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Abstract

The MITF, TFEB, TFE3 and TFEC (MiT-TFE) proteins belong to the basic helix-loop-helix

family of leucine zipper transcription factors. MITF is crucial for melanocyte development

and differentiation, and has been termed a lineage-specific oncogene in melanoma. The

three related proteins MITF, TFEB and TFE3 have been shown to be involved in the biogen-

esis and function of lysosomes and autophagosomes, regulating cellular clearance path-

ways. Here we investigated the cross-regulatory relationship of MITF and TFEB in

melanoma cells. Like MITF, the TFEB and TFE3 genes are expressed in melanoma cells as

well as in melanoma tumors, albeit at lower levels. We show that the MITF and TFEB pro-

teins, but not TFE3, directly affect each other’s mRNA and protein expression. In addition,

the subcellular localization of MITF and TFEB is subject to regulation by the mTOR signaling

pathway, which impacts their cross-regulatory relationship at the transcriptional level. Our

work shows that the relationship between MITF and TFEB is multifaceted and that the

cross-regulatory interactions of these factors need to be taken into account when consider-

ing pathways regulated by these proteins.

Introduction

The microphthalmia-associated transcription factor (MITF) was discovered as the gene

mutated in mice carrying the coat color mutation microphthalmia (Mitf) [1]. Mitf mutant

mice lack melanocytes, resulting in pigmentation defects and deafness, and they have small

eyes and some alleles show osteopetrosis (reviewed in [2]). In humans, MITF mutations have

been linked to the rare dominant pigmentation disorders Waardenburg Syndrome type 2A

(WS2A) [3,4] and Tietz Syndrome (TS) [5] as well as the more serious COMMAD syndrome

in compound heterozygotes [6]. In addition, the MITF germline mutation E318K, has been
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linked to melanoma [7,8]. MITF is regarded as the master regulator of the melanocyte lineage

as it regulates the expression of various genes required for melanocyte development, prolifera-

tion and survival (reviewed in [2]). The MITF gene is expressed in multiple isoforms that differ

in their first exon and promoter usage [2,9]. In most isoforms, the variable first exon is spliced

to exon 1B1b which is then spliced to exon 2 and the following common exons which encode

for the functionally important motifs necessary for DNA-binding, protein dimerization and

transactivation ability [2,9]. Among the exon 1B1b-containing isoforms, MITF-D is expressed

in the human retinal pigment epithelium (RPE) [10], whereas isoforms MITF-A, MITF-B,

MITF-E and MITF-H are more ubiquitous [9,11]. The shortest isoform, termed MITF-M, is

predominant in melanocytes and contains a short exon 1M directly spliced to exon 2 [12].

Together with transcription factor EB (TFEB), TFE3 and TFEC, MITF forms a subfamily of

related bHLHZip proteins, sometimes termed the MiT-TFE family [1,13,14]. TFEB and TFE3

participate in the biogenesis of lysosomes and autophagosomes and the clearance of cellular

debris upon starvation or lysosomal stress, through the activation of the CLEAR (Coordinated

Lysosomal Expression and Regulation) network of target genes [15–20]. More recently, a role

has been described for MITF in regulating the starvation-induced autophagy response [21].

The bHLHZip transcription factors, including the MiT-TFE subfamily, form homo- and/or

heterodimers that bind to DNA and activate target genes. In vitro translated MITF has been

shown to be able to form stable DNA-binding heterodimers with TFEB, TFE3, and TFEC [14].

These proteins have nearly identical basic regions and very similar HLH and Zip domains [1].

However, they fail to dimerize with other related bHLHZip factors such as c-Myc, MAX or

USF [14] due the presence of a 3 amino acid sequence in the MiT-TFE proteins, which limits

dimerization within that family [22,23].

Interestingly, the MITF-M isoform, which is predominantly expressed in melanocytes, is

constitutively nuclear [24,25]. This is in stark contrast to TFEB, TFE3 and other MITF iso-

forms, which have been shown to be located in the cytoplasm under normal conditions

[26,27]. The predominant nuclear localization of MITF-M has been explained by the absence

of an N-terminal domain important for cytoplasmic retention, encoded by exon 1B1b [26,28].

This 30 amino acid cytoplasmic retention domain is present in TFEB, TFE3 and all isoforms of

MITF except for MITF-M [15,28]. This domain allows for interactions with active Rag-GTPase

heterodimers, which are required for the localization of these factors to the lysosome [28]. In

the case of TFEB, phosphorylation of TFEB by kinases such as mTORC1 [29] and ERK2 [19]

promotes interaction with 14-3-3 proteins leading to subsequent cytoplasmic retention of

TFEB [26].

In this study, we show that the MITF, TFEB and TFE3 transcription factors are all produced

in melanoma cells, albeit at different levels. MITF and TFEB can regulate each other’s expres-

sion, and the mTOR signaling pathway further regulates this cross-regulatory relationship by

modulating their subcellular localization and transcriptional activity. Thus, pharmacological

interventions that modulate the expression or activity of these factors may affect the balance in

their expression and the cellular processes that they regulate.

Results

MITF and TFEB modulate each other’s expression

Previous analysis of RNA sequencing data from 368 metastatic melanoma tumors from The

Cancer Genome Atlas (TCGA) [30] showed that the mRNA expression of TFE3, TFEB, and

TFEC was 4-, 14-, and 40-fold lower than that of MITF, respectively [21]. Furthermore, analy-

sis of gene expression in 23 human melanoma cell lines as well as in normal human epidermal

melanocytes (NHEM) using a microarray platform revealed that the expression of TFEB and
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TFE3 was roughly 50-fold lower than that of MITF, whereas expression of TFEC mRNA was

about 850-fold lower than that of MITF [21,31]. Particularly, in the 501Mel and Skmel28

human melanoma cell lines used in this study, MITF is highly expressed whereas TFEB and

TFE3 are expressed at considerably lower levels. TFEC is virtually undetectable in both cell

lines (S1 Table). Although the expression level of transcription factors may not be directly

related to their importance, we decided to focus on MITF, TFEB and TFE3 in the remaining

analysis.

