
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Web based 3D Graphics using Dart

A thesis presented in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

in

Computer Science

at Massey University, Albany

New Zealand.

Timothy McMullen

2019

Abstract

The proportion of the population that has grown up with unlimited access to the

internet and portable digital devices is ever increasing. Accompanying this growth are

advances in web-based and mobile technologies that make platform independent applica-

tions more viable. Graphical applications, in particular, are popular with users but as

of yet have remained relatively underdeveloped for platform independence due to their

complex nature, and device requirements. This research combines web-based technolo-

gies to create a framework for developing scalable graphical environments while ensuring

a suitable level of performance across all device types. The web programming language

Dart provides a method for achieving execution across a range of devices with a single

implementation. Working alongside Dart, WebGL manages the processing needs for the

graphical elements, which are provided by content generative algorithms: the diamond

square algorithm, Perlin noise, and the shallow water simulation. The content algorithms

allow for some flexibility in the scale of the application, which is expanded upon by bench-

marking device performance and the inclusion of the asset controller that manages what

algorithm is used to generate content, and at what quality and size. This allows the appli-

cation to achieve optimal performance on a range of devices from low-end mobile devices

to high-end PCs. An input controller further supports platform independence by allowing

for a range of input types and the addition of new input types as technology develops.

The combination of these technologies and functionalities result in a framework that gener-

ates 3d scenes on any given device, and can alter automatically for optimal performance,

or according to predefined developer metrics for emphasis on particular criteria. Input

management functionality and web-based computing mean that as technology advances

and new devices are developed and improved, applications do not need redevelopment, and

compromises in features and functionality are only limited by device processing power and

on an individual basis. This framework serves as an example of how a range of technolo-

2

gies and algorithms can be knitted together to design performant solutions for platform

independent applications.

3

Acknowledgements

First and foremost I would like to thank Dr Daniel Playne for his endless patience,

support and friendship during my PhD study and research. I would also like to thank

Prof Ken Hawick for introducing me to computer graphics, and persuading me to embark

on this journey.

I am grateful for the support of the Massey University Computer Science department,

in particular to Chris Scogings, and all my fellow doctoral candidates.

Last but not least, I would like to thank my family. In particular, I am grateful for my

parents John and Dianne for their support in this part of my life, as well as everywhere

else. I am especially thankful of the help my fiance, Natalie.

4

Contents

1 Introduction 15

1.1 Platform Independence . 18

1.2 Web Technologies . 20

1.2.1 Dart . 23

1.2.2 JavaScript . 23

1.3 Computational Simulations . 24

1.4 Procedural content generation . 27

1.4.1 Scalability . 28

1.4.2 Models . 28

1.4.3 Algorithms . 29

1.5 Level of detail . 29

1.6 Performance . 30

1.6.1 Concurrency . 30

1.6.2 GPUs . 30

1.7 Publications . 31

1.8 Previous work . 31

1.9 Aim of thesis . 33

2 Rendering on the Web 37

2.1 3D Rendering Pipeline . 37

5

2.1.1 OpenGL . 39

2.1.2 Rendering . 41

2.1.3 Shaders . 45

2.1.4 Executing the rendering pipeline . 48

2.2 WebGL . 53

2.2.1 WebGL for Platform Independence 54

2.2.2 WebGL Limitations . 55

2.3 Dart . 58

2.3.1 Dart’s Design . 59

2.3.2 Development in Dart . 61

2.3.3 JavaScript . 63

2.3.4 Flutter . 65

2.4 Summary . 66

3 Utilising Dart for Platform Independence 67

3.0.1 Dart’s Virtual Machine . 68

3.0.2 Dart2JS . 69

3.0.3 Flutter . 71

3.0.4 Supported devices . 72

3.0.5 Performance . 74

3.1 User Input Management . 76

3.1.1 Controller Class . 77

3.1.2 Custom inputs . 81

3.1.3 Camera Class . 84

3.2 Summary . 85

4 Procedural Content Generation 87

6

4.1 Procedural Content Generation . 88

4.1.1 Level of detail . 92

4.2 Algorithms . 94

4.2.1 Diamond-Square . 94

4.3 Water Algorithms . 99

4.3.1 Shallow Water . 99

4.3.2 Perlin Noise . 104

4.4 Implementation . 106

4.4.1 Land generation . 107

4.4.2 Contour tracing . 114

4.4.3 Rendering . 116

4.5 Framework implementation . 120

4.5.1 Isolates . 121

4.5.2 Water generation . 124

4.6 Summary . 130

5 Dynamic Content Controller 131

5.1 Maintaining Optimised System State . 131

5.2 Implementation . 137

5.2.1 Benchmarks . 138

5.2.2 Asset creation - Isolates . 140

5.2.3 Creation . 141

5.2.4 Update Cycle . 143

5.2.5 Asset configuration . 144

5.3 Developer Metrics . 146

5.3.1 Updating of asset’s . 147

5.3.2 Creation of new asset’s . 149

7

5.4 Summary . 152

6 Results 155

6.1 Benchmarks . 156

6.1.1 Dart vs JavaScript . 159

6.1.2 Sequential vs Concurrent . 159

6.2 Device performance . 169

6.2.1 PC . 171

6.2.2 Macbook . 172

6.2.3 Android . 173

6.2.4 iPhone . 174

6.3 Conclusion . 176

7 Conclusions 177

7.1 Implications for platform independence . 179

7.2 Implications for web languages . 180

7.3 Future work . 181

7.3.1 Generative algorithms . 181

7.3.2 Implementation types . 182

7.3.3 Other languages . 182

7.3.4 Developer metrics . 183

7.3.5 VR support . 183

7.4 Conclusion . 184

8

List of Figures

1.1 Basic virtual machine . 19

1.2 Hexagon . 22

1.3 Cloth Simulation . 25

2.1 A rendered Image . 38

2.2 creating a basic triangle . 42

2.3 creating a square . 42

2.4 creating a cube . 43

2.5 adding texture to cube . 44

2.6 light in a scene . 45

2.7 OpenGL Rendering Pipeline . 52

2.8 OpenGL Rendering Pipeline . 62

3.1 Lifecycle of a dart application . 68

3.2 Input controller example . 78

3.3 Input controller example . 80

4.1 Diamond Square Algorithm visulised . 99

4.2 Shallow water movement . 102

4.3 Perlin Noise 3D visualisation . 107

4.4 The diamond-square algorithm subdivision 109

9

4.5 Connecting different sized grids . 112

4.6 Diamond-square algorithm with trace contours 116

4.7 Isolate life cycle . 124

4.8 Shallow water on base terrain . 129

5.1 Effects of the Developer metrics, with high quality tiles 134

5.2 Effects of the Developer metrics, with low quality tiles 134

5.3 Effects of the Developer metrics overview 135

5.4 The steps taken to update an asset concurrently. 142

5.5 The steps taken to update an asset sequentially. 142

5.6 Single Shallow Water tile, where the water is unable to move past the tile,

so reflects. 151

5.7 Two Shallow Water tiles, where the water is able to flow between tiles . . . 151

6.1 Comparison of updating time for sequential Dart and JavaScript implemen-

tations of Perlin Noise . 160

6.2 Comparison of updating time for sequential Dart and JavaScript implemen-

tations of Shallow Water simulation . 161

6.3 Comparison of updating time for concurrent Dart and JavaScript imple-

mentations of Perlin Noise . 162

6.4 Comparison of updating time for concurrent Dart and JavaScript imple-

mentations of Shallow Water . 163

6.5 Comparison of updating time for concurrent and sequential Perlin Noise,

across a range of devices . 166

6.6 Comparison of updating time for concurrent and sequential Shallow Water

simulation, across a range of devices . 168

6.7 Single generated tile at a resolution of 32 x 32 170

10

6.8 Single generated tile at a resolution of 64 x 64 170

6.9 Single generated tile at a resolution of 128 x 128 170

6.10 Generated scene when developer metrics on a PC define a preference to-

wards high quality tile generation. 171

6.11 Generated scene when developer metrics on a Mac Book Pro define an even

level of quality, and number of tiles generated. 172

6.12 Generated scene when developer metrics on an Android define a preference

towards high number of tiles generated. 174

6.13 Generated scene when developer metrics on a iPhone define an preference

towards high quality tile generation . 175

11

12

List of Tables

2.1 The differences between each OpenGL implementation 57

3.1 Example of different inputs for various devices 73

6.1 Specifications of devices used for benchmarks 157

13

14

Chapter 1

Introduction

The aim of this thesis is to research methods for creating web-based 3D platform inde-

pendent graphical applications. Designing and creating a graphical application to run on

multiple devices is challenging and time consuming. New devices are being released mul-

tiple times a year, and the boundaries of technology are constantly being pushed; tasks

that were once complex and time consuming can now be done in a fraction of a second

using just your phone[78]. We are now able to run complex simulations on a range of

devices, yet we use them for basic tasks, such as checking emails or browsing the internet.

Many of the more impressive applications are initially designed for one particular device,

requiring the same application to be redeveloped multiple times to work with each device.

Platform independence gives us the opportunity to create applications that can achieve a

high level performance regardless of their technical specifications.

Currently, to have an application run across a range of devices requires it to be written

in a language that is then interpreted by a given virtual machine[113]. Alternatively, an

application can be written in a high level language, or using a framework that is then

converted to various other supported languages, allowing for a given application to run

across a range of devices. Each instance of code created would also need to be designed

to interpret the graphical nature of the application, and the consequent effect on the

15

GPU.[114].

Previously mobile phones were used for calling and texting, personal computers (PCs)

and laptops were used in the office, and for gaming, and consoles were hooked up to TVs

and used for entertainment. Then consoles became smaller and portable, in the form of

devices, such as Game Boys; TVs became smart, and phones were produced with touch

screens. Now people are able to communicate with almost anyone almost anywhere in the

world using a myriad of technology available on mobile devices, PCs, laptops, consoles, and

even TVs. Websites are designed with mobile users in mind; tablets lurk in a grey area of

being more portable than a computer but less powerful, and having more features than a

mobile phone, but without being as compact; and there are endless forms of entertainment

and distraction ready to be downloaded on a whim.

Despite all of this there is no consistency in the availability of programs, services, and

applications across different device types. An iPhone user cannot be sure that an app

they love will be be available to their Android-using friend. A Windows gamer is not

guaranteed to be able to enjoy the same products as their friend who plays on a Mac. A

long-time fan may not be able to continue playing when the next version of their favourite

game comes out due to their device not meeting minimum system requirements.

Satisfying the goals of this thesis requires a new way of developing and deploying graph-

ical platform independent applications. The objectives of this research are a framework

that demonstrates the following,

• Performs at a real time interactive speed of a minimum of 60 fps (frames per second)

• Can run in a multithreaded implementation that generates a base environment faster

than the same environment in a sequential implementation

• Can run on any device that has a web browser that is 3D graphics-capable

• Utilises web-based technologies to create a 3D graphical scene (without the use of

16

downloaded assets)

Technologies such as HTML and JavaScript can be launched across multiple devices

using the internet to create graphical applications, and lead in the creation of various

third party libraries. These libraries, although they simplify the process of using 2D or 3D

graphics, tend to introduce inefficiencies into the application or system through needing to

support a range of functions[104], some of which have become redundant. These libraries

are also unable to avoid or lessen the need to transfer data to a user at runtime.

Using predefined simulations to create 3D graphics serves as an alternative to needing

to download models or environments. This type of system requires a set of predefined

algorithms to be used to create and run a given simulation. The simulation needs to

be able to be adapted at runtime and change based on various settings. The advantage

of using simulations like these is that a model is created, not downloaded, and can be

adapted based on given system information. This in turn creates a more lightweight

rendering process and allows for a more optimised graphical application.

This thesis explores various aspects of assorted technologies for use in a range of

effects, as each one contributes differently to achieve the desired system. The idea of

platform independence is a core feature of this thesis, as it is fundamental in allowing for

an application to be run across a range of devices. To enable this, web technologies are

heavily used, relying on newer feature sets such as HTML5, and WebGL[117] The use of

simulations is central to improving performance, and becomes necessary to allow for an

optimal design. As this research is also concerned with creating a graphical application

various graphical API’s are used along with different techniques to improve performance.

17

1.1 Platform Independence

The inspiration for platform independence comes from software that can perform regard-

less of the specific technology that is used to implement it [1]. This thesis is concerned with

applying that method of developing to create a graphical application wherein the device

being used can change without the need to redevelop any code. The first requirement is

to create a code base that can run across a range of devices and optimise itself to allow

for the ideal performance for the given device and user. There are several questions that

must be asked and answered to better understand the requirements of achieving the goal.

Firstly it needs to be understood what can be gained from a platform independent imple-

mentation. Then the most common ways of implementing a piece of platform independent

code must be considered along with the pros and cons of developing platform independent

applications.

Platform independence allows for a developer to create software that can be run across

a range of systems and devices. The two main methods of achieving this are through the

use of a virtual machine (VM), or using a programming language that is then compiled

into a different program for each device architecture[5][23]. Both approaches have various

general advantages and disadvantages over each other, which are extended further when

compared against natively written applications designed for the given system[7].

When creating applications that run within a VM to be platform independent the

typical process is the code that is passed into the VM is then interpreted into code for

the CPU. This process creates a delay in the flow of data from the software through

the system, and, because of this, most applications written in this manner become less

efficient[7][56]. This can also occur as the code that is converted may not directly translate

into something that the device’s CPU can process, requiring it to be further translated in

order to accommodate these situations[31].

The other option for producing code to run across a range of systems is by writing

18

Figure 1.1: The diagram above show a simplified virtual machine, from code compliation,

to platform execution.

an application in a framework such as QT [29] which is then converted and compiled into

another programming language that a given device supports. The application written

will then be complied into several different applications, each one designed for different

hardware. The drawback of this is approach is that the interpretation completed by the

original language may also have functionality which requires further translating to run on

a device, much like what happens with the code running through a VM; the difference is

that this translation happens before the application is run [109].

Developing using a platform independent approach allows for a developer to create one

application that will run across a range of devices without the need to recreate or redevelop

code. This reduces the time taken to develop for a range of devices, along with ensuring

a set level of standards between each application created. As previously mentioned, to

create an application for a range of devices is a time-intensive undertaking. To create

an application that is platform independent requires the use of a language that is then

interpreted by a VM, or is translated into various other languages. Within this thesis the

focus is put on the use of web-based applications, written in Dart which has its code run

within the Dart VM. The Dart VM is able to take code written in Dart to produce the

desired effect. This approach is not limited to only Dart for web-based languages, as the

likes of JavaScript work in the same manner [73].

19

The upside of written applications is that a developer only needs to be concerned with

one language. The hardware that the VM is run upon, or the subsequent programs will

be run on, can range greatly without the developer needing to be aware of any poten-

tial changes in hardware specifications. Abstracting the hardware from the development

somewhat allows for the developer to focus more on the functionality of an application

rather than what a given device is capable of. This will lead to a range of devices being

able to run the same applications to similar effect.

One of the shortcomings of using a VM is that the processing time is somewhat longer

than it would be if the application had been written in the device’s native language [56].

Another downside of this method is that adding a level of abstraction to the process leads

to an extra step needing to be taken, which, in turn, affects the performance of a given

application. Because of this, an application run within a VM will struggle to perform

when compared to that of a natively written application. Additionally, when using a VM,

some features of the hardware architecture will not be supported, so the developer and

application are unable to benefit from certain hardware acceleration[107]. An example

of this would be SIMD in JavaScript, or until recently the use of accelerated graphical

processing through the GPU in web applications.

Platform independence has its advantages and disadvantages; however, this research

identifies that the goal of allowing for a range of devices to run a given application is vital.

Furthermore, the ability to reconfigure an application at runtime is a core aspect of this

thesis which also contributes to overcoming some of the downsides of using a VM, such as

the one used by Dart.

1.2 Web Technologies

The advances in web technologies have rapidly accelerated since the release of the HTML5

standard[2]. HTML5 offers new functionality and range of features previously not sup-

20

ported natively in the web[98]. Through this new functionality it becomes easier to use

web technology as a basis for platform independent applications, such as ones written in

JavaScript. JavaScript is a scripting language written in 1995[21], it has advanced and

evolved into a powerful tool for creating websites, and now is being used for a range of

purposes such as simulations[61]. As the technologies used in a web browser have evolved

so have their capabilities, leading to the constant evolution of tools and features that are

offered and supported[21].

As web technology changes so does what it means to be web-based. What has thus

far remained constant is that the application runs in a web browser. A web browser,

such as Chrome, Firefox, or Internet Explorer, acts as a virtual machine, which executes

the commands it has been passed that have been written in HTML, JavaScript or other

supported languages[118]. With HTML5 these commands are no longer limited to just

acting within the VM, but can now be used to create local web storage and the like, such

as offline applications[41]. Applications can load data from this local storage saving time

as there is no need to download the data again, or reprocess the data to a given state. The

use of the GPU is also something recently supported though the work of WebGL. Allowing

for the usage of the GPU lets a developer create 3D graphical applications that can run

smoothly and take advantage of the graphical acceleration offered by the GPU[14].

The use of these new web technologies allow for the creation of the base of a platform

independent application that has the ability to run across a range of systems - any which

have a web browser. With the rise in the popularity of web-based applications has come a

rapid advancement in the driving technologies used in this VM, such as the likes of just-in-

time compilation (JIT)[64]. It is the use of advancements like this that give rise to the use

of JavaScript and the web as a platform for a range of new applications, such as web-based

simulations[117]. One new language that further improves upon the existing platform is

Dart. Dart is a new web language that runs within its own VM in the Dartium browser.

21

Figure 1.2: The image above is taken from a scene created using WebGL and JavaScript

Dart further extends the capabilities of the web, but is required to be run within its own

VM, or be converted into JavaScript, which can then be run on other web browsers[122].

The constant evolution of web-based technologies provides a range of advantages that

would otherwise be unavailable[116]. The most significant of these advantages is that it

makes it almost completely unnecessary for the user to install additional software, as most

modern operating systems come with a web browser preinstalled. As most common web

browsers are connected to the internet this allows them to constantly update to a newer

version, consequently updating the engine that the browesr uses, such as the V8 engine

[34], in turn improving performance. With the updating of a given engine also comes

the updating and implementing of functions, as well as support for additional languages.

This improved performance enables a simulation or computationally complex problem

to be computed using these web-based languages[117]. It is these advancements which

make the use of web-based technologies well suited for the use and creation platform

independence[116].

There are a few things to note when creating an application for the web, such as the

fact that although some applications are able to be run offline, doing this frequently will

22

result in a lack in some form of functionality[48]. Other applications will require a constant

internet connection to be run so if that is not possible, then, of course, the application will

not be able to run. As the use of VMs are vital in the usage of web-based applications,

this means that an application will not run as efficiently as one written natively for that

device[13].

Designing an application to be run with web technologies allows for it to be loaded and

run across a range of devices. Each device is different and, because of this, the application

needs to adapt accordingly; thus one of the requirements of this thesis becomes to create

a graphical application that is able to dynamically change and adapt to suit the different

performance requirements of devices. To aid in the attainment of this goal the use of

computational simulations has become a core part of the overall system.

1.2.1 Dart

Dart is an example of a web language that suits platform independence due its having been

designed for that very purpose. On the other hand, JavaScript is an example of a language

that could be used to achieve platform independence due its progressive widespread use

and support on most devices. The benefit of using Dart is that a developer can be sure

that whichever device an application ends up on,it will be capable of performing at a high

level. This is made possible by a number of design elements in Dart, such as the use of

classes, and types, combined with features, such as SIMD, which produce highly efficient

code that can be quickly interpreted by the compiler and executed in the VM.

1.2.2 JavaScript

This is in contrast to JavaScript, which is already in widespread use as a cross-platform

solution, but has such an extensive range of ways to achieve the same result that a devel-

oper can very rarely be sure that their code is efficient. As a consequence, applications

23

written initially in JavaScript perform slower than those written in Dart. This is partic-

ularly a concern in the context of graphical applications where, at this point in time, a

developer needs to be sure that they are leveraging every possible source of processing

power and providing as much speed as they can as graphical applications are computa-

tionally intensive, but a user may choose to run it on a low end device and expect it to

run.

1.3 Computational Simulations

Computational simulations are used to produce various effects by following a set of rules

to produce the desired results[75]. One of the most notable computational simulation is

Conway’s Game of Life by John Conway[35]. This simulation works by applying rules to

a given lattice then updating and repeating the process. The result from Conway’s Game

of Life is that by following a simple set of rules a complex pattern can emerge[93]. With

this knowledge it becomes possible to generate increasingly complex items using a given

rule set.

As previously discussed, the constant improvement in web-based technology allows for

the efficient use of some complex simulations[30]. Courtesy of this constant improvement

it is now not uncommon to find cloth simulations and water simulations that can be run in

a browser, although they are often limited in size as to allow for the simulation to complete

in real time. Many of these simulations, however, can be run in a range of sizes to increase

or decrease the amount of computational power required to efficiently run the simulation.

The underlying ability to change a simulation at runtime leads to the creation and base

of the system used within this thesis to test and configure the performance and adapt it

to suitable levels. This ability to alter a simulation according to device requirements has

provided the opportunity for the creation of the base of the system used within this thesis

which makes it possible to test and configure performance and adapt it to suitable levels.

24

Figure 1.3: A basic cloth simulation running in WebGL.

A simulation can be defined by the rules it follows, ranging from how it interacts with

a neighbouring cell or object through to how it interacts with a ray of light. It is by

following these rules within a given system that the desired results are produced, whether

that is the creation of a 3D scene, or a logic step in a weather system. As this thesis aims

for optimisation of graphical platform independent applications, naturally the graphical

aspect of simulations are a focal point of all undertakings. Furthermore, a requirement of

these simulations is that they can be run in real time, and can be altered throughout the

course of the application.

There is a significant, existing collection of simulations that are used to produce

graphical effects, as well as corresponding techniques to improve the accuracy of these

simulations[44][83]. Ray tracing is one such technique[60]. It is a process used within

graphics as a way of simulating the way in which light will bounce around a 3D scene.

The use of collision detection is another key feature that is used often within simulations,

25

so as to determine how an object will act when hit with another or when two objects

collide[47]. Each type of simulation can be used to produce a range of results based on

the input and rule set provided.

There are numerous reasons why a developer might opt to use a simulation. One of

their most obvious advantages is their flexibility. New results can be easily produced by

actioning small changes[67]. When these changes affect the complexity of a simulation

this also affects the speed of simulation, in turn dynamically changing the efficiency of a

given system. Another desirable quality of simulations is that they can produce an asset or

scene, such as landscape, without requiring a model to be loaded in from a given file thus

improving speed as there is no need to load a file then read the data[70]. This provides

another way in which simulations can improve the overall efficiency of a system, with more

details in chapter 4. This is as opposed to using static models, which is more commonly

used for detailed object where the quality, or another aspect of the model is important,

and needs to remain constant.

Simulations are commonly implemented using random numbers. The use of random

numbers is advantageous in aiding the production of new results; however, the repro-

ducibility of random numbers can be difficult to control, which can manifest in undesired

results[55]. This problem can be overcome with the use of a seed alongside a pseudoran-

dom number generator. Introducing these techniques means more control can be brought

to these kinds of simulations[55]. Overall the use of simulations is a popular method of

generating desired information due their flexibility, customisability and efficiency[36]. The

use of simulations allow the performance of tasks to be sped up and to be altered to in

turn alter the data produced. It is this level of control over the efficiency of a system

that makes simulations ideal for the creation of an algorithm that is able to change the

performance requirements of a given system at runtime based on the device.

26

1.4 Procedural content generation

Procedural content generation (PCG) is the process of generating content with minimal

input from a user [69]. The content created can vary largely based on implementation

details, and can be used for creating objects with set properties, to creating entire land-

scapes, and worlds. This content can then be used within games, or other mediums to

help automatically populate the world, giving designers a starting point, or a finished

product. There are a number of methods employed when generating content, with each

largely focused on a set content type. While these generative methods often share some

properties, their usages are well defined.

Some of the main methods used for PCG, are search based, constructive generation,

and fractal/noise based generation. Each of these methods are suited to different types of

content. Search based algorithms are fairly diverse, in that they are capable of generating

a variety of different content types. The down side of them though is that the content they

generate is made up from existing objects, with various properties. This mean that the

when generating content that the same property or element can be reused across different

objects. The quality of the content generated though is based on an evaluating function

which determines how appropriate a given element is for the content being created. [42]

Constructive generation is used largely when creating in closed environments, where

boundaries can be defined. Constructive algorithms are mainly implemented in one of

two ways, firstly adding rooms or areas within the confined space, then connecting these

rooms together producing the final environment. The other popular method is taking the

defined area, and removing sub areas via a given algorithm, producing the new layout or

environment.

Fractal and noise based generative algorithms are often used when creating large land-

scapes and scenes. Noise based approaches such as Perlin Noise focus on generating

random points which are then connected to produce a heightmap representative of the

27

generated scenes landscape. Fractal approaches focus not on random numbers but on the

recursive sub division of points based on a given algorithm to again produce a heightmap

used to represent a scene. Both of these approaches, Noise and Fractals are discussed in

more detail later in chapter 4.

1.4.1 Scalability

When considering the method of displaying assets for platform independence, scalability

must also be taken into account to avoid creating an application that can perform on a

high end device, but crashes on a lower end device. Currently, users do not have a choice

of using the same software they have on a computer on a mobile phone by sacrificing

display quality or user interactivity. Instead, that choice is made for them by either the

application only being available on one, or similar device types, or the application made

available on a range of devices but with inconsistent functions and features. In order

to provide users with the highest possible display quality and user experience depending

on their device, and the choice of sacrificing these in order to have the convenience of

accessing the application on another device without losing any features developers have a

few options depending on their preferred method of incorporating assets into a scene.

1.4.2 Models

Where a developer chooses to incorporate models to create a scene they would need to

include a library of assets created at a range of set sizes and resolutions ready to be

included within a scene depending on the device the application is being run on. The

drawback of this approach is that the entire library of models may have to be downloaded

regardless of the device type. Unfortunately, this does not support the aim of creating an

application that is light on data usage.

28

1.4.3 Algorithms

An alternative approach to inserting assets into a scene is to generate them with algorithms

and simulations. Generated content has the advantage of being able to be created at the

appropriate size and resolution for the device the first time. This means that an application

can be run on a computer with assets generated at the best possible quality as the device

will allow, which could be considerable on a desktop PC that has been fitted with the most

up to date technology; meanwhile the application will still have the same functionality if

accessed on a mobile device and the same assets can be generated, without the user being

stung with high data usage.

1.5 Level of detail

Level of detail (LOD) is becoming an increasingly popular method when rendering, to

allow for an object to change how detailed it is based on various factors such as viewing

distance. There are a number of issues faced when dealing with level of detail to minimise

the visual effects of transitioning from one level of detail, to another. Most commonly

is the effect of “popping” where an element of an object is hidden at one level of detail

but suddenly appears as the level of detail changes[59]. Many of these level of detail

approaches work based around starting with a high detailed model, then either manually

or via an simplification algorithm reducing the quality of an object making it more efficient

to render when finer details are unable to be viewed.

These simplification algorithms largely revolve around the removal of faces, via ether

collapsing points, to join them together, thus reducing the number of faces with an object,

or merging polygons which are close to coplanar[59]. There are a range of other methods

for hiding, or changing the topology of a mesh, but they are largely outside of the scope

of this thesis.

29

1.6 Performance

Continual advances in technology mean that cores are being produced to be smaller, and

more powerful, which means significantly more processing power can be packed into hand-

held devices, as well as larger devices such as desktop computers. This is advantageous as

the more cores a device has, the greater performance it achieves from a concurrent imple-

mentation. Until somewhat recently, concurrent implementations were not a particularly

suitable method for leveraging additional performance as devices that could benefit from

this were limited. However, as technology progresses the range of devices that can, and

the extent to which they can benefit from concurrency will make it an especially appealing

solution for graphical platform independent applications.

1.6.1 Concurrency

In order to provide users with highly realistic graphical applications that are accessible

on a range of devices developer must find the processing power to support them without

knowing exactly what that processing power will be. Concurrency provides a method

for the developer to leverage as much processing power as possible. This is particularly

important in the context of graphical applications that require significant processing power,

the demands of which only increase with the complexity of the simulation, and the level

of detail desired.

1.6.2 GPUs

Another relatively recent enhancement to mobile device hardware includes the addition of

GPUs, which have been a part of every iPhone released since 2007. For the purposes of

a graphical application the processing power of a GPU is significantly superior to a CPU

so it is an obvious option for providing additional computing resources[52]. At this stage,

there is more than one way a developer might seek to solve this problem. A combination of

30

OpenGL and OpenGL ES can, allow an application to access the GPU; however, it would

require the developer to add substantial support to allow this design to work for platform

independence. Using multiple graphics libraries is another way a developer could access

the GPU. While the setup of this does not have to be difficult, it does require vigilant,

and ongoing maintenance to ensure that updates to the libraries do not adversely affect

the range of devices on which the application is supported. Specifically tailored to use in

web applications, WebGL offers a convenient solution due to its ability to plug into a wide

range of APIs. It also has a wide range of support so a developer can be confident that

their application will be able to access the GPU regardless of device type.

1.7 Publications

This research has lead to a number of publication in the area of web development, platform

independent graphics, procedural content generation, and user interaction.

