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Abstract 

Life on earth is found everywhere where water is found, meaning that life has adapted to 

extremely varied environments. Thus, protein structures must adapt to a myriad of 

environmental stressors while maintaining their functional forms. In the case of enzymes, 

temperature is one of the main evolutionary pressures, affecting both the stability of the 

structure and the rate of catalysis. One of the solutions Nature has come up with to maintain 

activity and stability in harsh environments over biological relevant timescales, are 

kinetically stable proteins. This thesis will outline work carried out on the kinetically stable 

VPR, a cold active subtilisin-like serine protease and discuss our current understanding of 

protein kinetic stability, temperature adaptation and our current hypothesis of the molecular 

interactions contributing to the stability of VPR. The research model that we have used to 

study these attributes consists of the cold active VPR and its thermostable structural homolog 

AQUI. The results discussed in this thesis will be on the importance of calcium, the role of 

prolines in loops, the role of a conserved N-terminal tryptophan residue and lastly primary 

observations on differences in active site dynamics between VPR and AQUI. A model is 

proposed of a native structure that unfolds in a highly cooperative manner. This cooperativity 

can be disrupted, however, by modifying calcium binding of the protein or via mutations 

that affect how the N-terminus interacts with the rest of the protein. The N-terminus likely 

acts as a kinetic lock that infers stability to the rest of the structure through many different 

interactions. Some of these interactions may be strengthened via proline residues, that 

seemingly act as anchor points that tend to maintain correct orientation between these parts 

of the protein as thermal energy is increased in the system. Our results give a deeper insight 

into the nature of the kinetic stability, the importance of cooperativity during unfolding of 

kinetically stable proteases, synergy between distant parts of the protein through proline 

mutations and how different calcium binding sites have vastly differing roles. The results 

provide a solid ground for continuing work in designing enzyme variants with desired 

stabilities and activities and improve our understanding of kinetically stable systems. 

.



Útdráttur  

Líf á jörðu finnst alstaðar þar sem vatn finnst og þess vegna hafa lífverur þurft að aðlagast 

að mjög fjölbreyttum aðstæðum. Þar af leiðandi hafa prótein lífvera þurft að þróa með sér 

mismunandi lausnir til að geta starfað í sínu umhverfi. Ef ensím eru skoðuð, þá er stærsti 

umhverfisþátturinn hitastig, sem hefur áhrif á bæði stöðugleika þeirra og hvötunargetu. Ein 

af þeim leiðum sem hafa þróast til þess að tryggja hvötunargetu í erfiðum aðstæðum er 

hraðafræðilegur stöðugleiki sameinda. Í þessari doktorsritgerð verður kynnt vinna sem hefur 

verið framkvæmd á hinum hraðafræðilega stöðuga, kuldavirka subtilísin-líka serín 

próteinasa VPR og tilgátur kynntar um hvaða millisameinda hrif kunna að stuðla að 

hitastigsaðlögun, virkni og stöðugleika þessa ensíms. Rannsóknarlíkanið sem hefur verið 

nýtt til þessara rannsókna samanstendur af VPR og hinum hitastöðuga subtilísin-líka serín 

próteinasa AQUI, sem hefur nánast sömu þrívíddarbyggingu og VPR. Ræddar verða 

niðurstöður um áhrif kalsíum jóna á stöðugleika, áhrif prólín amínósýra í lykkjusvæðum á 

stöðugleika, mikilvægi N-endastæðar trýptófan amínósýru fyrir bygginguna og kynning á 

fyrstu niðurstöðum úr tilraunum til að skoða sameindasveigjanleika innan hvarfstöðva VPR 

og AQUI. Líkanið sem sett er fram fyrir VPR, sýnir byggingu sem er mjög samheldin og 

afmyndast sem ein heild. En þessa samheldni byggingarinnar er hægt að trufla, til dæmis 

með því að skerða kalsíum bindingu eða með stökkbreytingum sem hafa áhrif á hvernig N-

endi próteinsins hefur áhrif á aðra hluta af byggingunni. Sumir þessara innansameinda krafta 

geta verið styrktir með prólín stökkbreytingum, sem virðast virka sem eins konar akkeri sem 

skorða lykkjusvæði og viðhalda réttum sameindahrifum við hærri hitastig. Niðurstöður 

okkar veita dýpri sýn á eiginleika hraðafræðilegar stöðgunar, áhrifa samheldinna 

afmyndunarferla á stöðugleika, hvernig prólin amínósýrur hafa áhrif á sameindahrif milli 

fjarlægra svæða innan prótein-byggingarinnar og hvernig kalsíum binding á mismunandi 

bindisvæði getur haft margvísleg hlutverk. Þessi vinna skapar líka góðan grunn fyrir 

áframhaldandi vinnu fyrir hönnun ensímhvata með mismunandi hitastöðugleika og virkni 

fyrir áframhaldandi vinnu að því markmiði að auka skilning á hraðafræðilegum stöðugleika 

próteinsameinda. 



 

 

 

 

 

 

 

 

“The first principle is that you must not fool yourself and you are the easiest person to 
fool.” 

― Richard P. Feynman 

 

 

 





 

Preface 

This doctoral thesis will outline the work carried out on the kinetically stable VPR 1, a cold 

active subtilisin-like serine protease. This work aims to give further insights into the nature 

of the kinetic stability and temperature adaptation of proteins, utilizing our research model 

consisting of the cold active VPR and its thermostable structural homolog aqualysin I 

(AQUI) 2. These enzymes are extracellular proteases that have their active structure under 

kinetic control, making this system a prime example to study kinetic stability and identify 

the structural aspects determining the ability of these enzymes to perform in their natural 

environments. 

The first chapter will discuss the theoretical background relating to protein biophysics and 

in broad strokes go over the concepts used to define the thermodynamic and kinetic 

parameters used to quantify protein stability. Furthermore, it will be discussed how the 

definitions of these parameters give us the tools to gain deeper insights into how different 

organisms have evolved different strategies in adapting their proteomes to different 

temperatures, both regarding stability and activity as well as the relationship between them. 

The focus will then turn towards proteases, their classification and properties that will serve 

to paint a clear picture of the model system utilized in this work.  

The second chapter will detail the methodologies used in the present study and data analysis. 

The third chapter in this thesis will be an overview of the results from the different projects. 

There among are the improved expression of VPR in E.coli and the role of the different 

calcium binding sites for the stability of VPR, including the impact calcium has on 

expression 3. Additional focus will then be directed at the effects of proline residues in loops 

on kinetic stability 4, the effects of a single tryptophan exchange on stability, and active site 

molecular movements of dansylated VPR and AQUI. Concluding the thesis will be a brief 

reflection on the work that has been carried out and future prospects. 
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1 Introduction 

1.1 Origins of temperature adaption 

To gain an insight into the inner workings of temperature adaptation of proteins, one should 

look at the evolutionary history of life on Earth. Evidence for life on Earth can be traced 

back at least 3,400 million years as fossils of sulphur metabolizing microbes were found in 

Western Australia 5. There are indications that life thrived on Earth even earlier than that, as 

C13-isotope depleted graphite with distorted crystal structures have been observed in Western 

Greenland, which indicates the presence of microbial life in Earth’s oceans around 3,700 

million years ago 6. The oldest possible evidence for life can however be traced as far back 

as 4,100 million years, where C13-isotope depleted zircons from Australia potentially 

indicate enzymatic carbon fixation that far back 7. This would then mean that life emerged 

soon after the formation of the primordial Earth around 4,550 million years ago 8. How this 

primal life came to be and how it operated is a question that remains a debated topic. 

However, all life as we know it shares certain similarities suggesting some universal 

common ancestry as first suggested by Darwin 9. This idea that life as we know it originated 

from some single branch of early life is a pillar of modern evolutionary theory that has been 

shown to stand the scrutiny of statistical models 10. Pinpointing this last universal common 

ancestor (LUCA) would give us an important insight into the evolution of life and its 

adaptation to various conditions. One such attempt was made by looking at protein coding 

genes form sequenced prokaryotic genomes. From those, 355 protein families could be 

traced back to LUCA and painted the picture of an anaerobic thermophile that resembled 

modern microbes thriving in geochemically active environments such as hydrothermal vents 

11. This topic is, however, still highly debated as the origins of life and the identity of LUCA 

are far from being known 12.  

The conditions in Earth´s oceans in early Precambrian times inferred from reconstructed 

ancestral proteins 13 and O18-isotope analysis 14 place the temperatures of the ocean near 

80°C around 3,500 million years ago. By extrapolation, the early life forms were 
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thermophilic organisms utilizing DNA as the genetic material, and proteins as building 

blocks and catalytic moieties. This would then put the starting point of temperature 

adaptation at high temperatures and the evolutionary process having to adapt to colder 

environments as Earth cooled down in the coming eons 13, 14. However, the diversity of 

conditions in our biosphere may have led to highly complicated evolutionary paths for many 

organisms, where for instance the evolutionary path may have led to cold environments and 

then hot again, while also adapting to other environmental factors. This causes difficulties 

in distinguishing between artifacts and major contributors to temperature adaptation when 

comparing proteins adapted to different environments.      

1.1.1 Temperature adaptation 

Life has thrived under immense evolutionary pressures, under extreme conditions, at both 

extremes of the pH scale, at high salinity levels, bombarded by radiation and over a broad 

range of temperatures 15. The temperature extremes which unicellular organisms can survive 

at range from around -25°C to 122°C 15-19. Thus, at temperatures between these two extremes 

the molecular machinery that maintains life must function. Even more impressive are the 

theoretical temperature limits postulated, a lower limit of around -40°C/50°C, at which point 

the molecular machinery involved in the maintenance of a life form practically stops and the 

cells vitrify 20, 21. The higher theoretical limit of life is set at around 140°C/150°C, where 

metabolic intermediates such as nicotinamide cofactors can spontaneously hydrolyze and 

the life-time of larger biomolecules would be so short that life could not be maintained 15, 22. 

Over this wide temperature range the barriers that evolution has had to overcome to enable 

life forms to survive are vastly different. In the case of enzymes, temperature can be viewed 

as a main evolutionary driver, as temperature directly affects the rate of chemical reactions 

catalyzed by these proteins. At the higher end of the temperature range, enzymes would have 

to adapt to the extreme molecular movements and thus a very stable structure would be 

required to maintain the active state of the protein for a certain amount of time. On the other 

end of the temperature spectrum, the main challenge to overcome would be the slower 

reaction rates, thus a more catalytic efficient enzyme would be needed to maintain chemical 

reaction rates to sustain life. Many observations have been made of very active enzymes 

with low stabilities and extremely stable enzymes that were poor catalysts at ambient 

temperatures, thus suggesting an apparent trade-off between these properties, i.e. catalytic 
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activity and thermal stability 1, 23-25. This prompted the activity/stability trade-off hypothesis, 

which states that in order to achieve high stability the molecular motions needed for rapid 

catalysis are sacrificed and vice versa. This would mean that during the evolutionary history 

of organisms, adapting to cooler environments would be achieved by a reduction in 

molecular contacts/interactions involved in the stability of the enzyme in order to allow for 

the movements needed to facilitate rapid catalysis. However, the evolutionary history is long 

and convoluted, evolutionary pressures do change with time. Research into adenylate kinases 

from organisms that have had vastly different evolutionary history showed that adenylate 

kinases from B. stearothermophilus had adapted to colder environments and then evolved 

again to function at high temperatures, retaining relatively high turnover rates at lower 

temperatures 26. In contrast, adenylate kinases that had throughout their evolutionary history 

always been adapted to high temperatures, like those from C. subterraneus and A. aeolicus 

had a much steeper dependence on temperatures 26.  In addition, directed evolution 

experiments carried out on subtilisins showed that higher stability was achievable without 

compromising activity. Furthermore, it was shown that higher activity at lower temperatures 

was also achievable without stability loss 27, 28. This indicates that the stability/activity trade-

off is not a strict relationship, or at least is an oversimplification of the underlying causes, 

arising from the enthalpy and entropy compensations due to protein-water, protein-substrate 

and water-substrate interactions at various temperatures 29. Thus, the stance can be taken that 

observations of activity/stability tradeoffs in nature are in part evolutionary artifacts due to 

selective pressures, as at lower temperatures the pressure is on maintaining catalytic rates 

but not on stability of the protein structure. Random mutations causing destabilizing changes 

could thus occur that would not be detrimental to the enzyme in the current environment, 

consequently, no pressure would be against it. But how do living organisms solve the 

problems which arise due to different temperatures? This is a question that has been on the 

mind of many researcher in various fields of science. In order to shed light on this topic, this 

thesis will transverse into the fundamentals of protein stability. 

1.2 Protein stability 

Protein stability describes the ability of the native/active structure of a protein to resist 

environmental stressors capable of inducing the transition towards a nonactive/denatured 

state. The stability of a protein structure can be described as having two facets, a 
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thermodynamic one and a kinetic one. Both aspects have an important role in the 

stabilization of protein structures. These two facets do however not contribute evenly to the 

prevalence of the native active form of proteins. Thus, proteins can be roughly divided into 

kinetically stable and thermodynamically stable structures. 

1.2.1 Thermodynamics of protein stability 

The thermodynamic part of protein stability describes the equilibrium between the 

states/assembles along the unfolding path. Defining and understanding these parameters can 

provide a wealth of information on the energetics of a system and how the underlying 

energetics can relate to protein stability 30. Here, a reversible two-state unfolding/folding 

model shall be considered. Although being a very simplified model, the high degree of 

cooperativity observed in the unfolding processes of many proteins often make unfolding 

transitions seem two-state 31. Here, a two-state model of a structured globular protein, in a 

water solution following Anfinsen´s thermodynamic hypothesis 32, will be used and serves 

well as an explanation model. Thus, the simplest system can be described as: 

 �
�
⇄ � (1) 

where N represents the native state, D is the denatured assembly of states and K is the 

equilibrium constant. Considering a globular protein possessing a well-defined α/β tertiary 

structure and a hydrophobic core, a myriad of non-covalent interactions take place, such as 

van der Waals interactions, H-bonds, cation-π interactions, anion-π, charge-charge 

interactions, solvation or protein-water interactions and various ligand binding interactions, 

all which contribute to the stability of the protein 3, 33-42. 

Enthalpy and entropy 

The first factor that can be thought to be stabilizing the protein structure are the internal 

energies of these interactions. As the two states of the system (N and D) have vastly different 

physical properties and structures, most of the interactions that exist within the native state 

are lost during unfolding. In a biological system that is under fixed conditions, i.e. where 

there is no change in pressure and volume, the sum of the internal energies from the myriad 

of interactions that are lost in this transition are equal to the enthalpy change (ΔH) of 

unfolding 43. As shown in equation 2:  
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 �� = �� + ��� (2) 

where ΔH is the change in enthalpy, ΔU is change in internal energy and ΔPV is the change 

in pressure and volume that is equal to zero in this case.  

The second factor to be considered is the entropy change (ΔS) of the system. Entropy 

describes an intrinsic property of the universe detailed by the second law of thermodynamics 

and popularized by the saying “in an isolated system, entropy can only increase”, i.e. the 

tendency of energy to disperse. In a system as considered here, a structured protein solvated 

by a water shell, one way to look at this phenomenon is through statistical mechanics, where 

the definition of entropy is: 

 � = �� ln(�) (3) 

where kB is the Boltzmann constant and W the multiplicity of our system, the number of 

different arrangements the system can take. Statistical mechanics being a daunting subject 

in the eyes of many, is probably best laid out by the quote:  

“Ludwig Boltzmann, who spent much of his life studying statistical mechanics, died in 1906, 

by his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933. Now it is our 

turn to study statistical mechanics. Perhaps it will be wise to approach the subject 

cautiously” 

Opening lines of “States of Matter”, by D. L. Goodstein.   

For the purpose of gaining an insight into the nature of entropy, a simplified view of equation 

3 will be considered. One simple way to look at it is to decide that all random arrangements 

or microstates of the system are considered equally likely. However, if all arrangements were 

grouped up according to similarity, those groups would be very differently populated. For 

example, the number of different arrangements where all units of a system are tightly 

clumped up in a system, is infinitesimally small against the number of different microstates 

where all units are spread around the system. This means that by randomly selecting a 

microstate from an extremely large system, the one selected will have its units spread around 

the system. Thus, random behavior becomes deterministic in an extremely large system. 

From this behavior the Boltzmann distribution naturally establishes itself 43: 

 �� ∝ �
���

����
 (4) 
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where Ni is the population of a state with the energy Ui, kB is the Boltzmann constant and T 

is the absolute temperature. Thus, the higher the energy of the state is, the less likely it is to 

be occupied. However, as temperature/energy is increased the number of possible 

microstates of higher energies increases as well, but the most probable are still those where 

that energy is evenly distributed around the system. Therefore, due to randomness, every 

system favors its most spread energy state, or in other terms the entropically higher states, 

as the multiplicity of microstates with that energy distribution is higher than for the others. 

In our protein and water system, the factors directly working against even energy 

distribution/entropy can be simplified into two main elements, the conformational entropy 

of the peptide chain and the conformational entropy of the water shell44-47. The 

conformational entropy of the peptide chain in a folded protein must be very low, as the 

multiplicity of a well-defined protein structure is way lower than the allowed arrangements 

of a structureless peptide chain. Thus, from that point of view the unfolded state must be 

much more entropically favorable. The protein, however, has a well-defined hydrophobic 

core and when unfolded the residues making up the hydrophobic core are more exposed. 

This could lead to fewer hydrogen-bonding possibilities per surface area, constricting the 

available arrangements of water molecules compared to the surface of the native state of the 

protein. Thus, at lower temperatures the entropic penalty of hydrating the unfolded state is 

higher than the conformational entropic gain of the unfolded state, thus favoring the native 

state at lower temperatures.   

