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5 Facultad de Ciencias Fı́sicas y Matemáticas, Universidad de Chile, CEDENNA, 8370448 Santiago, Chile
6 Fakultät für Chemie und Mineralogie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany

Correspondence should be addressed to Wilfredo Hernández; whernandez79@yahoo.es

Received 9 July 2013; Revised 27 September 2013; Accepted 3 October 2013

Academic Editor: Ian Butler

Copyright © 2013 Wilfredo Hernández et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The palladium(II) bis-chelate complexes of the type [Pd(TSC1−5)
2
] (6–10), with their corresponding ligands 4-phenyl-1-(acetone)-

thiosemicarbazone, HTSC1 (1), 4-phenyl-1-(2󸀠-chloro-benzaldehyde)-thiosemicarbazone, HTSC2 (2), 4-phenyl-1-(3󸀠-hydroxy-
benzaldehyde)-thiosemicarbazone, HTSC3 (3), 4-phenyl-1-(2󸀠-naphthaldehyde)-thiosemicarbazone, HTSC4 (4), and 4-phenyl-
1-(1󸀠-nitro-2󸀠-naphthaldehyde)-thiosemicarbazone, HTSC5 (5), were synthesized and characterized by elemental analysis and
spectroscopic techniques (IR and 1H- and 13C-NMR). The molecular structure of HTSC3, HTSC4, and [Pd(TSC1)

2
] (6) have been

determined by single crystal X-ray crystallography. Complex 6 shows a square planar geometry with two deprotonated ligands
coordinated to PdII through the azomethine nitrogen and thione sulfur atoms in a cis arrangement. The in vitro cytotoxic activity
measurements indicate that the palladium(II) complexes (IC50 = 0.01–9.87 𝜇M) exhibited higher antiproliferative activity than
their free ligands (IC50 = 23.48–70.86 and >250𝜇M) against different types of human tumor cell lines. Among all the studied
palladium(II) complexes, the [Pd(TSC3)

2
] (8) complex exhibited high antitumor activity on the DU145 prostate carcinoma and

K562 chronic myelogenous leukemia cells, with low values of the inhibitory concentration (0.01 and 0.02𝜇M, resp.).

1. Introduction

In recent years, sulfur containing ligands such as dithiocar-
bamates and thiosemicarbazones and their transition metal
complexes have receivedmore attention in the area of medic-
inal chemistry, due to their pharmacological properties,
such as antiviral [1–3], antibacterial [4–7], antifungal [8–10],
antiparasitic [11, 12], and antitumor [13–19] activities.

The synthesis of thiosemicarbazones (R–CH=N–NH–
CS–NHR1) has been developed due to the facility to replace
the R and R1 substituent groups by alkyl, aryl, or heterocyclic
derivative and thus leading to a broad spectrum of new
bidentate (N,S or N,N) and tridentate (N,N,N or N,N,S) and
also tetra- and pentadentate ligands, capable of coordinating
to metal centres [6, 20–22].
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It has been shown that the 𝛼-(N)-heterocyclic carbalde-
hyde thiosemicarbazones act as chelating agents of the tran-
sition metals and some of them exhibit antitumor activity by
inhibiting the biosynthesis of DNA, possibly by blocking the
enzyme ribonucleotide diphosphate reductase [23–25]. On
the other hand, the ligand 6-methylpyridine-2-carbaldehyde-
N(4)-ethylthiosemicarbazone (HmpETSC) and its com-
plexes [Zn(HmpETSC)Cl

2
] and [Pd(mpETSC)Cl] exhibit

antineoplastic activity against colon cancer human cell lines
(HCT 116) with IC

50
values of 14.59, 16.96, and 20.65 𝜇M,

respectively [26].
In previous articles, we have reported the cytotoxic

activity of the ligands derived from benzaldehyde and fural-
dehyde thiosemicarbazone and their palladium(II) bis-
chelate complexes. In vitro antitumor studies against different
human tumor cell lines revealed that these metal complexes
(IC
50

= 0.21–12.46 𝜇M) were more cytotoxic than their cor-
responding ligands (IC

50
> 60 𝜇M). On the other hand,

the platinum(II) tetranuclear, [Pt
4
L
4
] (HL = 4-phenyl-1-

benzaldehyde thiosemicarbazone), exhibits higher antiprolif-
erative activity with IC

50
values in the range of 0.07–0.12𝜇M

[27].
The present work describes the synthesis, characteriza-

tion, and antitumor activity of palladium(II) bis-chelate com-
plexes of the type [Pd(TSC1–5)

2
] (6–10) with the ligands

4-phenyl-1-(acetone)-thiosemicarbazone, HTSC1 (1), 4-phe-
nyl-1-(2󸀠-chloro-benzaldehyde)-thiosemicarbazone, HTSC2
(2), 4-phenyl-1-(3󸀠-hydroxy-benzaldehyde)-thiosemicarba-
zone, HTSC3 (3), 4-phenyl-1-(2󸀠-naphthaldehyde)-thiosemi-
carbazone, HTSC4 (4), and 4-phenyl-1-(1󸀠-nitro-2󸀠-naphthal-
dehyde)-thiosemicarbazone, HTSC5 (5).

2. Experimental

2.1. Materials and Measurements. Chemicals were reagent
grade and were used without further purification. Palladium
(II) bis(acetylacetonate), potassium tetrachloropalladate, ac-
etone, 4-phenyl-thiosemicarbazide, o-chloro-benzaldehyde,
m-hydroxy-benzaldehyde, naphthaldehyde, and 1-nitro-2-
naphthaldehyde were purchased from Aldrich. Elemental
analyses were determined on a Fisons-Carlo Erba Elemental
Microanalyzer. Infrared spectra were recorded as KBr pellets
(4000–400 cm−1) on a Bruker FT-IR IFS 55 Equinox spec-
trophotometer. The FAB(+) mass spectra were recorded on a
ZAB-HSQ (V.G. Analytical Ltd. Floats Roads, Wythenshawe,
Manchester, UK) spectrometer, using 3-nitrobenzyl alcohol
as the matrix. NMR spectra were recorded on a Bruker
AvanceDRX300 spectrometer inDMSO-d

6
, operating at 300

and 75.5MHz (1H, 13C). The chemical shifts were measured
in ppm relative to tetramethylsilane (SiMe

4
).

