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Abstract: Botnets are some of the most recurrent cyber-threats, which take advantage of the wide
heterogeneity of endpoint devices at the Edge of the emerging communication environments
for enabling the malicious enforcement of fraud and other adversarial tactics, including malware,
data leaks or denial of service. There have been significant research advances in the development of
accurate botnet detection methods underpinned on supervised analysis but assessing the accuracy
and performance of such detection methods requires a clear evaluation model in the pursuit of
enforcing proper defensive strategies. In order to contribute to the mitigation of botnets, this paper
introduces a novel evaluation scheme grounded on supervised machine learning algorithms
that enable the detection and discrimination of different botnets families on real operational
environments. The proposal relies on observing, understanding and inferring the behavior of
each botnet family based on network indicators measured at flow-level. The assumed evaluation
methodology contemplates six phases that allow building a detection model against botnet-related
malware distributed through the network, for which five supervised classifiers were instantiated
were instantiated for further comparisons—Decision Tree, Random Forest, Naive Bayes Gaussian,
Support Vector Machine and K-Neighbors. The experimental validation was performed on two public
datasets of real botnet traffic—CIC-AWS-2018 and ISOT HTTP Botnet. Bearing the heterogeneity of
the datasets, optimizing the analysis with the Grid Search algorithm led to improve the classification
results of the instantiated algorithms. An exhaustive evaluation was carried out demonstrating the
adequateness of our proposal which prompted that Random Forest and Decision Tree models are the
most suitable for detecting different botnet specimens among the chosen algorithms. They exhibited
higher precision rates whilst analyzing a large number of samples with less processing time.
The variety of testing scenarios were deeply assessed and reported to set baseline results for future
benchmark analysis targeted on flow-based behavioral patterns.
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1. Introduction

Computer systems are constantly threatened by a diversity of attackers (hackers, traitors, terrorists
or even governments) who intentionally compromise the integrity, availability of confidentiality of
the protected assets. Driven by different motivations, their final goal is to take advantage of specific
system vulnerabilities that will enable them to conduct cyber attacks [1–3]. Among the most common
security threats, malware infections, web related attacks, phishing, denial of service, spam and
botnets are the most prevalent according to the Threat Landscape Report released by the European
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Union Agency for Cybersecurity (ENISA) in 2018 [4]. A botnet is a network of compromised nodes
(“Bots”) connected to a centralized node (“Command and Control”) administered by a human operator
(“Botmaster”) who remotely controls the Bots [5,6]. The term “botnet” is derived from the words
“robot” and “network”, which evokes the Bots’ autonomy to perform several tasks. Botnets are in
fact key enablers of several other cyber-attacks, hence representing one of the most serious threats
in the area of network security [7–9]. Having this scenario in mind, organizations need to endorse
the preparedness of their infrastructures in order to reactive/proactive deal with security incidents
related to botnets [10], on which the emerging network management paradigms raise as promising
cybersecurity enablers [11,12]. The absence of proper defensive countermeasures against them might
prompt security concerns for publicly accessible systems, being that botnets have the ability to infiltrate
any device connected to the Internet. The attackers lead their victims to infect their own system in
order to recruit potential bots, thus harming the targeted systems. That is accomplished by taking
advantage of common attack vectors such as phishing messages, host vulnerabilities exploitation,
brute-forcing and related techniques [4,6,13].

Defense countermeasures against Botnet threats entail detection as their primary objective.
Different approaches to detect malware have been proposed over the past years, mostly underpinned
on network mining techniques, machine learning, deep learning and, in a broader sense, data-driven
intrusion detection methods [14]. The literature review suggests machine-learning-based approaches
as the most effective when dealing with botnet detection and, among them, the supervised
analysis of behavioral patterns in network flows drives the detection of different types of botnets.
Srihari et al. [15] defined pattern recognition as the ability to categorize an already identified object,
characterized by a pattern into a class, a task automatically performed using classification algorithms.
In the area of communication networks, pattern recognition analysis is commonly targeted on studying
characteristics extracted from network traffic flows, which in the case of botnets disclose relationships
between the communicating Bot and Command and Control (C&C) server, for instance, to set
quarantine regions for mitigation purposes [11]. Under such classification-based threat analysis,
attaining acceptable detection rates is highly tied to the configuration of hyperparameters set up for
training the machine learning models. Even though some heuristic approaches might be implemented
for hyperparameters estimation, more advanced methods such as Grid Search have been effectively
used to boost up the performance of machine learning algorithms in the detection of botnets, as it was
demonstrated by Gonzalez-Cuautle et al. [16]. In terms of classification accuracy, most of the research
works on this field describe their results reasonably enough to put into perspective the adequateness
of the machine learning models guided by the results obtained, thus posing a reference baseline
for future research as well. However, shallow learning algorithms widely used in the literature for
botnet detection [17] raise concerns regarding their accuracy since the configuration details on training,
testing, validation and real predictive capabilities are sometimes overlooked. Consequently, deviations
on the attained accuracy results might arise when machine-learning-based defensive schemes are
implemented on real execution scenarios. Their adequateness becomes thereby arguable, particularly
when tailored to botnet detection due to the lack of replicability conditions. Moreover, in a recent study,
Singh et al. [18] raised the “problem of comparison” as an open challenge for effective botnet detection,
stressing the inability of proper datasets and limited implementation descriptions as key constraints
for which developing a proper comparative methodology is not easy but necessary to significantly
improve results.

In order to provide a solid evaluation scheme aimed on proving the real effectiveness of common
classifiers applied for botnet detection, in this research we perform a thorough comparison between
a subset of supervised learning methods driven by a well-defined methodology. Our analytical
approach examines the patterns disclosed by different botnet samples when exchanging network data
from the zombie machine (bot) to the (C&C) server, defining six well-known supervised algorithms
for further comparisons. Thereby, our object of study is the detection of botnets grounded on
communication metrics measured at network flow level. To this outcome, we aim on developing robust
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machine learning models capable to deal with different botnet families for which network samples are
gathered from real execution testbeds. On the other hand, performing classification with unbalanced
data lead to unexpected behaviours unless a proper modeling is undergone. To tackle such limitations
on reference data samples, we deepen into data splitting strategies and calibration procedures carefully
examined to validate the real detection accuracy for specific botnet specimens. Our goal is also
to generate well-elaborated models evidencing both their real modeling and testing accuracy and
performance; for which a detailed calibration is provided. Furthermore, the Grid Search algorithm
lead to optimize each of the model parameters based on the overall accuracy. It is worth stressing
that our proposed methodology can also be extended to different classification algorithms or botnet
families provided that the necessary network samples and flow metrics are collected. Bearing those
considerations in mind, the main contributions of the presented research are listed as follows:

• In-depth literature review on malware recognition and the supervised learning methods most
frequently used for botnet detection. Stressing their challenges on the current landscape as well.

• Understanding the behavior of botnets by analyzing the patterns involving the communication
between bots and C&C server. Those expressed as network flow-based metrics.

• A comprehensive comparative methodology based on the selected supervised models by focusing
the analysis on eight botnet families.

• Providing a detailed parameterization of the machine learning models, underpinning their optimal
calibration and their testing and prediction results in the aftermath.

• An extended experimentation following the principles outlined above, along with
a comprehensive discussion on the baseline accuracy achieved by similar proposals.

• Establishing a preliminary set of reference supervised algorithms with the potential of serving as
benchmarking elements for further research.

The remaining of this document is structured as follows—Section 2 describes the state of the art
highlighting the contributions of previous research works on malware and botnet-related detection.
Section 3 describes the proposed methodology and the design of experiments aimed to validate our
analysis. A detailed description of the experimental results is presented in Section 4. Then, the results
discussion is elaborated in Section 5. Finally, the conclusions and future research lines are summarized
in Section 6.

2. State of the Art

An in-depth review of the literature evidences that most of the analytical techniques for malware
detection are nowadays grounded on artificial intelligence. Among the different malware specimens,
botnets are the object of study in this research and the analytical approaches for their detection can be
broadly categorized as those based on graph mining, machine learning and deep learning. For each,
the following subsections provide a summarized vision of relevant research works stressing their
advantages and potential drawbacks per evaluation scenario.

2.1. Graph Mining for Malware Detection

Wuchner et al. [19] proposed to employ compression-based network mining using the
Subdue algorithm to find matching subnetworks with the scoring function called “Maximum data
compression”. Hence, scoring the complexity of the quantitative data flow. Their research aimed to
define a detection model capable of detecting malware with high accuracy. To this end, the MALICIA
malware dataset was analyzed. This dataset is composed of 12 malware families such as Zeus, SpyEye
and Cleaman, among others. To conduct the experiments, the Cuckoo sandbox 2 was deployed to suit
the execution environment to capture the malware samples. The Subdue algorithm was used to extract
unknown malware patterns and retain those that meet the level of complexity allowed by applying the
Singleton pattern. Later, the Matcher classifies previously extracted malware patterns as either benign
or malicious and which data can be compressed to remove matching subgroups. All patterns that were
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found to be a match are grouped together in the “Feature Generator” array, which detects whether the
samples are benign or malicious. This approach was found to be more accurate than frequency-based
network mining and, in turn, it has shown that using quantitative data streams for mining improves
the quality of the mined patterns and the accuracy of the detection models.

Bou-Harb et al. [20] proposed the use of big data analysis using graph theory to identify the
meeting point of botnets for subsequent mitigation. Their approach took advantage of unusable
network IP addresses to identify malicious traffic on the Internet. The Carna botnet dataset
(about 100 GB size) was analyzed in this study. The method involved capturing the behavior of
an infected bot on an Internet scale to analyze its vulnerabilities. The statistical downward fluctuation
analysis was used to distinguish between probing activities and traffic from dark net data. A second
sample was made by analyzing the malicious behavior of malware specimens in a virtual environment
and a spread tree model was used to isolate the bot niches. The Erdos-Renyi method was used to
generate random graphs to determine the correlation between the malicious traffic and the probing
traffic analyzed in the second sample. This correlation was based on entropy measurements and
statistical tests to corroborate that the probing traffic was fact originated from the analyzed malware
samples. Using both methods, all the nodes with a bot-edge probability, that is, similar in behavior,
were removed successfully. Furthermore, it has been noticed that the latter nodes interacted more with
the BotMaster and, consequently, caused a greater propagation of the botnet. The authors demonstrated
as a general conclusion that the studied model provides a cost-effective network security solution to
deal with botnet detection.

