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chronic cadmium exposure 
decreases the dependency of MCF7 
breast cancer cells on eRα
Mathew Bloomfield & Maggie c. Louie

cadmium is an environmental contaminant that can activate estrogen receptor alpha (eRα) and 
contribute to the development and progression of breast cancer. our lab previously demonstrated that 
chronic cadmium exposure alters the expression of several eRα-responsive genes and increases the 
malignancy of breast cancer cells. Although these studies support cadmium’s function as a hormone 
disrupter, the role of eRα in cadmium-induced breast cancer progression remains unclear. to address 
this, we modulated the expression of eRα and found that while the loss of eRα significantly impaired 
cancer cell growth, migration, invasion and anchorage-independent growth in both MCF7 and MCF7-Cd 
cells, cadmium-exposed cells retained a significant advantage in cell growth, migration, and invasion, 
and partially circumvented the loss of eRα. eRα knockout in MCF7 and MCF7-Cd cells significantly 
reduced the expression of classical eRα-regulated genes, while non-classical eRα-regulated genes were 
less impacted by the loss of eRα in MCF7-Cd cells. This is the first study to show that chronic cadmium 
exposure, even at low levels, can increase the malignancy of breast cancer cells by decreasing their 
dependency on eRα and increasing the adaptability of the cancer cells.

Breast cancer is the most common malignancy affecting women in the United States. Approximately 60–70% of 
breast cancers express estrogen receptor-alpha (ERα), and life-time exposure to estrogens, including those from 
the environment, is known to contribute to the development of breast cancer1,2. Cadmium, a metalloestrogen 
found ubiquitously in the environment, has been classified as a human carcinogen3,4. Exposure to low levels of 
cadmium— which bioaccumulates in tissues over time— occurs primarily through diet and cigarette smoke.

Epidemiological studies have linked cadmium exposure and ER-positive breast cancer5–7. A study compar-
ing cadmium concentrations in tissue, blood, and urine of malignant and benign breast cancer patients showed 
that cadmium levels were significantly higher in patients with malignant tumors than those with benign tumors 
and that ERα-positive breast cancers had significantly higher cadmium concentrations than ERα-negative can-
cers5. These correlations suggest that cadmium might be a critical factor in tumors expressing ERα. Additional 
epidemiological studies found that cadmium increases breast cancer risk, tumor malignancy, and metastasis 
frequency5,8,9. In one study, ovariectomized animals exposed to cadmium exhibited increased uterine weights 
and high densities of epithelial cells in the mammary gland, but these effects were not observed in animals con-
currently treated with the antiestrogen ICI-182,780 (ICI), suggesting that ERα may play an important role in 
mediating cadmium’s physiological effects10. Similarly, Alonso-Gonzalez et al. showed an increase in uterine 
weight, ductal branching, and lobuloalveolar development in ovariectomized mice after 7 weeks of exposure to 
cadmium11. Accordingly, in vitro studies have indicated that cadmium has estrogenic activity12–15. Cadmium acti-
vated ERα at concentrations as low as 10−11 M and blocked estradiol binding in a noncompetitive manner, indi-
cating that cadmium interacts with ERα in the ligand binding domain12. Our lab found that MCF7 cells exposed 
to low levels of cadmium for six months had a unique gene expression profile and increased growth, migration, 
and invasion capabilities, indicating that chronic cadmium exposure promotes breast cancer progression16,17 by 
altering the interactions among ERα, c-jun, and c-fos16 and promoting the expression of SDF1, a chemokine 
regulated by ERα18,19.

Despite evidence that cadmium acts as a metalloestrogen and can promote breast cancer progression, it is 
unclear whether the estrogenic activity of cadmium is critical for cancer progression, especially under chronic 
low-level exposure20,21. A study by Benbrahim-Tallaa et al. demonstrated that prolonged exposure to cadmium 
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malignantly transformed breast epithelial cells in vitro, independent of ERα expression, indicating that the estro-
genic effects of cadmium are not required for transformation20. The objective of this study was to determine the 
role of ERα in cadmium-mediated breast cancer progression. Our results demonstrate that although ERα plays 
an important role in cadmium-induced gene expression and mediates malignant phenotypes, chronic cadmium 
exposure also decreases the dependency of MCF7 cells on ERα.