• Graphics on web platforms for complex systems modelling and simulation[70]

• Webgl for platform independent graphics [67]

• Procedural generation of terrain within highly customizable javascript graphics util-

ities for webgl[69]

• Meaningful Touch and Gestural Interactions with Simulations Interfacing via the

Dart[68]

1.8 Previous work

Although significant research has been done in the fields of platform independence and

of graphics, relatively little scientific exploration has been done regarding the application

of graphics within platform independence. The focus within the field of graphical pro-

31

gramming remains solely on the optimisation of graphics on a selected platform, without

consideration towards how the application will run across multiple devices. On the other

hand the field of platform independence focuses primarily on the goal of creating and op-

timising applications that are able to run across a range of systems. There are a few areas

within these two fields that overlap, such as Flash, and Java 2D, but there is a noticeable

lack in regards to 3D. This leads to somewhat of a void where the development of platform

independent graphics is concerned.

When an application is designed to be platform independent it is run within a VM,

or compiled into other languages. These methods allow for a range of systems to be

supported, but leave out the graphical applications [53]. To date, a limited amount of

development has been done in bringing OpenGL and other graphics libraries to the usage

of VMs; languages that compile to run across a range of devices may have some graphical

support. Because of the way in which both methods achieve platform independence it is

evident that, due to the interpretation steps, some GPU features are not supported as

well as they could be. Another method used to produce graphics for a range of platforms

in the web was though the usage of Java3D on the client side, though this in turn had

various flaws [4][114], and has since become deprecated.[90]

The benefit of many older methods was that applications were able to successfully

leverage some of the GPU’s processing power [53] while running across a range of systems

within a VM. The advantages of these approaches is that no code needs to be rewritten,

and basic support for graphical applications is offered. The downside of which is that

because it is running within a VM, it becomes difficult to fully utilise the performance of

a GPU[26]. Along with this difficulty comes the inefficiency produced by using a VM, or

another language to convert code, as support for some features on a given platform will

not exist[26].

More modern approaches to having a graphical application utilise game engines, in

32

which an application is written once using the engine, such as Unreal, or Unity, then is

compiled and deployed for a specific device. While the use of game engines is suitable for

primarily games, it does not offer as fine tuned control over an application as one created

natavily for the application. In turn a more native approach utilising a graphics library

such as OpenGL, or DirectX limits the user to a set platform, but allows for greater control

over the applications design, and performance optimisations. Alternatively libraries such

as Three.js or BabylonJS allow for a graphical application to be written for the web,

leveraging the power of WebGL, thought in turn still suffering from a similar effect as a

game engine, where the library becomes deeply embedded into the created application.

With the advances made within web technologies, such as that of WebGL, it becomes

possible to produce real time renderings across a range of platforms, through the use of

various web browsers[70][117].

1.9 Aim of thesis

The aim of this research is to prove that using the latest technology, such as Dart and

WebGL along with the use of simulations, it is possible to create graphical applications

that will automatically configure themselves during runtime to produce optimal settings

based on the device it is currently being run on, along with being able to be run across a

range of devices.

This is an important contribution to computer science as many applications that are

written to be platform independent lack performance especially if they are graphical.

Furthermore few will offer a range of predetermined settings based on the device, let alone

having an application configure itself to the device’s specifications.

The research explores the use of simulations such as the diamond-square algorithm,

used in terrain generation, along with the shallow water simulation and Perlin noise.

Chapter 2 explores the process of rendering on the web through advancements in

33

technology, such as the rendering pipeline in OpenGL and WebGL, and the development

of the web language, Dart. Chapter 3 describes the creation of a controller class that

utilises various APIs offered in Dart to map inputs of a range of devices within a graphical

application. The creation of an algorithm that is able to determine how best to render

and create a scene throughout the runtime of the application is explored in Chapter 4.

Chapter 5 covers the creation of the asset controller, which utilises the algorithms discussed

in Chapter 4 to establish an ideal runtime for a given device. Chapter 6 assesses the

performance of these algorithms across a range of devices and implementation types, and

analyses the scenes generated according to developer metrics and device specifications.

Chapter 7 evaluates how this research provides solutions to issues currently present in

the software industry, and answers to frustrations experienced by consumers. Chapter

8 outlines the efficacy of this research, and suggests areas where future research can be

undertaken.

34

’

35

36

Chapter 2

Rendering on the Web

The framework discussed in this project utilizes the 3D rendering pipeline, through WebGL

and Dart, as the basis for creating platform independent graphical applications. WebGL is

the subset of OpenGL that allows for an application written in a web language[50], such as

Dart or JavaScript, to access the GPU to allow for accelerated graphics using a rendering

pipeline. Dart is a new language designed to increase the performance of web applications,

and improve the development process. To achieve this, Dart offers increased functionality

compared to other web languages, while simultaneously offering improved performance

through its virtual machine, and supported processor features such as SIMD[66].

2.1 3D Rendering Pipeline

The rendering pipeline is a process that takes data representing a model in 2D or 3D space

and creates a 2D graphical representation to render on screen.

Currently, the best way to produce a rendering pipeline is through libraries and APIs

like DirectX, or OpenGL. The rendering pipeline in this framework uses WebGL, which

is a subset of OpenGL.

OpenGL has a range of versions, all of which are aimed at different hardware, thus

producing a range in functionalities between each implementation. As of OpenGL 2.0

37

Figure 2.1: A basic grey cube being rendered using WebGL, a subset of OpenGL

development has focused on the use of a programmable pipeline (with OpenGL Shading

Language (GLSL) shaders) over the fixed function pipeline[45]. This allows developers to

have greater control over the rendering pipeline, and create more flexible products[91]. It

is these rendering pipelines that process given data and produce the final rendering of an

object.

The rendering pipeline begins by receiving the data that makes up a scene; this is

usually in the form of vertices, indices, normals, and textures. The first step in the pipeline

is to process this information to assemble the scene via per vertex operations. These vertex

operations convert a point into the correct 3D space, allowing for correct lighting to be

applied. This process is called primitive assembly. After primitive assembly is completed

the primitives are rasterized; this is the process by which a 3D scene is converted into

2D. Subsequent to rasterization, depth layers are applied to ensure that objects closest to

the screen are displayed, while objects further back are hidden. Finally, once a 2D frame

has been created, textures and lighting are applied to each fragment within the frame[89].

Each process within the rendering pipeline is covered in more detail later in this chapter.

38

2.1.1 OpenGL

OpenGL comes in three major variations, OpenGL, OpenGL ES, and WebGL. Each of

these are available in assorted versions which include support for different functionalities.

OpenGL initially was designed to work with a fixed function rendering pipeline[108], but

this has subsequently been moved to a more flexible programmable pipeline in OpenGL 2.0.

OpenGL ES is a subset of OpenGL designed for use on embedded systems, whereas WebGL

is designed for use within web based technologies. Due to the frequent improvements and

advancements in OpenGL, newer versions are continually released to support the latest

functionalities. However, these functionalities are often limited in scope in order support

achieving design goals on the relevant platforms[88].

The fixed function pipeline initially offered by OpenGL allowed developers to harness

the processing power of graphics hardware. This allowed for the acceleration of the various

aspects which the user was required to provide, such as specific matrices, vertices and other

configuration parameters, like how to handle the textures. The information provided

by the user would then be passed through the fixed function pipeline to produce the

appropriate rendering. The fixed function pipeline is the simpler approach to the rendering

pipeline as it limits the user’s ability to define custom shaders, instead applying user based

configurations, thus providing limited functionality.

OpenGL 2.0 introduced shaders, which allowed for users to have greater control over

how rendering occurs, thus creating the programmable pipeline. The programmable

pipeline replaced the user’s ability to configure different aspects of the rendering process

with ability to create the rendering process through the use of programmable shaders. via

the use of shaders. Initially, these shaders were limited to the vertex and fragment shaders

which determine how an object is coloured and rendered. Recent versions of OpenGL in-

clude a more extensive range of shaders, such as the tessellation shaders, which allows for

data produced by the vertex shader to be further subdivided to create a higher level of

39

detail when rendering.

The first significant subset of OpenGL, OpenGL ES, was designed to work on embedded

systems, such as smartphones. Initially, OpenGL ES 1.0 was based upon a fixed function

pipeline, much like OpenGL 1.3, but with the inclusion of slight limitations on how it

could be configured[102]. These limitations were put in place to allow for the appropriate

use of a device’s resources, particularly on low performance devices. One such example of

these limitations is the removal of GL draw , which allows the use of draw quads. OpenGL

ES 2.0, on the other hand, is closer in functionality to OpenGL 2.0 as it incorporates an

introduction to shaders. However, the fixed function pipeline was completely removed in

OpenGL ES 2.0, unlike in OpenGL 2.0 where a developer was able to work using both the

fixed function, and programmable pipelines.

WebGL is a more recent subset of OpenGL, based on OpenGL ES 2.0. The specifi-

cations of WebGL remain very close to those of OpenGL ES 2.0. Both subsets are able

to achieve a closer interface with languages like JavaScript by utilising the programmable

pipeline with a few limitations. These limitations primarily extend as far as data types,

but also include the primitive types that can be rendered in OpenGL ES, such as lines and

triangles. Through the use of WebGL developers are able to bring hardware accelerated

graphics to the web without the necessity of installing third party plugins[62] though still

require supported device drivers are installed.

OpenGL and its numerous subsets provide many options for carrying out work in 3D

rendering. For the purpose of this framework WebGL offers the best solution as, like

OpenGL ES 2.0, it has been designed to be as lightweight and streamlined as possible,

but, unlike OpenGL ES 2.0, it is specific to web requirements. Thus WebGL is ideal for

use in platform independent applications as much of the functionality of the rendering

pipeline is available for the developer to utilise.

40

2.1.2 Rendering

The rendering pipeline is designed to receive a range of specific types of data, process the

information, then render the scene accordingly. The various functions within the rendering

pipeline can be customised via the use of shaders. Shaders process the data required to

render an object, including where the vertices are and how they should be joined. When

using the rendering pipeline within OpenGL it is necessary for the user to provide the

appropriate instructions on how information should be passed for each draw call[110].

The first step in the rendering process is collating the necessary data for creating an

object. An entire object is made up of basic shapes (primitives) which are comprised of

simpler shapes called primitives. Primitives are made up of a series of vertices, which

identify points in 3D space, represented as X, Y, and Z coordinates. The linking from one

vertex to another is performed using indices, which contain information about how a set

of vertices are joined together. Depending on how a user has instructed an object should

be rendered, primitives can take on a number of shapes. Usually these shapes would take

the form of quads, triangles, triangle strips, a single line or a point, along with a few

other primitives[111]. It is via the development of these primitives that an object can

be constructed, as seen in figures 2.2 and 2.3. This data is stored as a buffered array,

enabling it to be passed via OpenGL to a shader program.

Once the basic form of an object is rasterised, textures and lighting can be applied

to improve the quality of realism. Textures are applied to an object via the technique of

mapping. This involves the rasterizer computing texture coordinates for each fragment,

based on a primitives uv coordinates. This texture coordinates are then used to look

up a texel value from the current texture map. In addition to textures, normals can be

applied to an object to simulate the effects of lighting within a scene, and how light sources

interact with objects. Normals are typically used in lighting calculations within the vertex

shader. Where the user determines it is relevant, they can use normals to apply reflections

41

Figure 2.2: A triangle, created by joining 3 vertices together based on their corresponding

indices.

Figure 2.3: A simple square, created by joining two triangles together.

42

Figure 2.4: A cube produced by adding multiple triangles together.

and / or reflective qualities to the surfaces of an object. Normals can also be applied to

change the brightness within a scene as light sources change and fluctuate, or as objects

are manoeuvred.

Textures are linked to an object via the use of UV coordinates.They are applied to a

model by linking each each set of UV coordinates with a corresponding fragment. This

allows for a section of the image to be applied across a geometric primitive to apply the

desired detail to the relevant area. Whereas textures are applied to fragments, normals

are applied to vertex. When light hits an object normals are used to determine how

light diffuses across its surfaces, and how much light is reflected back into the scene, thus

dictating the extent to which an object is visible and how much ambient light there is

within the environment. The angle at which light hits a surface will increase or decrease

the spread of light as it moves across the scene.

43

Figure 2.5: Applying a basic crate texture to a cube

Listing 2.1: Dart code for generating a surface normal for a triangle, made up of three

points in 3D space.

Vector3 createNormals(){

//The three points which make up the triangle

Vector3 pointOne;

Vector3 pointTwo;

Vector3 pointThree;

Vector3 U = pointTwo - pointOne;

Vector3 V = pointThree - pointOne;

Vector3 N = new Vector3.zero();

N.x = ((U.y * V.z) - (U.z * V.y));

N.y = ((U.z * V.x) - (U.x * V.z));

N.z = ((U.x * V.y) - (U.y * V.x));

44

return N;

}

Figure 2.6: Light has been applied to this scene, based on generated normals using the

code in Listing 2.1 where the normals are evaluated at a vertex, and interpolated to give

a smooth surface normal

Object creation in OpenGL is adaptive and highly customisable due to the multi-

ple fragment types and rendering methods that are available to the user. Incorporating

textures and normals into an object’s construction results in high quality renderings, in

addition to improving the level of realism within a scene. Where the user is employing the

method of a programmable pipeline, the utilisation of textures and normals is managed

through the use of shaders.

2.1.3 Shaders

Shaders are programs that run alongside the rendering pipeline on the graphical processing

unit (GPU)[96]. They replace various aspects of the fixed function pipeline providing

more flexibility, and creating a programmable pipeline. There are two types of shaders

45

utilised within WebGL; the vertex and fragment shaders. The vertex shader focuses on

the positioning of the vertices of an object when rendering, whereas the fragment shader

manages the colouring and textures of an object[94].

Shaders designed for OpenGL are written in OpenGL Shader Language (GLSL). Each

version of OpenGL 2.0 onwards includes support for additional shader features, or incor-

porates new shaders altogether. OpenGL shaders are designed to complete one task which

they are able to execute with great efficiency by making use of highly specific function-

ality. The most simple of shaders take in data in the form of attributes, such as int,

float, mat, or vec. Applying basic operations to these attributes begins the customis-

able pipeline, including some predefined functionality. The results of these shaders are

then placed in variables, such as gl Position or gl Fragcolour, to allow the data to

continue through the pipeline, as seen in figure 2.2.

Listing 2.2: Basic vertex shader code example for vertex positioning using attributes and

defined output, and for passing texture information to the fragment shader using the

varying data type.

attribute vec3 vertexPosition;

attribute vec4 colour;

attribute vec2 uv;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

varying vec2 vUV;

void main(void) {

vUV = uv;

gl_Position = projectionMatrix * modelViewMatrix * vec4(vertexPosition, 1.0);

46

}

Listing 2.3: Basic Fragment shader code example for fragment texturing using varying

data, passed from the vertex shader to produce the defined texture output.

uniform sampler2D uSampler; // Containing a bound texture

varying vec2 vUV;

void main(void) {

gl_FragColor = texture2D(uSampler, vUV);

}

The fragment shader computes the lighting model and any other effects to calculate

the colour of the object at the point it represents.

Of the two types of shaders used in WebGL, the vertex shader manages the process by

which a point in 3D space is defined, and how that point is represented within the rendered

scene. To define an object’s location, a shader needs to interpret data passed from the

user, and output that data to gl Position as a vec4. The simplest process to create the

final location is to take in the x, y, and z coordinates as a single vec3 attribute, multiplying

it by a model-view and a projection matrix. This calculation determines how to render

the object within a scene, based on the location from where the user is viewing the scene,

along with where the object is located relative to the area of scene. This location is then

passed through the rendering pipeline to be used when rendering the object. Data can

also be passed from the vertex shader to the fragment shader through the use of variables

labelled as varying. One of the main uses of the varying label is in the passing of data

for lighting, such as surface normals, or data relating to the direction and source of the

lighting.

47

The fragment shader works via a similar method to the vertex shader, but, is also able

to receive variables passed from the vertex shader varying variables, as well as being able

to receive data through uniform variables. The fragment shader computes the lighting

model and any other effects to calculate the colour of the object at the point it represents.

By combining the data gathered from the vertex shader with what is passed from the

main application, the fragment shader is able to interpret this into a colour to output

to gl Fragcolour. In the most straightforward scenario, in which there is only a single

triangle to be coloured, and that primitive can be entirely the same shade, applying

colour can be as simple as defining a single vec4 (using RGB and alpha values) within the

fragment shader and applying those same values to all fragments of which the object is

comprised. As the level of detail a user wishes to create within a scene increases so do the

various methods which the user may apply to create the desired effects. Such techniques

include the use of surface normals, textures, and directional lighting data. Utilising these

methods enables the user to create a dynamic colouring system that incorporates light,

while shadows are typically achieved through a multi-pass render. This, in turn, makes an

environment appear more realistic as the different techniques are applied and refined[97].

The creation of highly dynamic renderings within OpenGL, and, by extension, WebGL,

are realised by the utilisation of the both the vertex and fragment shaders within the

programmable pipeline. The ability for the user to have autonomy over aspects of the

rendering pipeline is vital for applications such as WebGL, as this allows for developers to

take advantage of a device’s GPU to improve performance, while simultaneously increasing

customisation options that are available while rendering.

2.1.4 Executing the rendering pipeline

Once the primitive is created in OpenGL, the shader must be compiled and initialised

before the object can be rendered. The rendering process involves the linking of a shader

48

program on the GPU to the CPU through the use of attributes or uniforms. To complete

the rendering of an object a draw call must be set up and actioned for each primitive that

is to be rendered. Additionally, any updated information must be passed to the shader.

The process of linking a shader to the GPU and CPU has many steps as shaders

cannot be directly run on the GPU. They must first be compiled by OpenGL into a

shader program that can then be passed to the GPU and deployed. Defined within a

shader are attributes, uniforms, and varying data types. To allow for data to be passed to

the shader a pointer is created. Various object types are utilised to allow for data to be

passed to a shader, vertex buffer objects are used to store vertex attribute data, uniforms

for values used by multiple objects, and textures for static data blocks.

Creating a shader program to be run on the GPU begins in OpenGL, where the type

of shader must first be specified, such as, vertex, before the shader can be compiled. Once

the shader type is defined the relevant source file is linked to the shader; this contains

the code for the shader program that will be run on the GPU. After the shader has been

linked to the source code it is compiled into a shader program. When OpenGL is required

to render an object, the shader program is used to execute the draw call. In the case

where there are multiple objects to render, but the same shader is being applied, all draw

calls can be executed using the same, single shader program. Where the user wishes to

apply more than one type of shader, it is recommended to group all objects pertaining

to the same shader and render them all before switching shader programs and rendering

all objects pertaining to that subsequent shader. The grouping of objects minimises the

expense of changing between shaders, which is considered a costly procedure, and should

be avoided where possible[28].

The advantage of using the GPU for rendering is that GPUs are designed with sig-

nificantly more cores than standard CPUs. This means that shader programs, which are

executed on the GPU, can run very efficiently by taking advantage of the numerous cores

49

to render multiple fragments at the same time. The increased number of available cores

is possible because of the limited interconnection between each processor on the GPU[72].

These additional cores, although not heavily interconnected, allow for the task of render-

ing each fragment to be split across multiple cores and threads, thus resulting in increased

performance when rendering a scene compared to rendering a scene using a CPU[92].

There are three methods of passing data to a shader, the most common of which is

attributes. Attributes are stored within a buffer, and linked to a shader program via a

pointer; for each vertex new attributes are passed to the shader program using this linked

buffer. On the other hand, uniforms are passed as a single draw, and are often used for

world or position matrices. As uniforms remain constant for the rendering of each draw

call, they do not change between each primitive. The advantage of this is the minimisation

of amount of data to be transferred for each render call. The final method for passing

data to a shader is through varying data types. Defining a variable as varying within both

the fragment and vertex shaders allows for data to be passed from the vertex shader to

the fragment shader. A common application of this process is generating normals using

the vertex shader, then transferring this data, via the varying data type, to the fragment

shader in order to apply lighting effects. This results in a fragment shader getting input

from a varying as interpolated (assuming smooth shading case) values from the vertex

shader.

Once the shaders are compiled, OpenGL can access the programmable pipeline in

order to render a scene. The user must specify the location of the data that makes up an

object, such as the vertices, and indices, along with uniforms, which contain model view

positioning information. This data is then passed to the shader program via a draw call.

The draw call is a series of events that is separated into three main tasks. The first

of these tasks is the setting up and defining of which shader programs will be used, as

discussed in the previous section.

50

The second event is the defining of the uniforms. These normally contain matrices,

which define how the scene is viewed; this data remains the same for all primitive that

are rendered within the same draw call. Uniform data is passed by the simple method of

using the OpenGL command, uniformMatrix. The specifics of this command will change

slightly depending on what kind of data it has been passed. The pointer then links the

uniform command to the relevant uniform, as defined in the shader program.

The final task of the draw call is to set up attributes, which contain all essential

information relevant to the rendering of primitive. The setting up of attributes occurs

once the uniforms have been defined and passed to the GPU. Attributes contain variables

that change with each fragment they are passed. As a result, data contained within

attributes is often stored as an array, which is then linked to an attribute pointer. This

data is commonly used for storing information such as, vertex locations, normals, and

texels; this information differs for each vertex.

The process of passing data from an attribute begins by first using the correct pointer

to enable the attribute array. Once the attribute has been set up, the data is then bound

to a particular buffer type, such as ARRAY BUFFER or ELEMENT ARRAY BUFFER, to determine

how the buffer is to be used.

The final step in setting up an attribute is to specify within OpenGL how each buffer

is defined, such as, the number of elements for each fragment, the type of data, if the

fragment is normalised, and the stride. This information might be specified in the case

of a buffer containing mixed data, such as both textures and normals being stored within

a single array. Once the attributes have been finalised, OpenGL can begin making draw

calls.

The flow of the rendering pipeline can be seen in figure 2.7. It shows how data is moved

through the rendering pipeling in order to produce the desired frame buffer. This process

uses attributes as a method of passing data into the vertex shader, which is then used to

51

Figure 2.7: The flow of data as it enters the rendering pipeline to produce the required

frame.

produce a given vertex. This attribute data is unique for each vertex being worked on,

unlike uniform data, which is designed to remain constant throughout a rendered primitive.

Uniform data can be passed into both the vertex shader and fragment shader to be used

when processing. As the data moves from the vertex shader, each primitive within the

scene is then produced using the results of the vertex shader. The primitives are then

projected from a 3D scene, to a 2D plane through the rasterization process. In order to

efficiently communicate between the vertex shader and the fragment shader varying data

types can be used. Varying data is passed though this pipeline, allowing for the vertex

shader to influence the fragment shader. Once each fragment has been processed the final

frame buffer is produced and is ready to be displayed.

There are two different function calls that a user may choose to employ to render a

scene. Technically, the simplest function that could be used is gl.DrawArrays. When

using gl.DrawArrays the user defines what kind of fragments, such as as quads, will be

used to create the object. Following this, the user will define an offset in order to locate

the first vertex that is to be rendered, then the user will specify the number of vertices to

be rendered.

52

To achieve more efficient performance gl.DrawElements could be used. This func-

tion incorporates indices to allow for a single vertex to be referenced multiple times;

this avoids defining the same vertex multiple times within a single buffer. Overall, this

process contributes to minimising the amount of data that needs to be passed for each

draw call. To use gl.DrawElements an indices buffer must be bound with the type

ELEMENT ARRAY BUFFER, and the fragment, data type, indices array, and offset must be

defined within the draw call. For a lightweight rendering, gl.DrawArrays would offer the

best solution due to their simple design and modest amount of data[115]. Where the scene

to be rendered is more complex, gl.DrawElements offer performance efficiency that is not

available in gl.DrawArrays.

OpenGL offers a well defined rendering pipeline, that can be customised according to

a developer’s needs. OpenGL allows for the task of creating models by joining multiple

primitives together to become highly optimised, and utilises the power of a device’s GPU

to achieve optimal performance. In addition to this efficient workflow, OpenGL allows for

the user to incorporate customisable shader programs. Although these shader programs

initially require a specialised set up, they offer the user an unparalleled avenue for cus-

tomising the rendering process. OpenGL offers new processes with each implementation,

as existing methods are developed or new ones added to improve OpenGL’s capabilities.

Each implementation is designed for a specific purpose, such as OpenGL ES is particular

to mobile platforms. For the context of this framework, WebGL is the most appropriate

implementation of OpenGL.

2.2 WebGL

WebGL is a graphics API based on OpenGL ES 2.0, which is, in turn, based on OpenGL

2.0, WebGL 2.0 is based on OpenGL ES 3.0. WebGL predominantly includes much of

the same functionality that is offered by OpenGL, with only a few limitations[63]. These

53

limitations are minor, and are incorporated to improve efficiency on low end devices[123].

Shaders are one feature that are common to all recent implementations of OpenGL; how-

ever they are a compulsory and integral part of WebGL which enable a web programming

language, such as JavaScript or Dart, to access the programmable rendering pipeline.

Within this framework WebGL is used for the rendering of simulations, and dynamically

generated content. WebGL is designed to run within a web browser, such as Google

Chrome, as this allows WebGL to potentially access a large amount of support by leverag-

ing the virtual machine (VM) that is used by the browser. Utilising these web technologies

also reduces the limitations on which devices an application could be run. This abstraction

from the hardware makes it possible to create platform independent applications that are

capable of a significant range of performance outputs.

2.2.1 WebGL for Platform Independence

WebGL lends itself to the creation of platform independent frameworks as it runs within

a virtualised environment, with access the GPU for further acceleration. It is the per-

formance increase offered by the GPU that has lead to the creation of many impressive

graphical simulations that can be run across a range of devices[37].

One of the ways WebGL increases performance is by removing the necessity of installing

third party plugins in order to access the additional rendering capability within a browser.

This enables shaders to be deployed for processing on a device’s GPU, which frees up

resources on the CPU. Deploying shaders on the GPU further enhances the rendering

pipeline’s performance as shaders run outside of the VM’s sandbox, whereas the rendering

context of WebGL does not[46].

Another key performance improving method available in WebGL is the possibility of

integration with web technologies, which offers the potential for an abstraction from hard-

ware through a web-browser. It is abstraction from hardware that allows for a single code

54

base to be run across multiple devices, thus producing various levels of performance[27].

Overall, WebGL offers an enhanced set of tools to achieve high performance rendering

through a web-browser in a platform independent contexts. The performance advantages

achieved by offloading work to the GPU further contributes to improved performance, and

reduces the hampering effects of running within a VM.

2.2.2 WebGL Limitations

As mentioned above, one of the most significant advantages of WebGL its readiness to

adapt between different platforms. A key reason WebGL is able to do this is due the

various intentional limitations in place as a result of its design. These limitations are

integrated to produce a more fluid user experience across devices, irrespective of a device’s

performance capability. The limitations range from which data types are included to what

primitives are supported; there are also a reduced number of shaders available. All of these

are limited in order to keep the WebGL 1.0 specifications as close as possible to those of

OpenGL ES 2.0[63].

One of the most significant limitations of WebGL 1.0 is the constraints placed on

data types; this is especially evident when using indices. Currently, support for indices

within WebGL extends as far as unsigned shorts, which means the maximum number

of vertices that are supported in a single draw call is 65,535[67]. This is due, in part,

to the design of OpenGL ES 2.0, which shares in this limitation, but is also a result of

continuing to maintain support for low end devices. In addition to restricted data types,

there are only a few supported primitives. These include points, lines, triangles, and some

similar variations of these. This means that in order to draw a square, two triangles must

be rendered. While this increases the amount of data to be passed, it also reduces the

amount of data required for each primitive, as well as reducing the complexity of the

available primitives.

55

In keeping with the OpenGL ES 2.0 standard, WebGL supports the vertex and frag-

ment shaders within a programmable pipeline; however, unlike OpenGL ES 2.0, offers no

such support for the fixed function pipeline. This functionality was previously supported

in OpenGL, in order to provide legacy support, but has been removed from WebGL and

OpenGL ES 2.0 to provide a more streamlined pipeline. This means that a large number

of processes, which were previously available in the fixed function pipeline, are no longer

accessible. One such example of a functionality that has been excluded from the WebGL

pipeline is the inbuilt rotation and translation of objects and cameras within a scene. This

is an essential function of the pipeline as it allows the application to produce the correct

matrices and shaders that are necessary to the rendering of a scene. However, this process,

like most of the processes that are not supported in the fixed function pipeline, can readily

be recreated and implemented by the developer.

Although WebGL does have some limitations most of these can be overcome through

the use of various techniques and design decisions; such as only utilising graphics that

are made up of triangles; and limiting the primitive count for each object. Additionally,

objects can be split into multiple parts, and each part rendered individually in order to

reduce the primitive count per draw call. When designing a WebGL application, if these

limitations are taken into account, a highly optimized rendering pipeline can be created.

WebGL is supported in most major web browsers, on desktop, and mobile; this aids in

its relevance and suitability for a platform independent framework. As mentioned previ-

ously, a significant advantage of using WebGL is that it removes the need to install a third

party plugin for the browser as many older 3D web based applications did. Furthermore,

specifications for WebGL 2.0 have been released, which look to improve various aspects of

the current WebGL standard. Table 2.1 shows some of the main differences between each

OpenGL implementations. It is worth noting that some of these limitations vary based

on the hardware manufacturer as some devices may extend or limit functionality.