The established state of a system is controlled by the internal energy and the probability of 

a moiety within the system to absorb the energy to induce change. Thus, entropy and 

enthalpy of a system could be used to predict if a system will spontaneously change. The 

measure commonly used for this purpose is the Gibbs free energy, named after the American 

scientist Josiah Willard Gibbs, who showed how the first and second laws of 

thermodynamics could graphically be tied together 48, which leads to the correlation between 

entropy, enthalpy and the Gibbs free energy: 

 �� = �� − ��� (5) 

where ΔH stands for the change in enthalpy, ΔS for the change in entropy, T for the absolute 

temperature and ΔG for the change in Gibbs free energy (ΔG). Under conditions where the 

protein favors the native state the value of ΔG is positive, as the native state is lower in 
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energy and thus favored. As these are state functions, the stability of the structure is 

completely correlated with the current conditions within the system and one may ask how 

stable these structures are under natural conditions in their “native” environments. The 

answer to that question is that they are only marginally stable (Fig. 1.1). ΔG values of 

unfolding for thermodynamically stable proteins have been found to be around 20 – 60 

kJ/mol 49, 50, supporting the notion that an ultimate result from evolution is a structure that is 

just stable enough to function under their native conditions. 

As shown in (Eq. 5) the entropic term will equal the enthalpic term, so that at a certain 

temperature the value for ΔG equals zero. Using (Eq. 6): 

 �� = −�� ∗ ln(�) (6) 

where R is the gas constant and T is the absolute temperature. At that temperature the 

equilibrium constant equals 1: 

 � =
[�]

[�]�  (7) 

meaning the two states are equally populated. This temperature is defined as the melting 

point (Tm) of the protein. As the temperature of the system is increased further, the denatured 

assembly becomes dominant (Figs. 1.1 and 1.2).   

The picture of protein stability described so far illustrates how the different parameters of 

the Gibbs equation contribute to protein stability or instability, where temperature acts as a 

Figure 1.1. A) The contribution of enthalpy and entropy changes to the free energy change of unfolding 
for a hypothetical thermodynamically stable protein at a temperature where the structure is stable. B) 
Free energy reaction diagram of the unfolding of the hypothetical protein under the same conditions, 
where N stands for the native state, D for the denatured assembly, ΔG for the free energy difference
between the states and ΔG‡ is the activation free energy. 
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multiplier for the entropic component. Temperature also affects the enthalpy and entropy 

terms themselves. The key component which is missing in the Gibbs equation and describes 

this temperature dependence of ΔH and ΔS, is the change in heat capacity upon unfolding, 

ΔC or ΔCp, as constant pressure mostly applies in biological systems. 

Heat capacity 

Heat capacity is a measure of the energy required to bring about a specific temperature 

increase to a material or a solution. When thermal energy is applied to a solution two things 

happen, partly it increases the kinetic energy of molecules such as higher rotational, 

vibrational and translational energies, therefore increasing the temperature of the solution. 

The rest of the energy gets absorbed and is stored as potential energy within the molecules 

and their bonds. The heat capacity of a certain state within a system is essentially related to 

how well that state can distribute energy throughout a system 51. In liquid water a single 

molecule is able to form up to four different H-bonds, breaking up and reforming H-bond 

with a multitude of other water molecules, all occurring within a very short timescale. Liquid 

water is thus able to distribute energy throughout the system via collisions and interactions 

with other water molecules and hence has a high heat capacity. This description essentially 

links this property to both the enthalpy and the entropy of a system. These relationships can 

be described with equations 8 and 9, where ΔCp is regarded to be independent of temperature. 

This is not the case however, but is often approximated to be negligible over the temperature 

range where biological systems are usually observed at 52: 

Figure 1.2. A) The contribution of enthalpy and entropy changes to the free energy change of unfolding 
for a hypothetical thermodynamically stable protein at high temperatures where the structure is 
unstable. B) Free energy reaction diagram of the unfolding of the hypothetical protein under the same 
conditions, where N stands for the native state, D for the denatured assembly, ΔG for the free energy 
difference between the states and ΔG‡ is the activation free energy. 
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 �� = ����� + ����� − ����� (8) 

 �� = ����� + ��� �� �
�

����
� (9) 

where ΔHref, ΔSref and Tref stand for the enthalpy change, entropy change and temperature at 

a convenient reference point. So, heat capacity change describes how the enthalpy and 

entropy change differ over a range of temperatures. From these relationships it is apparent 

that heat capacity is an essential thermodynamic quantity. By substituting the terms from 

equations 8 and 9 into equation 5 and rearrange yields: 

 �� = ����� − ������ + ��� ��� − ����� − � �� �
�

����
�� (10) 

knowing the enthalpy change (ΔHref) and entropy change (ΔSref) at some reference 

temperature (Tref) along with heat capacity change (ΔCp) allows for calculations of the free 

energy change (ΔG) as a function of temperature. Now in practice the reference temperature 

is often the melting point (Tm). And as mentioned earlier, ΔG at that point is 0, so equation 

5 can be rewritten as: 

 ����
=

����

��
 (11) 

By exchanging the entropic term in equation 10 with equation 11 and rearranging yields a 

modified version of the Gibbs-Helmholtz equation: 

 �� = ����
�1 −

�

��
� + ��� �(� − ��) − � �� �

�

��
�� (12) 

Thus, the free energy change as a function of temperature can be obtained from knowing 

just the melting temperature (Tm), ΔCp and the change in enthalpy at the melting temperature. 

For example, all these values can be calculated from differential scanning calorimetry data 

of a “well behaved” protein such as shown in Fig. 1.3. The melting point is the high point of 

the thermogram, and ΔCp can be estimated form the difference between the heat capacities 
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of the two states, before and after protein unfolding. ΔHTm is equal to the area under the 

curve of a baseline subtracted thermogram.   

The heat capacity change upon unfolding of proteins usually manifests itself as a positive 

value for globular proteins. A positive value for ΔCp has some interesting effects on the 

stability curves. As if we look at equations 8 and 9, it entails that the value for ΔH increases 

linearly with higher temperatures from its lowest value at 0 degrees Kelvin. The term ΔS, 

however, starts at its lowest point at temperatures closing in on 0 degrees Kelvin and 

increases in a logarithmic manner. As a result of this, the term -TΔS exhibits a sharp rise at 

extremely low temperatures, then reaches a plateau that gradually starts falling. At 

Figure 1.3. A differential scanning calorimetry (DSC) thermogram recorded of protein that undergoes 
reversible unfolding. The red line shows the buffer subtracted heat capacities, dotted lines are 
extrapolations of the heat capacities of the native and unfolded state, respectively, showing the change 
in heat capacity at the observed melting point.    
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temperatures that are biologically relevant this change looks almost linear and leads to a free 

energy stability diagram that has a parabolic shape (Fig. 1.4.)  

A “parabolic” free energy diagram has the interesting consequence that it predicts that a 

protein molecule, such as the one depicted here, has a cold denaturation point (Tc), in 

addition to a temperature point of maximal stability 53. It does not just have a melting point 

(Tm) and a structure that becomes progressively more stable with lower temperatures as 

would be the case if ΔCp would be disregarded. Evidence for lower stability at low 

temperatures can be traced back to the 1930s, where it was noted that ovalbumin denatured 

faster at low temperatures when incubated in strong urea solutions 54. In the decades after 

that, interest in low temperature denaturation and inactivation increased 55. In addition, cold 

denaturation has been observed for the yeast globular protein frataxin without denaturants 

being added 56, 57. The molecular mechanism for the behavior of the unfolding process has 

been of interest for decades and often thought to be somewhat of an anomaly, as it sounds 

rather counterintuitive that at higher temperatures more energy is needed to unfold a protein 

and that at sufficiently low temperatures exothermic unfolding could take place 51, 58. The 

positive heat capacity change upon unfolding is however not a unique thing. This behavior 

is reminiscent to that of the melting of various organic solvents and water 59, 60. Keeping that 

in mind, thermal unfolding of a protein can be thought of as an order to disorder transition 

where a multitude of weak bonds are broken 51, 52, 61, 62. Looking at the whole picture, those 

disrupted interactions would include protein-protein, water-protein and water-water 

interactions in the solvation shell of the protein 63. Water-protein interactions as a function 

of temperature have long been of interest in protein stability studies and those interactions 

Figure 1.4. A) The effect of temperature on entropy (red line) and enthalpy (blue line) for the 
hypothetical protein having a positive ΔCp. The resulting free energy curve, showing the temperature 
dependence of stability, showing the cold denaturation point (Tc), the point of maximal stability and the 
melting point (Tm).     
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have been thought of as one of the main drivers of cold denaturation i.e. that the hydrophobic 

effect would be weaker at lower temperatures  55, 64. Molecular dynamics simulations on the 

cold denaturing frataxin seem to support that notion 65. There, the assemblies of the protein 

under cold denaturing, native and heat denaturing conditions were examined. The picture 

that emerged was that the cold denatured assembly was highly solvated i.e. a high number 

of H-bonds between the protein and the solvent existed, resulting in an expanded denatured 

structure. Then with higher temperatures, more protein-protein H-bonds can form as 

interactions between water molecules and hydrophobic surfaces become more repulsive, 

resulting in the formation of the native structure. The thermally denatured assembly of 

frataxin showed an even further reduction of water-protein H-bonds resulting in a relatively 

compact denatured state that was more structured than the cold denatured one 65. An 

observation that coincides with the observations that intrinsically discorded proteins often 

show increased compactness and structure content at higher temperatures 66, 67. 

Thus, it can be postulated that upon cold denaturation there is a gain in the entropy of the 

peptide chain as more microstates can be sampled. However, there would be an entropic loss 

in the solvation shell and the water solvent due to the higher recruitment of water needed to 

solvate the protein. The negative enthalpy change would then be related to the high number 

of protein-water hydrogen bonds and van der Waals interactions between water molecules 

and the peptide possible at low temperatures.  Thermal denaturation would manifest itself as 

a large increase in the conformational entropy of the peptide chain and an increase in the 

entropy of the surrounding water. Thus, weaker protein-water interactions would become 

entropically unfavorable, but the total entropy would favor the denatured state.  The increase 

in enthalpy could then be described as a lack of protein-water interactions leading to more 

prevalent protein-protein interactions at high temperatures.  

Considering this, the enthalpy/entropy compensation observed for globular proteins seems 

like a logical result from the protein-water interactions and the balance between enthalpy 

and entropy for both the protein itself and the solvation shell 29, 68.  

1.2.2 Kinetics of protein stability 

All the aspects of protein stability discussed so far have been on the thermodynamic 

properties of a protein system at equilibrium. As ΔG, ΔH and ΔS are all state functions, they 

just describe the system under the given conditions, but give no information on how fast the 
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system can sample those states. As a consequence, the kinetic part of protein stability plays 

an essential part for many systems in maintaining the long term stability of some proteins 69. 

A system that has no virtual kinetic barriers between functional states and non-functional 

states, has no protection against temporary stressors and is thus more prone to loss of 

function. Understanding the underlying mechanism of the kinetics governing the sampling 

of states is thus essential to understanding protein stability in many cases.  

The history of kinetic analysis of various chemical reactions is long and an interesting one 

70. Many contributed to the development of various concepts describing chemical rates. 

However, around 1910s the first generally accepted way of analyzing temperature effects on 

chemical rates was the Arrhenius equation, developed by Svante Arrhenius based upon the 

work of van´t Hoff 70-72: 

 � = ��
���

����� (13) 

where k is the rate constant of an observed event, A is the pre-exponential factor, Ea is the 

activation energy, kB is the Boltzmann constant, NA is Avogadro´s number and T the absolute 

temperature. The Arrhenius equation provides an excellent empirical relationship between 

temperature and reaction rates. The equation states that the rate constant is determined by 

the minimum energy (Ea) needed to induce a state change, the energy in the system i.e. the 

temperature and the pre-exponential factor. The Arrhenius equation thus provides initial 

insights into the energetics of experimental data. The ideas of enthalpy and entropy being 

part of the equation, as the entropy governs the probability of a molecule reaching an energy 

state, embedded in the pre-exponential factor, and the enthalpy correlating with the 

activation energy.  

As a result, a deeper understanding of the meaning behind activation energy and the 

preexponential factor was sought, leading to the development of the transition state theory 

(TST). Transition state theory presented in 1935 is arguably the most useful tool for the 

analysis of experimental data even though it has not delivered the best results when 

calculating potential energy surfaces and/or predicting them 70, 73. The theory was developed 

through a series of investigations and different treatments, and it is usually contributed to H. 

Eyring, M. Polanyi and M. G. Evans. TST, or the activated complex theory, states that all 

reactants/native states are in a quasi-equilibrium with the activated state/transition state (TS‡) 

74. The reaction rate as a function of temperature is described by the Eyring equation: 
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where k is the reaction rate, κ is the transmission coefficient, kB is the Boltzmann constant, 

T is the absolute temperature, h is the Planck constant, ΔS‡ is the activation entropy, ΔH‡ is 

the activation enthalpy and R is the gas constant i.e. the Boltzmann constants times the 

Avogadro´s number. The transmission coefficient is often assumed to be equal to one, 

meaning that all reactants that cross the transition state will end up as a product i.e. there is 

no re-crossing. The equation can thus be rewritten and simplified as:  
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where ΔG‡ is the activation free energy. The theory has been shown to be applicable to 

various thermally activated processes, from protein folding/unfolding and DNA 

translocation to the breaking of chemical bonds, processes that differ immensely in time 

scales 75.  For the unfolding of a protein molecule TST model can be written out by the 

Lumry-Eyring model 76 as: 
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where N is the native state, TS‡ is the transition state, D is an inactive/unfolded state, K is 

the equilibrium constant between the native state and the transition state, i.e. the quasi 

equilibrium, and k is the rate constant of the irreversible conversion of the transition state to 

the unfolded state. Such an analysis provides the researcher with the thermodynamic 

parameters describing the difference in energetics between the native state and the TS‡. For 

such an analysis to provide meaningful results, there needs to be a Boltzmann distribution 

between the native assembly and the TS‡, an assumption that can be presumed to be true for 

large molecules such as proteins due to the sheer number of different microstates a protein 

could sample while reaching the TS‡. The assumption of a quasi-equilibrium, critical for the 

validity of TST, has however been debated since it was first introduced 70. In 1940, H.A. 

Kramers developed his reaction-rate theory 77 for chemical reactions in solutions. His theory 

also considered the viscosity of a solution, thus for a unimolecular reaction in water his 
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theory described the crossing of a Brownian particle over an energy barrier (Fig. 1.5). This 

is arguably a more realistic look at a protein crossing the energy barrier in solutions 

compared to older theories.  

In order to achieve this, the variables that are taken into account must describe the energy 

landscape in much greater detail than just the height of the barrier that separates the states. 

This entails a way to estimate the curvatures of the energy landscape, that inform on how 

well a polypeptide can diffuse between the various microstates along the unfolding/folding 

trajectory. The model also accounts for friction between the diffusing particle and the free 

energy surface. In the simplest case this friction is entirely due to solvent viscosity, 

dampening the trajectories over the barrier. However, in the case of a protein molecule, 

internal protein-protein interactions might also contribute to the friction within the system 

78. Such a detailed description of an energy landscape for an unfolding/folding process is 

experimentally challenging, even when just considering a one-dimensional free energy 

landscape. However, the model has been successfully used to describe barrier crossing of an 

α-helical synthetic protein using single molecule fluorescence spectroscopy 78, 79. Thus, it 

can be said that modeling of kinetic processes can be a great challenge, especially for 

complex systems such as protein folding and unfolding.  

Figure 1.5. A 3D energy landscape depicting a protein acting as a Brownian particle diffusing over the 
free energy barrier (white arrow) separating the denatured and native assemblies. Kramers theory 
describing a one-dimensional cut of this landscape descripting the curvatures of the energy landscape in 
the native, denatured and transition state, taking into account the friction between the particle and the 
energy landscape. Reprinted from reference [79]. 
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Kinetically stable proteins 

In general, when proteins are referred to as kinetically stable, it usually encompasses all 

proteins that unfold irreversibly, meaning that the unfolded state is either trapped in a very 

deep free energy “valley”, and consequently unable to refold, or has been chemically altered 

or precipitated and thus essentially removed from the original equilibrium reaction 69. This 

can be the case for thermodynamically stable proteins that may unfold in an irreversible 

manner under certain circumstances, often causing pathological conditions 69, 80. On the other 

side there are proteins that are truly kinetically stable, meaning that the native active structure 

is not necessarily favored thermodynamically, but the stability of the molecule is solely 

reliant on the free energy barrier separating the states. This type of free energy landscape 

was first shown to exists in the case of α-lytic protease from the bacterium Lysobacter 

enzymogenes 81. The kinetic aspect is highly important for the overall stability of many 

different proteins, and seems to have evolved for some systems in order to deal with harsh 

environmental conditions such as crowded intracellular compartments or secreted into harsh 

environments in case of extracellular proteins 69. The latter seemingly is especially prevalent 

and is best evidenced by the convergent evolution of the intramolecular chaperones of 

different proteases, most notably from the subtilisin clan, chymotrypsin clan and the 

carboxypeptidase clan, among others 82-89. Being produced with an intramolecular chaperone 

(IMC), the unprocessed protein is thermodynamically stable and folds to its native state in a 

facile manner due to a low kinetic barrier. The maturation process of auto-cleavage produces 

a free catalytic domain that now is disconnected from the original folding-equilibrium and 

locked into a kinetically stable state (Fig. 1.6) 84. Kinetically stable proteins tend to exhibit 

simple first order unfolding kinetics, although that tendency is also often observed in the 

cases of simpler monomeric systems 3, 90-99. The simplest descriptor for a system that unfolds 

irreversibly, would be: 

 �
�
→ � (17) 

where N and D denote the native and denatured states and k stands for the first order rate 

constant of unfolding. This leaves some proteins that solely rely on the kinetic barrier for 

stability out of the scope of the transition state theory in the conventional sense, such as α-

lytic protease and S. griseus protease B (SGPB) and many subtilisin-like proteases that rely 

on IMC to fold (Fig. 1.6) 1, 100-102. However, the two-step model can be interpreted as a 

version of the Lumry-Eyring model, where a quasi-equilibrium between the native state and 
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the TS‡ is not established at observed unfolding temperatures 91, 103. Thus, instead of 

describing the N to TS‡ with an equilibrium constant the term has been replaced with the 

rate constants: 

 �
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where k1 is the rate of TS‡ formation from the native state, k-1 is the rate of which the TS‡ 

returns to the native state and k2 is the rate of TS‡ irreversible step to the fully denatured 

state. This model would appear as a two-state system if one forward rate constant completely 

controls the apparent rate of unfolding under given experimental conditions. The scenario 

described here by a high kinetic barrier entails a low k1 rate constant and a very fast k2 rate 

constant, essentially being in a “pseudo” steady-state 104, 105. The rate of deactivation of the 

TS‡ to the native state (k-1) being much slower than k2 at temperatures where k1 is readily 

measurable. 

