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Abstract

In the recent years, Information-Centric Networking (ICN) that mainly focuses on

contents that are transferred and received instead on end hosts that transmit and

receive contents has been under the spotlight. In particular, CCN (Content-Centric

Networking) and NDN (Named Data Networking) among ICNs have been attracting

attention as promising network architectures for realizing ICN.

Notable features of ICN architectures compared with the conventional TCP/IP

network are adoption of unique content identifiers, location independence, and in-

network content caching. In an ICN, contents are stored in one or more content

providers. The primary objective of ICNs are efficient content delivery from content

providers to content consumers called entities. A requesting entity injects a content

request into the ICN, which tries to deliver the content request to nearby content

provider(s) through routers. The content is sent back from the content provider to the

requesting entity. Because of in-network caching, the content might be directly sent

back from one of caching routers.

The performance of ICNs has been actively studied in the literature, however, to

realize global-scale ICNs, it is crucial to clarify the scalability of ICNs regarding the

number of nodes (i.e., the network size). Furthermore, to realize large-scale ICNs in

real network as a communication infrastructure, it is also important to improve the

efficiency of ICNs as well as to reveal the scalability of ICNs.

In this thesis, we tackle to research issues on realizing large-scale and highly-

efficient ICN. Specifically, we investigate the scalability of ICNs in terms of the net-

work size using experiments and mathematical analyses. Also, to improve the effi-

ciency of ICNs, we investigate the optimality of the shortest-path routing in ICN, and
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propose a lossy link detection mechanism for CCN.

First, we focus on CCN, which is one of major network architectures realizing

ICN, and investigate the scalability of CCNx, open-source CCN implementation, in

terms of the number of nodes. As performance metrics, we measure the total through-

put of content deliveries, the packet loss ratio in the network, and the average content

delivery time. We also examine the performance bottleneck of CCNx through system-

wide profiling, which quantitatively shows that per-packet digest-based authentica-

tion is the performance bottleneck in CCNx. Our findings include that the communi-

cation performance was degraded when the number of CCN routers exceeds 30–40,

and that the Data-chunck digest computation consumes approximately 20% of the

total CPU time. As a result of estimating the impact of hardware-offloading of Data-

chunk digest computation, we found that the average content delivery time can be

significantly reduced.

Secondly, we analytically obtain performance metrics for CCN using the MCA

(Multi-Cache Approximation) algorithm. Our analytical model contains multiple

routers, multiple repositories, and multiple entities. We obtain three performance

metrics: content delivery delay (i.e., the average time required for an entity to re-

trieve a content through a neighboring router), throughput (i.e., number of contents

delivered from an entity per unit of time), and availability (i.e., probability that an en-

tity can successfully retrieve a content from a network). Through several numerical

examples, we investigate how network topology affects the performance of CCN. A

notable finding is that content caching becomes more beneficial in terms of content

delivery time and availability (resp., throughput) as distance between the entity and

the requesting repository narrows (resp., widens).

Thirdly, we focus on a large-scale ICN and reveal the scaling property of ICN. For

answering research questions regarding the scaling property of ICN, we derive the

cache hit probability at each router, the average content delivery delay of each entity,

and the average content delivery delay of all entities over a content distribution tree

comprised of a single repository, multiple routers, and multiple entities. Through

several numerical examples, we investigate the effect of the topology and the size
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of the content distribution tree and the cache size at routers on the average content

delivery delay of all entities. Our findings include that the average content delivery

delay of ICNs converges to a constant value if the cache size of routers are not small,

which implies high scalability of ICNs, and that even when the network size would

grow indefinitely, the average content delivery delay is upper-bounded by a constant

value if routers in the network are provided with a fair amount of content caches.

Fourthly, we investigate the optimality of the shortest-path routing that is a straight-

forward approach for content routing in ICNs. Namely, we try to answer research

questions regarding the optimality of the shortest-path routing. We compare the

application-level performances with the shortest-path routing and with the optimal

routing obtained by searching all detour paths existing in the vicinity of the shortest-

path routing (optimal k-hop detour routing). Our findings include that the shortest-

path routing is suitable when the network is balanced and cache sizes at routers are

homogeneous, and that the optimal k-hop detour routing is suitable when the net-

work is unbalanced and variation in cache sizes is large.

Finally, by extending a packet loss detection mechanism called Interest ACKnowl-

edgement (ACK), we propose a lossy link detection mechanism called LLD-IA (Lossy

Link Detection with Interest ACKs), which is a mechanism for an entity to estimate

the link where the packet was discarded in a network. Also, we show that LLD-IA

can effectively detect links where packets were discarded under moderate packet loss

ratios through simulations.
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Chapter 1

Introduction

In the recent years, Information-Centric Networking (ICN) that mainly focuses on

contents that are transmitted and received instead on end hosts that transmit and

receive contents has been under the spotlight [1-3].

Notable features of ICN architectures compared with the conventional TCP/IP

network are adoption of unique content identifiers, location independence, and in-

network content caching [3]. In an ICN, contents are stored in one or more content

providers. The primary objective of ICNs are efficient content delivery from content

providers to content consumers called entities. A requesting entity injects a content

request into the ICN, which tries to deliver the content request to nearby content

provider(s) through routers. The content is sent back from the content provider to

the requesting entity. Because of in-network caching, the content might be directly

sent back from one of caching routers.

In the literature, several ICN architectures have been proposed, each of which has

commonalities and differences with others. Two of the most popular ICN architec-

tures are CCN (Content-Centric Networking) [1] and NDN (Named Data Network-

ing) [2]. In CCN and NDN, routers in a network can cache the forwarded contents

to its buffer memory, and can return requested contents from the buffer memory. As

a consequence, CCN and NDN are expected to reduce content delivery delays from

a repository (i.e., content provider) to entities and traffic volume transferred through

the network.
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ICN can be regarded as a cache network, which is significantly different from

conventional TCP/IP networks, so many performance studies of ICNs have been

performed in the literature. Performance studies of ICN can be classified into two

categories: performance evaluation through experiments and simulations [4-8] and

mathematical analyses [9-15]. Through those studies, the effectiveness of ICNs have

been clarified in terms of system-level performance metrics (e.g., cache hit ratio at

a router) as well as user-level performance metrics (e.g., content delivery delay and

throughput).

Since ICNs adopt different communication paradigm from the conventional TCP/IP

networks (e.g., name-based communication and in-network caching), a variety of re-

search studies rather than performance studies have been performed. In particular,

one of fundamental research topics is to design content caching algorithm, which ef-

fectively utilizes network resources [16]. In addition to designing content caching

algorithms, several content routing mechanisms which utilize caches at intermedi-

ate routers called cache-aware routings have been proposed [17, 18]. Also, multiple

transport protocols for ICNs which consider differences between ICNs and the con-

ventional TCP/IP network have been proposed [19-25].

The performance of ICN has been actively studied as described above, however,

to realize global-scale ICNs, it is crucial to clarify the scalability of ICNs in terms of the

number of nodes (i.e., the network size) and the number of contents in the network.

In this thesis, we focus on the scalability of ICNs regarding the network size (i.e., the

number of consumers, routers, and content providers).

Furthermore, to realize large-scale ICNs in real network as a communication in-

frastructure, it is also important to improve the efficiency of ICNs as well as to reveal

the scalability of ICNs. A lot of studies have been devoted to improve ICNs, how-

ever, there exist several research issues on the following ICN-specific problems; what

content routing should be used among the conventional shortest-path routing and

cache-aware routings proposed in past studies, and how transport protocol for ICNs

should be designed.

In this thesis, we tackle to research issues on realizing large-scale and highly-
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efficient ICN networks. Specifically, we investigate the scalability of ICNs in terms

of the network size using experiments and mathematical analyses. Furthermore, to

improve the efficiency of ICNs, we investigate the optimality of the shortest-path

routing in ICN, and propose a lossy link detection mechanism for CCN which helps

to design efficient congestion controls for ICNs.

In Chapter 2, we focus on CCN, which is one of major network architectures re-

alizing ICN, and investigate the scalability of CCNx, open-source CCN implementa-

tion, in terms of the number of nodes. As performance metrics, we measure the total

throughput of content deliveries, the packet loss ratio in the network, and the average

content delivery time. We also examine the performance bottleneck of CCNx through

system-wide profiling to improve the scalability of CCNx,

In Chapter 3, we analytically derive content delivery delay (i.e., the average time

required for an entity to retrieve a content through a neighboring router), throughput

(i.e., number of contents delivered from an entity per unit of time), and availability

(i.e., probability that an entity can successfully retrieve a content from a network) on

an arbitrary CCN network. Through several numerical examples, we investigate how

network topology affects the performance of CCN.

In Chapter 4, we focus on a large-scale ICN and reveal the scaling property of ICN.

For answering research questions regarding the scaling property of ICN, we derive

the cache hit probability at each router, the average content delivery delay of each

entity, and the average content delivery delay of all entities over a content distribution

tree comprised of a single repository, multiple routers, and multiple entities. Through

several numerical examples, we investigate the effect of the topology and the size

of the content distribution tree and the cache size at routers on the average content

delivery delay of all entities.

In Chapter 5, we investigate the optimality of the shortest-path routing in ICN

through several experiments. Specifically, using our mathematical analysis of ICN

in Chapter 3, we compare the application-level performances with the shortest-path

routing and with the optimal routing obtained by searching all detour paths existing

in the vicinity of the shortest-path routing (optimal k-hop detour routing).

3



In Chapter 6, we propose a lossy link detection mechanism called LLD-IA (Lossy

Link Detection with Interest ACKs), which is a mechanism for an entity to estimate

the link where the packet was discarded in a network. LLD-IA is an extension of a

fast packet loss detection mechanism called Interest ACK. Through simulations, we

investigate how accurately LLD-IA can detect links where packets were discarded

under moderate packet loss ratios.

Finally, in Chapter 7, we summarize this thesis and address future directions.
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Chapter 2

Performance Evaluation and

Improvement of Large-Scale

Content-Centric Networking

2.1 Introduction

In the recent years, Content-Centric Networking (CCN) [1] has been under the spot-

light as one of the information-centric networks, which primarily focus on contents

transmitted within the network rather than on hosts sending/receiving those con-

tents. CCN adopts a request-and-response communication model. In CCN, a unique

identifier is assigned to every content. The content request packet (Interest packet)

from a user is routed among CCN routers using longest-prefix matching of the con-

tent identifier to search for the location of the content. The content discovered is

This chapter is a minor version of [26].
c©2017 IEEE

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE
does not endorse any of Kwansei Gakuin University’s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for
advertising or promotional purposes or for creating new collective works for resale or redistribu-
tion, please go to http://www.ieee.org/publications_standards/publications/rights/
rights_link.html to learn how to obtain a License from RightsLink.
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delivered to the user as a response packet (Data packet) by retracing the path of the

request packet.

A CCN router has a buffer memory called CS (Content Store), and it caches the

forwarded Data packet in the buffer memory. CCN routers on a network cache the

forwarded contents, and reuse data. When a CCN router receives another Interest

packet for the same content, it returns the Data packet from the cache so that the

amount of traffic in network can be reduced and the content delivery time can be

shortened.

In the literature, the effectiveness of CCN has been investigated mainly through

simulation experiments. On the contrary, a software implementation called CCNx [27]

has been developed as an open-source software, and several performance studies of

CCN through experiments have been performed.

However, to the best of our knowledge, scalability of CCN in terms of the number

of nodes has not been fully understood. For large-scale deployment of CCN in real

networks as a communication infrastructure, it is crucial to clarify how the CCN ar-

chitecture itself and its components such as CCN routers and repositories are scalable

in terms of the number of nodes.

In this chapter, we investigate the scalability of CCNx, an open source CCN im-

plementation, in terms on the number of nodes (i.e., CCN routers and repositories).

Specifically, 2N ccnd daemons, which correspond to N CCN routers and N reposi-

tories, and CCN request generators are not executed on a single physical computer,

but separately executed on two physical computers. This enables us to investigate the

scalability of CCNx while excluding the measurement noise (i.e., CPU consumption)

caused by CCN request generators. Using virtualization technology, a large-scale

CCN network with many nodes are constructed in a single physical computer. In

our experiments, contents stored in the repositories are requested from different en-

tities for performance benchmarking. As performance metrics, we measure the total

throughput of content deliveries, the packet loss ratio in the network, and the average

content delivery time. We also examine the performance bottleneck of CCNx through

system-wide profiling, which will quantitatively show that per-packet digest-based
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authentication at CCN routers is the performance bottleneck in CCNx. We also reveal

how the scalability of CCNx in terms of the number of nodes can be improved by

hardware offloading of Data-chunk digest computation.

This chapter is organized as follows. Section 2.2 introduces previous works re-

lated to scalability of CCN and performance studies using CCNx. Section 2.3 explains

the methodology of our experiments such as hardware and software used in exper-

iments, workload generation, performance metrics, and factors to be studied. Sec-

tion 2.4 presents experiment results for addressing the scalability of CCNx in terms of

the number of nodes, including detailed examination of the CCNx performance bot-

tleneck through system-wide profiling. Section 2.5 investigates how the scalability of

CCN can be improved with hardware offloading of Data-chunk digest computation

at CCN routers. Finally, Section 2.6 concludes this chapter.

2.2 Related Work

In [28], Perino et al. quantitatively discuss the scalability of CCN routers to address

whether an Internet-scale CCN network can be realized with the latest technologies.

Consequently, the authors conclude that using the state-of-the-art technologies for

CCN routers, the CCN architecture could scale to the size of the current ISP networks

and CDNs (Content Distribution Networks), but not to the size of the current Internet.

In the literature, several simulation studies for investigating the CCN performance

have been performed. For instance, in [8], Chiocchetti et al. address the scalability of

CCN in terms of the number of nodes by comparing simulation times and memory

usages when running simulations of different network sizes. The authors show that

the scalability of CCN is mostly determined not by the number of nodes in the net-

work but by the number of contents in the network.