On the other hand, Sahu et al. [21] proposed a hybrid technique based on directed acyclic networks
and Support Vector Machines (SVM) for malware detection. To carry out the experimentation, the KDD
Cup 1999 dataset was analyzed. The process started performing data reduction to obtain a subset
of unrelated characteristics modeling directed acyclic graphs (DAG). That is, validating that the set
of characteristics exists in the DAG space. The SVM classifier was based on the Euclidean distance
between the weights of its nodes and the values of the input vector. The experiment considered the
types of attacks labeled in the KDD Cup 1999 dataset being them Normal, DoS (Denial of Service),
Probing, U2R (User to Root) and R2L (Remote to User) attacks. At the end of the tests, the model
performed correctly for the proposed task, showing higher precision and accuracy metrics with the
two classification methods (ISMCS and CIDMS), having a 84% detection rate in the presence of
normal traffic, 81% for DoS, 82% for Probing attacks, 85% for U2R attacks and 83% in the case of
R2L attacks. Thereby, the proposed method has proven high accuracy and precision when detecting
malware attacks.

2.2. Machine Learning Techniques

Wei et al. [22] proposed Androiddetect, a mobile application to detect malicious malware
specimens under a supervised learning model. Naive Bayes and J48 decision tree algorithms were
used for modeling the classifier, enabling them to analyze the behavior of malware and then categorize
the samples as malicious and benign applications. A total of 219 malicious samples were analyzed,
where 102 applications are read applications and the 117 applications are of unknown types as they
were labeled in the virus database. At the experimentation stage, malicious applications to leak private
information by sending text messages were installed. Then, the behavior of those specimens was
analyzed in the search of patterns (i.e., system calls) that led to characterize the malware. At the testing
phase, the analysis was performed considering 200 read applications (100 benign and 100 malicious
applications) and 180 types of hybrid applications (90 benign and 90 malicious applications) and the
authors demonstrated that Androiddetect performed effectively, reaching average accuracy (ACC)
rates of 82.5% and 86% for Naive Bayes and J48 algorithms, respectively, and so it managed to
reduce the average false positive rate (FPR) as well. Androiddetect, however, obtained a relatively
low percentage in the TPR category but this issue was compensated with better results in detecting
malware attacks, both in terms of ACC and TPR.
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Gadelrab et al. [23] proposed a botnet detection model named BotCap based on machine learning
techniques. Their research aims to address two major tasks—the in-depth analysis of network
traffic packets and the gathering of information from infected hosts in the network. The collected
dataset included two groups of botnets differentiated by their operation mode. The first group with
Aryan, Ngr and Rxbot as botnets that communicate through an IRC channel; and the second group
having Black Energy, Zeus and Vertexnet as botnets performing HTTP communications with the
server. The dataset collects both benign and malicious traffic samples. J48 decision tree and Support
Vector Machine (SVM) algorithms were trained to distinguish network traffic as benign and botnet.
From the 55 features included in the dataset, a subset of 9 were selected as the most relevant for the
analysis. Then, both algorithms were validated by computing the accuracy, recall and F1 measurement.
In order to optimize the models, the Grid search algorithm was applied before performing a 5-fold
cross-validation analysis. Their results showed that the proposed approach is capable of detecting
individually infected hosts on a local network without the need to collect much information from the
infected computers.

Yerima and Sezer [24] developed the DroidFusion framework to train a set of machine learning
algorithms aimed at developing strong supervised models to detect malware attacks. To this end, four
different datasets containing features extracted from two publicly available malware samples were
analyzed. In the first dataset, taken from the Malgenome-215 project, cross-validation was used to
extract the test data and build the DroidFusion model. The framework first evaluates the test data
according to the following classification algorithms—J48 decision tree, Forest REP, Random Forest-100,
Random Forest-9 and Perceptron. In relation to the first dataset, it was possible to demonstrate that
the DroidFusion classification was more accurate than the base classifiers for both the malicious and
benign samples with a weighted F1-score above 0.98. Regarding the second dataset, Drebin-215,
the combination of supervised algorithms performed more accurately than the base classification
algorithms with a F1-measurement of 0.9872, scoring slightly better than Malgenome-215. McAfee-350
was the third dataset to be analyzed with similar F-1 scoring results of 0.9788, closely followed in
this case by J48 and Random Forest-100 particularly in precision when detecting malware and benign
classes. Finally, testing the McAfee-100 dataset the results clearly outperformed the group of ensemble
algorithms trained for this experiment, measuring a F-1 score of 0.9777. In the light of the evaluation
results, it was demonstrated that DroidFusion’s combination of supervised models and calibration
strategy improved the resultant accuracy and precision to detect several malware specimens.

Zhou and Pezaros [25] proposed a methodology targeting the detection of Zero-Day intrusions,
but also addressing high accuracy levels for well-known malware attacks. Their proposed methodology
is based on the analysis of behavioral metrics extracted from the CICFlowMeter-V3 tool with six
machine learning algorithms. The CIC-AWS-2018 dataset was used to conduct training and validation
of the supervised models. This dataset contains seven types of scenarios, among them botnet attacks,
that have been trained with six machine learning algorithms—Random Forest, Naive Bayes, Decision
Tree, Neural Networks (MLP), Discriminant Analysis and K-Neighbors. On the other hand, eight novel
types of intrusions were included in the test dataset and therefore the capability of detecting zero-day
intrusions is carried out. The performance of the trained models was cross-validated in terms of
accuracy, recall, F1-score and overhead time. The overall results showed that most of the classifiers
obtained high accuracy and F1 scores detecting the majority of network threats. In case of botnet
detection, the F1 score of the classifiers showed an outstanding performance of about 1.0, with the
exception of the Naive Bayes algorithm which presented the lowest performance reaching a 0.68 score.
It was also shown that the Decision Tree model presented a lower overhead time in contrast to the rest
of classifiers. It is to note that the Decision Tree model seems suitable for working with statistical data
collected from the CICFlowMeter tool, hence prompting as a proper method to detect botnet patterns.

Alenazi et al. [26] proposed a novel detection framework designed for detecting HTTP botnet
attacks. Three models are designed with this objective in mind. Firstly, the Domain Mass Detector
analyzes features of DNS queries, such as the total number of queries or the number of geo locations
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of resolved IP addresses, associated with malicious fast flux DNS servers to recognize botnet patterns.
Secondly, the Application Detector profiles host applications by scrutinizing DNS traffic requests
originated by legitimate applications to be compared with suspicious profiles based on domain features
such as the FQDN length, query type, among others. In addition, the Time Series Detector examines
possible timing behavioral patterns of HTTP bots where scheduled communications between the
C&C server and the bot have been found by analyzing inter-queries intervals. Based on this criterion,
the three models carried out the detection of HTTP botnets by comparing three classifiers—Gaussian
Naive Bayes, Random Forest and Decision Tree. The ISOT HTTP Botnet Dataset was used for validation,
which in turn contains following HTTP botnet specimens—Blackout, Zeus, Blue, Black Energy, Zyklon,
Citadel, Liphyra and Betabot. The obtained results confirmed that the Naive Bayes Gaussian model has
a low performance compared to the Random Forest and Decision Tree models. On average, the Random
Forest model scored above 99%, except for the Application Detector with 94.8%. The same pattern was
observed for Decision Tree, whose accuracy was higher than 99%, but 95.5% when computed for the
Application Detector.

Gonzalez-Cuautle et al. [16] proposed the Synthetic Minority Oversampling Technique (SMOTE)
to address the difficulties to perform botnet classification in highly unbalanced datasets. The method
was intended to improve the classification process with synthetically-generated balanced data,
and optimally calibrating the parameters of the different ML algorithms in order to avoid overfitting.
In this research work the authors analyzed two datasets—ISCX-Bot-2014, provided by the Canadian
Institute for Cybersecurity with 16 different types of botnets reported; and the CIDDS-001-Coburg
Intrusion Detection dataset, provided by the German University of Coburgin with multiple intrusion
attacks such as port scanning, brute force and DoS; as well as benign observations are reported. The fact
that significantly more benign samples than malicious ones are present, is a distinctive handicap for
both datasets. To solve this unbalancing issue, the SMOTE oversampling technique was used and,
as a result, the resultant minority and majority classes remain properly balanced for training five
classifiers—K-nearest Neighborhoods, Support Vector Machine, Logistic Regression, Decision Tree and
Random Forest. The extraction and selection of the most relevant characteristics was performed by the
Principal Component Analysis (PCA) algorithm and then the Grid Search algorithm estimated the
optimal hyperparameters for each classification model. Finally they evaluate the classification models
using the precision, recall and F1-score metrics. The results demonstrated SMOTE + GS capability to
improve the prediction of malicious samples with highly unbalanced data sets in terms of accuracy,
with measurements ranging from 97.35% and 98.72% for the SVM and KNN classifiers, respectively).

A multi-layered framework for botnet detection is proposed by Khan et al. [27], where it
is addressed the detection of P2P botnets. This research performs an in-depth analysis of traffic
patterns inherent to P2P botnets on which machine learning classifiers can lead to categorize the
malicious and normal observations. The framework encompasses four analytical layers. The first
layer filters out non-P2P traffic to reduce processing overhead. For this reason, TCP control packets
are selected to perform the identification without affecting the precision rate. In the second layer,
P2P and non-P2P traffic is characterized by combining port filtering, DNS queries and a fast heuristic
P2P identification method. Then, in the third layer, feature reduction helps in diminishing the
chances of overfitting the classification model. In addition, feature extraction seeks for those features
whose impact is more significant in the identification of the malicious traffic. Finally, in the fourth
layer, a binary classifier categorizes P2P traffic as normal or botnet. In the experimental validation,
the Decision Tree algorithm performed with a detection rate of 98.7% once applied upon the CTU and
ISOT datasets, which outperformed other proposals based on Logistic Regression, Artificial Neural
Networks and KNN.

