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Abstract

We describe a classical characterization of a Frobenius algebra A as an associative

algebra equipped with a comultiplication δ which is A-linear. We use this characterization

to establish the equivalence of categories between commutative Frobenius algebras and

two-dimensional topological quantum field theories, a fact which is well known to experts.

We then use the equivalence to derive topological invariants for closed oriented surfaces,

such as the genus of a surface, using Frobenius algebras. We use the above results to provide

a partial identification of those Frobenius structures on a group algebra which distinguish

between closed oriented surfaces of any genus.
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1 Introduction

The goal of this project is to understand the equivalence between two mathematical

objects: the category of commutative, finite dimensional Frobenius algebras over a field k,

and the category of two-dimensional topological quantum field theories. The study of these

objects involves several fields of mathematics, including differential topology and abstract

algebra.

To make this equivalence precise, we must first outline a few fundamental mathematical

concepts. From there, we will define the categories of commutative, finite dimensional

Frobenius algebras and 2-D topological quantum field theories (TQFTs). We will then

describe the equivalence of categories and show how this equivalence can be used to

reconstruct classical invariants for closed oriented surfaces, such as the genus of a surface.

Lastly, we will partially classify Frobenius structures on group algebras according to their

capacity to yield complete topological invariants on the corresponding TQFTs.

2 Overview and Main Results

In Sec. 3, we give several equivalent characterizations of commutative Frobenius algebras.

In Sec. 4, we outline some language from category theory needed to discuss the equivalence of

categories between finite dimensional commutative Frobenius algebras and two dimensional

TQFTs. In Sec. 5, we discuss the category of 2-dimensional cobordisms, which is an essential

part of the definition of a TQFT. In Sec. 6, we outline the proof of the equivalence of

categories and then provide some applications to classifying closed oriented 2-manifolds in

Sec. 7. We conclude by investigating the Frobenius structures on the group algebra of a

finite abelian group in Sec. 8. We introduce the notion of a ‘‘complete invariant’’ associated

to a Frobenius algebra. This is a purely algebraic concept, designed so that a Frobenius

algebra admits a complete invariant if and only if its associated TQFT can distinguish

between any two closed oriented surfaces. For a finite abelian group algebra k[G], we show

that the set of Frobenius structures which admit complete invariants is:

1. non-empty if char k = 0 and,
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2. not stable under the action of the group of units k[G]× by precomposition.

We end the thesis in Sec. 9 with some concluding remarks and speculation for future work.
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3 Frobenius Algebras

The defining properties of Frobenius algebras can be used to interpret topological data in

the form of algebraic structures. We begin by characterizing Frobenius algebras in three

equivalent ways.

Convention 3.1. Fix k to be any field. All k-algebras are taken to be associative with

unit 1 and are of finite dimension. All tensor products are taken over k.

Definition 3.2. [2, Definition 2.2.1] A Frobenius algebra is a finite-dimensional k-algebra

A equipped with a k-linear map ε : A→ k, called a Frobenius form, such that the nullspace

of ε contains no nontrivial left ideals of A. We denote Frobenius algebra by (A, ε) to indicate

the Frobenius structure.

Remark 3.3. For the purpose of relating Frobenius algebras with 2D topological quantum

field theories, we will be primarily concerned with Frobenius algebras which are commutative.

We will assume A to be a commutative k-algebra from here, unless stated otherwise.

Let A× ⊆ A denote the group of units (i.e., invertible elements) of A. Then the left

module action of A on A∗ induces an obvious left action of A× on A∗ given by u·ε(a) = ε(u·a)

for all a ∈ A, where u ∈ A×.

Proposition 3.4. Let A∗Frob ⊆ A∗ denote the set of Frobenius forms on A. Then

1. A∗Frob is invariant under the action of A×.

2. If A∗Frob is non-empty, then the action of A× is free and transitive.

Proof. 1. Let u ∈ A× and ε ∈ A∗Frob. Let I E Null(u · ε). Since I is an ideal, uI = I,

and hence 0 = u · ε(I) = ε(uI) = ε(I). Since ε is Frobenius, we conclude I = 0.

2. Consider the induced left A-module isomorphisms φ : A→ A∗ defined by 1 7→ ε, and

φ′ : A→ A∗ defined by 1 7→ ε′. Since φ and φ′ are isomorphisms, there exits a unique

element x ∈ A such that φ(x) = φ(x · 1) = x ·φ(1) = x · ε = ε′. Similarly, there exists a

unique element y ∈ A such that φ′(y) = φ′(y ·1) = y ·φ′(1) = y ·ε′ = ε. Thus, the action
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by A× is transitive. Then we have that φ−1(ε) = φ−1(y · ε′) = y · φ−1(ε′) = y · x = 1.