56

OpenGL OpenGL ES WebGL

Target Platform Desktop Mobile devices Web browsers

Current version 4.5 3.2 2.0

Indices limit 32-bit 32-bit 32-bit

Texture dimensions any power of two power of two

Support 3D texture Yes Yes Yes

Data precision Double Float Float

Shader version 450 300 es 300 es

Table 2.1: The differences between each OpenGL implementation

WebGL is no exception to the constant evolution of technology, and the forthcoming

release of WebGL 2.0 will certainly prove this. WebGL 2.0 will bring WebGL closer in line

with OpenGL ES 3.0[50]. This will see the release of several features that have become

commonplace in the world of 3D rendering techniques, and the updating and extension of

existing features.

One of the new features that is included in WebGL 2.0 is 3D textures. Instead,

textures will be able to be assigned X, Y, and Z values, which will then be able to be

looked up from within a larger 3D image data set. This will greatly extend rendering

and modelling possibilities when used in conjunction with 3D scans, such as those used in

medical imaging[17].

Instancing will also be implemented in WebGL 2.0, that will allow for a greater increase

in performance when rendering the same object multiple times. This is possible as only

the position of said object will alter, not the physical properties; there is currently support

for this within Chrome, and Firefox[80].

In addition to all of these improvements there will also be updated Vertex Buffer

Objects (VBO) and Vertex Array Objects (VAO).These will allow for the bundling of

57

buffer and array objects, thus streamlining and simplifying the processes associated with

handling large quantities of data[50].

Regarding the improvement of additional features, one of the largest and most signifi-

cant is the inclusion of support for 64 bit data types, that is, 64 bit integer, and unsigned

64 bit integer.

The significant number of improvements and extensions will not only contribute to

superior performance, but also make WebGL more user-friendly and intuitive for devel-

opers by producing a more consistent experience between platforms. Consumers will also

benefit from the possibilities generated from WebGL as the practical possibilities of appli-

cations created using WebGL can range from the entertainment sector to increasing the

accessibility of medical information and technologies.

Where platform independence is the primary requirement or objective of graphical

applications, WebGL is an ideal candidate. This is due to the numerous advantages as

described above, as well as the ongoing support and updating of the WebGL standard.

Moreover, WebGL is one of the first piece of technology that has been used in earnest to

push the boundaries of web-based rendering through the integration of the GPU and use

of shader programs. If compared to the classical rendering approach of OpenGL, which is

older and consequently has a wider range of features and functionalities than WebGL at

this stage in its history, WebGL does appear to have some limitations. However, these are

easily negated as WebGL has adopted the most commonly used functionality of OpenGL

ES

2.3 Dart

While there are many languages with built-in support for WebGL, this framework uses

Dart. Dart is is a new programming language from Google, which is designed for use in

web applications. Dart is similar to JavaScript in that it runs within its own VM, thus

58

allowing for support across a range of devices. Dart was designed with a view of providing

excellent efficiency; this not only includes application performance, but includes improved

development experience through the addition of modern language features[122]. As Dart

has been modified and adapted it has become possible to convert Dart into JavaScript in

order to increase the range of supported devices[77]. Additionally, projects like Flutter-

which aims to create cross platform applications with near native performance[33] utilise

Dart as the core language for creating applications that are designed to run natively across

iOS and Android devices[32].

2.3.1 Dart’s Design

When developing for platform independence there are two major aspects to consider:

the structure of the language; and the language’s performance. Dart offers a range of

improvements in the way of classes, isolates, and data types. In addition to this improved

structure, Dart innately seeks to gain further performance increases by taking advantage

of unique device features such as Single Instruction, Multiple Data (SIMD)[66].

Dart offers a range of new features when developing for the web, which were previ-

ously unavailable to developers. These new features, which are not currently supported in

JavaScript, are predominantly represented by classes, the integrated development environ-

ment, and isolates[40]. The implementation of classes within Dart allows for newer pro-

gramming methods to be implemented which were not possible with JavaScript. Whereas

JavaScript has web workers, Dart has isolates to implement multithreading. Isolates allow

tasks to be offloaded to other threads.

In Dart every object is an instance of a class. Classes in Dart offer a method of grouping

functionalities that pertain to a particular type of object so that multiple instances of said

object can be produced. Dart classes use Mixin-based inheritance to maximize code reuse

by allowing for classes to be extended in multiple class hierarchies. Within Dart the use

59

of classes allows for many optimisations to be completed in the VM in order to improve

performance, whereas JavaScript requires customised, confined optimisations and creative

coding to produce even a slight acceleration [34], such as those added via Googles Closure

Compiler [38].

Dart supports a range of built in variable data types, which all manifest as first class

objects. As all variables in Dart are objects a developer can choose to use predefined

constructors, or to create custom implementations. Variables defined as a var can be

treated as an integer or other supported type, until its type is confirmed; once the type is

confirmed, it cannot be subsequently changed. This approach differs to that of JavaScript

in which a variable can dynamically change types throughout runtime. Defining the data

type of a variable (as is practiced in Dart) means that the developer knows what kind

of data they will be working with, and what process can be applied to the variable. As

data types within Dart must be defined arrays will only ever contain a single data type.

For example, within an array of strings, each element will be a string. This differs from

JavaScript in which a variable within an array could be any of a number of data types,

such as object, integer, or string[73].

Concurrency is achieved in Dart via the use of isolates, in which each process within

Dart runs in its own isolate [77]. Each isolate is allocated its own memory heap, in order

to ensure that no memory is shared between processes, thus reducing the likelihood of race

conditions [40]. Each isolate is run on a separate thread with its own event loop, therefore

limiting its reliance on other isolates. As isolates run independently, it is essential that they

are able to communicate. This is achieved by sending messages through ports, using send

port and receive port[101]. The set up and running of isolates allow for web applications

to be designed for, and to take advantage of, multithreading, in order to offer improved

performance.

The design decisions of Dart, namely the use of first class classes, functions and defined

60

data types, enables an IDE to perform static checking before an application is run. This

helps minimise runtime errors caused by variables changing types, as can occur within in

JavaScript. Dart’s IDE also allows for the managing of third party libraries, which can

be searched and downloaded through the IDE. Through the IDE these libraries can have

version limits placed upon them, thus allowing for a range of versions to be used. This

means that limits can be applied to stop a Dart package using a version of the library

that might break the application. Dart’s IDE also supports the dart2js function, which

converts Dart code into JavaScript, hereby increasing the range of platforms on which an

application can be supported.

Figure 2.8 shows the different processes required to run Dart code on various platforms.

It demonstrates that Dart can not only run natively within the Dartium web browser, but

can also be run in other web browsers using JavaScript. Additionally, this shows that

the Dart VM can be used to create server-side applications, such as web servers, thus

allowing for Dart to be the main language for both client and sever side applications[39].

To extend on Dart’s capabilities and adapt for mobile devices, the Flutter framework

allows for applications to be written in Dart, and be executed natively on both iOS and

Android; Flutter and its functionality are covered in more detail later in this Chapter,

and Chapter 3.

2.3.2 Development in Dart

Dart’s support also allows for the implementation of the constant updates of Dart through

the IDE. These updates improve upon Dart’s existing code and to fix any bugs that

may have been discovered. These updates not include fixes, but also new features, and

optimised methods, which replace outdated ones. Some of the new features are created

to assist developers in taking advantage of all the power offered by a modern CPU. New

features also include ways to improve not only performance, but also the battery life of

61

Figure 2.8: The execution of Dart code for a given platform, and the proccess required.

devices by using more efficient calls [65].

The original design goal for Dart has always been a focus on performance through

rapid runtimes and fast compilers [24]. This focus is now realised in two ways: the use of

the Dart VM; and the use of the dart2js compiler. The Dart VM, which Dart supports

in order to improve performance, focuses on the addition and use of new features, such

as the introduction of SIMD. SIMD allows for multiple pieces of data to be processed

using a single instruction step, as opposed to processing multiple pieces of information the

same way, multiple times[66]. This offers significant performance increases when dealing

with graphical applications, especially as many of the calculations within graphics revolve

around the use of 4x4 matrices.

Dart2js, on the other hand, focuses on optimisations that are to be produced in

JavaScript code. Dart2js analyses the Dart application to make optimisations in a similar

manner to how GCC optimizes C code. These optimisations work by moving code around

and changing ordering [25] in addition to using minification, and compression. One final

step that occurs in both Dart’s VM and dart2js, is the use of tree shaking. Tree shaking is

the process of removing unused code from an application to further reduce its size. Both

the dart2js compiler, and the DartVM, provide Dart with two ways for offering a faster,

62

and more effective runtime environment [120][122].

It is through both performance considerations, and language design that Dart has

developed into an effective language, particularly in the context of modern applications.

Dart offers a consistent development environment through the IDE and language structure,

along with performance gains though the VM or dart2js compiler. Essentially, Dart utilises

the newest technologies, and affords simplicity for the user when designing an application.

Listing 2.4: An example of Dart code, adding numbers to an array, then printing the array.

void main() {

List<int> x = new List<int>(10);

for(int i = 0; i < 10; i++){

x[i] = i;

}

print(x);

}

2.3.3 JavaScript

JavaScript remains an incredibly popular choice for programming on the web, despite its

origins as a simple scripting language. It has become increasingly powerful through the

implementation of improved virtual machines, such as Google Chrome’s V8 engine; how-

ever it falls short of offering the many functionalities found in other modern programming

languages[73]. Due to the ubiquity of JavaScript in web browsers it is supported across

a range of devices. As JavaScript is still a relatively simple language it remains highly

flexible in what it is able to achieve and how it works. However, this simplicity can also

be disadvantageous as JavaScript was not designed to anticipate the many ways in which

63

it is currently used[21].

JavaScript is supported on a range of devices, from smartphones to desktop computers.

It runs within a VM in the browser, using an interpreter or just-in-time compiling, to

create bytecode. These VMs are highly optimised in order to achieve a significant level of

performance, using internal mechanisms to change data types in order to make operations

less costly. Dart is able to leverage power from these VM’s, particularly the Chrome V8

engine, by using the dart2js compiler. The JavaScript code produced by Dart is already

highly optimized (as discussed previously) in addition to being designed to take advantage

of a JavaScript engine’s optimization.

One compelling advantage of JavaScript is its flexibility; this flexibility is limited to

the VM within which JavaScript runs. This can limit what data it can access locally,

or externally from another website, along with other various limitations. Also due to

JavaScript’s flexibility it is often difficult to constrain the behaviour of an object within

the system [105]. Furthermore, this flexibility causes JavaScript to have few protections in

regards to security, as it can allow for cross-site scripting [16]. This means that a developer

needs to find a safe level of dependency when using third party libraries, or loading scripts

from other sources.

JavaScript’s flexibility imposes further limitations due to its small standard library,

and its originally lightweight design. This can cause unique, and undesirable behaviour at

runtime of which a developer needs to be aware when coding. This has prompted Dart, and

many other languages, to be innately designed to circumvent a range of these issues that

occur in JavaScript, such as those that are a result of all variables being defined as globals,

unless declared as local[6]. Additionally, functions in JavaScript are not unique; meaning

a single function can be defined multiple times, wherein the most recent definition is the

one that is used. This means that the developer needs to carry out yet another check when

using a third party library to ensure that there are no duplications in function names.

64

JavaScript excels at lightweight web based applications that require limited perfor-

mance. Where more performance is required, or newer technologies are involved, Dart

offers the portability of JavaScript through the use of dart2js, but also make high perfor-

mance possible through VM optimisations, made available by the Dart VM.

Listing 2.5: The JavaScript code produced by running dart2js on the sample code in

listing 2.4.

var H = map();

main: function() {

var x, i, line;

x = new Array(10);

for (i = 0; i < 10; ++i)

x[i] = i;

line = H.S(x);

H.printString(line);

}

2.3.4 Flutter

Flutter is an initiative by Google to create native applications for both iOS and Android

that are written in Dart. This supports the possibility of running Dart across multiple

platforms with a native implementation to allow for high performance applications written

using a single code base. Furthermore, applications written in Dart using Flutter can be

updated over the web as opposed to all updates being accessed through the app store[32],

thought Apple does apply some restrictions on downloading executable or interpreted

code. Allowing for Dart to run natively on a mobile device means that applications can

65

fully utilise a device’s performance.

2.4 Summary

Dart is soundly constructed to support the creation of high performance web applications

through its design. Dart offers improved performance over that which is provided by

JavaScript, while still being able to make use of devices that do support Dart through

the use of dart2js. Dart2js helps Dart to maintain a balance between performance and

portability. This portability, along with frameworks like Flutter, make Dart an ideal

language for achieving platform independence without compromising on performance.

The combination of WebGL running within a Dart application allows for a fast and

efficient rendering application based on the web. Although WebGL does have some lim-

itations, these can be mitigated through design; furthermore, many of these limitations

become obsolete with the release of WebGL 2.0 standard. Dart allows for applications that

run quickly and at high level of performance to be created for the web, with enhanced

structure and design for an improved runtime and development experience. It is the bridg-

ing of these two pieces of technology that allows for the creation of a framework that has

the potential to make platform independent graphical applications a genuine possibility.

66

Chapter 3

Utilising Dart for Platform

Independence

Platform independence is an essential aspect of this framework. Dart is used to achieve

this through several methods, the most significant of these are: Dart’s VM; and dart2js,

which converts Dart to JavaScript code. To a lesser extent, Flutter is also important

for achieving platform independence. The Dart VM can be run directly on desktop,

and through Flutter on mobile devices[33]. Devices upon which Dart is not supported

or available can be provided for with the dart2js function. This converts Dart code to

JavaScript, which is supported on most modern web browsers, therefore making Dart

applications accessible to those that are unable to support the Dart VM.

Whereas Dart has built in support for multiple devices, it is up to the developer to

create the appropriate functionality for interpreting user interactions. This framework

utilises the creation of a controller class to assist the developer in fulfilling this require-

ment. Predominantly, the information collated by the controller class is passed to the

camera class, which manages user movement within a scene. However, the controller class

could also be utilised to create other interactions or user commands, such as changing the

resolution of an asset, or performing an action against another object or asset. The setup

67

Figure 3.1: The life cycle of a Dart application as it renders a scene in a web browser.

of the controller class, how it manages various input types, and how those interactions

translate into actions will be discussed later in this chapter.

The use of platform independent technology raises a point of difference in between that

of itself and device independent. Within this work, an emphasis is place on the ability

to utilise as much of a devices capabilities as possible rather than just being able to run

across a range of devices.

3.0.1 Dart’s Virtual Machine

The Dart VM is currently used primarily for running server side applications, along with

applications designed to run within the Chromium browser. An advantage of writing code

in Dart is that the same language can be used for both client and server side development.

To use the Dart VM on a server a developer simply needs to install the Dart SDK, then

they will be able to run a Dart application. Additionally, an application written in Dart

can simply run within the Chromium browser without the need to install peripheral add-

ons, as Dart’s VM is built into the Chromium browser.

The Dart VM works directly with the Dart language, thus skipping the intermediary

step of producing bytecode, as is often performed with other languages. This is unlike

68

Java, which is converted into Java bytecode to be run on the Java Virtual Machine (JVM).

Within this framework the two keys differences between these approaches are: what the

VM is sent; and how the code can be optimised.

Using the JVM allows for other languages to be compiled into Java bytecode, to then

be run on the JVM[106].

Dart’s VM, on the other hand, is closer in design to that of JavaScript’s, wherein the

language itself is interpreted by the VM [31]. This has the advantage of not allowing

flawed or dangerous bytecode to be parsed into the runtime environment. Where the

VM needs to run code from other languages, all that is required is for the language be

converted into Dart; similar to Closure converting into Java bytecode[8]. Additionally,

the Dart VM implements just-in-time compiling, whereas bytecode based VMs interpret

exactly and in a linear order. The predominant performance issue of using a language

based VM, as opposed to a bytecode based VM is that the code base is slightly larger

as source code. However, using a language based VM does allow for increased flexibility

when being interpreted, which is a highly valuable attribute in the context of web-based

applications.

Listing 3.1: An example of Dart coding using SIMD to add two sets of numbers together

void main(){

var a = new Float32x4(1.0, 2.0, 3.0, 4.0);

var b = new Float32x4(5.0, 6.0, 7.0, 8.0);

var sum = a + b;

}

3.0.2 Dart2JS

The Dart package includes a process called dart2js. This is what is used when converting

Dart to JavaScript[3]; it has been designed to allow for Dart code to be run across a

69

range of web browsers. This functionality has become somewhat of a main focus of the

Dart project, and, in turn, has not only become increasingly stable, but its performance

is also able to exceed that of code natively written in JavaScript on the V8 engine, when

used in Chrome[120]. This performance ability is due to dart2js having been created by

the same developers who created the V8 engine that is used by JavaScript, thus allowing

for the converted code to benefit at least currently, from targeted optimisation. Dart’s

VM also introduces support for SIMD operations in the web; which is used in a small

capacity within this framework, but is worthy of future investgation. Part of the dart2js

optimization involves tree shaking; this is a process by which the application will try to

remove any unused code from the source, resulting in smaller file sizes. This is especially

important within in the context of web applications, as the larger a file, the longer it will

take to load and process.

Listing 3.2: The JavaScript code produced by running dart2js on the sample code in

listing 3.1.

NativeFloat32x4: {

static: {

NativeFloat32x4$: function(x, y, z, w) {

var t1, t2, t3, t4;

t1 = $.$get$NativeFloat32x4__list();

t1[0] = x;

t2 = t1[0];

t1[0] = y;

t3 = t1[0];

t1[0] = z;

t4 = t1[0];

t1[0] = w;

t1 = new H.NativeFloat32x4(t2, t3, t4, t1[0]);

70

t1.NativeFloat32x4$4(x, y, z, w);

return t1;

}

}

}

main: function() {

H.NativeFloat32x4$(1, 2, 3, 4).$add(0, H.NativeFloat32x4$(5, 6, 7, 8));

}

3.0.3 Flutter

There may be some occasions at which native performance on a mobile device is preferred

or required. Although, dart2js can allow a Dart application to run on mobile devices, it

cannot provide native performance. However, Flutter has been developed to allow code

written in Dart to natively be run across both iOS and Android[33].

Part of the Flutter implementation process is to create and install an application,

that has beenwritten in Dart, as opposed to the other methods of implementation that

require the application to be accessed via a web browser. Having a native application

installed on a device offers performance improvements along with allowing for access to

native functionalities that might not be available through a web browser’s VM.

Flutter applications are written using the Flutter SDK, utilising much of Dart’s ex-

isting functionality. Developing a Flutter application follows much the same process as

developing for iOS with Xcode, or for Android with Android Studio in that the application

is developed within Android Studio, which is able to utilise the required SDK.

Applications created using Flutter also have the advantage of allowing for an applica-

tion to be updated over internet, rather than requiring updates to be pushed through an

71

app store. This means that by using Flutter an application is able to change dynamically

like a website, but still offer native performance.

If an iOS or Android device has a web browser, the Dart application may still be

accessed this way. However, the application will not benefit from the same performance

availability as a native application created via Flutter could benefit from.

3.0.4 Supported devices

As Dart is designed to run across a range of devices this framework must have the ability

to dynamically adapt according to any given device’s performance specifications, and

without regard to device’s operating system. In terms of performance capability, devices

have traditionally been divided into three groups: smartphones, tablets, and PCs.

Smartphones are constantly pushing the boundaries of performance, and of what can

be completed on portable devices. Using ARM CPUs, smartphones can benefit from

superior power efficiency in lieu of high performance. The performance on smartphones

also ranges greatly between individual devices; some top end phones contain a multicore

ARM, while others only support a single core. These disparities in performance ability

not only between smartphones, but between all devices, make it necessary for platform

independent applications, which are designed to run across a large of range of devices, to

be able to scale based on a device, and to be able to run at an optimal setting at runtime.

The next available increase in terms of performance comes in the form of tablets.

Tablets range in CPU types; some support an ARM based CPU, while other use x86

architecture. Generally, tablets have larger screens than smartphones, although there are

some smartphone screens that come close to tablet size. Many tablets have also begun sup-

porting additional peripherals, which allow for a larger range of input methods, meaning

that users are no longer limited to just a touch screen. With these types of specifications

we can start to expect an increased level of performance output from high-end devices, in

72

addition to some having dedicated GPUs[15]. Additionally, as technology advances, this

level of performance will become available to smartphones, although smartphone screen

size is unlikely to consistently become as large as tablet screens.

PCs are the most customizable device type, and as such can range greatly in per-

formance and capabilities. Most modern PCs support a multicore CPU, and utilise the

x86 architecture; however, despite these commonalities, there is a large discrepancy in

device performance. This performance variation can be caused by a number of factors,

predominantly a device having one the following: an integrated GPU; an external GPU

through the PCIE slot; or, no GPU, therefore using the CPU for rendering. Additionally,

other supported accelerators on a PC, like a GPU, may or may not be available, thus

a framework designed to run across multiple devices must be able to scale as required.

Furthermore, PCs also offer the largest range of input peripherals, such as the Leap Mo-

tion, gamepads, and other input controllers. Consequently, this means there is a need

to accommodate how a framework controls the large range of input methods by which a

device may be interacted with.

Device type Processor Input

Smartphone ARM CPU Touch, Accelerometer, Ori-

entation sensor

Tablet ARM CPU,

x86

Touch, Accelerometer, Ori-

entation sensor, Keyboard

PC Integrated

GPU, Ex-

ternal GPU,

CPU only

Leap Motion, Keyboard,

Mouse, Touch, Gamepad,

etc

Table 3.1: Example of different inputs for various devices

73

In order to get the best results from an application when it is designed to run across

mobile devices and PCs, it needs to have the ability to dynamically scale up or down in

order to best match the given device’s capabilities. This dynamic scaling is developed

from creating algorithms that support a range of different levels of detail. This enables

the application to take advantage of a device’s available resources in order to produce the

highest possible performance.

3.0.5 Performance

Within the context of platform independence and this framework, device performance

should dictate the requirements and scalability of an application. Within this framework,

this is divided into two main considerations: devices with, and without GPUs; and, what

CPU is being used. The presence or absence of a GPU will create different requirements

when a scene is being rendered, whereas the type of CPU that is being used will influence

the rate at which data can be generated. Regardless of the GPU or CPU type, this

framework is designed to run on any device; however the difference in quality of output

between devices may be minimal or significant, depending on how the device has been able

to manage the dynamic creation of content. The use of Dart combined with WebGL does

produce a small degree of abstraction that means the developer does not need to account

for the exact processing details of the hardware. However, significant hardware features,

such as the use of a touch screen, or absence of a GPU must still be considered in order

to achieve a suitable level of performance of an application that has been designed to be

platform independent[121].

Where possible, if the GPU has been tasked with rendering the scene, should the scene

be too complex, or the level of detail too high for the capability of the particular GPU,

the framerate will drop. On the other hand, if level of detail is set too low, the quality

of the scene produced is impaired. This cause and effect relationship makes it necessary

74

to balance out what the minimum amount of data is necessary in order to achieve a base

scene, while also giving additional information in order to improve the look and feel of

what is being rendered, but still maintaining a solid framerate. Additionally, if a device

does not have a dedicated GPU the rendering is performed on the CPU, which can further

throttle a device’s performance as the CPU is no longer occupied only with generating

data, but also the rendering of data[81]. Combining WebGL and Dart allows the developer

to have specific control over how a scene is rendered within a web browser with regard to

considerations such as the level of detail to be taken into account when displaying a scene,

while still allowing for an application to remain platform independent.

With respect to CPUs, using languages like Dart allows developers to extract them-

selves from low-level considerations, such as setting instructions for different CPU archi-

tectures without the need to recompile code. This is one of the key motivators for platform

independence, and Dart is able to cater to this desire absolutely as it negates the need for

developers to devote significant resources to accounting for different CPU architectures.

This is due to code written in Dart being processed by the Dart VM, or the JavaScript

VM. The VM has the ability to produce highly optimized code for a range of devices[24],

which includes a range of specific instruction sets, such as ARM’s RISC (Reduced In-

struction Set Computing) or Intel’s CISC (Complex Instruction Set Computing). Both of

these types of CPUs have different advantages to the other, which is why they are used in

different devices. x86 is primarily used in PCs and servers, although it is being introduced

for use in tablets. Currently, ARM is predominantly used in smartphones and tablets, but

also in other devices in which power efficiency is prime[49].

In order for an application to successfully be platform independent it must be able to

run across multiple devices, and, at runtime, adjust to whatever resources are available in

terms of raw processing power provided by the CPU, and GPU, if applicable. Dart man-

ages the application’s response to CPU capability, through its VM so that the developer

75

does not need to account for this; whereas the combination of Dart and WebGL handles

the specific processing aspects of the GPU, or lack thereof, so that the developer need

only consider more significant hardware concerns.

3.1 User Input Management

To take full advantage of the platform independence provided by Dart, regardless of plat-

form, the developer must still consider the manner in which a user interacts with an

application. As the range of possible inputs for a device is ever expanding, so are the

manners in which they are used to interact with a device, such as the Leap Motion intro-

ducing gestures as a possible way in which a user can interact with a PC[124]. This means

that applications must be able to accept and interpret a range of different input types,

then correlate them into a single action that the application should perform. For example,

the input from a gamepad should manifest in a similar action to a touch screen event.

This framework manages different inputs through the use of a controller class, which is

discussed later in this chapter.

For most mobile devices, the main inputs will derive from touch screen and device

rotation on smartphones and tablets. PC interaction is most likely to come from mice

and keyboards; however, in order to keep pace with the latest technologies, applications

that seek to truly be platform independent should be able to receive input from PCs that

incorporate a range of input devices, such as touch screens and Leap Motion.

In general, many interactions can be interpreted similarly, such as inputs between touch

screens and mice - a mouse double-click and touch screen double tap can be dictated by

the developer to result in the same action. Other similar actions between these two devices

would include: touch screen swiping, and mouse cursor movement. Other actions, such

as: a double finger tap; holding down a finger; and multiple finger inputs can be defined

by the developer to be interpreted by the application as similar actions to other inputs

76

from other devices such as mouse right-clicks.

Advances in technology now mean that gestures are a vital part of reading in and

understanding the user input. They tell how the user is interacting with the system -

interpreting this information is a main function of the controller class. Gestures such as

pinch-to-zoom have become common features on many applications on touch devices [100].

In the interests of creating user-friendly applications it is preferable to include these exist-

ing gestures to keep consistency within the system and to reduce the learning curve new

users will be faced with when learning how to interact with a given environment. There is

an ever-increasing variety of inputs and their associated gestures available across a range

of systems. Such examples include the rotation and orientation sensors on smartphones,

and the hand positioning information gathered from a Leap Motion[82]. These inputs,

although they are different from sensors, can be treated similarly when dealing with ges-

tures. This is possible as through the Leap Motion rotation and orientation information

of the hand above the sensor can be gathered.

There are some scenarios wherein it may be more suitable to ignore the inputs given.

For example, for some applications it may be desirable to ignore general hand movement

from a Leap Motion, but to convert gestures to meaningful actions.

3.1.1 Controller Class

In order to account for the large variations in possible inputs, this framework has imple-

mented the controller class - a modular approach to manage converting device inputs into

meaningful interactions. A controller class is essential for creating applications that take

full advantage of the platform independent possibilities made available by the use of Dart.

The specific inputs that were considered for this framework are: Leap Motion, keyboard,

mouse, touch screen, and gamepad. The controller class takes all available inputs and

determines which of these will be most beneficial for use within the application, as defined

77

Figure 3.2: The flow of input data within an application via the controller class within

this framework

78

by the developer. Some inputs, which are not natively supported by Dart, can be added

through the use of a local host web server[68].

The controller class checks if a type of input is supported, and consequently also

contributes to determining what kind of device is being used, in addition to the information

provided by the users browser. For example, the lack of an accelerometer would contribute

to the identification of a PC. Based on the discovered inputs, the controller class will set

up a range of device listeners that will be called to interpret information passed from

the device. Received data is converted from its various forms, such as hand placement

or orientation, into the appropriate forms to be passed to, and used by, the rest of the

application. The controller class is designed to allow for users to remove some inputs; for

example, to ignore the information from a Leap Motion, but to utilise the information

from a keyboard instead. Mapping key inputs is necessary in converting functions, then

calling updates with the new values. An additional feature of the controller class is gesture

recognition, that is, how a hand waving in the air can be used to move around a simulated

world[68]. Each of these build upon one another to comprise the controller class.

The controller class is able to explicitly state how the application is to interact with,

and respond to the environment, based on the given device’s inputs; it does this by check-

ing what inputs are currently available. This is ascertained by performing basic checks

with a given API, such as confirming if an input is supported through the touch API.

Subsequently, the controller class will locate the available inputs and create the relevant

device listeners for a range of inputs to be interpreted, based on the device’s inputs. A

key feature of creating the controller class is that it allows for a maximum amount of user

input options as it also allows for additional inputs to be parsed through it. Once an event

listener has been created and added, any event called with the given information will be

passed to the controller class for processing.

The controller class simplifies and removes the need to create multiple functions for

79

Figure 3.3: An example of how the controller class will process a range of inputs, but will

produce the same effect.

multiple inputs. It does this by mapping various inputs that share similar functionality,

such as the touch events and mouse events both being used to control the scene in the same

way, so that the controller class will interpret both of these inputs in the same manner

meaning that each output will result in the same action. This, therefore, removes the

need to rewrite an additional function that is almost identical. The class distinguishes

between alternative inputs that are essentially performing the same event or action, then

creates the output accordingly. Figure 3.3 shows how various inputs can be mapped to

manipulate camera positioning.

The user input is controlled by various event listeners, which are set up during the

initialisation. These event listeners will call a function within the controller class whenever

an input is registered with them. It is this input that needs to be processed and converted

into usable data. The conversion process is performed by the controller class, which

will then process the information and pass it along to the camera class or simulations

as required. A number of measures have been included to ensure that the information

passed is correct, and that the system is not overloaded with multiple inputs sensors.