The finding that the MiT-TFE factors are co-expressed in melanoma cells and tumors,

together with recent evidence pointing to a role of MITF in the regulation of lysosomal and

autophagy-related genes [21,32], similar to TFEB and TFE3, may suggest an overlap in func-

tion or cooperation between these factors. This led us to investigate whether MITF and TFEB

could transcriptionally regulate each other’s expression. Publicly available ChIP-seq data for

MITF in 501Mel [33] and Colo829 human melanoma cells [34] were analyzed in order to

determine if MITF might be involved in directly regulating its own expression or that of TFEB

and TFE3. A number of ChIP-seq peaks containing CACGTG or CATGTG elements were

observed for MITF in the MITF gene, in both 501Mel and Colo829 cells (Fig 1A). In addition,

both ChIP-seq datasets showed that MITF binds to a region within intron 1 of TFEB contain-

ing an E-box CAGCTG sequence (Fig 1B). In contrast, no ChIP-seq peaks were found within

or near the TFE3 gene (Fig 1C). The peak closest to the TFE3 gene is an E-box element located

approximately 35 kb upstream of the transcription start site (TSS), between the neighboring

genes WDR45 and PRAF2, and was not considered further (10.6084/m9.figshare.12568646).

These data suggest that MITF can regulate the expression of both MITF and TFEB through

binding to putative DNA regulatory elements, whereas MITF is less likely to directly regulate

the expression of TFE3 in vitro.

In order to determine whether MITF and TFEB are able to influence each other’s expres-

sion, we investigated the effects of transiently overexpressing the two individual factors on

their expression in 501Mel and Skmel28 human melanoma cell lines. We first separately over-

expressed MITF or TFEB in 501Mel cells containing the doxycycline (DOX)-inducible piggy-

bac (pBac) vectors pBac-MITF or pBac-TFEB prior to evaluating the mRNA levels of each

factor by qRT-PCR. The overexpressed MITF protein was the (-) isoform lacking exon 6a that

encodes six amino acids located immediately upstream of the basic domain [12]. We used

primers specific for the MITF(+) isoform to determine the expression of endogenous MITF
mRNA and universal MITF(+/-) primers to detect expression of total MITF mRNA; TFEB and

TFE3 were assayed using gene-specific primers (S2 Table). Overexpressing MITF(-) signifi-

cantly increased TFEB mRNA expression whereas TFE3 levels remained unchanged (Fig 2A).

In addition, MITF(-) overexpression significantly reduced the expression of endogenous

MITF as detected using primers specific to the MITF(+) isoform (Fig 2A). Overexpression of

TFEB in the 501Mel cell line resulted in reduced MITF expression whereas TFE3 mRNA levels

were unaffected (Fig 2B). These results were confirmed at the protein level by Western blot

analysis—overexpression of TFEB resulted in reduced MITF protein expression (Fig 2C).

Ectopic expression of MITF led to decreased levels of endogenous MITF (Fig 2C) and

increased TFEB protein levels (Fig 2D). Quantification of the changes in protein expression

were performed by normalizing each protein’s band intensity to the expression of Actin and

are presented as a fold-change relative to the samples overexpressing an empty vector (Fig 2E).

To further examine the effect of MITF on TFEB expression, we treated 501Mel cells overex-

pressing FLAG-tagged MITF in a DOX-inducible pBac vector with increasing doxycycline

concentrations and assayed for TFEB expression using Western blot analysis. As expected, we

observed a dose-dependent increase in MITF-FLAG protein expression after 24 hours of doxy-

cycline treatment (Fig 2F and 2G). Importantly, increasing expression of the MITF protein led
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to a significant increase in TFEB protein expression, thus supporting the positive effects of

MITF on TFEB (Fig 2F and 2G). Since the MITF-FLAG pBac system overexpressed the MITF

(+) isoform, it is unlikely that there are differences between the MITF (+) and (-) isoforms

with respect to effects on TFEB expression. In order to investigate this further, we transiently

overexpressed the MITF(+) isoform in the 501Mel cell line and analyzed mRNA expression of

Fig 1. MITF binds to the MITF and TFEB genes in melanoma cells. MITF ChIP-seq data in 501Mel and Colo829 melanoma cells show peaks for

MITF in the MITF gene (A) and a peak in the intron 1 of TFEB containing a CAGCTG regulatory element (B). No binding sites were observed within

the TFE3 gene (C) nor within 20 kb upstream or downstream (10.6084/m9.figshare.12568646).

https://doi.org/10.1371/journal.pone.0238546.g001

PLOS ONE MITF-TFEB crossregulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0238546 September 3, 2020 4 / 21

https://doi.org/10.1371/journal.pone.0238546.g001
https://doi.org/10.1371/journal.pone.0238546


TFEB and endogenous MITF using 3’UTR-specific primers. The effects were comparable to

those observed after overexpression of the (-) isoform, further validating that these six amino

acids do not have additional effects on the expression of MITF or TFEB (S1A Fig). We also

Fig 2. MITF and TFEB modulate each other’s expression upon overexpression in 501Mel cells. (A-B) The

expression of MITF, TFEB and TFE3 as determined by RT-qPCR after overexpression of MITF(-) (A) or TFEB (B) in

501mel cells compared to empty vector (EV). Bars represent SEM. � indicates significance at p<0.05. (C-D) Western

blot analysis of MITF (C) and TFEB (D) proteins, using specific antibodies, after overexpression of TFEB (C) and

MITF (C, D) in 501mel cells. Shown is a representative figure for at least three independent experiments. (E)

Quantification of the Western blots presented in C-D. Bars represent SEM. � indicates significance at p<0.05. (F)

Western blot analysis of MITF and TFEB proteins, using FLAG (MITF) or TFEB-specific antibodies, upon dose-

dependent doxycycline-inducible overexpression of FLAG-tagged MITF in 501mel cells. Shown is a representative

figure for three independent experiments. (G) Quantification of the Western blot presented in F. Bars represent SEM. �

indicates significance at p<0.05.

https://doi.org/10.1371/journal.pone.0238546.g002
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performed overexpression of MITF(+) and TFEB in Skmel28 cells and observed similar effects

as observed in the 501Mel cells (S1B Fig).