Therefore x, y are units with y = x−1. The uniqueness of the elements x, y ensures

that the group action is free.

It follows that we have the following proposition:

Proposition 3.5. [2, Lemma 2.2.8] If ε is a Frobenius form on a k-algebra A, then every

other Frobenius form ε′ on A is of the form ε′ = u · ε, where u ∈ A×.

Recall that every linear functional on a k-algebra ε ∈ A∗ naturally determines a pairing

A⊗A −→ k by the assignment x⊗y 7→ ε(xy). On the other hand, every pairing β : A⊗A→ k

determines a linear functional by setting ε(a) = β(1⊗ a) for all a ∈ A.

Definition 3.6. [2, Section 2.1, 2.2] A pairing β : A ⊗ A → is called nondegenerate if

there exists a k-linear map γ : k → A⊗A such that

(β ⊗ idA) ◦ (idA ⊗ γ) = idA = (idA ⊗ β) ◦ (γ ⊗ idA)

We call γ the copairing to β. We say that β is a Frobenius pairing if it is nonde-

generate and associative, i.e. β(xy ⊗ z) = β(x⊗ yz) for all x, y, z ∈ A.

Since we assume A is always finite-dimensional, β is nondegenerate in the sense above if

and only if β(x ⊗ y) = 0 for all x ∈ A implies that y = 0, and β(x ⊗ y) = 0 for all y ∈ A

implies that x = 0. We shall make use of both characterizations of nondegeneracy.

Proposition 3.7. [2, Section 2.2] Let A be a finite-dimensional k-algebra.

1. If β : A ⊗ A → k is a Frobenius pairing, then the functional εβ : A → k defined as

εβ(a) = β(1⊗ a) is a frobenius form, and hence (A, ε) is a Frobenius algebra.

2. If ε : A → k is a Frobenius form on A, then the induced pairing βε : A ⊗ A → k,

defined as βε(x, y) = ε(xy) is a Frobenius pairing.

Proof. 1. Suppose x ∈ A such that εβ(xA) = 0. Then β(1⊗ xa) = 0 for all a ∈ A, but

since β is nondegenerate, xa = 0 for all a ∈ A, hence x = 0.
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2. Suppose x ∈ A such that βε(x ⊗ y) = 0 for all y ∈ A. Then ε(xy) = 0 for all

y ∈ A, or equivalently ε(xA) = 0. Therefore x = 0 since ε is a Frobenius form, so

βε is nondegenerate. Associativity of the pairing follows from the fact that A is an

associative algebra.

Remark 3.8. As a consequence of Proposition 3.7, we may either specify the Frobenius

structure on an algebra by either its Frobenius form (A, ε), or equivalently, its corresponding

pairing (A, βε).

Definition 3.9. [2, Definition 2.3.1] A coalgebra is a k-vector space A equipped with

two k-linear maps δ : A → A ⊗ A and ε : A → k, called the comultiplication and counit

respectively such that the following diagrams commute, called the counit axioms:

k ⊗A A⊗A

A

ε⊗id

δ

A⊗A A⊗ k

A

id⊗ε

δ

We say that δ is coassociative if the following diagram commutes:

A⊗A⊗A A⊗A

A⊗A A

id⊗δ

δ⊗id δ

δ

We say that δ is cocommutative if the following diagram commutes:

A A⊗A

A⊗A

δ

δ
τ

where τ : A⊗A→ A⊗A is the twist map τ(x⊗ y) = y ⊗ x.

Lemma 3.10. [2, Lemma 2.3.13] Let (A, β) be a Frobenius algebra and let φ : A⊗A⊗A→ k
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be defined by φ = β ◦ (µ⊗ idA) = β ◦ (idA ⊗ µ). Then we have the following equality:

(idA ⊗ φ) ◦ (γ ⊗ idA ⊗ idA) = µ = (φ⊗ idA) ◦ (idA ⊗ idA ⊗ γ)

Proof. We have that

(φ⊗ id) ◦ (id⊗ id⊗ γ) = [(β ◦ (µ⊗ id))⊗ id] ◦ (id⊗ id⊗ γ)

= (β ⊗ id) ◦ (µ⊗ γ)

= (β ⊗ id) ◦ (id⊗ γ) ◦ µ

But this last expression is just µ by the nondegeneracy of β. A similar substitution shows

the other equality.