2.3. Deep Learning Methods

Cakir and Dogdu [28] proposed a novel method of malware representation to extract the
characteristics based on deep learning (word2vec). The Gradient Boosting Machine algorithm was



Sensors 2020, 20, 4501 7 of 31

used to classify the malware and the k-fold cross validation method was used to reduce the bias.
Its goal was to achieve an accuracy rate for malware, which scored between 94% and 96%. A malware
specimen dataset released by Microsoft in the year 2015 was analyzed which only considered families
that contained the largest number of malware samples such as Ramnit, Lollipop, Kelihos_ver3, Vundo,
Tracur, Kelihos_ver1, Obfuscator.ACY and Gatak. The samples were divided into 4 datasets to be tested
independently with 5-fold cross validation. Two variables were considered for evaluation—accuracy
function and log loss, none of them exceeding a 6% error rate. The results showed that the higher the
malware sample size the better the accuracy rate for detecting attacks in the analyzed datasets.

The work presented by Tran et. al. [29] explored the application of a Long Short-Term Memory
network (LSTM) for combating bots with Domain Generation Algorithms (DGA) for randomly creating
a large number of domains from where a subset is actually used to communicate with the C&C server.
The authors propose the LSTMI.MI algorithm, a novel cost-sensitive learning approach to address the
class-imbalanced problem. Initially, all the abnormal domains are labeled as a single DGA class to
conduct a binary classification given a domain name. Once categorized as automatically generated,
the algorithm performs a second multi-class analysis to properly label the domain within the possible
malicious categories. Botnet characterization is possible by extracting domain name features difficult to
evade by adversaries. An extensive experimentation was performed on a dataset set fed by non-DGA
(Alexa) and 37 DGA classes. As the dataset exhibits different imbalance degrees, the LSTMI.MI proven
higher accuracy degrees than similar approaches. The F1-score for two-class cost-sensitive was 0.9849
for non-DGA and 0.9845 for DGA. In the multi-class scenario, an average F1-score of 0.8751 evidenced
an acceptable accuracy degree, hence validating the adequateness of this supervised method in the
area of botnet detection.

2.4. Data-Driven Intrusion Detection Approaches

Intrusion Detection Systems (IDS) are pivotal defensive elements to address the detection of
diverse cyber-threats in current network deployments. They are mainly categorized in the research
literature are signature-based and anomaly-based systems. Signature-based IDS requires specific
patterns of malicious samples to perform detection, which raises an issue against never seen threats.
On the other hand, anomaly-based IDS profile the behaviour of network traffic in order to detect
deviations when no traffic categorization can be performed [30]. Different anomaly-based IDS
deployments leverage data-driven learning approaches in order to detect botnets accurately, both when
dealing with existing specimens and with new variants as well. However, and despite they entail
widely adopted solutions, they are expected to adapt for facing the emerging challenges concerning
explainability and strengthening against adversarial evasion tactics [31]. Thereby, the following related
research works pave the way towards data-driven strategies on intrusion detection.

Wahab et al. [32], a dual solution to optimally distribute DDoS attack detection loads among
virtual machines under a limited amount of cloud resources was proposed. The first approach
allows the hypervisor to monitor the VMs activities to identify any malicious patterns and collecting
suggestions from other hypervisors that had similar interactions. Monitoring and suggestions-based
data were incorporated using Bayesian inference to estimate confidence scores. In addition, a
resource-based confidence score simulating a play-role game between the hypervisor and the attacker
was designed. It is intended to mislead the attackers who infer that some VMs are not being rigorously
monitored. The results of this research showed that the dual modeling raised the detection accuracy
of DDoS attacks in about 26%. In the research conducted by Abdel Wahab et al. [33] proposed
a repeated game of Bayesian Stackelberg as a mechanism to detect and defend resources against
simultaneous attacks of different types for cloud-based systems. His research aimed at developing
a cloud system that can detect multiple types of attacks. The analysis of a Data-Driven Security
(DDS) dataset contained logs of data from AWS honeypots. Once the data from the honeypots was
collected a one-class SVM detector identifies abnormal activities, making it useful even with no
previously registered attacks. The proposed solution outperforms the other strategies in detection
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performance by more than 7%. By having an optimal detection load distribution among VMs, its
scalability increases compared to Collabra, which needed to analyze and monitor all the instantiated
VMs. In a similar manner, Sotelo et al. [34,35] proposed a clustered-based analysis to detect
anomalous scaling processes carried out in virtualized environments, laying the foundations for
profiling workload-based and instantiation-based Economic Denial of Sustainability (EDoS) attacks,
targeted against cloud deployments.

Li et al. [36] proposed a data-based mimetic intrusion detection game model called GLIDE
as a defense against intrusion attacks for edge computing networks, combining a strategy of
multi-redundancy voting algorithms to optimize their intrusion detection rate at edge computing
network terminals and game theory. The model was designed to establish a measure to detect and
eliminate intrusion attacks in complex environments for edge computing networks because they are
characterized by having ambiguous interconnections. A comparison of their proposal with Fog-IDS
and EIDS models was performed, showing that GLIDE obtained a higher performance in detecting
malicious traffic with a hit rate higher than 80%. On the other hand, Ieracitano et al. [14] proposed
a statistical analysis and an intelligent intrusion detection system (IDS) driven by autoencoders (AE),
which was able to recognize malicious threats and ensure greater security in any public access system.
The NSL-KDD data set was analyzed for experimental validation. The IDS detected multiple attack
types such as DoS, R2L and Probe. The results showed that the AE50 classifier outperformed other
methods with 84.21% precision in binary classification and 87% precision in multi-classification.

2.5. Research Gaps on Comparative Assessment

The four approaches reviewed in this research have exhibited a variety of applications
of supervised learning to conduct botnet detection even when their modus operandi differ substantially.
In particular, machine learning methods such as Decision Trees, have embraced a wide range
of detection scenarios where their effectiveness has been demonstrated. However, it is to bear in
mind the comparison challenges [18] stated in Section 1 emerge when dealing with unbalanced data
samples, weak feature extraction and/or selection procedures, scarce description of the supervised
models parameterization, or a combination of those factors, pose major limitations to develop accurate
botnet detection models. Thereby, the main purpose of our research lies in filling such methodological
gap for comparative purposes and so conducting a fine-grained evaluation scheme by instantiating
a subset of the most effective ML techniques for a thorough measurement of accuracy metrics when
detecting botnets.

3. Methodology

This section describes the research methodology, the description of datasets, flow metric
measurements, feature selection and machine learning model construction.

3.1. Processing Stages

The analysis of traffic-flow patterns targeted on observing, understanding and characterizing
the behavior of botnets at the network level is the object of study in this research. To illustrate the
communication scheme and the performed analysis of such network traffic-flow patterns, Figure 1
depicts the client-server architecture where botnet traffic is exchanged from the compromised machine
(bot) to the Command and Control (C&C) server. It is to note that regardless of the number of
machine learning methods considered in this proposal, they can be easily extended to further
algorithms as our methodology remains generic. Grounded on the botnet analysis conducted on
similar proposals [22–24], and to address the proper characterization of this variant of malware,
five processing stages have been defined—collecting network traffic samples (benign and malicious),
flow metrics measurement, implementation of machine learning models, training, validation and
prediction assessment. They are explained in the following subsections.
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Figure 1. Communication scheme for metrics selection and model comparison.

3.1.1. Collecting Network Traffic Samples

At this stage, traffic samples are obtained from different botnet specimens captured on the
network, as well as normal traffic observations. These samples are commonly gathered with traffic
monitoring tools (e.g., Wireshark, Tcpdump), and the captured network packets are exported using
standardized formats such as PCAP. Similarly, malware datasets of raw network traffic are represented;
or in some cases aggregated metrics are already processed from the captured samples either at the
packet or flow level. This stage of the methodology opens the possibility for deploying monitoring
tools to obtain traffic captures in a controlled environment or collect them from available datasets.
For experimental purposes, the latter consideration has been assumed in this research since our goal is
to strengthen the comparison.

3.1.2. Flow Metrics Measurement

Given a collection of network packets, relevant traffic-flow metrics are measured to analyze
common traffic patterns that characterize the behavior of different botnet specimens. Network flow
metrics typically represent quantitative relationships such as—the number of packets transmitted
from the source IP address 192.168.50.31 to the destination 192.168.50.88 in the forward direction is 3,
with one packet going backward. Flow-level metrics have been extensively used to model data-driven
detection models to tackle with various network threats, having defensive solutions against DDoS as
one of the most recurrent applications in the literature [37].

3.1.3. Model Implementation

In this phase the detection model is built with the selected classifiers. As a result of the literature
review, some of the most prevalent methods for botnet detection have been chosen—Decision Tree,
Random Forest, Naive Bayes, K-Nearest Neighbors and Support Vector Machines (SVM).
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3.1.4. Training

At this stage, the models are trained using a subset of the dataset. The training approaches and
the tuning processes applied for each machine learning method are detailed later in this section.

3.1.5. Validation

The results of each detection model are evaluated following a three-step process—(1) setting the
training results as a baseline, (2) performing a cross-validation analysis on the training data set for
each botnet family, and (3) assessing the botnet prediction accuracy using the test data set.

3.1.6. Global Assessment

Based on the detection capabilities previously acquitted, an in-depth analysis is carried out,
putting into perspective the adequacy of the detection methods for each botnet type.

3.2. Datasets of Botnet Traffic

In order to conduct the experimental validation of this proposal, two publicly available datasets
have been used in this research:

3.2.1. Cse-Cic-Ids2018 Dataset

This dataset is the result of a collaborative project between the Communications Security
Establishment (CSE) and the Canadian Institute for Cybersecurity (CIC) [38]. This dataset collects
daily traffic samples composed by benign and intrusion data captured in a virtualized environment.
The dataset includes raw network packets (in .pcap format) and Windows/Ubuntu log files monitored
on each client node. In addition, the dataset provides 80 network flow-traffic features extracted
with CICFlowMeter-V3 (in .csv format) on a per-machine basis, thus providing flow-based statistical
information. The different attacks simulated in the same dataset were—brute force, Botnet, DoS, DDoS,
web attacks and infiltration of the network from inside. For each type of attack, network topology has
been deployed in a private AWS cloud intrusion [39–41]. As this research is focused on the study of
botnet attacks, we have analyzed traffic samples from two different botnet families—Zeus and Ares.