2.2. Synthesis of the Ligands

2.2.1. General Method. To a hot solution of 4-phenyl
thiosemicarbazide (3.34 g, 20mmol) in methanol (100mL)
was added a solution of acetone (1.47mL, 20mmol) in 40mL
of methanol with a few drops of glacial acetic acid. The

reaction mixture was refluxed for 2-3 h and stirred for 24 h
at room temperature. The solid product was filtered, washed
several times with ethanol, and dried in vacuo. A similar pro-
cedure was applied using o-chloro-benzaldehyde (2.25mL,
20mmol) in 60mL of methanol, m-hydroxy-benzaldehyde
(2.44 g, 20mmol) in 60mL of methanol, naphthaldehyde
(2.72mL, 20mmol) in 40mL of methanol, or 1-nitro-2-
naphthaldehyde (4.02 g, 20mmol) in 70mL of methanol.
Single crystals suitable for X-ray crystallography for both
HTSC3 and HTSC4 were obtained by slow evaporation of the
solvent at room temperature.

2.2.2. 4-Phenyl-1-acetoneThiosemicarbazone,HTSC1 (1). Col-
orless solid. Yield 78%. Anal. for C

10
H
13
N
3
S (207.30 g/mol):

calcd. C 57.94, H 6.32, N 20.27, S 15.47; found C 58.07, H 6.48,
N 20.09, S 15.40. FAB(+)-MS:m/z 207.3 (M+, 100%). IR (KBr):
] = 3251 (NHPh), 3182 (NHCS), 1600 (C=N), 820, 1078 (C=S)
cm−1. 1H NMR (DMSO-d

6
): 𝛿 = 2.0 (s, CH

3
); 7.16 (t, 1Hpara,

NHPh, J = 7.5Hz), 7.33 (t, 2Hmeta, NHPh, J = 8.1Hz), 7.61
(d, 2Hortho, NHPh, J = 7.5Hz), 9.83 (s, 1H, NHPh); 10.35 (s,
1H, =N–NH). 13C NMR (DMSO-d

6
): 𝛿 = 18.39, 25.54 (CH

3
),

125.36, 128.48, 130.48, 139.52 (NHPh); 153.21 (HC=N); 176.78
(C=S).

2.2.3. 4-Phenyl-1-(2󸀠-chlorobenzaldehyhe)Thiosemicarbazone,
HTSC2 (2). Yellow solid. Yield 72%. Anal. for C

14
H
12
N
3
ClS

(289.79 g/mol): calcd. C 58.03,H 4.17,N 14.50, Cl 12.23, S 11.07;
found C, 57.92, H 4.04, N 14.73, Cl 12.15, S 11.21. FAB(+)-
MS: m/z 290.70 (MH+, 100%). IR (KBr): ] = 3305 (NHPh),
3166 (NHCS), 1600 (C=N), 835, 1065 (C=S) cm−1. 1H NMR
(DMSO-d

6
): 𝛿 = 8.46 (d, H3󸀠, J = 7.5Hz), 7.50 (m, H4󸀠), 7.22

(t, H5󸀠, J = 7.2Hz), 7.33 (d, H6󸀠, J = 8.0Hz); 7.58 (d, 2Hortho,
NHPh, J = 8.7Hz), 7.38 (t, 2Hmeta, NHPh, J = 8.4Hz), 7.16
(t, 1Hpara, NHPh, J = 7.5Hz); 8.59 (s, 1H, HC=N); 10.22, 9.83
(s, 1H, NHPh); 12.03, 10.35 (s, 1H, =N–NH). 13C NMR
(DMSO-d

6
): 𝛿 = 124.78, 126.47, 128.29, 129.17, 130.98, 133.78

(Ph–CH=N–); 125.37, 128.48, 130.29, 139.38 (NHPh); 153.22
(HC=N); 176.92 (C=S).

2.2.4. 4-Phenyl-1-(3󸀠-hydroxybenzaldehyde)Thiosemicabazone,
HTSC3 (3). Colorless crystals. Yield 87%. Anal. for C

14
H
13
⋅

N
3
OS (271.34 g/mol): calcd. C 61.97, H 4.83, N 15.49, S 11.82;

found C 60.65, H 4.95, N 15.16, S 11.64. FAB(+)-MS: m/z
272.25 (MH+, 100%). IR (KBr): ] = 3290 (NHPh), 3140
(NHCS), 1598 (C=N), 825, 1020 (C=S) cm−1. 1H NMR
(DMSO-d

6
): 𝛿= 7.36 (m,H2󸀠), 7.21 (m,H4󸀠), 7.09 (m,H5󸀠), 7.41

(d, H6󸀠, J = 7.8Hz); 7.57 (d, 2Hortho, NHPh, J = 7.5Hz), 7.33 (t,
2Hmeta, NHPh, J = 8.1Hz), 7.15 (t, 1Hpara, NHPh, J = 7.2Hz);
8.07 (s, 1H, HC=N); 9.56 (s, 1H, OH); 10.34, 9.91 (s, 1H,
NHPh), 11.77, 10.07 (s, 1H, =N–NH). 13C NMR (DMSO-d

6
):

𝛿 = 114.68, 118.93, 125.80, 130.05, 135.32, 158.02 (Ph–CH=N–);
121.84, 125.31, 128.06, 139.1 (NHPh); 152.79 (HC=N); 193.17
(C=S).