Such measures include: the limiting of inputs within the system; how frequently data is

80

gathered from input devices; and combining inputs to create a single input for processing.

Event listeners are a tool used to trigger events when certain actions occur, such as

a key press or a rotation on a phone. These event listeners are the way in which most

inputs are read into the system to be processed; they are set up in various ways in Dart

for different input methods. The most common of these is the implementation of a certain

event class to handle different input types, such as the touch event, which handles touch

input. Although more uncommon, but just as effective, is the implementation that is used

in the Leap Motion wherein data is passed through a local host web server via a JSON file.

This technique was also used for gamepads, until the newer gamepad API was released[22].

In this instance the advantage of using a local host web server is the ability to pass user

input data through custom event listeners to be processed.

As a range of input methods are possible on some devices this can lead to an influx of

information that is not relevant to the user’s interactions. To overcome this the available

inputs must first be identified, then those sorted as to, which are the most relevant as

defined by the controller class. Based on these inputs, only certain event listeners will be

set up. Advantageously, this method limits the inputs to only those that are relevant to the

device. For example, on a smartphone a mouse event would not be used, rather a touch

screen event would be used instead. This process allows for only relevant information

to be passed to the controller class, therefore limiting the amount of input that requires

processing, and reducing the passing of redundant information. Consequently, this also

reduces the processing power required to run the application.

3.1.2 Custom inputs

Custom inputs exist as a way to increase the amount of inputs available extending from

the ones that are natively supported within a browser’s VM. These custom inputs are

implemented in a range of ways in order to pass data to the application. An example of

81

this would be the Leap Motion requiring the use of a local host which passes data from the

local host to the client within Dart. Previously this was also how data from a gamepad was

passed and interacted with; however this has recently become a standard within browsers

so now the gamepad API exists. The act of creating custom inputs can result from a

combination of various methods and processes. One of these processes must relate to the

setting up of one of these custom inputs, which requires the use of device drivers that pass

data to the local host. This local host must be a server that is able to create and pass

JSON files to the client. Additionally, the local host assists in the processing of data that

is not natively accessible from within the browser’s VM. As technology advances, current

custom inputs will become standard, like the gamepad; however new technologies will also

be created meaning workarounds will always be required for utilising custom inputs.

A current example of a new technology that does not yet have a standard is the Leap

Motion. It is an input device designed to read in information about a hand placement in

3D space above the sensor. Within this framework the input is taken not from a native

event listener in Dart, but via the use of a third party driver and library. The driver acts

by creating a locally hosted web server on a device that the Leap Motion Dart library

can connect to. This locally hosted web server passes information to the Dart application

through a JSON[86] file, that contains a range of information about a hand’s location

above the sensor, such as its orientation and rotation along with the number of fingers

that are currently extended[79]; additional information can also be accessed if necessary.

In the situation of the Leap Motion the driver installed, which interacts with the

physical Leap Motion, also creates a locally hosted server. This server is hosted on different

ports as opposed to port 8080, which is used for web traffic. As the Leap Motion drivers

can only be installed on a PC this means that devices such as smartphones are unable

to use this input method. The creation of a web server allows for the data from the

Leap Motion to be transferred via local host to the client. This functionality can also

82

be extended to allow for another device to connect to this web server, then interpret the

movement information from the Leap Motion that is stored as a JSON file. This JSON

file stores a range of information about the hand’s position in 3D space that can then be

accessed easily on the client.

Within the wider context of custom event listeners, there are numerous advantages

of storing data as a JSON files. Most significant of these is that using a web server to

host this JSON data allows for the data to be passed easily through to the application

without the need to create a custom API when using newer devices that do not yet have

an existing, native API in browsers. As the web server acts as a local host, this means

that the data transfer between local host and the application is minimal.

Using JSON files also allows for data to be passed as a JavaScript object. This in turn

means that the data passed is easily accessible as, once parsed using Dart’s native JSON

parser, the data can be accessed as if it was part of a object. Furthermore, this means that

functions can be written into the JSON file if necessary. All of these attributes contribute

to an uncomplicated flow of data, which is then interpreted by the client.

Once information is collated into the JSON file it is accessed via a custom library and

a custom event listener is implemented. For the purpose of the Leap Motion, the Leap

Motion event listener is a class created by the Leap Motion library. This library has the

ability to return information in 3D vectors, lists, or single integers depending on what

information is being requested. It is this information that the controller class requires in

order to allow for interactions within the scene.

The Leap Motion library allows relevant information to be passed to the controller

class. This information is used to show interactions within the scene, such as movement of

the camera along the X, Y and Z axes, or rotation of the camera. This information is passed

through the Leap Motion controller as various matrices. This can then be interpreted by

the controller class as an instruction to either rotate or translate the camera within the

83

scene. Accessing the information about the number of fingers that are visible can be used

to specify the direction of the translation or rotation. For example, if one finger is held

up the translation is performed upon the X axis; two fingers result in a translation the Y

axis, or three fingers results in the translation occurring on the Z axis. It is by combining

these different inputs that the precision of the inputs can be increased, and the way in

which the developer wishes them to be interpreted.

The relevance of multiple inputs for platform independent applications will differ ac-

cording to the design, developer intent, and client use. Within this framework, much of

the design reflects the intention of creating graphical simulations. For this reason, the

controller class is principally involved with gathering data related to how a user may wish

to move about, and interact with a simulated environment. To process this information,

this framework implements a camera class.

3.1.3 Camera Class

The camera class is designed to control how the scene is viewed. This is managed by the

use of view matrices, the projection matrix, and the model matrix, which interface with

the controller class allowing the camera class to determine how a 3D scene is displayed.

These matrices are updated via the controller class, which is based on user input. Within

Dart, the camera class can take advantage of SIMD within matrices, which are vital for

determining how a scene is viewed.

Each object within an environment is managed by its own view matrix, which is

concerned with the rotation of the object in relation to the user. The data from each view

matrix is collated by the model matrix so that there is continuity between how each object

is being viewed in relation to the entire environment. The projection matrix then takes

information about the shape of the camera, and the positioning and area of the viewing

plane to collate all the data from the viewing and world matrices into a single image.

84

Whenever a user changes the way in which they are interacting with, or viewing the

scene the corresponding information is gathered and interpreted by the controller class.

This input is then converted and passed through various functions to the camera class.

These functions can include translation and rotation across a range of axes, but can also

be used to change other aspects of the camera class.

For camera movement across the X, Y and Z axes SIMD is a powerful tool that

allows for rapid processing, particularly with 4x4 matrices, which are used within the

camera class. To take full advantage of these this framework uses the vector math library

written by John McCutchan[66]. This library allows for the creation of matrices that are

natively accelerated using SIMD, as well as offering a range of functionalities that aid in

the integration of the camera class to further optimise the creation and viewing of a scene.

As the camera class is interfaced and managed by the controller class the user is able

to control how the scene is viewed, while taking advantage of the acceleration offered by

SIMD as a result of an application being written in Dart. The camera class is only one

example of how the controller class can be combined with innate features of Dart, such as

SIMD, to provide rapid performance within platform independent applications.

3.2 Summary

Dart offers a comprehensive array of methods by which a developer can achieve platform

independence. The Dart VM caters to applications that are more server based, whereas

the dart2js function enables applications to run on any browser that supports JavaScript.

Additionally, Flutter allows applications to run natively on iOS and Android devices.

To more comprehensively achieve platform independence a developer needs to account

for the wide range of potential inputs across all platforms. This can be accomplished

through the inclusion of a controller class. Where applicable, the controller class can

also be grown to include custom input for emerging technologies that do not yet have

85

standards. Within this framework, the controller class is predominantly occupied with

the management of the camera class. However the function of the controller class can

be customised to best suit the needs of whatever type of application may be developed.

Where the controller and camera classes are created to provide comprehensive platform

independence, they are further supported by Dart through Dart’s in built functions such

as SIMD.

Dart offers developers a robust and powerful base upon which to build applications that

seek to be platform independent. Where a developer is required to undertake additional

work and improvements, inherent features within Dart will assist in creating applications

that can take advantage of available devices resources to achieve high performance across

all platforms.

86

Chapter 4

Procedural Content Generation

The use of Dart, and the inclusion of the controller class means that it is possible for

an application to be run on, and utilise the inputs from many devices; however, without

considering how the application will handle the performance capabilities of any given

device the application may crash or not even run at all if it the device does not have

sufficient hardware specifications to launch or maintain the application. Alternatively,

the application may not be able to take advantage of increased performance availability

offered by high powered devices. To cater to the variation in performance offerings from

a wide range of devices, and the potential change in performance output during runtime,

this framework incorporates three different content generation algorithms for the creation

of landscapes.

Landscape generation is the simplest method of procedurally generating content and

demonstrating, and testing performance across multiple devices. Terrain not only provides

a base for larger, more complex scenes, but also lends itself to clearly responding to and

showing the effects of scaling. A scene may need to be scaled when examined up close or

from a distance, as well as scaling to suit performance availability.

87

4.1 Procedural Content Generation

This framework has been designed to procedurally create an environment that can be both

generated, and maintained at a high level of quality for a given device. Accordingly, the

environment is adaptive, and has the flexibility to dynamically scale up or down in quality.

This dynamic scaling is based around developer defined metrics, as opposed to requiring

users to manually adjust settings. This scaling changes the runtime and creation cost of

the various assets that are being produced and rendered. The resulting assets can then

be scaled at runtime based on the ongoing performance costs in order to create an ideal

runtime environment.

Designing the algorithms that can create an asset with sufficient detail, but can also be

scaled to suit a range of devices poses certain difficulties as an object must have instructions

on how to create itself along with information specifying the performance costs involved.

The algorithms used within this framework are able to access and meaningfully interpret

a device’s specifications in terms of functionality and performance ability. This means

that the algorithms can use metrics to measure performance. There are two primary

metrics: the one-off cost of setting up a simulation; and the ongoing cost of maintaining

and updating said simulations. These metrics are essential to creating a dynamic and

tunable base that can be used when designing and implementing dynamically generated

content.

The advantage of dynamic content generation is that content created can scale across

multiple devices. This means the quality of an asset created is limited only to a device’s

hardware. Additionally, as device performance increases so does the quality of the content

created. By utilising this framework, an application can be scaled to run across a range of

devices. Dynamic content generation also means that there is no need to create multiple

iterations of the same asset at different resolutions.

Dynamic content generation lends itself to platform independence as creating content

88

that can scale across multiple devices means that a single application can adapt and

produce an ideal runtime experience for a user regardless of the device type. This is

further improved by being implemented into a framework that utilises web technologies,

such as Dart and WebGL, which are both designed to run across a range of platforms.

The quality of the generated content is only limited to a device’s hardware, meaning

that as a device’s performance increases so does the quality of generated assets. Tying

the content’s quality to a device’s performance means that the quality of assets improves

consistently with the device. This means that when a user upgrades a component of a

device, or the device itself, the application will automatically improve without the need

for user input.

Any application that has been designed to utilise this framework can adapt to the

device’s performance. This means that trade offs can be made in order to achieve a given

goal. An example of such a goal could be having a design preference towards high quality

rendering, in which case interactivity within the scene could be limited, along with the

updating of simulations. On the other hand if a low-end device was to run an application

using this framework, the asset quality could be limited in order to achieve a constant

level of interactivity, along with utilising a less computationally expensive simulation.

Allowing these trade offs between different components of the system to occur means that

the content can be generated not only to suit a device, but also to respond to the goals

and intentions of an application’s design.

This approach of utilising dynamically generated content also removes the need to

create each asset at multiple resolutions. This means that in lieu of storing multiple

premade resources, they are, instead, dynamically generated. This is key when dealing

with web technologies, in which loading in large resources from remote servers can become

time consuming and costly[76]. Additionally, using dynamically generated content means

that the limit on the quality of the assets that can be produced is directly related to the

89

resource that is available.

Content is procedurally generated using various algorithms or simulations to create

data that makes up an object. As scalability is a key attribute in this framework, the

algorithms are designed to scale to the limitations of the hardware. In this framework the

algorithms chosen are designed to create a scalable environment that can adapt throughout

runtime. This is achieved through the use of the diamond-square algorithm, the shallow

water simulation, and the use of Perlin Noise. Using these three techniques in content

generation means that there is more than one method by which the application can manage

the runtime requirements on a given device. Alternative content creating algorithms were

also researched, but were not used within the final framework, these include constructive

generation, agent based landscape creation for terrain generation.

Designing an algorithm or simulation that can scale indefinitely is a core component to

the goal of dynamic content generation. This means that when designing or implementing

an algorithm or simulation, the variables used to describe the magnitude of the asset can

be changed. Once the content of a simulation or algorithm changes these changes need

to propagate throughout the system, in order to ensure continuity throughout a scene.

This can be achieved through the use of functions designed to assist in the reconfiguring

of content, as described later in this chapter.

By generating scalable content a developer can have an application run across multiple

devices with varying performance, without the need to create multiple implementations

of the same asset. This means that an application will perform as designed across a

range of devices, without the need to redevelop code or content. Furthermore, designing

a framework for generating content in this manner means that content is generated to the

level that the device’s hardware supports.

The diamond-square algorithm is designed for heightmap manipulation on a given

mesh, allowing for the creation of a base terrain[74]. This heightmap can be translated

90

into a series of vertices and indices to be rendered. The diamond-square algorithm incurs

a once off cost when rendering, with minimal maintenance cost, with the exception of

dynamically adjusting the size once created.

Based on a device’s hardware, this framework implements one of two methods for

generating bodies of water that are designed to interact with terrain; these are the shallow

water simulation, and Perlin Noise. The shallow water simulation, designed as a simplified

implementation of the Navier-Stokes equation, creates a fluid simulation[99]. Simulating

water this way has a small initial generation cost to create the initial body of water, but has

a much larger ongoing cost while simulating the movement of water throughout the scene.

Perlin Noise can be implemented as an alternative to the shallow water simulation where

available resource is limited. Using Perlin Noise simplifies the representation of water, as

it does not simulate fluid; instead a simple wave-like, undulating surface is created, and

updated[95]. The shallow water simulation offers a high level of accuracy in representing

bodies of water and the way in which they interact with terrain, whereas Perlin Noise

offers a lightweight alternative in regards to both generation and ongoing performance

requirements.

Constructive generation is the process of taking a defined area, splitting into various

sub zones, populating the area, then reconnecting each area. This is a popular method

when generating rooms, or a dungeon as is often used in video games [42]. One of the

more popular constructive generation algorithms involves taking the area, and producing

a Binary space partitioning (BSP) tree. This is an idea method as for each area it will

be split into two new areas. These new areas become children elements in the BSP tree,

which are then split in to, until a minimum area is achieved. These small areas are

then populated based on a defined tile set, filling in each area. These areas can then be

connected to each other via hallways or doors based on the applications purpose, or theme.

While constructive generation can be beneficial when requirements such as size, and

91

area are defined it is not as well suited for environments which are rapidly changing, as

this can lead to a complete rebuild of the underlying BSP whenever an attribute such

as area size is changed. As the framework is designed to adapt rapidly to these changes

constructive generation techniques and methods such as these have not been implemented.

Agent based landscape on the other hand take the approach of taking a defined

area, and having numerous agents run various constructive algorithms to enhance the

landscape[42]. This approach gives a user greater control over what makes up a landscape

or area, but at the additional cost and complexity of maintaining numerous agents. The

approach of agent based landscapes is ideal for when a designer wants to generate a land-

scape, and be able to tweak the parameters. These parameter tweaks allow for a range

of unique landscapes to be rapidly generated, and iterated upon. Agent based landscapes

can generate a wide variety of terrain, given the use of few agents, it still falls short in

regards of scaling, which is a key element to this framework.

4.1.1 Level of detail

In addition to generative algorithms used to create content, it is also important to take

note of the various methods which can be used to achieve a desired level of detail for a

given area of terrain. The need for using level of detail techniques is minimised in this

framework, as all assets are scaled up to the desired level of detail rather than taking

a high detailed model and scaling down, simplifying the mesh in the process. Common

methods of utilising level of detail techniques are discrete, and continuous level of detail.

While the algorithms used to simplify the mesh include edge collapse, catmull-clark, and

loop subdivision, in addition to others[59]].

Discrete level of detail is the method in which geometry of a mesh is created numer-

ous times, at various levels of detail. The geometry is then updated with a new set of

precomputed geometry as required. Discrete level of detail works well when dealing with

92

complex objects in which defined features are wished to be kept. This is because when

creating the various sets of geometry, a designer can insure that the geometry maintains

set characteristics. Insuring unique elements of a mesh of maintained also helps minimise

the effects of popping, in which new features of a mesh can unexpectedly appear. Though

this approach does have the down side of needing the store numerous copies of the same

model to switch between as needed.

Continuous level of detail differs from discrete in that the mesh updates itself dynam-

ically based on factors such as view distance, or rendering performance capabilities. This

benefits the application as it does not need to store multiple copies of each mesh, but

does mean that throughout runtime, a mesh needs to dynamically update itself. This

redefining of detail to a mesh throughout runtime, starts with a high quality mesh, then

slowly reduces its detail. This means that whenever the quality needs to increase, the

mesh needs to be reduced from a higher level of detail[59].

There are numerous ways of simplifying detailed meshes, all largely based around

reducing the amount of geometry displayed, while maintaining the objects shape, and

structure. Simple algorithms such as edge collapse can achieve various levels of success,

and are simple to implement. More detail algorithms such as polygon merging can affect

more of a mesh, but at a greater performance cost.

Edge collapse follows the pattern of selecting an edge within a mesh, and removing

given edges. The removal of an edge, will cause the two vertices ether side of the edge to

merge into a single point. This edge removal may cause a triangle to become a two lines

stacked on top of each other so steps must be taken to account for this, and ensure only

a single edge remains.

Polygon merging is the process of taking a complex shape containing a range of poly-

gons and merging two or more together, in order to reduce the complexity of a mesh. The

major requirement for this, is that the polygons are coplanar. The new resulting polygon

93

then needs to be triangulated to produce an object ready to be rendered.

Dynamically generating content allows for assets to be created to suit an ideal level

of quality, as dictated by a device’s hardware. In turn, this allows for a framework based

around dynamic generation to implement trade offs when developing content in regards to

different aspects of performance. To achieve this outcome the algorithms must be able to

maintain continuity when dynamically scaling in size. These generative algorithms (the

diamond-square algorithm, shallow water simulation, and Perlin Noise) lend themselves

to the creation of a framework designed for platform independent applications.

4.2 Algorithms

Within this framework the content generation requirements have been split into two cat-

egories in order to better understand how they affect the performance of a system. These

categories are: low ongoing cost; and high ongoing cost. Content generation that fits

into the low ongoing cost category is rarely updated once it has been created; within this

framework, the diamond-square algorithm is categorised as low ongoing cost. The other

type of algorithms - shallow water simulation, and Perlin Noise - have a high ongoing cost,

and are in a state of constant motion in terms of updates.

4.2.1 Diamond-Square

The diamond-square algorithm is used for generating a simple heightmap, which forms the

basis of the environment. The process of generating a heightmap using the diamond-square

algorithm is split into two core stages: the diamond step; and, the square step. To execute

the first iteration of the square step the algorithm begins by setting the height values of

the four corners of the map - this creates a square mesh, the size of which is predefined

by the developer or user. Following the square step, the diamond step sets the height of

the each of the four points between those which were set by the square step. Within this

94

framework this second set of points could be thought of as identifying North, South, East,

and West. Once the first square step is initialised a loop is used to perform the diamond

step, followed by the square step until the algorithm has completely subdivided the mesh

to produce the desired heightmap.

Within this framework these steps have been developed upon to allow the diamond-

square algorithm to dynamically scale in order to accommodate adjustments of resolution

throughout the runtime of the application.

The first step in creating the heightmap using the diamond-square algorithm is to

initialise the mesh. Once the mesh is initialised the diamond and square steps are looped

through the grid until the heightmap is completed. The initialisation involves creating a

2D grid with predefined corner values. These values influence, and ultimately define the

height of the completed map, as the diamond-square algorithm utilises height variables

to maximise the level of height variation possible when assigning height values to newly

generated points within the map. As the diamond-square loop continues to refine the

mesh the height values of new points also drop as the height values are assigned by taking

the average between the two closest values.

Within the context of this framework landscapes are generated using random numbers;

if, for example, the corner values were set to 0.0, and water level was defined as 0.0, the

expected resulting landscape would have similar amounts of ground and water area, once

the heightmap had been completed and water added. Following the initialisation of the

mesh the diamond step sets the height of the center point to be the average of the height of

the four corners. A small fluctuation is added based on the height value with the addition

or subtraction of random noise.

Listing 4.1: The diamond-square algorithm.

//The defined size of the diamond square mesh

95

int tileResolution = 129;

for (int sideLength = tileResolution - 1; sideLength >= 2; sideLength =

sideLength ~/ 2, height /= 2) {

int halfSide = sideLength ~/ 2;

//Squre Step

for (int x = 0; x < tileResolution - 1; x += sideLength) {

for (int y = 0; y < tileResolution - 1; y += sideLength) {

double avg = heightMap[x][y]

+ heightMap[x + sideLength][y]

+ heightMap[x][y + sideLength]

+ heightMap[x + sideLength][y + sideLength];

avg /= 4.0;

double offset = (-height) + rng.nextDouble() * (height - (-height));

heightMap[x + halfSide][y + halfSide] = avg + offset;

}

}

//Diamond Step

for (int x = 0; x < tileResolution; x += halfSide) {

for (int y = (x + halfSide) % sideLength; y < tileResolution; y +=

sideLength) {

double avg = heightMap[(x - halfSide + tileResolution) % tileResolution][y]

+ heightMap[(x + halfSide) % tileResolution][y]

+ heightMap[x][(y + halfSide) % tileResolution]

+ heightMap[x][(y - halfSide + tileResolution) % tileResolution];

avg /= 4.0;

double offset = (-height) + rng.nextDouble() * (height - (-height));

96

heightMap[x][y] = avg + offset;

}

}

}

Next, the square step runs through the grid using the centre point (created by the

previous diamond step) and corner points to generate values that split the mesh into four

smaller squares. Once this step is completed, the diamond step runs again, finding the

centre points of the four smaller squares. Then the square step is run again, splitting

the mesh into even smaller squares. This loop continues, each time in finer detail than

the last loop, slowly refining the mesh until each point has been assigned a value and the

heightmap is complete.

The ability to dynamically scale created content based on the runtime requirements of

an application is essential to this framework; two different functions were created to achieve

dynamic scalability of the generated heightmap. One function upscales the heightmap to

enable more detail to be added to the model; the other function downscales the heightmap

to remove detail, and reduce data costs.

Upscaling the heightmap is divided into three core components. Firstly, the correct

data must be located in order to run the process that creates new points. Next, the new,

bigger (therefore more subdividable) mesh needs to be created. Finally, the data sourced

and processed from the first mesh must be placed into the newer mesh, which has been

designed to replace the current one.

When upscaling the heightmap locating the required data points is a simple matter of

using the existing points as a base. The more challenging aspect of upscaling a heightmap

is creating the necessary space to allow for the generation of new data points between the

existing data points. This is done by creating a new mesh of twice the original size, and

97

assigning the previous values to the new mesh, with an empty space between each point.

Once the appropriate spacing has been achieved in the new mesh, a single parse from

the diamond-square algorithm populates the empty data points within the mesh. The

result is a heightmap that contains all the characteristics of the previous map, but with

more defined and detailed features. The code for this can be seen in listing 4.1. Once the

heightmap has been updated the various buffers and attributes within the rendering engine

are swapped out accordingly in order to create a smooth transition between resolutions.

When compared to upscaling the heightmap, downscaling is simpler as there is no

requirement for the creation of the necessary space to accommodate the generation of new

data points. Although downscaling does require the creation of a new mesh (in this case,

a smaller mesh with corner values that create an area less than the existing mesh) the

data is simply copied to the new mesh, skipping the necessary data points so as to reduce

the detail and data requirements of the map. As with the upscaled map, once the new

heightmap is set up the buffers are swapped within the rendering engine as appropriate

for the new level of detail.

The diamond-square algorithm procedurally generates content that can be dynamically

scaled throughout runtime. Generating the heightmap incurs a single, one-off cost during

initialisation, but benefits from minimal rendering cost. The introduction of the scaling

functions can introduce an ongoing maintenance cost as the area is dynamically increases

or decreases in quality. However, the cost of this scaling is minimised as much as possible,

and is unlikely to be a frequently occurring cost.

The diamond-square algorithm is a well-defined, reliable process for producing heightmaps,

and, for the purposes of the this framework, the procedural generation of heightmaps pro-

vides a base upon which further simulations can be applied.

98

Figure 4.1: A basic 3D visulisation of the heightmap produced by the diamond-square

algorithm

4.3 Water Algorithms

Within this framework the use of water simulations provides an opportunity to diversify

the performance demands placed upon a system. As simulations incur an ongoing perfor-

mance cost, this allows for an application to balance runtime performance requirements

against producing the most visually pleasing rendering while generating content. This

framework investigates two different implementations: the shallow water simulation and

Perlin Noise. Each of these methods can be created to become dynamic and are therefore

able to automatically improve the quality of a rendered scene.

4.3.1 Shallow Water

The shallow water simulation is used to accurately create a small, simple body of water.

This simulation requires certain information for various aspects for the process, such as the

area and boundaries of a given body of water. Once the boundaries and height coordinates

for the water have been set, the user introduces the effect of kinetic energy (by suddenly

99

increasing or decreasing the height of the water at a given point) into the system. The

simulation then tracks the flow of water via velocity along the X and Y axes, and via

changes in the height of a cell. Using a staggered grid, wherein the velocities are applied

as an average across the cell, and the water height and ground values are stored central

to the cell location, the information gathered from the tracking process is then used to

adjust the height of a given water cell according to the formula (Navier-Stokes equation),

thus creating waves and ripples in the water[85].

Within this framework the shallow water simulation is comprised of two main processes:

initialisation, and updating. The first step in the initialisation process is to identify the

points at which water should be located. This data is found using the contour tracing algo-

rithm. The implementation for the initialisation is then based on the heightmap that has

been created by the diamond-square algorithm, which allows for more accurate boundary

conditions, thus allowing for improved interactions within the generated scene. Follow-

ing this, there are various stages in the updating process that need to be managed. The

updating cycle contains two principal steps: calculating of the advection of the simulated

fluid; and the rendering of the water. The constant maintaining, and updating of the state

of the water simulation further contributes to the runtime costs, which must be managed

by the system in order to ensure the application is running optimally.

Initialisation of the shallow water simulation relies on information taken from the

contour tracing in order to correctly locate where bodies of water are within a scene. As

this framework focuses on optimisation, where the size of a given body of water is too small

to warrant the cost of simulation, the shallow water simulation will not be run. Once the

contour tracing algorithm has identified where bodies of water should be located, and the

bodies of water that are too small to simulate have been excluded, the boundaries of each

body of water are defined in order to ensure the water reflects correctly once it has been

simulated.

100

Within the generated terrain the outlines that are found by the contour tracing algo-

rithm at a given height can be assumed to the boundaries within which water should be

located, as these outlines would naturally form the edges of where the water would meet

the land. This data is then used to create the arrays that the simulation will use to store

and access information.

Using contour tracing provides the opportunity to improve the performance of the

shallow water simulation as it ensure that only the data that is visible will be processed.

Alternatives to contour tracing would involve the processing of the area of the entire

heightmap, as opposed to the multiple, but much smaller areas produced by contour

tracing. Such methods would increase demands on processing power, therefore reducing

optimisation opportunities.

After the contour tracing algorithm has located bodies of water, boundaries are in-

troduced to said bodies, which allow the water to interact with the rest of the simulated

environment in a rudimentary manner. The boundaries are used to set a size for each

body of water, and to determine where water can flow within a scene. The boundaries

for each body of water are stored separately, but also contain information relevant to the

entire mesh, rather than just a single body of water. This information is utilised when

scaling of content is required.

Once a body of water has been created and found to be of a size large enough to be

worth simulating the movement of the fluid from cell to cell (advection) within the lattice

must be calculated, then this calculation must be applied and the relevant cells updated

accordingly.

Advection is indicated by change in height, and change velocity in the X and Y di-

rections within a single cell. As cells are located within a staggered grid, the advection

calculation is determined by the edge values along the cells within the staggered grid; this

continues to update progressively throughout the body of water. The resulting advection

101

Figure 4.2: The changes of the shallow water simulation as water moves within the con-

tainer

102

is then used to apply the relevant updates to each cell, thus creating the visual effect of

movement in the water. This entire process occurs at a limited time each second, thus

ensuring a seemingly constant flow of water, rather than an unnatural lag or acceleration.

While the shallow water algorithm is determining advection, it is also checking that

no boundaries are interacted with. When boundaries are interacted with, the algorithm

will ensure the appropriate change in velocity occurs to accurately reflect the effect of

the water with that particular boundary. Fundamentally, all boundaries are reflective

boundaries of one kind or another. However; where the effect of an absorbing boundary

is desirable, the boundary should be set above 0, but below 1 as what is appropriate for

the level of absorption desired. A boundary with an absorbing value would be appropriate

for simulating an edge such as a shoreline, whereas as a boundary with a reflective value

would be better suited for a more sudden edge, like a swimming pool.