3.2.2. Isot Http Botnet Dataset

This dataset is the result of a research work of Alenazi et al. [26] and differentiates
two broader categories. The first, provides a botnet dataset generated by capturing malicious
DNS traffic only, whereas the second includes benign traffic obtained after capturing legitimate
DNS traffic generated by different software applications such as antivirus, online chat and instant
messaging applications (e.g., Skype, Facebook, Messenger), among others. This information
was collected to develop a virtual environment used to implement different kits of exploits
both for HTTP botnets and legitimate software applications. There, nine command and control
(C&C) servers were implemented, one for each botnet type. Domain names were configured for
the C&C servers with the purpose of monitoring the behavior of outgoing DNS queries from
the client nodes. For instance, the Citadel botnet C&C server domain name was registered as
citadel.botnet.isot. The IP/name distribution of bots within the virtual environment was—192.168.50.14
for zyklon.botnet.isot, 192.168.50.15 for blue.botnet.isot, 192.168.50.16 for liphyra.botnet.isot,
192.168.50.17 for betabot.botnet.isot, 192.168.50. 18 for blackout.botnet.isot, 192.168.50.30 for
citadel.botnet.isot, 192.168.50.31 for citadel.botnet.isot, 192.168.50.32 for be.botnet.isot (Black energy)
and 192.168.50.34 for zeus.botnet.isot [42].

3.3. Flow-Metrics Measurement

The CIC-AWS-2018 flow features are already represented in csv format, so no additional data
transformation was required. However, as the ISOT HTTP Botnet Dataset is composed of five pcaps
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files, they were processed through the CICFlowMeter tool. This application allowed the generation of
csv files with 84 flow-based metrics. For each report, the different types of exploits were labeled using
the Wireshark tool and only those records referred to botnets were preserved. Upon the five obtained
reports, it was decided to work with the fourth one as it contained samples of the 8 botnets families in
a time frame elapsing from 1 June to 3 June 2017.

3.4. Feature Selection

The following considerations have been assumed for feature selection.

3.4.1. Behavioral and Contextual Features

From the total number of flow-based attributes obtained in the previous step, two groups of
features were selected in accordance with previous research. The first group of eight characteristics
was chosen following the methodology introduced by Sharafaldin et al. [41], where a Random
Forest Regressor was used to obtain the behavioral metrics (Subflow_Fwd_Byts, Subflow_Bwd_Byts,
TotLen_Fwd_Pkts, TotLen_Bwd_Pkts, Fwd_Pkt_Len_Mean, Bwd_Pkt_Len_Mean, Fwd_Pkts/s and
Bwd_Pkts/s) described in Table 1. The second group of nine features was added based on the
methodology presented by Gonzalez-Cuautle et al. [16], where the ISOT HTTP Botnet Dataset was
used ( Src_Port, Dst_Port, Flow_Duration, Flow_Byts/s, Flow_Pkts/s, Tot_Fwd_Pkts, Tot_Bwd_ Pkts,
Subflow_Bwd_Pkts and Subflow_Fwd_Pkts). 2 features were selected using the ‘feature_importances’
criterion to improve the precision of the Random Forest algorithm—Fwd Pkt Len Max and Fwd Pkt
Len Min. Finally, 2 features were added to own criteria to provide more information—“Protocol” and
“Label”. Consequently, the CIC-AWS-2018 dataset has 19 input variables and one output variable;
whereas the ISOT HTTP Botnet dataset has 20 input variables and one output variable. This is because
the “Src_Port” attribute was not found the CIC-AWS-2018 dataset. The name of the variable “Label”
has been changed to “Output”. These features are described in Table 1.

Table 1. Classification features used in CIC-AWS-2018 dataset and ISOT HTTP Botnet Dataset.

Type Feature Name Description

Descriptive metrics

Label (Output) The class that is assigned to the different malware samples.
Src_Port Source port number
Dst Port Destination port number
Protocol Transport protocol

Behavioural metrics

Flow_Duration Flow duration in microseconds
Tot_Fwd_Pkts Total number of packets transmitting in forward direction
Tot_Bwd_Pkts Total number of packets transmitting in backward direction
TotLen_Bwd_Pkts Total size of packets transmitting in forward direction.
TotLen_Fwd_Pkts Total size of packets transmitting in backward direction.
Fwd Pkt Len Max Maximum packet size in the forward direction
Fwd Pkt Len Min Mínimum packet size in the forward direction
Fwd_Pkt_Len_Mean Average size of packet transmitting in forward direction.
Bwd_Pkt_Len_Mean Average size of packet transmitting in backward direction.
Flow_Byts/s Number of bytes per second.
Flow_Pkts/s Number of flow packets per second
Fwd_Pkts/s Flow packet rate transferred in forward direction per second
Bwd_Pkts/s Flow packet rate transferred in backward direction per second
Subflow_Fwd_Byts Average number of bytes in a subflow in forward direction.
Subflow_Bwd_Byts Average number of bytes in a subflow in backward direction.
Subflow_Bwd_Pkts Average number of packets in a subflow in forward direction.
Subflow_Fwd_Pkts Average number of packets in a subflow in backward direction.

3.4.2. Exploratory Data Analysis

To get a general idea of the CIC-AWS-2018 distribution, a bar chart was plotted for each feature
in contrast to the class attribute as shown in Figure 2. It can be noticed a concentration of botnet
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samples with 27.27% for the TCP (Transmission Control Protocol) protocol. The destination ports
associated with this protocol are 8080 and ephemeral ports, a range of TCP ports that require a number
of auxiliary ports to communicate with other machines [43]. Because the number of benign samples is
highly concentrated on TCP traffic, the entire dataset was filtered by TCP. Hence, the portion of botnet
samples has risen to 34.35%.
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Figure 2. Distribution of benign and malicious traffic samples in the CIC-AWS-2018 dataset.

When the ISOT HTTP Botnet dataset was analyzed, it was found that the majority of flows were
transmitted using the UDP protocol (17). Additionally, a comparative analysis between botnet types
was carried out to find out the concentration of them across the dataset. The result of this analysis is
shown in Figure 3, where it can be seen that the Citadel botnet represents the highest percentage of
samples (41.16%) and the Zyklon botnet presents the lowest proportion (0.24%) of the dataset.
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Figure 3. Distribution of botnet traffic samples grouped by class in the ISOT HTTP Botnet dataset.
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3.5. Machine Learning Models Construction

The main goal is to identify whether the information received in the flow belongs to benign
or malicious traffic. This being the main target of supervised classification, the objective is to
find the best classification model that fits both datasets. Since the proposal introduced a novel
reference model for traffic-flow based botnet detection, they are expected to serve as preliminarily
benchmarking elements for further applications, thus needing to fulfill the following requirements—(1)
they must be early-adopted solutions; (2) their pros/cons shall be well understood by the research
community; and (3) there is a large variety of adaptations/modifications in the state-of-the-art
solutions; and (4) to outperform them is viable, so they motivate their comparison against novel
proposals. To this end, exhaustive tests are carried out with the most prevalent machine learning
classification models for botnet detection documented in the research literature, as it is supported by
Alenazi et al. [26], Gonzalez-Cuautle et al. [16] and Zhou & Pezaros [25]. Those classifiers are—Decision
Tree, Naive Bayes, Random Forest, K-Nearest Neighbors and Support Vector Machine (SVM). It is
to bear in mind that such selection fits also with the data-driven IDS based on anomaly detection as
pointed by Apruzzese et al. [17] in a deep analysis of the family of algorithms best suited for botnet
detection. For all cases, the datasets are splitted as 80% for training the model and 20% for testing.
Some considerations have been assumed for each classifier, as explained in the following subsections:

3.5.1. Decision Tree Implementation

The maximum number of characteristics depends on the number of input variables in the dataset.
The minimum amount of sample size required to divide the internal node equals 2 and to be in the leaf
node equals 1. To define the maximum tree depth level, a fit chart was used for both datasets. For the
ISOT HTTP Botnet dataset the model was created with a depth level of 51, and for the CIC-AWS-2018
dataset it was observed that a high accuracy rate was obtained with a depth level of 14.

3.5.2. Gaussian Naive Bayes Implementation

Given the simplicity of this method, the parameter that interprets the variance of all features was
set to 1 × 10−10.

3.5.3. Random Forest Implementation

In this model, the number of trees built from 12 and the maximum number of features depends
on the number of input variables in the dataset. The minimum number of the samples required to
split is 2, and the minimum number of the samples to be at leaf node is 1. Upon this parameterization,
the maximum tree depth is defined using a fit chart for both datasets. For the ISOT HTTP Botnet
Dataset the model is built with a depth level of 35 and for the CIC-AWS 2018 dataset it is observed that
with a depth level of 22 a high accuracy rate is obtained.

3.5.4. K-Nearest Neighbors Implementation

For the implementation of this algorithm, it was decided to use the Euclidean distance and
the leaf size is kept as 30 by default. To find the nearest K neighbor, Gonzalez-Cuautle et al. [16] in
their research implemented a Grid Search algorithm for defining one of their parameters resulting of
this way three algorithms, which are Ball tree, KD tree and Brute Force. Taking into consideration
these three algorithms, it was observed that the only algorithm that correctly predicted all classes
was KD tree with a value of n_neigbors = 1 for the ISOT HTTP Botnet Dataset and with a value of
n_neighbors = 2 for the CIC-AWS-2018 dataset.