Several experimental performance evaluations of CCNx, an open-source software

implementation of CCN, have been performed for measuring the end-to-end perfor-

mance and examining the performance bottleneck in CCN routers [4-6]. In [4], Yuan

et al. measure the throughput and the resource usage from experiments using CCNx
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in a small-scale network. The authors show, to realize a CCN network with 1 [Gbit/s]

effective throughput, performance issues of CCNx such as exact string matching in

PIT (Pending Interest Table) and CS (Content Store) lookups, and longest-prefix string

matching in FIB (Forwarding Information Base) lookup should be solved. On the con-

trary, in [5], Tang measures the end-to-end performance of CCNx running in a virtu-

alization infrastructure called SAVI (Smart Applications on Virtual Infrastructure).

The author shows that the throughput of CCNx is increased by more than 12% by

optimizing the function for Data packet decoding called ccn_skeleton_decode.

In [6], Guimarães et al. present a testbed for experiments called FITS (Future Internet

Testbed with Security) and measure the performance of CCNx running on the testbed.

The authors show that the processing time for packet parsing in CCNx is 19 % larger

than that of TCP/IP, and the average content delivery delay (referred to as download

time in [6]) with CCNx is approximately 25 % smaller than that with TCP/IP.

However, in those studies, the scalability of CCN in terms of the number of nodes

has not been addressed. Hence, it has not been understood how the end-to-end per-

formance of CCN (e.g., throughput and content delivery time) is degraded as the

number of nodes in the network increases. In this chapter, we therefore experimen-

tally investigate the scalability of CCNx in terms of the network of nodes.

2.3 Experiment Methodology

In this chapter, we investigate the scalability of CCNx in terms of the number of nodes

through experiments. In what follows, we explain the methodology used in our ex-

periments.

We used Debian GNU/Linux with 64-bit Linux kernel version 4.4.1 and two Intel-

based computers (Core i7 4790 3.60 [GHz] with 8 [Gbyte] memory) connected with a

Gigabit Ethernet switch. The process scheduler was CFS (Completely Fair Scheduler),

the default scheduler in the Linux kernel. In what follows, one computer used for

constructing a virtual CCN network is called SN server for network, and the other

computer used for generating workload is called SG server for request generators.
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physical computer
SN

physical computer
SG

1 [Gbit/s]
Ethernet
switch

1 2 N − 1 N

1 2 N − 1 N

repository

CCN router

1 2 N−1 N

request generator

Figure 2.1: Experiment setup: two physical computers, each of which runs either 2 N
CCNx daemons connected forming a linear network topology or N request genera-
tors.

We used CCNx version 0.8.2 and CCNx version 1.0.

A virtual CCN network comprised of multiple CCN routers and repositories was

constructed in a physical computer SN . 2N daemons, which correspond to N CCN

routers and N repositories were executed. Every daemon is assigned an unique port

number. CS (Content Store) sizes of all CCN routers were equally set to 100 [content].

Every repository was provided with 100 unique contents of 1,500 [byte].

We used two types of network topologies: linear network topology shown in

Fig. 2.1 and random network topology. In this thesis, we intentionally used linear

network topology to directly investigate the effect of the increase in the network size

on the performance of CCN.

In a linear network topology,N CCN routers are connected in serial, andN repos-

itories are connected to respective CCN routers. Entries of FIBs in all CCN routers are

configured to construct the linear network topology.

In a random network topology, the network topology for CCN routers is gen-

erated by a randomized BA (Barabási–Albert) model, which generates scale-free net-

works, for a given network size N and the average degree k. The randomized BA

model is an extension of the original BA model [29]; in the randomized BA model, the

average number m of nodes are newly added at each preferential attachment stage,

rather than the constant number m of nodes. We used the average degree k = 4 as

a typical value of the average degrees of ISP topologies [30]. Similar to a linear net-

work topology, N repositories are connected to respective CCN routers. Entries of

FIBs in all CCN routers are configured according to the shortest-path to the nearest
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repository.

For workload (i.e., series of Interest packets) generation, we developed a CCN re-

quest generator, which randomly sent Interest packets encoded in the CCNB (CCN

Binary) format (CCNx version 0.8.2) or TLV (Type-Length-Value) format (CCNx ver-

sion 1.0) to specified CCN router’s face. Request generator i (1 ≤ i ≤ N) repeat-

edly injects Interest packets to CCN router i requesting a content stored in repository

j (6= i). The interval between successive Interest packet generation was given by the

exponential distribution with the mean of 1.0 [s]. Request generator i requests 100

contents stored in repository j in a random order.

The clock speed of CPU in physical computer SN was varied from 0.90 [GHz] to

3.60 [GHz] using cpufreq, the CPU frequency scaling module in the standard Linux

kernel. On the other hand, the clock speed of the CPU in physical computer SG was

set to 3.60 [GHz].

As performance metrics, we used followings.

• Throughput

Throughput is the number of successful content deliveries in the network per

a unit time. Note that our throughput definition is for the entire network (i.e.,

network-level throughput), rather than for every entity (i.e., end-to-end through-

put).

• Packet loss ratio

Packet loss ratio is the rate of packet losses in the network, which is defined as

the ratio of the number of unsuccessful content deliveries to the number of total

Interest packets injected in the network.

• Average content delivery time

Average content delivery time is the average time elapsed since an entity sends

an Interest packet to the network by the time when the entity receives the corre-

sponding Data packet from the network. Note that the average content delivery

time is the average of all successful content deliveries, which do not include un-

successful (e.g., lost or pending) content deliveries.
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We obtained those performance metrics from CCN request generators. A single

experiment was lasted for 60 [s] and the throughput, the packet loss ratio, and the

average content delivery time in the last 40 [s] were calculated to ignore variability in

transient state. Also, utilizing /proc file system on the Linux kernel, CPU utilization

on the physical computer SN was calculated while CCN request generators send re-

quests. Experiments were repeated 10 times for a given condition, and the average

and its 95% confidence interval for every measurement were calculated.

2.4 Experiment Results

First, experiment results for linear network topologies are shown.

Total throughput, packet loss ratio, the average content delivery time, and CPU

utilization when changing the number N of CCN routers are shown in Figs. 2.2 and

2.3.

The total throughput initially increases quadratically as the number N of CCN

routers increases since the total number of packets sent from request generators is

proportional to N (N − 1). The total number of Interest packets and Data packets

processed at CCN routers increases exponentially, so that the CPU utilization also

increases exponentially.

The larger number of CPU cores and the faster CPU clock speed results in larger

throughput, which indicates that CCNx is CPU-intensive rather than I/O-intensive.

This observations is confirmed by comparing the total throughput and CPU utiliza-

tion; i.e., the total throughput decreases as the number N of CCN routers increases

when the CPU utilization is close to 100%. In addition, the packet loss ratio and the

average content delivery delay rapidly increase as the CPU utilization increases.

CCNx version 0.8.2 and version 1.0 generally show similar tendency. One can find

differences in the average content delivery time and the CPU utilization. Namely, the

average content delivery times in CCNx version 1.0 varies significantly depending on

several factors such as the network size N , the number of CPU cores, and the CPU

clock speed. Also, CCNx version 1.0 shows slightly larger CPU utilization than CCNx
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Figure 2.2: Experiment results in linear network topology with CCNx version 0.8.2

version 0.8.2.

Second, experiment results for random network topologies are shown.

Similar to Figs. 2.2 and 2.3, Figs. 2.4 and 2.5 show total throughput, packet loss

rate, the average content delivery time, and CPU utilization for different numbers of

CCN routers in a random network topology.

The linear network has a larger network distance than that of the random net-

work. For instance, the average number of hops for CCN routers in the linear net-

work topology and the random network with N = 100 is 30 and 2.3, respectively.

This makes the number of packets processed at CCN routers in the random network

topology much less than that in the linear network topology. Consequently, results in

the random network topology show higher throughput and smaller average content

delivery time than that in the linear network topology. Our observations in the linear

network topology also apply to the random network topology.
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Figure 2.3: Experiment results in linear network topology with CCNx version 1.0

2.5 Estimating the Impact of Hardware Offloading

To investigate the performance bottleneck of CCNx, we performed a system-wide

profiling using OProfile, a system-wide statistical profiling tool for Linux. Tables 2.1

and 2.2 are excerpts of the profiling result, which show ten most time-consuming

functions for linear network topology with N = 30 and the CPU clock speed of

0.90 [GHz]. These tables indicate that

sha256_block_data_order function, which is a part of OpenSSL library, utilizes

approximately 12–20% of the CPU time. Namely,

sha256_block_data_order seems to be the performance bottleneck in CCNx. In

CCNx, sha256_block_data_order function is invoked for every Data packet re-

ception to check the validity of the Data chunk using digest-based authentication.

One possible solution for improving the scalability of CCNx, when a number of
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Figure 2.4: Experiment results in random network topology with CCNx version 0.8.2

CCN router slices are constructed on a single physical computer, is hardware offload-

ing of such CPU-intensive processings.

In what follows, we therefore investigate how the scalability of CCNx in terms of

the number of nodes can be improved with hardware offloading of the Data-chunk

digest computation at CCN routers.

To estimate the performance improvement with hardware offloading, processing

of the Data-chunk digest computation at all CCN routers are disabled by bypassing a

function invocation. In CCNx version 0.8.2, all invocations of ccn_diges_create,

ccn_digest_init, and

ccn_digest_update from ccn_digest_ContentObjectare simply replaced with

NOPs (No OPerations). Also, in CCNx version 1.0,

metisTlvSkeleton_ComputeContentObjectHash from

metisMessage_GetContentObjectHashHash is replaced with NOPs.
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Figure 2.5: Experiment results in random network topology with CCNx version 1.0

Total throughput, packet loss ratio, the average content delivery time, and CPU

utilization when changing the numberN of CCN routers in a linear network topology

with one CPU core and the CPU clock speed of 0.90 [GHz] are shown in Fig. 2.6.

In this figure, lines labeled as offloading show the results with bypassed Data-chunk

digest computation, and ones labeled as original the results of the original CCNx.

These results show that, with hardware offloading of the Data-chunk digest com-

putation, improvements in the throughput, the packet loss ratio, and CPU utilization

are noticeable (i.e., approximately 30% in case of the throughput). In addition, one

can find from these results that the average content delivery time decreases by ap-

proximately 60% at maximum with CCNx version 1.0, which should be significant

reduction.
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Table 2.1: An excerpt of system-wide profiling result with OProfile for N = 30 and
the CPU clock speed of 0.90 [GHz] (CCNx version 0.8.2)

% image name app name symbol name
20.0 libcrypto.so.1.0.0 ccnd sha256 block data order()
7.99 ccnd ccnd ccn skeleton decode()
5.08 ccnd ccnd siphash 2 4()
2.34 ccnd ccnd hashtb seek()
2.00 libc-2.19.so ccnd int malloc()
1.95 libc-2.19.so ccnd memcmp sse4 1()
1.48 ccnd ccnd ccny skiplist findbefore()
1.32 ccnd ccnd setpos()
1.14 ccnd ccnd hashtb lookup()
1.12 ccnd ccnd heap sift()

Table 2.2: An excerpt of system-wide profiling result with OProfile for N = 30 and
the CPU clock speed of 0.90 [GHz] (CCNx version 1.0)

% image name app name symbol name
12.2 libcrypto.so.1.0.0 metis daemon sha256 block data order()
5.46 libc-2.19.so metis daemon int malloc()
3.11 libparc.so.1.0 metis daemon findIndex()
2.68 libc-2.19.so metis daemon int free()
2.09 libparc.so.1.0 metis daemon parcHashCode HashImpl()
1.95 libc-2.19.so metis daemon malloc consolidate()
1.55 libparc.so.1.0 metis daemon parcBuffer CheckValidity()
1.41 libparc.so.1.0 metis daemon pointerAdd()
1.15 libparc.so.1.0 metis daemon parcStdlibMemory IncrementOutstandingAllocations()
1.13 libparc.so.1.0 metis daemon parcStdlibMemory DecrementOutstandingAllocations()

2.6 Summary

In this chapter, we have investigated the scalability of CCNx in terms of the number of

nodes. Specifically, multiple CCNx daemons connected forming CCN networks were

executed on a single physical computer, and CCN request generators were executed

on the other one. As performance metrics, we have measured the total throughput

of content deliveries, the packet loss ratio in the network, and the average content

delivery time. Consequently, we have shown that, in our experiments, the CCNx

performance degrades when the CPU utilization is close to 100%, which indicates

that CCNx is CPU-intensive rather than I/O-intensive. Also, we have shown that the

Data-chunk digest computation at CCN routers consumed approximately 20% of the

total CPU time. In addition, we have revealed the effectiveness of hardware offload-

ing of the Data-chunk digest computation. We found that the hardware offloading

of the Data-chunk digest computation is effective of improving the total throughput

and reducing the content delivery time.
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Figure 2.6: Experiment results in linear network topology with/without virtual of-
floading
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Chapter 3

Performance Analysis of

Content-Centric Networking on

Arbitrary Network Topology

3.1 Introduction

In recent years, Content-Centric Networking (CCN) [1] has been under the spotlight

as a networking approach primarily focused on the content transmitted and received

(information-centric networks), rather than on the hosts that transmit and receive the

content (host-centric networks).

CCN is expected to deliver high availability, since multiple repositories main-

tain copies of an identical content, while also allowing reduction in traffic volume

by caching content relayed by network routers. When using Internet Protocol (IP),

one must communicate directly with a host that maintains the desired content in or-

der to obtain the content. CCN, in contrast, does not require identification of the host

that maintains the content, and the content can be obtained from anywhere so long

This chapter is a minor version of [31].
Copyright c©2018 The Institute of Electronics, Information and Communication Engineers
IEICE Transaction Online: https://search.ieice.org/
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as it exists in the network. As a consequence, CCN is expected to reduce content de-

livery delays, reduce traffic volume transferred through the network, and improve

availability as a result of the ability to disseminate content copies within the network

in a natural way.

Many studies have investigated the effectiveness of CCN through simulation ex-

periments. For example, in [7], the effectiveness of CCN in video streaming is inves-

tigated through simulation. The results of that study show that the performance of

CCN is not greatly affected by topology, and that the effectiveness of CCN depends

largely on the distribution of the content requested by users. In [32], power consump-

tion for video streaming is examined when either IP or CCN is used. The results show

that CCN can reduce overall power consumption by reducing traffic volume, which

results from caching, although power consumption in network devices increases as a

result of maintaining a high volume of cache data.