Lemma 3.11. [2, Lemma 2.3.15] Let (A, β) be a Frobenius algebra. Then we have the

following equality of compositions:

(µ⊗ idA) ◦ (idA ⊗ γ) = (idA ⊗ µ) ◦ (γ ⊗ idA)

Proof. The result follows from substituting µ for either (idA ⊗ φ) ◦ (γ ⊗ idA ⊗ idA) or

(φ⊗ idA) ◦ (idA ⊗ idA ⊗ γ) from the previous lemma.

Theorem 3.12. [2, Propositon 2.3.24] Let (A, ε) be a Frobenius algebra, and γ the copairing

for the corresponding Frobenius pairing β. Then (A, δ, ε), where δ : A→ A⊗A is the linear

map

δ = (idA ⊗ µ) ◦ (γ ⊗ idA),

is a cocomnutative, counital coalgebra which satisfies the condition

(id⊗ µ) ◦ (δ ⊗ id) = δ ◦ µ = (µ⊗ id) ◦ (id⊗ δ). (3.1)
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Conversely, if (A, δ, ε) is a cocomnutative counital coalgebra satisfying (3.1), then (A, ε) is

a Frobenius algebra.

Remark 3.13. Condition (3.1) is known as the Frobenius condition. By Theorem 3.12,

we may either specify the Frobenius structure on an algebra by either its Frobenius form

(A, ε), or equivalently, as the coalgebra (A, δ, ε) described above.

Proof. Suppose first that A is a k-algebra with multiplication µ : A⊗A→ A and unit map

η : k → A, equipped with a coassociative cocommutative comultiplication δ : A → A ⊗ A

and counit ε : A→ k such that the condition

(id⊗ µ) ◦ (δ ⊗ id) = δ ◦ µ = (µ⊗ id) ◦ (id⊗ δ)

is satisfied. We will construct a pairing A ⊗ A −→ k and show that it is associative and

nondegenerate. Let β : A⊗A→ k be defined by β : = ε◦µ and let γ : k → A⊗A be defined

by γ : = δ ◦ η. Verifying the nondegeneracy of β amounts to showing that the identities

(idA ⊗ β) ◦ (γ ⊗ idA) = idA = (β ⊗ idA) ◦ (idA ⊗ γ) hold. But since the Frobenius relation

holds, we have that

(id⊗ β) ◦ (γ ⊗ id) = (id⊗ (ε ◦ µ)) ◦ ((δ ◦ η)⊗ id)

= [(id⊗ ε) ◦ (id⊗ µ)] ◦ [(δ ⊗ id) ◦ (η ⊗ id)]

= (id⊗ ε) ◦ [(id⊗ µ) ◦ (δ ⊗ id)] ◦ (η ⊗ id)

= (id⊗ ε) ◦ (δ ◦ µ) ◦ (η ⊗ id)

= [(id⊗ ε) ◦ δ] ◦ [µ ◦ (η ⊗ id)].

By the unit and counit axioms, the last line reduces to a composition of identity maps. A

similar rearrangement of parentheses and utilization of the Frobenius condition shows that

idA = (β⊗ idA) ◦ (idA⊗ γ), as well, and so we have shown that β is a nondegenerate pairing.

Since µ is an associative multiplication on A, we have that β(xy ⊗ z) = ε(µ(µ(x, y), z)) =

ε(µ(x, µ(y, z))) = β(x⊗ yz) so β is associative. Therefore (A, β) is a Frobenius algebra.

Now suppose we are given a Frobenius algebra A with associated Frobenius structure
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maps β : A⊗A→ k and ε : A→ k. We want to construct a compatible coalgebra structure

on A which is uniquely determined by the structures we already have and which satisfies the

Frobenius condition. Let δ/mapsA→ A⊗A be the map defined by δ = (idA⊗µ)◦ (γ⊗ idA).

Note that by Lemma 3.11, we also have that δ = (µ⊗ idA) ◦ (idA ⊗ γ). We first show that

δ is coassociative. This follows from the associativity of µ:

(δ ⊗ id) ◦ δ = [[(µ⊗ id) ◦ (id⊗ γ)]⊗ id] ◦ [(id⊗ µ) ◦ (γ ⊗ id)]

= [id⊗ [(id⊗ µ) ◦ (γ ⊗ id)]] ◦ [(µ⊗ id) ◦ (id⊗ γ)]

= (id⊗ δ) ◦ δ.

Checking that δ satisfies the Frobenius condition is easier to do graphically. We comment

on this in Section 5.