3.5.5. Support Vector Machine Implementation

The OneVsRestClassifier Multiclass was used to predict several classes. LinearSVC was used for
the construction of the model because it better suits large datasets [44]. It was decided not to use dual
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optimization since the number of samples exceeds the number of features contained in both datasets.
The parameters that define the tolerance (tol) and the adjustment parameter (C) were obtained by
heuristics, so the tolerance was defined with 1 × 10−10 and C equal to 175. The maximum number of
iterations is 12,000.

3.5.6. Grid Search Implementation

Using the features already defined in Table 1, the implementation of each of the models was
explained in the previous subsection and is also visually defined in Appendix A, which shows the list
of parameters used in each of the models. In this appendix, the CIC-AWS-2018 dataset was filtered by
the TCP protocol and the ISOT HTTP Botnet Dataset was divided into minority and majority classes
to balance both datasets. After dividing the ISOT HTTP Botnet Dataset into majority and minority
classes, the parameter which estimates the weights of the classes for the unbalanced data sets called
“class_weight” was modified in the Random Forest, Decision Tree and SVM models configuration as
“balanced” because it allowed to replicate the smaller class until it had as many samples as the larger
one, but implicitly.

In order to improve the performance of each of the models, the Grid Search algorithm was used.
For this purpose, a range of possible values was defined for each parameter in the different ML models,
which are indicated in Appendix B. The result of this configuration is shown in Table 2, where the best
hyperparameters per machine learning model are detailed.

3.6. Execution Environment

The experimental validation was developed in Jupyter with Python 3.3.2. The Scipy,
Scikit-learn [44] and Pandas machine libraries were used to implement the detection models.
The experiments were run in a Windows 10 host with 8GB RAM and a 2.8 GHz Core i7 processor.
The DecisionTreeClassifier method was used in the implementation of decision trees and the
RandomForestClassifier method was used for ensemble models. Likewise, the Gaussian method
was used for the Naive Bayes model whereas the LinearSupportVectorClassifier method was used
for implementing the SVM model. Finally, the KNeighborsClassifier method was used in the case of
Nearest Neighbor models.
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Table 2. ML models + GS-based hyperparameters (λ).

ML Models λ CIC-AWS-2018 (TCP) ISOT HTTP Dataset
Original Minority Class Majority Class

KNN

Algorithm used to compute nearest neighbors KD tree Brute KD tree Ball Tree
Number of neighbors to use 2 1 1 1
Leaf size 30 30 30 30
Weight function used in prediction Uniform Uniform Uniform Uniform

SVM

Regularization parameter C 10 10 10 10
Estimated class weights for unbalanced datasets Balanced Balanced
Penalty l2 l2 l2 l2
multi-class strategy One-vs-rest One-vs-rest One-vs-rest One-vs-rest
Select the algorithm to either solve the dual or primal optimization problem False False False False
Tolerance for stopping criteria 1 × 10−20 1 × 10−20 1 × 10−20 1 × 10−20

Maximum number of iterations to be run 12,000 12,000 12,000 12,000
Kernel type to be used in algorithm Linear Linear Linear Linear

DT

Maximum tree depth 20 35 20 35
Estimated class weights for unbalanced datasets Balanced Balanced
Number of features for best split 19 20 20 20
Function to measure split quality GINI GINI GINI GINI
Strategy used to choose split at each node Best Best Best Best
Min. Number of samples required to be at leaf node 2 10 1 20
Min. Number of samples required to split 10 10 2 10

RF

Use bootstrap samples when building trees True True True True
Estimated class weights for unbalanced datasets Balanced Balanced
Function to measure split quality GINI GINI GINI GINI
Maximum tree depth 22 10 35 35
Number of features for best split 19 20 20 20
Min. Number of samples required to be at leaf node 10 2 1 1
Min. Number of samples required to split 10 2 2 10
Number of trees in forest 12 25 12 12

NGB Smoothing variable 1 × 10−20 1 × 10−10 1 × 10−20 1 × 10−20
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4. Results

This section provides a detailed explanation of the experimental results obtained in this research.

4.1. Cic-Aws-2018 Dataset

The CIC-AWS-2018 test dataset was evaluated with the following supervised learning
classifiers—Random Forest, Decision Tree, Naive Bayes Gaussian, Support Vector Machine (SVM)
and K-nearest neighbours. After analyzing the original CIC-AWS-2018 dataset, it was found that the
Random Forest model turned out to be the most appropriate to correctly predict a botnet with 99.998%
of precision over the rest of the models with a slight difference, with the exception of the Naive Bayes
model (43.831% of precision). However, in spite of the average accuracy exceeding 94%, the results are
biased, so it was necessary to balance the data. For this reason, the CIC-AWS-2018 dataset was filtered
by TCP, being the predominant transport protocol as it is shown in Figure 2, where most botnets are
grouped. Tables 3 and 4 show the higher precision obtained by filtering the CIC-AWS-2018. It is to
note that the detection accuracy broadly increases after implementing the Grid Search algorithm in
each of the evaluated models. Based on these results, it is seen that Naïve Bayes obtains the lowest
performance compared to other classifiers.

Table 3. Comparative analysis of ML models on the CIC-AWS-2018 dataset filtered by Transmission
Control Protocol (TCP) (A).

Metric Type Random
Forest

Random
Forest +
GS

Decision
Tree

Decision
Tree + GS

K-nearest
Neighbors

K-nearest
Neighbors
+ GS

Precision Benign 99.998% 99.998% 99.998% 99.998% 99.985% 99.986%
Bot (Zeus and Ares) 100.00% 100.00% 100.00% 100.00% 99.982% 99.979%

Recall Benign 100.00% 100.00% 100.00% 100.00% 99.991% 99.989%
Bot (Zeus and Ares) 99.996% 99.996% 99.996% 99.996% 99.972% 99.974%

Accuracy 99.999% 99.999% 99.999% 99.999% 99.984% 99.984%

Table 4. Comparative analysis of ML models on the CIC-AWS-2018 dataset filtered by TCP (B).

Metric Type Gaussian
Naïve Bayes

Gaussian
Naïve Bayes
+ GS

Support
Vector
Machines
(SVM)

Support
Vector
Machines
(SVM) + GS

Precision Benign 99.962% 99.025% 99.940% 99.943%
Bot (Zeus and Ares) 77.855% 79.780% 86.972% 86.904%

Recall Benign 85.197% 87.019% 92.143% 92.186%
Bot (Zeus and Ares) 99.939% 98.355% 99.895% 99.898%

Accuracy 90.245% 90.901% 94.812% 94.821%

4.2. Isot Http Botnet Dataset

The results of the ISOT HTTP Botnet Dataset are shown in Tables 5 and 6. There, the precision
results of the ML models, before and after implementing the Grid Search algorithm, are detailed. It is
observed that the GS-based models increase their accuracy, precision and recall rate. This case was
observed when all models increased a precision rate of 100%, except for KNN which performed over
93%, to detect the Blackout botnet. Only the Random Forest and Decision Tree models were able to
detect a high percentage of precision but a low percentage of recall to the Liphyra botnet. Compared
with Decision Tree and Random Forest models, KNN reduced its precision rate for the majority of
the botnets, as is the case of Liphyra. The Naive Bayes obtained a low percentage of precision but
a high recall rate when analyzing Liphyra. In the case of the Citadel botnet, it was observed that
all algorithms correctly detected this specimen in a virtual machine with an IP 192.168.50.31 but its
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precision significantly lowers when evaluated in the virtual machine with IP 192.168.50.30. Based on
these results, it is possible to remark that the detection of the Citadel botnet might be influenced by the
virtual execution environment.

Table 5. Comparative analysis of ML models in the ISOT HTTP Botnet dataset (A).

Metric Botnet Random
Forest

Random
Forest +
GS

Decision
Tree

Decision
Tree + GS

K-Nearest
Neighbors

K-Nearest
Neighbors
+ GS

Precision

Blackout 100.000% 100.000% 100.000% 100.000% 93.019% 93.019%
Blue 47.069% 74.235% 39.230% 74.510% 35.771% 35.696%
Liphyra 33.993% 100.000% 18.992% 100.000% 13.729% 13.729%
Black Energy 96.982% 98.725% 97.135% 99.236% 91.174% 91.174%
Zeus 82.626% 81.948% 83.255% 81.967% 74.941% 74.936%
Zyklon 94.595% 100.000% 88.136% 97.938% 53.061% 53.061%
Citadel 54.314% 57.923% 53.342% 58.855% 51.930% 51.980%
Citadel2 79.709% 81.212% 79.319% 79.116% 73.756% 73.831%

Recall

Blackout 100.000% 99.916% 100.000% 99.916% 82.857% 82.857%
Blue 29.105% 21.524% 38.055% 21.080% 36.538% 36.501%
Liphyra 16.694% 11.994% 18.314% 11.994% 13.128% 13.128%
Black Energy 96.302% 96.419% 96.341% 96.030% 86.454% 86.454%
Zeus 90.594% 97.376% 83.553% 97.017% 77.337% 77.337%
Zyklon 81.395% 79.845% 80.620% 73.643% 20.155% 20.155%
Citadel 54.355% 57.114% 55.702% 49.455% 51.956% 52.033%
Citadel2 79.832% 81.346% 78.288% 84.183% 73.248% 73.293%

Accuracy 76.604% 79.115% 74.696% 78.893% 69.025% 69.054%

As the Zyklon botnet contains fewer samples in the dataset, its analysis exhibited that Random
Forest and Decision Tree models are the only ones capable of obtaining a high precision but
a low percentage of recall. On the other hand, the Naive Bayes and SVM models obtained a low
percentage of both precision and recall when analyzing the Zyklon and Blue specimens, thus failing
to correctly classify those samples. Likewise, SVM were unable to classify the Liphyra botnet as
well. Again, these results are explained due to the fact that there is a shortage of samples in of these
specimens in the dataset as noted in Figure 3.