There have also been mathematical analyses of CCN [9, 11-15]. For example, the

authors of [11] have developed a Markov model for a cache in single-router CCN, and

have examined the performance of CCN in a tree topology by complementing their

Markov model with simulation results. Caching performance for single-router CCN

with Interest packet aggregation was analyzed in [12]. The authors of [9] calculated

CCN throughput and content delivery delay on cascade-type and binary tree-type

network topologies. As a result, it was shown that CCN throughput and content de-

livery delay depend on cache size, content size and content popularity distribution.

In addition, the authors of [13] calculated the content delivery delay, throughput and

download time in the case where an entity performed multipath access from multiple

leaf routers in a tree network, by extending the analysis in [9]. However, these analyt-

ical studies were limited to simple network topologies, and the effectiveness of CCN

in a more general network topology has yet to be ascertained.

The pioneering work in performance analysis of a multi-cache network is [33],

which proposed the multi-cache approximation (MCA) algorithm for analytically cal-

culating cache hit probability for intermediate nodes. The authors of [33] mostly focus

on link-level performance (i.e., cache hit probability) instead of on network-level per-
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formance (e.g., delivery delay, throughput, and availability).

In [14, 15], the performance of CCN in a general network topology was analyzed.

The author of [15] developed a modeling framework for a general network based on

Information-Centric Networking (ICN), and obtained several performance metrics.

However, in this study, application-level performance metrics (e.g., content deliv-

ery delay and throughput) were not analyzed. In this study, cache hit probability at

routers and content delivery delay (referred to as virtual round-trip time in [14]) in

a general network topology were obtained by MCA [33]. We analyze CCN perfor-

mance using the MCA algorithm in a similar manner to [14], but we also analytically

calculate throughput and availability, assuming link failures in addition to content

delivery delay.

In this chapter, we analytically derive content delivery delay, throughput, and

availability with CCN for an arbitrary network topology. We model CCN with mul-

tiple routers and multiple repositories. Performance when multiple entities request a

content stored in repositories is analyzed. Time required until an entity obtains the

content after making a request (content delivery delay), throughput for content ac-

quisition, and probability for an entity to successfully obtain the content under prob-

abilistic link failures are also analytically calculated. Furthermore, the effect of net-

work topology on the effectiveness of CCN is also studied through several numerical

examples.

The contributions of this chapter are summarized as follows.

• We propose a modeling approach for large-scale CCN on arbitrary network

topology.

• We analytically derive content delivery delay, availability, and throughput in

CCN by using MCA algorithm.

• We show the effect of network topology on the performance of CCN.

This chapter is organized as follows. First, Section 3.2 describes the analytical

model used in this chapter. Section 3.3 analyzes content delivery delay, throughput,

and availability in CCN with an arbitrary network topology. Section 3.4 looks into
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Figure 3.1: Analytic model

the effects of network topology on the effectiveness of CCN using several numerical

examples. Section 3.5 examines the validity of our estimates by comparing our ana-

lytical results with those by simulation. Finally, Section 3.6 provides a summary of

this chapter.

3.2 Analytic Model

The topology for a CCN network comprising multiple routers (CCN routers) and

multiple repositories is expressed as an undirected graph G = (V,E) (Fig. 3.1). Here-

inafter, these routers and repositories are referred to as nodes.

C represents a collection of all contents present in the network. For simplicity, it is

supposed that all contents are of the same size. The space needed to store content in

router v is expressed asBv, and the communication delay for the link between node u

and node v (i.e., propagation delay plus all processing delays) is τu,v. The failure rate

for links is set to φ for all links.

It is supposed that each content exists in a single repository, and that the Forward-

ing Information Base for each router is properly set up by the routing.

The path from node v ∈ V to the repository that stores content k ∈ C is written

P v
k = (v, . . . , sk). Here, sk indicates the repository that stores content k. The nth node

in the path P v
k is notated P v

k [n]. Therefore, P v
k [1] = v and P v

k [|P
v
k |] = sk.
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It is assumed that each entity is connected directly to a router, that the bandwidth

between an entity and a router is sufficient, and that entity–router communication

delays are negligible.

The arrival rate of Interest packets for content k received by node v from directly

connected subordinate entities is expressed as λk,v. In addition, the cache hit proba-

bility for content k at node v is expressed as qk,v. For a repository sk that stores content

k, we define qk,sk = 1.

3.3 Analysis

3.3.1 Content Delivery Delay

First, the content delivery delay (i.e., the expected time difference between request

and receipt) in CCN when there is no link failure (i.e., when φ = 0) is obtained.

Since the router caches content within the network in CCN, content delivery de-

lay is reduced, and traffic volume is likely to be reduced. Since each content is dis-

tinguished by a unique identifier in CCN, content is recycled at the network level. A

router returns a Data packet without further relaying a corresponding Interest packet

if it has the Data packet corresponding to the Interest packet in its Content Store.

When an entity sends an Interest packet to the network, the router forwards the In-

terest packet to the nearest repository, determined according to a routing table called

the Forwarding Information Base. If the content corresponding to the Interest packet

is cached in a router along the path, the router returns the corresponding content to

the entity as a Data packet rather than forwarding the Interest packet. If the content

corresponding to the Interest packet is not cached in any of the routers along the path,

then the Interest packet arrives at the repository, which returns the requested content

as a Data packet.

The cache hit probability qk,v for content k at router v can be approximately ob-

tained using MCA [33] or multi-cache with aggregation approximation (MCAA) [14]

for partial networks comprising only routers.

MCA is an approximation algorithm to analytically calculate the cache hit proba-

22



bility in a multi-cache network [33]. MCA uses single-cache approximation (SCA) [34]

to calculate the cache hit probability at a single node that has finite buffer size uses

either first-in first-out (FIFO) or least-recently used (LRU) for cache expiration. It

repeatedly applies SCA to each node in the network, and calculates the cache hit

probability at each node.

MCA calculates mk,v so that it satisfies the following equations by iterative calcu-

lation [33].

rk,v = λk,v +
∑

v′:k∈R(v′,v)

mk,v′ (3.1)

pk,v =
rk,v

∑|C|
i=1 ri,v

(3.2)

~qv = contents( ~pv, Bv) (3.3)

mk,v = rk,v (1− qk,v) (3.4)

Here, mk,v indicates the rate of misses (i.e., the number of misses per unit of time) at

node v for content k. In this, rk,v indicates the request rate (i.e., the total request rate

flowing in from upstream nodes and the request rate received from entities directly

connected to the node) for content k at node v; R(v, v′) is the collection of content for

which node v is the next hop from node v′ on the path. For example, if R(v, v′) = {k},

then node v is located at the next hop in the path for content k from node v′. Further,

pk,v and qk,v are the relative request rate and the cache hit probability, respectively, for

content k at node v. The vectors ~pv and ~qv aggregate pk,v and qk,v, respectively, for all

k (i.e., all contents).

In [14], the MCAA algorithm, which extends the MCA algorithm and models the

aggregation of Interest packets at a router, was proposed.

By utilizing either the MCA or the MCAA algorithm, the cache hit probability qk,v

for content k at router v can be calculated.

The probability for the Data packet corresponding to an Interest packet sent from

node v for content k to be returned by the nth node on the path P v
k (i.e., hitting the

cache at the nth node, or the nth node being the repository) is expressed as ηvk,n. Since
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content k is always returned from one of the nodes on the path P v
k ,
∑

n η
v
k,n = 1 when

link failure is not included.

Since the cache hit probability at the nth node is qk,P v
k
[n], the value of ηvk,n is given

by

ηvk,n = qk,P v
k
[n]

n−1
∏

i=1

(1− qk,P v
k
[i]). (3.5)

Therefore, the expected delay for content delivery given an Interest packet received

by node v for content k is

Dv
k =

|P v
k
|

∑

n=2

(

ηvk,n

n−1
∑

m=1

2 τP v
k
[m],P v

k
[m+1]

)

. (3.6)

Since the arrival rate of Interest packets received by node v from directly con-

nected entities for content k is λk,v, the expected content delivery delay, Dv, at node v

for any content is given by

Dv =
∑

k∈C

λk,v
∑

k′∈C λk′,v
Dv

k. (3.7)

3.3.2 Throughput

Next, the throughput for content retrieval in CCN when link failure does not occur

(i.e., φ = 0) is obtained.

In general, Interest packets are very small relative to Data packets. We therefore

neglect Interest packets in calculating traffic. The size of each Data packet is assumed

to be S.

The rate at which the Data packet is returned by node v for content k is expressed

as xk,v. The rate at which node v receives Interest packets for content k is rk,v, and the

cache hit probability is qk,v, so we have

xk,v = rk,v qk,v S +
∑

v′:k∈R(v′,v)

ξk,v(v
′), (3.8)
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where ξk,v(v
′) indicates the reception rate for Data packets for content k flowing from

node v′ to node v.

The rate of Data packet transmission for content k from v′ to v is expressed as

ζk,v′(v). Note that ζk,v′(v) is the rate of transmission from v′ to v, and ξk,v(v
′) is the

rate of reception at node v from node v′.

If the bandwidth between node v and node v′ is µv,v′ , then Data packets exceeding

bandwidth µv,v′ are discarded at transmission time from node v′. Therefore, ξk,v(v
′) ≤

ζk,v′(v).

The rate at which node v′ returns Data packets for content k is xk,v′ , and only a

fraction mk,v/rk,v′ of that is transmitted to node v. So, we have

ζk,v′(v) =











xk,v′
mk,v

rk,v′
if k ∈ R(v, v′)

0 otherwise
. (3.9)

Assuming that fair queuing is enforced by all routers and that the rate of loss for

Data packets is proportional to the transmission rate for Interest packets, ξk,v(v
′) is

given by

ξk,v(v
′) = min(µv,v′ ,

∑

i∈C

ζi,v′(v))
ζk,v′(v)

∑

i∈C ζi,v′(v)
. (3.10)

Therefore, the rate of transmission for Data packets for content k returned by node

v to entities connected directly to the node T v
k (i.e., the throughput) is given by

T v
k =

λk,v
rk,v

xk,v. (3.11)

The total throughput T v for Data packets for node v to return to entities connected

directly to the node is the sum of throughputs for all content.

T v =
∑

k∈C

T v
k (3.12)
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3.3.3 Availability

Finally, content availability (i.e., the probability that an entity can successfully obtain

a requested content) with CCN is derived.

Since the routers cache content in CCN, it is possible to obtain a content so long as

all links to the router caching the content are functioning properly, even when other

links in the network temporarily fail.

The availability of content k at node v is expressed as Av
k. That is, Av

k is the proba-

bility that the Data packet corresponding to an Interest packet can be obtained prop-

erly when the Interest packet is sent from node v to request content k.

If a cache is hit at the nth node on the path P v
k from node v to repository sk (which

maintains content k), then the content can be properly obtained if the path from the

2nd to nth node on the path is properly functioning. Since the cache hit probability at

the nth node is qk,P v
k
[n] and the failure rate for each link is φ , we have

Av
k =

|P v
k
|

∑

n=1

(

ηvk,n (1− φ)2 (n−1)
)

. (3.13)

Because the rate of arrival for Interest packets received by node v from entities

directly connected to the node for content k is λk,v, the availability Av for all content

at node v is obtained as

Av =
∑

k∈C

λk,v
∑

k′∈C λk′,v
Av

k. (3.14)

3.4 Numerical Examples

First, content delivery delay for content k at router v (Eq. (3.6)) in a linear network

topology where five routers and one repository are connected in series (see Fig. 3.2) is

shown in Fig. 3.3. The repository (node 6) stores 500 items of contentC = {1, . . . , 500}.

The arrival rate of Interest packets for content k at router v (1 ≤ v ≤ 5) from directly

connected entities, λk,v, is given by a Zipf distribution with a mean of 20 [requests/s]

and an exponent parameter of 1.0. Therefore, the arrival rate of Interest packets for
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content at a specific router is heavy-tailed. For instance, content 1 is the least popular

content, and content 500 is the most popular content. Further suppose that the content

store sizeBv is set equally to 50 [content] in all routers, and communication delay τu,v

is equally 1 [ms] for all links. Link failure rates at all links are set to φ = 0 unless stated

otherwise. The packet size S for Data packets is 8 [Kbytes], and the bandwidth µv,v′

between nodes (i.e., routers and repositories) is set to 100 [Mbits/s]. The bandwidth

between an entity and its neighboring router is unlimited; that is, links at network

edges never become a performance bottleneck.

One can see from Fig. 3.3 that delivery delay becomes lower for more frequently

accessed content (i.e., for larger k). It can also be seen that the delivery delay is longer

for routers further from the repository (i.e., for smaller v). There are five hops from

the router on the left end (node 1) to the repository (node 6), and the delivery delay

when there is no content caching (when it is directly obtained from the repository) is

1 × 5 × 2 = 10 [ms]. From Fig. 3.3, it is seen that the content delivery delay is about

9 [ms] at maximum for k = 1, and nearly zero at minimum for k = 500 as content

caching is done.

Second, the throughput for content k at router v, T v
k , is shown in Fig. 3.4. Note

that the y-axis is plotted on a logarithmic scale. This figure shows that throughput

significantly differs for every content since the arrival rate of Interest packets is given

by a Zipf distribution in our numerical examples. The throughput for popular con-

tent (i.e., large k) exceeds 10 [Mbits/s], but that for unpopular content is less than

0.1 [Mbits/s]. One can see from this figure that, unlike with content delivery delay

in Fig. 3.3, routers far from the repository (i.e., smaller v) achieve higher throughput

than those close to the repository (i.e., larger v). This phenomenon can be explained

by the filtering effect in multi-stage caching. Namely, in multi-stage caching, popular

content is likely to be hit at an earlier stage. Hence, popular content is less likely

to be accessed at a later stage. The link bandwidth at the later stage competes with

requests for different content. However, because of the filtering effect, popular con-

tent is less likely to be accessed, so that requests for unpopular content are likely to

achieve higher throughput.
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Figure 3.2: Linear network topology: five
routers and one repository are connected
in series.
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The availability of content k at router v (Eq. (3.13)) when the link failure rate is set

to φ = 0.1 is shown in Fig. 3.5. This figure shows that content availability improves

dramatically with content caching. Since the link failure rate between router 5 and

the repository (node 6) is also φ, the availability for router 5 is (1 − φ)2 = 0.81. As is

shown in Fig. 3.5, the availability exceeds 0.5 except for content with low popularity,

even for routers that are far from the repository (such as routers 1 and 2). It is possible

to obtain a content in CCN if one of the routers on the path has cached the content

(and all links to the router are functioning properly).