2.2.5. 4-Phenyl-1-naphthaldehyde Thiosemicarbazone, HTSC4
(4). Rectangular-shaped yellow crystals. Yield 75%. Anal. for
C
18
H
15
N
3
S (305.39 g/mol): calcd. C 70.79, H 4.95, N 13.76,
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S 10.50; found: C 70.93, H 4.80, N 13.85, S 10.38. FAB(+)-
MS: m/z 305.40 (M+, 100%). IR (KBr): ] = 3327 (NHPh),
3165 (NHCS), 1600 (C=N), 815, 1088 (C=S) cm−1. 1H NMR
(DMSO-d

6
): 𝛿 = 7.33 (d, H2󸀠, 7.8Hz), 7.67 (t, H3󸀠, 7.2Hz), 8.34

(d, H4󸀠, 8.4Hz), 8.47 (d, H5󸀠, H8󸀠, J = 6.0Hz), 7.67 (t, H6󸀠, J =
7.2Hz), 8.02 (t, H7󸀠, J = 7.2Hz); 7.39 (t, 2Hmeta, NHPh, J =
7.8Hz), 7.16 (t, 1Hpara, NHPh, J = 7.2Hz), 7.61 (d, 2Hortho,
NHPh, J = 7.2Hz); 9.08 (s, 1H, HC=N); 9.84, 10.35 (s, 1H,
NHPh); 10.20, 11.89 (s, 1H, =N–NH). 13C NMR (DMSO-
d
6
): 𝛿 = 122.94, 125.83, 126.05, 126.62, 127.69, 129.37, 130.87,

131.15, 133.83, 141.45 (Naphthoyl); 125.38, 126.25, 128.57, 139.54
(NHPh), 153.25 (HC=N); 176.38 (C=S).

2.2.6. 4-Phenyl-1-(1󸀠-nitro-2󸀠-naphthaldehyde)Thiosemicarba-
zone, HTSC5 (5). Yellow solid. Yield 85%. Anal. for C

18
H
14
⋅

N
4
O
2
S (350.39 g/mol): calcd. C 61.69, H 4.03, N 16.00, S 9.15;

found: C 61.54, H 4.10, N 15.82, S 8.94. FAB(+)-MS: m/z
350.40 (M+, 100%). IR (KBr): ]= 3250 (NHPh), 3174 (NHCS),
1713, 1626 (C=N), 820, 1047 (C=S) cm−1. 1H NMR (DMSO-
d
6
): 𝛿 = 8.40 (d, H3󸀠, J = 8.5Hz), 8.09 (d, H4󸀠, J = 8.5Hz), 8.22

(d, H5󸀠, H8󸀠, J = 6.0Hz), 7.86 (t, H6󸀠, H7󸀠, J = 6.0Hz); 7.61 (d,
2Hortho, NHPh, J = 8.5Hz), 7.33 (t, 2Hmeta, NHPh, J =
6.5Hz), 7.15 (t, 1Hpara, NHPh, J = 7.5Hz); 10.15 (s, 1H, NHPh),
9.83, 10.34 (s, 1H, =N–NH). 13CNMR (DMSO-d

6
): 𝛿 = 118.28,

123.71, 126.01, 129.17, 130.84, 132.22, 136.47, 137.96, 153.24,
163.47 (Naphthoyl); 122.65, 125.36, 128.49, 139.5 (NHPh);
176.76 (HC=N); 189.98 (C=S).

2.3. Synthesis of the Palladium(II) Complexes

2.3.1. General Method. A solution of K
2
[PdCl

4
] (0.163 g,

0.5mmol) in ethanol (60mL) or a solution of [Pd(acac)
2
]

(0.153 g, 0.5mmol) in dichloromethane/ethanol (2 : 1, 45mL)
was added dropwise to a stirred hot solution of the corre-
sponding thiosemicarbazone (1.0mmol) in 70mL of metha-
nol. Then, sodium acetate (0.082 g, 1mmol) in 5mL of water
was added. The solution was refluxed for 2-3 h and stirred
for 24 h at room temperature. The precipitate was collected
by filtration, washed three times with ethanol (30mL), and
dried under vacuum. For the complex [Pd(TSC1)

2
] (6), single

crystals suitable for X-ray diffraction studies were grown by
slow evaporation from an acetone solution.

2.3.2.Bis[4-phenyl-1-(acetone)Thiosemicarbazonato]palladium
(II), [Pd(TSC1)

2
] (6). Square-shaped orange crystals. Yield

65%. Anal. for C
20
H
24
N
6
S
2
Pd (518.99 g/mol): calcd. C 46.28,

H 4.66, N 16.19, S 12.36; found C 46.05, H 4.74, N 16.21,
S 12.23. FAB(+)-MS: m/z 518.50 (M+, 75%). IR (KBr): ] =
3375 (NHPh), 1590 (C=N), 800, 964 (C=S) cm−1. 1H NMR
(DMSO-d

6
): 𝛿 = 2.18, 2.35 (s, 12H, 4CH

3
); 7.62 (d, 4Hortho,

J = 7.9Hz, NHPh), 7.26 (t, 4Hmeta, J = 7.7Hz, NHPh), 6.93
(t, 2Hpara, J = 7.5Hz, NHPh); 9.34 (s, 2H, NHPh). 13C NMR
(DMSO-d

6
): 𝛿 = 19.65, 22.08 (CH

3
), 119.06, 123.15, 129.01,

141.80 (NHPh); 154.50 (HC=N); 176.20 (C=S).