In order to validate our overexpression experiments, we used two sets of pooled siRNAs to

separately knock down MITF or TFEB in 501Mel cells followed by RT-qPCR and Western

blot analysis. The smart pool of siRNAs utilized were effective at targeting each individual fac-

tor as confirmed at both mRNA and protein levels (Fig 3). We observed that MITF knock-

down dramatically reduced expression of both TFEB mRNA (Fig 3A) and protein (Fig 3B) to a

degree comparable to that observed upon TFEB knockdown. On the other hand, TFEB knock-

down increased expression of the MITF mRNA (Fig 3A) and protein (Fig 3B). Quantification

of the changes in protein expression were performed as the mean of three independent experi-

ments by normalizing each protein’s band intensity to the expression of Actin and are pre-

sented as a fold-change relative to the samples treated with control siRNA (Fig 3C). Of note,

TFEB protein could not be detected with our TFEB-specific antibody in Skmel28 cells. How-

ever, in Skmel28 cells, siRNA-mediated silencing of MITF reduced the mRNA expression of

TFEB (S2 Fig). To further characterize the effects of siRNA-mediated silencing of MITF on

TFEB expression, we employed an Skmel28 cell line expressing a doxycycline-inducible

miRNA targeting MITF. The miR-MITF-mediated knockdown of MITF correlated with a sig-

nificant reduction in TFEB mRNA levels 24 hours after addition of doxycycline into the cell

culture medium (Fig 3D). Importantly, after 24 hours of MITF knockdown, we washed off

doxycycline treatment, and observed that TFEB mRNA was gradually restored at 72 and 96

Fig 3. MITF and TFEB modulate each other’s expression upon knockdown in 501Mel and Skmel28 cells. (A) The

expression of MITF and TFEB as determined by RT-qPCR after siRNA-mediated knockdown of each factor compared

to control siRNA in 501Mel cells. Bars represent SEM. � indicates significance at p<0.05. (B) Western blot analysis of

MITF and TFEB proteins after siRNA-mediated knockdown of MITF or TFEB in 501 Mel cells. Shown is a

representative figure and quantification of three independent experiments (C). Bars represent SEM. � indicates

significance at p<0.05. (D) The expression of MITF and TFEB as determined by RT-qPCR after doxycycline-induced

(1μg/ml) miR-MITF knockdown, compared to miR-NTC control in Skmel28 cells; three independent experiments are

shown. Bars represent SEM. � indicates significance at p<0.05.

https://doi.org/10.1371/journal.pone.0238546.g003
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hour doxycycline-free time points along with MITF mRNA (Fig 3D). Collectively, these data

indicate that MITF and TFEB are able to regulate each other’s mRNA and protein expression

in human 501Mel and Skmel28 melanoma cells.

MITF directly regulates TFEB expression

We then asked whether the effects of MITF on the expression of TFEB are direct transcrip-

tional effects involving DNA-binding by MITF. To address this, we cloned the DNA sequences

in TFEB shown to be bound by MITF according to ChIP-seq analysis (Fig 1B), into a

pGL3-Promoter luciferase reporter plasmid. More specifically, we chose a fragment encom-

passing an 853-basepair (bp) sequence of intron 1 of TFEB containing the region between

bases -29,373 and -28,521 located upstream of exon 2 of TFEB. This sequence contains a

CAGCTG sequence, a potential MITF binding site (Fig 4A). A mutated version of this con-

struct was generated where the potential binding element was mutated to CCCTTT. The

resulting reporter constructs were transfected into HEK293T cells, which express low levels of

the MiT/TFE transcription factors endogenously, together with a construct expressing a

FLAG-tagged wild type MITF-M protein. We used the Tyrosinase (TYR) promoter as a posi-

tive control, a classical MITF target [35]. The results revealed transactivation of the TYR pro-

moter by MITF, showing that our assay worked as intended (Fig 4B). Expression from the wild

type TFEB intron 1 element was significantly increased upon expression of FLAG-tagged

MITF-M. However, this enhanced transactivation was abrogated when the 6-bp sequence was

mutated (Fig 4B), suggesting that MITF binds to this sequence and activates expression of

TFEB. We further tested whether the effects on TFEB expression upon ectopic expression of

Fig 4. MITF activates TFEB expression through a CAGCTG motif in intron 1. (A) Schematic representation of the

luciferase reporter constructs generated for the MITF binding sites observed in the TFEB gene. (B) HEK293T cells

were transiently co-transfected with a p3XFLAG-CMV-14 construct with or without MITF-M (empty vector, EV) and

reporter constructs and assayed for luciferase activity after 24h. Luminescence signal is expressed as fold change over

an empty luciferase reporter for Tyrosinase and for a luciferase reporter containing the fragment from TFEB intron 1

and a mutated version thereof in front of the minimal SV40 promoter. Error bars represent the SEM of three

experiments. � indicates significance at p<0.05. (C) EMSA showing binding of in vitro translated MITF protein to

oligos containing the CACGTG and CAGCTG sequences. Supershifts with the C5 MITF specific antibody are

indicated, confirming the specificity of the gel shifts. (D) A total of 11,173 sequences under the MITF ChIP-seq peaks

were called with p<0.05. Graphs show the number of peaks among all the peaks called with any given number of

matches for each motif. Bottom table shows the total number of matches for each motif in all the peaks.

https://doi.org/10.1371/journal.pone.0238546.g004

PLOS ONE MITF-TFEB crossregulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0238546 September 3, 2020 7 / 21

https://doi.org/10.1371/journal.pone.0238546.g004
https://doi.org/10.1371/journal.pone.0238546


MITF involved direct transcriptional regulation by using a mutant MITF protein, which lacks

four arginines in the DNA binding domain that are essential for both DNA binding and

nuclear localization of MITF. R214-217A mutant MITF exhibits constitutive cytoplasmic

localization and presumably is transcriptionally inactive [25]. Overexpression of this R214-

217A MITF in HEK293T cells showed no reporter transactivation from the TYR promoter or

the wild type TFEB intron 1 element (S3 Fig), suggesting that the reporter transactivation pre-

viously observed requires the presence of transcriptionally active MITF protein.

Interestingly, the MITF binding site in intron 1 of TFEB is a CAGCTG element and not a

canonical CACGTG E-box or a CATGTG M-box, which have previously been described as

target sequences for MITF transcriptional regulation [36,37]. In order to validate that MITF

can efficiently bind the CAGCTG sequence, we used electrophoretic mobility shift assay

(EMSA) to determine whether an in vitro translated MITF-M protein can effectively bind a

radiolabeled probe containing the above sequence. In this assay, we included a radiolabeled E-

box (CACGTG) as a positive control for MITF-DNA binding. As expected, the MITF protein

can shift the canonical E-box (Fig 4C). It can also shift the CAGCTG probe with similar effi-

ciency (Fig 4C). The DNA-protein complexes were both further shifted with the anti-MITF C5

antibody, indicating that the complexes observed specifically bind MITF (Fig 4C). The

CAGCTG 6-mer is not a canonical E-box or M-box, both of which have been previously

described as MITF binding sites. We thus analyzed the MITF ChIP-seq dataset (p< 0.05) [33]

in order to find whether there are more occurrences of the CAGCTG regulatory element

among MITF target genes. In the ChIP-seq dataset, 11,173 sequences under the peaks were

found to contain putative MITF binding sites. The CACGTG motif was present at least once

in 9,092 of the 11,173 sequences. The CATGTG element, core to the M-box regulatory element

associated with several melanocyte-specific genes [38,39], was present in 8,328 sequences. The