Next, content delivery delay for content k at router v in the simple network topol-

ogy shown in Fig. 3.6, where five routers and two repositories are connected, is shown

in Fig. 3.7. Three entities are connected, one to each of router 1, router 2, and router

3. Similar to Fig. 3.3, there are 500 contents C = {1, . . . , 500} in the network. One
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Figure 3.6: Simple network topology:
five routers and two repositories are con-
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keeping 250 contents.
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ple network topology
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Figure 3.9: Availability in simple network
topology

repository (node 6) has contents 1, . . . , 250, and the other (node 7) has the remaining

content. The other conditions are the same as in Fig. 3.3. Hereafter, the network topol-

ogy shown in Fig. 3.6 is called a simple network topology. Note that in Fig. 3.7, content

delivery delays at router 2 and router 3 are indistinguishable.

Figure 3.7 shows that the content delivery delay is smaller when the requesting

router is closer to the repository holding the content. The small delivery delay is

caused by higher cache hit probability at routers near the repository, as well as a

lower number of hops from the requesting router to the corresponding repository.

Throughput for content k at router v, T k
v , in the simple network topology is shown

in Fig. 3.8. Again, this figure shows that throughput significantly differs for every

content. Namely, throughput for popular content is quite high, and throughput for
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unpopular content is very low. However, the difference is caused by a difference in

Zipf-distributed request rates. A notable difference from Fig. 3.4 is that throughputs

at routers 1, 2, and 3 are almost the same in Fig. 3.8, even for unpopular content. This

phenomenon can also be explained by absence of the filtering effect in multi-stage

caching. The number of hops in the simple network topology is either 2 or 3, and

therefore, any filtering effect is unlikely to be strong. Thus, unpopular content is not

likely to benefit from higher throughput caused by the filtering effect.

Availability of content k at router v in the simple network topology is shown in

Fig. 3.9. The link failure rate is set to φ = 0.1, similar to Fig. 3.5. This figure shows

that the availability for the corresponding content is higher when the router is closer

to the repository that has the content, just as shown in the results for content delivery

delay.

From these observations, we conclude that the benefit of performance improve-

ment from content caching in terms of delivery delay and availability is higher for

entities closer to the repository. In contrast, the benefit in terms of throughput is the

opposite: entities further from the repository see higher throughput.

Finally, to demonstrate the usability of our analysis, we examine the performance

of CCN with a real network topology, the Abilene network topology [35], which is

shown in Fig. 3.10. For demonstration purposes, a single repository (node 12) with

500 contents is connected to router 5. A single entity is connected to all routers. Other

conditions are the same as those with the linear network topology and the simple

network topology. We note that our analysis places no limitation on the number of

repositories in the network and does not assume heterogeneity in arrival rates of In-

terest packets at routers. We used a simple scenario because a complicated scenario

makes interpretation of numerical examples difficult.

Content delivery delay, throughput, and availability for content k at router v are

shown in Figs. 3.11, 3.12, and 3.13, respectively. Because of space limitations, these

figures show results for only routers 1, 5, 7, and 11. The results for routers 3 and 9 are

almost the same in those for router 1. In these figures, we can see similar tendencies

to those observed for the linear network topology and the simple network topology.
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Figure 3.10: Abilene network topology
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Figure 3.11: Content delivery delay in abi-
lene network topology
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Figure 3.12: Throughput in abilene net-
work topology
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Figure 3.13: Availability in abilene net-
work topology

However, because of complexity in the network topology, Figs. 3.11, 3.12, and 3.13

exhibit more complex patterns, which implies that the performance of CCN depends

strongly on the network topology and that performance analysis should explicitly

take account of the network topology to be studied.

3.5 Validation

Finally, the validity of our estimation is examined by comparing analytical results

with those by simulation.

We have developed a chunk-level CCN simulator, written in the Perl program-

ming language, and measured content delivery delay, throughput, and availability in

three network topologies shown in Fig. 3.2, Fig. 3.6, and Fig. 3.10. The parameters
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are the same as those used in Section 3.4. Interest packets were randomly generated

from entities at a specified rate, λk,v. The queueing discipline at all routers was FIFO.

The cache replacement algorithm at all routers was LRU. Every simulation run lasted

for 30 [s]. For a single parameter setting, simulations were repeated 10 times, and the

average and 95% confidence interval of all measurements were obtained. For better

readability, 95% confidence intervals are shown sparsely (i.e., for every 50 contents)

in the following figures.

Simulation results for content delivery delay, throughput, and availability are

shown in Figs. 3.14 through 3.16. These figures show good agreement between ana-

lytical and simulation results in content delivery delay, throughput, and availability,

which clearly shows the validity of our analysis, even in a cascaded network topol-

ogy.

Next, simulation results for content delivery delay, throughput, and availability in

a simple network topology and the Abilene network topology are shown in Figs. 3.17

through 3.19 and Figs. 3.20 through 3.22, respectively. These figures show that ana-

lytic results and simulation results agree even in general networks.

3.6 Summary

In this chapter, we have analyzed the performance of CCN on an arbitrary network

topology by utilizing the MCA algorithm, which is an approximation algorithm which

analytically calculates cache hit probability in a multi-cache network. Content deliv-

ery delay, throughput, and availability in a network comprising multiple routers and

multiple repositories have been analytically calculated. Through several numerical

examples, we have shown that the benefits of performance improvement by content

caching (i.e., reduction in content delivery delay and improvement in availability)

were more pronounced when the router was closer to the repository in CCN. We

have also shown the validity of our analysis through simulation experiments.
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Figure 3.14: Simulation results of content delivery delay for content k at router v in
linear network topology
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Figure 3.15: Simulation results of throughput for content k at router v in linear net-
work topology
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Figure 3.16: Simulation results of availability for content k at router v in linear net-
work topology
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Figure 3.17: Simulation results of content delivery delay for content k at router v in
simple network topology
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Figure 3.18: Simulation results of throughput for content k at router v in simple net-
work topology
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Figure 3.19: Simulation results of availability for content k at router v in simple net-
work topology
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Figure 3.20: Simulation results of content delivery delay for content k at router v in
abilene network topology
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Figure 3.21: Simulation results of throughput for content k at router v in abilene net-
work topology
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Figure 3.22: Simulation results of availability for content k at router v in abilene net-
work topology
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Chapter 4

Performance Analysis of

Large-Scale Information-Centric

Networking

4.1 Introduction

In the recent years, Information-Centric Networking (ICN) that mainly focuses on

contents that are transmitted and received instead on end hosts that transmit and

receive contents has been under the spotlight [1-3].

Notable features of ICN architectures compared with the conventional TCP/IP

network are adoption of unique content identifiers, location independence, in-network

content caching, native support of anycast, multicast and broadcast communications [3].

In an ICN, contents are stored in one or more content providers. The primary objective

of ICNs are efficient content delivery from content providers to content consumers

called entities. A requesting entity injects a content request into the ICN, which tries to

deliver the content request to nearby content provider(s) through routers. The content

This chapter is a minor version of [36].
Copyright c©2019 The Institute of Electronics, Information and Communication Engineers
IEICE Transaction Online: https://search.ieice.org/
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is sent back from the content provider to the requesting entity. Because of in-network

caching, the content might be directly sent back from one of caching routers.

In the literature, several ICN architectures have been proposed, each of which has

commonalities and differences with others. Two of the most popular ICN architec-

tures are CCN (Content-Centric Networking) [1] and NDN (Named Data Network-

ing) [2]. In CCN and NDN, routers in a network can cache the forwarded contents

to its buffer memory (called Content Store in [1, 2]), and can return requested contents

from the buffer memory. As a consequence, CCN and NDN are expected to reduce

content delivery delays from a repository (i.e., content provider) to entities and traffic

volume transferred through the network.

Because of in-network content caching, ICN is a sort of cache networks where mul-

tiple content caches are mutually connected residing in between a content provider

and a content consumer. One of the most popular and widely-deployed cache net-

works is a hierarchical Web caching [37] where Web proxy servers with page caches

are hierarchically connected to serve Web page requests from many clients, as well as

CDN (Content Delivery Network). A node in a cache network (e.g., a proxy server

in Web and a content router in ICNs) is provided with a cache storage, which stores

copies of content recently served from the node. Those nodes with caches are logi-

cally interconnected. If a content request (e.g., an HTTP GET request in Web and a

content request in ICN) hits the cache of a node (cache hit), it immediately returns the

content to the requesting entity. Otherwise (cache miss), the node forwards the con-

tent request to upstream node(s). If the content request never experiences cache hit at

all nodes along the path, the content request is eventually forwarded to the content

provider (e.g., an HTTP server in Web and a content provider in ICN).

Both ICN and hierarchical Web caching have high commonality (e.g., receiver-

driven network and hierarchical content caching), but the essential difference is in

their scales — the targeted scale of ICN is significantly larger than that of hierarchical

Web caching. For instance, in CCN and NDN, nodes of the cache network are routers

whereas nodes are application gateways in hierarchical Web caching. The Web is an

extremely huge network and a vast number of Web proxy servers have been operating
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on the current Web. However, those Web proxy servers are mostly independent, so

that a single hierarchical Web cache network is rather small.

To realize a global-scale ICN, it is crucial to understand the fundamental proper-

ties of such large-scale cache networks. To the best of our knowledge, it is still an open

issue how scalable ICNs are in terms of the network size (e.g., the number of entities,

routers, and content providers), the number of contents in the network, the cache size

of routers, and the processing speed of routers. Among those scaling factors, scala-

bility of ICN regarding the network size should particularly important since impacts

of increasing other three factors (i.e., contents diversity, router cache size, processing

speed) are expectable. For instance, increase in cache sizes and processing speeds of

routers should have positive effect. However, it is unclear whether increase in the

size of an ICN is beneficial or malicious.

The scaling property of ICN has not been well understood due to the lack of the-

oretical foundations and analysis methodologies. In the literature, the characteristics

of small-scale cache networks have been investigated [38, 39]. One interesting phe-

nomenon observed in a cache network is a filter effect — in multi-stage caching, a

content with high popularity (i.e., frequently-requested content) is likely to be hit

at earlier stage so that the content popularity distribution at later stage tends to be

smoothed. However, to the best of our knowledge, the implication of filter effect on

a large-scale ICN has not been well understood. Due to the complexity of a large-

scale ICN, it is not trivial to investigate its characteristics as well as its performance

through conventional numerical solutions [9, 10, 13-15, 31, 40, 41] and computer sim-

ulations [7, 42].

This chapter addresses the following research questions regarding the scaling

property of ICN.

• How scalable an ICN as a large-scale cache network is for its network size (i.e.,

the number of routers) in terms of, in particular, user-level performance?

Major drawback of past studies in the literature is in their emphasis on cache hit

ratios. Estimating cache hit ratios at intermediate routers are quite important to

understand the characteristics of a cache network. However, cache hit ratios
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of routers are one of system-level performance metrics, so that higher cache hit

ratios do not necessarily imply better user-level performance.

In this chapter, we try to reveal the relation between the network size and one of

major user-level performance metrics — the average content delivery delay of

every entity. The content delivery delay is composed of the two-way (i.e., end-

to-end) transfer delay between an entity and the repository and the processing

delay at the repository.

• How the cache hit ratios of routers are distributed on a large-scale ICN?

As we have explained above, understanding of cache hit ratios themselves are

not sufficient, but those are still important to capture the behavior of a large-

scale cache networks.

On a complex and large-scale ICN, even if every router is provided with the

equal amount of content caches, utilization of content caches should differ at

one router and another. For instance, content caches of routers at the network

edges might or might not be better utilized compared with content caches of

router at the network cores. Different routers (and their content caches) works

differently. Thus, it is quite important to understand the distribution of cache

hit ratios of routers on an ICN. If we could identify the most beneficial (contribut-

ing) routers in an ICN, such understanding would be helpful to, for instance,

router-capability dimension (e.g., how much content caches should be provided

to different routers).

• What scaling properties does an ICN exhibit when the network size grows in-

definitely?

If the size of an ICN would evolve continuously (i.e., the network size would

reach and go beyond global-scale (e.g., Internet-scale)), what does happen? This

might be a non-practical question since chances that a single ICN architecture

would replace the majority of Internet routers and dominate the globe are not

that high. However, understanding such scaling property of an ICN is beneficial

to understand fundamental properties of ICN.
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Figure 4.1: An example of content distribution tree comprised of a set of paths from
an entity to the content provider

In this chapter, we focus on a large-scale ICN, and derive the cache hit probability

at each router, the average content delivery delay for each entity, and the average

content delivery delay of all entities over a content distribution tree comprised of a

single content provider, multiple routers, and multiple entities (see Fig. 4.1).

This chapter is organized as follows. First, Section 4.2 summarizes previous works

related to mathematical analyses of ICNs. Section 4.3 explains our analytic model

used throughout this chapter. Section 4.4 approximately derives the cache hit prob-

ability at each router and the average content delivery delay for each entity over a

content distribution tree. Section 4.5 investigates, through several numerical exam-

ples, the effect of the topology and the size of the content distribution tree and the

cache size at routers on the average content delivery delay of all entities. Finally,

Section 4.6 provides the summary of this chapter.

4.2 Related Work

In the literature, a number of analytical studies on ICNs with different network topolo-

gies have been performed [9, 10, 13-15, 31, 40]. Different from TCP/IP networks, ICNs

generally have in-network caching, so that analytic models of ICNs are rather compli-

cated. Hence, performance analyses of ICNs with rather simple network topologies

have been extensively performed [9, 10, 13].