Results
Exposure to cadmium has been associated with increased breast cancer risk and malignancy5,8. Although 
there is evidence suggesting that cadmium functions as a metalloestrogen, it is unclear whether this mecha-
nism directly contributes to the development and progression of breast cancer. To determine the role of ERα 
in cadmium-induced breast cancer progression, we used the CRISPR/Cas9 gene editing system to permanently 
knock out ERα expression in parental MCF7 cells and two previously established cadmium-adapted MCF7 clonal 
cell lines (Cd7 and Cd12)16. DNA sequencing and protein expression analysis of the MCF7, Cd7, and Cd12 
CRISPR-edited clones revealed that 8 contained DNA sequence mutations that resulted in a loss of ERα protein 
expression (Supplementary Fig. S1) and were therefore selected for further characterization. Clones that contin-
ued to express ERα of either the same or different molecular weights were not used for further analysis.

To investigate how the loss of ERα affects the phenotypes of MCF7 and cadmium-adapted cells (MCF7-Cd), 
we measured the doubling times for all the clones lacking ERα (ΔERα) compared to those of the control cells by 
determining the total cell number at day 0, 2, 3, and 4. For statistical analysis, three MCF7-ΔERα clones (C10, 
C22, and C24) served as biological replicates (n = 3), while the three Cd7-ΔERα (C7, C9, and C11) and two 
Cd12-ΔERα (C16 and 17) clones were biological replicates of cadmium-adapted, ERα knockout cells (n = 5). 
Consistent with previous data16, the results in Fig. 1A show that the cadmium-adapted cells grew faster than the 
MCF7 cells (24.0 vs 21.4 hours; p < 0.05). No significant differences in growth were observed between the MCF7 
and MCF7-Ctrl or MCF7-Cd and MCF7-Cd-Ctrl groups, indicating that transfection with control plasmids had 
little phenotypic impact (Fig. 1A). As expected, the loss of ERα in MCF7-ΔERα increased the doubling time from 
24 hours (MCF7) to an average of approximately 37 hours (p < 0.01; Fig. 1A). In the case of the cadmium-adapted 
cells, the loss of ERα in Cd-ΔERα cells increased the doubling time from 21.4 hours (MCF7-Cd) to 28.2 hours 
(p < 0.0001; Fig. 1A). Therefore, despite the loss of ERα, Cd-ΔERα clones retained a significant growth advantage 
over the MCF7-ΔERα cells (28.2 vs 37.0 hours; p < 0.0001), which was even more significant than the difference 
between the MCF7-Cd and MCF7 cells (Fig. 1A).

To determine whether depletion of ERα affects the ability of cadmium-adapted cells to migrate, we used 
a scratch wound assay. In brief, cells were grown to 80–90% confluence, a scratch wound was inflicted to the 
monolayer, and the migratory ability of the cells to repair the wound was monitored over 4 days. The difference 
in surface area of the wound from day 0 to day 4 was calculated using ImageJ software. The results in Fig. 1B,C 
show that both the wounds in the MCF7 and MCF7-Cd cells were almost fully closed by day 4, while this ability 
was reduced in Cd-ΔERα cells and even more significantly impaired in MCF7-ΔERα cells. More specifically, the 
loss of ERα decreased the migratory ability from 70.4% (MCF7) to an average of 36.2% (MCF7-ΔERα; p < 0.01), 
while the loss of ERα in MCF7-Cd cells reduced this ability from 72.6% to an average of 54% (Cd-ΔERα; p < 0.01; 
Fig. 1B,C). The migratory ability of the Cd-ΔERα clones was significantly greater than that of the MCF7-ΔERα 
clones (p < 0.0001; Fig. 1B). Similar to cell growth, ERα is important for migration, although in the absence of 
ERα, the cadmium-adapted cells still exhibit a high migratory potential.

Given the differences observed in both growth and migration between MCF7-ΔERα and Cd-ΔERα clones, 
the invasive ability of these cells was measured. Cells were seeded in the upper level of a modified Boyden chamber 
and incubated for 24 hours. Cells that successfully invaded the membrane were either quantified by measuring 
fluorescence (Fig. 2A) or compared after staining with crystal violet (Fig. 2B). Consistent with our prior observa-
tions16, the MCF7-Cd cells were more invasive than the MCF7 cells (p < 0.001; Fig. 2A,B). Similar to the results of 
the growth and migration analyses, the loss of ERα in both MCF7-ΔERα and Cd-ΔERα cells significantly reduced 
the invasive ability compared to that of their respective controls (p < 0.0001; Fig. 2A,B). Specifically, the invasiveness 
of the MCF7-ΔERα clones decreased 0.34-folds compared to parental MCF7 cells, while the Cd-ΔERα clones only 
decreased 0.51-folds relative to their control (Supplementary Fig. S2A). Thus, despite the loss of ERα, Cd-ΔERα 
cells continued to exhibit more invasive characteristics than MCF7-ΔERα clones (p < 0.0001; Fig. 2A,B).