The measured rate of unfolding will then change as a function of temperature according to 

the activation energy of that transition as described by the Arrhenius equation. This 

Arrhenius behavior can only be estimated to occur at strongly denaturing temperatures. Over 

that temperature range, where the assumption is made that the apparent rate of unfolding 

represents the rate of TS‡ formation, the free energy barrier could be calculated by the Eyring 

equation (Eq. 15). Furthermore, by fitting the Eyring equation to the Arrhenius plot over the 

limited temperature range that the observed transition encompasses, and remains linear, the 

activation enthalpy and entropy can be derived. This is done by replacing the terms of 

Figure 1.6. A) A theoretical energy landscape for the folding of a protein utilizing an intramolecular 
chaperone (IMC) from an unfolded state (IMC-U) to a folded state (IMC-N) followed by a cleavage of 
the IMC. B) The new theoretical energy landscape of the newly formed active protein, where the native 
(N) and denatured (D) are separated by a large free energy activation barrier (ΔG‡) and TS* is the 
transition state 
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activation energy (Ea) and the pre-exponential factor A from eq. 13 with the enthalpic term 

and the entropic term from eq. 14, setting the transmission factor to unity, giving the 

following relationships for a unimolecular reaction: 

 �� = ��‡ + �� (19) 
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The relationship of the height of the activation free energy barrier (ΔG‡) and the activation 

enthalpy and activation entropy being: 

 ��‡ = ��‡ − ���‡ (21) 

The validity of state functions acquired this way is questionable and could only at the best 

of times be considered as apparent free energy parameters over the narrow temperature range 

where the unfolding transition is readily observed. This is because the assumptions that are 

being made exclude evaluation of how the thermodynamic parameters change as a function 

of temperature, as there is no information on the activation heat capacity change (ΔC‡) for 

the TS‡ formation.  

One method to estimate ΔC‡ and the other thermodynamic properties of the TS‡ was 

demonstrated for the α-subunit of a tryptophan synthase, a thermodynamically stable protein, 

by measuring unfolding rates at selected temperatures using various strongly unfolding 

concentrations of a denaturant 106. This method works on the premise that the apparent rate 

of unfolding only reflects on the rate of TS‡ formation 101, 107. By using a denaturant, 

unfolding rates at low temperatures become experimentally available, and these can be 

extrapolated to unfolding rates in water using the appropriate model. In the case of the α-

subunit of tryptophan synthase the data could be fitted by a denaturant-binding model 49. 

Thus, faster unfolding rates due to a positive activation heat capacity value could be observed 

at low temperatures. This allows for fitting of the apparent unfolding rates to an extended 

version of the Eyring equation where values for ΔC‡, ΔH‡, ΔS‡, and thus ΔG‡, can be 

calculated: 
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where kapp is the apparent rate of TS‡ formation, ΔS‡
T0 and ΔH‡

T0 are the known activation 

entropy and activation enthalpies at the reference temperature T0, T is the absolute 

temperature and ΔCp
‡ is the activation heat capacity, considered to be constant over the 

temperature range. Being a detailed gauge on the nature of the unfolding barrier these values 

should only be considered apparent thermodynamic properties of the transition state. On top 

of that, the front factor of the Eyring equation (κ(kB*T/h)) is potentially not very applicable 

to protein folding and unfolding/folding in a water solution 108, 109, as the water medium 

affects movements due to viscosity as Kramers accounted for 77, and the high complexity of 

various interactions between the water solvent and the myriad of chemically diverse surfaces 

proteins can have. Thus, there is a potential for erroneous determinations of the absolute 

values of the entropic term and the Gibbs free energy barrier itself. However, using the 

Eyring front factor is at least reasonable in relative estimations between proteins and protein 

variants. The caveat is, however, that the front factor is taken to be the same for all water-

soluble proteins, which is a statement that is certainly not above scrutiny.  

Despite of these limitations and approximations used to estimate kinetic barriers, these 

analyses have provided interesting insights into kinetic stability of proteins. Cases in point 

are studies on the kinetically stable proteases, α-lytic protease and SGPB, which have 

provided interesting insights into the mechanism of their kinetic stability 101. The results 

indicated abnormally high values for the activation heat capacity change of unfolding (ΔCp
‡) 

and a very high activation free energy barrier with its maximum around the optimum growth 

temperature of the organism of origin 101. The abnormally high activation heat capacities 

(ΔCp
‡) indicate large disruptions in the intramolecular network within the protease and the 

surrounding solvent. This may be linked to the concept of the molten-globule state 110, or a 

somewhat frustrated and dynamic state with a multitude of unfulfilled contacts. Such a 

process in an aqueous solution, would make the polypeptide structure become permeable to 

water molecules as internal connections break down, exposing new surfaces.  

This adds to the picture the cost of breaking up the preferential solvation sphere of the native 

state and solvating the transition state, namely, the effects of solvent barriers on stability. 

Indeed, solvation/de-solvation barriers seem to impact the energetics of the free energy 

barrier to a major degree, possibly being a rate limiting step that is responsible for the major 

part of the activation energy of folding and unfolding, explaining in part the remarkably high 

values for activation energies acquired from experimental data of many proteins 111-114. As a 
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direct consequence, the size of the protein molecule would affect the solvation barrier in 

addition to the extra surface area accessible to solvent in the TS‡ upon unfolding 111. 

Activation energies or the enthalpic contribution to the free energy barrier are, however, only 

half the story. It can be visualized that the entropic part is also quite significant, as 

displacement of water molecules into crevices due to increased surface area would likely be 

an entropically unfavorable process due to the restrictions placed on available conformations 

of water molecules at the protein-water interface. There would be an entropic gain from more 

allowed protein conformations as a result of looser packing because of loss of internal 

interactions (Fig. 1.7). These two different variables counteract each other until a 

temperature is reached where the conformational entropy gain of the peptide chain 

overcomes the entropic penalty of the water solvation, as the hydrogen bonding network of 

water becomes more and more transient 59. Indeed, this is observed for the α-lytic protease 

and SGPB. At low temperatures, the free energy barrier is completely governed by the 

activation entropy and the increase in conformational entropy does not compensate until at 

relatively high temperatures 101. Due to rather high values for ΔCp
‡ in the case of those 

kinetically stable protein, and the steep dependence of ΔH‡ and ΔS‡ on temperature, the 

activation enthalpy favors the TS‡ at low temperatures, presumably due to protein-solvent 

interactions which would also be highly entropically unfavorable. Then, at higher 

temperatures, the free energy barrier becomes dominated by the activation enthalpy, as at 

those high temperatures the intramolecular forces are strengthened as dictated by a high 

positive activation heat capacity (ΔCp
‡) 101. This could be thought of as being a result of the 

low prevalence of protein-solvent interactions at high temperatures favoring protein-protein 

interactions, as can be surmised from the iceberg model of water and how it surrounds the 

protein at different temperatures 115, 116.  
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Being such a multifaceted process, the solvation barrier is bound to be affected by many 

variables and has indeed been found to differ greatly within the same protein family. This 

has been seen in the family of triose-phosphate isomerases 117, implying sensitivity to other 

variables than just structure and size. The energy contributors that control the height of the 

kinetic barrier and the unfolding pathway could, thus, be dictated by small changes in the 

amino acid sequence at crucial points within the structure 118. In line with this are 

observations from molecular dynamics simulations showing that unfolding cooperativity 

was much higher for the kinetically stable α-lytic protease than for its structural homolog, 

bovine trypsin, that unfolded in a gradual manner 102. These simulations indicated that the 

kinetically stable α-lytic protease has a much narrower unfolding pathway creating a 

bottleneck of available conformations in the TS‡, i.e. a very steep saddle point in a 3D free 

energy landscape. Trypsin on the other hand seems to a have a much broader conformational 

space at the TS‡, allowing for better diffusion back and forth across it (Fig. 1.8). This means 

Figure 1.7. Illustration of the solvation shell (blue outlines) for the native state (N), transition state 
(TS) and the unfolded state (U). The red lines representing lost internal contacts in the TS, not yet 
solvated. Reprinted from reference [111]. 
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that a well-defined TS‡ i.e. with few allowed microstates at the peak, does not allow for 

much diffusion back and forth over the TS‡.  

The conformational space of the unfolded peptide chain is enormous compared to the 

conformational space at the TS‡. The TS‡ would thus be inaccessible from the unfolded 

assembly, largely due to the difference in conformational entropy between the states.   

Bringing these aspects together, the basic part of the kinetic barrier seems be rooted in the 

cooperativity of unfolding. The highest free enthalpy change would certainly be achieved by 

the instantaneous collapse of the native state, thus breaking the highest number of bonds at 

once. In addition, this would result in the near simultaneous solvation of a maximal area of 

the newly exposed surface providing a high entropic solvation penalty at lower temperatures, 

contributing to the free energy barrier. In the case where there is low cooperativity, the 

unfolding would be gradual, allowing for many more conformations and possibly different 

Figure 1.8. A) A theoretical energy landscape of an unfolding progress for a protein that unfolds in a 
cooperative manner, resulting in a high free energy barrier, along the native (N) to denatured (D) axis 
(X-axis). B) A theoretical energy landscape of an unfolding progress for the same protein that does not 
unfold in a cooperative manner due to an intermediate formation (I) , resulting in lower individual free 
energy barriers, along the native (N) to denatured (D) axis (X-axis). C) A theoretical view along the Z-
axis of figure A) demonstrating a narrow conformational space at the transition state saddle point. D) A 
theoretical view along the Z-axis of figure B) demonstrating a broad conformational space at the 
transition state saddle point. 
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routes to a TS‡ containing many more conformations. In addition, the formation of 

metastable unfolding intermediates along the unfolding pathway as a result of loss of 

cooperativity could yield transitions states with lower individual peaks. The analogy being 

that a very cooperative unfolding process would resemble an un-catalyzed reaction and a 

non-cooperative process could resemble a catalyzed reaction (Fig. 1.8), if the systems are 

presumed to have the same energetics otherwise. 

The description above would fit the observation of an extracellular kinetically stable protease 

with restricted conformational dynamics, that unfolds in an extremely cooperative manner 

100, 119. In the case of proteases, suppressing any native conformations, or unfolding 

intermediates, that could expose a potential proteolytic cleavage site, would also be 

beneficial for the overall fitness of the protein. Thus, a cooperative unfolding pathway and 

kinetic stability would be under even more evolutionary pressure 4, 120. So, for a kinetically 

stable protein that must adapt to high temperatures, a highly connected system of internal 

protein-protein interactions, allows for the absorption of the highest amount of energy while 

maintaining activity before complete unfolding occurs. So, the ability of the interaction 

network to distribute the energy about its system and release it as molecular motions without 

the loss of activity has been correlated with kinetic stability and called rather aptly the 

thermal flexibility of the protein 121. 

Overall, kinetic stability seems to be Nature´s answer to the most hostile environments and 

even protection against detrimental events such as protein aggregation and thus many 

diseases caused by protein aggregation 122. So, learning from the highly kinetically stable 

molecules is certainly warranted, as learning from the extremes can often help to eluate the 

small nuances of other systems. 

1.3 Temperature adaptation strategies 

The molecular interactions and energetics that determine protein stability are highly diverse. 

The structures that can be devised from the twenty proteogenic amino acids are truly 

limitless, although only a very small fraction results in polypeptides that fold spontaneously 

into one stable three-dimensional from. In addition, the various post translational 

modifications that some structures are subjected to, give rise to structurally similar molecules 
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with varying stabilities both kinetic and thermodynamic. Thus, it is of no surprise that a 

myriad of different strategies are utilized by nature in order to obtain the desired 

functionalities and stabilities. Here, the trends seen in nature will be discussed, by comparing 

the differences in structures and activities observed from enzymes operating at the two 

temperature extremes of living organisms. 

1.3.1 Thermostable proteins 

As touched upon earlier, at high temperature, the main challenge of proteins is maintaining 

an active state for a biological relevant time. Adapting to high temperature by increased 

stability is obtainable through thermodynamic routes and/or kinetic routes. The 

thermodynamic approach would be to stabilize the native state i.e. lowering the free energy 

of the native state, or by destabilizing the denatured, i.e. by increasing its free energy, or by 

a combination of the two approaches. Examples of how varied the free energy stability 

curves for a protein evolving from mesophilic to thermophilic stability characteristics might 

look like by such manipulations is depicted in Fig. 1.9 123. Those free energy curves are all 

the product of the delicate balance between the thermodynamic factors and the 

enthalpy/entropy tradeoffs that are expected in a protein-water system 29. The kinetic route 

would then be increasing the energy barriers separating the states and/or restricting available 

routes traversing the energy barrier. These different strategies can be traced to the attributes 

of the primary, secondary, tertiary and the quaternary structure of proteins and their 

interactions with their environment. The overall stability is eventually dependent on both 

thermodynamic and kinetics contributions, giving either ordered or disordered proteins.  

Several trends have provided insights into the molecular determinants of thermostability that 

have come to light when comparing the genomes of organisms that have adapted to high 

temperatures versus those adapted to lower temperatures and differences between structural 

homologues 124. However, there is no single mechanism that can be said to be responsible 

for ensuring folding into a stable structure, as different protein families adopt different 

strategies to maintain their active form at high temperatures. The structural factors that are 

however most frequently observed include, a more tightly packed hydrophobic protein core, 

a thicker hydration layer, a higher abundance of water-protein H-bonds potentials, more 

polar and charged surface residues, critically located disulfide bridges, increased number of 

salt bridges, higher number of π-charge interactions, more abundant π-π interactions and 
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more rigid structures that often have shorter loops and thus higher ratios of secondary 

structure elements 123, 125, 126. Each of these interactions have enthalpic and an entropic 

contributions making their effectiveness dependent on temperature, thus helping in 

identifying their role and their effectiveness in each case 127.    

The hydrophobic effect, a highly complex phenomenon, is the strongest for biological 

systems between the temperatures of approximately 30°C and 80°C, although it differs on 

more parameters than just temperature, such as the surface area and the volume of the 

hydrophobic solute 128, 129. Thus, the burial of hydrophobic residues is the most beneficial 

for proteins from mesophilic and thermophilic organisms as a free-energy contributor for 

folding. This trend of having a more efficient packing of their hydrophobic core residues and 

fewer water accessible cavities have been very prominent structural features of thermophilic 

proteins when compared to cold active proteins 25. Comparison of thermostable proteins to 

their counterparts from hyperthermophiles, the latter also tend to have tightly packed protein 

cores. However, the internal contacts between residues in hyperthermostable proteins are 

Figure 1.9. Comparison of free energy stability diagrams of theoretical protein from a mesophilic 
organism (dashed line) and four different theoretical proteins from a thermophilic organism (red, blue, 
green and gold lines) that have reached a high melting point via different strategies but all with the same 
melting point. The dotted line representing the zero point, below which the equilibrium favors the 
unfolded state. Inspired by reference [123].  
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more likely to form bulkier hydrophobic clusters than their mesophilic and thermophilic 

counterparts, indicating a growing role of internal protein contacts at higher temperatures 

125, 130.  

Thermostable proteins are frequently observed to have surfaces rich in polar residues and 

charged residues not partaking in ion-ion interactions, resulting in an increased number of 

potential solvent-protein H-bonds. MD-simulations have indicated that those residues allow 

for the formation of a solvent shell at high temperatures 131. This could be mediated by 

solvation of lone charges, forming a water anchor of sorts, maybe partly explaining why 

arginine is so frequent in thermostable proteins 132, as the guanidino group of the arginine 

side chain can provide a maximum potential for formation of H-bonds. This would provide 

thermostable proteins with considerable solvation barriers at higher temperatures and 

prevent water molecules from penetrating the structure. These surface charges would also 

ensure that the native protein could function at higher temperatures by retaining water 

molecules that are essential for protein-protein and protein-ligand interactions 125, 133.     

Disulfide bridges serve a stabilization role as they can reduce the entropy of the unfolded 

state by interlocking distant parts in primary sequence close in 3D space and helping to 

maintain correct orientations between parts of the protein as molecular movements increase 

as a function of higher temperatures. The location itself being key as a disulfide bridge 

between rigid areas would be expected to have less of an impact than between flexible parts 

in the structure 125, 134. The sulfur-sulfur covalent bond is, however, susceptible to 

decomposition at higher temperatures and even more so in alkaline environments. This fact 

has brought into question how effective they are for proteins that have to retain their structure 

at temperatures around and over 100°C 124. However, their location in the native and 

unfolded states, as well as all conformations along the unfolding pathway, will determine 

how susceptible these disulfide bridges are to cleavage. In certain cases, disulfide bridges 

have been found to infer stability to hyperthermostable proteins. An example is a 

hyperthermostable ferredoxin variant without a native disulfide bridge which had a melting 

point of 113°C, as compared to 121°C for the disulfide containing wild type when measured 

at neutral pH 135.  

Hyperthermostable proteins that have to function at temperatures well above the boiling 

point of water also require more strategies to maintain their structure 126. Ion-ion interactions 
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or salt bridges being a prime example of this. Salt bridges are highly dependent on many 

environmental factors such as pH, location and orientation in the protein, salt concentration 

and temperature. Salt ions can screen surface charges that are dependent on the pH of the 

aqueous solvent as it has to be in the appropriate range so that the acidic side chains of 

aspartic and glutamic acid residues and those of the basic groups of arginine, lysine and 

histidine, to maintain their charges 136. Water plays another big role, being a very polar 

solvent, such that charges are readily hydrated by water. This entails, however, that the 

desolvation penalty of salt bridge formation is rather high, especially at low temperatures, 

because of the high dielectric constant of water. The dielectric constant of water gets lower 

as a function of temperature between 0°C and 100°C 137. Thus, according to Coulomb’s law, 

salt bridges are stronger at higher temperatures, due to lesser screening of water and are also 

dependent on the proximity of the interacting charges: 
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where U1-2 is there electrostatic potential between the charges q1 and q2 that are separated by 

the distance r1-2 and k is the conversion factor to the appropriate units and ε is the dielectric 

constant. 