For instance, Carofiglio et al. analyze the performance of CCN in a cascaded net-
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work topology and a perfect m−ary tree [9]. In [9], the authors focused on two types

of network topologies: a cascaded network topology in which routers are connected

in serial and a perfect m-ary tree. The authors derived cache hit probability at each

router, content delivery delay, and throughput of each entity. As a result, the authors

showed that the content delivery delay and throughput depends on the cache size at

router, the size of content, and a content popularity distribution.

Performance analyses of cache networks [33] and for CCNs [14, 31] with a general

network topology have been performed. For instance, the authors of [31] analytically

obtained the content delivery delay, throughput, and availability for each entity in a

general network comprised of multiple routers, multiple repositories, and multiple

entities. Furthermore, through several numerical examples, the authors investigated

how network topology affects the performance of ICN and showed that the benefits

of performance improvement by contents caching (i.e., reduction in content delivery

delay and improvement in availability) were more pronounced when the router was

closer to the repository.

The limitation of those performance analyses is in computational complexity; i.e.,

it is difficult to analyze the performance of large-scale ICNs with those numerical ap-

proaches. MCA algorithm used in those performance analyses calculates the cache

hit probability at each node by repeatedly applying SCA (Single-Cache Approxima-

tion) algorithm [34], which calculates the cache hit probability at a single node, to

each node. To calculate the cache hit probability by MCA algorithm, iterative calcula-

tion is required [33]. For this reason, the computation complexity of MCA algorithm

depends on the network size as well as the number of contents in a network and the

cache size at node.

An approximate solution with reduced computational complexity has been pro-

posed in [40]. Specifically, by extending Che’s approximation [39], the authors of

[40] obtained the cache hit probabilities at nodes, considering several content replace-

ment algorithms (e.g., LFU and LRU) and several content replication strategies (e.g.,

LCE (Leave Copy Everywhere) and LCD (Leave Copy Down)). Moreover, the au-

thors evaluated the performance of the content replacement algorithms and content
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replication strategies in terms of the cache hit probability. The authors of [40] focuses

on system-level performance such as cache hit probability. On the contrary, in this

chapter, we focus on user-level performance such as average content delivery delay.

4.3 Analytic Model

Our analytic model is a content distribution tree composed of N routers excluding

entities and the repository (see Fig. 4.2). All contents in a network are stored in the

single repository. The repository is connected to the root node of the content distribu-

tion tree. For simplicity, a single entity is directly connected to each of other (N − 1)

routers. We intentionally assume that only a single repository exists in a network to

make our model analytically tractable. In the field of performance analyses of ICN

(e.g., [9, 13, 15]), this assumption has been widely adopted.

Generally, the topology of an ICN is not a tree, but a set of content distribution

paths from a single repository to all entities can be regarded as a tree. In ICN, a

path between an entity and a repository is determined by a routing protocol. In this

chapter, we consider the case with a static routing protocol; i.e., a static content distri-

bution tree from the single repository to all entities is assumed. A router decides the

direction to which a request packet is forwarded based on its routing table (in CCN

and NDN, it realized with FIB (Forwarding Information Base)). Because the single

repository stores all contents in the network, the router forwards the request packet

to its upstream router.

In this chapter, we focus on a general content distribution tree defined as follows.

The root node connected to the repository is called as the 1st level router, and the

degree distribution of routers located at the h (≥ 1)-th level (i.e., nodes located at

(h− 1) hops away from the root of the content distribution tree) is denoted as Ph(d).

A set of contents stored in the repository is denoted by C. For simplicity, the size of

all contents is assumed to be identical. In this chapter, we assume a content delivery

service on ICNs as like Web on the Internet, so that we assume that every content is

comprised of a single packet. In [43], it has been reported that the size of popular
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Figure 4.2: Analytic model

requested contents in HTTP traffic on Web is approximately 2 [Kbyte]. Also, in CCN

and NDN, each of which is one of ICN architectures, it is specified that the size of a

Data packet (i.e., response packet) is 1.5 [Kbyte]. Thus, we assume that an entity can

acquire a content with a single request packet.

The cache size at all routers is equally denoted byB. In this chapter, for simplicity,

we assume that all cache sizes are identical. However, our analytic model is expand-

able for different cache sizes at h-th level router. The content replacement algorithm

and content replication strategy at all routers are respectively assumed to be LRU

(Least-Recently Used) and LCE (Leave Copy Everywhere). The rationale behind this

assumption is that the combination of LRU and LCE can be regarded as the baseline

for other content replacement algorithms and content replication strategies. Also, this

combination is widely used in existing performance analyses of ICNs [9, 10, 44].

All communication delays between adjacent routers (i.e., the sum of the trans-

fer delay and the processing delay) are equally denoted by τ . We assume that other

communication delays (i.e., router-to-entity, entity-to-router, router-to-repository, and

repository-to-router communication delay) are negligibly small. We assume that band-

widths of all links are sufficiently large. Thus, it is assumed that request and content
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Table 4.1: Definition of symbols
N the number of routers

Ph(d) the degree distribution of h-th level router

dh the average degree of h-th level routers
ν(h) the average number of h-th level routers
C A set of contents stored in the repository
τ communication delay
λk request rate for content k
B cache size at a router

qk(h) cache hit probability of content k at h-th level router
rk(h) arrival rate of requests for content k at h-th level router
Dk(h) average content delivery delay of an entity connected to a

h-th level router for content k
D(h) average content delivery delay of an entity connected to a

h-th level router for all contents
D average content delivery delay of an entire network

packets are never discarded in the network due to buffer overflow.

Every entity randomly requests content k (∈ C) at the rate of λk. Namely, every

entity continuously sends request packets for content k to the nearest router at the

rate of λk.

Definition of symbols used throughout our analysis is summarized in Table. 4.1.

4.4 Analysis

(N − 1) entities send request packet for content k (∈ C) at the rate of λk, which will

be, if not cached at an intermediate router, delivered to the repository connected to

the root of the content distribution tree. A router receives request packets from either

the directly-connected entity or downstream routers in the content distribution tree.

When a router receives a request packet, it checks whether a requested content exists

in its own cache. When the corresponding content is cached in the content cache, the

router immediately returns the content as a content packet. Otherwise, the router for-

wards the received request packet to the upstream router in the content distribution

tree.

The arrival rate of request packet for content k at the h-th level router in the con-

tent distribution tree is denoted by rk(h). Also, the cache hit probability of request
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packets for content k is denoted by qk(h).

Utilizing the relative request rate of content k among all contents, rk(h)/
∑

l∈C rl(h),

the cache hit probability of content k, qk(h), is approximately given by

qk(h) ≃ B
rk(h)

∑

l∈C rl(h)
. (4.1)

Note that more accurate cache hit probability has been derived in, for instance, [34]

than that of the above equation. However, for simplicity, we intentionally use Eq.(4.1)

throughout this chapter.

The arrival rate of request packets for content k at the h-th level router in the

content distribution tree, rk(h), is given by the summation of (1) the transmission rate

λk of request packets from a directly-connected entity and (2) the total reception rates

of request packets from the (h+1)-th level routers. Let dh ≡
∑

d dPh(d) be the average

degree of the h-th level routers. The arrival rate rk(h) of request packets is given by

rk(h) = λk + (dh − 1) (1 − qk(h+ 1)) rk(h+ 1). (4.2)

The average content delivery delay of an entity connected to a h-th level router in

the content distribution tree for content k is denoted as Dk(h). The content delivery

delay is the time elapsed since an entity connected to a h-th level router emits a re-

quest packet for content k until the entity receives the corresponding content packet.

Note that the content delivery delay is also referred to as VRTT (Virtual Round-Trip

Time) [9, 14].

A request packet for content k, which is sent from an entity connected to a h-

th level router in the content distribution tree, is resolved by (1) any router caching

content k along the path between the entity and the repository or (2) the repository

storing content k.

Let pk(h, i) be the probability that a i (≤ h)-th level router returns the correspond-

ing content packet when the router receives a request packet for content k originated

from an entity at a h-th level router in the content distribution tree. pk(h, i) is given
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by

pk(h, i) =





h
∏

j=i+1

(1− qk(j))



 qk(i). (4.3)

Therefore, the average content delivery delay Dk(h) of an entity connected to a

h-th level router for content k is given by

Dk(h) =

h
∑

i=1

pk(h, i) 2 τ (h− i)

+

(

1−

h
∑

i=1

pk(h, i)

)

2 τ (h− 1). (4.4)

The average content delivery delay D(h) of an entity connected to a h-th level

router for all contents is given by the weighted average of Dk(h)’s. Thus, we have

D(h) =
∑

k∈C

λk
∑

l∈C λl
Dk(h). (4.5)

Let ν(h) be the average number of h-th level routers in the content distribution

tree.

ν(h) = d1

h−1
∏

i=2

(di − 1) (4.6)

The average content delivery delay D of (N − 1) entities (i.e., the average content

delivery delay of the entire network) is given by

D =

∑∞
h=2 ν(h)D(h)

N − 1
. (4.7)

Finally, we investigate the asymptotic behavior of content delivery when the net-

work size N increases.

For simplicity, we assume that the average degree at all levels in the content dis-

tribution tree is equal; i.e., dh = d.

Since the average degree at all levels except the root node and leaf nodes is d ≥ 2,
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the arrival rate rk(h) of request packets for content k at h-th level routers increases

exponentially as the level h decreases. Thus, λk ≪ rk(h) except near-leaf routers in

the content distribution tree. So, Eq. (4.2) can be approximated by

rk(h) ≃ (dh − 1) (1 − qk(h+ 1)) rk(h+ 1). (4.8)

Let us focus on two contents, a and b. Without loss of generality, we assume

0 < λa ≤ λb. We also assume that the request rate of content b is the highest among

all contents (i.e., λb = maxk∈C λk).

Let Λ(h) be the aggregate arrival rate of request packets at a h-th level router.

Λ(h) ≡
∑

k∈C

rk(h) (4.9)

Let ψk(h) be the relative request rate of content k among all contents at a h-th level

router.

ψk(h) ≡
rk(h)

Λ(h)
(4.10)

We denote the difference in relative request rates of contents a and b by ∆(h) ≡

ψb(h)− ψa(h). We have

∆(h) =
rb(h)− ra(h)

Λ(h)

<
rb(h)− ra(h)

(dh − 1)(1 − qb(h+ 1))Λ(h + 1)

≃ ∆(h+ 1)
1 −B(ψa(h+ 1) + ψb(h+ 1))

1−B ψb(h+ 1)

< ∆(h+ 1) (4.11)

In particular, when 1−B(ψa(h+1)+ψb(h+1)) > 0, that is, ψa(h+1)+ψb(h+1) < 1
B

,

rb(h) ≥ ra(h) is satisfied. Thus, we have

∆(h) ≥ 0. (4.12)
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Therefore, when the network size N is sufficiently large, the relative request rates

of contents a and b are asymptoted.

lim
h→0

ψa(h) = lim
h→0

ψb(h) = ψ∗ =
1

|C|
(4.13)

Similarly, the cache hit probability of content k at h-th level router in the content

distribution tree is asymptoted.

lim
h→0

qk(h) = q∗ = B ψ∗ =
B

|C|
(4.14)

4.5 Numerical Examples

In this section, we investigate the effect of the topology and the size of the content

distribution tree and the cache size at routers on the average content delivery delay

of all entities.

To clarify how the topology of a large-scale ICN affects the average content deliv-

ery delay, we use the three types of content distribution trees — perfect m-ary tree,

linearly-shrinking tree, and reciprocally-shrinking tree.

• Perfect m-ary tree

A content distribution tree is given by the perfectm-ary tree, in which all nodes

except leaf nodes have the identical numberm of child nodes. The degree distri-

bution of a h-th level node Ph(d) is defined as follows. For internal (i.e., neither

root nor leaf) nodes, Ph(d) is 1 if d = m + 1 and is 0 otherwise. In the case

with a root node, Ph(d) is 1 if d = m and is 0 otherwise. In the case with a leaf

node, Ph(d) is 1 if d = 1 and is 0 otherwise. In the following numerical exam-

ples, we use m = 2 (perfect 2-ary tree) which is widely used in performance

evaluations of ICN [9, 42]. Also, we used m = 3 (perfect 3-ary tree) as a more

densely-connected tree than perfect 2-ary tree.

• Linearly-shrinking tree

In linearly-shrinking tree, the number of child nodes decreases linearly to the
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number of hops from the root node. Namely, the number of child nodes at the

1st-level node in a content distribution tree is mmax, and that of the h-th level

node is max(0,mmax−(h−1)). In the following numerical examples,mmax = 10

is used.

• Reciprocally-shrinking tree

In reciprocally-shrinking tree, the number of child nodes decreases inverse-

proportionally to the number of hops from the root node. Namely, the expected

value of the number of child nodes at the 1st-level node in the content distribu-

tion tree is mmax, and that of the h-th level node is mmax/h. In the following

numerical examples, mmax = 20 is used.

Because we assume Internet-scale ICNs, in linearly-shrinking tree and reciprocally-

shrinking tree, we selected mmax as 10 and 20, respectively, so that one million nodes

(routers) at most exist.

In our numerical examples, we consider the application such as Web browsing on

ICN. In [45] (published in 2004), it is reported that the delay (i.e., the content delivery

delay) required for Web browsing is the order of several hundred milliseconds. So, in

the future when ICN will be realized, the required delay for Web browsing should be

much smaller than that reported in [45].

The repository is provided with 100 types of contents, C = {1, . . . , 100}, each of

which has different popularity. The content request rate at each entity is set to λk =

k/
∑

k∈C k. Hence, content k = 100 is the most popular content and content k = 1

is the least popular content. Recall that, as Eqs. (4.1) and (4.5) imply, the cache hit

probability and the content delivery delays in our analysis are determined not by the

absolute value of the request rate for a content but by the relative value of the request

rate for all contents.

Unless explicitly stated, we use the following parameters: cache size at router

B = 10 [content] and the communication delay τ = 1 [ms].

Note that we intentionally use a small number of contents (i.e., 100) and a small

cache size (i.e., B = 10 [content]) since, as Eq. (4.14) implies, the average content de-
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Figure 4.3: Average content delivery delay of an entity connected to h-th level router
for content k, Dk(h), in perfect 2-ary tree

livery delay is dominated by the ratio of the cache size to the number contents. For this

reason, even if the number of contents and the cache size increases, our observations

presented hereafter will not change significantly as long as the ratio is maintained.