As a final assessment of tumorigenic potential, we analyzed anchorage-independent growth using a soft-agar 
colony formation assay. Cells were seeded in soft agar and allowed to grow for two weeks, and colonies of 100-plus 
cells were counted (Fig. 2C,D). Consistent with the previous phenotypic analyses, MCF7-Cd cells formed signifi-
cantly more colonies than the MCF7 cells (p < 0.01; Fig. 2C,D). The loss of ERα significantly reduced the number of 
anchorage-independent colonies formed from an average of 19 (MCF7) to approximately 2.5 in the MCF7-ΔERα 
cells (p < 0.0001; Fig. 2C,D). In cells chronically exposed to cadmium, MCF7-Cd cells formed an average of 27 colo-
nies, whereas Cd-ΔERα only formed approximately 4.3 colonies (p < 0.0001). The difference in the number of colo-
nies formed by Cd-ΔERα and MCF7-ΔERα cells was not statistically significant, although it was trending towards 
significance with a p-value of 0.064 (Fig. 2C). Additionally, when normalized to their respective controls, the fold 
changes of the MCF7-ΔERα and Cd-ΔERα clones were similar (Supplementary Fig. S2B). Collectively, the phe-
notypic analyses—growth, migration, invasion, and anchorage independence—confirmed that chronic cadmium 
exposure increases the tumorigenic potential of breast cancer cells and demonstrated the importance of ERα for 
these cancer characteristics. However, despite the loss of ERα, the cadmium-adapted cells retained growth, migra-
tion, and invasion advantages over MCF7 cells, suggesting that chronic cadmium exposure decreases the impact of 
ERα loss on breast cancer cells and enables cells to better adapt to the loss of ERα.

To further understand mechanistically how the loss of ERα in cadmium-adapted cells affects the expression 
of ERα-regulated and ERα-responsive genes, we analyzed the expression of three classical ERα-regulated (ERE) 

https://doi.org/10.1038/s41598-019-46912-3


3Scientific RepoRtS |         (2019) 9:12135  | https://doi.org/10.1038/s41598-019-46912-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 1. Characterization of MCF7, Cd7, and Cd12 cells after ERα knockout. (A) Approximately 5 × 104 
cells were seeded in 6-well plates, and the total cell number was determined after 24, 72, 96, and 120 hours to 
calculate the population doubling time of each cell line. MCF7-ΔERα included MCF7-C10, MCF7-C22, and 
MCF7-C24 clones, and Cd-ΔERα included Cd7-C7, Cd7-C9, Cd7-C11, Cd12-C16, and Cd12-C17. The data 
were derived from the means of three independent experiments (with standard error of mean (SEM); n = 3, 3, 9, 
6, 6, 15, left to right) and analyzed using the Wilcoxon-Mann-Whitney test to determine statistical significance 
(*p < 0.05; **p < 0.01; ****p < 0.0001). Table shows the average doubling times of each cell line (n = 3 for all). 
(B) Migration ability for each control and clone was quantified by comparing the surface area of the scratch 
wounds at day 0 and day 4. The data represent the means of three independent experiments of triplicate samples 
with SEM (n = 3, 3, 9, 6, 6, 15, left to right). Data analysis was performed using the Wilcoxon-Mann-Whitney 
test (**p < 0.01; ****p < 0.0001). Table shows the average migration ability of each cell line (n = 3 for all). (C) 
Representative images of MCF7, MCF7-ΔERα, Cd (MCF7-Cd), and Cd-ΔERα cells at days 0 and 4 with the 
wound outlined in green.
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genes (CTSD, pS2, and SDF1) and three non-classically ERα-regulated or estrogen-responsive genes (c-myc, 
cyclin D1, NUDT1)22,23 using qRT-PCR analyses. The loss of ERα resulted in a significant reduction in CTSD, 
pS2, and SDF1 at the mRNA level in all cells—MCF7, Cd7, and Cd12 (Fig. 3A, p < 0.0001). The genes c-myc 
and NUDT1 were significantly downregulated in the MCF7-ΔERα cells (p < 0.01), while there were no signif-
icant decreases in the Cd7-ΔERα and Cd12-ΔERα cells (Fig. 3B). Interestingly, the loss of ERα had varying 
effects on cyclin D1 expression, with the most significant decrease in MCF7-ΔERα cells (p < 0.01), followed by 
Cd12-ΔERα cells (p < 0.05) and finally the Cd7-ΔERα cells, which showed no significant reduction (Fig. 3B). 
These findings demonstrate that ERα is critical for the expression of the classical ERE genes in all three cell 
lines; however, the cadmium-adapted cells appear to have an increased ability to continue expressing some 
non-classically ERα-regulated and estrogen-responsive genes despite the permanent loss of ERα.