Definition 3.14. Given two Frobenius algebras, (A, ε) and (A′, ε′), a k-algebra homomor-

phism ϕ : A→ A′ is a Frobenius algebra homomorphism if ε = ε′ ◦ ϕ.

Definition 3.15. The category cFAk has as its objects commutative Frobenius algebras

over a field k. We write the vector space A together with its structure maps by (A,µ, η, δ, ε, τ)

to denote the Frobenius algebra A, although we will drop this notation and simply refer to

the Frobenius algebra as A itself when it is clear what these maps are. The category cFAk

has as its morphisms Frobenius algebra homomorphisms

(A,µ, η, δ, ε, τ) −→ (A′, µ′, η′, δ′, ε′, τ ′)

Example 3.16. We calculate some Frobenius structures on a few k-algebras. The case when

A is a group algebra will be of particular importance later.

1. Let G = {g0, g1, g2, ..., gN−1} be a finite abelian group (written multiplicatively), with

g0 = eG and let kG denote the group algebra of G over k. We can equip kG with a

Frobenius structure and calculate each structure on the elements of G, which are the

generators of the group algebra. We will start by defining a Frobenius form on kG.
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Let ε : kG→ k be given by:

ε(gi) =


1, if i = 0

0, if i 6= 0

Using the fact that β = ε◦µ, it is easy to check that the Frobenius pairing β : kG⊗kG→

k is given by:

β(gi ⊗ gj) =


1, if gj = g−1

i

0, if gj 6= g−1
i

with copairing γ : k → kG⊗ kG, which is:

γ(1) =
N−1∑
i=0

gi ⊗ g−1
i

By the theorem above, we can calculate the comultiplication δ induced by our choice

of ε. Since δ = (id⊗ µ) ◦ (γ ⊗ id), the comultiplication is given by:

δ(gn) =

N−1∑
i=0

gngi ⊗ g−1
i

where gngi = µ(gn ⊗ gi).

2. Let n ∈ N and define A : = k[t]/(tn), where k[t] is the polynomial ring in variable t

with coefficients in k and (tn) ⊆ k[t] is the ideal generated by tn. Define ε : A→ k on

the generators of A by

ε(ti) =


1, if i = n− 1

0, if i 6= n− 1

Then we have Frobenius pairing β : A⊗A→ k given by

β(ti ⊗ tj) =


1, if i+ j = n− 1

0, if i+ j 6= n− 1
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4 Monoidal Categories and Monoidal Functors

Definition 4.1. [3, Definitions 6, 7, and 8] A symmetric monoidal category is a category

C equipped with the following data:

1. A bifunctor ⊗ : C×C→ C called the monoidal, or tensor product.

2. A neutral object 1 ∈ C.

3. A natural isomorphism:

AV,W,U : (U ⊗ V )⊗W → U ⊗ (V ⊗W )

for objects V,W,U ∈ C

4. Natural isomorphisms LV : 1⊗ V → V and RV : V ⊗ 1→ V for U ∈ C called the left

and right unit laws, respectively.

5. A natural isomorphism τU,V : U⊗V → V ⊗U , called twist map, satisfying τU,V ◦τV,U =

idV⊗U for U, V ∈ C

such that the coherence constraints are satisfied: For all objects U, V,W,X ∈ C the

diagrams:

U ⊗ (V ⊗ (W ⊗X))

U ⊗ ((V ⊗W )⊗X))

(U ⊗ (V ⊗W ))⊗X ((U ⊗ V )⊗W )⊗X

(U ⊗ V )⊗ (W ⊗X)

id⊗AV,W,X

AU,V⊗W,X

AU,V,W⊗id

AU⊗V,W,X

AU,V,W⊗X

and
U ⊗ V

(U ⊗ 1)⊗ V U ⊗ (1⊗ V )
AU,1,V

RU⊗id id⊗LV
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commute.

Definition 4.2. [3, Definition 9] Given two symmetric monoidal categories (C,⊗, 1),

(C′,⊗′, 1′), a symmetric monoidal functor F : C → C′ is a functor equipped with

the following data:

1. A natural isomorphism ΦU,V : F (U)⊗ F (V )→ F (U ⊗ V ), and

2. An isomorphism φ : 1′ → F (1)

which are compatible1 with the coherence constraints.