The decision of which boundary to use will determine how the water will interact when

it hits an obstacle, such as a wall. The simpler and more efficient of the two boundaries

is the reflecting boundary. The reflecting boundary works by simply setting the velocity

across the edge at a given location on the lattice to 0, this means that when updating the

velocity no outside force is applied to the existing value. On the other hand, the absorbing

boundary modifies the value of the velocity by reducing the velocity by a set percentage.

This is an increased performance costs compared to the reflective boundary as it involves

executing additional operations.

Once advection is calculated and any boundaries discovered the updating of the lattice

can begin. The first step is updating the height of each cell; this is based on the advection

result along the Z axis combined with the change in velocity at that location. Once the

height has been updated the new velocity can be computed. This is found by comparing

the new height of the cell with its previous height, then accounting for the amount of time

within the timestep.

103

The shallow water simulation offers a solution for achieving accurate water flow due

to the Navier-Stokes equation’s centrality to the algorithm. However, the shallow wa-

ter simulation incorporates a simplified version of the Navier-Stokes equation, meaning

that the simulation is reasonably computationally efficient for the level of realism that it

produces[9]. Nevertheless, simulating large systems, or simulating on lower-end, or mo-

bile devices is likely to be too computationally expensive to run at optimal levels. In such

cases, the alternative solution is to seek to recreate the effect of water, rather than attempt

to simulate it.

4.3.2 Perlin Noise

Perlin Noise is used to represent the visual effects of movement within water. It is a

lightweight algorithm, which makes it an ideal alternative to the shallow water simulation

when devices with lower performance capabilities are being used, or where large systems

are being rendered.

Perlin Noise works by producing wave-like effects across a mesh for a given number

of permutations within a single cycle. This cycle is repeated once all permutations have

been completed, thus producing a repeating pattern. In the simplest implementation, the

waves produced by Perlin Noise are very evident, but these can be refined by being built

upon using octaves, which increase levels of detail across a mesh[19].

Just as the contour tracing algorithm is used to delineate bodies of water prior to

running the shallow water simulation, it also does this when Perlin Noise is being used.

However, as Perlin Noise does not actually simulate water, instead creating waves and

noise which create the appearance of the flow of water, Perlin Noise does not interact with

boundaries further than determining the edges of the mesh. This is unlike the shallow

water simulation, which uses boundaries to calculate where water should be reflected or

absorbed. This means that Perlin Noise has a much lower performance cost as there is an

104

entire set of calculations that do not need to performed within each timestep.

Once the bodies of water have been located Perlin Noise utilises randomly generated

vectors for each location on a mesh in order to create convincing variety. When computing

a new height for a location on the mesh, these vectors are averaged around the current

point, to produce a new vector. The dot product of the new vector and current point vector

is then computed to produce the finalised height of the resulting point on the mesh. This

process is then repeated across the entire mesh to produce the final resulting heightmap.

The resulting mesh has a wave like pattern which can be made more detailed through the

use of octaves.

Octaves can be applied to points on the mesh in order to produce finer detail in the

final mesh. This process adds additional complexity to the system as each point requires

multiple passes to produce the final point. Octaves can be tuned in order to change the

amount of detail that is to be added, along with how many octaves are to be applied.

The updating of Perlin Noise is much simpler than that of the shallow water simulation,

as no boundaries need to be checked, and no change in velocities calculated. Instead when

updating Perlin Noise the height value defined is updated and passed into the Perlin

Noise algorithm, which in turn changes the resulting vector and the shape of the mesh.

This updating repeats with the height value slowly increasing until the height hits a set

threshold and is reset, creating a loop within the Perlin Noise algorithm.

When scaling with Perlin Noise there are two factors to consider: scaling of the reso-

lution; and scaling of the octaves. Scaling the resolution changes the quality of the mesh,

as it will either increase or decrease the number of data points being rendered accord-

ingly, but it keeps the overall shape of the rendered mesh. Similarly, adjusting the octaves

will either increase or decrease the finer detail within the mesh, producing a smoother

or rougher surface respectively; the more octaves produced the more detailed the mesh.

However, it is important to note that increasing the number of octaves also increases the

105

computational time required to produce the desired mesh. Both the scaling of resolution

and the number of octaves have different effects, and can applied irrespectively of each

other. However, to achieve the best result, the resolution should be scaled first, followed

by the relevant changes in the number of octaves. Perlin Noise offers a lightweight alter-

native to the shallow water simulation, as well as providing multiple methods for altering

the resulting mesh in terms of quality and performance impact.

The algorithms utilised within this framework allow for optimal compromise between

the level of detail of an environment and the computational expense of creating an en-

vironment at said level of detail. The diamond-square algorithm has a low ongoing cost

whereas the shallow water simulation and Perlin Noise have high ongoing costs. Between

the latter algorithms, the shallow water simulation is better suited for higher performing

devices where a more accurate level of detail is desirable. Whereas Perlin Noise provides

varying levels of detail at lower accuracy, but with a decreased performance cost. The

combination of all of these algorithms allows a user to experience an environment regard-

less of device capabilities, but also allows customisation options for directing the device’s

resources to a particular aspect of the system.

4.4 Implementation

For the purpose of this framework the generated assets have been split into two core classes;

the land class, and the water class. The land class, as its name suggests, is responsible for

the implementation of the diamond-square algorithm, which is used to create the mesh

representing the contour of the land. The land class also manages the functions required

for scaling a generated tile. The water class is slightly more complex as it offers support

for two different water implementations - the shallow water simulation, and Perlin Noise.

106

Figure 4.3: Perlin Noise producing basic movement in a scene, to represent water

4.4.1 Land generation

The land class contains four main aspects. These are: the diamond-square algorithm;

connecting tiles; scaling; and, contour tracing. The diamond-square algorithm is used

to generate the heightmap that creates the base of the scene. Next, the tiles within the

grid generated by the diamond-square algorithm must be interconnected to ensure there

is a seamless flow between tiles when moving from one to the next. The scaling of the

generated heightmap is also handled by the land class, adding further complexity to the

class as connecting tiles may have different scaling factors applied to them. The final

generative role of the land class is using contour tracing to produce a map wherein various

conditions have been met to signify that water should be spawned at that location. Once

the heightmap has been generated by the land class it can be processed for rendering using

WebGL.

The diamond-square algorithm is implemented as part of the land class allowing it to

be generated concurrently as an isolate, or sequentially as part of the land class. The

107

diamond-square algorithm as described previously uses midpoint displacement as a means

of creating a heightmap, used for rendering. To implement the diamond-square algorithm

first a square mesh must be defined, then the diamond-square algorithm can begin stepping

through the mesh to create the desired heightmap.

The heightmap is created during the land class initialisation. This is achieved through

the use of a loop which is designed to move through a mesh, subdividing the mesh with each

iteration. The first instance of loop covers the entire mesh, identifying the four furthest

corners of the mesh, and the centremost point. Thereafter, the loop is constrained to a

smaller area based on the halfway points between existing points, thus allowing the mesh

to further be refined. Each time the mesh is refined, the variation of height between every

point is reduced. This restricts the possibility of extreme height differences within a small

areas of the mesh.

Within the loop is a defined variable called sideLength; this is used to determine how

the diamond and square steps go through the mesh to produce the required heightmap.

With each subsequent iteration of the main loop this sideLength value is halved. Con-

sequently, with each iteration of the main loop, the diamond and square steps will be

performed additional times. The effect of this is that the diamond and square steps will

work though the mesh in large blocks which are slowly reduced in size along with the

sideLength variable.

The diamond step goes through the mesh using X and Y variables to define the location

of the mesh which is currently being worked on. The X and Y variables are slowly increased

based on the sideLength. This can cause some data to be skipped, but as the mesh is

slowly refined this data is filled in. The square step is performed after the completion

of the diamond step, and is used to assign height values to points in the mesh between

existing data points. The square step works in a similar fashion as the diamond step using

the sideLength variable to search the mesh. The square step focuses on the creation of

108

Figure 4.4: The diamond-square algorithm subdividing a mesh, using the diamond step

(black) and square step (red).

109

the corner points within a mesh, which are then used for the base of the diamond step.

Each point visited by the loop is assigned a height value. This value is based on the

type of step being performed, that is, either the diamond step, or the square step. In the

diamond step this height value is defined by the values of the four corners that are nearest

to the point that is being worked on. The average value of the four corners is taken and a

random number assigned to the resulting average thus creating the new height value for

that particular point. The new value is then placed in the mesh to then be utilised in

future steps. This process is repeated across the mesh until the X and Y variables being

worked on go outside the range of the mesh, at which point the square step is performed.

In the square step the height value assigned to a point is based on the points on the mesh

which are a sideLength above, below, to the left, and to the right of the point which is

being worked on.

The refinement of the mesh is possible as each step bases newly generated data off the

previous step, and the area in which each step is performed is also updated based on the

previous step.

Once the diamond-square algorithm has created the base heightmap, the tiles within

this grid are interlinked to produce a seamless transition when moving between the tiles.

When implementing a generated heightmap within the system there are two areas of

consideration which must be accounted for. Firstly, the edges of a newly generated tile

must align with the existing tiles. Secondly, when a tile within the heightmap is scaled

to increase or decrease in quality the connection between the edges of tiles must remain

intact.

When it comes to linking tiles of different resolutions it is necessary to set a limitation

on how much variance is allowed between two tiles. Limiting the variance between tiles

controls how much the resolution can change from one tile to the next thus producing a high

quality scene while still taking opportunities to optimise. In this framework the variance

110

limit is set to a multiple of two. This means a tile with a resolution of 64 can be connected

to 32 resolution tile on one side, and 128 resolution tile on another side. However, due

to the variance limit, a 128 resolution tile cannot connect to a 32 resolution tile. Setting

the variance to a multiple of two simplifies the process of connecting tiles within the

application. This is supported by the dynamic content controller which evaluates the

most appropriate resolution for a tile based on the existing tiles. That is, the dynamic

content controller will not generate a 32 resolution tile adjacent to a 128 resolution tile.

A separate algorithm was created to allow for simple terrain stitching, allowing the

generation of a tile next to one of a lower or higher resolution. This algorithm first stores

a value of where the neighbouring tiles are; that is, the tiles that are above, below, to

the left and to the right, or null if a tile will not have a neighbouring tile on one side.

Then, during the square step of the diamond-square algorithm, a check is performed to

ascertain if the tile currently being worked on is from an edge, and, if so, whether or not

it has another tile connected to it. Once a connection has been established the edge value

is determined by taking the current resolution of the tile and dividing it by that of the

connected tile; the result will be either 2, 1 or 0.5. Once the edge value is found it is used

as the multiplier for the square step to use to find the corresponding X or Y value of the

new tile relative to the neighbouring tile. This algorithm allows the edges of tiles with

different resolutions to be used as if the resolutions were the same.

The terrain stitching algorithm described is a minimal implementation of a much larger

and more complex area of research [58]. Other more complex methods perform terrain

stitching by dynamically creating new triangles to fill in potential holes, based on the

viability of the holes to the user at runtime [59]

The second area of consideration in the linking of tiles is the change in quality of a

generated terrain that is caused by scaling up or down as this can lead to a change in

performance when creating or rendering the terrain. These changes can be completed

111

Figure 4.5: The linking of tiles of different resolutions, via terrain stitching

through various functions within the land class. Increasing the resolution of a tile is done

by using a single parse of the diamond and square steps of the diamond-square algorithm.

The effect produced is similar to as if the tile was originally created at the higher resolution.

On the other hand, reduction in resolution is achieved by removing every second value

from the list, and every second list from the lattice. Downscaling retains the original form

of the terrain, and reduces the size to approximately a quarter of the original size each time

an asset is downscaled. The ability to downscale a given tile allows for the configuration of

an application to greatly reduce the computational expenses of a generated scene, without

significant negative impact on the visual aspect of the scene [71].

An important aspect of optimisation within this framework is the ability to dynamically

adapt the detail of a mesh in response to change in various performance factors. A function

that upscales a given tile was created to support the framework in providing optimisation

in these situations. The purpose of this function is to upscale the detail of a given tile

within the grid. The process performed to achieve this is comprised of three parts: locating

the correct data for processing and creating a new mesh; placing the processed data into

a new tile in order to replace the old one; and reconnecting any edges that may no longer

match the neighbouring tiles.

112

Locating the required data points is a simple task as each point will become the base

for the subsequent data point as the diamond-square algorithm will use this data to create

the new data points within the tile. As the the diamond-square algorithm will create new

data points, it is necessary to first create space between each data point within the regular

memory structure to allow for the newly data generated. Once the spacing has been

completed a single parse from the diamond-square algorithm populates the empty data

points within the mesh. This produces a tile that maintains all the former characteristics

of the previous tile, but has more defined features.

Before the tile can be placed within the grid the edges that link two tiles together

must be checked to ensure they will connect without any gaps or incongruities. This task

is completed by checking for neighbouring tiles, then reading the resolution of the mesh

of each neighbouring tile. Once the resolution of each neighbouring tile is found the edge

data can be passed to the new tile, thus enabling any necessary adjustments to the vertices

of a given edge to occur to ensure the edges of the new tile will match the edges of the

neighbouring tiles.

Overall, upscaling by replacing a tile within the grid is a simple task as each tile is

stored as its own class. This means each tile can maintain every aspect of itself and from

within this class the process to create the rendering is repeated, simply removing the

old tile from the grid. The new tile can then be placed within the grid, thus replacing

the previous tile. The only complication to this straightforward process is ensuring the

connecting of neighbouring edges of the tiles remain intact. However, this is managed by

the process mentioned in the previous paragraph.

Where upscaling is mostly a simple process, downscaling is even less complicated as

data is being removed as opposed to being added. Downscaling begins in a similar way to

upscaling. Initially, a new mesh of a smaller size is created into which the remaining data

will be deposited. The relevant data is culled by the deletion of every other data point

113

in a list, and every second list within the mesh structure. This data is then passed into

the mesh before the previous mesh is deleted. Once the new mesh is populated the edges

must be checked. However, as detail is being removed the neighbouring tiles may need to

recompute their edges to maintain the connection and ensure there is no breaking along

the seam. This is performed in a similar method to checking the edges when upscaling

a tile. Once the resolution of the tile has been changed the create object function is

called. This function manages the visual aspect of assets and scenes to ensure a smooth

flow between tiles within a grid. Without affecting the data produced by the diamond-

square algorithm this function rearranges vertices and indices around the edges of tiles

to ensure they connect correctly. The mechanics of this function are discussed in further

detail later in this chapter.

4.4.2 Contour tracing

As previously stated the land class acts as a base for the water class to allow water

simulations to interact with the generated heightmaps in a meaningful way. In order to

achieve this contour tracing is used to produce boundaries. The use of boundaries have

two advantages: firstly, they allow for interaction with objects; and, secondly, they reduce

the amount of data that needs to be processed, as parts of a heightmap will never have

water, thus reducing the area in which the water simulation is required to run.

Contour tracing is a well documented and studied process, with a range of applications

in computer vision [125]. Contour tracing works by finding a starting point on a lattice,

then tracing around the edges to locate a blob within the lattice[12].This allows for set

areas within the heightmap to be separated into defined areas based on set criteria; in

this case a minimum height is used to define the height at which water is located. Each

area has a defined state within a mesh, meaning that interactions with the mesh can

easily be simulated. Though this method does require special consideration for identifying

114

islands within an enviroment, this is done by checking if a defined area exists wholly within

another defined area.

The algorithm for contour tracing first finds a starting point in a lattice that fits the

defined criteria, then faces left and tries to move forward. If the algorithm is unable to

move forward, it will then rotate to the right, and try to move forward again. This process

repeats until the algorithm can move forward. The algorithm ends once it has returned to

the starting location with an additional step to avoid potential branching[12]. Once the

contour tracing has finished, the resulting section of the mesh is used to produce a blob.

Once a blob is found, and the information about it configured, it is then used as a point

at which the water class can be implemented. This is done by initializing the lattice on

which the water is based to be of the size found by the contour tracing. The boundaries

are also defined by the shape of the body of water, and passed to the water class.

Boundaries allow for interaction to occur between the generated content, in the case

of this framework specifically the heightmap generated by the diamond-square algorithm,

and one of the water simulations. Boundaries are stored in a 2D mesh that is accessed

each time the water class updates. These updates take the boundaries into consideration

when updating the water’s state to allow for reflection to occur within the generated

environment.

The creation of the blobs through contour tracing allows for different areas of a lattice

to be labelled as suitable for a water simulation to run in. These identified areas are then

grouped within each instance of their corresponding land class. This group is then iterated

through to find the size of each blob, and to determine if a found area is suited to host a

water simulation, based on its size. Once a blob has been found to be a suitable size, an

instance of the water class is passed this blob and uses it for generating its initial state.

Having multiple instances of the water class lends itself to a concurrent solution. Addi-

tionally, this method helps improve performance, as, instead of running a water simulation

115

Figure 4.6: Edges produced via contour tracing on a basic terrain generated by the

diamond-square algorithm. (Edges are white)

across the entire heightmap, it will only process data within a found blob, effectively re-

ducing the amount of data that needs to be processed. Furthermore, small areas in which

a water simulation would have little effect are not simulated at all, creating another aspect

by which the application can be optimised.

Some newer graphical frameworks allow for efficiently rendering, and generation of ter-

rain and water, through the use of geometry, and tessellation shaders [84]. Unfortunately

these are not supported within WebGL. As this framework aims to support a range of

devices through the use of WebGL, this functionality needs to be achieved through the

use of CPU bound algorithms.

4.4.3 Rendering

The rendering of the land class is split into three main parts: the generation of indices,

then vertices; the use of shaders; and, the draw calls that render the resulting meshes. The

116

indices and vertices created are based on the heightmap produced via the diamond-square

algorithm, so when the diamond square is updated part of that process is to also update

the generated indices and vertices. The use of shaders, as discussed in Chapter 2, are

vital for rendering using WebGL, and are used within the land class to render the scene.

The final stage in rendering is the render call itself, which requires special setup with

the attribute and uniform pointers, along with ensuring the correct rendering method is

applied. Though more modern graphical frameworks do allow for additional methods of

producing and rendering land and water, these are not compatible with what is offered in

WebGL.

The generation of indices and vertices is based on the generated heightmap’s resolution

in order to ensure that the rendered scene accurately portrays the generated data. As

the heightmap is created on a square mesh, only simple indices that do not create any

complex shapes need to be produced. Additionally, the corresponding vertices are also

easily generated with each point on the X and Y axes following a linear increase in size,

while the Z value, used for height, is defined by the value from the heightmap.

As the mesh is laid out on an X and Y based grid with the height assigned to a Z

value, the creation of the indices is as follows. Firstly, a nested for loop is created that

loops through the two dimensional array that is used to store the heightmap. For each

point on the map the loop creates six values that are used to create two triangles that

make up the rendered mesh. For each point on the mesh two triangles are created using

the six generated points; these triangles are used to form a square which makes up part

of the mesh. The first triangle takes in the current point’s X and Y values as the starting

point, after which it will take in the point if X is increased by one, and then if Y was

increased by one, thus creating the first triangle. The first triangle is used to represent the

top and left sides of the rendered square in the mesh, whereas a second triangle will need

to be created to render the bottom and right sides of the square. This second triangle is

117

made up using the starting points of X+1 and Y+1, which are the opposite ends of the

square to the original X and Y. To create the second triangle the points X+1 and Y, are

joined with X and Y+1 to create the last set of triangle indices that are used to create

that portion of the mesh. This action of creating the indices repeats for each point on the

mesh, up to n-1, as the final edges of the mesh are produced by the immediately preceding

iteration.

Each index created is assigned a value that corresponds with a vertex that is made up

of three points, the X, Y and Z values, representing a point’s location in 3D space. The

indices created above link these vertices together for WebGL to use in the shader program

to render an object. The creation of the vertices follows a similar pattern to that of the

indices, utilising the nested for loop. In this situation the vertices generated can simply be

assigned a value based on the current X and Y values from the loop, then altered by the

desired resolution. Additionally, the Z value is based on the heightmap previously created

by the Diamond-Square algorithm. Each of these vertices are referenced multiple times

by the indices, reducing the amount of vertex data that needs to be stored, as a single

point in 3D space is only created once, but can be referenced multiple times through the

indices.

When generating the indices and vertices for the edges of the heightmap it is important

to manage the connecting of edges as described earlier. In order to achieve this, the land

class checks the values and resolution of the connecting classes. If the tile is required to

scale the edge values this is achieved by editing the method used to produce the indices

where X or Y equal 0 or X and Y equal n-1. When creating these indices the pattern

changes from generating two triangles for each square to generating three triangles for two

squares. This means that the edge vertices will link together correctly, and that the flow

can carry on to the higher quality tile smoothly, without adding complications, as can be

seen in 4.5. These indices are treated the same as all other indices, and follow the same

118

rendering pipeline after creation.

These generated indices and vertices are then piped into the corresponding index and

vertex buffers in WebGL. These buffers are passed to the shader and are used when

rendering the scene.

Once the indices and vertices of the generated heightmap have been created and stored

as buffers, these buffers can then be accessed and utilised by the shader program to produce

the desired fragments. As discussed in Chapter 2, this data is passed to the shader as

attributes or uniforms. The fragment is produced using the three indices along with the

corresponding vertices. Additionally, in this framework the rendered object is coloured

based on a fragment’s height, adjusting the RGB and alpha values as needed.

Rendering the heightmap in the land class is completed by having the core applica-

tion call the render command for each instance of the land class. This function call is

accompanied by the view, world and projection matrices, which are used to determine

how a scene is to be viewed, and correctly order the tiles within the grid, based on their

position. Within the render function WebGL is assigned the compiled shader program

to use, and the associated attributes and uniforms are linked. WebGL then enables the

vertex buffer, and binds that vertex data. Once bound, the vertex buffer is linked through

the vertexAttribPointer creating an association between the stored vertex data and

WebGL. Additionally, the vertexAttribPointer tells WebGL how that data is sorted,

and the data type that is used. To keep this framework simple each buffer only contains

a single type, avoiding passing data that corresponds to different variables.

Once the buffers have been linked, the final task is to call DrawElements; this uses the

indices to render the vertices stored in the vertex array. DrawElements also needs to know

the method to use when linking the indices, as they can be drawn as different primitives.

In this framework triangles are used primarily, but this can be changed depending on the

style required. The number of indices in the array to render is also required; this is often

119

set to the length of the index array. The act of splitting up the generated content means

that WebGL can render a large landscape without being affected by the index limitation.

4.5 Framework implementation

The algorithms utilised in this framework contribute to the design of an application that

can create and dynamically scale content to best suit both an application’s requirements,

and a device’s performance capabilities. The algorithms detailed previously have each

beenchosen for their scalability. Furthermore, the implementations of each algorithm

have also been designed to be scalable. Scalability within this framework is made more

accessible and computationally affordable by the introduction of the optional concurrent

solution offered in Dart. As discussed previously (chapter 2), concurrency in Dart is

achieved by the use of isolates which allow for a single aspect of an application to be split

from the core of the application into a new thread that runs in parallel, before returning

to the main thread.

Within the landscape, the tile based structure of the mesh helps control both the

creating and rendering of generated content. These tiles are given X and Y coordinates

corresponding to their location in 3D space, along with a desired quality for the content

created for a given tile. Each instance of a given algorithm can be launched as an isolate

from a tile, thus introducing concurrency into the system, if required. The result of using

a tiled system for controlling the flow of the framework is that it allows for each aspect to

be worked on individually, without dramatically affecting the performance of the overall

system. Additionally, designing the framework to utilise tiles creates a modular system

allowing different aspects to easily be changed or new systems integrated.

As the tile base encourages a certain level of modularity this also means that the

framework needs to be protected from concurrency concerns that may occur when content

is being generated. This ensures that the content generated can be correctly integrated

120

into a system, without negatively impacting the scene’s quality. An example of a key

process that needs to be robust is the connection between neighbouring grids in order to

ensure a certain level of continuity between each tile. This is so the edges between tiles

match, and do not produce tears within generated content.

Another function of the tiles within the grid-based structure is setting up the rendering

for each aspect of the content that is controlled by the tile. This means that in this

implementation, a given tile must have the relevant data for the vertices, indices, and

normals for the heightmap produced by the diamond-square algorithm, and the chosen

water simulation. Advantageously, this also aids in overcoming the vertex limitations

imposed by WebGL, as the tiles split the scene into a grid. The splitting of the grid reduces

the number of vertices that have to be called in a single draw call, instead spreading the

data across multiple tiles, and thus multiple draw calls.

This framework can utilise both concurrent and sequential solutions via the tile based

system, with the sequential implementation predominantly not requiring the use of isolates.

However, due to the computational requirements of some aspects of the content generation,

some algorithms need to be tuned to allow the framework to take advantage of isolates

even in the sequential implementation.

4.5.1 Isolates

There are three aspects to the creation and use of isolates. Firstly, is the spawning of

isolates, which requires a somewhat specialized Dart file, along with the data required

by the isolate for initialisation. Secondly, is the opening and setting up of the send and

receive ports, which is a relatively simple, yet very important task as the ports control how

data enters an isolate, as well as how data is sent between isolates. The third and final

process is message passing between isolates, which is based on how the send and receive

ports have been set up[40].

121

Isolates are created by linking an isolate file to the core application, then calling the

isolate library to spawn the individual isolates. Each isolate contains a unique memory

heap, and therefore cannot share memory with other isolates. Instead, communication

between isolates is achieved through message passing using a send and receive port, which

is defined when an isolate is created. This means that the part of the application used to

spawn an isolate must also check that the isolate has correctly been initialized before it

starts sending messages. Although the creation and initialisation of an isolate does take

time, the core code can be easily integrated into a class structure to be run sequentially,

thus negating the time cost.

The send and receive ports are both defined when the isolate is created; the creation

process also involves the initialisation of the receive port. Once the receive port has been

initialised, the main application sends a message to the newly created isolate instructing

on how to initialise the send port. When the isolate’s send port has been initialized, it

sends a message back to the main application confirming that initialisation of both send

and receive ports is complete.

Within this framework callbacks are utilised by the receive ports for interpreting the

message passed to an isolate. The callback reads in the message, splits the content ac-

cording to the instructions in the first piece of data, then calls the corresponding function.

Depending on the message the isolate will call one of several functions then pass the re-

quired data (as passed to the isolate by the message) to that function. As messages passed

between isolates can contain any data type, this framework stores the data as an array

to simplify the splitting of the message. The message passing structure for within and

between isolates within this framework is designed to support the generative algorithm

that is used for content generation. Multiple arrays can be contained in a single message

meaning that if an isolate has been set up accordingly, the isolate can interpret all of the

instructions within the message, thus minimising the passing of messages between isolates.

122

After a message has been received, and the data sent to the required function, the

processed data is sent back, in the form of a message, to the isolate that sent the original

message. The data is sent back in a similar manner to which it was received to further

ensure continuity between all the isolates within a single application. Despite the message

effectively being a reply to a previous message it is treated as an entirely new message by

the receiving isolate. This restarts the cycle of receiving and sending data between isolates.

This method of passing large data within a single message between isolates does introduce

an increased performance cost compared to languages that use considerable numbers of

smaller pointers.

The use of isolates contributes to minimising the potential for runtime errors caused

by race conditions. Isolates avoid creating race conditions as no data is shared between

isolates. Isolates can achieve concurrency as when each isolate is spawned it is created

on a new thread. This means that on a multicore device numerous components of this

framework can be worked on concurrently. This multithreaded approach can improve per-

formance in situations where the data is repeatedly processed as the ongoing performance

improvement offsets the time required to spawn and initialise an isolate. This provides an-

other method in which this framework can provide an optimised solution for applications

written in Dart.

Figure 4.7 shows this flow of data through an isolate, as the data is generated on

the new thread, then passed back to the main thread, in the case of this framework as

WebGL buffers. Once recived the main thread will procced to use those buffers to render

until the receive port receives an updated set of buffers. This update command can only

be issued after the first set of data has been received, as to avoid trying to update non-

existant data. Many of the technologies used within this framework also benefit from the

increased performance opportunities offered through the use of isolates. While isolates do

incur initial performance costs this is, at the very least, offset, if not over compensated for

123

Figure 4.7: The flow of data between two threads using isolates. The main thread is blue;

the secondary thread is red.

through ongoing performance improvements.

4.5.2 Water generation

The implementation of generated water uses two different algorithms: the shallow water

simulation; and, Perlin Noise. Each of these offer a unique way of representing water,

with the largest differences being in performance cost, and the level of detail each one

offers. Within this framework both are created and used within the same water class,

which defines what water simulation should be run. The water class then allows for the

implementation of the shallow water simulation or Perlin Noise to determine whether

sequentially or concurrently is the best way to achieve the desired output.

A separate instance of the water class is created and initialised for each blob found

by the land class. This blob corresponds to the area where water is to be generated and

rendered. Each instance of the water class can be run sequentially as a new instance of

124

the water class, or be run by spawning a water isolate, which allows for the framework to

offload some work to other threads.

To implement the shallow water simulation a range of arrays are created and initiated

to be the size of the blob for which they are created. The boundaries are defined within

an array as booleans. The update cycle is then called, which applies the advection to the

system before updating the velocity of a cell in the lattice. To ensure a constant movement

within the system an alteration is added that will, in turn, alter the height of the cell at a

random location to create a wave; this can then propagate throughout the system. This

is completed by finding a location within the body of water and adding water to that

location by increasing the height value, while removing water from the surrounding cells

equal to the amount added.