Because all the evaluated models improved after implementing GS, in terms of accuracy, precision
and recall, it was decided to divide the ISOT HTTP Botnet Dataset into minority and majority classes
to balance the data. The results of this analysis are shown in Table 7, where it is indicated that the
Blackout, Blue, Liphyra, Black Energy and Zyklon botnets belong to the minority class, being the rest
part of the majority class. Naive Bayes increased its precision and recall and successfully managed
this class but obtained a low precision and recall rate to detect the Zyklon botnet. It can also be
observed that SVM and KNN did not reach at most 80% in precision to detect the Zyklon botnet;
being Random Forest and Decision Tree the models that obtained a high precision in classifying this
specimen correctly. For the Zeus botnet, the Random Forest and Decision Tree models proved to handle
this class perfectly; and the K-Nearest Neighbors and SVM models slightly reduced their precision
and recall rate. It is also notable that GS-based Naive Bayes obtained a high precision rate and a low
recall rate. On the other hand, almost all models showed a low precision and a high recall rate for
detecting the Citadel botnet. The models are detecting the class well but seem to include samples
from other classes, which makes their detection a little more complex. However, this was not the case
when detecting the Citadel 2 botnet, since all models computed high precision and low recall rates.
The models have slight difficulties in recognizing and identifying this class, but despite this issue they
performed well in general.
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Table 6. Comparative analysis of ML models in the ISOT HTTP Botnet dataset (B).

Metric Botnet
Gaussian
Naive
Bayes

Gaussian
Naive Bayes
+ GS

Support
Vector
Machine
(SVM)

Support
Vector
Machine
(SVM) + GS

Precision

Blackout 4.792% 100.000% 100.000% 100.000%
Blue 9.030% 28.155% 0.000% 0.000%
Liphyra 2.665% 4.048% 0.000% 0.000%
BlackEnergy 6.061% 100.000% 100.000% 100.000%
Zeus 20.000% 69.687% 72.822% 72.817%
Zyklon 0.431% 0.130% 0.000% 0.000%
Citadel 30.620% 2.941% 51.473% 51.473%
Citadel2 60.610% 93.803% 65.014% 65.014%

Recall

Blackout 1.261% 99.916% 99.916% 99.916%
Blue 33.876% 99.408% 0.000% 0.000%
Liphyra 70.178% 99.514% 0.000% 0.000%
BlackEnergy 0.156% 91.787% 91.903% 91.865%
Zeus 0.115% 49.183% 87.116% 87.116%
Zyklon 0.775% 0.775% 0.000% 0.000%
Citadel 7.094% 0.192% 4.708% 4.708%
Citadel2 60.803% 44.917% 91.008% 91.008%

Accuracy 28.812% 46.389% 70.014% 70.012%

Table 7. Comparative analysis of minority and majority classes on the ISOT HTTP Botnet Dataset.

DS Division Metric Botnet
Random
Forest +
GS

Decision
Tree + GS

K-Nearest
Neighbors
+ GS

Gaussian
Naïve
Bayes +
GS

Support
Vector
Machine +
GS

Minority Classes

Precision

Blackout 100.000% 99.918% 89.426% 100.000% 100.000%
Blue 99.963% 99.963% 91.844% 100.000% 99.925%
Liphyra 100.000% 100.000% 80.692% 100.000% 100.000%
Black
Energy 99.883% 99.883% 94.065% 95.784% 98.522%

Zyklon 100.000% 98.230% 56.061% 15.152% 75.194%

Recall

Blackout 99.918% 99.918% 89.426% 99.836% 99.836%
Blue 100.000% 99.963% 95.034% 99.216% 99.216%
Liphyra 100.000% 100.000% 75.085% 99.831% 100.000%
Black
Energy 100.000% 99.922% 93.918% 94.776% 98.752%

Zyklon 97.368% 97.368% 32.456% 21.930% 85.088%

Accuracy 99.944% 99.902% 91.042% 96.554% 98.995%

Majority Classes

Precision
Zeus 94.811% 94.834% 87.478% 71.367% 88.972%
Citadel 52.542% 50.973% 53.525% 32.890% 48.898%
Citadel2 88.973% 93.050% 75.854% 95.242% 92.074%

Recall
Zeus 97.927% 98.268% 88.975% 49.297% 94.164%
Citadel 79.055% 88.244% 54.173% 97.012% 96.946%
Citadel2 69.977% 65.007% 74.599% 45.763% 54.157%

Accuracy 81.044% 80.437% 75.731% 56.266% 75.413%

4.3. Isot Http Botnet and Cic-Aws-2018 Comparison

A comparative analysis was performed between CIC-AWS-2018 and ISOT HTTP Botnet datasets
in terms of accuracy as shown in Table 8. Naïve Bayes had the lowest performance among the trained
algorithms (below 50% in classification) after analyzing the ISOT HTTP Botnet. The Decision Tree
classifier with a depth value of 10 led to the creation of the best tree with an average accuracy
of 78.893%. Since the Random Forest model is derived from Decision Tree, it was observed that with
setting a depth level of 20 the Random Forest model obtained the highest accuracy rate of 79.115%, thus
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outperforming the rest of the classifiers. For the CIC-AWS-2018 dataset filtered by TCP, the Random
Forest and Decision Tree models scored an accuracy rate of 99.999%, exceeding K-Nearest Neighbors by
a small difference. Naive Bayes obtained the lowest accuracy rate of 90.901% as the algorithm modeled
a binary classifier where the leaves were composed of only two samples (bot and benign) and only one
tree. After splitting the ISOT HTTP Botnet Dataset, it was remarkable that Naive Bayes improved its
accuracy in detecting the minority classes, scoring higher than 95%; but decreased to 56.266% when
detecting the majority classes. Nonetheless, this result was significantly higher when compared to the
original dataset. Likewise, there is also an improvement in the SVM accuracy as the original dataset
predicted correctly few classes, but after partitioning the accuracy rate considerably improved.

Table 8. Comparison between the CIC-AWS-2018 and ISOT HTTP Botnet detection models with GS.

Dataset ML Detection Model Accuracy

Dataset CIC-AWS-2018 (filtered by TCP)

Random Forest 99.999%
Decision Tree 99.999%
K-nearest neighbors 99.984%
Gaussian Naïve Bayes 90.901%
Support Vector Machine (SVM) 94.821%

ISOT HTTP Botnet Dataset

Random Forest 79.115%
Decision Tree 78.893%
K-nearest neighbours 69.054%
Gaussian Naïve Bayes 46.389%
Support Vector Machines (SVM) 70.012%

ISOT HTTP Botnet Dataset

Random Forest 99.944%
Decision Tree 99.902%
K-nearest neighbours 91.042%
Gaussian Naïve Bayes 96.554%
Support Vector Machines (SVM) 98.995%

ISOT HTTP Botnet Dataset

Random Forest 81.044%
Decision Tree 80.437%
K-nearest neighbours 75.731%
Gaussian Naïve Bayes 56.266%
Support Vector Machines (SVM) 75.413%

The next evaluation criterion was the execution time measured for the different models, which are
charted in Figures 4 and 5. For the CIC-AWS-2018 dataset (Figure 4), the highest processing overhead,
before and after combined with Grid Search, was generated by KNN. On the opposite, the models
with less execution time are Naive Bayes and Decision Tree. As reviewed above, the Naive Bayes
model shows imprecise results when detecting different botnet samples and is also the least accurate
model. The execution time measured for the ISOT HTTP Botnet dataset (Figure 5) shown, in contrast
to the first analysis, the highest execution time with SVM. The same indicator was measured for
the minority and majority-class analysis of the dataset, and their results are shown in Figures 6
and 7, respectively. In both scenarios, SVM had the least performance with execution times of 15.65
and 10.38 s, which considerably exceeded the other classifiers.
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Figure 4. Execution time in different models using CIC-AWS-2018 dataset filtered by TCP.
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Figure 7. Execution time in the different models with majority class on the ISOT HTTP Botnet dataset.

4.4. Cross-Validation Results

A 5-fold cross-validation was considered to check the models’ accuracy. Table 9 details the
measurements obtained by analyzing the CIC-AWS-2018 dataset and the ISOT HTTP Botnet dataset.
Average accuracy rates above 90.236% were calculated in the CIC-AWS-2018 dataset with minimal
variances between the base model and the GS refinement. On the other hand, the accuracy variations
in the ISOT HTTP Botnet dataset are more visible but exhibit the pattern mentioned in the previous
section, having Naive Bayes and SVM as the least scoring methods.

Table 9. Average accuracy of the different models in both datasets.

Configuration
Type

ML Model CIC-AWS-2018
(TCP)

ISOT HTTP Botnet
Original Minority Class Majority Class

Base

Random Forest 99.999% 76.737% 99.909% 80.976%
Decision Tree 99.999% 74.705% 99.916% 80.388%
K-Nearest Neighbors 99.984% 68.336% 88.934% 74.768%
Gaussian Naïve Bayes 90.236% 28.563% 29.919% 46.877%
Support Vector Machine 94.843% 69.864% 97.624% 75.209%

Grid Search

Random Forest 99.998% 79.199% 99.909% 81.073%
Decision Tree 99.998% 79.077% 99.916% 80.620%
K-Nearest Neighbors 99.983% 68.340% 88.934% 74.765%
Gaussian Naïve Bayes 90.893% 46.483% 96.557% 56.462%
Support Vector Machine 94.797% 69.864% 97.711% 75.695%

4.5. Prediction Results

For both datasets, using the features already defined in Table 1, the construction of the models was
carried out. The parameters defined for each models without GS are shown in Appendix A whereas
Appendix B details the parameter calibration after GS optimization. For each model, a range of possible
values was defined in order to find a set of hyper-parameters that optimize model performance. Finally,
Table 2 shows the final results using GS, and it also summarizes the list of parameters used in the
implementation. Thus, the prediction results for the different datasets were obtained.

Prediction tests were performed for the models before and after implementing the Grid Search
algorithm on the CIC-AWS-2018 dataset, and the results obtained are shown in Table 10. It is noted that
Decision Tree, Random Forest and K-Nearest Neighbors models correctly predicted the samples and
were also able to recognize a benign sample or bot with 100% probability. However, after refining their
models with GS, Naive Bayes was not correctly predicting bot samples; which indicates the existence
of samples that have been classified as benign instead of bot. The same applies for the SVM algorithm
regardless of the GS calibration.