We will also need to outline what is required for a natural transformation of symmetric

monoidal functors to preserve the natural isomorphisms in order to present a well-defined

characterization of the morphisms in the category 2TQFT. Hence, we have the following

definition:

Definition 4.3. [3, Definition 11] Let (F,Φ, φ), (G,Ψ, ψ) : C → C’ be monoidal functors

between symmetric monoidal categories. A natural transformation α : F ⇒ G is monoidal

if the following diagrams commute:

F (U)⊗ F (V ) G(U)⊗G(V )

F (U ⊗ V ) G(U ⊗ V )

ΦU,V

α(U)⊗α(V )

ΨU,V

α(U⊗V )

1 G(1)

F (1)

ψ

φ
α(1)

The reader who is familiar with the language of monoidal categories may notice that the

description above defines a weak symmetric monoidal category, since we only require that

the maps AU,V,W , RU , and LU be isomorphisms. For strict symmetric monoidal categories,

1See [3, Definition 9] for the precise details, which will not be needed here.
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the maps AU,V,W , RU , LU are identity morphisms. However, by Mac Lane’s Coherence

Theorem [4, Chapter VII, Section 2], every weak symmetric monoidal category is monoidally

equivalent to a strict symmetric monoidal category. Consequently we can safely assume the

maps AU,V,W , RU , and LU to be identity morphisms in the symmetric monoidal categories

that we consider.

Example 4.4. The category of finite dimensional k-vector spaces Vectk has a monoidal

structure given by the tensor product of vector spaces. The neutral object then is the ground

field k and the symmetric structure is given by the natural twist map:

τ : U ⊗ V → V ⊗ U

v ⊗ w 7→ w ⊗ v.
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5 Cobordisms and Differential Topology

We now introduce 2Cob, the category of two-dimensional cobordism classes, whose objects

are the empty manifold and disjoint unions of labeled, closed 1-manifolds, i.e. copies of the

circle S1 all given the same orientation. We label the disjoint union of n copies of the circle

as n and we label the empty manifold as 0. Therefore, we can write the object set of 2Cob

as {0,1,2,3, ...}. To describe the morphisms of 2Cob, we need a few definitions.

Definition 5.1. [1, Sec. 4] An oriented cobordism n to m is an oriented 2-manifold Σ

together with an orientation preserving diffeomorphism ϕ : ∂Σ→ n∗ tm, where n∗ denotes

n with the opposite orientation. We call n∗ the ‘in-boundary’ of Σ and m the ‘out-boundary’

of Σ.

Two cobordisms (Σ, ϕ), (Σ′, ϕ′) : n→m are equivalent if there exists a diffeomorphism

g : Σ→ Σ′ such that the following diagram commutes

∂Σ n∗ tm

∂Σ′

g|∂Σ

ϕ

ϕ′

For 2Cob to form a category, we must first define what it means to compose cobor-

disms. Given (Σ0, ϕ0) : k → m and (Σ1, ϕ1) : m → n, we construct Σ2 : k → n using the

diffeomorphisms ϕ0 : ∂Σ0 → k∗ tm and ϕ1 : ∂Σ1 → m∗ t n to glue Σ0 to Σ1 along an

orientation-reversing diffeomorphism that sends the in-boundary m∗ to the out-boundary

m, and setting Σ2 = Σ0 tm Σ1.

In order for the definition of composing cobordisms to make sense, we need to ensure that

it makes sense for the in-boundary of Σ0 to acquire the orientation of the out-boundary of

Σ1 by first reversing the orientation of m is a diffeomorphic manner. Recall that there is an

orientation reversing diffeomorphism σ : 1∗ → 1 which can be extended to a diffeomorphism

m∗ −→m. It is not clear that σ induces a cobordism as we have defined. To resolve the

discrepancy, we identify the cobordism induced by σ with the cobordism 0 −→ 1∗ t 1.

Now, we take the morphisms of 2Cob to be oriented diffeomorphism classes of cobordisms
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as defined above. This definition is independent of the choice of cobordism class representative

and defines an associative composition law on the object set of 2Cob.

We will now illustrate the generating set morphisms in 2Cob and the relations that they

satisfy. These generators and relations play a crucial role in establishing the equivalence

between 2-D TQFT’s and commutative Frobenius algebras.

Let Ση,Σδ,Στ ,Σµ,Σε,Σid denote the following diffeomorphism classes:

Ση

Σδ Στ Σµ

Σε Σid

These morphisms satisfy the following relations:

(1)

= =

(2)

= =

(3)

= = =
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(4)

= =

(5)

= =

(6)

= =

(7)

= =

Relation (1) is the graphical expression of the Frobenius condition. Using the cobordism

class Σδ as a representation of the comultiplication δ as defined in Theorem 3.12, Σµ as the

multiplication µ, Σid as the identity map idA, and so forth, it is clear graphically that δ

satisfies the Frobenius condition, once relations (2) and (7) are satisfied (associativity and

coassociativity, and commutativity and cocommutativity, respectively).