The boundaries are defined by the contour tracing performed. That data is then

checked to ascertain the size of the area that the list needs to cover. This area measures

the maximum and minimum X and Y values. This range is then used to define the size of

the lattice. The boundaries are then copied to cover their location on the lattice, allowing

for smaller sections of a large landscape to be taken out of the system with each one being

worked on independently of one another.

The advection is implemented using an upwind method, based on a staggered grid.

This produces the updated advection for the height by taking the change in height, and

multiplying that by the velocity in the X and Y directions. The resulting value is then

multiplied by the given timestep, and subtracted by the original height. The advection for

the velocity works in a similar way where the change in velocity in one direction is then

multiplied by the current velocity in the other; or the change in the X velocity is then

multiplied by Y. Once again this value is then multiplied by the assigned timestep.

Working out the new height value and velocities in the X and Y axes starts with the

updating of the height. This is determined by taking the change in velocity and multiplying

125

that by the advected height value, thus producing the resulting change in height as to how

it was affected by the velocity; that is, causing the water to rise or fall. The velocity on the

X and Y axes work in a similar way, where the change in height will increase or decrease

the velocity; for example, if the height has dropped suddenly then the water at that cell

would drop, that in turn would increase the velocity in the X and Y directions of the cell,

unless it was at a boundary. in which case the velocity at the boundary would remain set

to 0, and the velocity reflected back into the blob, like water hitting then rebounding off

a wall.

Boundaries add an additional check to each stage of the update as the cell’s neighbours

must be checked to ensure that the value being used is not from a boundary, or, if it is,

then the default height value, or zero must be used as the velocity. As the flow of water will

eventually level off this will in turn produce a static body of water, in which case using the

shallow water simulation would become pointless. To ensure constant movement within

the system an additional process is added at a set interval. This process will then find

a random location within the body of water and add a small increase in height to that

location and reduce the same amount from another location. This way the amount of

water in the system remains constant, and a constant movement of water is present. If

water was added without the same amount removed, the water would continue to flow,

but a constant increase of water would occur, causing an area to become covered with

water where it otherwise should not be.

The Perlin Noise implementation is slightly more straightforward than the shallow

water simulation, as effects such as reflection from boundaries do not need to be accounted

for. The Perlin Noise implementation is made up of three main parts. The first of these

is the Perlin calculator class, which handles the calculations involved in producing Perlin

Noise. Following this is the update step, which handles how data is changed across the

lattices. The final part of the Perlin Noise implementation is scaling, how it is used within

126

the system, and how it can be used to control the system.

Perlin Noise is implemented in a class structure that can be taken advantage of within

an isolate. This implementation is similar to the shallow water simulation, the design of

which aids in allowing the water class to easily utilise either method for generating water.

The water class is initialized with a mesh based on the blobs from a generated heightmap,

and the level of detail required. This mesh is used as a guide for the size of the Perlin

Noise, while the level of detail required is used to dictate the octaves and resolution of the

created system.

When the Perlin water class is created, it can use the Perlin Noise calculator library

designed for this framework. This calculator contains all the functions required to utilise

Perlin Noise, and to produce the required data for a mesh to be generated. The Perlin

calculator encompasses two mains roles within the system: storing the permutations re-

quired by Perlin Noise; and containing the functions required to utilise Perlin Noise within

a system.

Pseudo-random vectors are used in Perlin Noise in order to create a random mesh.

These vectors are stored in a list as permutations. Having these vectors pregenerated

means that the Perlin Noise will maintain the same shape each time, and will save in

processing resources as this data does not need to be regenerated each time the application

is run. This is a randomly sorted array containing all numbers between 0 and 255. These

numbers are also repeated and stored in a new list. This means that as the list is progressed

through, Perlin Noise will naturally repeat itself.

The next part of the Perlin calculator library is that all functions required for the Perlin

Noise are stored within one location. Using this library means that all that is required when

wanting to use Perlin Noise is to call the functions PerlinNoise or PerlinOctaveNoise

with the latter offering greater detail. PerlinOctaveNoise uses the PerlinNoise function

to generate the required noise, but adds to the generated noise for each octave required,

127

with the octaves having a reduced effect each time.

The Perlin Noise implementation takes in the X, Y, and Z coordinates of a point in

3D space, and returns a resulting value, which, within this framework, is used for the

new height value. Once the PerlinNoise function receives the required values, the values

are clamped periodically between 0-255, in order to avoid overflow within the system.

A fade curve is then produced for each passed in value; this is designed to smooth the

final output. Once the fade curve has been produced, the hash coordinates are generated

using the supplied X, Y, and Z values. These hash values are used to obtain the corner

points of the supplied point, which are used to obtain the final vector. This hash value

is passed to the grad function, which is designed to calculate the dot product between a

pseudo-random vector and the passed in vector. This is applied from all corner points to

the original vector. The result of the grad functions are then interpolated between each

other to produce an averaged vector, which is smoothed using the values generated by the

fade function called earlier. This final fade value is then used as the new height value for

a given location on the lattice.

In order to update the state of Perlin Noise, a change in the vector passed must

occur. Within this implementation of Perlin Noise this change is introduced through the

adjustment in the height variable passed into the Perlin calculator for each point on the

lattice. The adjustment of the height within the lattice changes the initial vector, thus

leading to a change in the vector returned. In order to ensure that when Perlin Noise

repeats it does so smoothly, the change variable used is reset to 0 once it reaches 256; this

results in limiting the maximum height assigned via Perlin Noise.

This implementation of Perlin Noise utilises two different methods of achieving scal-

ability. One of these is changing the resolution, which affects the quality of the mesh

generated. Alternatively, octaves allow for finer detail to be added to the mesh, without

affecting the resolution. Changes in both resolution and octaves are used within Perlin

128

Figure 4.8: The shallow water simulation, based on defined contours, interacting with

edges as boundaries causing waves to ripple when interacting with terrain edges.

Noise via the PerlinOctaveNoise function.

In order to scale the resolution of a mesh, the points passed to the PerlinOctaveNoise

function are scaled to be between 0 and 1. Scaling all points to between 0 and 1 means

that when the resolution changes the points’ requests remain constant. This means there

is only a change in the number fragments that make up the mesh generated. Using this

method allows for a lattice to be generated, and have the resolution changed dynamically,

but still maintain the original form, regardless of the resolution required.

Scaling using octaves utilises a repeat in Perlin Noise to create scalability through

calling a single function multiple times, with each iteration resulting in a finer detail. This

is achieved through the use of a loop that adds the effect of each iteration of the Perlin

Noise together, where each iteration has either an increasing or decreasing effect on the

system. This loop will continue based on the number of octaves required, with the effect

being determined by a persistence variable. The use of octaves does not affect the number

of fragments generated, but instead increases the detail producing finer quality fragments

in areas where smaller details are easily noticed.

129

4.6 Summary

The structure of Dart allows for a very controlled flow of information through an appli-

cation by way of classes, and futures. While class structures are not new they have been

improved upon in the web with the introduction of Dart [122]. Futures are also a new

aspect to web programming that can be taken advantage of with Dart. These two features

allow for more complex processing of information while data is being loaded, or worked

upon. With Dart various techniques are easily applied to the system to help control how

the scene is rendered and created. These range from the way an object is created, to the

order it is created in, and what it is based on. These techniques can easily be added to

the system through various constructs.

The simulations used to generated a scene within this application are based on the use

of each aspect being controlled by one class, which may be based off multiple instances of

the same class, or the creation of a new class, leading to the next step within the system.

By using classes and instances of classes, class constructors can be implemented and used

to aid in the creation of a class and simulation. As the creation of some simulations is

based on the work of another, such as the water being based on the landscape, a form of

linking is required to ensure the correct data is used. In this situation this is handled by the

contour tracing algorithm, which the land class uses to then create the water simulation.

This then creates a new instance of the water class, which is handled independently from

the original land class.

These simulations are enhanced by level of detail methods, but with a focus on gen-

erating content at the desired quality, and scaling up. Rather than more traditional

approaches in which a high quality model is scaled down. Additionally the simulations

used in this framework, are largely in part examples used to show what is possible in this

framework.While other methods were explored, Diamond Square, Perlin noise and Shallow

Water were found to be sufficient for this framework and research.

130

Chapter 5

Dynamic Content Controller

The dynamic content controller is used within this framework to monitor and direct how

generative content is produced and maintained, in relation to performance requirements.

Frameworks that have been designed for platform independence can be improved through

the use of this dynamic content controller as it allows for an application to scale based on

a given device’s performance capabilities. The dynamic content controller is implemented

as the base of the designed framework, managing when and how content is created, along

with how it is modified and/or removed during runtime. It controls the performance

requirements of rendering a scene by modifying generated assets during initialisation or

runtime. The flexibility afforded by the inclusion of the dynamic content controller pro-

vides developers with another tool by which they can achieve platform independence.

runtime

5.1 Maintaining Optimised System State

Initially, the dynamic content controller (asset controller) measures the time taken for the

first tile within the grid to be rendered. It uses these measurements to estimate the cost

of creating an ideal base system state. If the estimated cost means that content can be

generated and updated at around 60 fps the base system will be created. However, if it

131

will take less time, the asset quality will be improved and/or the number of tiles increased

before the base system is created. Conversely, if the estimated cost is too high, either the

asset quality will be reduced, or the number of tiles decreased.

The asset controller continues to track each generated asset within a 3D scene, modify-

ing the asset as needed to ensure the best performance for a given device. This is possible

as the asset controller is continuously monitoring the performance impact of generating

and updating assets. The asset controller can modify performance output through the use

of generative algorithms, which are designed to be scalable.

As this research is concerned with the optimisation of platform independent graphical

applications through the use of generative content, the asset controller must focus on the

visual impact of each asset generated, in order to minimise the effect on the rendered scene.

This can be achieved by ensuring a smooth flow within a scene, which, in turn, is achieved

by making the quality of neighbouring assets the same, then changing the quality of the

assets as they move closer, or come more into focus. Conversely, when the user moves

away from an object the quality is reduced in order to free up resources on a device. This

method means that as the user navigates around a generated scene the assets change in

quality accordingly to if the user moves towards or away from them. This leads enables

the device’s performance to be distributed with preferential focus on where the user is, as

this has the larger impact on perceived scene quality.

As the generative algorithms (Diamond-Square algorithm, Shallow water simulation,

Perlin Noise) focus on the procedural creation of assets, the created assets are used as the

base of the graphical application comprising the landscape and other objects which make

up environmental details. Consequently, these created assets are used mainly for simpler

objects and often lack finer detail when compared to custom-made models. This means

that while the controller can modify larger generated assets, the smaller and more finely

detailed objects remain outside of the controller’s scope.

132

To allow the user control over prioritising between the quality of a generated object,

and the number of objects generated, this framework implements metrics to allow a com-

promise to emerge to ensure a minimum level of performance. These metrics allow for

an application to focus on the generation of a large number of assets at lower quality, or

fewer assets, at a higher quality. For example, an application might require a large area

to be created, but does not require a high level of quality on assets generated. In this

situation the metric applied would increase the number of tiles drawn, with a reduction in

quality in order to achieve a balanced level of performance. Alternatively, an application

might require a high level of detail, but only a few assets generated. In which case the

metric would ensure the generation of assets at a higher quality, while producing them in

smaller quantities. These metrics are tools made available to the developer for produc-

ing the desired outcome of a rendering across devices while still preserving performance

requirements.

In addition to introducing metrics to manage the rendering quality, and quantity of

generated objects, there is another trade off available. This is between an application’s

overall rendering performance and the application’s level of responsiveness. This means

that the framework can be used to support an application that requires limited user

input, or user input can be delayed, in order to improve performance. On the other hand,

where an application may need to be extremely responsive the rendering properties can be

reduced. This builds upon the previously mentioned metrics in order to achieve a greater

level of control over a system.

The utilisation of the asset controller allows for a very significant reduction in devel-

opment time for the number of devices that an application may be run on. This is due to

the nature of the procedurally generated assets being easily reproducible, as well as being

scaled to fit a set device’s specifications, with the assets being scaled across devices. This

means that a developer only needs to have created a scaling algorithm once to produce

133

Figure 5.1: This image shows a scene based on setting the developer metrics to favour

high quality over number of tiles.

Figure 5.2: This scene is lower in resolution than the scene depicted above, but is compro-

mised of more tiles. This reflect developer metrics that favour coverage over resolution.

134

Figure 5.3: This diagram shows the change in tiles resolution within the scene in 5.2.

content across a range of devices, rather than reproducing the same content multiple times

at different qualities.

The asset controller utilises a base system state that is then built upon through the

generation of various assets. The system state can be manipulated via the defined metrics

in order to achieve the desired balance between system settings and simulation quality.

The state can be altered further based on a device’s performance, and the application’s

requirements. These changes are implemented through each instance of an asset’s class,

which are stored as part of the asset controller. The scaling of assets, and the manner in

which the modifications are applied, are also managed by the asset controller. This ensures

there is a smooth transition as the assets change in quality, thus minimising impact on

the user’s experience.

This asset controller is responsible for the creation of the base system state. This base

state is determined by some simple performance tests as the application is initialized. The

result of these tests give a rough indication of the device’s performance outputs, which

are, in turn, used to determine the best initial state of an application. These initial tests

are based on metrics assigned by the developer, in order to mimic the desired runtime

results. These performance tests account for the time required to create an asset’s initial

state, then extend upon this data to determine how many update cycles need to occur

in order to achieve an optimal frame rate (usually 60 frames per second). Once the tests

have been completed the controller can produce an estimated ideal runtime environment.

135

This environment is constantly monitored and altered by the asset controller, in order to

achieve the desired result based on the defined metrics.

Much of the asset controller’s functionality is based on the defined metrics. This

allows the controller to manage and prioritise the manipulation of a scene when a user

interacts with the system. These metrics allow the controller to change the generated

assets’ quality, or alter the number of assets created according to the user’s specifications.

Such changes affect the runtime performance of the application, which, in turn, means that

the changes executed by the asset controller can influence how smoothly an application

runs. In addition to the metrics that manage the quality of assets, a variable is included

that prioritises dedicating performance power specifically to the rendering functions of the

application over other tasks within the application. A situation when these metrics might

be utilised would be to prioritise the level of realism in bodies of water. In this case the

asset controller would use the shallow water simulation to render the water, instead of

Perlin noise.

Each asset is created and maintained by an instance of that asset’s class. This class

determines how to create, scale or remove each instance of itself from the scene. The

asset controller utilises each class’s built in functionality to adjust the generated con-

tent. This means that the asset controller only needs to send function calls to an asset’s

class if needed, and allows for an individual class to have control over the assets. This

minimises the required input from the asset controller, thus reducing overhead from the

application. Furthermore, the location of each asset in 3D space is stored within the asset

controller, which simplifies the scaling of assets based on proximity to the user as the asset

controller has quick access to the coordinates of each asset. Additionally, the storing of

3D coordinates in the asset controller when generating new assets simplifies the linking

of neighbouring tiles together as each instance of a given object’s locations are already

known.

136

As the asset controller alters the application, it also tracks the effects of these changes in

order to ensure that the subsequent changes in performance requirement were appropriate,

and that the current runtime performance is adequate. This is ascertained by checking

the new timings of assets during updating cycles. If it is found that the new timings are

too high or too low, the assets are adjusted accordingly to bring the performance closer

to what is deemed desirable.

When the asset controller is updating an object it calls the instance of that object’s

class to replace the object by generating a new one, initially using the data from the

previous object. This means that the updated object will remain mostly the same as the

previous object when scaling, gaining or losing only minor details. Additionally, when

going through an update cycle, the asset controller will produce new objects at the fur-

thermost distance from the user (as determined by metrics and runtime statistics); the

objects will then be scaled up as the user approaches. This process allows for the objects to

be created at a lower quality, thus minimising the performance impact on the application.

5.2 Implementation

The asset controller is made up of three key parts; the benchmarking, which occurs when

the application is started; the creation of each asset based on the previous benchmarks,

which may include the creation of isolates; and the process for updating and maintaining

an asset. The assets themselves can be created as an implementation of the asset’s class

and run on the main thread, or can be introduced to the system using an isolate imple-

mentation, which allows for multithreading to be used, thus providing an opportunity for

improving performance.

137

5.2.1 Benchmarks

Benchmarks are used throughout the framework in order to tune performance requirements

of an application. The benchmarks are first run when an application is started up to

determine a base system state for assets to be created at. The benchmarks are then

periodically run throughout the application’s runtime in order to fine tune performance

to best suit the current requirements.

The first benchmark, which is run when the application starts, is based on timing how

long the application takes to generate a single tile at the maximum resolution. If the time

taken to generate the tile exceeds the ideal (60 fps [51]) then the tile resolution is reduced

until the tile can be generated in the ideal time. An additional benchmark is run on the

creation of a single isolate to determine the performance offering of a multithreaded ap-

proach on the system. The interpretation of the results are used to create the application’s

initial configuration.

The isolate benchmark returns two key values: the time taken to create the isolate’s

VM; and the time taken to pass data between the main application and isolate. Both

values are of equal importance as the time taken to create and initialise an isolate is

predominantly performed on the application’s main thread, meaning that creating new

assets within an application could impact how smoothly the visual component of the

application looks and runs. The second aspect of the second benchmark in regards to the

time taken to pass data becomes increasingly significant the larger the scene is that is

being produced, as currently all render calls in WebGL are required to be performed from

the main thread, further increasing the thread’s workload.

Throughout the application’s life different events might occur on a device that impact

its performance. This means that periodically the framework must self-regulate priorities

within the system to better suit the application’s requirements at runtime. These require-

ments are once again based on the idea of maintaining a frame rate of approximately 60

138

fps, in addition to adhering to the defined metrics when managing the creation or manip-

ulation of a generated asset. In this situation an ongoing process occurs that monitors the

updating of various assets, and compares this to the distance from the user’s view, and

checks the results against the metrics as to whether the asset needs to be altered in one

way or another. This results in the framework checking the impact and relevance of each

asset throughout runtime, and adjusting them as required.

Listing 5.1: Dart code for Initialising the asset controller, using the results of the bench-

marks to determine how to set up the scene.

InitialiseAssetController(){

Bool usingIsolates = false;

let seqResults = this.beginBenchmark(false);

let conResults = this.beginBenchmark(true);

if (seqResults.init > conResults.init || seqResults.update >

conResults.update) {

usingIsolates = true;

}

let DS = new DiamondSquare(location, details, usingIsolates);

let water = new WaterSim(DS, usingIsolates);

}

// Use just the algorithms to generate data, ignoring rendering.

// Using the algorithms default values, but still setting true or false to the

usage of isolates

139

beginBenchmark(concurrent) {

let st = window.performance.now();

createHeightMap(concurrent);

createPerlinNoise(concurrent);

let t1 = window.performance.now();

updatePerlinNoise(concurrent);

let t2 = window.performance.now();

// Return a new object

return {

init: t1 - st,

update: t2 - t1

}

}

5.2.2 Asset creation - Isolates

Isolates introduce a system for concurrency within Dart making available the option to

offload tasks that require processing to new threads within a new VM. This framework

can take advantage of isolates as required to improve performance and split up tasks from

various algorithms, such as the dividing of the mesh in the Diamond-Square algorithm. It

is worth noting that WebGL requires all draw calls to come from a single thread, meaning

that the processing performed within an isolate does need to be returned to the main

thread in order to be rendered[54].

The requirements of creating assets using isolates vary slightly from the typical method

of creating assets as the asset class needs to be modified in order to send and receive data

between isolates as required. This means that within an asset’s class, data from the

140

benchmarks must be used to determine how much of the work, if any, should be processed

using isolates.

Where sequential implementations occur within the same VM, each new isolate used in

concurrent implementations runs within its own new VM. This requires send and receive

messages to be passed between the isolates. The design of this framework enables these

messages to include data relating to scaling an asset up or down, or changing an asset’s

state in order to better suit the scene’s requirements.

Where the asset class determines that performance will be improved by using con-

currency the asset class will launch a new isolate containing the algorithm that requires

processing. This is the same algorithm that would typically be used, and the same func-

tion will also be called. The key difference is that the results from the typical processing

method will be returning sequentially, whereas the concurrent implementation will return

the data using send and receive methods, as shown in figures 5.5, 5.4.

Once the data has been processed and the asset class has retrieved it the rendering

pipeline can be updated to represent the changes within the scene. The advantage of

using isolates is that the framework can utilise multi-core processors. This means that

multiple tiles worth of data can be split up and worked on concurrently, thus improving

the system’s overall performance[43]. For smaller systems, the initial time taken to create

an isolate may result in it being quicker to produce some aspects sequentially. However,

it may still be more efficient for more complex tasks to be processed using isolates.

5.2.3 Creation

The asset controller can utilize the results from the benchmarks to create a base system

state for assets to be generated. The controller works by interpreting the benchmark

results and based on the device’s performance, and the developer metrics, producing the

appropriate base system for an application. This base system state is designed to determine

141

Figure 5.4: The steps taken to update an asset concurrently.

Figure 5.5: The steps taken to update an asset sequentially.

whether implementing isolates will be a viable option, in addition to producing default

values to use when creating the various assets.

The base state is designed to allow an application using this framework to run at

an ideal level based on the device, and the developer’s desires (as expressed through

the metrics). The aim is normally to achieve a screen refresh rate of 60 fps, while also

maintaining a smooth flow as the scene changes, and assets being changed with it. This can

be achieved through a number of ways, such as switching the method of producing water,

or changing the size of the overall system that is to be generated and displayed. These

benchmarks are also used to determine the possible areas wherein it may be advantageous

to utilise isolates within Dart.

When creating this base system state the asset controller will also determine how each

tile is to be displayed. This will include information about the tile, such as the resolution

142

of the landscape to be generated, or what kind of water is to be rendered. Depending on

the influence of the developer metrics, the framework will focus on generating high quality

tiles in more central locations, as these will be more noticeable to the user, while gradually

lowering the quality of the tiles as the user moves away from the central location. On the

other hand, in some situations the metrics will require a larger area to be produced with

minimal regard for the quality. For example, in a flight simulator it is ideal to be able

to view a large distance around the user; however, as the user is so far away from the

landscape, they would not expect a high level of detail.

The asset controller also evaluates where a performance increase may be offered by

isolates when creating the base system state. In some cases, where an asset is created

and not often modified, a sequential implementation in which the asset is created and

maintained within a class may offer the best performance. On the other hand, assets that

are in a constant state of change may benefit from Dart’s isolates, as the initial cost of

creating the isolate would quickly be outweighed by performance improvements offered by

the isolates.

The resulting state the scene is initialized to may not be perfect, as the benchmarks that

were run may not have been completely accurate. To compensate for this the framework’s

asset controller is run throughout the life cycle of the application in order to alter generated

assets to maintain the desired level of performance within the scene. In addition to this,

when assets are created or destroyed the asset controller can alter the runtime performance

in order to improve performance.

5.2.4 Update Cycle

Now that the scene has been created with assets being generated to an initial state, it is

ready to be rendered and interacted with. As the scene continues to exist, the various

assets generated may need to be updated to reflect changes made by the user, such as

143

moving around the scene, thus changing how an object is viewed. The resulting changes

must be managed in order to control how the asset is updated to ensure minimal effect

on the user’s interaction within the rendered environment. Firstly, the order in which

the tiles within the scene (and, by extension, their respective assets) should be modified is

determined. This ensures the changes occur smoothly and minimises the noticeable effects

of the change on the assets. Next, the asset controller is constantly updating to ensure it is

receiving the most up to date data on what is occurring within the environment. Finally,

once it has been determined that assets must be changed, and what that change is, the

asset is updated.

5.2.5 Asset configuration

A key concern of updating assets is minimising how noticeable the change will be to the

user. To reduce the obviousness of updating an asset the process is split into three main

parts. Firstly, the asset controller prioritises updating the assets that are closest to the

user, starting with the furthest away tile as per the developer metrics. Then, during

the updating process, the asset controller reviews how much of a change in performance

occurred. Based on the performance changes within the system, further adjustment to the

assets, and the respective tiles on the grid, are made. Once the assets have been adjusted

the system as a whole will then add or remove new tiles.

To minimise the user noticing the visual impact of changing assets, the assets are

modified in order of proximity to the user, starting with those that are the furthest away,

but still close enough to have been rendered. This method ensures that the smallest, or

least detailed assets are modified first, reducing the obviousness of future changes, as well

as lessening performance impact on the scene.

This framework applies a developer metric to determine the highest quality possible

for the user’s range of view. This metric ensure that the tiles within immediate proximity

144

to the user are maintained at the set levels of detail. This means that as the user moves

through the scene, upcoming assets will have already been scaled up to the set level of

detail, whereas the furthermost assets in the opposite direction will have been scaled down

in order to maintain balanced performance. Performance is further preserved by the asset

controller modifying existing assets, rather than creating new assets, which would have

increased performance requirements as based on the asset.

In order to preserve the desired level of performance, all changes that are the result

of the asset controller updating a scene must be monitored. The monitoring occurs over

a defined period of time, after which, changes in performance are recorded, and resulting

changes to asset generation applied, if necessary. An example of a performance change

significant enough to require subsequent change in the asset generation process would be

if the frame rate increases or decreases by more than 15% the quality of generated assets

would likewise be increased or decreased to return the frame rate back to the desired rate.

However, if the frame rate fluctuation falls within the allowed variation, no changes to

asset generation are required. Allowing for a certain amount of variation from the desired

level of performance means that the asset controller is not constantly altering the scene

on occasions where the resulting changes would have minimal impact. Once any necessary

adjustments have been made to the asset controller, the monitoring process is repeated.

Another way in which updates to the system can affect performance is that throughout

the life cycle of the application it may have been necessary to add or remove tiles in

response to the application’s performance requirements, or the user’s movement. The

creation of a new tile, and its respective assets is one of the larger generative tasks. This

is due to the performance requirements in potentially creating new isolate, along with the

new classes that need to be created and initialised. The performance impact of creating a

new tile is minimised as, after the initial landscape has been generated, all newly created

tiles are added to the outer edges of the grid. This allows for all newly created tiles to be

145

generated at the lowest scale, thus minimising their impact on the scene when generated.

On the other hand, the removal of a tile is a much simpler, less expensive task in terms of

performance as the assets are being destroyed, not generated. Furthermore, the removal

of tiles frees up additional device resources, which can also positively impact performance

capabilities.

The addition of the asset controller within this framework manages the updating of

assets within a scene with three key methods. Firstly, the asset controller manages the

generating and updating of content proactively so that assets are altered before the changes

are required and the changes are not too obvious to the user. This is achieved through

updating assets from the outer edges of the user’s view inward. Secondly, while the asset

controller is updating the scene, ongoing performance changes are also being monitored,

with the appropriate changes in asset generation being applied to maintain balanced per-

formance output. Finally, the asset controller will add or remove tiles in order to balance

performance, or in response to user movement, if required. These tasks, and any changes

made by the asset controller subsequent to required changes in performance, are based on

the metrics that are predefined by the developer.

5.3 Developer Metrics

As mentioned above the developer metrics are vital for ensuring that the asset controller

accurately maintains the balance between different aspects of the system, such as the

resolution of tiles to how the water is simulated. In this framework the balance is defined

as a compromise between the quality of a rendered tile, and quantity of tiles rendered.

The metrics within this framework have been designed to be easily modified to allow for

other metrics options to be implemented as they become relevant.

The metrics are defined by the developer when an application is created using this

framework, with each metric assigned a decimal number between 0-1. The assigned value

146

contributes to the asset controller determining when a new tile should be produced, or if

an existing should be upgraded instead. The asset controller also utilises the results from

ongoing performance benchmarks to determine how best to make changes to a scene. For

example, figure x shows a metric bias towards improving existing tiles over the production

of new tiles. However, as the necessity for producing new tiles increases, this will even-

tually become more important within the asset controller algorithm, thus a new tile will

be produced. The metrics aspect of this framework allows the developer to weight the

importance of how the system can best be displayed against their original design goals. In

turn, this means that a scene can be viewed and explored as the developer intended, but

within in the bounds of the framework to ensure the best performance output possible on

a given device.

As the complexity for controlling a scene grows, so does the need to further how the

metrics can be applied. This means that the framework can be modified in order to

accommodate a metric that balances different parts of the system. An example of this

would be if a developer desired high quality simulations for improved realism within in

a scene at the expense of reducing the overall size of the scene, or another aspect such

as resolution of a given tile. In the current implementation of the framework the asset

controller’s main ability to balance different aspects of a scene is through the updating

of generated assets, which allows for the processing requirements of an application to be

rebalanced as required.

5.3.1 Updating of asset’s

When the asset controller calls for a generated asset to be updated there are four events

that occur. Firstly, the asset itself will scale up or down in quality as required. This is

this followed by a checking of the edges of the tile or asset in order to ensure consistency

within the scene. Next, the WebGL buffers used for rendering (vertex, normals, indices)

147

are updated to reflect the new changes in the data set. Finally, the previous data is

removed from the application, freeing up device resources.

When updating an asset, new data, which represents the asset, is created. These

updates consist of generating new data points based on the existing asset, thus producing

a higher or lower quality asset as deemed necessary by the asset controller. As previously

discussed in Chapter 4, these updates slightly change the asset but are designed to allow

for the object to keep its overall shape. This means that the asset within a tile, such as

the landscape itself, must maintain its connections with other tiles within the grid. The

framework can achieve this via two distinct methods. The first, and simplest, method is

to ensure that when an asset is updated, every edge of each tile is assigned the same value,

and that these values cannot be altered. This produces a single base level for all edges of

each tile, and is the cheapest solution in terms of performance. The other method is, after

a tile has changed, to rejoin all the edges around itself in order to match the surrounding

tiles and produce a smooth link between tiles. This is achieved by the issuing new values

to each edge of the tile. This method does increase performance requirements; however

it also ensures that there is a continuous flow of the landscapes between tiles, without

producing noticeable changes within the scene.