The desolvation penalty of the charges also decreases as temperature rises, likely due to the 

change in the dielectric constant of water with increasing temperature and possibly due to 

partial solvation at higher temperatures 125, 138-140. This property may have some interesting 

implications for protein stability, as the salt bridges could lead to lowering of the free energy 

change at low temperatures, but increase it at higher temperatures. This could be achieved 

by broadening of the free energy stability curve, that could entail among other things, a lower 

ΔCp of unfolding (Fig. 1.9. the cold curve). Observations of lower ΔCp of unfolding due to 

the introduction of salt-bridges have been made in the case of the thermostable ribosomal 

protein L30e from Thermococcus celer 141. 

Hyperthermostable proteins are observed to have large surface networks of salt bridges. 

Interaction networks being one of the basis of a cooperative structure. A popular protein to 

point this out in, is the glutamate dehydrogenase found in the hyperthermophile Pyrococcus 

furiosus, that has a salt bridge network of 18 charged residues 142. The strongest evidence 

for the importance of the salt bridge networks to gain the thermotolerance for maintaining 
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an active structure at temperatures rising above 100°C is the prevalence of these networks 

in proteins from hyperthermophilic organisms that are not found as frequently in 

counterparts from thermophilic, mesophilic and psychrophilic organisms 143.    

Charge-Charge interactions and single charges are not the only charge interactions that are 

observed in higher frequency in proteins from thermophiles and hyperthermophiles, as 

cation-π interactions are also found more frequently in these proteins 144. Their effectiveness 

in increasing thermal stability has been found to be highly dependent on temperature, in 

general being stabilizing at high temperatures, but at low temperatures these interactions can 

be destabilizing 36. This behavior is possibly related to desolvation of the charge, resulting 

in a shifted free energy curve towards higher temperatures, or lower heat capacity leading to 

a broader free energy curve. Aromatic interactions are not exclusively found as part of 

charge-π interactions but also found in aromatic clusters on rigid surface patches that are 

found in greater number in thermophilic proteins 145.  

It seems that interaction clusters of various kinds are found in more abundance in proteins 

as a function of increased temperature of adaptation. These interaction networks can be vast, 

connecting distant parts of the protein structure together (Fig. 1.10) 125, 146. A high degree of 

interconnectedness within a structure is presumably the basis of a cooperative structure. 

Indicating that interaction networks are important for high free energy barriers between the 

folded and unfolded states. 

As a result of these differences in the structural elements of thermostable proteins, they 

exhibit structures that are more rigid or stiff as compared to their cold adapted homologs 

when examined at the same temperature. However, the molecular motions that are needed 

to facilitate activity are presumably similar in both thermostable and cold active protein 

structures. Thus, molecular motions at temperatures that are found in the natural 

environments of these proteins should be similar, as stated by the corresponding state 

hypothesis 147, 148. 
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The proline residue 

A particular interest in the work underlying this thesis is the role of the proline residue 4 with 

regards to flexibility and rigidity, focusing on their effect on protein stability when located 

in loops. The proline residue differentiates from all the other natural amino acids found in 

proteins in that it possesses a secondary amine i.e. the α-carbon is linked to the amino group 

via its side chain forming a pyrrolidine ring. This unique structural property is the basis of 

the conformational restricting properties of the residue 149. The structure of the residue also 

promotes a relatively slow cis-trans isomerization of the peptide bond, with a rate constant 

that has been found to be in ms-1 range at ambient temperatures, favoring the trans isomer in 

most oligopeptides and being a key part of the rate-determining step of protein folding for 

many systems (Fig. 1.11) 150, 151. 

Figure 1.10. Examples of interactions that can form networks within the protein structure, contributing 
to the overall stability and cooperativity. Reprinted from reference [125]. 
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Proline residues do seem to be more prevalent in thermostable proteins than in their cold 

active counterparts and proteomic analysis of cryophiles have suggested that proline residues 

occur less frequently in their proteomes 132, 152-155. One mechanistic way the proline residue 

can infer thermostability is by reducing the entropy of the denatured state as the proline 

residue is uniquely suited to restrict available conformations of the unfolded peptide 156. 

However, due to the secondary amide of the proline residue, the amide cannot partake in H-

bond formation thus, location of the residue would be of utmost importance as unfulfilled 

H-bonds within the protein core and be detrimental for the overall stability of α-helices and 

β-sheets 157, 158. Indeed, proline residues seem to be more prevalent on the N-terminus of α-

helices and in loops of proteins, providing some structural rigidity and dictating direction of 

the main-chain 132, 159, 160. Proline residues in loops can also increase kinetic stability 4, 161, 

possibly via anchoring important structural parts together, thus allowing for more heat to be 

applied to the system while maintaining correct interactions, and thereby increasing the 

thermal flexibility of the protein 4, 121. 

1.3.2 Cold active proteins 

Low temperatures bring a whole new set of evolutionary challenges to organisms. Focusing 

on enzymes, the main problem is that their activity must pair with the overall reduction in 

rates of chemical reactions. As a rule of thumb, it is often said that for every 10°C increase 

in temperature, the reaction rates double. So, in order to maintain biological relevant 

reactions rates at 5°C compared to 85°C the increased catalytic activity required would be 

enormous. It has thus been of much interest to decipher what structural aspects contribute to 

increasing the activity of an enzyme. This topic has been debated for decades, as linking 

Figure 1.11. The cis and trans isomers of the X-Pro peptide bond of the tripeptide X-Pro-X. The bold 
bonds are for clarity to emphasize the orientation of the α-carbons on either side of the peptide bond.  
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certain structural elements and/or their movements to faster reaction rates is no easy task. 

However, the increased catalytic rates at low temperatures have most often been attributed 

to different dynamics of the cold active structures 162-164. Observations have been made that 

cold active proteins have more flexible and dynamic structures, and are more unstable than 

their homologs adapted to higher temperatures. This view has been supported by reports of 

larger mobile loops, larger distorted protein parts and even a higher occurrence of 

methionine, a residue that has high conformational entropy, as general characteristics of cold 

adapted proteins 25, 165-169. Cold adapted proteins also tend to contain water accessible 

cavities in their structures as well as more hydrophobic residues on the accessible surfaces 

125, 170, 171. These attributes have been linked to the destabilization of the solvent shell and 

weakening of internal contacts in order to facilitate movements resulting in increased 

flexibility. The ability to catalyze reactions at low temperatures is often directly attributed 

to this increased flexibility. The simplest picture that emerges is the weakening of protein-

protein and protein-solvent interactions would allow for more flexibility that would directly 

cause an increased number of native conformations with lower energy barriers separating 

them. This would tend to create a “lubricated” structure which would facilitate the 

transversion of structural states at lower temperatures, thus an easier transversion into 

conformations necessary for catalysis. The native assembly has lower enthalpy as a result of 

having fewer electrostatic interactions and a structure that has more water accessible cavities 

reducing intra-protein contacts. This reduction of enthalpic interactions leads to a native 

assembly of highly flexible structures manifested in a larger conformational space of the 

native assembly (Fig. 1.12) 23. 
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The transversion of such broad conformational space into the presumably restricted 

conformational space needed for catalysis would, thus, be very entropically unfavorable. 

That entropic penalty would dampen the effects that fewer/weaker enthalpic interactions 

could have on reaction rates, this being a prime example of enthalpy-entropy compensation   

23, 172. 

The observed increased flexibility does not, however, seem to present itself uniformly in 

cold active structures. Increased activity is often linked to local flexibility rather than global 

flexibility as certain parts in the structure, that are directly involved in catalysis, require high 

flexibility and others might still have an evolutionary pressure to stay rigid to maintain a 

certain degree of stability 173-176. Thus, conformational flexibility at crucial parts is a key 

component for activity at lower temperatures and the obvious question would be how and 

where increased flexibility does facilitate faster reactions rates. To address this question, a 

simple enzyme catalyzed reaction is described as: 

 � + �
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��
→ � + � (24) 

Figure 1.12. Hypothetical one-dimensional energy landscapes of a protein form a psychrophile and a 
thermophile, demonstrating the differences in conformational diversity as a function of E (free energy). 
Reprinted from reference [23].    
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is considered, where E is the enzyme, S is the substrate, ES is a loosely bound enzyme-

substrate complex, TS‡ is the ES transition state complex and P is the product (Fig. 1.13). 

Each step is controlled by a forward and backwards rate constant. For simplification, the last 

step is considered irreversible and different energy landscapes due to different microstates 

are disregarded 177.  

A classical view of enzyme catalysis is where the ES complex is lower in free energy than 

the free enzyme. This complex can dissociate back, or continue towards the product, the rate 

of association and dissociation of that complex being described by the KM constant in 

classical Michaels-Menten kinetics. Then, the binding of the complex is maximized to the 

transition state that can involve the formation and breaking up of a myriad of weak and 

covalent interactions. All these events rely on correct conformations of both the enzyme and 

the substrate which is all accompanied by solvation and de-solvation of various elements. 

This tight binding, guides the substrate into a highly reactive conformation and/or creates a 

highly reactive intermediate chemical species leading to lower the reaction enthalpy 178, 179. 

The height of this energy barrier is then directly reflected in the turnover number of the 

enzyme kcat, the maximum number of chemical conversions of the substrate an enzyme 

molecule can carry out over a defined unit of time.   

Cold active enzymes are often found to have higher kcat values and higher KM values than 

their thermostable homologues, meaning that substrate binding affinity is sacrificed while 

increasing turnover 24, 25, 175, 180-182. A reasonable interpretation of those observations is that 

high flexibility causes destabilization of the ES complex as interactions between the enzyme 

Figure 1.13. Reaction diagram of a simple reaction pathway, depicting the creation of the loosely bound 
enzyme-substrate complex (ES), its activation to the transition state (TS‡) and product release.   
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and the substrate are fewer and possibility weaker, resulting in a lower activation free energy 

barrier from the ES complex to the transition state (Fig. 1.13) 172. This idea of a flexible 

active site has also been supported by additional observations, such as those of a cold adapted 

elastase from North Atlantic salmon and a cold adapted alcohol dehydrogenase from the 

Antarctic psychrophile Moraxella sp. TAE123, which exhibited loss of substrate specificity 

183, 184. This caused both enzymes to be able to catalyze bulky substrates, presumably due to 

a more flexible or more open active site than related enzymes.  

However, this effect of low temperatures raising KM values is not universal. There are 

examples of cold active enzymes that do not share the high KM - high kcat trends, but rather 

exhibit high kcat values and low KM values, meaning that they have high affinities and low 

transition barriers 1, 185-187. This demonstrates that cold activity is obtainable through more 

strategies than just weakening of the ES-complex. The reason for this discrepancy is most 

likely due to an additional evolutionary pressure, low substrate concentrations in the natural 

environment being a likely candidate. In line with this view are observations that indicate 

that this trend is more  likely to occur in secreted marine enzymes 25. This property could be 

ascribed to beneficial electrostatic interactions and/or a rigid active site, allowing for the 

formation of more enthalpic interactions 25, 188. The idea of a rigid active site with an 

otherwise flexible structure is supported by MD-simulations on citrate synthases and trypsin 

homologues from organisms adapted to different temperatures. Those simulations did not 

show change in flexibilities in the active sites of these cold adapted enzymes. Rather the 

surface area surrounding the active site was more flexible, while the protein core was still 

relatively rigid, describing those cold active systems as having soft surfaces compared to 

their thermostable homologues 189. Thus, it cannot be said that there is any consensus on 

where increased flexibility is needed in order to facilitate biological relevant rates at low 

temperatures. Thus, apparently the topic of local flexibilities must be viewed on a case to 

case basis. 

Monitoring protein flexibilities 

Big strides have been made during the last decades in methods to monitor protein motions 

and locating flexible parts within a protein structure. Protein motions occur on a very wide 

timescale, from very local motion of bond vibrations on the femtosecond scale to large 

collective motions of large protein systems that can take milliseconds or longer. Smaller 

motions, such as side-chain rotations or loop fluctuations, are, however, often in the pico-, 
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nano- or microsecond ranges 190. Estimations of flexible areas within protein structures can 

be made directly from protein structures determined by X-ray or neutron scattering 

crystallography. This is done by utilizing B-factors (Debye-Waller factor) that describes the 

attenuation of X-ray or neutron scattering due to thermal motions within the crystal 191. Thus, 

B-factors reflect on parts of the protein that are prone to thermal motions. Deuterium 

exchange monitored with NMR or mass spectrometry can inform on larger motions in 

solution or unfolding events with timescales of milliseconds or longer 192. Another method 

to monitor flexibility in solution is fluorescence quenching that can give information about 

the accessibility of a quencher to a fluorophore. Depending on the context, this method can 

be utilized to assess flexibility 193. These methods give us a general idea of the flexible areas 

within protein structures. To ascertain the kinetics of these motions, time-resolved 

techniques need to be utilized. Time-resolved fluorescence spectroscopy, utilizing pulsed 

light sources to monitor fluorescence decay, can give site specific information. This is often 

done while monitoring fluorescence anisotropy and/or Förster resonance energy transfer 

(FRET), when FRET is utilized to measure the distances between groups in moving protein 

parts 194. Single molecule FRET has proven to be a powerful tool to unravel detailed 

molecular mechanisms, as has been demonstrated for F0F1-ATP synthase 195. With 

increasing power of NMR instruments and improved analytical techniques, more detailed 

information of specific protein dynamics can be determined from relaxation rates 196. Time-

resolved X-ray spectroscopy has also been utilized to characterize protein motions on the 

microsecond timescale, shown to be important for catalysis of cyclophilin A 197. By using 

temperature jumps, two distinct relaxation processes were resolved, a fast process related to 

surface loop motions and a slower process related to motions within the protein core 197. 

MD-simulations are also an invaluable tool in unraveling the molecular dynamics and 

specific interactions within the protein contributing to their activities. With increasing 

computational power and more refined models and algorithms, longer and more detailed 

simulations can be performed. Together, in vitro and in silico methods can provide a 

comprehensive toolset to decipher the molecular interactions and fluctuations necessary for 

their functions 198. 
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Macromolecular rate theory (MMRT) 

So far, the temperatures of maximum activity (Topt) have not been discussed, but it is a 

universal behavior of enzymes that their catalytic rates increase up to a point and start falling 

thereafter. This behavior is most easily attributed to simultaneous unfolding during 

measurements. However, as discussed previously, the native assembly, the ES-complex and 

particularly the transition state complex, are distinct thermodynamic states. The activation 

entropy and activation enthalpy of catalysis are also affected by temperatures as dictated by 

their activation heat capacities (ΔCp
‡), controlling the temperature dependence of enzyme 

catalyzed rates. The temperature dependence of enzymatic reaction rates has been addressed 

by the so-called macromolecular rate theory (MMRT) 199. Central to the MMRT are 

observations from crystal structures and MD simulations that ΔCp
‡ for the transition state 

formation is a negative value (Fig. 1.14) 200.  

A negative value for ΔCp
‡ leads to a semi bell shaped reaction rate profile (Fig. 1.15). Since 

the negative value for ΔCp
‡ can be quite large, the activation enthalpy and entropy of the 

reactions change steeply with temperature. Thus, assigning a major part of the free energy 

barrier in a catalyzed reaction to an enthalpic or entropic term does not provide deep insights 

about the reaction, as a system with a negative ΔCp
‡ has free energy barrier that is 

predominantly enthalpic in nature at low temperatures and entropic at high temperatures. 

Topt is where ΔH‡ approaches zero. 

Figure 1.14. Theoretical heat capacity diagram of an enzyme catalyzed reaction, demonstrating the 
reduction of available conformations during the activated transitions state resulting in a lower heat 
capacity of the transition state. Reprinted from reference [199]. 
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MMRT thus fit the idea of an enzyme that binds loosely to substrate and then maximizes 

binding to the transition state via funneling energy to the active site through translational, 

rotational and vibrational energies. The source of this internal free energy will be the sum of 

every protein-water, protein-ligand, external protein-protein and internal protein-protein 

interactions. This could in part explain why larger catalytic domains often exhibit better rate 

enhancements when comparing catalyzed rates versus uncatalyzed reaction rates 199. In 

addition, this also indicates that multimeric enzymes might also be beneficial to reactions 

rates, as larger systems can funnel more energy. This means funneling of vibrational, 

rotational and translational modes to the active site reduces available interactions in the 

structure causing the system to less efficiently distribute energy, thus lowering the heat 

capacity of the “rigid” transition state. Thus, a flexible cold active enzyme could generally 

be expected to have a more negative ΔCp
‡ if the role of the flexible structure is to funnel 

more energy into the active site to compensate for low thermal energy in the system. In its 

most simple form, this view would be consistent with the activity/stability trade-off, if this 

increased flexibility is due to the lowering of enthalpic interactions. However, there are 

certainly some evolutionary routes that can lead to ΔCp
‡ of transition state formation that 

approach zero, as seen in adenylate kinases that have evolved from hot to colder 

environments and then to hot environments again, that exhibit higher activities at lower 

temperatures than those that have been restricted to hot environments 26. This would reflect 

a near zero ΔCp
‡ of the transition state formation 26.  

Figure 1.15. The effect of temperature on the activation free energy (red line), where the activation heat 
capacity change from a loosely bound ES-complex to the transition state is negative value and the 
resulting reaction rates (blue line). 
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This idea of a non-zero ΔCp
‡ in enzyme catalysis is, however, debated. A research using 

MD-simulations of reaction rates and conformational populations during catalysis, utilizing 

a model system of a psychrophilic and a mesophilic α-amylase, resulted in a dead-end 

steady-state model (substrate inhibition model) to explain the observed Topt 201. The cold 

active α-amylase has Topt for activity at 25°C, that is well below the unfolding of the enzyme. 

So, activity loss cannot be explained by concurrent unfolding of the cold active α-amylase. 