Proving that the morphisms above constitute a generating set for the morphisms of

2Cob can be done by examining the critical points of Morse functions on a compact surface

Σ. We will need some results form Morse theory, which are stated without here without

proof.

Lemma 5.2. [2, Corollary 1.4.21] If a cobordism Σ admits a Morse function without critical

points, then Σ is diffeomorphic to a composition of twist cobordisms and identity cobordisms

(cylinders).
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Lemma 5.3. [2, Lemma 1.4.22] For compact 2-manifolds, critical points may be classified

as follows, in terms of their index:

1. index 0 critical points correspond to local minima,

2. index 1 critical points correspond to saddle points, and

3. index 2 critical points correspond to local maxima.

Let Σ be a compact, connected, orientable surface with a Morse function Σ→ [0, 1]. If

there exists a unique critical point x ∈ Σ that is a saddle point (i.e. has index 1), then Σ is

diffeomorphic to the pair of pants, or the reverse pair of pants.

Theorem 5.4. [2, Proposition 1.4.13] The morphisms Σµ,Ση,Σδ,Σε,Στ generate the set

of morphisms of 2Cob.

Proof. To show that the morphisms outlined above generate the morphisms of 2Cob, we

must show that given a compact, connected, oriented surface (thought of as a representative

of an oriented diffeomorphism class of cobordisms), we can decompose the surface into a

composition of the generators.

Let Σ: m → n be a cobordism and let h : Σ → [0, 1] be a Morse function on Σ such

that h−1(0) = m∗ and h−1(1) = n. By Sard’s theorem, we can find a set of regular values

{y0, y1, ..., yk} ⊂ [0, 1] such that in each interval [yi, yi+1], there is at most one critical value

of h. Consider one of these intervals [yi, yi+1] and suppose x ∈ h−1([yi, yi+1]) is a critical

point. If h−1([yi, yi+1]) is not connected, then x must lie in exactly one of the connected

components. Lemma 5.2 above implies that the connected components which do not contain

x must be diffeomorphic to a composition of identities and twists cobordisms. Therefore

we may assume that h−1([yi, yi+1]) is connected and contains the critical point x. If x has

index 0, then it is a local minimum and so h−1([yi, yi+1]) is diffeomorphic to:

If x has index 2, then it is a local maximum and so h−1([yi, yi+1]) is diffeomorphic to:
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By Lemma 5.3, if x has index 1 then h−1([yi, yi+1]) is diffeomorphic to one of:

Now that we have outlined the crucial properties of 2Cob, we can begin discussing the

equivalence of categories between 2TQFT and cFAk.
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6 The Categories 2TQFT and cFA

Definition 6.1. [2, Definition 3.2.54] The category 2TQFT has as its objects symmetric

monoidal functors

Z : 2Cob→ Vectk

which are two-dimensional topological quantum field theories, and has as its morphisms

monoidal natural transformations

Z =⇒ Z ′

Theorem 6.2. [2, Theorem 3.3.2] There is a canonical equivalence of categories 2TQFT '

cFAk.

Proof. Let F : 2TQFT→ cFAk be the functor defined on objects to be

F(Z) = (Z(1), Z(Σµ), Z(Ση), Z(Σδ), Z(Σε), Z(Στ ))

where {Σµ,Ση,Σδ,Σε,Στ} is the set of generators for 2Cob. The relations (2), (6) and (7)

above guarantee that (Z(1), Z(Σµ), Z(Ση)) defines an associative, commutative k-algebra,

Z(Σδ), is coassociative and cocommutative, and that Z(Σε) satisfies the counit axioms.

Relation (1) implies that Z(Σδ) satisfies the Frobenius condition. Hence, the functor F is

well defined on objects by Theorem 3.12.

We define the inverse of F to be the functor G : cFAk → 2TQFT which sends a

commutative Frobenius algebra (A,µ, η, δ, ε, τ) to the topological quantum field theory Z

which has Z(1) = A, Z(Σµ) = µ, Z(Ση) = η, Z(Σδ) = δ, Z(Σε) = ε, and Z(Στ ) = τ .

Since the Frobenius algebra conditions on the structure maps µ, η, δ, ε, τ , hold and the set

{Σµ,Ση,Σδ,Σε,Στ} generates the morphisms of 2Cob by Theorem 5.4, G is well defined.