Figure 2. Cadmium-adapted cells are more invasive and tumorigenic than parental MCF7 cells. (A) 
Approximately 5 × 104 cells were seeded into cell invasion chambers in triplicate and incubated for 24 
hours. Invasive cells were measured using a fluorescent plate reader, and the data was collected from three 
independent experiments and shown as mean with SEM (n = 9, 27, 18, 45, left to right). Statistical analysis was 
performed using a two-tailed T test (***p < 0.001; ****p < 0.0001). (B) Representative images of invasive 
MCF7-Ctrl, MCF7-ΔERα, Cd-Ctrl (MCF7-Cd), and Cd-ΔERα cells stained with crystal violet. The results are 
representative of three independent experiments. (C) Anchorage-independent growth was measured using the 
colony formation assay in soft agar. Only colonies with approximately 100 cells or more were counted, and the 
results represent three independent experiments of triplicate samples shown as mean with SEM (n = 9, 27, 18, 
45, left to right). Statistical analysis was performed using a two-tailed T test (**p < 0.01; ****p < 0.0001). (D) 
Representative images of MCF7, MCF7-ΔERα, Cd, and Cd-ΔERα colonies growing in soft agar.
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To understand how chronic cadmium exposure alters the cells’ dependency on ERα for gene expression, we 
transiently silenced ERα using ICI, an antiestrogen that promotes the degradation of ERα24–26. Using a chem-
ical inhibitor to directly reduce ERα levels allows analysis of the pathways altered immediately following this 

Figure 3. The effect of ERα knockout on the expression of classical and non-classical ERα genes. (A) Gene 
expression of the classical ERα genes CTSD, pS2, and SDF1 and the (B) non-classical genes, c-myc and 
cyclin-D1, and the estrogen-responsive gene NUDT1 were measured using RT-qPCR. MCF7-, Cd7-, and Cd12-
Ctrl indicate the cells transfected with a CRISPR control plasmid. MCF7 was used as the control and all relative 
fold changes were normalized to actin (relative fold = 2ΔΔCt gene/ΔΔCtActin). The results represent the average of 
three independent experiments of quadruplicate samples (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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decrease, whereas the CRISPR ERα-KO cell lines would have already adapted to the ERα loss and changes may 
not reflect the immediate response.

MCF7 and cadmium-adapted cells (Cd7 and Cd12) were treated with ICI to mediate the degradation of ERα, 
and a nonbiased global gene expression analysis was conducted using RNA sequencing (RNA-seq). The hier-
archical clustering of the top 500 differentially expressed genes (false discovery rate (FDR) ≤ 10−6) in Fig. 4A 
shows that many ERα-regulated genes (i.e.GREB1, PR, SDF1, CTSD, NRIP1, IGF1R, and PRSS23)12,16,17,27 were 
upregulated in the Cd-adapted cells compared to the MCF7 cells, which supports our previous findings that the 
metalloestrogenic function of cadmium alters the expression of ER-regulated genes16,17. Strikingly, the RNA-seq 
analysis also showed that the loss of ERα even transiently resulted in global gene expression changes in both 
the MCF7 and cadmium-adapted cells (Fig. 4A). To confirm this data, we independently treated MCF7 and 
cadmium-adapted cells with ICI or RNAi to silence ERα (Fig. 4B,C) and subsequently analyzed the ERα target 
genes—SDF1, CTSD, c-myc, and cyclin D1 (CCND1)—using qRT-PCR and western blot analyses. Consistent 
with the RNA-seq data, depletion of ERα by either ICI or RNAi-ERα decreased the expression of the ERα target 
genes at both the transcript and protein levels (p < 0.05; Fig. 4B,C, Fig. S3).