Sensors 2020, 20, 4501 22 of 31

Table 10. Prediction results using the CIC-AWS-2018 dataset filtered by TCP.

Detection Models
Without GS With GS

Expected ClassPredicted
Class

Success
Probability

Predicted
Class

Success
Probability

Random Forest Benign 100.00% Benign 100.00%

Benign
Decision Tree Benign 100.00% Benign 100.00%
KNN Benign 100.00% Benign 100.00%
Naive Bayes Benign 100.00% Benign 100.00%
SVM Benign 100.00% Benign 100.00%

Random Forest Bot 100.00% Bot 100.00%

Bot
Decision Tree Bot 100.00% Bot 100.00%
KNN Bot 100.00% Bot 100.00%
Naive Bayes Bot 100.00% Benign 100.00%
SVM Benign 64.850% Benign 64.680%

Prediction tests were also performed for the ISOT HTTP Botnet dataset as shown in Table 11.
There, the Decision Tree model correctly predicted all the samples with a 100% rate. This result might
warn a possible model overfitting, but this situation was further validated by running the Grid Search
algorithm to optimize the hyperparameters of each model. Under such a consideration, it was observed
that Decision Tree correctly predicted the majority of botnet samples with 100% probability, except for
the Blue botnet that was classified as a Zeus with a probability of 74.840%. Random Forest obtained
similar results for the majority of botnet specimens, except for Blue as mentioned before. In addition,
the samples that were correctly classified exposed probability variations on the analyzed specimens.
An example of this was found with Random Forest, which initially classified Citadel with a 100%
rate, but the GS optimization slightly decreased the hit rate to 98.690%. Similar to the Random Forest
model, the K-Nearest Neighbors model incorrectly classified the Zyklon botnet as Citadel with 100%
probability. Comparing this model with the rest of the classifiers, it was noted that in Table 5 the
K-Nearest Neighbors model before and after implementing the GS algorithm does not exceed 70%
accuracy and predicts the Zyklon botnet with a 53.061% rate. Unlike other classifiers, the Naive Bayes
model initially predicted only Citadel and Citadel2 botnets, and when the GS model was analyzed
it was observed that Blackout, Blue, Liphyra and Black Energy were correctly predicted with higher
probability. Based on this analysis, it can be deduced that Naive Bayes might lead to less predictable
results when dealing with botnet detection. Finally, both Support Vector Machine (SVM) models
(base implementation and GS optimization) were unable to predict the botnet samples. This model
exhibited the same unpredictability issues as Naïve Bayes. Lower hit rates are associated with the
scarcity of samples on certain botnet specimens.

Furthermore, the prediction results when analyzing the minority and majority classes separately
are shown in Tables 12 and 13, respectively. There, Random Forest, Decision Tree and, K-Nearest
Neighbors correctly predicted all botnet types with a high success rate each, and Support Vector
Machine (SVM) performed a proper classification as well. On the contrary, Naïve Bayes model
was initially not correctly predicting five botnet specimens. Blackout was mistakenly classified as
Liphyra 62.620% certainty, and Liphyra, Black Energy, and Zylon were incorrectly classified as
Blue. Similarly, Zeus was classified as Citadel with a 99.900% certainty. These results notably improved
after applying the Grid Search algorithm, where the model failed on predicting only two botnet types.
Zeus was classified as Citadel with a high hit rate and Zyklon was wrongly classified as Black Energy
with a 99.500% certainty. Once again, Naive Bayes behaves unexpectedly in the assessed scenarios.
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Table 11. Prediction results using ISOT HTTP Botnet Dataset.

Detection
Model

Without GS With GS
Expected ClassPredicted

Class
Success

Probability
Predicted

Class
Success

Probability

Random Forest Blackout 100.000% Blackout 100.000%

Blackout
Decision Tree Blackout 100.000% Blackout 100.000%
KNN Blackout 100.000% Blackout 100.000%
Naive Bayes Liphyra 69.210% Blackout 100.000%
SVM Blackout 43.670% Blackout 43.670%

Random Forest Blue 51.770% Zeus 74.420%

Blue
Decision Tree Blue 100.000% Zeus 74.840%
KNN Blue 100.000% Blue 100.000%
Naive Bayes Liphyra 59.490% Blue 100.000%
SVM Zeus 59.410% Zeus 59.410%

Random Forest Liphyra 100.000% Liphyra 100.000%

Liphyra
Decision Tree Liphyra 100.000% Liphyra 100.000%
KNN Liphyra 100.000% Liphyra 100.000%
Naive Bayes Blue 52.190% Liphyra 100.000%
SVM Citadel2 48.670% Citadel2 48.670%

Random Forest Black Energy 100.000% Black Energy 100.000%

Black Energy
Decision Tree Black Energy 100.000% Black Energy 100.000%
KNN Black Energy 100.000% Black Energy 100.000%
Naive Bayes Citadel 44.770% Black Energy 99.920%
SVM Black Energy 54.400% Black Energy 54.400%

Random Forest Zeus 84.290% Zeus 74.600%

Zeus
Decision Tree Zeus 100.000% Zeus 74.840%
KNN Zeus 100.000% Zeus 100.000%
Naive Bayes Liphyra 60.660% Blue 100.000%
SVM Zeus 60.050% Zeus 60.050%

Random Forest Zyklon 100.000% Zyklon 100.000%

Zyklon
Decision Tree Zyklon 100.000% Zyklon 100.000%
KNN Citadel 100.00% Citadel 100.00%
Naive Bayes Blue 56.840% Citadel 99.980%
SVM Zeus 50.130% Zeus 50.130%

Random Forest Citadel 100.000% Citadel 98.690%

Citadel
Decision Tree Citadel 100.000% Citadel 99.550%
KNN Citadel 100.000% Citadel 100.000%
Naive Bayes Citadel 91.950% Liphyra 100.000%
SVM Citadel2 45.779% Citadel2 45.779%

Random Forest Citadel2 100.000% Citadel2 100.000%

Citadel2
Decision Tree Citadel2 100.000% Citadel2 100.000%
KNN Citadel2 100.000% Citadel2 100.000%
Naive Bayes Citadel2 74.860% Zyklon 99.940%
SVM Citadel2 88.030% Citadel2 88.030%
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Table 12. Prediction results using minority classes included on the ISOT HTTP Botnet Dataset.

Detection
Model

Without GS With GS
Expected ClassPredicted

Class
Success

Probability
Predicted

Class
Success

Probability

Random Forest Blackout 100.000% Blackout 100.000%

Blackout
Decision Tree Blackout 100.000% Blackout 100.000%
KNN Blackout 100.000% Blackout 100.000%
Naive Bayes Liphyra 62.620% Blackout 100.000%
SVM Blackout 70.700% Blackout 71.460%

Random Forest Blue 100.000% Blue 100.000%

Blue
Decision Tree Blue 100.000% Blue 100.000%
KNN Blue 100.000% Blue 100.000%
Naive Bayes Blue 50.530% Blue 100.000%
SVM Blue 96.690% Blue 96.760%

Random Forest Liphyra 100.000% Liphyra 100.000%

Liphyra
Decision Tree Liphyra 100.000% Liphyra 100.000%
KNN Liphyra 100.000% Liphyra 100.000%
Naive Bayes Blue 60.630% Liphyra 100.000%
SVM Liphyra 94.780% Liphyra 94.040%

Random Forest Black Energy 100.000% Black Energy 100.000%

Black Energy
Decision Tree Black Energy 100.000% Black Energy 100.000%
KNN Black Energy 100.000% Black Energy 100.000%
Naive Bayes Blue 72.350% Black Energy 100.000%
SVM Black Energy 72.740% Black Energy 72.980%

Random Forest Zyklon 100.000% Zyklon 100.000%

Zyklon
Decision Tree Zyklon 100.000% Zyklon 100.000%
KNN Zyklon 100.000% Zyklon 100.000%
Naive Bayes Blue 69.090% Black Energy 99.500%
SVM Zyklon 95.320% Zyklon 95.520%

Table 13. Prediction results using majority classes included on the ISOT HTTP Botnet Dataset.

Detection
Model

Without GS With GS
Expected ClassPredicted

Class
Success

Probability
Predicted

Class
Success

Probability

Random Forest Zeus 100.000% Zeus 100.000%

Zeus
Decision Tree Zeus 100.000% Zeus 100.000%
KNN Zeus 100.000% Zeus 100.000%
Naive Bayes Citadel 99.900% Citadel 100.000%
SVM Zeus 93.260% Zeus 92.810%

Random Forest Citadel 100.000% Citadel 100.000%

Citadel
Decision Tree Citadel 100.000% Citadel 100.000%
KNN Citadel 100.000% Citadel 100.000%
Naive Bayes Citadel 91.950% Citadel 100.000%
SVM Citadel 52.020% Citadel 52.510%

Random Forest Citadel2 100.000% Citadel2 100.000%

Citadel2
Decision Tree Citadel2 100.000% Citadel2 100.000%
KNN Citadel2 100.000% Citadel2 100.000%
Naive Bayes Citadel2 74.860% Citadel2 99.080%
SVM Citadel2 82.500% Citadel2 80.140%

5. Discussion

Our experimental validation using GS has shown a substantial improvement in the prediction
of the different botnet specimens even in highly unbalanced classes compared to the results shown
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by Alenazi et al. [26] and Zhou and Pezaros [25] in their previous proposals. In both research works,
it was not possible to grasp important considerations regarding the evaluation of the algorithms and
the optimization of their hyper parameters.