2.3.3. Bis[4-phenyl-1-(2󸀠-chlorobenzaldehyde) Thiosemicarba-
zonato]palladium (II), [Pd(TSC2)

2
] (7). Red solid. Yield 60%.

Anal. for C
28
H
22
N
6
Cl
2
S
2
Pd (683.97 g/mol): calcd. C 49.17, H

3.24, N 12.29, Cl 10.37, S 9.38; found C, 49.26, H 3.12, N 12.36,
Cl 10.45, S 9.25. FAB(+)-MS: m/z 648.5 (M+-Cl, 65%). IR
(KBr): ] = 3375 (NHPh), 1580 (C=N), 795, 927 (C=S) cm−1.
1H NMR (DMSO-d

6
): 𝛿 = 8.29 (d, H3

󸀠

, J = 8.1Hz), 7.52 (m,
H4
󸀠

), 7.28 (t, H5
󸀠

, J = 7.8Hz), 7.42 (d, H6
󸀠

, J = 8.1Hz); 7.59 (d,
4Hortho, NHPh, J = 8.1Hz), 7.19 (t, 4Hmeta, NHPh, J = 8.1Hz),
6.98 (t, 2Hpara, NHPh, J = 7.2Hz); 8.0 (s, 2H, HC=N); 9.34,
9.92 (s, 1H, NHPh). 13CNMR (DMSO-d

6
): 𝛿 = 119.05, 120.83,

125.01, 126.72, 127.38, 138.77 (Ph–CH=N–); 121.94, 127.90,
129.0, 141.81 (NHPh); 166.48 (HC=N); 169.19 (C=S).

2.3.4.Bis[4-phenyl-1-(3󸀠-hydroxybenzaldehyde)Thiosemicarba-
zonato]palladium(II), [Pd(TSC3)

2
] (8). Orange solid. Yield

68%. Anal. for C
28
H
24
N
6
O
2
S
2
Pd (647.08 g/mol): calcd. C

51.97, H 3.74, N 12.99, S 9.91; found C 52.05, H 3.66, N 13.04, S
9.83. FAB(+)-MS: m/z 646.95 (M+, 55%). IR (KBr): ] = 3300
(NHPh), 1585 (C=N), 800, 930 (C=S) cm−1. 1H NMR
(DMSO-d

6
): 𝛿 = 7.02 (d, 2H4

󸀠

, 2H6
󸀠

, J = 8.4Hz) 7.48 (t, 2H5
󸀠

,
J = 7.5Hz); 7.60 (d, 4Hortho, NHPh, J = 7.8Hz), 7.28 (t, 4Hmeta,
NHPh, J = 8.4Hz), 6.92 (t, 2Hpara, NHPh, J = 7.5Hz); 7.81 (s,
2H, HC=N), 8.45 (d, OH, J = 7.5Hz); 9.46 (s, 2H, NHPh, J =
7.5Hz). 13C NMR (DMSO-d

6
): 𝛿 = 110.71, 121.75, 130.69,

133.47, 155.19 (Ph–CH=N–); 119.04, 120.0, 128.62, 141.23
(NHPh); 158.37 (HC=N); 167.06 (C=S).

2.3.5.Bis[4-phenyl-1-naphthaldehydeThiosemicarbazonato]pal-
ladium(II), [Pd(TSC4)

2
] (9). Orange solid. Yield 61%. Anal.

for C
36
H
28
N
6
S
2
Pd (715.20 g/mol): calcd. C 60.46, H 3.95, N

11.75, S 8.97; found: C 60.32, H 4.05, N 11.81, S 8.84. FAB(+)-
MS:m/z 716.30 (MH+, 58%). IR (KBr): ]= 3373 (NHPh), 1588
(C=N), 780, 1032 (C=S) cm−11H NMR (DMSO-d

6
): 𝛿 = 8.44

(d, 2H2
󸀠

, J = 9.0Hz), 7.85 (m, 2H3
󸀠

), 8.24 (d, 2H4
󸀠

, 2H5
󸀠

, J =
9.0Hz), 7.85 (m, 2H6

󸀠

, 2H7
󸀠

), 8.14 (d, 2H8
󸀠

, J = 6.0Hz); 7.60 (d,
4Hortho, NHPh, J = 6.0Hz), 7.33 (t, 4Hmeta, NHPh, J = 8.0Hz),
7.15 (t, 2Hpara, NHPh, J = 8.5Hz); 9.83, 10.15, 10.33 (s, 2H,
NHPh). 13C NMR (DMSO-d

6
): 𝛿 = 118.05, 121.04, 123.64,

124.34, 126.12, 129.09, 132.50, 134.30, 136.47, 139.52 (Naph-
thoyl); 125.14, 126.77, 128.71, 141.04 (NHPh), 165.62 (HC=N);
175.72 (C=S).

2.3.6.Bis[4-phenyl-1-(1󸀠-nitro-2󸀠-naphthaldehyde)Thiosemicar-
bazonato]palladium(II), [Pd(TSC4)

2
] (10). Orange solid.

Yield 50%. Anal. for C
36
H
26
N
8
O
4
S
2
Pd (805.19 g/mol): calcd.

C 53.70, H 3.25, N 13.92, S 7.96; found: C 53.64, H 3.15, N
13.86, S 7.78. FAB(+)-MS: m/z 787.10 (M+-H

2
O, 100%). IR

(KBr): ] = 3374 (NHPh), 1578 (C=N), 790, 1017 (C=S) cm−1.
1H NMR (DMSO, d

6
): 𝛿 = 7.80 (t, 2H3

󸀠

, J = 9.0Hz), 8.38 (d,
2H4
󸀠

, 2H5
󸀠

, J = 9.0Hz), 7.80 (t, 2H6
󸀠

, 2H7
󸀠

, J =6.0Hz), 7.31 (m,
2H8
󸀠

); 7.62 (d, 4Hortho, NHPh, J = 9.0Hz), 7.26 (t, 4Hmeta,
NHPh, J = 9.0Hz), 6.92 (t, 2Hpara, NHPh, J = 6.0Hz); 9.33,
9.59 (s, 2H, NHPh). 13CNMR (DMSO-d

6
): 𝛿 = 113.57, 123.44,

128.20, 129.38, 130.13, 132.36, 133.25, 137.41, 152.57, 157.61
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(Naphthoyl); 121.22, 124.54, 127.75, 138.45 (NHPh); 178.83
(HC=N); 189.50 (C=S).