Subsequently, we performed pairwise comparisons of MCF7 vs. MCF7-ICI, Cd7 vs. Cd7-ICI, and Cd12 
vs. Cd12-ICI and found that ICI-mediated degradation of ERα resulted in 3,706, 4,721, and 4,628 DE genes 
in MCF7, Cd7, and Cd12 cells, respectively. Of the DE genes, 2,477 were shared by all three cell lines (Fig. 5A). 
Overall, MCF7 shared 67.3% and 59.5% of the DE genes with Cd7 and Cd12 cells, respectively, suggesting 
that ERα continues to play an important role in regulating the expression of genes following chronic cad-
mium exposure. To gain insight into the biological functions and processes affected by ERα knockdown, Gene 
Ontology (GO) enrichment analysis was performed on the top 1,500 DE genes ranked by FDR in the MCF7 and 
cadmium-adapted cells after ICI treatment. Consistent with the similarities amongst the differentially expressed 
genes (Fig. 5A), many of the GO terms for molecular function (MF) and biological process (BP) were similarly 
enriched in all three cell lines following ICI treatment (Supplementary Fig. S4). As expected, modulating ERα 
expression altered common GO molecular functions such as “signaling receptor activity,” “transmembrane sign-
aling receptor activity,” “molecular transducer activity,” and “catalytic activity,” in which ERα-regulated genes like 
CCND1, CTSD, and IGFR1 were present.

To further investigate how chronic cadmium exposure may impact ERα gene regulation, we compared the 
effects of ERα loss on the expression of ERE genes and estrogen-responsive genes28,29 specifically. The results in 
Fig. 5B show that 180 ERE genes were altered when ERα levels decreased. Of those, 138 ERE genes (76.7%) were 
shared by all three cell lines, in that expression changed in the same direction (either up- or downregulated) 
(Fig. 5B, Table S2A). For the estrogen-responsive genes, 428 (53.6%) of the 799 genes were altered in the same 
direction in all three cell lines (Fig. 5C, Table S2B). These findings show that while a majority of ERE genes 
responded in the same manner to loss of ERα, more variability existed within the estrogen-responsive genes. 
Collectively, these results indicate that while chronic cadmium exposure leads to genome-wide transcriptional 
changes, ERα remains important for regulating the expression of genes and maintaining the malignant pheno-
types associated with breast cancer progression.

Discussion
Epidemiological studies have reported a link between cadmium and breast cancer risk and malignancy5,8,9. 
Animal models have also shown that cadmium promotes early signs of cancer development in the mammary 
gland and uterus10,11,30. Although multiple in vitro studies have shown that acute levels of cadmium can mimic 
the effects of estrogen and activate ERα to alter the expression of target genes13–16, less is known about the effects 
of chronic, low-level cadmium exposure. Here, we investigated the effects of prolonged cadmium exposure on 
breast cancer progression and gene expression and the role of ERα in these processes. Our results demonstrated 
that cells chronically exposed to cadmium (MCF7-Cd) outperformed the parental MCF7 cells in the growth, 
invasion, and colony formation assays (Figs 1 and 2), extending previous observations that chronic cadmium 
exposure results in more aggressive cancer phenotypes16,31–34. The migration results of this study showed dif-
ferences between MCF7 and MCF7-Cd cells (Fig. 2B,C), though the results were not as statistically significant 
as previous reported16. This may be because a pooled population of cadmium-adapted cells were used in the 
previous study rather than clonal-derived cell lines used here. In this current study, the loss of ERα significantly 
reduced the growth, migration, invasion and colony formation abilities in both the MCF7 and MCF7-Cd cells 
(Figs 1 and 2); however, this decrease was less pronounced in the cadmium cells, suggesting that cells chronically 
exposed to cadmium have become less dependent on ERα and perhaps have developed an increased ability to 
adapt to stresses—such as ERα loss.

To understand the molecular changes underlying these phenotypic differences, we also analyzed changes in 
gene expression after knocking out ERα using CRISPR/Cas-9. Knockout of ERα in both MCF7 and MCF7-Cd cells 
significantly reduced the levels of ERE genes, while non-classical ERα-regulated and estrogen-responsive genes, 
such as c-myc, cyclin-D1, and NUDT1, were less affected by ERα loss in the MCF7-Cd cells compared to MCF7 
cells (Fig. 3). This may explain the enhanced aggression of the Cd-ΔERα cells as these genes are associated with 
cancer growth and invasiveness35–37. To capture the immediate response to the loss of ERα at the gene level, we used 
the antiestrogen ICI to transiently reduce ERα levels, and an unbiased gene expression analysis was performed 
using RNA-seq. Consistent with our ERα knockout results and our earlier observations that chronic cadmium 
exposure alters expression of ERα-regulated genes [e.g., PRSS23, CTSD, and SDF117], transient loss of ERα also 
decreased the expression of many ERα target genes (Fig. 4A). Interestingly, c-myc and cyclin-D1 were downregu-
lated in MCF7, Cd7, and Cd12 cells after transient silencing of ERα (Fig. 4B), while they were less affected in the 
cadmium-adapted cells after ERα knockout (Fig. 3B). This difference may be attributed to either incomplete loss 
of ERα under transient conditions or the fact that transient reduction of the receptor does not allow cells to adapt 
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Figure 4. The effects of chronic cadmium exposure on ERα-responsive gene expression. (A) MCF7, Cd7, and 
Cd12 cells were treated with either the antiestrogen ICI-182,780 or vehicle in triplicate for 24 hours. Total RNA 
was collected, and RNA-seq was performed by the University of Minnesota Genomics Center. The top 500 
differentially expressed genes (FDR ≤ 10−6) after ERα knockdown were hierarchically clustered. (B) MCF7, 
Cd7, and Cd12 cells were transfected with si-ERα (ERi) or si-control (Ci) or treated with 100 nM ICI-182,780 
(ICI) or vehicle (−) and collected after 24 hours for gene expression analysis using RT-qPCR (*p < 0.05; 
**p < 0.01; ***p < 0.001). (C) Cell lysates were collected from MCF7, Cd7, and Cd12 cells 24 or 48 hours after 
ERα knockdown for protein expression analysis by western blot with actin as the loading control.