Once the asset has been updated the resulting changes need to be reflected within the

rendered scene. This process is very similar to that of updating the water asset when

the water moves through the scene. However, when changing static assets indices must

also be updated. This is unlike the updating of water as the size of the body water does

not change, meaning only the height values of some vertices need updating. Static assets,

on the other hand, will change in resolution, thus requiring the indices to be updated.

Thus the process to update an asset that has changed resolutions requires a slightly larger

overhaul, in order to recreate the indices. New arrays containing the updated data points

are produced, which are then passed to the WebGL buffers. These arrays contain the new

148

indices, vertices, and normals that are required when rendering the scene. The arrays

are then bound to their respective WebGL buffers, replacing the older set of information

that was used for rendering the asset. The changes that have been made can then be

immediately reflected in the next draw call.

Once the asset has been updated, and the new WebGL buffers created, the next priority

is to remove any unnecessary data related to the asset, or that may be leftover from

performing modifications to the asset. Additionally, it is necessary to remove links between

older data and data which is still in use, as this will allow Dart’s garbage collector to free

up data.

5.3.2 Creation of new asset’s

As the user moves throughout the scene, different assets will adjust in quality to ensure

that the user is presented with assets rendered at the highest quality that the device can

support. Inevitably, the user will move though the scene to a point where new tiles must

be generated in order to ensure that there is further content for the user. The creation and

integration of new tiles within the grid and scene at runtime within this framework can be

managed by the asset controller in order to achieve smooth content generation at minimal

performance cost. The creation of a new tile within this framework is implemented in

three stages. Firstly, the location of where the tile is to be generated is identified. Then,

the base assets are produced and passed to the scene. The final step is to pass these new

classes to the asset controller so it can scale and adjust each asset within the scene as

required.

The identification of where to create a new tile is based on the device’s performance

capabilities, and the developer metrics. These indicate to the asset controller when and

where new tiles need to be produced. These locations are places on the grid that will be

coming into a defined range of the user’s view, therefore there must be content available

149

for display within this range. As a new range of tiles come into the user’s range of view and

are consequently produced, a range in the opposite direction will fall outside the required

area and will consequently be removed from the scene. Once the location at which a tile

must be created is found, the framework will start generating the base asset, in this case

the land class, using the diamond square algorithm. Land will be created at a minimum

resolution, so as to reduce the effect on the performance of the system. Once the tiles

have been created they must be connected to the edges of existing tiles to ensure a smooth

transition between tiles.

Once the base of the tile has been created, further assets can be generated and added

to the scene. The first asset, water, is added as an instance of the water class. Firstly,

a contour trace is performance on the landscape to ascertain where water will be placed

(if at all), after which the water simulation will be run. This water simulation will be

performed with either Perlin noise, or the shallow water simulation, depending on the

quality required for the scene.

Once each of these classes have been created and initialized, they can be passed to

the asset controller. The asset controller then places these assets within the grid, where

it can manage how the assets operate. This means that the asset controller has access

to the data that indicates the location of each asset within the grid, thereby allowing the

asset controller to also access data on what assets are located within a given tile. Storing

assets within a tile allows the asset controller to issue function calls to a single asset, or

to multiple assets located within an entire tile. This allows for large scaling calls to be

applied to all assets within a given tile, or for smaller scaling calls to adjust a single asset

within the tile, such as changes that might be applied during the maintenance cycle of a

water algorithm.

The functionality of being able to add tiles throughout runtime is a significant advan-

tage within the asset controller, and to the framework as a whole, as it allows a generated

150

Figure 5.6: Single Shallow Water tile, where the water is unable to move past the tile, so

reflects.

Figure 5.7: Two Shallow Water tiles, where the water is able to flow between tiles

151

scene to continue adding generated content through the application’s lifecycle.

5.4 Summary

The asset controller implemented within this framework offers the developer an optimised,

streamlined approach to the process of determining how to create and maintain generated

assets. This is done through the implementation of various metrics to produce a bias that

influences how the scene is to be produced and maintained. The asset controller can use

these metrics, in addition to various benchmarks, to create a foundation upon which a

generated scene can be based. The use of these metrics are inherent to ensuring that the

desired user experience is available at any given time. They also provide important cues on

how the asset controller should respond to any changes in performance availability on any

given device at any point during runtime. The asset controller can respond to required

changes in performance availability in a number of ways, such as: scaling assets up or

down; increasing or decreasing the size of the grid; increasing or decreasing the quantity

of assets generated or improving or reducing the resolution of generated assets.

Another way in which the asset controller can provide improved generation of assets

is that it allows the framework to take advantage of multithreading available through the

use of isolates in Dart. Although low performance devices will not provide much oppor-

tunity for the asset controller to utilise isolates, multithreading means that performance

requirements do not compromise the opportunity for higher end devices to be able to run

higher quality simulations. Where possible, the asset controller can use isolates to provide

an efficient means of processing a large amount of data. Examples of when this framework

could utilise the processing power of isolates include: when a significant number of assets

needed to be generated; when assets needed to be generated at a high resolution; or when

complex algorithms, such as the shallow water simulation, are being used.

The use of the asset controller means that a developer can be sure that an application

152

will be able to adapt and scale throughout its lifecycle.

153

154

Chapter 6

Results

By their very nature graphical applications are complex. They require significant pro-

cessing, which presents a barrier for the widespread production of web-based graphical

applications. This thesis has devised a solution to this problem in the form of a frame-

work built using Dart. Dart and the developed framework were tested to determine the

effectiveness of the framework in a realised implementation. The results show that Dart

offers high performance for complex graphical applications, and that the design of the

framework adapts well to suit a range of platforms.

The speed of the framework can be gauged in two ways; when compared to a native

implementation, and when compared to an implementation in another web language, that

is, JavaScript.

For the comparison to a native language, that is, a language not run within a VM,

a copy of Perlin Noise was written in C. Typically, a native implementation would be

expected to perform faster than an implementation run in a VM. However, in this case,

both application performed at similar speeds due to them sharing the same bottleneck in

the updating of the OpenGL/WebGL buffers, and render calls[119]. The point of this test

is not to suggest that Dart is as fast as C, but to show how in some cases, they are subject

to similiar bottlenecks.

155

To test the performance of Dart, and to ensure an accurate comparison to JavaScript

multiple benchmarks were created and run. The benchmarks that were selected for the

comparison measured the updating sequences of Perlin Noise, and the shallow water simu-

lation. Testing the updating sequence is representative of performance of the initialisation

sequence, whilst also providing an opportunity to meaningfully test concurrent and se-

quential implementations. As well as indicating that Dart performs faster than JavaScript,

these benchmarks indicate at what system state a concurrent implementation offers the

best performance.

The adaptability of the framework was tested by running it across a range of devices

with varying developer metrics. The successfulness of the framework achieving platform

independence was judged by the level of accuracy with which the framework produced and

maintained a scene in relation to previously defined developer metrics on each device.

6.1 Benchmarks

For the development of the language performance benchmarks the updating sequence of

Perlin Noise, and of the shallow water simulation were chosen to test on. The updating

sequence of an application allows for more variation in performance to occur unlike the set

up cycle, which uses simple, and single once-off algorithms, such as the Diamond-Square

algorithm, that complete rapidly irrespective of device specifications, and the complexity

of the algorithm. This is clearly visible when running the Diamond-Square algorithm, as

even when tested at the largest scale, of 10 tiles, with a resolution of 128x128, it completed

almost 8 times faster sequentially.

To ensure continuity between the framework code, the JavaScript code was generated

from the Dart code using the Dart2js process. Incidentally, the Dart2js process auto-

matically optimises JavaScript code, which is capable of outperforming human written

JavaScript [24].

156

Device CPU GPU RAM

PC i7 - 6800k 3.2 GHz Nvidia 1080gt 32 GB DDR4

MacBook Pro 2013 i7 - 4558U Nvidia 750m 16 GB DDR3

iPhone 7 Quad-core 2.34 GHz PowerVR Series 7XT 2 GB LPDDR4

Samsung Galaxy S7 Octa-core (4x 2.3GHz, 4x 1.6GHz) Mali-T880 MP12 4 GB LPDDR4

Table 6.1: Specifications of devices used for benchmarks

To incorporate a range of devices the framework was tested on a Windows PC, Mac-

Book Pro, iPhone 7, and a Samsung Galaxy S7; the specifications of each device can be

seen in 6.1.

As this research identified concurrency as a possible solution for providing better per-

formance the benchmarks were performed in both concurrent, and sequential implemen-

tations.

To run the various benchmarks the first step was to create a fair testing system for

all devices, and implementations. As debugging web applications on some devices such

as Android and iPhone can become challenging, and affect device performance [11], the

information regarding each set of benchmarks was stored on the device. After each bench-

mark was run the data was uploaded to a local web server running a basic REST server

to retrieve the benchmarked results. This eliminated the need to open any developer tools

while the benchmarks were running, which would have affected timings and skewed results.

Part of ensuring a fair test was keeping the resolution of the tiles, and the number of

tiles generated the same for each series of benchmarks. The developer metrics allow the

framework to create a system at whichever size it detects will best suit device performance.

To override this function for the purposes of benchmarking the system settings were pre-

defined before running the tests. The given algorithm was run to update the system 100

times as quickly as possible, then the system setting changed to the next increment of

157

number of tiles, or resolution. Once all benchmarks had been run for Perlin Noise, the

process was repeated using the shallow water simulation.

Once a set of tests were completed the results were sent to the node.js server in the form

of a simple text file containing all necessary test data, such as size, resolution and timing.

The timing information used within the benchmark was generated by taking the time

difference between the call to update the asset, and the resulting update being returned.

This did not take into account the time taken to initialize the scene, or to update the asset

on screen.

The testing of the algorithms in a concurrent implementation was a similar process to

that of testing sequentially, utilising a web server to retrieve the data, and cycling through

the various system states. The primary difference is how the timing information was

generated. Testing a concurrent implementation requires a check to be performed to ensure

all threads have completed; this is not required when testing a sequential implementation

as a task is only started once the previous task has completed. As isolates and web workers

utilise a message passing approach to concurrency a callback is triggered when a thread

returns data. When this callback is fired, a check was performed to check the status of

all other threads. Once all threads had completed only then was the timer stopped. This

ensured that all the required updating had been completed, and that the timer was not

stopped before then.

Once the benchmarks had been completed the resulting data was interpreted to de-

termine the performance of Dart against JavaScript, and the performance of a concurrent

solution compared to that of a sequential implementation. This demonstrates if, and

when Dart offers a performance advantage; likewise when a concurrent solution is better

suited for a given situation, than a sequential implementation. The results are displayed

as weighted averages, as to minimise the amount of data shown while still reflecting the

overall trend.

158

6.1.1 Dart vs JavaScript

Dart and JavaScript were compared against each other both sequentially and concurrently

in order to gain an understanding of the advantages of each language based on the algo-

rithm and implementation. As Dart does not have a native VM for iOS or Android this

comparison was made exclusively between Dart and JavaScript on a Window PC, and

MacBook Pro. The results of these benchmarks can be seen in figures 6.4, 6.3, 6.1, 6.2.

Even though Dart is not natively supported on iOS or Android, code that has been written

in Dart and converted to JavaScript using the Dart2js function still performs faster than

original JavaScript code [24].

In the comparison of Dart and JavaScript, Dart outperformed JavaScript in the updat-

ing of both Perlin Noise, and the shallow water simulation. This performance improvement

is most evident on the Macbook Pro in the shallow water update, which completed in Dart

almost three times faster than in JavaScript. The higher performance of Dart is also ob-

servable on PC, particularly when the system settings include a higher tile count. The

most obvious example of this in the Perlin Noise benchmarks where Dart completes up to

2.5 times faster than JavaScript for generating 10 tiles at 128 x 128.

These results indicate the clear performance advantage offered by Dart when com-

pared to JavaScript performing the same task. These results are regardless of whether

implemented concurrently or sequentially.

6.1.2 Sequential vs Concurrent

Once the language performance had been established, the benchmarks were analysed to

identify the performance advantages of a concurrent implementation over a sequential

implementation. The benchmarks were run on the updating of Perlin Noise, and of the

shallow water simulation in both concurrent and sequential implementations, across all

devices using Dart where possible, otherwise utilising Dart2js to produce JavaScript code

159

Figure 6.1: Comparison of updating time for sequential Dart and JavaScript implementa-

tions of Perlin Noise

160

Figure 6.2: Comparison of updating time for sequential Dart and JavaScript implementa-

tions of Shallow Water simulation

161

Figure 6.3: Comparison of updating time for concurrent Dart and JavaScript implemen-

tations of Perlin Noise

162

Figure 6.4: Comparison of updating time for concurrent Dart and JavaScript implemen-

tations of Shallow Water

163

for each benchmark. When testing on both iOS and Android the benchmarks were only

run on system settings of up to a resolution of 64 x 64. This limitation is due to two factors:

firstly, the screen size of handheld devices makes the noticeable difference between asset

quality at resolutions of 64 x 64 and 128 x 128 negligible; secondly, the devices did not

have sufficient hardware specifications to complete the scenes in a timely manner - this

was particularly noticeable on Android, which became somewhat unresponsive at times

when the system was set to 128 x 128.

The benchmarks comparing concurrent and sequential implementations highlight two

findings. The first is that with all system states, and with both the Perlin Noise and

shallow water simulation the Android phone experiences significant performance benefits

from a concurrent implementation. This can be explained by Android OS allowing multiple

background processes to occur at any given time[57]. Such processes are run on the main

core, which would impact the performance of a sequential implementation. Therefore,

where the process is complex a concurrent solution provides a much more effective data

transfer system. It is worth noting that although the Android device does seem to have a

higher specifications than the iPhone, its performance was found to be worse, this could be

due to a number of issues, such as the acitvation of low power CPU cores being activated,

slowing down the overall system. On all other devices, a concurrent implementation of

Perlin Noise only began to offer superior performance once the system state was more

complex than 5 tiles at a resolution of 64 x 64. Likewise, the concurrent implementations

of the shallow water simulation began to outperform a sequential implementation at 6 -

10 tiles at a resolution of 64 x 64, with the exception of 1 - 5 tiles at 128 x 128 on the

MacBook Pro, which performed better in a sequential implementation.

164

165

Figure 6.5: Comparison of updating time for concurrent and sequential Perlin Noise, across

a range of devices

166

167

Figure 6.6: Comparison of updating time for concurrent and sequential Shallow Water

simulation, across a range of devices

The comparison of implementation types show that Android benefits from concurrency

at all system states for the updating of Perlin Noise and the shallow water simulation,

whereas other devices begin to experience performance benefits after the system grows to

a size of six tiles or greater, at a resolution of 64 x 64 or higher.

These benchmarks show clearly that Dart outperforms JavaScript in all tested situa-

168

tions, regardless of concurrent or sequential implementation. In addition to this, it can

be seen that a sequential implementation is useful for smaller tasks, or for simpler sys-

tem states; however, concurrency offers the best performance for more complex simulated

tasks.

6.2 Device performance

In order to demonstrate how the framework performs on each device the framework was

run with the following emphasis through the use of the developer metrics. The first

metric defined was the use of a high quality asset, this sets the framework to create fewer

assets at a higher resolution rather than generating a larger number of assets. The next

metric tested had a bias towards increasing the area covered, meaning that the focus was

on producing as many tiles as possible, without much regard as to the quality of the

generated assets. The final set of metrics tested was to cover an even split between the

quality of the tiles created, and the number of tiles generated. This produces a scene of

reasonable quality, while also generating more tiles.

Testing the framework’s performance on each device had different requirements to the

tests run for benchmarking. Whereas benchmarking was concerned only with the timings

of updating the water algorithms, therefore the framework only generated water, testing

for device performance requires the entire landscape to be generated. This means that, via

the contour tracing algorithm that is discussed in Chapter 4, only portions of the entire

landscape were set to be water. This consequent reduction in the total water area in turn

reduces the average processing requirements per tile. This meant that devices were able

to generate larger landscapes than benchmarks alone would suggest.

169

Figure 6.7: Single generated tile at a resolution of 32 x 32

Figure 6.8: Single generated tile at a resolution of 64 x 64

Figure 6.9: Single generated tile at a resolution of 128 x 128

170

6.2.1 PC

The first set of developer metrics set the framework to create fewer tiles, but at a high

resolution. This also changes the preferred method of water generation from Perlin Noise

to the shallow water simulation. These metrics resulted in a scene consisting of five tiles,

utilising shallow water. The central tile was generated at a resolution of 128 x 128, while

the outer four were created at 64 x 64.

Figure 6.10: Generated scene when developer metrics on a PC define a preference towards

high quality tile generation.

When set to generate a larger number of tiles with no regard to quality, the water

generation utilised Perlin Noise. The total scene size was fifteen tiles, with the five central

tiles set to a resolution of 64 x 64, and the outer 10 set to 32 x 32.

The final set of developer metrics allowed for a higher resolution of tile to be created,

but utilised Perlin Noise for the water generation, which allowed for a larger number of

171

tiles to be generated. The use of these developer metrics resulted in a scene with a total

size of seven tiles; the centre tile was produced at a resolution of 128 x 128, and the

remaining six outermost tiles were generated at a resolution of 64 x 64.

6.2.2 Macbook

The MacBook Pro had similar results to the PC, outperforming it in some areas. When

tested with the developer metrics set to create a high quality scene, the result was seven

tiles generated utilising the shallow water simulation; that is two more tiles than what the

PC produced with the same metrics. As with the PC, the centre tile was generated at a

resolution of 128 x 128, and the outer tiles at a resolution of 64 x 64.

Figure 6.11: Generated scene when developer metrics on a Mac Book Pro define an even

level of quality, and number of tiles generated.

When the developer metrics defined the generation of a larger area with reduced em-

172

phasis on the quality of tiles generated the result was a total of 14 tiles - one tile less than

the PC using the same metric. Like on PC these tiles used Perlin Noise to display water,

and created the centre four tiles at a resolution of 64 x 64, with the outer ten tiles being

generated at a resolution of 32 x 32.

When the developer metrics were set to display an equal balance between area covered,

and quality of assets generated a total of nine tiles were created. Similarly to the PC,

these tiles utilised Perlin Noise; however, all tiles were created at a resolution of 64 x 64.

6.2.3 Android

Despite experiencing the greatest performance advantage from utilising a concurrent im-

plementation Android was the slowest performing device overall. For both mobile devices

the resolution was limited to a maximum of 64 x 64; however, when the developer metrics

were set to high quality, the Samsung Galaxy S7 was only able to generate a single tile

with a resolution of 64 x 64 using the shallow water simulation.

173

Figure 6.12: Generated scene when developer metrics on an Android define a preference

towards high number of tiles generated.

When the developer metrics were defined to generate multiple tiles at a lower resolution

the result was a total of five tiles created. These tiles utilised Perlin Noise to create water,

and were set to the lowest resolution of 32 x 32.

The final developer metric of creating a scene with even emphasis on the quality of

tiles produced and the number of tiles generated resulted in a total of four tiles created.

These tiles again used Perlin Noise, with the centre tile having a resolution of 64 x 64,

and the surrounding three tiles at a resolution of 32 x 32.

6.2.4 iPhone

The iPhone proved much more capable than Android at using high quality assets regard-

less of the developer metrics. As with Android, the iPhone was limited to a maximum

174

resolution of 64 x 64; however, for the high quality metric it was able to generate a scene

of six tiles at a resolution of 64 x 64 using the shallow water simulation.

Figure 6.13: Generated scene when developer metrics on a iPhone define an preference

towards high quality tile generation

When the developer metrics were set to generate a large number of tiles the iPhone

was capable of generating 12 tiles at 32 x 32, using Perlin Noise - that is more than double

the number of tiles Android produced with the same metrics.

Once the developer metrics were set to an even level of detail and number of tiles

generated, the resulting scene contained 10 tiles. Two of these tiles had a resolution of 64

x 64, while the other eight were set to 32 x 32. In this case the water generation method

was the shallow water simulation. The results of this developer metric contrast sharply to

the Android results using the same metrics, which produced less tiles and used the Perlin

Noise method for generating water.

175

6.3 Conclusion

The results presented in this chapter demonstrate that Dart outperforms JavaScript, even

when the JavaScript code has been optimised using the Dart2js function. These results

also suggest that as the complexity of an application increases so does the viability of using

a concurrent implementation, although a sequential implementation is more suitable for

simple generation tasks. The results also prove how a framework can be created to scale

in response to the performance capability of a range of devices.

176

Chapter 7

Conclusions

This research sought to provide solutions for the development of 3D graphical applications

that can be accessed on a range of devices without compromising the set of features and

functions available across different device types. This research identified the need to

make considered decisions about the development language, method of asset generation,

scalability of the application, and maximising access to processing power. Individual

solutions to these concerns have been identified and combined to form an arrangement

of technologies, functions, and processes for creating platform independent 3D graphical

applications.

The objectives of this research (laid out out in chapter 1) have all been questioned, with

various results found. Real time rendering on a range of devices though web technologies

has been achieved, though Dart and WebGL. The use of threads to accelerate simulation

proccessing was also found to benefit a range of devices, at higher levels of compute

requirements. Additionally by using these simulations, environments can be generated

without the need of downloading assets at various levels of details

Choosing to develop with a web language has numerous traits which help to achieve

platform independence in a holistic way. As web languages run in a VM this gets around

compatibility issues that would other arise from using languages that are natively sup-

177

ported on some devices but not others, thereby requiring code to be redeveloped for

widespread platform independence. Ideally, the web language chosen will also have meth-

ods for achieving concurrency in order to provide further processing power should it be

required for complex renderings.

Dart provides all the necessary functionality; however, as it is a new language, support

for it can be uncertain, and it is not guaranteed to continue long term, or remain used

for the same purposes as it is now. In contrast, JavaScript is a versatile language, but

at this stage does not provide as many opportunities for optimising code as is desirable

for achieving high performing platform independent applications. The existence of Dart

suggests that there is at the very least an awareness that this kind of language is in

demand, so it is not unrealistic to hope that more languages will be developed to cater

specifically to achieving platform independence[112].

Methods of asset generation are extremely varied and to some extent come down to

a developer’s personal preference. To include 3D graphics in a platform independent

application the size of the assets must be variable so that they can scale according to

device processing capability. Using generative algorithms to create content allows for

assets to be rendered at the highest possible quality that a device is able to achieve. From

a consumer-friendly perspective, generated content also caters to users who have limited

data available to them and would not respond well to an application that had large files

frequently downloading. Alternatively, a library of models at a range of sizes could be

created for inclusion on a range of devices, although this would incur a higher rate of data

usage.

Language choice and asset generation method are the fundamental aspects of a plat-

form independent graphical application. The next most important components are those

that reinforce the range of devices upon which an application can be run. The ability to

scale content has been identified as an essential process. It is all very well to have methods

178

of implementing content at various resolutions and sizes; however, the application must

have a way to recognise what the appropriate resolutions and sizes for content are. This

framework has used the controller class to achieve this, but this could be replaced by any

process that benchmarks the application at runtime to ascertain the performance output

of a device, then uses that data to alter the system state to provide optimal asset quality

and user experience. There should also be a function that allows the developer to dictate

a bias towards various asset qualities, such as number of assets rendered. This framework

uses developer metrics to place emphasis on asset resolution, and number of assets, but

these could have any criteria as determined by the developer.

Graphical applications require significant processing power so it is important that a

developer of platform independent graphical applications take advantage of any source of

processing power available to them. Ideally, this will come in the form of accessing the

GPU of a device as these are becoming increasingly common and powerful in a range of

devices. WebGL currently provides the most user-friendly solution for developers; however,

there are other options available in the form of graphical libraries, OpenGL, DirectX and

OpenGL ES.

7.1 Implications for platform independence

This research has identified that the various CPU architectures present in a range of

devices, and the variety in languages that are natively supported on a range of devices

are problematic for creating applications that can run on more than a few selected device

types. The solution to this is to use web languages as they run in a web browser’s VM,

and web browsers are present in all modern devices.

The development of modern web languages is still very much in a growth phase. When

compared to native applications, even simple web applications are only just beginning to

equal their complexity. By comparison, graphical web-based applications are very much

179

still in their infancy for two key reasons.

Firstly, the purpose of making an application to be web-based would be so that it is

not device dependent. However, until recently, devices that are web-capable have not also

been significantly graphics-capable. For example, mobile phones have been able to connect

to the internet since the late 1990’s[10], yet modern graphical applications, such as games,

have only become prevalent since the mid 2000’s. This means that conversation about

achieving platform independence via the web has only been tangible since the 1990’s, and

platform independence specifically in a graphical context since the mid 2000’s.

Secondly, even though platform independence may have been thought about within the

industry, the means to develop it has not been available until recently. This is indicated by

the release of WebGL in 2011, which allows web applications to access the GPU. Likewise,

Dart was only released in July 2014. The significance of the release of Dart is that until

it was available JavaScript was really the only choice for graphics on the web. However,

as JavaScript was not designed for this purpose it has areas of inefficiencies that are not

present in Dart, which has been designed with platform independence in mind.

The release of all this technology indicates that the industry is keen to explore the

possibilities of platform independence via the web, it just needs development.

7.2 Implications for web languages

The most popular web languages in use today, such as PHP and JavaScript, have only

existed since the mid 1990’s.

Since the mid 1990’s developers have used web languages to create increasingly en-

gaging websites, which has lead to the popularity of web applications. Currently, web

applications are very much centered around storing and accessing data, social media and

communication, and organisation and administration for both personal and business in-

terests.

180

JavaScript is still the most popular choice for the development of web applications,

despite this being somewhat more complex endeavour than what the language was origi-

nally intended for. Furthermore, the use of JavaScript has to be heavily supplemented by

frameworks such as React, and Angular. Now that advances in technology mean that most

devices are capable of running interactive web pages with quality graphical components it

is time for the development of web languages that are designed with such uses in mind.

With particular uses in mind web languages can be created with more structure to

make the formalities of programming less of an issue for a developer. This can be achieved

through utilising classes, types, interfaces, and a defined structure. This process of evolu-

tion can be seen in other programming languages such as C deriving C++, or C# wherein

additional features were added, and the language adapted to better suit the emerging

needs of a developer.

There is scope to create web languages that allow for optimised code so that they per-

form faster. This can be achieved through minimising the impact of the virtual machine,

allowing for the application to be run as close to natively as possible, or allowing for access

to specialised CPU instruction sets. Or the access to native threads, without the overhead

produced by web workers or isolates.

7.3 Future work

7.3.1 Generative algorithms

To increase the level of complexity and realism of a scene the algorithms used to generate

assets could be extended to include finer environmental detail, such as vegetation, and the

ability to place specific assets and have the environment intelligently generate around it.

Modelling of vegetation could be added in many ways. For lower quality options,

different textures could be applied directly to the land mesh to represent grass, but could

181

become as complex as rendering individual blades of grass that move in the wind. Larger

assets such as trees could likewise be represented by wrapping textures around tree-shaped

frames, through to having individually unique assets generated by algorithms that can

generate trunks, roots, and leaves. This research only went so far as to investigate how

to generate content, so further research would allow for the manual placement of assets

and for the system to respond accordingly when generating the remaining environment.

For example, a user might place a tree at a location, and it would be undesirable for the

system to generate water at that same location, thereby submerging the tree.

7.3.2 Implementation types

This research confirmed that for more complex graphical applications better performance

is achieved via a concurrent implementation. However, concurrent implementations incur

a processing time overhead as a result of initialising web workers (in JavaScript) and

isolates (in Dart). This can negatively impact performance for the simpler components of

an application, such as the generating of a mesh using the Diamond-Square algorithm.

Further research would allow the application to complete simple processes in a sequen-

tial implementation, thereafter the application could switching to a concurrent implemen-

tation to render more complex aspects, such as generated assets using algorithms such as

the shallow water simulation.

7.3.3 Other languages

As web languages become more complex and capable there are likely to be alternatives

worth investigating for the purpose of creating platform independent graphical applica-

tions. At this stage web languages stand to be improved by the inclusion of more feature

sets that increase the performance of web applications. As the development of high per-

formance graphical web applications is relatively recent the criteria for desirable feature

182

sets is still being determined.

However, it is already evident that some useful feature sets would be those that provide

lower level access to the GPU in order to improve performance[18]. Likewise, having a

more structured language that allows code to be built in a more optimised fashion would

prove useful.

Additionally, a compiled web language would minimise runtime errors, thereby ensur-

ing a higher degree of stability of the application, and making the development process

more efficient[20].

7.3.4 Developer metrics

Depending on the intended use of an application the developer metrics may need to vary

considerably. This could be expanded through utilising metrics to define preferred content

generation algorithms or to alter the properties, such as colour and size, of assets in

response to other aspects of the scene. Additionally these metrics could be extended to

allow for predefined asset placement, so that while a scene may change an underlying

structure is maintained.

7.3.5 VR support

To remain truly platform independent applications will need to have support for virtual

reality (VR). Support for VR has three components. The first is setting the target frame

rate of the application to 90 fps[87]. Ideally, this frame rate would be toggled on and off

per the device type as a frame rate that high would be unnecessary for use on any other

device. Secondly, to support VR the application would need the functionality to render

to two different canvases. This would need to be managed by the application so that it

could detect when a VR device was present in order to render a second frame. Finally, the

user inputs of a VR device would need to be mapped and added to the input controller.