The reaction rates could be fitted with very good agreement with both MMRT and the dead-

end model to explain this loss of activity above 25°C. However, in support of the dead-end 

model was that populations of substrate-inhibited complexes did appear in higher amounts 

at higher temperatures during simulations. This “dead-end” side pathway was used to purely 

explain away this so-called anomalous temperature optimum 201.  

Deciphering what interactions and molecular movements govern the temperature 

dependence of the catalytic reaction rates still leaves a lot of questions open. Considering 

the myriad of different chemical reactions different enzymes catalyze, the answer needs to 

be based on the individual enzyme-substrate system under study, as changes in substrate and 

other environmental conditions can affect the apparent rate determining step, hence enzyme 

catalysis not being generally as simple as stated in eq. 24. Thus, the answer in each case 

must be a combination of determinants such as changes in ΔCp
‡ between relevant states in 

each case and the different temperature dependencies of rates between relevant states, and 

to complicate this even further, the temperature dependence of ΔCp
‡ for the various 

reactions. 

1.4 Proteases 

This chapter will serve as a brief introduction into the world of proteases, outlining their 

properties and role in nature. This chapter will also serve to introduce the research model 

that involved comparison of the properties of the thermophilic subtilase from Thermus 

aquaticus (AQUI) and the cold active subtilase-like protease from a marine Vibrio sp (VPR). 

1.4.1 Classification of proteases 

Proteases belong to the class of hydrolases (EC 3) 202 and serve the role of protein catabolism 

in addition to being responsible for the regulation of multiple biological processes. The 
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hydrolysis of peptide bonds is one of the critical reactions carried out in every organism and 

must have been an important function for the metabolism of early life, providing a source of 

energy and building blocks for proteogenic processes 203, 204. Point in case, proteases are 

found in all kingdoms of life and many viruses use them to sculpt the proteomes of their 

targets often in order to hijack their functions 205.  

Proteases are classified as either endo-proteases or exo-proteases. Exo-proteases either 

cleave their substrate at the amino- or carboxy-termini, whereas endo-proteases cleave 

peptide bonds between residues somewhere within the peptide substrate. 206. Proteases do 

not just act as aggressive tools of peptide degradation, as their functions are highly diverse, 

from rather non-specific enzymes like proteinase K, to highly specific proteases that have 

specificity towards cleaving only one type of bond in a specific protein, e.g. angiotensin-

converting enzyme 203, 207. The importance of this class of enzymes is reflected in their 

abundance in various organisms, typically accounting for 2 – 4 % of encoded genes and, for 

example, it is estimated that around 2 % of the human genome codes for proteases 207-209. As 

a result, several diseases are caused by dysregulation of proteases and they have been of 

interest to the pharmaceutical industry as targets, diagnostic biomarkers, or even as therapies 

210, 211. In addition, proteases are important in other industries, chiefly in the food and 

detergent industries 212, 213. 

The MEROPS database 208 classifies proteases by catalytic type. To date, there are nine 

different catalytic types listed in the database, those are: Aspartic (A), Cysteine (C), 

Glutamic (G), Metallo (M) Asparagine (N), Mixed (P), Serine (S), Threonine (T) and 

Unknown (U). These types of proteases are then classified into families based on amino acid 

sequence identity of the catalytic unit denoted by a number, or into clans based on evidence 

of common ancestry assigned by another letter 214. As of this writing, there are 273 families 

listed, and 64 clans. Of all sequences in the database, serine and metallo proteases are the 

most abundant, accounting for 37 % and 36 %, respectively 208.     

1.4.2 Serine proteases 

Serine proteases are identified by the active serine residue responsible for the nucleophilic 

attack on the carbonyl carbon of the peptide bond with the formation of a covalent 

intermediate that eventually is hydrolyzed from the enzyme. As of this writing, there are 13 

different clans of serine proteases listed in the MEROPS database that can be divided into 
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38 families that belong purely to serine proteases and 3 clans belonging to the mixed 

category, containing 16 families of serine proteases (Table 1-1) 208. In the field of 

biochemistry, serine proteases have the historical value of being among the first enzymes 

that were studied in great detail 215. The interest in serine proteases is an interdisciplinary 

one due to their abundance in genomes of all living organisms and their roles broad 

functions, from digestion to cell differentiation 216-218.  

The widespread distribution of serine proteases demonstrates the effectiveness of this type 

of proteases in nature. This is also reflected in the fact that at least four of the clans SB, SC, 

SH and PA have evolved to have the same active site, the so-called catalytic triad, consisting 

of serine, histidine and aspartic acid residues. In these four distantly related clans, the 

residues take up the same geometry of these catalytic residues (Fig. 1.16) and have an 

identical reaction mechanism (Fig. 1.17), indicating that this motif has evolved on four 

different occasions 219, 220. In addition, some members of the SK clan have the same catalytic 

triad but in a novel configuration 220. The other clans all seem to utilize some sorts of catalytic 

triads, dyads, or an environment that enables a chemical moiety to act as a general base to 

accept the proton form the active Ser residue 220, 221. 
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Table 1-1. Classification of the serine proteases, their clans and families along with a model enzyme for 
each family. Adapted from the MEROPS database (As of April 2020). 

CLAN FAMILY MODEL PROTEASE STRUCTURE 
PA S1 Chymotrypsin A Yes  

S3 Togavirin Yes  
S6 IgA1-Specific Serine Peptidase Yes  
S7 Flavivirin Yes  
S29 Hepacivirin Yes  
S30 Potyvirus P1 Peptidase -  
S31 Pestivirus NS3 Polyprotein Peptidase Yes  
S32 Equine Arteritis Virus Serine Peptidase Yes  
S39 Sobemovirus Peptidase Yes  
S46 Dipeptidyl Peptidase 7 Yes  
S55 SpoIVB Peptidase -  
S64 Ssy5 Peptidase -  
S65 Picornain-like Serine Peptidase -  
S75 White Bream Virus Serine Peptidase - 

PB S45 Penicillin G Acylase Precursor Yes 
PC S51 Dipeptidase E Yes 
SB S8 Subtilisin Carlsberg Yes  

S53 Sedolisin Yes 
SC S9 Prolyl Oligo-peptidase Yes  

S10 Carboxypeptidase Y Yes  
S15 Xaa-Pro Dipeptidyl-peptidase Yes  
S28 Lysosomal Pro-Xaa Carboxy-peptidase Yes  
S33 Prolyl Amino peptidase Yes  
S37 PS-10 Peptidase -  
S82 Autocrine Proliferation Repressor Protein A - 

SE S11 D-Ala-D-Ala Carboxy-peptidase A Yes  
S12 D-Ala-D-Ala Carboxy-peptidase B Yes  
S13 D-Ala-D-Ala Peptidase C Yes 

SF S24 Repressor LexA Yes  
S26 Signal Peptidase I Yes 

SH S21 Cytomegalovirus Assemblin Yes  
S73 gpO Peptidase -  
S77 Prohead Peptidase gp21 Yes  
S78 Prohead Peptidase -  
S80 Prohead Peptidase gp175 - 

SJ S16 Lon-A Peptidase Yes  
S50 Infectious Pancreatic Necrosis Birnavirus Vp4 Peptidase Yes  
S69 Tellina Virus 1 VP4 Peptidase Yes 

SK S14 Peptidase Clp Yes  
S41 C-terminal Processing Peptidase-1 Yes  
S49 Signal Peptide Peptidase A Yes 

SO S74 E. coli phage K1F Endosialidase CIMCD Self-cleaving Protein Yes 
SP S59 Nucleoporin 145 Yes 
SR S60 Lactoferrin Yes 
SS S66 Murein Tetrapeptidase LD-Carboxy-peptidase Yes 
ST S54 Rhomboid-1 Yes 
UNASSIGNED S48 HetR Putative Peptidase Yes  

S62 Influenza A PA Peptidase Yes  
S68 PIDD Auto-processing Protein Unit 1 -  
S71 MUC1 Self-cleaving Mucin Yes  
S72 Dystroglycan Yes  
S79 CARD8 Self-cleaving Protein Yes  
S81 Destabilase Yes  
S85 Small protease Yes 
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Figure 1.16. A) The crystal structure of subtilisin BPN´ (PDB: 1ST2) marking the catalytic triad. B) The 
crystal structure of α-lytic protease, a chymotrypsin-like protease from Lysobacter enzymogenes (PDB: 
1SSX) marking the catalytic triad and the N- and C-terminals. 
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The reaction mechanism of serine proteases has been studied for decades and its deciphering 

shed light on the fine tuning of the molecular movements and interactions involved. The 

identification of this well-known triad was made on chymotrypsin, the model enzyme of the 

S1 family. In the 1950s stoichiometric inhibition of chymotrypsin by diisopropyl-

fluorophosphate (DFP) led researchers towards identifying that a reactive serine residue was 

essential for the activity of chymotrypsin 222-225. In the 1960s the histidine residue was 

discovered and identified by the usage of the tosyl phenylalanine chloromethyl ketone 

(TPCK) that reacted in a stochiometric manner with a histidine residue that was later 

identified by labeling with radioactive TPCK 226, 227. And lastly, the role of the aspartic acid 

residue as a part of the electrostatic chain that creates the nucleophilic serine residue was 

brought forth in the late 1960s (Fig. 1.17) 228. The involvement of all these residues have 

been shown by NMR, indicating weak Asp-His interactions that would be more in line with 

the view that the Asp residue has a role in orientating the side chain of the His residue 

correctly towards the active serine 229. However, the strength of the Asp-His interaction 

among the catalytic residues might differ between the clans of serine proteases 230. The 

proposed mechanism is shown in Fig. 1.17 as it is generally accepted. Starting with substrate 

binding, an unstable tetrahedral intermediate is formed due to the nucleophilic attack of the 

active serine to the carbonyl carbon, that is stabilized by hydrogen bonds from the oxyanion 

hole. The collapse of the tetrahedral intermediate releases the first product, the C-end part of 

the peptide, leaving the rather stable intermediate, the acyl-enzyme. The acyl-enzyme then 

reacts with an activated water molecule, forming the second tetrahedral intermediate which 

collapses, releasing a free enzyme and the second product 231. The specificity of serine 

proteases has throughout the years provided a clear example of the structure/function 

relationships underlying catalysis, as for a reaction to take place the catalytic residues and 

the peptide substrate must be brought in close proximity and in the right orientation for a 

successful reaction to occur. The specificity is achieved by binding pockets on the surface 

of the enzyme close to the catalytic residues. The nomenclature used to describe the positions 

around the scissile peptide bond are from the N-terminus: Pn-P2-P1-P1´-P2’-Pn´ for the 

sidechains of the substrate, the scissile bond being between P1 and P1´. Corresponding 

binding pockets or “subsites” are then marked with a S instead of a P (Fig. 1.17) 232. For 

example, trypsin has a negative charged residue in the S1 pocket and cleaves at the C-site of 

P1 positioned arginine and lysine 233. Elastase on the other hand has two aliphatic residues 

in the same pocket that reduce the size of the pocket resulting in cleavage at the C-site of 
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small aliphatic residues 234. The subtilisin proteases cleave at aliphatic and aromatic residues, 

thus have multiple cleavage sites on almost every natural polypeptide, similar to that of 

chymotrypsin 216, 235, 236.   

 

1.4.3 Subtilisin-like serine proteases 

The SB clan of serine proteases contains two families, the S8 family of subtilisins and the 

S53 family of sedolisins 208. The S8 family can be further divided into five different 

subfamilies, the subtilisins, the thermitases, the proteinase K-family, the lantibiotic 

peptidases and the kexin subfamilies 237. The substrate specificity of these proteases is often 

Figure 1.17. A reaction scheme depicting the catalytic hydrolysis of a peptide bond as carried out by 
serine proteases that utilize the Ser-His-Asp triad. Part 1 depicts the general base catalysis of the Ser 
residue by the His residue and the subsequent nucleophilic attack on a carbonyl carbon in the substrate 
by the alkoxide ion of the Ser residue. Part 2 shows the first tetrahedral intermediate stabilized via 
interactions to the oxyanion hole and the subsequent break down of the intermediate followed by the 
release of the first product. Part 3 shows the acyl-enzyme and the deprotonation of water by His and the 
nucleophilic attack of the resulting hydroxide ion to the acyl-enzyme. Part 4 shows the second 
tetrahedral intermediate and its collapse followed by regeneration of the enzyme and the second product 
release. 
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quite broad, but with a hydrophobic S1 binding pocket, thus cleaving at the C-end of 

hydrophobic and aromatic residues. There are known exceptions, however, e.g. enzymes that 

have acidic residues in the S1 binding pocket. This exception includes members of the kexin 

subfamily that have even more substrate specificity, cleaving only after dibasic or multibasic 

residues 237-239.   

Members of the S8 family are found in every kingdom of life, being highly prevalent in plant 

and bacterial genomes, but are also involved in various protein processing in both the animal 

and fungi kingdoms 220, 240. The namesake and representative of the family is subtilisin BPN´ 

or “bacterial protease Novo” from Bacillus subtilis and was one of the first protein crystal 

structures to be solved (Fig. 1.16) 220, 241. Nine enzymes from the family are found in the 

mammalian secretory pathway working as pro-protein convertases, two of which function 

in the cholesterol and/or fatty acid metabolism 242. One of those two is the proprotein 

convertase subtilisin-kexin type 9 (PCSK9) which has been found to regulate the levels of 

low-density lipoprotein receptor in the liver and thus contributing to cholesterol homeostasis 

243. In prokaryotes, subtilisin-like serine proteases are usually secreted to provide the 

organisms with nutrition and to assist in host invasion 220, 239. IvaP is an example. This is a 

subtilisin-like serine protease secreted by Vibrio cholerae, and is responsible for the 

potentially fatal diarrheal disease cholera 244. IvaP´s role in cholera seems to be to regulate 

a wide array of events, notably downregulating several host proteins. One of them is 

intelectin that has been postulated to be a part of the immune response to bacterial infections 

as it binds to bacterial specific carbohydrates 244, 245. In addition, they also serve a role in the 

maturation of various polypeptides such as bacteriocins and adhesins 246-248. The ability to 

function in those different processes and under various conditions is likely facilitated by 

adjacent protein domains and/or domain insertions that allow for specific activity and/or 

location in the hydrolytic machinery that regulates cell defenses, predatory mechanisms and 

other relevant cellular functions mediated by proteases 248. 

Structural organization 

Subtilisin-like serine proteases are produced in general as large pre-pro-proteins (Fig. 1.18) 

249. The organization of this pre-pro-protein is generally found to be as follows; at the N-

terminus the polypeptide begins with a the signal peptide, a cornerstone for protein 

localization, that controls the secretion and sorting of pre-pro-proteins to the correct 

environment where correct folding can be initiated 82, 250-252.  
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Following the signal peptide in the primary sequence is the intramolecular chaperone (IMC), 

often around 75-130 residue long, responsible for fast and correct folding. The catalytic 

domain, in addition to being an inhibitor of its catalytic activity 85, 253-257. The IMC likely is 

an intrinsically disordered protein (IDP) that assists in correct folding. The IMC is known to 

adopt an α-β-structure in the presence of its folded catalytic domain and inhibit the catalytic 

activity (Fig. 1. 19) 258. The auto-cleavage of the IMC and subsequent release is the rate-

determining step in the whole process and is heavily dependent on environmental conditions, 

thus controlling when the protease is activated. The first liberated catalytic domains then 

initiate an activation cascade of other folded IMC-pro-proteins and hydrolyze any remaining 

free IMCs 258, 259. It must be noted, however, that the IMC does not need to be covalently 

linked to the rest of the pro-protein, as free IMC domains can induce and/or increase the rate 

of refolding of a lone unfolded catalytic domain and form a dimer IMC-protease complex, 

that will then cleave the IMC and liberate the fully active protease 83, 260-262. 

Figure 1.18. The maturation of a subtilisin pre-pro-protein. First there is transport to the correct 
location, followed by signal peptide (green) cleavage. Folding of the protein comes next and is followed 
by subsequent cleavage and degradation of the N-terminal IMC (red). Lastly C-terminal (gold) cleavage
that will yield a free catalytic domain (blue).   
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The active catalytic domain, often around 270-290 residue long, is characterized by a α/β-

structure, where seven parallel β-sheets, aligned in the order 2314567, are located between 

α-helices, forming a three-layer αβα Rossmann-like sandwich. In the primary structure the 

organization of the catalytic triad is Asp-His-Ser. The nucleophilic Ser and the activating 

His residues are located at the ends of two adjacent α-helices (helix-E and helix-B, 

respectively) with the Asp residue on the primary β-sheet (Fig. 1. 20 and 1.22). Coming 

together in the tertiary structure, they form the correct geometry of these residues to form 

the catalytic triad 249.  

Following the catalytic domain is a C-terminal domain, often around 100-150 residues long. 