First, we investigate the average content delivery delay of entities connected at

the different levels of the content distribution tree.

Figure 4.3 shows the average content delivery delayDk(h) of entities connected at

the h-th level router and requesting for content k (Eq. (4.4)). In this figure, the results

for perfect 2-ary tree are shown.

One can find from this figure that (1) the average content delivery delay of entities

far away from the repository is significantly affected by the content popularity, and

that (2) the average content delivery delays of entities near the repository is almost

independent of the content popularity. Such phenomenon is resulted from filter effect

in cache networks — the content popularity distribution is gradually smoothed as the

request packet passes through multi-stage caches.

Figure 4.4 exhibits the filter effect (Eq.(4.1)) in a large-scale ICN. Similar to Fig. 4.3,

the results for perfect 2-ary tree are shown in Fig. 4.4. This figure shows cache hit

probabilities for contents k = 1, 25, 75, 50, 100 at the h-th level router in a content
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Figure 4.4: Cache hit probability for content k at h-th level router in a content distri-
bution tree qk(h) in perfect 2-ary tree

distribution tree. From this figure, it is found that the variation in cache hit prob-

abilities for each content is suppressed as the level in the content distribution tree

changes from leaf nodes to the root node. It is also found that the cache hit proba-

bilities for all contents equally converge to 0.1 (= B/|C|) regardless of the popularity

of contents as the level in the content distribution tree decreases. Furthermore, it is

found that, at earlier stage (i.e., h = 80), cache hit probabilities for popular contents

(k = 25, 50, 75, 100) are nearly 0.11. This implies that cache hit probabilities for most of

popular contents except for few unpopular contents are converged in medium-scale

ICNs.

To examine the validity of our approximate analysis, Fig. 4.5 shows average con-

tent delivery delays obtained with our approximate analysis and performance analy-

sis of CCN in Chapter 3. In this figure, since the performance analysis of CCN, which

is plotted as “MCA-based analysis”, is not scalable technique in terms of the network

size, results when changing the number of routers N to 1,000 are shown. From these

results, it is found that our approximate analysis shows good agreement with the

performance analysis of CCN in perfect 2-ary tree.

Next, we investigate the average content delivery delay of all entities in different
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Figure 4.5: Comparison of average content delivery delays obtained with our approx-
imate analysis and performance analysis of arbitrary CCN network

types of content distribution trees when the network size is varied. In the following

numerical examples, we obtain the average content delivery delay of all entities using

the cache hit probabilities at a routers obtained from Eq. (4.14).

Figures 4.6 through 4.9 show the average content delivery delays of all entities

(Eq. (4.7)) in perfect 2-ary tree, perfect 3-ary tree, linearly-shrinking tree, and reciprocally-

shrinking tree. In these figures, the cache size B at a router is changed between 0 and

30 [content].

These results indicate that (1) when the cache size is not small (e.g., B = 10), the

larger the network size becomes, the larger the average content delivery delay be-

comes, and that (2), on the contrary, when the cache size is large (e.g., B ≥ 20), the

increase in the average content delivery delay can be suppressed even when the net-

work size becomes large. From performance analyses of ICN, the ratio of the cache

size to the number of contents in a network (i.e., B/|C|) should be between 10−5 and

10−1 [42]. Therefore, with the current technology, the large cache size (e.g., B ≥ 20)

might not be practical. In the future (e.g., 20 years later), however, because of the de-

velopment of memory technology, the above observations (e.g., the convergence oc-

currences of the cache hit probability and the content delivery delay) might be valid.

52



 0

 5

 10

 15

 20

 25

 30

 35

10
1

10
2

10
3

10
4

10
5

10
6

a
v
e

ra
g

e
 c

o
n

te
n

t 
d

e
liv

e
ry

 d
e

la
y
 D

 [
m

s
]

the number of routers N

B=0 [content]
B=10 [content]
B=20 [content]
B=30 [content]

Figure 4.6: Effect of the cache size at a router on the average content delivery delay of
an entire network in perfect 2-ary tree

Furthermore, we examine in detail the relation between the cache size and the

average content delivery delay. Figure 4.10 shows the average content delivery delay

of an entire network (Eq. (4.7)) in prefect 2-ary tree when the cache size is varied from

0 to 30 [content]. In this figure, results for different network sizes (i.e., the depth of

content distribution tree hmax) are plotted. From these results, it is found that the

average content delivery delays except for the case of a small-scale network (e.g.,

hmax = 5) are inversely proportional to the cache size. In particular, the average

content delivery delays converge at approximately B = 20 [content], regardless of

the network size.

We discuss the effect of assumptions in our analytic model on numerical exam-

ples. First, we discuss the effect of the difference between real network topologies

and our simplified network topologies on the average content delivery delay. In this

chapter, we assume a heterogeneous content distribution tree where nodes in a level

have the different numbers of child nodes like realistic network topologies, rather

than a homogeneous content distribution tree. The difference in the average con-

tent delivery delays in homogeneous and heterogeneous content distribution trees is

mainly caused by the difference of the average numbers of hops from entities to the
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Figure 4.7: Effect of the cache size at a router on the average content delivery delay of
an entire network in perfect 3-ary tree

repository. This can be explained by the following reasons; (1) the average content

delivery delay can be estimated from the average number of hops and the cache hit

probability; (2) as shown in Fig. 4.4, cache hit probabilities can be expected to be con-

verged because of the filter effect in (large-scale) heterogeneous content distribution

tree.

Next, we discuss the effect of the queuing delay at a router. If the cache size at a

router is small (e.g., B = 0, 10), the queuing delay occurred at a router might highly

affect the average content delivery delay. Specifically, the queuing delays at routes (in

particular, nearly located at the repository) might increase, which leads to the increase

in the average content delivery delay of an entire network. On the other hand, if the

cache size is large (e.g., B = 20, 30), the transmission of request and response packets

can be suppressed because of content caching. Therefore, it can be expected that the

queuing delay at routes does not highly affect the average content delivery delay.

Finally, based on our observations, we answer the research questions explained in

Section 4.1.

• How scalable an ICN as a large-scale cache network is for its network size (i.e.,

the number of routers) in terms of, in particular, user-level performance?
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Figure 4.8: Effect of the cache size at a router on the average content delivery delay of
an entire network in linearly-shrinking tree

As Figs. 4.6 through 4.9 indicate, the average content delivery delay of ICNs

converges to a constant value (i.e., does not increase indefinitely) if the cache

size of routers are not small, which implies high scalability of ICNs in terms of

the network size.

• How the cache hit ratios of routers are distributed on a large-scale ICN?

The cache hit ratios of routers are significantly affected by the distance from re-

questing entities. Consequently, in a large-scale ICN, the content popularity

distribution observed by edge routers are diverse whereas that by core routers are

rather uniform, which implies that caches at edge routers are more advanta-

geous (i.e., effective) than those at core routers.

• What scaling properties does an ICN exhibit when the network size grows in-

definitely?

Even when the network size would grow indefinitely, the average content de-

livery delay is upper-bounded by a constant value if routers in the network are

provided with a fair amount of content caches. The rationale behind this behav-

ior is caused by the filter effect in multi-stage caching.
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Figure 4.9: Effect of the cache size at a router on the average content delivery delay of
an entire network in reciprocally-shrinking tree

4.6 Summary

In this chapter, we have focused on a large-scale ICN and derived the cache hit prob-

ability at each router, the average content delivery delay for each entity, and the aver-

age content delivery delay of all entities over a content distribution tree comprised of

a single repository, multiple routers, and multiple entities. Furthermore, through sev-

eral numerical examples, we have investigated the effect of the topology and the size

of the content distribution tree and the cache size at routers on the average content

delivery delay of all entities. Our findings include that the average content delivery

delay of ICNs converges to a constant value if the cache size of routers are not small,

which implies high scalability of ICNs in terms of the network size, and that even

when the network size would grow indefinitely, the average content delivery delay is

upper-bounded by a constant value if routers in the network are provided with a fair

amount of content caches.
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Chapter 5

On the Optimality of Shortest-Path

Routing in Information-Centric

Networking

5.1 Introduction

In the recent years, Information-Centric Networking (ICN) that mainly focuses on

contents that are transferred and received instead on end hosts that transmit and re-

ceive contents has been under the spotlight [1-3]. Two major network architectures

for realizing ICNs are CCN (Content-Centric Networking) [1] and NDN (Named Data

Networking) [2]. In ICNs, the content request packet sent from an entity (i.e., content

consumer) is forwarded to a repository (i.e., content provider) that stores the content

based on its content identifier and routing tables of routers along the path. The re-

quested content is returned to the entity from the repository as a response packet by

retracing the trajectory of the request packet.

Two major challenges in the ICN architecture design are content caching and con-

tent routing [16]. Content caching improves the way a router in a network caches

contents for performance improvement in terms of the reduction in the traffic volume

transferred through the network. On the other hand, content routing is aimed at ef-

fectively discovering the content by appropriately selecting the path from a router to
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the nearest repository which stores the content.

A large number of studies have been devoted for designing content caching mech-

anisms in ICNs [46, 47]. In those studies, several content caching mechanisms to effec-

tively utilize caches of intermediate routers on the path are proposed. For instance,

authors of [46] proposed an in-network caching scheme, in which a router caches

contents based on the probability calculated from a distance to its destination and

the caching capability of other routers along a path. Also, authors of [47] focused on

round-trip times for contents measured at a router, and proposed a caching algorithm

based on the probability calculated from observed round-trip times.

On the other hand, not many but several studies have been devoted for content

routing in ICNs [17, 18, 48]. A few studies focus on routing mechanisms for request

and content packets to achieve better performance than that with the shortest-path

routing.

A straightforward approach for content routing in ICNs is to utilize a class of

shortest-path routing mechanisms. In similar fashion to the conventional IP network,

usage of the shortest-path routing simply based on the number of hops or the link-

level metrics between a router and a repository, is considered in CCN [1]. However,

since routers on the path cache contents in ICNs, the shortest-path routing might not

be always optimal.

In the literature, several cache-aware routing mechanisms to take advantage of

content caches at intermediate routers have been proposed (see, e.g., [17, 18]). Gen-

erally, cache-aware routing mechanisms determine the path through which a request

packet is forwarded by taking account of both the proximity of content replicas and

the likelihood of cache hits at intermediate routers. Cache-aware routings are ex-

pected to reduce the server load as well as the content delivery delay.

In those studies, however, only link-level performance metrics (e.g., cache hit ra-

tio and server load) of content routing have been investigated. Hence, it has been

still unclear how the shortest-path routing is effective (or ineffective) in terms of

application-level performance metrics (e.g., content delivery delay and throughput).

Also, cache-aware routing mechanisms generally rely on the availability of cache hit
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ratios and/or cache sizes of routers, which might not be easy to obtain accurately in

a timely fashion.

For a given scenario, the shortest-path routing might not provide the best application-

level performance. A sophisticated content routing should provide better application-

level performance than that with the shortest-path routing. However, under realistic

scenarios where many factors (e.g., network topology, bandwidths and propagation

delays of links, cache and buffer sizes of routers, and workloads generated from enti-

ties) are varying and/or uncertain, an overly-optimized content routing could result

in a poor performance.

In this chapter, we investigate the optimality of the shortest-path routing by com-

paring the performances with shortest-path routing and with an optimal routing ob-

tained by searching all detour paths existing in the vicinity of the shortest-path rout-

ing (optimal k-hop detour routing). We focus on the average content delivery delay,

which is one of the key application-level performance metrics. Through a number

of experiments, we compare average content delivery delays with the shortest-path

routing and with the optimal k-hop detour routing.

This chapter addresses the following research questions regarding the optimality

of shortest-path routing in ICNs.

Q1. Under a given condition, which of the shortest-path routing or the optimal k-

hop detour routing is suitable in terms of the average content delivery delay?

Q2. How robust are the shortest-path routing and the optimal k-hop detour routing

against measurement errors in cache hit ratios at routers?

In this chapter, we investigate the optimality of the shortest-path routing in di-

verse scenarios. We quantitatively investigate the optimality of the shortest-path

routing in ICNs by comparing the average content delivery delay under the shortest-

path routing with that under the optimal two-hop detour routing in several networks

(triangular network, seven-node network, grid network, and cluster network). Fur-

thermore, we also investigate the robustness of the shortest-path routing against mea-

surement errors in cache hit ratios at routers.
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This chapter is organized as follows. First, Section 5.2 introduces previous works

related to content routings in ICNs. Section 5.3 explains the methodology to inves-

tigate the optimality of the shortest-path routing in ICNs. Section 5.4 presents ex-

periment results and discusses the optimality of the shortest-path routing. Finally,

Section 5.5 provides the summary of this chapter.

5.2 Related Work

In the literature, it is known that sophisticated content routings including the cache-

aware routing achieve better performance than the shortest-path routing in ICN [17,

18, 49, 42, 48]. Authors of [17] proposed a cache-aware routing that dynamically se-

lects the path so that the number of hops to retrieve the content can be minimized [17].

They reported that, with their cache-aware routing, the server load can be reduced

by approximately 18% from the shortest-path routing. Another cache-aware rout-

ing is proposed in [18]. The authors proposed a weight-based cache-aware routing

that minimizes the content access delay based on the existence of content cache at

routers. Authors of [48] proposed an efficient content routing by adopting a different

approach than cache-aware routing. Specifically, in the proposed content routing, a

router measures round-trip times for contents returned from repositories, and it prob-

abilistically determines a next node to forward a request packet based on measured

round-trip times. Through simulations, it was shown that, compared to the shortest-

path routing, the proposed content routing can improve the content delivery delay

because of reducing loads occurred at the repository.

However, a few studies reported that there is no significant difference in the per-

formance between the shortest-path routing and the cache-aware routing [50]. Au-

thors of [50] compared the shortest-path routing and the nearest-replica routing, which

is one of cache-aware routings, while changing several factors such as the network

topology and content request pattern. In nearest-replica routing, a request packet for

a content from an entity is delivered to the nearest router/repository which storing

the requested content. Although the nearest-replica routing is not a practical rout-
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Figure 5.1: Examples of two-hop detour path in the optimal two detour routing

ing mechanism, it can be regarded as a baseline for other content routings in ICNs.