https://doi.org/10.1038/s41598-019-46912-3
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to the change. Nevertheless, the ability of the cadmium-adapted cells to recover the expression of these genes after 
ERα loss underscores the cells’ ability to adapt in comparison to parental MCF7 cells.

Consistent with the ERα knockout experiments, the RNA-seq analysis also revealed more variability in how 
estrogen-responsive genes were affected by the decreased ERα levels, with only 53.6% of the estrogen-responsive 
genes altered in the same direction in all three cell lines (MCF7, Cd7, Cd12) compared to 76.7% in the ERE genes 
(Fig. 5B,C). We speculate that prolonged cadmium exposure may have altered and expanded the function of ERα. 
Since cadmium is known to displace other divalent metals, such as zinc38–40, cadmium-bound ERα could have 
altered functions (i.e., transcriptional activity) and interactions with other proteins involved in transcription, as 
was previously observed in acute cadmium exposure11,15,40. Of course, it is possible that the differences in gene 
expression are not dependent on direct interactions between cadmium and ERα. Many estrogen-responsive genes 
are co-regulated by other transcription factors (e.g., AP-1, Sp-1) in partnership with ERα41,42, and alterations in 
the expression and/or activity of these transcription factors in the cadmium-adapted cells could also explain the 
differential response of estrogen-responsive genes to loss of ERα. However, it is unlikely that these observed dif-
ferences in Cd7 and Cd12 cells are due to ERα-independent or off-target effects of ICI since (1) these genes have 
previously been shown to be estrogen-responsive, and (2) the ICI treatment conditions were the same in each 
cell line. However, how the effects of chronic cadmium exposure on activity of other steroid hormone receptors 
—ERβ, GR, and PR—remains unclear. Future studies to understand whether these transcriptional changes are 
mediated by changes in the cross-talk of these receptors and other transcription factors to ERα may offer further 
insights into how cadmium contributes to breast cancer progression.

Although our findings demonstrated that ERα remains critical for the development and maintenance of 
cadmium-induced malignant phenotypes in MCF7 cells, breast cancer cells chronically exposed to cadmium 
have developed additional mechanisms to partially circumvent the loss of ERα and continue to thrive. Consistent 
with these results, Benbrahim-Tallaa et al. demonstrated that the estrogenic effects of cadmium were not neces-
sary for carcinogenesis after cadmium-mediated malignant transformation of MCF10A cells, an immortalized 
normal breast epithelial cell line that does not express ERα20. In line with previous observations43–47, our study 
does not dispute that cadmium induces changes independent of ERα, but also suggests that when present, ERα 
plays a critical role in cadmium-induced breast cancer progression. Collectively, our findings demonstrate for the 
first time that chronic cadmium exposure, even at low levels, can increase the malignancy of breast cancer cells by 
ultimately decreasing their dependency on ERα and thus increasing their adaptability.

Materials and Methods
Materials. MCF7 cells were obtained from the American Type Culture Collection (ATCC Manassas, VA). 
Cadmium chloride (Acros Organics, Geel, Belgium) was dissolved in autoclaved H2O and sterile-filtered to make 
a 1 M solution. A stock solution of ICI-182,780 (Tocris Bioscience, Bristol, UK) was prepared at a concentration 
of 10−3 M in DMSO according to the manufacturer’s protocol.

cell culture. MCF7 cells were obtained from the American Type Culture Collection (Manassas, VA) and 
cadmium-adapted cells (MCF7-Cd7 and MCF7-Cd12) were generated as described previously16,17. All MCF7 
and derivative cell lines were maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Life Technologies, 
Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS) (HyClone, Logan, UT) and 1% penicillin and 
streptomycin (P/S) (Life Technologies). The media used for the cadmium-adapted cell lines MCF7-Cd7 and 
MCF7-Cd12 also contained 10−7 M CdCl2.