2.4.Crystal StructureDeterminations. Crystallographicmeas-
urements weremade using an IPDS1 diffractometer (graphite
monochromated Mo-K𝛼 radiation (𝜆 = 0.71073 Å)). Data
were collected using Φ scan technique with a scan width of
0.7∘. The structures were solved by direct methods using the
program SIR2004 [28] and were refined using anisotropic
approximation for the nonhydrogen atoms using SHELXL-97
software [29].

2.5. Biological Activity

2.5.1. Cell Culture. The H460 (human lung large cell car-
cinoma), M-14 (human amelanotic melanoma), DU145
(human prostate carcinoma), MCF-7 (human breast ade-
nocarcinoma), HT-29 (human colon adenocarcinoma), and
K562 (human chronic myelogenous leukemia) cell lines
were obtained from the research laboratory of the Faculty
of Sciences and Philosophy, Universidad Peruana Cayetano
Heredia. All the cells were cultured in Dulbecco’s Modified
Eagle Medium (DMEM) supplemented with 10% fetal calf
serum and 50𝜇g/mL gentamycin in humidified 5%CO

2
/95%

air at 37∘C.

2.6. Assessment of Cytotoxicity. The assay was performed as
described previously [30]. Briefly, 3000–5000 cells were inoc-
ulated in each well of 96-well tissue culture plates and incu-
bated at 37∘C with their corresponding culture medium dur-
ing 24 h. The ligands HTSC1–5 (10–250𝜇M), palladium(II)
complexes (0.01–10 𝜇M), or cisplatin (1–10 𝜇M) in DMSO
were then added and incubated for 48 h at 37∘C with a
highly humidified atmosphere, 5% CO

2
and 95% air. After

the incubating period, cell monolayers were fixed with 10%
trichloroacetic acid and stained for 20 minutes using the
sulforhodamine B dye. Then, the excess dye was removed by
washing repeatedly with 1% acetic acid. The protein-bound
dye was solubilized with 10mM Tris buffer (pH 10.5) and the
absorbance valueswere obtained at 510 nmusing amicroplate
reader. The IC

50
value was defined as the concentration of

a test sample resulting in a 50% reduction of absorbance as
compared with untreated controls and was determined by
linear regression analysis.

3. Results and Discussion

3.1. Synthesis and Characterization. The ligands HTSC1–5
were prepared according to the literature [31–33], as shown in
Scheme 1.The ligands were obtained in good yields (72–87%)
and characterized by elemental analysis and FT-IR, FAB(+)-
mass, and NMR (1H, 13C) spectroscopy.

The palladium(II) complexes (Scheme 2) were obtained
in satisfactory yield (50–68%) and characterized by elemental
analysis and FT-IR, FAB(+)-mass, and NMR(1H, 13C) spec-
troscopy.

Analytical and spectroscopy data obtained for the thi-
osemicarbazone ligands and their palladium(II) complexes
are in agreement with the proposed structures.

The ligand HTSC3 (3) and the complex [Pd(TSC1)
2
] (6)

were recrystallized from acetone, and single crystals suitable
for X-ray crystallography were obtained, while single crystals
of the ligand HSTC4 (4) were obtained by slow evaporation
of the solvent from the final reaction mixture.

3.2. Infrared Spectra. The broad bands of the –NH group
observed at 3140–3182 cm−1 in the spectra of the free lig-
ands disappeared in the spectra of the corresponding com-
plexes, thus indicating the deprotonation of the =N–NH–
group. The strong bands observed in the range of 1598–
1626 cm−1 were assigned to (C=N) stretching vibrations of
the free thiosemicarbazones. These bands were shifted to
lower frequencies (10–22 cm−1) after coordination, which
is in agreement with the observed behaviour of other bis-
chelate complexes [26, 34–39]. These results indicate the
coordination of the azomethine nitrogen to themetal ion.The
](C=S) vibrations observed at 815–1088 cm−1 in the spectra of
the free ligands shift 20–138 cm−1 towards lower frequencies
upon complexation, indicating the involvement of the thione
sulphur in the bond formation to the metal ion [40, 41].

3.3. NMR Spectra. The 1HNMR and 13CNMR spectra of the
ligands and their metal complexes were recorded in DMSO-
d
6
. In the 1H NMR spectra of the ligands HTSC1–5, the

signal of the =N–NH proton appears as a singlet at 𝛿 10.07–
12.03, while on complexation these signals disappeared, thus
indicating the deprotonation of the =N–NH group [25, 33,
42–46]. In the 1H NMR spectra of the ligands HTSC2–5, the
signal of the HC=N proton appeared as a singlet at 𝛿 = 8.07–
9.08. These signals are shifted by 0.26–0.59 ppm upfield for
[Pd(TSC2-3)

2
] complexes (7, 8). These results are consistent

with the IR spectral data and suggest the coordination of
palladium to the imine nitrogen [24, 25, 43–45]. For all
ligands, the resonance lines found at 𝛿 = 9.83–10.35 were
assigned to the proton of the NHPh group. The presence of
the phenyl group on the terminal amine induces the shift
of these signals by 1.9 ppm downfield, as compared to the
resonance lines of the –NH