In [50], improvements in all performance metrics (e.g., the number of hops required

for contents delivery) with the nearest-replica routing is at most 2%, compared to the

shortest-path routing.

5.3 Method

5.3.1 Optimal k-Hop Detour Routing

In this chapter, we perform three types of experiments to investigate the optimality

of shortest-path routing. In all experiments, we compare the average content deliv-

ery delay under the shortest-path routing with that under the optimal two-hop detour

routing.

The optimal k-hop detour routing is defined as the content routing with the least

average content delivery delay among all possible k-hop detour paths obtained from

the shortest path (Fig. 5.1). In our experiments, we obtained the optimal two-hop de-

tour routing using an exhaustive search: (1) obtain all two-hop detour paths regard-

ing arbitrary single hops in the shortest-path, (2) calculate average content delivery

delays of all two-hop detour paths using our performance analysis, and (3) select the

path with the least average content delivery delay.
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Note that the optimal k-hop detour routing is not for practical purposes, but for

theoretical analyses. The optimal k-hop detour routing is based on the idea that, even

with caches at routers, the optimal path should be more or less similar to the shortest-

path. Namely, the optimal k-hop detour routing exhaustively searches solution space

around the shortest-path to hopefully find a reasonably better path than the shortest-

path. However, in reality, near-optimal k-hop detour routing might be realized by

shrinking solution space of detour paths.

In what follows, the methodologies of three experiments are explained.

5.3.2 E1: Effect of Giant Cache

In this experiment, the cache size of a specific router is varied to examine how the

existence of a giant cache affects the effectiveness of the shortest-path routing as well

as the optimal two-hop detour routing.

As network topologies, we use two different network topologies: triangular net-

work and seven-node network shown in Figs. 5.2(a) and 5.3(a). The communication

delays of links between an entity and a router are negligibly small and the communi-

cation delays of all other links are equally set to 1 [ms].

Cache sizes of all routers are equally set to C = 5 or 10 [content]. The cache size of

a specific router (router 1, shaded router in Figs.5.2(a) and 5.3(a)) is varied between 0–

40 [content] for investigating how the cache size affects the optimality of the shortest-

path routing. The cache replacement algorithms at all routers are LRU (Least-Recently

Used), which is widely used for the performance evaluation and analyses of cache

networks [51].

50 contents are placed at one or two repositories, and every entity randomly and

continuously requests contents of either the rate k [request/ms] for content k (1 ≤ k ≤

50), or the popularity following Zipf distribution with the mean of 200 [request/s]

and the exponent parameter of 1.0.

Utilizing our ICN performance analysis [31], the average content delivery delay

(i.e., the average time required for an entity to retrieve a content) for a given content

routing is calculated.
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5.3.3 E2: Effect of Cache Sparseness

In this experiment, different from experiment E1, the density of cache-equipped routers

(cache sparseness) is varied. Namely, instead of changing the cache size of a specific

router, cache sizes of all routers in the network are uniformly changed.

As network topologies, we use three network topologies: triangular network, grid

network, and cluster network shown in Figs. 5.4(a),5.5(a), and 5.6(a), respectively. Ev-

ery network topology has a single repository. Similar to experiment E1, the commu-

nication delays of links between an entity and a router are negligibly small and the

communication delays of all other links are equally set to 1 [ms]. The request rate is

given by a Zipf distribution with the exponent parameter of 1.0.

To adjust the density of caches in the network, we define the parameter M called

cache sparseness. Cache sparsenessM is a positive integer that control the density of

cache-equipped routers. Namely, for a given parameter k (0 ≤ k < M), every router

whose identifier i satisfies i ≡ k (modM) has the cache size C1, and all other routers

have the cache size C2. For instance, all routers have the same cache size for M = 1,

and the one-fourth of routers have the cache size C1 and others have C2 for M = 4.

We use C2 = 0 [content].

All other conditions are the same with those in experiment E1.

5.3.4 E3: Robustness against Measurement Errors in Cache Hit Ratios

The third experiment investigates how the effectiveness of the shortest-path routing

and the optimal two-hop detour routing is affected by measurement errors in cache

hit ratios. Effectiveness of cache-aware routings, including the optimal k-hop routing,

depends on the accuracy and timeliness of cache hit ratios at routers. In this experi-

ment, we simulate how the performance of the two-hop detour routing is degraded

when it chooses paths using dirty cache hit ratios.

We use the same conditions with those in experiment E2 except the computation

of the average content delivery delay, which will be explained below, and C1 = 20.

For a given condition (e.g., network topology, cache size C1, cache sparseness M ,
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and routing algorithm), we first determine routes from all entities to the repository,

and compute the cache hit ratios at all routers using our ICN performance analy-

sis [31]. We regard these cache hit ratios as dirty cache hit ratios; i.e., contaminated

cache hit ratios used by the optimal two-hop detour routing. As genuine cache hit

ratios, we randomly generate 100 sets of cache hit ratios using a parameter ǫ. Specif-

ically, every cache hit ratio is multiplied by a random number following the uniform

distribution [1− ǫ : 1+ ǫ]. By definition, the cache hit ratio is larger than 1 is truncated

to 1.

5.4 Results and Discussion

5.4.1 E1: Effect of Giant Cache

Average content delivery delays under shortest-path routing and optimal two-hop

detour routing when changing the cache size of router 1 are shown in Figs. 5.2(b),

5.2(c), 5.3(b), and 5.3(c). In these figures, “proportional” indicates the proportional

request pattern whereas “Zipf” indicates the Zipf-distributed request pattern.

One can find from these figures that the optimality of the shortest-path routing

depends on cache sizes of routers on the path. It can also be found that the shortest-

path routing is optimal regardless of the content request patterns when cache sizes

of all routers are identical. Since the triangular network is equally-balanced, it is

intuitive that the shortest-path routing is optimal when cache sizes are the same. But

the shortest-path routing is also optimal under the seven-node network which is an

unbalanced network.

The larger the cache size of router 1 becomes, the less optimal the shortest-path

routing becomes. From Figs. 5.2(b), 5.2(c), 5.3(b), and 5.3(c), it is found that the av-

erage content delivery delay under the optimal two-hop detour routing becomes

smaller when the cache size ratio (i.e., the ratio of the cache size of router 1 to that

of other routers) exceeds approximately 2–3.

These results show that the shortest-path routing is optimal under a balanced

network with comparable cache sizes at routers, and that the optimal two-hop de-
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Figure 5.2: Effect of the cache size at the specific router on average content delivery
delays (triangular network)

tour routing archives better application-level performance when the cache size ratio

is large.

5.4.2 E2: Effect of Cache Sparseness

Average content delivery delays under shortest-path routing and optimal two-hop

detour routing when changing cache sparseness M are shown in Figs. 5.4(b),5.5(b)

and 5.6(b). To clearly reveal differences in average content delivery delays with the

shortest-path routing and the optimal two-hop detour routing, detouring inefficiency

(the average content delivery delay with the optimal two-hop routing / that with the

shortest-path routing) are plotted in Figs. 5.4(c), 5.5(c) and 5.6(c).

One can find from these figures that the shortest-path routing achieves the best

performance when the cache sparseness is very low (i.e., M = 1). This observation
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Figure 5.3: Effect of the cache size at the specific router on average content delivery
delays (seven-node network)

agrees with our finding in the previous section; i.e., all networks used in experiment

E2 are equally-balanced so that the shortest-path routing is the optimal.

On the contrary, if the caches are sparse in routers (e.g., M = 2 or M = 3), the

shortest-path routing shows worse performance than that with the optimal two-hop

detour routing in triangular and cluster networks. In particular, the optimal two-hop

detour routing is quite effective in the triangular network with large cache size (e.g.,

C1 = 30) and modest cache sparseness (e.g., M = 2).

Surprisingly, regardless of the cache sparseness and the cache size, the shortest-

path routing is always optimal in the grid network. This implies that the cache-aware

routing, including the two-hop detour routing, should be carefully deployed since the

(generally complex) cache-aware routing does not always achieve better performance

than the simplest shortest-path routing.
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Figure 5.4: Effect of the cache sparseness on average content delivery delays (triangu-
lar network)

5.4.3 E3: Robustness against Measurement Errors in Cache Hit Ratios

Average content delivery delays under the shortest-path routing and the optimal two-

hop detour routing are shown in Figs. 5.7(a) and 5.8(a). Also, degradation factors for

a given content routing, which is defined as the ratio of the average content delivery

delays calculated from dirty cache hit ratios to those calculated from genuine cache

hit ratios, are shown in Figs. 5.7(b) and 5.8(b). Figures. 5.7 and 5.8 show the results

for ǫ = 0.5 and ǫ = 1.0, respectively. In those figures, average content delivery delays

sorted in descending order are plotted.

One can find from these figures that, even though the cache hit ratios include

errors, the shortest-path routing is still better than the optimal-two hop detour routing

in the case of M = 1. Hence, both of the shortest-path routing and the optimal two-

hop detour routing are affected by measurement errors. In particular, it is found that
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Figure 5.5: Effect of the cache sparseness on average content delivery delays (grid
network)

the variation in average content delivery delays with the optimal two-hop detour

routing is large in the case of M = 2, 3. On the contrary, the shortest-path routing

achieves the almost same performance regardless of measurement errors in cache hit

ratios in the case of M = 2, 3.

5.4.4 Discussion

In the following, we answer research questions described in Section 5.1 from obser-

vations in experiments E1–E3, and discuss the optimality of the shortest-path routing

in ICN.

Q1. Under a given condition, which of the shortest-path routing or the optimal k-

hop detour routing is suitable in terms of the average content delivery delay?

The shortest-path routing is suitable when the network is balanced and cache
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Figure 5.6: Effect of the cache sparseness on average content delivery delays (cluster
network)

sizes of routers are homogeneously allocated. Namely, in practice, the shortest-

path routing might be better routing in networks whose topology can be arbi-

trary designed (e.g., data-center network). In contrast, the optimal k-hop detour

routing is suitable when the network is unbalanced and variation in cache sizes

is large; i.e., a specific router has a giant cache or a part of routers have caches.

Q2. How robust are the shortest-path routing and the optimal k-hop detour routing

against measurement errors in cache hit ratios at routers?

When cache sizes of routers are homogeneously allocated, average content de-

livery delays with both of the shortest-path routing and the optimal two-hop

detour routings increase due to measurement errors in cache hit ratios. In con-

trast, when cache sizes of routers are heterogeneously allocated, the average

content delivery delay with only the two-hop optimal routing is degraded.
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Figure 5.7: Effect of errors in cache hit ratios (triangular network, ǫ = 0.5)
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Figure 5.8: Effect of errors in cache hit ratios (triangular network, ǫ = 1.0)

5.5 Summary

In this chapter, we have investigated the optimality of the shortest-path routing in

terms of application-level performance metrics. Specifically, we have compared the

average content delivery with the shortest-path routing and that with the optimal

two-hop detour routings through a number of experiments. Our findings include that

the shortest-path routing is suitable when the network is balanced and cache sizes of

routers are homogeneously allocated, and that the optimal k-hop detour routing is

suitable when the network is unbalanced and the variation in cache sizes is large. Fur-

thermore, we have investigated the robustness of the shortest-path routing and the

optimal k-hop detour routing against measurement errors in cache hit ratios. Con-

sequently, we have shown that the shortest-path routing achieves the almost same
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performance regardless of measurement errors in cache hit ratios when cache sizes of

routers are heterogeneously allocated.
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Chapter 6

Proposal and Evaluation of Lossy

Link Detection Mechanism for

Content-Centric Networking

6.1 Introduction

In recent years, many studies have investigated networks that mainly focus on trans-

mitting and receiving content (i.e., information-centric networking) rather than on

hosts that transmit and receive contents (host-centric networking), such as a conven-

tional TCP/IP network [1, 2]. Content-Centric Networking (CCN) [1] is one of the

promising architectures for realizing information-centric networking.

In CCN, a unique identifier is assigned to every content, and content delivery is

realized through a request-and-response communication model. When a user (i.e.,

entity) requests a content, it injects a content request packet called Interest packet into

a network. The Interest packet is routed among routers based on those routing tables,

and delivered to a server (i.e., repository). When the repository receives the Interest

This chapter is a minor version of [52].
Copyright c©2019 The Institute of Electronics, Information and Communication Engineers
IEICE Transaction Online: https://search.ieice.org/
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packet, it returns a response packet called Data packet which corresponds the received

Interest packet.

In CCN, routers on a network can cache forwarded contents and reuse data. Specif-

ically, a CCN router has a buffer memory called Content Store that caches forwarded

Data packets. Subsequently, when this CCN router receives another Interest packet

for the same content, it returns the cached content from as a Data packet to the entity

instead of forwarding the Interest packet. Consequently, CCN can help reduce the

traffic volume transferred through the network as well as the content delivery delay

for an entity.

Because of content caching at routers and existence of multiple repositories stor-

ing content replicas, content delivery in CCN is classified as an anycast (any-to-one)

communications rather than a unicast (one-to-one) communication [1].

For this reason, in CCN, using the transport protocol developed for IP is diffi-

cult [53]. Different from IP, fundamental futures of CCN are, for instance, that routers

can cache forwarded Data packets and that routers can aggregate multiple Interest

packets requesting an identical content to a single Interest packet.

Challenges in transport protocol design for CCN are quick and accurate packet loss

detection in the network and congestion control for efficient and fair bandwidth sharing

among competing entities. A quick and accurate packet loss detection is essential for

realizing timely and efficient error recovery from Interest and/or Data packet losses

as well as for designing a loss-based congestion mechanism.

In [54], we proposed a packet loss detection mechanism, Interest ACK (ACKnowl-

edgment) and investigated the effectiveness of Interest ACK through several simula-

tions. Interest ACK enables an entity to quickly detect the ocuurence of Interest/Data

packet losses using Interest ACKs embedded in a returned Data packet.

The objective of Interst ACK is to rapidly and accurately detect whether a content

request (i.e., a pair of the Interest packet and its corresponding Data packet) is lost in

the network [54]. We further extend the idea of Interest ACK to enable to detect which

of Interest and Data packets is lost as well as at which link the packet was discarded.