Modulating eRα expression. RNA interference. Approximately 1 × 105 cells were seeded into 6-well plates 
and transfected the following day with ERα siRNA (Santa Cruz Biotechnology, Santa Cruz, CA) using siRNA trans-
fection reagents (Santa Cruz Biotechnology). A scrambled siRNA (Santa Cruz Biotechnology) was used as a control. 
The following day, the medium was replaced with DMEM containing 10% FBS and 1% P/S. Cells were harvested 24 
and 48 hours later for gene and protein expression analysis using qRT-PCR and western blot analysis, respectively.

Figure 5. Prolonged cadmium exposure alters the regulation of estrogen-responsive genes. The Venn diagrams 
represent the (A) total, (B) ERE (estrogen response element), and (C) estrogen-responsive genes identified by 
RNA-seq that were altered in the same or different directions (up- or downregulated) in MCF7, Cd7, and Cd12 
cells after antiestrogen treatment.
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Derivation of CRISPR/Cas-9-edited cell lines. Approximately 1 × 105 cells were seeded into 6-well plates and 
transfected with ERα double nickase plasmids (Santa Cruz Biotechnology). For selection of successfully trans-
fected cells, 2.5 μg/mL puromycin (Santa Cruz Biotechnology) was added to the media for three days. Single 
cell clones were isolated by serial dilution in a 96-well plate, and wells with only a single cell were expanded into 
clonal cell lines. Cell lines were initially screened for ERα protein expression by western blot analysis using an 
ERα-specific antibody (Ab-12, Neomarkers). Clones that did not express ERα at the protein level were candidates 
for DNA sequencing verification performed by Genewiz, Inc. (South Planfield, NJ). Sequence reads of ~800 bp 
spanning the target region in the first exon of ESR1 were aligned using MacVector software (MacVector, Inc., 
Version 12.7.0 (214), Apex, NC) to identify frameshift mutations.

cell growth assay. Approximately 50,000 cells were plated in 6-well plates. The next day, cells from triplicate 
wells were counted twice using a hemocytometer to calculate total cell number (Thermo Fisher), and the total cell 
number was determined again 2, 3, and 4 days later after the initial cell count. The doubling times were determined 
using the exponential growth equation in GraphPad Prism v7.02 (GraphPad Software, Inc., San Diego, CA).

Scratch wound assay. Cells were grown to approximately 80–90% confluence in 6-well plates before being 
scratched with a P200 pipette tip. The wound was imaged at Day-0 and again at Day-4. Cells were grown in sup-
plemented DMEM media (see “Cell Culture” above) for the duration of the experiment. For quantification of cell 
migration, the surface area of the wound at days 0 and 4 was calculated using ImageJ (NIH, Bethesda, MD). The 
percent of the wound healed was calculated using the following equation:

= − ×% wound repaired [1 (wound surface area day 4/wound surface area day 0)] 100

invasion assay. Approximately 50,000 cells were seeded into ECMatrix cell invasion chambers (Millipore, 
Milpitas, CA) in triplicate and incubated for 24 hours per manufacturer’s protocol. Serum-free medium and 
DMEM with 10% FBS was added to top and bottom chambers, respectively. Luminescence was measured using a 
Fluorstar Omega plate reader (BMG Labtech, Ortenberg, Germany). For the images, approximately 50,000 cells 
were seeded in CorningTM BiocoatTM MatrigelTM Invasion chambers in triplicate, and again, medium with no FBS 
was added to the top chamber, and medium with 10% FBS was added to the bottom chamber. After incubation 
for 24 hours, the cells on the bottom of the membrane were fixed in 10% PBS-buffered formalin for 30 minutes 
and then stained with crystal violet. The cells inside the chamber were removed, and the cells that invaded to the 
underside of the membrane were imaged using Motic Images Plus 2.0 (Motic, Richmond, British Columbia). 
Images are representative of 3–5 frames.