2
terminal group found for other

thiosemicarbazone derivatives [33, 44]. On the other hand,
the aromatic proton signals of the phenyl amine group in
all the ligands were observed at 𝛿 = 7.15–7.61, and these
resonance lines show the expected calculated multiplicity.
For the ligands HTSC2 (2) and HTSC3 (3) the aromatic
proton signals of the phenyl fragment bound to the −CH=N
group were affected by the presence of the chloro and hydroxy
substituents in the C-2󸀠 and C-3󸀠positions, respectively, of
the phenyl moiety. For the HTSC2 (2) ligand, these signals
are shifted downfield for the protons in the positions C-
3󸀠 (1 ppm) and C-4󸀠 (0.1 ppm), while for HTSC3 (3) ligand
they are shifted upfield for the protons in the positions
C-2󸀠 (0.55 ppm) and C-4󸀠 (0.21 ppm), with respect to the
unsubstituted phenyl moiety [33]. For the HTSC5 (5) ligand,
the presence of the nitro substituent group in the naphthoyl
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Scheme 1: Synthesis of 4-phenyl-1-acetone thiosemicarbazone, 4-phenyl-1-benzaldehyde thiosemicarbazone, and 4-phenyl-1-naphthaldehyde
thiosemicarbazone ligands.

moiety affected the resonance signals of the aromatic protons.
These signals are shifted downfield for the protons in the
positions C-3󸀠 (0.73 ppm) and C-6󸀠 (0.19 ppm), while for the
protons in the positions C-4󸀠, C-5󸀠, C-7󸀠, and C-8󸀠 these
are shifted upfield by 0.16–0.25 ppm, relative to the HTSC4
(4) ligand with the unsubstituted naphthoyl moiety. Thus,
the aromatic protons signals in all the ligands do not suffer
relevant changes in their chemical shifts after complexation.

In the 13C NMR spectra, the carbon resonance signals
of the C=N group appear at 𝛿 = 152.8–176.8. These results

are similar to the chemical shifts found for other ligands
derived from benzaldehyde thiosemicarbazone [33, 40]. The
C=S signals observed at 𝛿 = 176.4–193.2 are characteristic
for the thiocarbonyl group present in all the ligands. For
[Pd(TSC1–5)

2
] complexes (6–10), the C=N and C=S signals

are shifted downfield by 1.3–13.3 ppm and upfield by 0.5–
26.1 ppm, respectively, with respect to their ligands. These
results confirm the coordination of the thiocarbonyl sulphur
and azomethine nitrogen atoms to the palladium(II) ion [36,
47]. For all ligands, the aromatic carbons of the NHPh group
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Scheme 2: Synthesis of palladium(II) bis-chelate complexes of acetone, benzaldehyde, and naphthaldehyde thiosemicarbazone derivatives.

were observed at 𝛿= 121.8–134.6, and these chemical shifts are
in agreement with those found for other thiosemicarbazone
ligands [33, 44].

3.4. Structural Data. Crystal data, data collection procedure,
structure determination methods, and refinement results for

compounds HTSC3, HTSC4, and [Pd(TSC1)
2
] are summa-

rized in Table 1, whereas selected bond lengths and bond
angles are presented in Tables 2 and 3.

The molecular structures of HTSC3, HTSC4, and
[Pd(TSC1)

2
] are shown in Figures 1, 2, and 3, respectively.

The thiocarbazone fragments in the two structures of ligands
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Table 1: Crystal data and structure refinement for HTSC3, HTSC4, and [Pd(TSC1)2].

Compound HTSC3 HTSC4 [Pd(TSC1)2]
Empirical formula C14H13N3OS C18H15N3S C20H24N6S2Pd
Formula weight 271.33 305.39 518.97
Temperature (K) 213 213 213
Crystal system Triclinic Orthorhombic Monoclinic
Space group P-1 P212121 C2/c
𝑎 (Å) 6.3202(7) 5.3471(3) 23.456(2)
𝑏 (Å) 10.357(1) 15.7563(9) 7.7080(4)
𝑐 (Å) 11.506(1) 16.456(2) 12.3813(10)
𝛼 (∘) 65.95(1) 90 90
𝛽 (∘) 80.14(1) 90 97.96(1)
𝛾 (∘) 85.32(1) 90 90
Volume (Å3) 677.56(13) 1554.91(18) 2216.9(3)
𝑍 2 4 4
Density (g/cm3) 1.33 1.305 1.555
Absorption coeff. (mm−1) 0.234 0.208 1.044
Crystal size (mm) 0.7 × 0.3 × 0.2 0.7 × 0.05 × 0.05 0.4 × 0.4 × 0.4

𝜃 range for data collect. (∘) 3–28 2–26 3–28

Index ranges
−7 ≤ ℎ ≤ 8 −6 ≤ ℎ ≤ 6 −30 ≤ ℎ ≤ 30

−13 ≤ 𝑘 ≤ 13 −18 ≤ 𝑘 ≤ 19 −9 ≤ 𝑘 ≤ 10

−15 ≤ 𝑙 ≤ 15 −22 ≤ 𝑙 ≤ 22 −16 ≤ 𝑙 ≤ 16

Reflections collected 7186 10232 10366

Independent reflections 2997
(𝑅int = 0.024)

3005
(𝑅int = 0.050)

2662
(𝑅int = 0.042)

Max./min. transmission 0.8534/0.9547 0.8683/0.9897 0.7171/0.9674
Data/parameters 2997/224 3005/259 2662/180
Goodness-of-fit on 𝐹2 0.803 0.804 0.841

Final 𝑅 indices [𝐼 > 2𝜎 (𝐼)] 𝑅
1
= 0.0289 𝑅

1
= 0.0322 𝑅

1
= 0.0235

𝜔𝑅
2
= 0.0685 𝜔𝑅

2
= 0.0624 𝜔𝑅

2
= 0.0442

𝑅 indices (all data) 𝑅
1
= 0.0478 𝑅

1
= 0.0486 𝑅

1
= 0.0317

𝜔𝑅
2
= 0.0717 𝜔𝑅

2
= 0.0653 𝜔𝑅

2
= 0.0454

Lgst diff. peak/hole (𝑒Å−3) 0.19/ − 0.16 −0.1/0.03 −0.31/0.07

Table 2: Bond length (Å) and torsion angles (∘) for HTSC3 and
HTSC4.