CAGCTG motif (the motif bound by MITF in the TFEB promoter) was found in 8,153

sequences. In contrast, the CCCTTT motif used as a scramble control was present in only

4,375 peaks (Fig 4D). These results indicate that MITF directly regulates its target genes

through direct binding to CANNTG motifs, including the transcription of TFEB through a

CAGCTG motif located in TFEB intron 1.

mTOR signaling affects the subcellular localization of MITF and TFEB in

melanoma cells

The subcellular localization of TFEB and TFE3 as well as of the MITF-A isoform has been

shown to be regulated by the mTOR pathway [40]. Phosphorylation of TFEB at Ser211 by

mTORC1 promotes its cytoplasmic localization [26]. In contrast, MITF-M, the main isoform

of MITF in melanocytes and melanoma cells has been shown to be primarily nuclear [25]. We

analyzed the endogenous expression of MITF and TFEB in the 501Mel and Skmel28 cell lines

by immunostaining and confocal microscopy. In addition, we used the mTOR pan-inhibitor

Torin-1 to determine whether their subcellular localization responds to inhibition of this sig-

naling pathway. Both endogenous MITF and TFEB were detected in 501Mel cells using spe-

cific antibodies (Fig 5A). While TFEB was located in the cytoplasm and nucleus of 501Mel

cells (Fig 5A), MITF showed a major nuclear presence although a fraction of the protein was

present in the cytoplasm (Fig 5A). Treating 501Mel cells with the mTOR pan-inhibitor Torin-

1 (1 μM, 3 hours) resulted in increased nuclear localization of the endogenous TFEB protein,

suggesting that mTOR activity contributes to the cytoplasmic retention of TFEB in melanoma

cells (Fig 5A). Interestingly, the mTOR inhibitor also increased the fraction of MITF located in

the nucleus (Fig 5A). The same results were observed when constructs containing GFP-fusions

of the MITF-M and TFEB proteins were overexpressed in 501Mel cells using a doxycycline-
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inducible pBac system, and subsequent treatment with Torin-1. The GFP-fusion of TFEB was

mostly cytoplasmic whereas that of MITF was mostly nuclear, suggesting that overexpression

Fig 5. mTOR signaling affects the subcellular localization and cross-regulation of MITF and TFEB. (A) Immunofluorescence images of human

501Mel cells after treatment with vehicle (DMSO) or an mTOR inhibitor (Torin-1, 1 μM, 3 hours) showing endogenous TFEB and MITF proteins

in green. (B) Human 501Mel cells expressing doxycycline-inducible GFP-tagged MITF-M or TFEB were treated with vehicle (DMSO) or Torin-1,

then fixed for GFP imaging. (C) The expression of MITF as determined by RT-qPCR upon overexpression of MITF(-) or TFEB with or without

mTOR inhibition for 3 hours (Torin-1, 1 μM). (D) The expression of TFEB as determined by RT-qPCR upon overexpression of MITF(-) with or

without mTOR inhibition (Torin-1, 1 μM, 3 hours) compared to vehicle (DMSO). Error bars represent SEM. � indicates significance at p<0.05. “ns”

indicates no significance at p>0.05.

https://doi.org/10.1371/journal.pone.0238546.g005

PLOS ONE MITF-TFEB crossregulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0238546 September 3, 2020 9 / 21

https://doi.org/10.1371/journal.pone.0238546.g005
https://doi.org/10.1371/journal.pone.0238546


does not affect the nucleocytoplasmic distribution of these factors (Fig 5B). Torin-1 treatment

led to nuclear localization of TFEB and a reduction in the cytoplasmic presence of MITF. This

shows that the cytoplasmic portion of the MITF-M isoform is affected by mTOR signaling and

that the cytoplasmic signal detected with an antibody against endogenous MITF is neither an

artifact nor the result of cross-reactivity and is not due to the presence of alternative isoforms

of MITF in these cells. Immunostaining of Skmel28 cells showed that MITF is expressed in

these cells whereas TFEB protein was not detectable (S4 Fig). Similar to 501Mel cells, MITF

was mostly nuclear in this cell line and its cytoplasmic presence was reduced after treatment

with the mTOR inhibitor (S4 Fig).

Next we hypothesized that the mTOR-induced changes in the subcellular localization of

MITF and TFEB may affect their respective transcriptional regulation. We have shown that

both MITF and TFEB negatively affect the expression of endogenous MITF in both melanoma

cell lines used in this study (Figs 2, 3 and S1 Fig) and would therefore expect their increased

nuclear presence upon Torin-1 treatment to further repress MITF expression. 501Mel cells

containing the doxycycline-inducible pBac-MITF or pBac-TFEB vectors were treated with

Torin-1 or a vehicle control (DMSO) prior to evaluating the mRNA levels of each factor by

qRT-PCR. Overexpression of either MITF or TFEB inhibited the expression of endogenous

MITF mRNA in 501Mel cells (Fig 5C), as previously shown (Fig 2). The expression of endoge-

nous MITF in pBac-MITF overexpressing cells was not further reduced upon Torin-1 treat-

ment (Fig 5C), however it was further decreased in Torin-1 treated cells containing pBac-

TFEB as compared to vehicle-treated cells (Fig 5C). These results fit the fact that MITF is con-

sistently nuclear whereas TFEB is both cytoplasmic and nuclear but becomes predominantly

nuclear upon treatment with Torin-1 and therefore can further reduce MITF gene expression.

As expected, the pBac-MITF cells showed increased TFEB mRNA expression; this induction

was not further enhanced by Torin-1 treatment (Fig 5D). Taken together, these data indicate

that the mTOR signaling pathway is active in melanoma cells and can affect import of TFEB

into the nucleus. Increased nuclear localization of TFEB may subsequently enhance its tran-

scriptional repression of MITF. In contrast, the melanocyte and melanoma cell-specific

MITF-M isoform is mostly nuclear under basal conditions and highly expressed in several

melanoma cell lines and tumors. Therefore, the subtle mTOR-dependent effects on its subcel-

lular localization may not translate into significant modulation of its transcriptional activity.

Discussion

MITF, TFEB, TFE3 and TFEC constitute the MiT-TFE subfamily of transcription factors fea-

turing high structural homology. Their basic domains are identical and, unlike other members

of the bHLHZip family, they share a three amino acid sequence in the HLHZip domain that

enables them to restrict the formation of DNA-binding heterodimers to the MiT-TFE subfam-

ily [22]. MITF, TFEB and TFE3 are expressed to some extent across melanoma tumors and

cell lines, whereas TFEC is not [21,31]. Similarly, TFEB and TFE3 mRNA expression can be

detected in normal melanocytes, albeit at lower levels than MITF [31,41]. Although the expres-

sion of TFEB is low at the mRNA level, there may be sufficient protein in the cells to have

major effects, especially taking into consideration the biological role of TFEB and recent find-

ings regarding low affinity vs high affinity binding sites across the genome for a given tran-

scription factor [42]. Evidence for a degree of interplay between these factors comes from

previous studies that have highlighted a role of the MiT-TFE factors in renal cell carcinoma.