The role of this domain is somewhat unclear, as it is often autocleaved and discarded after 

Figure 1.19. The crystal structure of subtilisin TK-SP (ProN-Tk-SP) (PDB: 3AFG) containing both the 
N-terminal domain (orange) and the calcium ion (green spheres) containing C-terminal domain (blue). 
The catalytic domain (light brown) showing the mutated active site, where the active serine has been 
mutated to alanine (S359A). 
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the IMC has been processed leaving just the mature catalytic domain in prokaryotes, but the 

domain is retained in eukaryotes. The exact role of this C-terminal domain is thus related to 

the organism of origin and the role of the specific subtilisin-like protease in the proteolytic 

machinery. As an example of this is the C-terminal domain of aqualysin I (AQUI) from the 

thermophilic Thermus aquaticus. When the protease is expressed in Escherichia coli with 

the C-terminal domain intact, the protease was mostly found to be bound in the outer 

membrane of the bacterium, whereas in a C-terminal domain deficient mutants the 

localization of AQUI was mostly in the cytoplasmic space 263, 264. This indicated a role of 

the C-terminal domain in the translocation of AQUI through membranes and possibly 

membrane tethering. Further mutations on the C-terminal domain of AQUI indicated that 

the possible mode of action of the C-terminal domain, facilitating transmembrane export, 

was by inhibiting the rapid folding of the catalytic domain by the IMC 265. The C-terminal 

domain of AQUI shares a partial sequence homology to the C-terminal domain of the 

subtilisin-like serine protease KP-43 from Bacillus sp. KSM-KP43 266. The crystal structure 

of KP-43 contains the C-terminal domain that consists of an eight-stranded β-barrel, 

resembling a jelly roll β-barrel domain, binding two calcium atoms. As a C-terminal 

truncated form of KP-43 could not be expressed, it suggested that it might be involved in 

folding or the stability of the active protease domain 266 In the case of the hyperthermostable 

subtilisin-like serine protease Tk-SP from the archaeon Thermococcus kodakaraensis, the β-

barrel might play a role in its hyperthermostability (Fig. 1.19) 267, 268. The β-barrel interacts 

with the catalytic domain through salt-bridges, in addition to partaking in calcium binding 

at the domain-domain interface, where chelating conditions using EDTA result in dramatic 

loss in thermostabilty 249, 267-269. However, these C-terminal domains are usually cleaved off 

and discarded in prokaryotic subtilisins, at least under laboratory conditions. So, their 

functionality for the mature protease seems rather diverse. In eukaryotes, jelly roll β-barrel 

C-terminal domains are also found in the genes of subtilisin-like serine proprotein 

convertases of the kexin subfamily. However, those C-terminal domains do not share 

sequence homology with the prokaryote subtilisin C-terminal domains, possibly indicating 

a very distant relationship, if any at all. These C-terminal domains, called P-domains, appear 

to be important for the proteolytic activity and serve a stabilizing role as they are maintained 

in the mature protease 249, 269. In addition, these P-domains contain a variable C-termini that 

play a role in cell surface anchoring and therefore appear to be important for correct 

localization of the active protease 269, 270.   



49 

Calcium binding 

Calcium binding is found almost ubiquitously in all natural subtilisin-like serine proteases, 

except for plant subtilisins, There are, however, indications of bacterial subtilisins that seem 

to function well in the presence of EDTA such as the IvaP from Vibrio cholerae 245, 271. This 

indicates that either there are bacterial subtilisins that do not rely on bound calcium ions, or 

have extremely tightly bound calcium ions. However, as a rule of thumb, the role of calcium 

in these structures is mainly to maintain the correct native fold, i.e. protecting against 

autolysis, increasing thermostability, folding, and possibly in some cases calcium ions are 

involved in substrate binding, presumably through stabilization of binding pockets 3, 267, 272-

276. The number of calcium binding sites and their location within the structure does however 

vary greatly, both within and between subfamilies of subtilisins 249. There is also no direct 

correlation between the number of calcium binding sites and thermostability of the structure. 

An example is the crystal structure of the thermostable AQUI, which contains two bounds 

ions, whereas the cold active structural homolog VPR from Vibrio sp. PA-44 contains three, 

including the two found in AQUI 277, 278. At the low end for number of calcium binding sites 

is the thermostable thermomycolase from the fungus Malbranchea pulchella that contains 

just one calcium binding site 279, to the high end of seven bound calcium ions as found in 

TK-subtilisin from Thermococcus kodakaraensis 280. Thus, TK-subtilisin and TK-SP, both 

being hyperthermostable, have such varying calcium ion content, seven versus the two as 

found in TK-SP, and those two are part of the C-terminal β-domain, albeit one being on the 

domain-domain interface (Fig. 1.19). This high number of calcium ions found in TK-

subtilisin stems in part from a four calcium ion cluster that is located in a loop insertion, that 

may be a reason for the calcium mediated refolding of the catalytic domain without the IMC 

280. These calcium binding loop insertions are not unique, however, to the TK-subtilisin, as 

the SUB1 subtilisin from the protozoan parasite of the Plasmodium genus that causes malaria 

contains three calcium ions, two of which are located in a loop insertion close to the N-

terminus 281. In the case of SUB1, calcium ions are essential for folding, but may also have 

an activating property via stabilization around the S1 binding pocket, allowing for the 

formation of a disulfide bridge which is essential for activity 281. In addition, this calcium 

loop in SUB1 is not the same as is found in TK- subtilisin, meaning that a myriad of different 

calcium binding sites are found in the structures of subtilisin-like serine proteases often with 

rather specific roles. One calcium site has been shown to be highly important for the kinetic 
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stability of many of the bacterial subtilisins, as has been well demonstrated for subtilisin 

BPN´ that has a calcium binding site near the N-terminus (Fig. 1.20) 282.  

 Figure 1.20. The crystal structures of A) AQUI (orange) (PDB: 4DZT), B) subtilisin BPN´ (blue) (PDB: 
1ST2) and C) PRK (grey) (PDB: 2PRK) marking the calcium ion (green spheres) binding sites. 



51 

This contains a calcium binding site near the N-terminus in the structure of the mature active 

subtilisin BPN´, cannot be formed until after the IMC-catalytic domain peptide bond has 

been hydrolyzed, allowing for the formation of the N-terminus. Only at that time, the N-

terminal calcium binding site can be formed, which binds calcium tightly, in the nM range. 

When this calcium binding site was deleted, an active protease was formed, but which had 

become much less stable against thermal denaturation, but which could refold independently 

282. The calcium independent subtilisin BPN´ variant did fold an order of magnitude faster 

than the wild type in the presence of the IMC. These results, therefore, indicated that 

bacterial proteases may have adopted strategies that compromise folding in order to gain 

kinetic stability. 

Plants are apparently the only organisms to have evolved calcium free subtilisins. In the case 

of the tomato subtilisin STB3, the role of calcium seems to have been solved by the insertion 

of a PA-domain (protease associated) leading to homodimerization, loop extensions and by 

utilizing the positive charge at the side chain of a lysine residue where a calcium ion is 

usually found (Fig. 1.21) 271, 283.  

As mentioned earlier, bacterial subtilisins have been subjected to mutagenesis to delete 

calcium binding sites. But as a result, the stability of the calcium depleted variants was 

greatly diminished. A notable work on designing a calcium independent subtilisin BPN´ has 

been carried out, producing a calcium-independent subtilisin variant with restored thermal 

stability and that could fold without the IMC 284-286. Stable calcium free subtilisins are sought 

after for industrial application, where proteolytic activity is required under chelating 

conditions. 
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Industrial and research value  

Enzymes have widespread applications as industrial tools ranging from food applications 

and as additives in detergents to pharmaceutical and medical diagnosis. The estimated value 

of the enzyme industry stood at 1.5 billion dollars at the turn of the 21st century. Of that 

amount, proteases provided around 60-65% of the total value and alkaline proteases, there 

among subtilisins, 25% of the total market share 287. Subtilisins have also been of great value 

as research models, notably assisting in the development and pioneering of directed 

evolution methods 288-292, that was awarded the Nobel prize in chemistry in 2018 to Francis 

H. Arnold for her work in directed evolution. 

1.4.4 The research model: VPR and AQUI 

The research model utilized in this doctoral thesis work consists of two extremophilic 

subtilisin-like serine proteases of the proteinase K subfamily, a cold active protease and a 

thermostable protease 1. The proteinase K subfamily is named after proteinase K (PRK) form 

Figure 1.21. The crystal structure of the tomato subtilisin STB3 (PDB: 3I74). Shown are the catalytic 
residues of both monomers, Asp144, His215 and Ser539. The catalytic domains are colored green and 
pink to distinguish between each monomer comprising the dimer. The PA-domains at the dimer 
interface are colored orange and the C-terminal domain is colored light blue.   
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the fungi Engyodontium album and mostly consist of secreted alkaline endopeptidases found 

in fungi and bacteria, sharing a relatively high sequence identity of 37 % 237, 293. The cold 

active subtilisin-like serine protease VPR was isolated from the Gram-negative 

psychrotrophic bacterium Vibrio sp. PA-44 1. The gene that encodes for VPR consists of 

1593 base pairs that yield a 530 residue long pre-pro-protein 294. The pre-pro-protein consists 

of a 139-residue long N-terminal sequence, containing the signal peptide and the IMC, a 

291-residue long catalytic domain and a 100-residue long C-terminal sequence 294, 295. 

The thermostable subtilisin-like serine protease AQUI was isolated from the thermophilic 

bacterium Thermus aquaticus YT-1 of the Deinococcus-Thermus phylum 2. Despite testing 

Gram-positive, bacteria of the Deinococcus-Thermus phylum processes complex cell 

envelop, including an outer lipid layer, thus being more akin to Gram-negative bacteria 1, 2, 

296, 297. AQUI is encoded by 1539 base pairs yielding 513-residue long pre-pro-protein, 127-

residue long N-terminal sequence, 276-residue long catalytic domain and a 110-residue long 

C-terminal sequence 295, 298.  

VPR and AQUI share a high structural homology, in addition to having a sequence identity 

of around 60 % 294. When comparing the crystal structures of the catalytic domains of VPR 

and AQUI, a notable difference is seen in the C-terminus, as VPR contains a 15 residue 

longer C-terminal tail that contains one disulfide-bridge between residues 277 and 281, using 

VPR numbering for clarification (Fig. 1. 22). Both VPR and AQUI share two other disulfide-

bridges, between residues 67 and 99 and 163-194. At the N-terminus, AQUI contains two 

extra residues, showing that the autocatalytic site of the N-pro-peptide cleavage is shifted by 

two positions into the catalytic domain of VPR in the maturation process. The crystal 

structure of the mature catalytic domain exhibits the classical subtilisin αβα-sandwich 

structure, with the residues of the catalytic triad located on β-sheet 1 (Asp37), α-helix-B 

(His70) and α-helix-E (Ser222). The S1 to S4 binding pockets are then formed by the loops 

preceding α-helix-C, α-helix-D and the loop between β-sheet 5 and 6, that also takes part in 

coordinating the calcium ion in the Ca-1 site (Fig. 1.22) 277.    
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 Additionally, AQUI has a two-residue loop deletion corresponding to residues 61 and 62 in 

VPR. This loop harbors a calcium binding site in VPR (Ca-2), but not in AQUI. Both 

enzymes share the remaining two calcium binding sites. Those sites are the conserved 

calcium 1 binding site (Ca-1), shared with PRK, and the N-terminal calcium 3 binding site 

(Ca-3), first identified in the crystal structure of VPR 277. The Ca-3 site in VPR and AQUI 

binds a highly coordinated calcium ion, located within a α-helical-loop motif that envelops 

the calcium ion (Fig. 1.22). This N-terminal motif interacts directly with C-terminal regions 

of the protein and takes part in forming the hydrophobic core of the protein. In PRK, the 

stabilization of the N-terminus seems also to be mediated by a N-terminal calcium binding 

Figure 1.22. The crystal structures of VPR (light blue) (PDB: 1SH7) and AQUI (orange) (PDB: 4DZT). 
Marked are the active site residues, the calcium binding sites, disulfide bridges, the N- and C-terminals.
The helices are marked in an order from A to F. Calcium ions in the structure of VPR are shown as
green spheres and the calcium ions from AQUI as golden spheres. 
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site. However, in the PRK structure the calcium ion seems more to be solvent exposed and 

bridges the N- and C-terminal parts of the protein, whereas the N-terminus itself takes up a 

antiparallel β-sheet motif, with the α-helical-loop motif separating the two β-strands forming 

the sheet (Fig 1.21). The amino acid sequences of the N-terminal regions of VPR and AQUI 

share a few conserved residues with PRK, notably a tryptophan residue located at the first 

α-helix, coming in close proximity with residues at the C-terminals of two β-sheets that take 

part in forming the Ca-1 site, including the conserved Asp196 a main coordinator of that 

calcium ion. The numbering of the Ca-1 site comes from its presence in the structure of PRK. 

The calcium binding at that site is much stronger as compared to the much more weakly 

bound calcium ion bridging the N- and C-terminals 299. This is likely not the case for VPR 

and AQUI, as another cold active subtilisin-like serine protease, SPRK from a 

psychrotrophilic Serratia species, also has the Ca-3 site, while the Ca-1 and Ca-2 sites are 

depleted of calcium in that crystal structure. SPRK, however, contains all the necessary 

structural components for these calcium binding motifs as found in VPR and the relevant 

calcium binding residues 300. This strongly suggests that the Ca-1 and Ca-2 sites are weaker 

binders of calcium than the Ca-3 site in those structures. In addition, the Ca-2 site which is 

not found in AQUI, has been shown not to affect the dynamics of the structure of VPR in 

MD simulations, when comparing simulations of the enzyme with a calcium ion either 

present, or absent, in the Ca-2 site 301. This may be linked to the close proximity to the Cys67-

Cys99 disulfide bridge that essentially rigidifies that part of the protein and the Ca-2 site.      

Previous research into the determinants of temperature adaptation  

Possessing a system like VPR and AQUI can give a great insight into the structural factors 

that determine the ability of these enzymes to function on their respective ends of the 

temperature spectrum 1. Over the temperature range where the activity of VPR is readily 

measured, the enzyme exhibits much higher kcat values and lower KM values as compared to 

AQUI, resulting in catalytic efficiencies that are far higher than for AQUI. Additionally, 

AQUI is far more stable both against heat (Fig. 1.23) and denaturants 1, 302.One of the larger 

differences observed between the processed catalytic domains of VPR and AQUI, is the 

extended, fifteen residue long, disulfide-bridge containing, C-terminus of the former. In 

order to create an even more compatible model system for our comparative structural studies, 

a C-terminal truncated variant of VPR, VPR_C277stop (VPRΔC) was constructed 303. The 

VPRΔC variant did not show large changes in properties but had slightly lower catalytic 
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efficiency and an increase in melting temperature of about 1.5°C, up from 63.6°C, when 

measured by circular dichroism (CD). These and other results showed that shortening of the 

C-terminus of VPR had minor effects on the properties of the enzyme, at least under 

laboratory conditions using a synthetic substrate. 

On the basis of structural comparisons of the structures of VPR and AQUI, a multitude of 

mutations have been made on both VPR and AQUI, to test hypotheses on structural aspects 

of their respective temperature adaptation. These involve Ser/Ala exchanges at selected sites 

in VPR that had moderately stabilizing effects. Such specific Ser to Ala exchanges were 

among those most frequently observed between the cold and heat adapted structures of 

enzymes in general 304. Single and double proline substitutions were incorporated into the 

loops of VPR based on location of prolines in loops of AQUI, that had variable effects, as 

proline mutations at the N-terminus were much more stabilizing than at other selected sites 

304, 305. A more systematic and extended study on the effects of such incorporations of 

prolines into loops of VPR are the subject of a part of this thesis 4.  

Some chosen residues of VPR have also been incorporated into the structure of AQUI at 

corresponding sites. Four variants were created containing a single Pro-Xxx mutation, all of 

which displayed diminished stabilities, especially for proline exchanges at the N-terminal. 

All the variants had similar catalytic efficiencies 161. Those experiments were however 

conducted at calcium chelating conditions, due to the usage of a phosphate buffer 161, 306. 

Interestingly, one of those variants (AQUI_P5N), displayed a DSC thermogram with two 

Figure 1.23. Comparison of normalized thermograms of VPRΔC (blue line) and AQUI (black line) at pH 
8.6 and 15 mM CaCl2, with a temperature gradient of 1°C/min recorded separately on DSC in our 
laboratory. 
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peaks, a similar observation as is found for many of the proline variants measured in the 

work of this thesis. This will be discussed in the results and discussion chapter.  

AQUI has the potential of forming thirteen salt-bridges that are not found in VPR, six of 

whom are single salt-bridges and the rest being in small clusters of three or four residues 307. 

A study was undertaken to delete those putative salt-bridges from the structure of AQUI by 

site directed mutagenesis. Eight single variants were produced to delete individual salt-

bridges that had been predicted form MD-simulations to be important in the structure of 

AQUI. Results showed relatively small decreases in stability of the enzyme, except for one 

variant. That variant was AQUI_D17N, where this single mutation resulted in a lowering of 

the melting point by 4.1°C. The effect on thermal inactivation of the active conformation 

was even more pronounced with an 8.8°C decrease in T50% (the temperature which half of 

the activity is lost in half an hour) 307, 308. The side chain of Asp17 has the possibility of 

interacting with Arg12 and Arg259. The Asp17-Arg259 interaction would most likely be 

more prevalent, as Arg12 is expected to interact strongly with Asp183. From MD-

simulations of these salt-bridges in AQUI, it turns out that many of them are dynamic, some 

just persisting in around 2 % of simulations frames 307. Thus, the stabilization role of surface 

exposed putative salt-bridges is not fully clear, as interpretation of the effects of such single 

charge deletions is highly dependent on conditions and might need to be viewed in a protein 

interaction network context. Of note, however, is that the Asp17-Arg259 salt-bridge, being 

important for thermal stability, essentially links together the same structural parts as the 

calcium binding site 2 does in PRK, as the main coordinators of that calcium ion are the side 

chain of Asp260 and the peptide bond oxygen of Thr16. That calcium ion binding site of 

PRK and the salt-bridge of AQUI are thus linking the C- and N-terminal parts of the proteins, 

indicating that interactions between those parts are important. Linking those regions together 

could thus be important for the kinetic stability of the structures, possibly by increasing the 

unfolding cooperativity.  

In VPR, there is a lysine residue (Lys257) at the corresponding location to Arg259 in AQUI. 

Furthermore, at the site corresponding to Asp17, an asparagine residue is present (Asn15). 

Thus, salt-bridge formation is not possible at this site. The introduction of the N15D 

mutation into the structure of VPR, however, was stabilizing, increasing the melting point 

by about 3°C, without affecting the catalytic efficiency, at least when using VPRΔC as a 

template 303.  
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Further studies have also shown that increasing connectivity/contacts between the N- and C-

terminal parts impacts the stability of these structures. One of the interconnected clusters 

found in AQUI is located between helix D and the loop that makes up a part of the Ca-1 site. 

In AQUI, this cluster consists of salt-bridges between Asp138-Arg169 and Lys142-Glu172, 

with Lys142 being able to interact with Asp138, both being on helix D.  

In the structure of VPR, only the salt-bridge between Asp138-Arg169 is found. Thus, the 

variants VPRΔC_Q142K, VPRΔC_S172E and VPRΔC_S172E/Q142K were produced 309. 

None of these variants had stabilizing effects on the structure, instead they were rather 

destabilizing. This was evident in the case of VPRΔC_S142E/Q142K where the exchange of 

residues was found to lower the melting point of the variant by 4°C compared to VPRΔC. 