HTSC3 HTSC4

C2-N2 1.280(2) C8-N3 1.278(2)
N2-N1 1.382(2) N3-N2 1.380(2)
N1-C1 1.352(2) N2-C7 1.351(2)
C1-N3 1.347(2) C7-N1 1.351(2)
C1-S1 1.689(1) C7-S1 1.688(2)
N3-C9 1.430(2) N1-C1 1.414(2)
C2-N2-N1-C1 173.8(1) C8-N3-N2-C7 180.0(2)
N2-N1-C1-N3 5.33(2) N3-N2-C7-N1 1.0(2)
N1-C1-N3-C9 −177.1(1) N2-C7-N1-C1 −176.8(2)

HTSC3 and HTSC4 are very similar. Structurally significant
is the cis-arrangement between the atoms N2-N1-C1-N3
(HTSC3) and N3-N2-C7-N1 (HTSC4), the torsion angles

Table 3: Selected bond lengths (Å) and angles in (∘) for [Pd(TSC1)2]
(6).

Distances Angles
Pd1-S1 2.270(1) N1-Pd1-S1 82.21(4)
Pd1-N1 2.099(1) Pd1-S1-C4 95.20(6)
N1-N2 1.421(2) S1-C4 -N2 125.7(1)
N2-C4 1.290(2) C4-N2-N1 112.6(2)
C4-S1 1.773(2) N2-N1-Pd1 117.3(1)

being 5.33(2)∘ and 1.0(2). All bond lengths in the thiosemicar-
bazone fragment are identical for the two ligands (Table 2).

The crystal structure of ligand HTSC3 is stabilized by
intermolecular O–H⋅ ⋅ ⋅ S [O⋅ ⋅ ⋅ S 3.169 Å, H⋅ ⋅ ⋅ S 2.548 Å, and
O–H⋅ ⋅ ⋅ S 136.46∘] hydrogen bonds which lead to a double
chain along the a-axis, as shown in Figure 4. On the other
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Figure 2: Molecular structure of HTSC4 (4). The displacement
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hand, the crystal structure of ligand HTSC4 is also stabilized
by a N–H⋅ ⋅ ⋅ S hydrogen bond with the bond parameters as
follows: N⋅ ⋅ ⋅ S 3.523 Å, H⋅ ⋅ ⋅ S 3.523 Å, and N–H–S 158.82∘.
We found along of a 2

1
-screw axis a typical helix structure,

as shown in Figure 5.
The complex [Pd(TSC1)

2
] (6) (Figure 3) crystallizes in

the monoclinic space group C2/c with four molecules in the
unit cell and with a C

2
molecular symmetry. The sulfur and

nitrogen donor atoms are in a cis arrangement. The depro-
tonated ligand coordinates bidentately to PdII ion through S
andN. It leads to lengthening of theC4–S1 bond (1.773 Å) and
shortening of the N2–C4 bond (1.29 Å) and these results are
in agreement with those found for other palladium(II) bis-
chelate complexes of the type [PdL

2
] with thiosemicarbazone

ligands [27, 42].
The chelate ring with the atoms Pd1, N1, N2, C4, and S1

has an envelope configuration. For the plane formed by the
atoms N1, N2, S1, and C4, the average deviation is 0.003 Å,
while the deviation of the Pd atom from this plane is 0.664 Å;
this distortion indicates a pseudo square planar coordination
geometry.

3.5. Antitumor Evaluation. The cytotoxic potential of the
ligands derived from thiosemicarbazones and their respective

palladium(II) complexes were investigated in the following
six human tumor cell lines: H460, DU145, MCF-7, M14, HT-
29, and K562. For comparison purposes, the cytotoxicity
of cisplatin was evaluated under the same experimental
conditions.

The results of the cytotoxic activity of the ligands, palla-
dium(II) complexes, and cisplatin are expressed as IC

50
values

(micromolar concentration inhibiting 50% cell growth), and
these compounds were evaluated in vitro against the different
human tumor cell lines, as shown in Table 4. In general,
the palladium(II) complexes (IC

50
= 0.01–9.87𝜇M) exhibited

higher antiproliferative activity than their free ligands (IC
50
=

23.48–70.86 and >250𝜇M). Figure 6 shows the antiprolifera-
tive activity of the ligands HTSC1–5 and their palladium(II)
complexes [Pd(TSC1–5)

2
] against H460 and K562 human

tumor cell lines after 48 h incubation time. These results
indicate that the cytotoxicity is enhanced when the ligands
are coordinated to the Pd(II) ion. Probably, the palladium(II)
bis-chelate complexes of square planar geometry act as inter-
calating agents between the pyrimidine and guanine bases of
the DNA tumor cells, inducing conformational changes on
the DNA double helix specific that finally produce tumor cell
death [33, 44, 48].