When analyzing the original CIC-AWS-2018 dataset, the results showed that the Random Forest,
Decision Tree and K-Neighbors models yield a classification accuracy close to 100%, similar to the
results exposed by Zhou and Pezaros [25], with the difference that our Naive Bayes implementation
obtained 64.994%, which, albeit not close to the highest ones, was more accurate than the results
obtained by the same authors (52%). Although Zhou and Pezaros [25] achieved high accuracy rates,
it was not possible to conclude whether their results were caused by an overfit. However, our approach
underscores that by filtering the CIC-AWS-2018 dataset by TCP protocol was possible to counteract the
overfitting due to the higher presence of bot samples associated to this transport protocol and using
the Grid Search algorithm the hyperparameters of each model were optimized. It was observed at
the same time that the Random Forest, Decision Tree and K-Neighbors models attained considerably
higher precision compared to the Naive Bayes and Support Vector Machine models, which could
not exceed 87% precision when detecting a botnet. Moreover, Random Forest, Decision Tree and
K-Neighbors models correctly predicted bots and benign samples with higher hit rates in comparison
to Naïve Bayes and SVM. When assessing the model performance, the difference between the classifiers
is that Decision Trees and Random Forest models, with high accuracy and precision rates, were also
capable of analyzing large amounts of data in less time and thus surpassing the other classifiers.

On the other hand, a detailed evaluation was performed for each specimen of the ISOT HTTP
Botnet dataset in terms of accuracy, precision and recall compared with the work of Alenazi et al. [26].
Although in the research conducted by Alenazi et al. [26] the performance of the Random Forest
and Decision Tree models outperformed the Naive Bayes model, it was not performed an in-depth
inspection on the predictive capabilities of each model. After using the Grid Search algorithm to
optimize the hyperparameters, their results showed significant improvements in accuracy, but low
recall rates were observed when predicting specimens with few samples. On the opposite, obtaining
higher precision rates when evaluating specimens with more samples, so it is inferred they are working
with an unbalanced dataset. Bearing this in mind, our approach emphasizes the importance of dividing
the dataset into minority and majority classes, thus modifying the “class_weight” parameter in Random
Forest, Decision Tree and SVM models, both at base training and with GS. By doing so, our models
were able to correctly predict the different botnet specimens (both minority and majority botnet classes)
excepting the Naive Bayes model, which failed to predict the Zeus and Zyklon botnets. Likewise, it was
observed that the Random Forest and Decision Tree models shown the highest accuracy and precision
rates for detecting the minority and majority classes; however, the Naive Bayes failed on detecting the
majority classes. As it was shown in the previous performance analysis, Decision Tree and Random
Forest could analyze large amounts of data with less processing overhead, hence outperforming the
other classifiers when building their models.

As shown by the results, the selection of the most relevant features played an important
role. A decision grounded on previous research works where the behavioral metrics disclosed
communication patterns for each botnet type in real testing environments. An important fact related
to the creation of the CSE-CIC-IDS2018 dataset and the ISOT HTTP Botnet Dataset is that machine
learning techniques had already been used to extract the most relevant malware behavioral features
from the traffic captured in the network. For all the different types of attacks, the most relevant
behavioral metrics for botnet detection have been considered grounded on the research works of
Gonzalez-Cuautle et al. [16] and Sharafaldin et al. [41], who have enumerated the most relevant
characteristics for training the models. In our research, two additional characteristics were included by
analyzing the feature_importances criterion in order to improve the precision of the Random Forest
algorithm. Besides such considerations, it was worth comparing the accuracy obtained by the default
configuration of the classifiers, so that the application of Grid Search allowed to find the most optimal
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hyperparameters, which notably contributed to boost up a more accurate detection based on the
observed results.

Finally, in the light of the obtained results, it can be concluded that Random Forest and Decision
Tree models are generally more appropriate for detecting botnets by classifying large amounts of
samples and still performing efficiently. The capabilities of such models demonstrate their suitability to
develop defensive countermeasures against malware, a claim reasserted by this research after a deepen
analysis. On the opposite, it was found that Naive Bayes showed mostly inaccurate results, a fact
explained by the “Naïve assumption” where all the features included in the modeling process are
independent from each other, thus improperly describing the behavior of botnets in the aftermath.

6. Conclusions

Throughout this research, the state of the art on botnet detection has been thoroughly analyzed in
order to understand the characterization of these network threats, their modus operandi, and special
attention has been put on identifying the most relevant supervised detection methods. It was intended
to set a comparative baseline both at evaluation methodology and classification accuracy, without
overlooking any consideration regarding the models parameterization, training and validation of
the detection models, without overlooking any evaluation criteria. For our analysis, it have been
considered diverse machine-learning approaches to detect different botnet specimens. In order to
set up an evaluation baseline, there have been selected two botnet reference datasets have been
examined in detail—CIC-AWS-2018 and ISOT HTTP Botnet, both containing behavioral metrics that
have led to perform traffic flow analysis. The former with two bot samples (Zeus and Ares) and
the latter with eight botnet specimens. Feature selection has been guided by the contributions of
similar research works which led to distinguishing two broader feature categories—descriptive and
behavioral. Training and validation of the selected machine learning models have been addressed to
benchmark the overall classification accuracy. TThe issue of unbalanced datasets has been considered,
which led to differentiation of the analysis guided by majority and minority classes. In addition,
the Grid Search algorithm was used to optimize its hyperparameters, which has introduced significant
improvements in the classification by adjusting different supervised learning algorithms. As suggested
by the proposed methodology, an in-depth evaluation was carried out stressing the comparative
analysis of traffic flow patterns. It poses the main contribution of our research towards the state of
the art in the area of botnet detection. Broadly speaking, it has been shown that Random Forest and
Decision Tree models outperformed the rest of the machine learning models. In contrast, Naive Bayes
showed the lowest performance based on the overall accuracy. Therefore, it is shown that it is possible
to infer the detection of botnets from behavioral patterns. When measuring the execution time, it can
be seen that the Support Vector Machines model still poses the main drawbacks in terms of resource
consumption, which has been considerably higher than the rest of the classifiers.

In the light of the extensive evaluation performed, the suitability of machine learning for botnet
recognition has been proven in this paper. This research supports the outcomes of similar research
works based on machine learning for detecting different botnet specimens. Although it has been
clear that the proper calibration and training of the machine learning models directly influences their
precision rates, their adequacy is yet to be validated with more botnet specimens. Future research
outcomes will be focused on extending the evaluation methodology to make a more robust and
exhaustive comparison with further supervised deep learning approaches. It is also intended to
expand the range of botnet families to be analyzed. Furthermore, the methodology shall be extended
to other botnet datasets as well as their real-time evaluation in network testbeds.
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Appendix A. Initial Hyperparameters

Table A1. Algorithms with Their Initial Hyperparameters λ.

CIC-AWS-2018 ISOT HTTP Botnet
Detection

Model λ Original Filtered
by TCP Original Minority and

Majority Class

Algorithm used to compute nearest neighbors KD tree KD tree KD tree KD tree
Number of neighbors to use 2 2 1 1
Leaf size 30 30 30 30KNN

Weight function used in prediction Uniform Uniform Uniform Uniform

Regularization parameter C 175 175 175 175
Estimate class weights for unbalanced datasets — — — Balanced
Penalty l2 l2 l2 l2
multi-class strategy One-vs-rest One-vs-rest One-vs-rest One-vs-rest
Select the algorithm to either solve the
dual or primal optimization problem False False False False

Tolerance for stopping criteria 1 × 10−10 1 × 10−10 1 × 10−10 1 × 10−10

Maximum number of iterations to be run 12,000 12,000 12,000 12,000

SVM

Kernel type to be used in algorithm Linear Linear Linear Linear

Maximum tree depth 51 14 51 35
Estimate class weights for unbalanced datasets — — — Balanced
Number of features for best split 19 19 20 20
Function to measure split quality GINI GINI GINI GINI
Strategy used to choose split at each node Best Best Best Best
Min. Number of samples required to be at leaf node 1 1 1 1

DT

Min. Number of samples required to split 2 2 2 2

Use bootstrap samples when building trees True True True True
Estimate class weights for unbalanced datasets — — — Balanced
Function to measure split quality GINI GINI GINI GINI
Maximum tree depth 35 22 35 35
Number of features for best split 19 19 20 20
Min. number of samples required to be at leaf node 1 1 1 1
Min. number of samples required to split 2 2 2 2

RF

Number of trees in forest 12 12 12 12

NGB Smoothing variable 1 × 10−10 1 × 10−10 1 × 10−10 1 × 10−10
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Appendix B. Inherent Hyperparameters and Values

Table A2. Algorithms with Their Inherent Hyperparameters and Values.

ISOT HTTP Botnet Using GS
Detection

Model λ

CIC-AWS-2018
Filtered by TCP

Using GS Original Minority and
Majority Classes

Algorithm used to compute nearest neighbors [‘kd_tree’,‘ball_tree’,‘brute’] [‘kd_tree’,‘ball_tree’,‘brute’] [‘kd_tree’,‘ball_tree’,‘brute’]
Metric minkowski minkowski minkowski
Leaf size [30,50,80] [30,50,70] [30,50,70]KNN

Number of neighbors to use [4,10,2] [4,10,2] [2,10,1]

Regularization parameter C [10,100,175] [10,100,175] 10
Estimate class weights for unbalanced datasets — — Balanced
Penalty parameter l2 l2 l2
Tolerance for stopping criteria [1 × 10−20,1 × 10−10,1 × 10−5] [1 × 10−20,1 × 10−10,1 × 10−5] [1 × 10−20,1 × 10−10]
Maximum number of iterations to be run 12000 12000 12000

SVM

Kernel type to be used in algorithm Linear Linear Linear

Maximum tree depth [20,30,14] [20,30,10] [20,35,10]
Estimate class weights for unbalanced datasets — — Balanced
Number of features for best split 19 20 20
Min. Number of samples required to be at leaf node [10,20,2] [10,20,2] [10,20,1]

DT

Min. Number of samples required to split [10,20,2] [10,20,2] [10,20,2]

Maximum tree depth [22,51,10] [20,50,10] [20,35,10]
Estimate class weights for unbalanced datasets — — Balanced
Number of features for best split 19 20 20
Min. Number of samples required to be at leaf node. [10,20,30] [10,20,30] [10,20,1]
Min. Number of samples required to split [10,20,30] [10,20,30] [10,20,2]

RF

Number of trees in forest 25 12 12

NBG Smoothing Variable [1 × 10−20,1 × 10−10,1 × 10−5] [1 × 10−20,1 × 10−10,1 × 10−5] [1 × 10−20,1 × 10−10,1 × 10−5]
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