The VPRΔC_S142E/Q142K modification had no effects on the activity. However, the single 

variants did show an increase in the catalytic efficiency, especially in case of 

VPRΔC_Q142K. This was related to Lys142 interacting with Asp138, thus interrupting the 

Asp138-Arg169 salt-bridge and further increasing the mobility important for catalysis (Fig. 

1.24) 309.  MD-simulations of VPR and AQUI have been carried out in order to compare the 

flexibilities of the structures. These studies have shown that the structure of VPR is overall 

more flexible, with a general noisier RMSF of the peptide backbone, as compared with 

AQUI. Observations of a higher degree of flexibility of VPR have also been supported by 

fluorescence quenching experiments, showing increased permeability of acrylamide into the 

structure 310.  These results are in line with the idea of the higher flexibility of enzymes that 

are adapted to colder environments.  In general, flexibility of these structures has a similar 

overall profile, with notable regions of high flexibility separated by more rigid areas. Of 

special note are three areas; around β-sheet 2 and into the loop that contains the Ca-2 binding 

site in VPR, the loop connecting β-sheet 3 to helix-C and the loop between β-sheet 4 and 

helix-D. The loops preceding helix-C and helix-D are a part of the substrate binding pockets 

in those structures. In addition, some increased mobility was seen in the loop preceding β-

sheet 7 and the loop just preceding the C-terminus (Fig. 1.25) 309, 310.  
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The description that has been presented and summarized above indicates the state of the 

research model at the beginning of the work presented in this dissertation. The aim was to 

examine further what effects additive proline exchanges would have on stability, activity 

and flexibility. Flexibility estimations would be conducted using active site labeling, steady-

state and time-resolved fluorescence quenching, in addition to MD-simulations, with the aim 

of comparing those results to AQUI. Assisting in resolving the fluorescence spectra, Trp-to-

Phe variants were to be produced, in order to resolve the contribution of individual 

Figure 1.24. The crystal structure of AQUI (PDB: 4DZT). The highlighted areas are the parts that both
VPR and AQUI show increased flexibility during MD-simulations, excluding the highly mobile terminal 
regions. 
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tryptophan residues to the fluorescence spectra of VPR, in addition to monitoring their 

effects on stability, activity and flexibility. Results obtained in the early parts of the study 

led to more thorough investigation into the structural basis of kinetic stability and unfolding 

cooperativity of VPR and its variants, utilizing differential scanning calorimetry. 

 

 

Figure 1.25. The crystal structure of VPR (PDB: 1SH7), highlighting the residues (balls and sticks) that 
have been mutated to investigate the role of salt-bridges in the structure of VPR.    
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2 Methodologies  

This chapter will outline methodologies utilized in the current work, published and 

unpublished. 

2.1 Molecular modelling and data fitting 

Molecular graphics, analysis of crystal structures and sequence homology analysis of crystal 

structures was carried out with UCSF Chimera 311. Non-linear and linear fitting of data sets 

was carried out using either GraphPad Prism 6 for Windows or the analysis software 

KaleidaGraph 3.6 for Windows. 

2.2 Production and purification 

The expression system utilized in earlier work involving VPR had the drawback of usually 

only yielding less than 500 U per 1 L of expression culture. When initial expression tests of 

tryptophan exchange variants yielded extremely low levels of active protein, the decision 

was taken to try out other expression systems to improve yields. As described in the paper 

“Improved expression, purification and characterization of VPR, a cold active subtilisin-like 

serine proteinase and the effects of calcium on expression and stability” 3 we opted to try out 

the T7 based expression system using the pET-11a-d vector in the titratable T7 

polymerase/T7lysosyme system of the E. coli strain Lemo21 312.   

2.2.1 Cloning 

Cloning was performed via overlap extension PCR cloning 313 using Phusion® High-Fidelity 

DNA polymerase. The genes coding for the C-terminal truncated form of VPRΔC 277 and 

AQUI YT-1 263, 308, 314 were both attempted to be cloned into the pET-11a vector. The PCR 

reaction mixture used to construct the megaprimers was as follows: 3.0 µM of sense and 

anti-sense primers, 1.5 nM of the vector containing the target gene, 200 µM dNTP, 4 U of 

Phusion polymerase and using the GC buffer from New England Biolabs, in a total volume 

of 20 µL. The following program was used: the mixture was pre-heated at 98°C for 30 
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seconds, then thermo-cycles ran 25-times in the following order: 98°C for 10 seconds, 55°C 

for 20 seconds, 72°C for 50 seconds and repeat. The final elongation step was performed at 

72°C for 10 minutes followed by cooling to 4°C. After amplification, the PCR product was 

gel purified from a 1% agar gel and the appropriate band was isolated using a gel extraction 

kit. The purified megaprimer was then used to clone the gene into the pET-11-a-d vector. 

The PCR reaction mixture contained the purified megaprimer in a 250-fold excess over the 

pET-11a vector under the same conditions as in the first PCR reaction. The PCR program 

was as follows: denaturation at 99°C for 2 minutes followed by 20 cycles of 95°C for 50 

seconds, 60°C for 50 seconds and 68°C for 12 minutes. The final elongation step was carried 

out at 68°C for 12 minutes and then the reaction was quenched by cooling to 4°C. DpnI was 

then added to digest any methylated DNA in the samples and incubated at room temperature 

for 1.5 hours, followed by transformation into XL10-Gold cells and then plated on LB-discs 

that were grown overnight at 37°C. Single colonies were then picked and grown overnight 

in LB-Miller broth containing ampicillin at 37°C and rotated at 230 rpm. Plasmid 

purification was carried out using the Monarch plasmid miniprep kit from New England 

Biolabs, following their instructions. Cloning was then verified by Sanger sequencing at 

Genewiz. 

2.2.2 Strains, plasmids, media and transformation 

All plasmid production was carried out in the E. coli strain XL10-Gold having the genotype: 

TetrD(mcrA)183 D(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac 

Hte [F´ proAB lacIqZDM15 Tn10 (Tetr) Amy Camr]. The expression of VPR was performed 

in strain Lemo21 (DE3) having the genotype: fhuA2 [lon] ompT gal (λ DE3) 

[dcm] ∆hsdS/pLemo(CamR) λ DE3 = λ sBamHIo ∆EcoRI-B int::(lacI::PlacUV5::T7 gene1) 

i21 ∆nin5 pLemo = pACYC184-PrhaBAD-lysY. Transformation of both strains was carried 

out by diluting PCR samples or purified plasmids (50 – 100 ng/µL) 50-fold into Eppendorf 

tubes containing competent cells and kept on ice for 10 to 30 minutes. Heat shock was carried 

out at 42°C for 60 seconds and placed on ice to chill to ambient temperatures fast. Samples 

were then diluted 5 to 20-fold into LB-Miller broth and grown for 1 hour at 37°C. Cells were 

then plated and grown at 37°C overnight. Cultures and agar plates for plasmid production 

were made from LB-Miller broth containing 0.1mg/mL ampicillin. Lemo21 cells for 

expression were grown on LB-Miller plates containing 0.1 mg/mL ampicillin, 0.03 mg/mL 
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chloramphenicol and 0.1% (w/v) L-rhamnose. Liquid media for protein expression was 

2xYT broth containing 0.1 mg/mL ampicillin and 0.03 mg/mL chloramphenicol. 

The plasmid pJOE3075 containing the gene coding for AQUI YT-1 was transformed into 

the E. coli strain BL21 with the genotype fhuA2 [lon] ompT gal [dcm] ΔhsdS, following the 

same protocol as for VPR. 

2.2.3 Expression and optimization 

VPR expression and optimization 

Starter cultures of transformed Lemo21 cells in 2xYT broth were cultivated at 37°C and 230 

rpm overnight. Starter cultures were then diluted 50x into 2xYT expression cultures 

containing varying concentrations of L-rhamnose. Cultivation was performed in Innova44 

incubators at 37°C and 230 rpm. Cells were grown until A600 had reached 0.4 - 0.8 A.U. At 

that point the culture was made 400 µM in IPTG and varying amounts of a sterile 4 M CaCl2 

were added. At that point the temperature was lowered to 18°C and the flasks shaken at 230 

rpm for 20 hours. Cells were harvested by centrifugation at 4500xg at 10°C for 15 min. 

Samples of cultures were then withdrawn and diluted 10x for absorbance measurements 

(A600) and supernatant activity measurements to estimate cell density and the amount of 

enzyme leaking into the growth medium. Harvested cell pellets were stored at -25°C until 

use. In the case of VPRΔC, and especially for the less stable variants of VPR, the addition of 

CaCl2 to a final concentration of 100 mM has been observed to be highly beneficial 3. Thus, 

all expression cultivations of VPR and its variants in this improved expression system have 

contained 100 mM CaCl2 and 76 µM L-rhamnose, yielding upwards of one hundred times 

more units of VPRΔC and made the expression of unstable variants such as some of the 

tryptophan variants possible. Improved expression of AQUI in this system has not been 

achieved in this system at this time. 

AQUI expression 

Starter cultures of transformed BL21 cells in 2xYT broth containing 0.1 mg/mL were grown 

overnight at 37°C. Cultures were then diluted approximately 50x into 2xYT containing 0.1 

mg/mL ampicillin and grown at 37°C until A600 reached 0.4 - 0.8 A.U. Expression was then 

induced by adding rhamnose to a final concentration of 0.2 % weight/volume and the 

expression cultivation made 10 mM CaCl2. Cultures were grown at 37°C for approximately 

6 hours, cells then harvested and stored as described for VPR.      
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2.2.4 Site directed mutagenesis 

During this project, site directed mutagenesis has been carried out on VPR and AQUI and 

the list of primers and mutations is to be found in their relevant publications. Throughout 

this project, two methods of site directed mutagenesis have been utilized; Quikchange Site-

directed Mutagenesis Kit from Stratagene and Q5 Site-directed Mutagenesis Kit form New 

England Biolabs. Presently, the Q5 system is almost exclusively used as it produces much 

higher amounts of modified plasmids as it does not rely on mutagenic primer pairs but uses 

non-overlapping primers that allows for exponential amplification instead of linear.    

2.2.5 Purification 

Purification of VPRΔC 

Harvested cell pellets were dissolved in 1/20 of the original culture volume in a buffer 

containing 25 mM Tris, 10 mM CaCl2 and set to pH 8.0 at room temperature. To that sample, 

dissolved DNase and lysozyme were added to a final concentration of 1 µg/mL and 1 

mg/mL, respectively. The sample was then gently shaken for 2 hours, or until the pellet was 

completely resuspended. This was followed by a flash freeze and thaw cycle using liquid 

nitrogen and thawed at room temperature with gentle shaking. This freeze/thaw cycle was 

repeated three times with the last thawing being carried out at 4°C overnight. The sample 

was then centrifuged at 20,000 xg at 4°C for 45 minutes. The supernatant was kept and made 

80% saturated by ammonium sulfate, followed by another centrifuge step at 20,000 xg at 

4°C for 45 minutes. The supernatant was discarded, and the precipitate dissolved in the same 

Tris buffer as before.  

All chromatography steps were performed on a BioLogic LP workstation at 4°C and all 

buffer solutions used in the purification protocol contained 25 mM Tris, 10 mM CaCl2 and 

were adjusted to pH 8.0 at room temperature beforehand. The first chromatography step 

consisted of an affinity column (N-carbobenzoxy-D-phenylalanyl-triethylenetetramine-

Sepharose (z-D-Phe-TETA) column)), previously equilibrated with the Tris-buffer. After 

loading the sample onto the column, it was washed with 1 M NaCl until absorbance at 280 

nm had stabilized. Prior to elution the column was washed with the buffer without NaCl. 

Elution was then performed with a 2 M guanidinium chloride solution and the eluted 

fractions diluted into 3 M ammonium sulfate in a 5 to 4 ratio. That sample was then 

immediately loaded onto a hydrophobic interaction column (Phenyl Sepharose), previously 
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equilibrated with 1 M ammonium sulfate. The ammonium sulfate concentration was then 

lowered to 0 M, in a gradient or stepwise manner, taking care to wash off contaminants that 

start eluting at or below 0.4 M ammonium sulfate. VPRΔC was then eluted by 50% ethylene 

glycol in Tris-buffer. The final step in the purification procedure consisted of an anion 

exchange column (Q-Sepharose) which was meant to concentrate the sample and to ensure 

that no RNA contamination was present 3. The column was equilibrated with the Tris-buffer 

before the sample was loaded. The elution was then performed with the same buffer followed 

by elution using a linear NaCl gradient from 0 M to 0.5 M. Active portions were pooled 

together and made 20% in ethylene glycol before being flash frozen in liquid nitrogen. 

Samples were then stored at -25°C. 

Purification was then confirmed by using Blue Silver stained 315 stacking SDS-PAGE 

(4%/12%). Specific activity of all samples was estimated by measuring activity against 0.5 

mM Suc-AAPF-NH-Np and protein concentration was determined by using the Coomassie 

G-250 based assay as described by Zaman and Vervilghen 316. VPRΔC samples purified to 

homogeneity migrated as a single band with an estimated molecular mass of 34 – 35 kDa as 

judged by SDS-PAGE and with estimated specific activity of around 800 – 900 U/mg. 

Purification of AQUI 

The purification of AQUI was carried out on a BioLogic LP workstation at 4°C, the 

purification protocol described in detail in 308. The protocol consists of heat treatment at 

70°C for an hour, ammonium sulfate precipitation, hydrophobic interaction column (Phenyl 

Sepharose) and cation exchange column (CM Sepharose). Purification to homogeneity 

confirmed by SDS-PAGE as described for VPR and samples stored in the same manner.   

2.3 Activity assays  

The standard conditions under which the kinetic parameters of VPR and its mutated variants 

were characterized, were as follows. Enzyme solutions were dialyzed against the assay 

buffer, that contained 100 mM Tris,10 mM CaCl2 and set to pH 8.6 at 25°C, overnight at 

4°C. Activity against the substrate Suc-AAPF-NH-Np dissolved in the assay buffer was 

monitored at 410 nm over 15 seconds at 25°C. Seven different substrate concentrations were 

used ranging between 0.1 mM and 1.0 mM. For each set of experiments, each substrate 
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concentration was measured in triplicates. Reported values are averages of at least three sets 

of measurements.  

For protein concentration measurements, absorbance at 280 nm were utilized, using the 

molar attenuation coefficient 34170 M-1cm-1 for VPRΔC and 28670 M-1cm-1 in the case of the 

tryptophan variants 317. For accurate substrate concentrations, assay solutions containing 

enzyme and substrate were incubated overnight at room temperature before diluting 10-fold 

and measuring absorbance at 410 nm, using the molar attenuation coefficient 8480 M-1cm-1 

for calculations 318. Results were then fitted to the Michaelis-Menten equation and 

parameters calculated. For estimation of kinetic parameters under non-standard conditions, 

activity assays were carried out on a Shimadzu UV-2700 spectrophotometer connected to a 

Shimadzu TCC-100 temperature controller and measuring against four different substrate 

concentrations, all done in triplicates. 

2.4 Stability assays 

2.4.1 Inactivation experiments 

The standard method for inactivation experiments were as follows. Samples were prepared 

by dialysis overnight at 4°C against a buffer containing 25 mM Tris, 15 mM CaCl2, 100 mM 

NaCl, 1 mM EDTA and tuned to pH 8.95 at 25°C. Samples were incubated at several 

selected temperatures and activity monitored against 0.5 mM Suc-AAPF-NH-Np 

withdrawing aliquots at timed intervals. The rates of inactivation were then plotted up in the 

form of an Arrhenius plot, where the activation energy of inactivation (Eact (inactivation)) is 

calculated along with the T50% value. T50% is defined as the temperature at which half of the 

activity is lost after 30 minutes. The half-life (t1/2) at a chosen temperature and varying 

conditions was also measured and calculated for further comparisons. The samples were 

generally diluted 50-100-fold into the appropriate incubation buffer just prior to 

measurements and aliquots were withdrawn at intervals and assayed for remaining activity 

2.4.2 Melting curves by circular dichroism (CD) (Tm) 

To determine the stability of the secondary structure circular dichroism (CD) was utilized. 

Sample preparations were as follows. Samples were inhibited by PMSF by making the 

enzyme solution 2.5 mM in phenylmethylsulphonyl fluoride (PMSF) and incubating that 



67 

solution for 30 minutes at room temperature (the more unstable variants were incubated at 

4°C for periods exceeding 30 minutes). Following that incubation period, the sample was 

dialyzed overnight at 4°C against the standard stability assay buffer that consists of 25 mM 

glycine, 15 mM CaCl2 concentrations, 100 mM NaCl and tuned to pH 8.6 at 25°C. The 

secondary structure unfolding of VPR and variants was monitored on a Jasco J-1100 

spectropolarimeter at 222 nm using a 1 mm cuvette. Protein concentration in these 

experiments was kept between 0.1-0.4 mg/mL and recorded between temperatures that made 

sure that proper baselines for the native and denatured state were established. For Tm 

determination, melting curves were normalized and then fitted to a sigmoidal curve from 

which the Tm value was calculated. Reported Tm values are all based on at least three separate 

experiments recorded at the same temperature gradient. 

2.4.3 Protein stability determined by differential scanning 
calorimetry (DSC) (Tm (app)) 

Differential scanning calorimetry (DSC) scans were carried out using a MicroCal VP-DSC. 

Sample preparation for DSC experiments was the same as for CD measurements. Protein 

concentrations were between 0.4–1.2 mg/mL and prior to loading, samples were degassed 

for 15 - 30 minutes. Background determination was done by recording the thermal history 

of the appropriate buffer overnight. Samples were then loaded in the cooling stage between 

25°C and 10°C. Experimental setup did vary but the standard conditions were to scan from 

15°C and until the proteins were fully unfolded followed by cooling and a reheat run 

recording the heat capacity of the denatured state over the temperature range. The standard 

assay conditions were 25 mM glycine, 15 mM CaCl2 and 100 mM NaCl at pH 8.6 scanning 

with a rate of 1.0°C/min. To confirm unfolding models, scans were conducted using 

0.5°C/min and 1.5°C/min, varying pH and calcium concentrations in addition to recording 

partial unfolding DSC thermograms, where heating and cooling rates were kept constant.   

