and 26)

189. Winkler, W. E., 2006. Overview of Record Linkage and Current Research Directions.

Submitted – 18 June 2020

BIBLIOGRAPHY 177

Technical Report RR2006/02, US Bureau of the Census, Washington, DC. (cited on page

38)

190. Xu, R. and Wunsch II, D., 2005. Survey of Clustering Algorithms. Transactions on Neural

Networks, 16, 3 (May 2005), 645–678. IEEE. (cited on page 66)

191. Xu, Z.; Akella, R.; and Zhang, Y., 2007. Incorporating Diversity and Density in Active

Learning for Relevance Feedback. In Proceedings of the 29th European Conference on Informa-

tion Retrieval, 246–257. Springer. (cited on pages 53 and 92)

192. Yang, Y.; Ma, Z.; Nie, F.; Chang, X.; and Hauptmann, A. G., 2015. Multi-Class Active

Learning by Uncertainty Sampling with Diversity Maximization. International Journal of

Computer Vision, 113, 2 (2015), 113–127. Springer. (cited on page 7)

193. Zhu, J.; Wang, H.; Tsou, B. K.; and Ma, M. Y., 2010. Active Learning With Sampling by

Uncertainty and Density for Data Annotations. Transactions on Audio, Speech & Language

Processing, 18, 6 (2010), 1323–1331. IEEE. (cited on page 7)

194. Zhu, S.; Wang, D.; and Li, T., 2010. Data clustering with size constraints. Knowledge-Based

Systems, 23, 8 (2010), 883–889. Elsevier. (cited on page 50)

Submitted – 18 June 2020

	Acknowledgments
	Abstract
	Publications
	Contents
	Introduction
	Thesis Statement
	Research Motivation
	Research Questions
	Research Methodology
	Research Contributions
	Thesis Outline

	Background and Definitions
	Entity Resolution - An Example
	Definitions and Notation
	The Entity Resolution Process
	Common Entity Resolution Problem Domains
	Data Sets and Experimental Details
	Summary

	Related Work
	Overview
	Advanced Entity Resolution Techniques
	Blocking
	Training and Bootstrapping Data
	Evaluating Entity Resolution
	Summary

	Addressing Scalability Through Size Constrained Blocking
	Overview
	Approach
	Penalty Function
	Evaluation
	Discussion
	Summary

	Generating Training and Bootstrapping Data
	Overview
	Approach
	Applications to Active Learning
	Evaluation
	Discussion
	Summary

	Eliminating Parameter Settings through Unsupervised Evaluation
	Overview
	Approach
	Evaluation
	Discussion
	Summary

	Generating Relational Training Data - A Case Study on the Isle of Skye
	Overview
	Relational Ambiguity Approach
	Evaluation
	Discussion
	Conclusion

	Conclusion
	Recap of Contributions
	Future Work
	Conclusion