The relations that the structure maps of a Frobenius algebra satisfy then translate into the

relations (1) - (7) in the category 2Cob. Therefore we have a one-to-one correspondence

between the objects of cFAk and the objects of 2TQFT.
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Now, given a morphism φ : A→ A′ of Frobenius algebras, there is a unique morphism

Φ: Z ⇒ Z ′ such that Φ(1) = φ. The fact that TQFTs are symmetric monoidal functors and

that Φ is monoidal means that Φ is determined entirely by its action on the object 1 in

2Cob. The compatibility of Φ with the morphisms of 2Cob is guaranteed by the fact that

the maps δ, µ, η, ε, τ are (co)associative, (co)commutative and satisfy the (co)unit axioms,

respectively. A similar argument shows that a monoidal natural transformation Φ: Z ⇒ Z ′

determines a Frobenius algebra homomorphism under F .
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7 Applications to Classifying Closed Oriented 2-Manifolds

Recall that the genus of a surface completely determines the diffeomorphism type of oriented

closed surfaces. We can use the correspondence between Frobenius algebras and topological

quantum field theories to recover classical data like the genus of a closed oriented 2-

manifold and, indeed, we can also construct topological invariants which are invariant under

diffeomorphism using certain Frobenius algebras. Not every Frobenius algebra will return a

complete invariant, however, and the next two sections outline a few of the cases when a

Frobenius algebra does give us a complete invariant.

Definition 7.1. [2, p. 128, Exercise 4] Let (A,µ, η, δ, ε) be a Frobenius algebra. The

handle operator of A is the A-linear map ω̂ = µ ◦ δ. The handle element of A is the

element ω = ω̂(1A) ∈ A, where 1A = η(1k).

Remark 7.2. Note that since the handle operator is A-linear, it is determined entirely by

the handle element. Moreover, the n-fold composition ω̂◦n : A → A is determined by the

product ωn ∈ A. In 2Cob, the composition of cobordism classes corresponding to

represents the handle operator.

In 2Cob, the composition of cobordism classes corresponding to

Definition 7.3. Let A be a Frobenius algebra. We define the invariant associated to

A to be the function of sets IA : N→ k given by

IA(n) = ε(ωn)

We say that IA is a complete invariant if and only if IA is injective.
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Example 7.4. Here are a few cases when the invariant associated to a Frobenius algebra is

not complete.

1. If A is any Frobenius algebra over a finite field F, then the invariant IA is not complete.

Indeed, any function N→ F cannot be injective since |F| <∞.

2. Let A = k[t]/(t2). Let ε : A → k be 1 7→ 0 and t 7→ 1. Then the comultiplication

δ : A→ A⊗A induced by this Frobenius form is

1 7−→ 1⊗ t+ t⊗ 1

t 7−→ t⊗ t

We now can calculate the handle element of A:

ω = µ ◦ δ(1) = µ(1⊗ t+ t⊗ 1) = 2t

Therefore ω2 = 0, so IA is not complete. In general, the Frobenius algebra k[t]/(tn) is

not complete for all n ∈ N.
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8 Frobenius Structures on Group Algebras

We now turn our attention to group algebras, which always admit a Frobenius structure.

We describe some cases when the Frobenius algebra structure on a group algebra can return

a complete invariant.

Definition 8.1. Fix G to be a finite abelian group G = {g0, g1, ..., gN−1} with g0 = eG and

set A = kG. Let δstd : A→ A⊗A be the A-linear map given by

δstd(g) =
N−1∑
i=0

ggi ⊗ g−1
i for all g ∈ G

Let εstd : A→ k be the k-linear map given by

εstd(g) =


1, if g = eG

0, if g 6= eG

We will denote kG equipped with δstd, εstd as kGstd, which we will call the standard

Frobenius structure on kG.

Theorem 8.2. Let G be a nontrivial finite abelian group and let Istd
kG : N→ k denote the

invariant of the Frobenius algebra kGstd.

1. We have

Istd
kG (n) = |G|n

2. Suppose char(k) - |G|. Then Istd
kG is complete if and only if the integer |G| is not a

root of unity in k.

3. Istd
kG is complete if and only if char(k) = 0.

Proof.

1. Observe that |G| = N and that we obtain the following from the standard Frobenius
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structure on kG:

ω = ω̂(g0) = µ(δ(g0))

= µ(

N−1∑
i=0

gi ⊗ g−1
i )

=
N−1∑
i=0

µ(gi ⊗ g−1
i )

= N · g0.

It follows that IstdkG (1) = |G|. Now, suppose IstdkG (n) = |G|n for some n ∈ N. Then

IstdkG (n+ 1) = ε(ωn+1) = ε(ωn · ω) = ε(ωn ·N) = N · ε(ωn) = N · IstdkG (n) = N · |G|n =

|G|n+1. Therefore IstdkG (n) = |G|n for all n ∈ N.