While the four MiT-TFE subfamily members are expressed at comparable levels in healthy

human kidney, in subsets of renal cell carcinoma tumors the expression of these factors is sig-

nificantly imbalanced. A fusion of TFEB located on chromosome 6 with the Alpha gene on
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chromosome 11 resulting in an AlphaTFEB fusion gene, links TFEB with the regulatory

regions upstream of the Alpha gene, leading to promoter substitution and a 60-fold increase in

expression [43]. Additionally, translocations of the Xp11.2 region involving TFE3 have been

reported in up to 30–50% of pediatric papillary renal cell carcinoma cases [44]. The most com-

monly occurring translocations of this locus fuse the TFE3 gene with the ASPL [45] or PRCC
[46] genes, resulting in chimeric proteins with aberrant function. Interestingly, TFE3 depletion

inhibited proliferation of a renal carcinoma cell line, whereas ectopic overexpression of MITF

in the TFE3-depleted cells rescued proliferation [47]. Likewise, the proliferative defects

induced by MITF knockout in an MITF-driven renal clear cell carcinoma model was restored

by transfecting TFE3 [47], indicating that MITF and TFE3 may have partially redundant roles

in regulating proliferation and survival. Redundancy between MITF and TFE3 was also sug-

gested by the observation that loss of function mutation in either gene leads to normal bone

development whereas simultaneous knockout of both factors resulted in the development of

severe osteopetrosis in mice [48].

We show that overexpression of TFEB or MITF itself reduced the expression of endogenous

MITF at both the mRNA and protein levels in two different melanoma cell lines (Fig 2 and S1

Fig). This indicates that MITF represses its own expression. This is consistent with ChIP-seq

data showing that MITF binds to sequences within the MITF gene (Fig 1). MITF expression is

regulated by multiple signaling mechanisms and transcription factors, including potential self-

regulation. The peptide hormone α-MSH activates the MC1R receptor at the melanocyte

membrane triggering cAMP signaling [49,50], which regulates the MITF-M promoter due to

the cooperation of CREB with SOX10, a transcription factor that is expressed in several neural

crest-derived cell lineages [51]. Various other transcription factors, such as beta-catenin, LEF1

and PAX3 have been reported to regulate MITF transcriptionally [52]. Previous studies using

Northern blot analysis showed that α-MSH treatment resulted in increased MITF mRNA

expression, peaking at two hours and entering a declining phase beyond this time point, indi-

cating a homeostatic regulatory mechanism that was coupled with a decrease in protein

expression beginning at 4 hours [50]. Of note, MITF has been shown to induce the expression

of both HIF1-alpha and miR-148a, which in turn inhibit the expression of MITF, resulting in

oscillatory levels of MITF expression that are required for an adequate physiological response

to UVB exposure [53,54]. Whether MITF alone is sufficient for this negative feedback mecha-

nism or if HIF1-alpha, miR-148a or other factors are also involved remains to be determined.

Our results show that MITF positively regulates the expression of TFEB. This is consistent

with ChIP-seq data indicating that MITF binds intron 1 of TFEB [33]. Using reporter gene

assays, we demonstrated that the increase in TFEB expression mediated by MITF is through

direct binding to the CAGCTG motif located under the MITF ChIP-seq peak in intron 1 of

TFEB (Fig 4). Our analysis of the MITF ChIP-seq dataset revealed that the CAGCTG 6-mer is

as likely to be found under the peaks containing putative MITF binding sites as the canonical

E-box and M-box, but more likely to be found than the CCCTTT motif used as a scramble

control (Fig 4D). These data as a whole suggest that the non-canonical E-box CAGCTG is a

DNA regulatory element that is bound by MITF and mediates the regulation of TFEB expres-

sion by MITF. Previous analysis of the MITF structure bound to the CACGTG and CATGTG

sequences showed that Arg217 of MITF forms specific bonds with the two central bases of the

E-box (CACGTG) motif, whereas it does not form base-specific bonds with the two central

bases of the CATGTG M-box motif [22]. Instead, MITF forms specific bonds with the two

bases flanking the 6-bp motif, -4 and +4, and with -3, -2 and +3, counting from the center of

the motif, in the CATGTG M-box motif. This suggests that the two central bases within the

subset of 6-bp E-box motifs are not always required for MITF binding, allowing a certain

degree of flexibility for MITF’s function as a transcription factor.
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Recent studies have shown that the acetylation status of MITF impacts genomic occupancy

as a means to modulate its transcriptional activity. Non-acetylated high DNA-binding-affinity

MITF is able to bind a large pool of DNA loci including non-canonical degenerate motifs. In

contrast, K243-acetylated MITF or the acetyl-mimetic K243Q mutant has low DNA-binding-

affinity, yet robustly activates expression of melanocyte and melanoma target genes [42]. It is

possible that acetylation of MITF affects binding to the non-canonical CAGCTG motifs found

in TFEB. Furthermore, mTORC1 has been shown to phosphorylate and positively regulate the

p300 acetyltransferase [55], which in turn acetylates MITF [42,50,56], suggesting that the

mTOR pathway might be capable of modulating not only the subcellular localization of the

MiT-TFE factors, but also shift their genomic occupancy towards high-affinity sites.

By immunostaining of cell preparations and confocal imaging we showed that in 501Mel

cells TFEB is present in both the cytoplasm and the nucleus, whereas MITF-M is mostly

nuclear, consistent with previous studies showing predominantly nuclear location of MITF-M

[25]. Inhibition of mTOR promoted nuclear shuttling of TFEB. The effects of blocking mTOR

activity on the subcellular location of TFEB have the potential to modulate the autophagy

response, which has been linked to increased vesicle trafficking and chemoresistance in mela-

noma [57]. Consistent with this, in pancreatic ductal adenocarcinoma (PDA), but not in non-

transformed human pancreatic ductal epithelial cells, the MiT-TFE factors have been shown to

escape cytoplasmic retention mediated by mTOR regulation under fully fed conditions. This

may enable PDA cells to constitutively induce autophagy activity, thus maintaining a high sup-

ply of amino acids [58]. Moreover, a subset of genes involved in endolysosomal trafficking and

autophagy have been found to be overexpressed in melanoma [59], suggesting that in some

tumor types and under certain conditions, high levels of autophagy activity can be beneficial

for tumor survival and/or progression.