Soft-Agar colony formation assay. Twenty-four-well plates were coated with 1 mL 1% agar in supple-
mented DMEM with 10% FBS and 1% P/S, and this constituted the bottom layer of the well. Approximately 500 
cells were mixed with 0.5 mL 0.6% agar DMEM containing 10% FBS and 1% P/S, poured on top of the bottom 
layer in triplicate wells and incubated at 37°C and 5% CO2. Fresh medium was added every 2–3 days. After 
two weeks, live colonies were stained using MTT and imaged using the ChemiDoc Imaging system (Bio-Rad). 
Colonies greater than 100 cells were counted in triplicate wells.

protein expression analysis. Cells were lysed in 1% sodium dodecyl sulfate (SDS)-HEPES buffer (0.05 
M HEPES, 1% Triton, 0.002 M EDTA, 1% deoxycholate, 0.002 M EGTA, 0.15 M NaCl, and 0.01 M NaF) plus 
protease inhibitor cocktail (Thermo Fisher, Waltham, MA) for 15 minutes at 4 °C. The cell lysate was then cen-
trifuged at 20,000 × g for 15 minutes at 4 °C. The total protein concentration was determined using the Bio-Rad 
DC Protein Assay kit (Bio-Rad, Inc., Hercules, CA). Proteins were separated using SDS-polyacrylamide gel 
electrophoresis and transferred to polyvinylidene fluoride (PVDF) membranes (Millipore, Hayward, CA). The 
membranes were blocked with 5% milk-Tris-buffered saline with Tween-20 (TBST) for one hour before protein 
expression was monitored using the following specific antibodies at dilutions ranging from 1:500 to 1:1000: ERα 
Ab-12 (6F11) (Neomarkers, Fremont, CA), Cathepsin D (C-5; Santa Cruz), SDF1 (Cell Signaling Technology), 
c-myc (D84C12; Cell Signaling Technology), Cyclin D (A-12; Santa Cruz), and Actin (AC-15; Sigma). HRP-goat 
anti-mouse and -rabbit secondary antibodies (Invitrogen, Carlsbad, CA) were used at a concentration of 1:2000, 
and Clarity Western ECL Substrate (Bio-Rad) was used for detection. Images were captured and analyzed using 
the iBright CL1000 imager (Invitrogen). Antibodies used to recognize specific proteins were highly specific and 
have been previous studies15,16. A representative full length blot of each target is found in Supplemental Fig. S2.

Quantitative reverse transcription polymerase chain reaction (qRt-pcR). Total RNA was isolated 
from cells using TRIzol reagent (Life Technologies) and columns from the Direct-zol RNA MiniPrep kit (Zymo 
Research Corporation, Irvine, CA) according to the manufacturer’s protocol. One microgram of total RNA was 
converted to cDNA using the High Capacity RNA-to-cDNA kit (Applied Biosystems, Inc., Foster City, CA). 
Gene expression was quantified using gene-specific primers (Table 1) and Fast SYBR Green master mix (Applied 
Biosystems). The reaction was cycled 40 times with an annealing temperature of 60ºC. All gene-specific primers 
were synthesized by Integrated DNA Technologies, Inc. (IDT, San Diego, CA).

Identifying differentially expressed (DE) genes. Cells were treated with 10−7 M of the antiestrogen 
ICI or vehicle, and total RNA was isolated as described above. Triplicate samples were sent to the bioinformatics 
core at the University of Minnesota Genomics Center (Minneapolis, MN). RNA was sequenced using a HiSeq-
2500 (Illumina, Hayward, CA) to produce 50-bp paired-end reads at a depth of 22,000X. EdgeR48 was used to 
determine DE genes, and the resulting list of genes was ranked by the false discovery rate (FDR), which ranged 
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from 10−3 to 10−6. Different subsets of data were compared using Perl scripts (www.perl.org). Cluster 3.049,50 was 
used to organize data sets by DE genes, and heatmaps highlighting the top 500 genes were created using http://
jtreeview.sourceforge.net/. The complete RNA-seq data sets are available at the NCBI’s Gene Expression Omnibus 
(GEO) (accession GSE134127).

functional enrichment of De genes. The top 1,500 DE genes (ranked by FDR) identified from pair-
wise comparisons of MCF7 vs. MCF7-ICI, Cd7 vs. Cd7-ICI, and Cd12 vs. Cd12-ICI were used as input for 
Gene Ontology (GO) enrichment analysis (geneontology.org)51. PANTHER GO-Slim Molecular Function and 
Biological Process enrichment (p < 0.05) was determined using Fisher’s Exact test.

Statistical analysis. Normality was determined using the Shapiro-Wilk test in GraphPad Prism v7.02. Data 
following a normal distribution were analyzed using a two-tailed T test in GraphPad Prism to determine the 
statistical significance as specified in figure legends. A non-parametric T test was used where the n value was too 
small to determine normality.
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ActinF
ActinR

GAGAAAATCTGGCACCACACC
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Table 1. List of qRT-PCR Primer Sequences.
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