All palladium(II) complexes except [Pd(TSC1)
2
] (6) were

more cytotoxic than cisplatin (IC
50

= 2.85−7.60𝜇M) against
all the investigated human tumor cell lines. Figure 7 shows
a comparison of the magnitude of the IC

50
values of the

palladium(II) complexes and cisplatin against human breast
adenocarcinomaMCF-7 cell line.On the other hand, between
all the tested palladium(II) complexes, [Pd(TSC3)

2
] (8)

and [Pd(TSC5)
2
] (10) complexes showed greater cytotoxic

activity against all human tumor cell lines, with IC
50

values
of 0.01–0.23 and 0.65–1.06 𝜇M, respectively. Therefore, the
presence of the 3-hydroxy and 1-nitro substituents groups
in the benzene and naphthalene aromatic rings plays an
important role in the enhancement the antiproliferative
activity [1, 16, 27, 42]. The effect of these substituents
may be related to their hydrogen-bonding ability compared
with the chloro substituent in complex (7). Following this
reasoning, the [Pd(TSC3)

2
] (8) complex, with the 4-phenyl-

1-(3󸀠-hydroxy-benzaldehyde) thiosemicarbazone ligand, was
also more active than the palladium(II) bis-chelate complex
of 3󸀠-cyano-benzaldehyde thiosemicarbazone (IC

50
= 0.45–

3.53 𝜇M) against all human tumor cell lines tested [27].
In addition, complex (8) was found to be about thirteen
times more cytotoxic than the gold(I) complex from 4-
methyl-1-(2󸀠-acetylpyridine) thiosemicarbazone ligand (IC

50

= 1.65 𝜇M) against the (MCF-7) human breast adenocar-
cinoma tumor cell line [49]. With respect to the cyto-
toxic activity shown by the ruthenium(II) complex of the
[Ru(Phen)

2
(L)]Cl

2
type, with L being a 3-methoxy, or 4-

hydroxy-benzaldehyde thiosemicarbazone ligand (IC
50

=
3.60 𝜇M) assayed on the (CEM) human leukemia cell line
[24], complex (8) presented higher cytotoxicity at lowmicro-
molar concentrations (IC

50
= 0.02 𝜇M) tested in vitro against

the (K562) chronic myelogenous leukemia cell line. Since the
ruthenium complex is octahedral and complex (8) presents
a pseudo-planar geometry, the larger cytotoxicity of (8) is in
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Figure 3: Molecular structure of [Pd(TSC1)
2
] (6). The displacement ellipsoids are drawn at the 50% probability.

Table 4: IC50 (𝜇m) valuesa of the ligands HTSC1–5, palladium(II) complexes [Pd(TSC1–5)2], and cisplatin against the different human tumor
cell linesb.

Human tumor cell lines H460 DU145 MCF-7 M14 HT-29 K562
HTSC1

>250 >250 >250 >250 >250 70.86
HTSC2

>250 31.55 38.05 >250 >250 32.89
HTSC3 23.48 26.64 34.00 28.67 25.73 35.05
HTSC4 39.65 26.45 29.94 >250 >250 24.66
HTSC5 24.95 31.60 25.46 27.31 26.72 27.76
[Pd(TSC1)2] 9.40 8.27 6.95 9.87 8.20 9.43
[Pd(TSC2)2] 2.26 2.05 1.61 2.14 1.87 1.95
[Pd(TSC3)2] 0.23 0.01 0.13 0.05 0.05 0.02
[Pd(TSC4)2] 2.05 2.39 2.14 2.27 2.37 1.84
[Pd(TSC5)2] 0.68 0.84 0.78 1.06 1.04 0.65
cisplatin 2.85 6.50 7.20 2.95 7.60 3.20
aIC50 corresponds to the concentration required to inhibit 50% of the cell growth when the cells are exposed to the compounds during 48 h. Each value is the
average of two independent experiments.
bLung large cell carcinoma (H460), prostate carcinoma (DU145), breast adenocarcinoma (MCF-7), amelanotic melanoma (M-14), colon adenocarcinoma (HT-
29), and chronic myelogenous leukemia (K562).

Figure 4: Double chain structure of HTSC3 in the crystal.

agreement with the proposed intercalationmechanism as the
intercalation is favored for a planar moiety.

Complex [Pd(TSC5)
2
] (10) (IC

50
= 0.78𝜇M) tested

against the MCF-7 tumor cell line resulted to be more
cytotoxic than the palladium(II) monochelate complexes
with 2-acetylpyridine thiosemicarbazone derivatives (IC

50
=

4.9–5.5𝜇M) when being tested on the MDA-MB231 human
breast cancer cell line [32]. Furthermore, complex (10) tested
in vitro against the HT29 colon adenocarcinoma tumor
cell line exhibited higher cytotoxicity (IC

50
= 1.04 𝜇M)

than that of the [Pd(mpETSC) Cl] (HmpETSC = 4-ethyl-
1-(6󸀠-methylpyridine-2󸀠-carbaldehyde) thiosemicarbazone)
monochelate complex (IC

50
= 20.65 𝜇M) assayed on the

HCT 116 human colon tumor cell line [26].
In summary, we have synthesized palladium(II) bis-

chelate complexes with ligands derived from acetone, ben-
zaldehyde, and naphthaldehyde thiosemicarbazone. The
molecular structure of [Pd(TSC1)

2
] (6) shows a square-

planar geometry with deprotonated ligands coordinated to
Pd(II) through the azomethine nitrogen and thione sulfur
atoms in a cis arrangement.

Of all the studied complexes, the hydroxy-substituted
[Pd(TSC3)

2
] (8) complex resulted to be more cytotoxic in all

tumor cell lines at lowmicromolar concentrations, compared
to the other complexes and the free ligands.

3.6. Extra Material. Crystallographic data for the structural
analysis have been deposited with the Cambridge Crystal-
lographic Data Centre, numbers CCDC 894930 for HTSC3,
894931 for [Pd(TSC1)

2
], and 894932 for HTSC4. Copies of

this information can be obtained free of charge from the
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Figure 5: Helix structure of HTSC4 in the crystal.
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