More specifically, in this chapter, we propose a lossy link detection mechanism
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called LLD-IA (Lossy Link Detection with Interest ACKs), which enables an entity to

estimate the link where the packet was discarded in a network. Different from Interest

ACK, in LLD-IA, routers along a path as well as the repository update Interest ACKs

on successful Interest and Data packets transmissions. Using extended Interest ACKs,

an entity can estimate not only the occurrence of packet loss but also the location

where the packet was discarded.

Furthermore, through simulation results, we demonstrate that LLD-IA can effec-

tively diagnose faulty links under moderate packet loss ratios.

The reminder of this chapter is organized as follows. First, Section 6.2 summarizes

previous works related to transport protocols for CCN. Section 6.3 proposes LLD-IA

(Lossy Link Detection with Interest ACKs) and investigates the accuracy of LLD-IA

through simulations. Section 6.4 concludes this chapter.

6.2 Related Work

Multiple transport protocols have been proposed for CCN [19-25], and each of them

takes a different approach to solve CCN-specific problems.

For example, Interest Control Protocol (ICP) [20] uses Additive Increase and Mul-

tiplicative Decrease (AIMD)-based window flow control. The entity sending an Inter-

est packet dynamically adjusts the number of packets (i.e., window) that can be sent

during its round-trip time. ICP adopts the same loss-based window flow control as

the conventional Transmission Control Protocol (TCP). In ICP, losses of an Interest

packet or a Data packet are detected by timeout, and AIMD-based window flow con-

trol is performed according to the presence and absence of packet loss in the network.

In ICP, each entity measures the round-trip time (i.e., the time elapsed between the

injection of an Interest packet and the reception of the corresponding Data packet),

and it adjusts the timeout timer based on the measured round-trip time. Timeout

timer adjustment like that in ICP works effectively in networks with small round-trip

time variation. On the other hand, in networks with large round-trip time variation,

packet losses can not be detected promptly.
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Content-Centric TCP (CCTCP) [23] uses a different timeout mechanism to solve

problems caused by the characteristic that content delivery in CCN is performed from

multiple sources to a single sink. When contents are returned from multiple reposi-

tories, the round-trip time differs for every entity-repository pair. In this case, if the

same timeout timer is used for multiple repositories, the round-trip time will vary

greatly, and therefore, the timeout timer will take a very large value; this will lead

to failure of packet loss detection. In CCTCP, an appropriate timeout timer is de-

termined by using multiple timeout timers for different repositories. Moreover, as

pointed out in [55], packet loss detection solely based on the timeout timer might not

be sufficient because of difficulties in appropriate configuration of the initial timeout

(RTO) value and in accurate measurement of round-trip times.

Another countermeasure for accelerating packet loss detection is an ECN (Explicit

Congestion Notification) from congesting routers [24, 25]. For instance, the authors of

[24] proposed a transport protocol called CHoPCoP, in which an entity adjusts its

own window size by quickly detecting the occurence of congestion from ECN notifi-

cations. Specifically, in CHoPCoP, when a router in a network forwards a Data packet,

it randomly marks the packet according to the current occupancy of its output buffer.

The entity that receives the marked Data packet can quickly detect the congestion oc-

currence in the network and appropriately adjust the window size. Through several

simulations, the authors showed that, in a multi-source and multi-path environment,

CHoPCoP can achieve high throughput.

6.3 LLD-IA (Lossy Link Detection with Interest ACKs)

Interest ACK enables a requesting entity to detect, at the time of packet loss, which of

the Interest packet or the corresponding Data packet was lost in the network.

If a requesting entity could obtain more fine-grained information on packet losses

such as the locations of the lossy links, it could make more sophisticated decision

regarding congestion control and error recovery.

In what follows, by extending Interest ACK, we propose LLD-IA (Lossy Link De-
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Figure 6.1: Extended Interest ACK used by LLD-IA

tection with Interest ACKs), which is a mechanism for an entity to estimate a link

where the packet was discarded in a network. Please refer to [54] for the details of

Interest ACK.

6.3.1 Overview

The fundamental idea of LLD-IA is that not only the repository but also all routers

along the path update Interest ACKs of all packets exchanged between the entity

and the repository. In LLD-IA, when routers and a repository receive Interest/Data

packets, each of them overwrites history of Interest/Data packet transmissions. Thus,

when the entity receives a Data packet including Interest ACK, it can detect the link

where Interest packet or the corresponding Data packet was lost in the network based

on Interest ACK stored in the Data packet.

Specifically, in LLD-IA, Interest ACK is extended to include information on Inter-

est and Data packet forwarding at all routers along the path. The extended Interest

ACK used by LLD-IA is shown in Fig. 6.1. In the extended Interest ACK, the field In,i

indicates whether i-th router along the path successfully forwarded Interest packet

requesting for the n-th segment. Similarly, the field Dn,i indicates whether i-th router

successfully forwarded Data packet corresponding to the n-th segment.

An example operation of LLD-IA is illustrated in Fig. 6.2. In this figure, the entity

sends a series of Interest packets requesting segments 1, . . . , 6. Also, the Interest

packet 3 is lost at the link from router r2 to r3, and the Data packet 4 is lost at the link

from router r2 to r1. In this case, Interest ACK embedded in the Data packet 6 that

the entity received is shown in Fig. 6.3. Utilizing the Interest ACK described in Data

packet 6, the entity can detect the loss of the segment 4 (Interest packet 4) at the link

from router r2 to r3 and that of the segment 6 (Data packet 6) at the link from router
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Figure 6.2: An example of packet loss detection with LLD-IA; the entity detects that
Interest packet 3 was discarded at the link from router r2 to r3, and that Data packet
4 was discarded at the link from router r2 to r1.

r1 r2 r3 repository r3 r2 r1

1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1

3 1 1 0 0 0 0 0

4 1 1 1 1 1 1 0

5 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1

Figure 6.3: An example of packet loss detection with LLD-IA: Interest ACK in the
header of Data packet 6

r2 to r1.

6.3.2 Operation

In what follows, we explain how extended Interest ACKs are updated by the reposi-

tory and routers along the path, and how the entity detects lossy links using extended

Interest ACKs.

Basically, the entity and the repository operate as in the Interest ACK mecha-

nism [54]. Routers between the entity and the repository perform the following op-

erations when each of them receives a Data packet (i.e., segment). First, the router

retrieves the list of the segment numbers from Interest ACK in the Data packet. For

each of segments in the list, if the router forwarded an Interest packet requesting for

the corresponding segment (i.e., if unsolved PIT entry corresponding to the segment

exists), it overwrites the field I of the Interest ACK with 1. Also, if the router success-

fully forwarded the corresponding segment, it overwrites the field D of the Interest

ACK with 1. In contrast, if the router forwarded an Interest packet requesting the seg-
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Figure 6.4: Linear network topology used in Section 6.3

ment which is not included in the list of segments of the Interest ACK (i.e., if unsolved

PIT entry corresponding to the segment exists), it appends a new entry corresponding

to the segment and writes 1 in the field I of the Interest ACK.

6.3.3 Evaluation

Through simulation, we investigate how accurately LLD-IA can detect the location of

packet losses in a lossy environment.

For examining the fundamental properties of LLD-IA, we intentionally used a

rather simple network topology consisting of an entity, two routers, and a repository

(see Fig. 6.4). Propagation delays and bandwidths between two routers and between

a router and a repository were equally set to 5 [ms] and 1 [packet/ms], respectively.

The propagation delay between an entity and a router was set to 0 [ms], and the

bandwidth between an entity and a router was set to infinity.

For simulating a lossy environment, packet loss ratios of all links were equally

fixed at 0.01. Specifically, in links between router1-router2 and router2-repository, 1%

of Interest and Data packets were randomly discarded.

To investigate the effect of content caching in a network on accuracy of LLD-IA,

we artificially generated cache hit and miss events at router1 and router2. More

specifically, a given fraction of Interest packets were randomly chosen from all ar-

riving Interest packets, and those Interest packets were treated as cache-hit Interest

packet while others were as cache-missed ones.

The accuracy of lossy link detection with LLD-IA was measured by the link de-

tection accuracy, which is defined as the ratio of the number of packet losses with

successful lossy link detection to the total number of packet losses. In our simulation,
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Figure 6.5: Link detection accuracy of LLD-IA

to investigate how the number of Interest ACKs embedded in a Data packet affects

the accuracy of LLD-IA, the maximum Interest ACKs number IM was varied. The

number of packets pending detection Ip was set to zero.

We used a packet-level CCN simulator (pccnsim) developed by our research group

and performed a simulation for 10 [s], in which the entity operating the AIMD flow

control mechanism requests a series of segments consisting a content. For a single pa-

rameter setting, simulations were repeated 10 times, and the average of the accuracy

was obtained.

Link detection accuracy for different control parameters are shown in Fig. 6.5. In

this figure, the cache hit ratio at routers are changed between 0 and 0.2. From these

results, one can find that LLD-IA almost detects the location where packet losses are

occurred regardless of the cache hit ratio. One can also find that the control parameter

IM of LLD-IA does not highly affect the accuracy of LLD-IA.

In what follows, we discuss the overhead of Interest ACKs, in particular, the size

of Interest ACK occupying a Data packet. In LLD-IA, the size of Interest ACK table

is given by the product of the number of Interest ACKs that can be stored in a Data

packet IM and the number of routers along a path plus a repository. In the case of
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simulation in this section with naive representation, the size of Interest ACK table

is at most 270 byte, which occupies 18% of the size of a Data packet. However, by

adopting compact data representation of segment numbers with encoding, the size of

Interest ACK table can be significantly reduced.

Based on the above observations, we can conclude that LLD-IA can accurately

detect the location of the lossy links under moderate packet loss ratios.

6.4 Summary

In this chapter, we have proposed a lossy link detection mechanism called LLD-IA by

extending Interest ACK. The fundamental idea of LLD-IA is that not only the reposi-

tory but also all routers along the path update Interest ACKs of all packets exchanged

between the entity and the repository. LLD-IA enables the requesting entity to detect

the link where Interest packet or the corresponding Data packet was lost in the net-

work. Through simulations, we have showed that LLD-IA can accurately detect the

location of the lossy links under moderate packet loss ratios regardless of its control

parameters.
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Chapter 7

Conclusion

In this chapter, we summarize the research in this thesis, and address future direc-

tions.

In Chapter 2, we have investigated the scalability of CCNx, which is an open-

source software implementation of CCN , in terms the number of nodes. Specifically,

multiple CCNx daemons connected forming CCN networks were executed on a sin-

gle physical computer, and CCN request generators were executed on the other one.

We have measured the total throughput of content deliveries, the packet loss ratio

in the network, and the average content delivery time while changing the network

size (i.e., the number of CCN routers). Also, we have revealed that the performance

bottleneck of CCNx is the Data-chunk digest computation at CCN routers, which con-

sumes approximately 20% of the total CPU time in our experiments. Furthermore, we

found that the hardware offloading of the Data-chunk digest computation is effective

of improving the total throughput and reducing the content delivery time.

In Chapter 3, we have analyzed the performance of CCN on an arbitrary net-

work topology by utilizing the MCA algorithm, which is an approximation algorithm

which analytically calculates cache hit probability in a multi-cache network. We have

analytically derived content delivery delay, throughput, and availability in a network

comprising multiple routers and multiple repositories. Through several numerical

examples, we have shown that the benefits of performance improvement by content

caching (i.e., reduction in content delivery delay and improvement in availability)
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were more pronounced when the router was closer to the repository in CCN. By com-

paring analytic results and simulations results, we have also shown the validity of

our analysis.

In Chapter 4, we have focused on a large-scale ICN and derived the cache hit prob-

ability at each router, the average content delivery delay for each entity, and the aver-

age content delivery delay of all entities over a content distribution tree comprised of

a single repository, multiple routers, and multiple entities. Furthermore, through sev-

eral numerical examples, we have investigated the effect of the topology and the size

of the content distribution tree and the cache size at routers on the average content

delivery delay of all entities. Our findings include that the average content delivery

delay of ICNs converges to a constant value if the cache size of routers are not small,

which implies high scalability of ICNs in terms of the network size, and that even

when the network size would grow indefinitely, the average content delivery delay is

upper-bounded by a constant value if routers in the network are provided with a fair

amount of content caches.

In Chapter 5, we have investigated the optimality of the shortest-path routing in

terms of application-level performance metrics. Specifically, using our mathematical

analysis of ICN in Chapter 3, we have compared the average content delivery with

the shortest-path routing and that with the optimal two-hop detour routings through

a number of experiments. Our findings include that the shortest-path routing is suit-

able when the network is balanced and cache sizes of routers are homogeneously

allocated, and that the optimal k-hop detour routing is suitable when the network is

unbalanced and the variation in cache sizes is large.

In Chapter 6, we have proposed a lossy link detection mechanism called LLD-

IA by extending Interest ACK. The fundamental idea of LLD-IA is that not only the

repository but also all routers along the path update Interest ACKs of all packets ex-

changed between the entity and the repository. LLD-IA enables the requesting entity

to detect the link where Interest packet or the corresponding Data packet was lost in

the network. Through simulations, we have showed that LLD-IA can accurately de-

tect the location of the lossy links under moderate packet loss ratios regardless of its
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control parameters.

In this thesis, we have revealed the scalability of ICN (in particular, CCN) in

terms of the network size using experiments and mathematical analyses. Also, we

have tackled to improve the efficiency of ICN by investigating the optimality of the

shortest-path routing in ICN and proposing the lossy link detection mechanism for

CCN.

This thesis focused on pure ICN networks, however, fundamental ideas of ICNs

(e.g., name-based communication and contents caching) can be applied to other net-

work architectures. In particular, it is expected that ICN-based communication paradigm

can be introduced to wireless sensor network and DTN (Delay/Disruption Tolerant

Networking), which leads to performance improvements in those networks.

As future directions, by extending our mathematical analysis in this thesis, we are

planning to analyze the dynamics of contents diffusion of ICNs as a type of cache

networks. In this thesis, we have focused on analyzing the performance of ICNs

in a steady state, however, we believe that understanding the dynamics of content

diffusion in ICNs helps to design more efficient ICN-based network architectures.
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