Altogether, our data is descriptive of a transcriptional cross-regulatory mechanism between

MITF and TFEB that adds another layer of regulatory interactions beyond their ability to het-

erodimerize [14]. In addition, changes in the subcellular localization of TFEB, such as those

mediated by mTOR, affect its transcriptional activity [19] and its regulation of MITF expres-

sion (Fig 6). The physiological relevance of their cross-regulation may be largely dependent on

the relative abundance of each factor in a given tissue. Considering the prominent role of the

MiT-TFE transcription factors in regulating various basic process as well as their roles in can-

cer, characterizing their expression patterns and how they are being modulated is instrumental

for improving our understanding of their role in healthy tissue and in pathogenesis, and how

best to identify targetable vulnerabilities in their action.

Materials and methods

Cell culture

Two human melanoma cell lines were used in this study, 501Mel cells (generously donated by

Ruth Halaban) [60] and SkMel28 cells (#HTB-72, ATCC). HEK293T human embryonic kid-

ney cells (#CRL-3216, ATCC) were used for transactivation assays. All cells were grown in

DMEM medium (#10569–010, GIBCO) supplemented with 10% fetal bovine serum (FBS

#10270–106, GIBCO). Cells were grown at 37˚C and 5% CO2 and medium was changed two

to three times per week.

Plasmid constructs and cloning

In order to induce expression of the different transcription factors at will, we used an inducible

piggyback (pBac) system. We generated inducible 501Mel cells by transfecting the cells with

three pBac vectors, one containing GFP-tagged human MITF, TFEB, TFE3 or GFP alone, one
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containing a reverse-tetracyclin transcription activator, and one containing transposase. The

pBac vectors were a gift from Dr. Kazuhiro Murakami (Hokkaido University, Japan) [61]. The

GFP-tagged MITF and TFEB cDNAs were amplified from plasmids pEGFP-N1-MITF-M

(Addgene plasmid # 38131) and pEGFP-N1-TFEB (Addgene plasmid # 38119) [26], using the

primers listed in S3 Table (pBac-EGFP), and then introduced into the pBac vector by restric-

tion digestion using Mlu I and Not I sites and ligation at a 3:1 insert to backbone ratio using

Instant Sticky-end Ligase Master Mix (M0370S, NEB). For the generation of the inducible

501Mel cells carrying the MITF-M-FLAG-HA pBac plasmid, a FLAG-tagged MITF-M cDNA

was amplified from the p3XFLAG-CMVTM-14 plasmid expressing mouse Mitf-M, kindly pro-

vided by Colin Goding (Ludwig Institute, Oxford University, UK), using the primers listed in

S3 Table (pBac-MITF-M-FLAG-HA), and then introduced into the pBac vector by restriction

digestion with EcoR I and Spe I. Cells transfected with the pBac plasmids were cultured in

DMEM supplemented with 10% FBS and kept under G418 selection (#10131–035, GIBCO)

for 8 days to obtain stable cell lines that are inducible by adding 0.2 μg/mL doxycycline to the

culture medium. The p3XFLAG-CMVTM-14 construct expressing mouse Mitf-M (MITF-M-

FLAG) was the one used for MITF-M overexpression in the transactivation assays. The R214-

217A mutation was introduced into MITF using the Q5 Site-directed Mutagenesis Kit (New

England Biolabs, Ipswich, MA) according to the manufacturer’s instructions. The pGL3-Basic

vector (#E1751, Promega) was used as a control for Tyrosinase (pTYR) transactivation,

whereas pGL3-Promoter vector (#E1761, Promega) was used as a control for the TFEB intron

1 enhancer (TFEB-int1) and mutated TFEB intron 1 (TFEB-int1-mut) promoter constructs.

The TYR promoter in a luciferase reporter plasmid was constructed using a 380 bp region at

Fig 6. Model of the cross-regulatory relationship between MITF and TFEB in melanoma. MITF can inhibit its own

gene expression and increase that of TFEB. TFEB can inhibit the gene expression of MITF. The nuclear localization of

TFEB is increased upon mTOR inhibition, which enhances its inhibitory effects on MITF gene expression. In contrast,

the MITF-M isoform expressed in melanoma cells is predominantly nuclear under basal conditions and its activity is

less affected by mTOR regulation.

https://doi.org/10.1371/journal.pone.0238546.g006

PLOS ONE MITF-TFEB crossregulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0238546 September 3, 2020 13 / 21

https://doi.org/10.1371/journal.pone.0238546.g006
https://doi.org/10.1371/journal.pone.0238546


the promoter of the human TYR gene (bases -382 and -3 upstream of the TSS at location +1).

This sequence was then cloned into a pGL3-Basic vector upstream of the luciferase reporter

gene and verified by Sanger sequencing. The fragment containing TFEB-int1 was amplified

from human genomic DNA using the primers listed in S3 Table. The 853 bp fragment was

blunt-ligated into Nhe1-site of the pGL3-Promoter vector. TFEB-int1-mut was generated

from the TFEB-int1 luciferase reporter plasmid by mutating CAGCTGA to CCCTTTA using

in vitro mutagenesis. All the constructs were confirmed by sequencing (Genewiz, Essex, UK).

All the mutagenesis primers are listed in S3 Table.

MITF knockdown cell lines

In order to be able to induce knockdowns of MITF at will, we generated two piggybac (pBac)

constructs containing miRNAs under the regulation of an inducible promoter. Skmel28 doxycy-

cline-inducible MITF knockdown cell lines were generated using a piggybac transposable vector

pPBhCMV_1-miR(BsgI)-pA-3 obtained from Dr. Kazuhiro Murakami (Hokkaido University)