183

Likewise, similar additions and alterations would need to be made for any new device type

significantly different to existing technology.

7.4 Conclusion

There are many methods a developer may choose to combine in order to achieve platform

independence, and there are new technologies being developed and released everyday that

support the pursuit of widespread platform independence.

This research has proven that given even the limited and still new technology that is

currently available platform independent graphical applications are viable. This particular

framework relates to the simulation of environments; however, there are many ways of

using graphical platform independence that have not even been imagined yet.

Advances in hardware development make it economical for the widespread manufac-

turing of mobile phones that are as powerful as a low end computers - it is time for software

to catch up, and platform independence is the way to do it.

184

Bibliography

[1] J. Almeida, M. van Sinderen, L. Pires, and D. Quartel, “A systematic approach to

platform-independent design based on the service concept,” in Enterprise Distributed

Object Computing Conference, 2003. Proceedings. Seventh IEEE International, Sept

2003, pp. 112–123.

[2] G. Anthes, “HTML5 leads a web revolution,” Communications of the ACM, vol. 55,

no. 7, pp. 16–17, jul 2012.

[3] M. Belchin and P. Juberias, Web Programming with Dart. Berkeley, CA: Apress,

2015, ch. Using Pub and dart2js to Compile Applications to JavaScript, pp. 75–86.

[4] M. Bender, R. Klein, A. Disch, and A. Ebert, “A functional framework for web-

based information visualization systems,” Visualization and Computer Graphics,

IEEE Transactions on, vol. 6, no. 1, pp. 8–23, 2000.

[5] G. Benguria, X. Larrucea, B. Elvesæter, T. Neple, A. Beardsmore, and M. Friess,

“A platform independent model for service oriented architectures,” in Enterprise

Interoperability: New Challenges and Approaches. Springer, London, 2007, pp.

23–32.

[6] G. Bierman, M. Abadi, and M. Torgersen, “Understanding TypeScript,” in ECOOP

2014 – Object-Oriented Programming. Lecture Notes in Computer Science, R. Jones,

Ed., vol. 8586. Berlin, Heidelberg: Springer, 2014, pp. 257–281.

185

[7] W. Binder, J. Hulaas, P. Moret, and A. Villazón, “Platform-independent profiling in

a virtual execution environment,” Software: Practice and Experience, vol. 39, no. 1,

pp. 47–79, 2009.

[8] M. Bolin, Closure: The Definitive Guide, 1st ed. O’Reilly Media, Inc., 2010.

[9] D. Bresch and B. Desjardins, “On the construction of approximate solutions for

the 2D viscous shallow water model and for compressible Navier–Stokes models,”

Journal de Mathématiques Pures et Appliquées, vol. 86, no. 4, pp. 362 – 368, 2006.

[10] P. Budmar. (2012) Why japanese smartphones never went global. PC

World. [Online]. Available: https://www.pcworld.idg.com.au/article/430254/

why japanese smartphones never went global/

[11] T. Buschtöns. (2012) Debugging javascript on Android and

iOS. [Online]. Available: https://eclipsesource.com/blogs/2012/08/14/

debugging-javascript-on-android-and-ios/

[12] F. Chang and C.-J. Chen, “A component-labeling algorithm using contour trac-

ing technique,” in 2013 12th International Conference on Document Analysis and

Recognition, vol. 2. IEEE Computer Society, 2003, pp. 741–741.

[13] A. Charland and B. Leroux, “Mobile application development: Web vs. native,”

Commun. ACM, vol. 54, no. 5, pp. 49–53, may 2011.

[14] B. Chen and Z. Xu, “A framework for browser-based multiplayer online games us-

ing webgl and websocket,” in Multimedia Technology (ICMT), 2011 International

Conference on, July 2011, pp. 471–474.

[15] K.-T. Cheng and Y.-C. Wang, “Using mobile GPU for general-purpose computing–a

case study of face recognition on smartphones,” in VLSI Design, Automation and

Test (VLSI-DAT), 2011 International Symposium on. IEEE, 2011, pp. 1–4.

186

https://www.pcworld.idg.com.au/article/430254/why_japanese_smartphones_never_went_global/
https://www.pcworld.idg.com.au/article/430254/why_japanese_smartphones_never_went_global/
https://eclipsesource.com/blogs/2012/08/14/debugging-javascript-on-android-and-ios/
https://eclipsesource.com/blogs/2012/08/14/debugging-javascript-on-android-and-ios/

[16] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner, “Staged information flow for

javascript,” SIGPLAN Not., vol. 44, no. 6, pp. 50–62, jun 2009.

[17] J. Congote, A. Segura, L. Kabongo, A. Moreno, J. Posada, and O. Ruiz, “Interactive

visualization of volumetric data with webgl in real-time,” in Proceedings of the 16th

International Conference on 3D Web Technology. ACM, 2011, pp. 137–146.

[18] A. Corporation. (2018) WebGPU demos. [Online]. Available: https://webkit.org/

demos/webgpu/

[19] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “Gigavoxels: Ray-guided

streaming for efficient and detailed voxel rendering,” in Proceedings of the 2009

symposium on Interactive 3D graphics and games. ACM, 2009, pp. 15–22.

[20] A. Crichton. (2018) Javascript to rust and back again: A

wasm-bindgen tale. [Online]. Available: https://hacks.mozilla.org/2018/04/

javascript-to-rust-and-back-again-a-wasm-bindgen-tale/

[21] D. Crockford, JavaScript: The Good Parts, 1st ed. O’Reilly Media, Inc., 2008.

[22] P. Cullen. (2013) Joystick to JSON/HTTP in processing. [Online]. Available:

http://mindmeat.blogspot.co.nz/2013/06/joystick-to-jsonhttp-in-processing.html

[23] C. Daly, J. Horgan, J. Power, and J. Waldron, “Platform independent dynamic java

virtual machine analysis: The java grande forum benchmark suite,” in Proceedings

of the 2001 Joint ACM-ISCOPE Conference on Java Grande, ser. JGI ’01. New

York, NY, USA: ACM, 2001, pp. 106–115.

[24] Dart. (2015, March) Dart VM and dart2js performance. [Online]. Available:

https://www.dartlang.org/performance/

[25] ——. (2015, April) Frequently asked questions.

https://www.dartlang.org/support/faq.html.

187

https://webkit.org/demos/webgpu/
https://webkit.org/demos/webgpu/
https://hacks.mozilla.org/2018/04/javascript-to-rust-and-back-again-a-wasm-bindgen-tale/
https://hacks.mozilla.org/2018/04/javascript-to-rust-and-back-again-a-wasm-bindgen-tale/
http://mindmeat.blogspot.co.nz/2013/06/joystick-to-jsonhttp-in-processing.html
https://www.dartlang.org/performance/

[26] M. Dowty and J. Sugerman, “GPU virtualization on VMware’s hosted I/O archi-

tecture,” ACM SIGOPS Operating Systems Review, vol. 43, no. 3, pp. 73–82, 2009.

[27] Emscripten. (2018) Opengl support in emscripten. [Online]. Avail-

able: https://kripken.github.io/emscripten-site/docs/porting/multimedia and

graphics/OpenGL-support.html

[28] C. Everitt and J. McDonald, “Beyond porting: How modern OpenGL can radically

reduce driver overhead,” Steam Dev Days, 2014.

[29] A. Ezust and P. Ezust, An Introduction to Design Patterns in C++ with Qt 4, 1st ed.

Prentice Hall, 2006.

[30] P. A. Fishwick, “Web-based simulation: Some personal observations,” in Proceedings

of the 28th Conference on Winter Simulation, ser. WSC ’96. Washington, DC, USA:

IEEE Computer Society, 1996, pp. 772–779.

[31] B. N. Florian Loitsch. (2011, November) Why not a bytecode VM? [Online].

Available: https://www.dartlang.org/articles/why-not-bytecode/

[32] Flutter. (2016) Flutter.io. [Online]. Available: https://flutter.io/

[33] ——. (2018) Technical overview. [Online]. Available: https://flutter.io/

technical-overview/

[34] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Kaplan,

G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith, R. Reitmaier,

M. Bebenita, M. Chang, and M. Franz, “Trace-based just-in-time type specialization

for dynamic languages,” SIGPLAN Not., vol. 44, no. 6, pp. 465–478, jun 2009.

[35] M. Gardner, “Mathematical games: The fantastic combinations of John Conway’s

new solitaire game life,” Scientific American, vol. 223, no. 4, pp. 120–123, 1970.

188

https://kripken.github.io/emscripten-site/docs/porting/multimedia_and_graphics/OpenGL-support.html
https://kripken.github.io/emscripten-site/docs/porting/multimedia_and_graphics/OpenGL-support.html
https://www.dartlang.org/articles/why-not-bytecode/
https://flutter.io/
https://flutter.io/technical-overview/
https://flutter.io/technical-overview/

[36] A. A. Giunta, S. F. Wojtkiewicz, M. S. Eldred et al., “Overview of modern design

of experiments methods for computational simulations,” in Proceedings of the 41st

AIAA aerospace sciences meeting and exhibit, AIAA-2003-0649, 2003.

[37] Google. Chrome experiments. [Online]. Available: https://experiments.withgoogle.

com/collection/chrome

[38] ——. What is the closure compiler. [Online]. Available: https://developers.google.

com/closure/compiler/

[39] ——. (2018) Write HTTP clients & servers. [Online]. Available: https:

//www.dartlang.org/tutorials/dart-vm/httpserver

[40] C. Grobmeier. (2011, Nov) Dart isolates. Online. [Online]. Available: https:

//www.grobmeier.de/dart-isolates-08112011.html

[41] J. Harjono, G. Ng, D. Kong, and J. Lo, “Building smarter web applications with

HTML5,” in Proceedings of the 2010 Conference of the Center for Advanced Studies

on Collaborative Research, ser. CASCON ’10. Riverton, NJ, USA: IBM Corp., 2010,

pp. 402–403.

[42] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural

content generation for games: A survey,” ACM Trans. Multimedia Comput.

Commun. Appl., vol. 9, no. 1, pp. 1:1–1:22, Feb. 2013. [Online]. Available:

http://doi.acm.org/10.1145/2422956.2422957

[43] S. Herhut, R. L. Hudson, T. Shpeisman, and J. Sreeram, “Parallel programming for

the web.” in HotPar, 2012.

[44] F. S. Hill, Computer Graphics: Using OpenGL, 3rd ed. Pearson, 2007.

[45] F. S. Hill and S. M. Kelley, Computer Graphics: Using OpenGL, 2nd ed. Prentice

Hall, 2000.

189

https://experiments.withgoogle.com/collection/chrome
https://experiments.withgoogle.com/collection/chrome
https://developers.google.com/closure/compiler/
https://developers.google.com/closure/compiler/
https://www.dartlang.org/tutorials/dart-vm/httpserver
https://www.dartlang.org/tutorials/dart-vm/httpserver
https://www.grobmeier.de/dart-isolates-08112011.html
https://www.grobmeier.de/dart-isolates-08112011.html
http://doi.acm.org/10.1145/2422956.2422957

[46] C.-F. Hollemeersch, B. Pieters, A. Demeulemeester, P. Lambert, and R. Van de

Walle, “Real-time visualizations of gigapixel texture data sets using HTML5,” in

International Conference on Multimedia Modeling. Springer, 2012, pp. 621–623.

[47] P. M. Hubbard, “Collision detection for interactive graphics applications,” Visual-

ization and Computer Graphics, IEEE Transactions on, vol. 1, no. 3, pp. 218–230,

1995.

[48] R. Ijtihadie, Y. Chisaki, T. Usagawa, H. Cahyo, and A. Affandi, “Offline web ap-

plication and quiz synchronization for e-learning activity for mobile browser,” in

TENCON 2010 - 2010 IEEE Region 10 Conference, Nov 2010, pp. 2402–2405.

[49] D. Jacquet, F. Hasbani, P. Flatresse, R. Wilson, F. Arnaud, G. Cesana, T. Di Gilio,

C. Lecocq, T. Roy, A. Chhabra et al., “A 3 GHz dual core processor ARM cortex

TM-A9 in 28 nm UTBB FD-SOI CMOS with ultra-wide voltage range and energy

efficiency optimization,” IEEE Journal of Solid-State Circuits, vol. 49, no. 4, pp.

812–826, 2014.

[50] KHRONOS Group. (2015, Febrauary) WebGL 2 Specification. [Online]. Available:

https://www.khronos.org/registry/webgl/specs/latest/2.0/

[51] M. Kim, S. Ki, Y. Seo, J. Park, and C. Jhon, “Dynamic rendering quality scaling

based on resolution changes,” IEICE TRANSACTIONS on Information and Sys-

tems, vol. 98, no. 12, pp. 2353–2357, 2015.

[52] J. Kruger and R. Westermann, “Acceleration techniques for GPU-based volume

rendering,” in Proceedings of the 14th IEEE Visualization 2003 (VIS’03). IEEE

Computer Society, 2003, p. 38.

[53] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and E. de Lara, “VMM-

independent graphics acceleration,” in Proceedings of the 3rd International Con-

190

https://www.khronos.org/registry/webgl/specs/latest/2.0/

ference on Virtual Execution Environments, ser. VEE ’07. New York, NY, USA:

ACM, 2007, pp. 33–43.

[54] G. Lavoué, L. Chevalier, and F. Dupont, “Streaming compressed 3D data on the web

using JavaScript and WebGL,” in Proceedings of the 18th international conference

on 3D web technology. ACM, 2013, pp. 19–27.

[55] P. L’Ecuyer, “Random numbers for simulation,” Commun. ACM, vol. 33, no. 10,

pp. 85–97, oct 1990.

[56] C.-M. Lin, J.-H. Lin, C.-R. Dow, and C.-M. Wen, “Benchmark Dalvik and native

code for Android system,” in Innovations in Bio-inspired Computing and Applica-

tions (IBICA), 2011 Second International Conference on, Dec 2011, pp. 320–323.

[57] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting performance bugs

for smartphone applications,” in Proceedings of the 36th International Conference

on Software Engineering. ACM, 2014, pp. 1013–1024.

[58] Y. Livny, Z. Kogan, and J. El-Sana, “Seamless patches for GPU-based terrain ren-

dering,” The Visual Computer, vol. 25, pp. 197–208, 03 2009.

[59] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R. Huebner, Level

of Detail for 3D Graphics. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 2003.

[60] J. D. MacDonald and K. S. Booth, “Heuristics for ray tracing using space subdivi-

sion,” The Visual Computer, vol. 6, no. 3, pp. 153–166, 1990.

[61] J. Mailen Kootsey, D. Siriphongs, and G. McAuley, “Building interactive simulations

in a web page design program,” in Engineering in Medicine and Biology Society,

2004. IEMBS ’04. 26th Annual International Conference of the IEEE, vol. 2, Sept

2004, pp. 5166–5168.

191

[62] C. Marion and J. Jomier, “Real-time collaborative scientific WebGL visualization

with WebSocket,” in Proceedings of the 17th international conference on 3D web

technology. ACM, 2012, pp. 47–50.

[63] C. Marrin, “WebGL specification,” Khronos WebGL Working Group, 2011.

[64] J. K. Martinsen, H. Grahn, and A. Isberg, “A comparative evaluation of JavaScript

execution behavior,” in Web Engineering. Springer, 2011, pp. 399–402.

[65] J. McCutchan. (2013, March) Dart VM uses more CPU features for faster

performance. Dartlang. [Online]. Available: http://news.dartlang.org/2013/03/

dart-vm-uses-more-cpu-features-for.html

[66] ——. (2013) Using simd in dart. [Online]. Available: https://v1-dartlang-org.

firebaseapp.com/articles/dart-vm/simd

[67] T. McMullen and K. Hawick, “Procedural generation of terrain within highly cus-

tomizable JavaScript graphics utilities for WebGL,” in Proc. 10th Int. Conf. on

Modeling, Simulation and Visualization Methods (MSV’13), 2013.

[68] ——, “Meaningful touch and gestural interactions with simulations interfacing via

the dart programming language,” in Proceedings of the International Conference on

Modeling, Simulation and Visualization Methods (MSV’14), 2014, p. 1.

[69] ——, “Procedural generation of landscapes for interactive environments using the

dart programming language,” 2014.

[70] T. McMullen, K. Hawick, V. Preez, and B. Pearce, “Graphics on web platforms for

complex systems modelling and simulation,” in Proc. International Conference on

Computer Graphics and Virtual Reality (CGVR’12), 2012, pp. 83–89.

[71] S. Melax, “A simple, fast, and effective polygon reduction algorithm,” Game Devel-

oper, vol. 11, pp. 44–49, 1998.

192

http://news.dartlang.org/2013/03/dart-vm-uses-more-cpu-features-for.html
http://news.dartlang.org/2013/03/dart-vm-uses-more-cpu-features-for.html
https://v1-dartlang-org.firebaseapp.com/articles/dart-vm/simd
https://v1-dartlang-org.firebaseapp.com/articles/dart-vm/simd

[72] P. Micikevicius, “3D finite difference computation on GPUs using CUDA,” in Pro-

ceedings of 2nd workshop on general purpose processing on graphics processing units.

ACM, 2009, pp. 79–84.

[73] T. Mikkonen and A. Taivalsaari, “Using javascript as a real programming language,”

Mountain View, CA, USA, Tech. Rep., 2007.

[74] G. S. P. Miller, “The definition and rendering of terrain maps,” in Proceedings of

the 13th Annual Conference on Computer Graphics and Interactive Techniques, ser.

SIGGRAPH ’86. New York, NY, USA: ACM, 1986, pp. 39–48.

[75] R. Milner, An algebraic definition of simulation between programs. Citeseer, 1971.

[76] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy, “Potential benefits

of delta encoding and data compression for http,” in ACM SIGCOMM Computer

Communication Review, vol. 27, no. 4. ACM, 1997, pp. 181–194.

[77] S. Mohanty, S. R. Dey et al., “Dart evolved for web-a comparative study with

javascript,” in IJCA Proceedings on International Conference on Emergent Trends

in Computing and Communication (ETCC-2014), no. 1. Foundation of Computer

Science (FCS), 2014, pp. 73–77.

[78] G. E. Moore, “Cramming more components onto integrated circuits,” Proceedings

of the IEEE, vol. 86, no. 1, pp. 82–85, Jan 1998.

[79] L. Motion. (2018) Api overview. [Online]. Available: https://developer.leapmotion.

com/documentation/csharp/devguide/Leap Overview.html

[80] Mozilla Corporation. (2018) The WebGL API: 2D and 3D graphics for the

web. [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/API/

WebGL API

193

https://developer.leapmotion.com/documentation/csharp/devguide/Leap_Overview.html
https://developer.leapmotion.com/documentation/csharp/devguide/Leap_Overview.html
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API

[81] J.-H. Nah, Y.-S. Kang, K.-J. Lee, S.-J. Lee, T.-D. Han, and S.-B. Yang, “MobiRT:

an implementation of OpenGL ES-based CPU-GPU hybrid ray tracer for mobile

devices,” in ACM SIGGRAPH ASIA 2010 Sketches. ACM, 2010, p. 50.

[82] K. Nasim and Y. J. Kim, “Physics-based interactive virtual grasping,” in Proceedings

of HCI Korea. Hanbit Media, Inc., 2016, pp. 114–120.

[83] H. Ng and R. Grimsdale, “Computer graphics techniques for modeling cloth,” Com-

puter Graphics and Applications, IEEE, vol. 16, no. 5, pp. 28–41, Sep 1996.

[84] M. Nieβner, B. Keinert, M. Fisher, M. Stamminger, C. Loop, and H. Schäfer,

“Real-time rendering techniques with hardware tessellation,” Comput. Graph.

Forum, vol. 35, no. 1, pp. 113–137, Feb. 2016. [Online]. Available: https:

//doi.org/10.1111/cgf.12714

[85] P. H. Nils Thuerey, Shallow Water Equations.

[86] V. Norgren. (2014) leap motion 2.2.0. [Online]. Available: https://pub.dartlang.

org/packages/leap motion

[87] Oculus. Guidelines for vr performance optimization. [Online].

Available: https://developer.oculus.com/documentation/pcsdk/latest/concepts/

dg-performance-guidelines/

[88] OpenGL Wiki, “Fixed function pipeline OpenGL wiki,” 2015, [Online; accessed

6-May-2018]. [Online]. Available: http://www.khronos.org/opengl/wiki opengl/

index.php?title=Fixed Function Pipeline

[89] ——, “Fragment OpenGL Wiki,” 2017, [Online; accessed 6-May-2018]. [Online].

Available: http://www.khronos.org/opengl/wiki opengl/index.php?title=Fragment

[90] Oracle. (2018) Java client roadmap update. [Online]. Available: https://www.oracle.

com/technetwork/java/javase/javaclientroadmapupdate2018mar-4414431.pdf

194

https://doi.org/10.1111/cgf.12714
https://doi.org/10.1111/cgf.12714
https://pub.dartlang.org/packages/leap_motion
https://pub.dartlang.org/packages/leap_motion
https://developer.oculus.com/documentation/pcsdk/latest/concepts/dg-performance-guidelines/
https://developer.oculus.com/documentation/pcsdk/latest/concepts/dg-performance-guidelines/
http://www.khronos.org/opengl/wiki_opengl/index.php?title=Fixed_Function_Pipeline
http://www.khronos.org/opengl/wiki_opengl/index.php?title=Fixed_Function_Pipeline
http://www.khronos.org/opengl/wiki_opengl/index.php?title=Fragment
https://www.oracle.com/technetwork/java/javase/javaclientroadmapupdate2018mar-4414431.pdf
https://www.oracle.com/technetwork/java/javase/javaclientroadmapupdate2018mar-4414431.pdf

[91] J. Owens, “GPU architecture overview,” in ACM SIGGRAPH 2007 courses. ACM,

2007, p. 2.

[92] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,

“GPU computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, May 2008.

[93] N. H. Packard and S. Wolfram, “Two-dimensional cellular automata,” Journal of

Statistical Physics, vol. 38, no. 5-6, pp. 901–946, 1985.

[94] T. Parisi, WebGL: up and running. O’Reilly Media, Inc., 2012.

[95] K. Perlin, GPU Gems: Programming Techniques, Tips and Tricks for Real-Time

Graphics, 1st ed. Addison-Wesley, 2004, ch. Implementing improved Perlin noise,

pp. 409–416.

[96] M. Pharr and R. Fernando, Eds., GPU Gems 2: Programming Techniques for High-

Performance Graphics and General-Purpose Computation, 1st ed. Addison-Wesley

Professional, 2005.

[97] M. Pharr, W. Jakob, and G. Humphreys, Physically based rendering: From theory

to implementation. Morgan Kaufmann, 2016.

[98] M. Pilgrim, HTML5: up and running. O’Reilly Media, Inc., 2010.

[99] D. Playne, K. Hawick, and M. Johnson, “Simulating and benchmarking the shallow-

water fluid dynamical equations on multiple graphical processing units,” Parallel

and Distributed Computing 2014, p. 29, 2014.

[100] V. Preez, B. Pearce, K. Hawick, and T. McMullen, “Human-computer interaction

on touch screen tablets for highly interactive computational simulations,” in Proc.

International Conference on Human-Computer Interaction, 2012, pp. 258–265.

195

[101] A. Prokopec and M. Odersky, “Isolates, channels, and event streams for composable

distributed programming,” in 2015 ACM International Symposium on New Ideas,

New Paradigms, and Reflections on Programming and Software (Onward!). ACM,

2015, pp. 171–182.

[102] K. Pulli, “New APIs for mobile graphics,” in Multimedia on Mobile Devices II, vol.

6074. International Society for Optics and Photonics, 2006, p. 607401.

[103] A. Rauschmayer. (2012) Javascript myth: Javascript needs a standard bytecode.

[Online]. Available: http://www.2ality.com/2012/01/bytecode-myth.html

[104] N. Rego and D. Koes, “3Dmol.js: molecular visualization with WebGL,” Bioinfor-

matics, vol. 31, no. 8, pp. 1322–1324, 2015.

[105] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis of the dynamic be-

havior of javascript programs,” SIGPLAN Not., vol. 45, no. 6, pp. 1–12, jun 2010.

[106] S. Samuel and S. Bocutiu, Programming Kotlin. Packt Publishing, 2017.

[107] M. Schoeberl, S. Korsholm, C. Thalinger, and A. Ravn, “Hardware objects for java,”

in Object Oriented Real-Time Distributed Computing (ISORC), 2008 11th IEEE

International Symposium on, May 2008, pp. 445–452.

[108] M. Segal and K. Akeley, “The opengl graphics system: A specification (version 1.1),”

1999.

[109] Y. Shi, K. Casey, M. A. Ertl, and D. Gregg, “Virtual machine showdown: Stack

versus registers,” ACM Trans. Archit. Code Optim., vol. 4, no. 4, pp. 2:1–2:36, jan

2008.

[110] D. Shreiner, G. Sellers, J. M. Kessenich, and B. M. Licea-Kane, OpenGL program-

ming guide: The Official guide to learning OpenGL, version 4.3. Addison-Wesley,

2013.

196

http://www.2ality.com/2012/01/bytecode-myth.html

[111] D. Shreiner and The Khronos OpenGL ARB Working Group, OpenGL program-

ming guide: the official guide to learning OpenGL, versions 3.0 and 3.1. Pearson

Education, 2009.

[112] K. Simpson, You Don’t Know JS: ES6 & Beyond. O’Reilly Media, Inc., 2015.

[113] J. E. Smith and R. Nair, “The architecture of virtual machines,” Computer, vol. 38,

no. 5, pp. 32–38, May 2005.

[114] K. Sowizral, K. Rushforth, and H. Sowizral, The Java 3D API Specification, 1st ed.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1997.

[115] J. Spitzer, “OpenGL performance tuning,” in NVIDIA Corporation, GameDevelop-

ers Conference, 2003.

[116] M. Stal, “Web services: Beyond component-based computing,” Commun. ACM,

vol. 45, no. 10, pp. 71–76, oct 2002.

[117] A. Taivalsaari, T. Mikkonen, M. Anttonen, and A. Salminen, “The death of binary

software: End user software moves to the web,” in Creating, Connecting and Collab-

orating through Computing (C5), 2011 Ninth International Conference on. IEEE,

2011, pp. 17–23.

[118] A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz. (2008) Web browser as an

application platform:the lively kernel experience.

[119] G. Tavares, “WebGL techniques and performance,” in Google I/O, 2011.

[120] The Computer Language Benchmarks Game. (2017) Dart programs versus

node.js. [Online]. Available: https://benchmarksgame-team.pages.debian.net/

benchmarksgame/compare/dart-node.html

197

https://benchmarksgame-team.pages.debian.net/benchmarksgame/compare/dart-node.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/compare/dart-node.html

[121] D. Thevenin and J. Coutaz, “Plasticity of user interfaces: Framework and research

agenda.” in Interact, vol. 99, 1999, pp. 110–117.

[122] K. Walrath and S. Ladd, Dart: Up and Running. O’Reilly Media, Inc., 2012.

[123] WebGL Public Wiki, “WebGL and OpenGL Differences WebGL Public Wiki,”

2014, [Online; accessed 6-May-2018]. [Online]. Available: http://www.khronos.org/

webgl/wiki 1 15/index.php?title=WebGL and OpenGL Differences

[124] F. Weichert, D. Bachmann, B. Rudak, and D. Fisseler, “Analysis of the accuracy

and robustness of the leap motion controller,” Sensors, vol. 13, no. 5, pp. 6380–6393,

2013.

[125] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder: Real-time

tracking of the human body,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 19, no. 7, pp. 780–785, 1997.

198

http://www.khronos.org/webgl/wiki_1_15/index.php?title=WebGL_and_OpenGL_Differences
http://www.khronos.org/webgl/wiki_1_15/index.php?title=WebGL_and_OpenGL_Differences

	Introduction
	Platform Independence
	Web Technologies
	Dart
	JavaScript

	Computational Simulations
	Procedural content generation
	Scalability
	Models
	Algorithms

	Level of detail
	Performance
	Concurrency
	GPUs

	Publications
	Previous work
	Aim of thesis

	Rendering on the Web
	3D Rendering Pipeline
	OpenGL
	Rendering
	Shaders
	Executing the rendering pipeline

	WebGL
	WebGL for Platform Independence
	WebGL Limitations

	Dart
	Dart's Design
	Development in Dart
	JavaScript
	Flutter

	Summary

	Utilising Dart for Platform Independence
	Dart's Virtual Machine
	Dart2JS
	Flutter
	Supported devices
	Performance

	User Input Management
	Controller Class
	Custom inputs
	Camera Class

	Summary

	Procedural Content Generation
	Procedural Content Generation
	Level of detail

	Algorithms
	Diamond-Square

	Water Algorithms
	Shallow Water
	Perlin Noise

	Implementation
	Land generation
	Contour tracing
	Rendering

	Framework implementation
	Isolates
	Water generation

	Summary

	Dynamic Content Controller
	Maintaining Optimised System State
	Implementation
	Benchmarks
	Asset creation - Isolates
	Creation
	Update Cycle
	Asset configuration

	Developer Metrics
	Updating of asset's
	Creation of new asset's

	Summary

	Results
	Benchmarks
	Dart vs JavaScript
	Sequential vs Concurrent

	Device performance
	PC
	Macbook
	Android
	iPhone

	Conclusion

	Conclusions
	Implications for platform independence
	Implications for web languages
	Future work
	Generative algorithms
	Implementation types
	Other languages
	Developer metrics
	VR support

	Conclusion