2. Let k be such that char(k) - |G| and observe that this ensures IstdkG (n) 6= 0 for all n.

Suppose that IstdkG is complete, but that |G| is a root of unity in k. Then IstdkG (n) =

|G|n = 1 for some n. Thus, for any m ∈ N we also have that IstdkG (mn) = |G|mn = 1, a

contradiction.

Conversely, suppose IstdkG is not complete. Then there exist m,n ∈ N with m 6= n

such that |G|m = |G|n. Hence, |G||m−n| = 1, so |G| is a root of unity in k.

3. Suppose char(k) = p. Since |G| is an integer, Fermat’s Little Theorem implies that

|G|p−1 = 1 (mod p). Hence, IstdkG (p− 1) = IstdkG (0). Therefore IstdkG is not complete.

Conversely, suppose IstdkG is not complete. Then there exist m,n ∈ N, m 6= n such

that |G|m = |G|n in k. Let φ : Z→ k be the ring homomorphism φ(r) = r · 1 for all

r ∈ Z. Then φ(|G|m) = φ(|G|n), so ker(φ) 6= 0, and hence char(k) 6= 0.

Now, we will examine some Frobenius structures on kG obtained via precomposing the

standard Frobenius form εstd with an element of G. Let u ∈ G and let εu : kG→ k be the

k-linear map defined by:

εu(g) = εstd(g · u), for g ∈ G.
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Recall that Proposition 3.5 implies that εu is a Frobenius form and let kGu ∈ cFAk denote

the corresponding Frobenius algebra.

Lemma 8.3. The form εu defined above induces the following Frobenius structures on kG:

1. The pairing βu : kG⊗ kG→ k is given by

βu(gi ⊗ gj) =


1, if gj = g−1

i u−1

0, if gj 6= g−1
i u−1

2. The copairing γu : → kG⊗ kG is given by

γu(1) =
N−1∑
i=0

gi ⊗ g−1
i u−1

3. The comultiplication δu : kG→ kG⊗ kG is given by

δu(g) =

N−1∑
i=0

ggi ⊗ g−1
i u−1

Theorem 8.4. Let kGu be as above. Then:

1. The handle operator ω̂u : kG→ kG is determined by its action on the identity element

of G, which is given by

ω̂u(g0) = |G| · u−1 ∈ kG

2. For u 6= g0 the invariant IukG : N→ k associated to kGu is given by

IukG(n) =


|G|, if n = 1

0, else
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Proof. Observe that, by the preceding lemma, we have

ωu = ω̂u(g0) = µ(δu(g0))

= µ(
N−1∑
i=0

gi ⊗ g−1
i u−1)

=

N−1∑
i=0

µ(gi ⊗ g−1
i u−1)

= N · g0 · u−1 = N · u−1.

Now, by definition of εu, we have that for n ∈ N, IukG(n) = εu(ωnu) = εu(|G|n · u−n) =

|G|n · εu(u−n). But since εu = u · εstd we have that εu(u−n) = ε(u−n+1) = 1 if and only if

n = 1, and is zero otherwise. Hence IukG(n) = |G| if and only if n = 1, and is zero otherwise.

Theorem 8.4 then immediately implies that if u ∈ G is a non-identity element, IukG is

not complete.
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9 Future Work

We have shown that the invariant of the standard Frobenius structure on kG is complete

if and only if the characteristic of the field k is zero. Moreover, the invariant of kGu is

complete if and only the element u ∈ G is the group identity. That is, the completeness

of the invariant IukG is lost when the Frobenius form is altered by a non-identity element,

however it is unclear whether the completeness of the invariant would be lost when u ∈ kG

is a non-group element. Hence, for future work, we would like to determine whether using

an invertible element u ∈ kG − G to define a new Frobenius form εu yields a complete

invariant. This would give a complete classification of invariants from Frobenius structures

on group algebras over finite abelian groups. We would then expand our classification to

other kinds of algebras, such as those with nilpotents. A theorem by Artin and Wedderbern

[5, Chapter IX, Sec. 3] implies that every commutative semisimple algebra is isomorphic to

a finite direct product of copies of the ground field k, thus commutative algebras that we

are interested in fall into this category. Indeed, group alebgras over finite abelian groups

are of this kind. We also wish to investigate whether there are commutative algebras which

are neither nilpotent nor semisimple that admit Frobenius structures and if so, to classify

their associated invariants.
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