[61]. MicroRNAs target sequences were selected using the BLOCK-iT RNAi Designer, specifi-

cally targeting both MITF-M exon 2 (miR(MITF-X2) and 8 (miR(MITF-X8). The non-targeting

control miR-NTC was used as a negative control. The BLOCK-iT RNAi Designer was also used

to design primers for inserting the pre-miRNA (including a mature miRNAi sequence, terminal

loop and incomplete sense targeting sequence required for the formation of the stem-loop struc-

ture) RNAi into the murine miR-155 cassette in the pBac vector pPBhCMV_1-miR(BsgI)-pA-3

containing the reverse tetracycline transcription activator. Sequences of the mature miRNAs and

the primers used for the generation of the pre-miRNAs are listed in S4 Table. Primers were

annealed by initial denaturation at 95˚C followed by slow cooling in a water bath forming a

short double stranded DNA with overhangs matching a BsgI overhang. The backbone vector

was digested with BsgI (#R05559S, NEB) and the vector DNA purified after running the DNA

on an agarose gel. The backbone vector and the annealed primers were ligated at 15:1 insert to

backbone molar ratio using Instant Sticky-end Ligase Master Mix (M0370S, NEB). The ligation

products were transformed into high-competent cells and the plasmid DNA isolated from the

individual clones were screened as described above in Mutagenesis and cloning. For generation

of miR-MITF cell lines, Skmel28 cells were transfected with the transposase-containing plasmid

pA-CAG-pBase, the plasmids pPBhCMV_1-miR(MITF_X2)-pA and pPBhCMV_1-miR

(MITF_X8)-pA encoding miRNA targeting two different exons of MITF and the plasmid

pPB-CAG-rtTA-IRES-Neo (10:5:5:1) that confers resistance to neomycin. For miR-NTC cell

lines, Skmel28 cells were transfected with pA-CAG-pBase, pPBhCMV_1-miR(NTC)-pA encod-

ing a non-targeting miRNA and pPB-CAG-rtTA-IRES-Neo (10:10:1). After 48 hours of transfec-

tion, miR-MITF, miR-NTC vector and non-transfected cells were selected with 0.5mg/ml G418

(#10131–035, GIBCO) for 2 weeks and 1μg/ml of doxycycline was used for induction.

Transfection of plasmids

Cells were cultured in 6 or 12-wells plates one day before transfecting them with 2 μg of plas-

mid DNA and 6 μL transfection reagent FuGENE HD (#E2311, Promega) in 100 μL of serum-

free culture medium per mL of cell culture medium. The medium with the transfection com-

plexes was removed after 24 hours and replaced with fresh culture medium. 48 hours after

transfection, cells were harvested for RNA or protein extraction.

RNAi treatment

Cells were cultured in 6 or 12-wells plates one day prior to transfection with the appropriate

siRNA pools. Cells were transfected with 10 nM siRNA pools and 1 μL Lipofectamine
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RNAiMAX (#13778075, Invitrogen) transfection reagent in 100 μL of Optimem Pro (#31985–

062, GIBCO) transfection medium per mL of cell culture medium. Cells were harvested for

RNA or protein extraction 2 days after transfection. The siRNAs used for the procedure were

the following: siRNA pool for human MITF (#4390824, ID S8792, Ambion), siRNA pool for

human TFEB (#M-009798-02, Dharmacon) and a control siRNA (#4390843, Ambion).

Protein extraction and immunoblotting

For total protein extraction, cells were cultured in 6 or 12-wells plates and lysed in Laemmli

sample buffer and boiled at 95˚C for 5 minutes. The samples were then run on 8% or 10% gels

and blotted onto a 0.2 μm PVDF membrane (#88520, Thermo Scientific). The membranes

were blocked with 3% BSA in TBS-T (0.1% Tween 20 in TBS) for 1 hour at room temperature,

and stained overnight at 4˚C with 3% BSA in TBS-T and one of the following primary antibod-

ies: MITF (MS771-PABX, Thermo Scientific), TFEB (#4240, CST) (#2775, CST), GFP (#ab290,

Abcam), FLAG (#F3165, Sigma Aldrich) and Actin (MAB1501, Millipore). Membranes were

washed with TBS-T and stained for 1 hour at room temperature with fluorescent secondary

antibodies: anti-mouse IgG(H+L) DyLight 800 conjugate (#5257, CST) and anti-rabbit IgG(H

+L) DyLight 680 conjugate (#5366, CST). The images were captured using Odyssey CLx

Imager (LI-COR Biosciences).

Real-time quantitative PCR for gene expression analysis

TRIzol reagent (#15596–026, Ambion) followed by isopropanol precipitation was used for

total RNA extraction. The cDNA was generated according to the manufacturer’s instructions

with High-Capacity cDNA Reverse Transcription Kit (#4368814, Applied Biosystems). Prim-

ers for RT-qPCR were designed using NCBI Primer BLAST (S2 Table), and RT-qPCR per-

formed with SensiFAST SYBR Lo-ROX Kit (#BIO-94020, Bioline) using a CFX384 Touch

Real-Time PCR Detection System (Bio-Rad). The RT-qPCR reactions were performed using 1

ng/μL cDNA per reaction in technical triplicates and the fold change in gene expression was

calculated with the 2(-Delta Delta C(T)) method [62], normalized to the geometrical mean of

Actin and human ribosomal protein lateral stalk subunit P0 (RPLP0) expression. Standard

curves for primer efficiency were calculated using the formula E = 10^(-1/slope) for each

primer pair.

Immunostaining and confocal imaging

501Mel and Skmel28 cells (3x104 per well) were cultured for 48 hours in 8-well chamber slides

(#354108 from Falcon). For the inducible 501Mel cell lines, 0.2 μg/mL of doxycycline were

added to the cell culture medium. At day 2, cells were fixed for 2 min with 2% paraformalde-

hyde (PFA) in cell culture medium and then for 15 min with 4% PFA in PBS. For imaging of

the overexpressed GFP-tagged factors, cells were washed 3 times with PBS, followed by DAPI

staining (#D-1306, Life Technologies) and two additional washes with PBS. The chambers

were then removed and the samples allowed to dry prior to mounting in Fluoromount-G™
(#00-4958-02, Invitrogen). For immunostaining of the endogenous MiT/TFE factors, follow-

ing the treatment with the Torin-1 (#4247, Tocris) inhibitor, cells were washed once with PBS

after fixation, then permeabilized for 8 min with 0.1% Triton X-100 in PBS, followed by three

washes with PBS. They were then blocked with blocking buffer (5% normal goat serum, 0.05%

Triton X-100 and 0.25% BSA in PBS) for 1 hour at room temperature, and stained overnight

at 4˚C with 0.25% BSA in PBS antibody buffer containing the primary antibodies: MITF

(MS771-PABX, Thermo Scientific) and TFEB (#4240, CST) (#2775, CST). The cells were then

washed three times with PBT (0.1% Tween-20 in PBS) and stained for 1 hour at room
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temperature with the Alexa Fluor 546 goat anti-mouse IgG(H+L) (#A11003, Invitrogen) or the

Alexa Fluor 488 goat anti-rabbit IgG(H+L) (#A11070, Invitrogen) fluorescent secondary anti-

bodies diluted in PBT. Subsequently, cells were washed twice with PBT and once with PBS and

finally stained with DAPI and prepared for imaging as previously described. Imaging was per-

formed using a FluoView FV1200 laser scanning confocal microscope (Olympus) equipped

with a PlanApo N 60X/1.401/0.17 Oil Objective.

Transcription activation assays

HEK293T cells (1.5x104 per well) were seeded in white 96-well plates (#781965, BRAND) and cul-

tured for 24h prior to transfection (FuGENE, Promega) with 33 ng of a construct carrying the rel-

evant regulatory region (Tyr, TFEB-int1 or TFEB-Int1-mut) coupled to the luciferase reporter, 33

ng of an MITF-M construct and 33 ng of a pRL Renilla control reporter vector. Cells were assayed

24 hours after transfection using the Luciferase DualGlo kit (E2940, Promega) as described by the

manufacturer. The luminescence activity was measured in a multimode microplate reader (Glo-

Max, Promega) with a 300-millisecond reading per well. The luciferase signal of each sample was

normalized to the renilla signal for transfection efficiency and cell viability. The pGL3-Basic

(#E1751, Promega) or pGL3-Promoter (#E1761, Promega) vectors were used in order to calculate

the fold induction of each respective regulatory element activity. Three technical replicates per

sample were included and the assay was performed in at least three biological replicates. Error

bars indicate SEM and statistical significance was assessed with student’s t-tests.

Electrophoretic Mobility Shift Assay (EMSA)

Two DNA fragments were generated for the EMSA studies by synthesizing the oligos E-box-

Fw (containing the sequence 5’-AAA GTC AGT CAC GTG CTT TTC AGA-3’) and E-

box-Rv (5’-GTC TGA AAA GCA CGT GAC TGA CTT T-3’) for the canonical E-

box (containing the CACGTG motif). CAGCTG-box-Fw (containing the sequence 5’-AAA
GTC AGT CAG CTG ATT TTC AGA-3’) and CAGCTG-box-Rv (5’-GTC TGA AAA
TCA GCT GAC TGA CTT T-3’) were synthesized for the CAGCTG motif-containing

probe. Subsequently, the oligos were allowed to anneal and labeled with α-32P-dCTP,

(#BLU013H100UC, PerkinElmer). The labeled probes were purified on Sephadex G-25 Quick

Spin columns (#11273922001, Roche).

The EMSA was performed according to Pogenberg et al. [22]. Briefly, the MITF protein

was expressed from a plasmid containing wild type MITF-M under a T7 promoter, using the

TNT-T7 Quick Coupled Transcription/Translation System (#L1170, Promega). 2 ul of TNT-

translated MITF was preincubated in a buffer containing 20 ng of cold probe poly(dI–dC),

10% fetal calf serum, 2 mM MgCl2, and 2 mM spermidine for 15 min on ice. For supershift

assays, 0.5 mg of mouse monoclonal antiMITF (C5) antibody (#ab12039, Abcam) were added

and incubated on ice for 30 min. Then, 50,000 counts per minute (cpm) of each of the two 32P-

labeled probes in a binding buffer containing 10 mM Tris (pH 7.5), 100 mM NaCl, 2 mM

dithiothreitol, 1 mM EDTA, 4% glycerol, and 80 ng/mL salmon sperm DNA were added to

the preincubated MITF protein solution in a total reaction volume of 20 ul and incubated for

10 min at room temperature. The resulting DNA–protein complexes were resolved on 4.2%

non-denaturing polyacrylamide gels, placed on a storage phosphor screen, and then scanned

using a Typhoon PhosphorImager 8610 (Molecular Dynamics).

ChIP-seq data analysis and motif scan

Raw FASTQ files for MITF ChIP-seq were retrieved from GEO archive under the accession

number GSE50681 and GSE61965 and subsequently mapped to the human reference genome
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hg19 using bowtie 2 [63]. Then the aligned reads from bowtie2 were used to call peaks with

MACS [64]. Following, wig and bed files were generated using the p-value<0.05. For visualiza-

tion of the peaks, wig files were uploaded on the IGV genome browser [65]. For scanning the

motifs, DNA sequences corresponding to MITF peaks were extracted from the UCSC genome

browser. The R package Biostrings [66] was used to scan each motif and the resulting number

of motifs for each peak sequence were plotted in R.

Statistical analysis

Results are represented as the mean from three or more independent experiments with stan-

dard error of the mean (SEM). Graphpad Prism 7 was used for all the statistical analyses. Anal-

yses of RT-qPCR and Western blot upon overexpression of the pBac factors were performed

using multiple t-tests comparing each cell mean to the control cell mean and multiple compar-

ison correction by Holm-Sidak method with statistical significance set as �P<0.05. Analysis of

the transactivation assays was performed using one-way analysis of variance (ANOVA). All

the remaining statistical analyses were performed using two-way ANOVA. ANOVA analyses

were performed comparing each cell mean to the control cell mean and multiple comparison

correction by Dunnett method for one-way ANOVA and correction by Sidak method for two-

way ANOVA with statistical significance set as �P<0.05.
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S1 Fig. MITF and TFEB modulate each other’s expression upon overexpression in 501Mel

and Skmel28 cells. (A) RNA expression of MITF and TFEB after overexpression of GFP-

tagged MITF (+) in 501Mel cells compared to empty vector control. (B) RNA expression of

MITF and TFEB after overexpression of GFP-tagged MITF (+) or TFEB in Skmel28 cells com-

pared to empty vector control.

(PDF)

S2 Fig. siRNA-mediated knockdown of MITF modulates endogenous TFEB expression in

Skmel28 cells. The expression of MITF and TFEB as determined by RT-qPCR after siRNA

knockdown of each factor, compared to control siRNA in Skmel28 cells; two independent

experiments are shown. Bars represent SEM. � indicates significance at p<0.05.

(PDF)

S3 Fig. R214-217A MITF fails to transactivate TYR or TFEB regulatory elements.

HEK293T cells were transiently co-transfected with a p3XFLAG-CMV-14 construct with or

without R214-217A MITF-M (empty vector, EV) and luciferase constructs and assayed for

luciferase activity after 24h. Luminescence signal is expressed as fold change over an empty

reporter for Tyrosinase and a reporter containing the element from TFEB intron 1 in front of a

minimal SV40 promoter followed by luciferase. Error bars represent the SEM of three experi-

ments. � indicates significance at p<0.05.

(PDF)

S4 Fig. mTOR signaling affects the subcellular localization of MITF in Skmel28 cells.

Immunofluorescence images of human Skmel28 cells after treatment with vehicle (DMSO) or

an mTOR inhibitor (Torin-1, 1 μM, 3 hours), showing endogenous TFEB and MITF proteins

in green.

(PDF)

S1 Table. MITF, TFEB and TFE3 but not TFEC are expressed in 501Mel and Skmel28 cells.
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