Initial data analysis consisted of buffer background subtraction, performed using the Origin 

software and unmodified data sets of native and denatured runs exported for further analysis. 

In addition, data sets of all native state thermograms were converted into plots of excess heat 

capacity versus temperature, by manually fitting the linear segments close to the peak and 

creating a baseline using the Origin software. The apparent melting point (Tm (app)) was 

calculated by fitting a cubic function to the peaks of the thermograms, solving the first 

derivative for the local maximum.  
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The unfolding process of VPRΔC is under kinetic control 4 and conforms to the two-state 

irreversible unfolding model: 

�
��
→ � 

where N stands for the native state, D for the denatured one and k1 is the first order rate 

constant of unfolding. The rate of unfolding (k1) will then follow the Arrhenius equation and 

is calculated as: 

�� =
���

�� − �
 

where v is the speed of the temperature gradient Cp is the excess heat capacity at a given 

temperature, Qt is the total heat evolved and Q is heat evolved at a given temperature 91. The 

activation energy of unfolding (Eact) is then calculated from the slope of the Arrhenius plot 

using the calculated unfolding rates above 5% heat evolved and under 95% heat evolved to 

avoid the relative high uncertainty at the end and beginning of the of the transitions 91. From 

the activation energy of unfolding the activation enthalpy is calculated: 

ΔH‡ = ���� − �� 

where R is the universal gas constant and T is the absolute temperature. The activation Gibbs 

free energy (ΔG‡) is then calculated as: 

ΔG‡ = −�� ln �
�� × ℎ

�� × �
� 

where R is the universal gas constant, T is the absolute temperature, k1 is the rate of unfolding 

at a given temperature, h is the Planck constant and kb is the Boltzmann constant. The 

activation entropy (ΔS‡) can then be calculated as: 

ΔS‡ =
ΔH‡ − ΔG‡

�
 

Deviations of the two-state model were observed in several variants and for the wild type at 

low pH values. The unfolding model used to describe deviating variants was a three-state 

irreversible model, were both transitions are under kinetic control: 
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where N stands for the native state, I represents the intermediate state, D the denatured state, 

k1 stands for the first order rate constant of the first transition and k2 for the first order rate 

constant of the second transition. We utilize the online tool CalFitter 319, 320 to analyze these 

more complex unfolding processes. The model CalFitter uses being a modification of the 

Arrhenius equation: 

� = exp �−
����
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where k is the rate of unfolding, Eact is the activation energy of unfolding, R is the gas 

constant, T is the absolute temperature and Tact is an expression of the preexponential factor 

A, that has been transformed into exponent with the single new parameter Tact for more 

robust parameter estimation. Activation energy parameters can then be calculated as 

described for the two-state model of each transition. Concurrent with DSC unfolding 

experiments, CD secondary structure melting measurements were carried out under the same 

conditions. CalFitter was thus used to simultaneously fit DSC and CD data for more accurate 

fit and correlations between unfolding events and secondary structure content of those 

events. Under our standard assay conditions many measured variants displayed unstable heat 

capacity traces post to the unfolding transition, indicative of aggregation. As of now, 

CalFitter cannot model aggregation events. Thus, comparisons between variants is based on 

fitting of deconvoluted DSC thermograms and normalized CD melting profiles. In this case 

ΔCp
‡ is fixed as 0 kJ/mol as is the slope of the pre-baseline set to 0. Although baseline 

subtraction leads to a loss of information and possibly poorer precision in parameter 

estimation, our observation is that the accuracy holds and was improved when working with 

data sets that showed signs of slow aggregation appearing as downward sloping of post heat 

capacities after the unfolding transition.  
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2.5 Structure monitoring 

2.5.1 Circular dichroism (CD)  

Concurrent to the DSC and CD unfolding experiments, CD wavelength scans were also 

recorded on a Jasco J-1100 from 250 nm to 200 nm at 25°C using a 1 mm cuvette. 

2.5.2 Fluorescence spectroscopy (FS)  

Steady state fluorescence was recorded for each variant at 15°C, 25°C and 35°C using a 

Fluoromax-4 spectrofluorometer equipped with a circulating water bath for temperature 

control. All samples were inhibited with PMSF at a final concentration of 2.5 mM, followed 

by dialysis against 50 mM Tris, 10 mM CaCl2 and pH 8.0 overnight at 4°C. Prior to 

fluorescence experiments absorbance spectra were recorded from 400 nm down to 220 nm 

and absorbance adjusted to 0.03 - 0.05 A.U. at 295 nm in a 0.4 cm quartz cuvette used for 

fluorescence experiments. In addition to recording native fluorescence of all variants, steady 

state fluorescence of the denatured state was also recorded for VPRΔC, VPRΔC_N3P/I5P, 

VPRΔC_N3P/I5P/N238P/T265P and VPRΔC_W6F, where samples were heated to 90°C for 

15 minutes and fluorescence measured at 25°C. All samples were excited at 295 nm using 3 

nm entrance slit width and fluorescence monitored between 310 nm and 450 nm using a 5-

8 nm exit slit width for native samples and 2-3 nm for denatured samples. Relative 

fluorescence was then calculated as:   

��. =
�

���
[�] ∗ ���.�

�

������
 

where Fn. is the normalized fluorescence intensity, CPS the recorded fluorescence intensity, 

[P] the protein concentration, exi. the exit slit width used and FVPRΔC the concentration and 

exit slit width normalized fluorescence for native VPRΔC. The peak of each fluorescence 

spectrum was then fitted to a cubic function, solving the first derivative for the local 

maximum (λmax). The area under each curve (AUC) was calculated for all variants via the 

trapezoidal rule and the relative emission efficacy calculated by dividing the results with the 

average fluorescence intensity for native VPRΔC.  

Acrylamide quenching experiments were also conducted on all variants, using a 2.5 M stock 

of molecular biology grade acrylamide. Sample preparation and experimental conditions 
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were as described for samples for steady state experiments, with the addition of recording 

steady state fluorescence at varying concentrations of acrylamide. After each aliquot 

addition of acrylamide, the solution was thoroughly mixed and followed by one min resting 

time for temperature equilibration. The effectiveness of quenching was calculated by fitting 

the data to the Stern-Volmer equation: 

F�

�
= 1 + ���[�] 

where F0 and F are the fluorescence intensities in the absence and presence of quencher 

between 310 nm and 410 nm, [Q] is concentration of quencher and Ksv is the Stern-Volmer 

constant calculated by linear regression. Corrections of fluorescence intensities were 

performed on the data to account for dilutions due to additions of acrylamide.  

2.5.3 Molecular dynamic simulations (MD) 

MD simulations were carried out using the Gromacs software package (www.gromacs.org) 

on a parallel architecture computer utilizing the CHARMM22* force field 321 for 

simulations. To provide starting structures for the simulations, the X-ray crystal structure of 

VPR (PDB ID: 1SH7) 277 was modified using UCSF Chimera 311. In-silico modifications of 

VPR consisted of C-terminal deletion by deleting Gly276 and succeeding residues. In-silico 

mutagenesis was performed by choosing a rotamer for the new residue that closely 

resembled the native rotamer of the native residue. Structures were soaked in TIP3P 

dodecahedral water with a minimum of 1 nm between the protein and the edge of the water 

box, all succeeding MD simulations were then conducted under the periodic boundary 

condition. Preparation of models was as follows: (i) steepest energy minimization of 10,000 

steps; (ii) addition of two sodium ions to counter the system charge; (iii) steepest descent 

energy minimization of 10,000 steps; (iv) solvent equilibration for 100 ps at 300 K while 

restraining the protein and bound calcium atoms by a harmonic potential with a force 

constant of 1000 kJ mol-1nm-2; (v) pressure equilibration of the system without any positional 

restraints was conducted under NPT ensemble at 1 bar, 300 K for 4 ns using a Parrinello-

Rahman barostat; (vi) temperature equilibration of the system to 300 K utilizing Berendsen 

thermostat under NVT ensemble; (vii) a 2 ns thermalization in NVT conditions at 300 K 

under isotropic pressure at 1 bar using the velocity-rescale thermostat 322. The productive 

MD simulations were carried out for 500 ns, however for one of the variants simulated, 
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VPRΔC_W6F, a 1000 ns run was needed to equilibrate, under the NVT ensemble using the 

velocity-rescale thermostat 322 with a coupling constant 0.2 ps at 300 K. For heavy atom 

bonds the LINCS algorithm was used setting both LINCS-order and LINCS-iter as 4 323. 

Van der Waals and Coulomb interactions were cutoff at 0.8 nm. Long-range electrostatic 

interactions were calculated using the Particle-Mesh Ewald (PME) summation scheme 324. 

In depth analysis of MD simulations is not finished at this time.  

2.6 Active site labeling 

Active site labeling was carried out on VPRΔC and AQUI using 5-dimethylaminonaphtalene-

1-sulfonyl fluoride or dansyl fluoride (DNSF). Dansyl fluoride is much less reactive than 

dansyl chloride, known for its reactivity against amines, phenols, thiols, imidazoles and 

alcohols. Dansyl fluoride however has rather specific reactivity against active alcohols such 

as is in the case of the catalytic serine residue of serine proteases 325. DNSF is thus, a suitable 

label for the proteases studied here (Fig. 2.1).  

Optimization of the reaction condition was carried out by testing various buffers systems 

applicable between pH 7 and 9 and usable with calcium. Tests were performed by adding 

various concentrations of dansyl fluoride dissolved in 1,4-dioxane to a final volume/volume 

percentage of 5 % to the enzyme/buffer solutions. It was observed that imidazole and the 

Good´s buffers 326 tested resulted in poor labeling with apparent second order rates of 

inactivation, indicative of some side reactivity against the buffer. Sufficient labeling without 

side reactivity was achieved by dialyzing samples against a 25 mM sodium cacodylate, 10 

mM CaCl2 and adjusted to pH 7.0 at 25°C, overnight at 4°C. Following mixing of the enzyme 

solution to a stock solution of 0.005 mM dansyl fluoride the mixture was shaken gently in 

Figure 2.1. A reaction scheme for the reaction between the active site Ser residue of a serine protease 
with dansyl fluoride. 
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the dark, at 25°C. The labeling efficiency was estimated by monitoring activity against 0.5 

mM Suc-AAPF-NH-Np dissolved in the assay buffer. The reaction was quenched with the 

addition PMSF to a final concentration of 2.5 mM when estimated labeling efficiency 

exceeded 99%. Samples were then filtered to remove excess precipitated dansyl fluoride, 

followed by either extensive sequential dialysis, or buffer exchange by diafiltration using 

centrifugal filter units (Amicon) monitoring absorbance at 340 nm in the flow through until 

a steady value was achieved. To completely ensure that all free labels had been washed off 

the sample was subjected to a final dialysis against the Tris buffer used for steady state 

fluorescence overnight at 4°C. 

The success of labeling was confirmed by absorbance scans from 450 nm to 220 nm, 

showing a new absorbance peak around 330 nm - 340 nm, as expected for a DNS protein 

derivative. To compare the absorbance spectra of labeled proteases and non-labeled, the 

approach was taken to calculate the molar attenuation coefficient spectra for the labeled 

proteins at 280 nm by adding the known molar attenuation coefficient of 1507 M-1cm-1 at 

280 nm for dansyl-glycine in dioxane 327, 328 to the calculated molar attenuation coefficients 

for VPR and AQUI at 280 nm. This yielded the molar attenuating coefficients 35677 M-1cm-

1 for VPR-DNS and 36137 M-1cm-1 for AQUI-DNS.  Using this method, the maximum molar 

attenuation coefficient for VPR-DNS on the dansyl part of the spectrum was calculated as 

3600 M-1cm-1 at 334 nm and for AQUI-DNS on the dansyl part of the spectrum as 3900 M-

1cm-1 at 342 nm. These values are in good agreement with reported values for 1/1 labeling 

ratio of dansylated chymotrypsin having molar attenuation coefficient of 3360 M-1cm-1 at 

the peak of the dansyl absorbance peak 329. In addition, CD wavelength scan of VPR-DNS 

in the Tris-buffer compares well with VPR, suggesting no noticeable changes in the 

secondary structure of the dansylated protease derivatives just prior to fluorescence 

measurements. 

Steady state fluorescence was recorded of native and denatured samples as described in 

chapter 2.5.2, with the exception that the spectra were recorded between 580 nm and 310 

nm when exciting at 295 nm. Steady state fluorescence was also recorded by excitation of 
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the dansyl moiety at 370 nm and recording was between 725 nm and 385 nm. For 

measurements of denatured AQUI-DNS, samples were autoclaved at 121°C for 15 minutes.  

Fluorescence lifetimes of the dansyl labeled proteases were recorded on a Fluoromax-4 

spectrofluorometer equipped with a time-correlated single-photon counter (TCSPC), using 

NanoLED-370 as a light source, having a peak emission at 369 nm and pulse durations of 

1.2 ns. Emission was monitored at 500 nm and 580 nm for denatured samples and 580 nm 

for native samples. Signal collection times were kept under one minute by varying slit widths 

while collecting 10,000 counts. The instrumental response time was estimated by using the 

Tris-buffer as prompt, sometimes with added colloidal silica. Lifetimes were recorded from 

5°C to 35°C for VPR-DNS and from 5°C to 75°C for AQUI-DNS, with at least 10°C 

intervals. Lifetime calculations were carried out using the decay analysis software (DAS6) 

included with the instrument from Horiba Scientific. Lifetimes of both VPR-DNS and 

AQUI-DNS exhibited complex decays, consisting of at least three lifetimes, two short and 

one long. Lifetimes of denatured samples of both VPR-DNS and AQUI-DNS exhibited one 

long lifetime and fitting the native data with three lifetimes fixing one of them as the lifetime 

of the denatured state resulted in good fits that were easily repeatable between batches. The 

lifetimes of the denatured forms of both VPR-DNS and AQUI-DNS were identical and had 

a linear relationship with temperature and may, therefore, indicate similar assemblies for 

both denatured proteases. The linear relationship could be used to calculate expected 

denatured lifetime to help fitting native data.
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3 Results and discussions 

This chapter will outline the projects that have been undertaken in this doctoral work and 

the results of published and unpublished work will be discussed.  

3.1 Aims of the study 

The general aim of the study was to gain a deeper insight into the temperature adaptation of 

the kinetically stable extremophilic subtilisin-like serine proteases VPR and AQUI. An 

important reason for this choice was the fact that these enzymes are structural homologs and 

are adapted to extremely different temperatures, that is reflected in their different catalytic 

activity and stability.  

Of main interest was to elucidate the role of molecular flexibility in the temperature 

adaptation of these enzymes, especially regarding the role of prolines in loops and their effect 

on loop rigidity. This was to be done by mutational studies using the structure of AQUI as a 

template for the selection of mutation sites in VPR. AQUI contains four proline residues in 

loops that are not found in VPR. Thus, single and multiple proline variants were to be 

produced of VPR, culminating in the creation of a quadruple VPR proline variant (Fig. 3.1). 

Then, characterization of activity and stability of these constructs would be conducted. This 

included estimation of changes in structural flexibility as a result of these mutations. 

Flexibility changes were to be measured by steady-state and time-resolved fluorescence 

spectroscopy in addition to probing the effect of acrylamide quenching on fluorescence 

emissions and probing active site dynamics with labeling of the active site serine residue 

with a dansyl group. Supporting these experimental procedures, MD-simulations were to be 

carried out to gain deeper insight into the molecular dynamics of those variants.   

In order to resolve native steady-state and time-resolved fluorescence spectra of the native 

VPR structure, tryptophan variants were to be produced where tryptophan residues were 

eliminated from the structure by exchanging all four tryptophan residues found in the 

structure of VPR (Fig. 3.1) to phenylalanine and resolving the properties of each variant and 

possibly multiple phenylalanyl variants.  
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The effects of these mutations were also to be studied via MD simulations using the 

information gained from them to help construct a clear picture of the effects of the different 

mutants produced. 

Due to setbacks in production and characterization of some of these proposed variants, the 

project did steer into optimization of the production and purification systems. This work 

yielded much better system, for overexpressing VPR and its mutants, with a purification 

protocol that yielded a pure protease in high yields. The larger amount of protein produced 

opened the door for the utilization of differential scanning calorimetry that provided a wealth 

of information on the properties of the system. In addition to expressing useable yields of 

Figure 3.1. The crystal structure of VPR (PDB: 1SH7). Highlighted as ball and sticks are the Trp 
residues that were exchanged to Phe and Asn3, Ile5, Asn238 and Thr265 that were exchanged to Pro in 
this project. 
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variants, it made it feasible to obtain variants that were barely producible in the older system, 

an example being the tryptophan variants. In the following sections, the focus will largely 

be on the effects these VPR mutants had on the unfolding process and the role of calcium in 

the structure. This demonstrated the role of the calcium binding N-terminus as a major 

contributor to the stability of the protein structure and how it influences the cooperativity of 

the structure. 

In the following sections, each of these projects will be discussed more closely, starting with 

the first paper, the reporting on the new and improved expression system and the role the 

different calcium binding sites have on the structure of the protease and how they can affect 

the unfolding cooperativity. 

In the second section, the effects of the proline exchanges on the stability and activity will 

be discussed, focusing on the apparent loss of unfolding cooperativity as a result of these 

modifications. Furthermore, it will be discussed how that information can possibility be 

utilized to design an even more stable variant of VPR than the final product of that project, 

VPRΔC_N3P/I5P/N238P/T265P, which did show a greatly improved resistance against 

thermal denaturation. 

The third segment will discuss the current status of characterization of the Trp-to-Phe 

variants, with focus on the VPRΔC_W6F mutant on which a manuscript is in preparation. 

VPRΔC_W6F demonstrated some drastic detrimental effects on stability and unfolding 

cooperativity, seemingly causing a structural collapse at distant parts of the protein. 

In the fourth and final section of this chapter, the current status of dansylation experiments 

of VPR and AQUI will be discussed, giving insights into dynamics of their active sites.       

3.2 Improving the expression of VPR and the 
role of calcium in its stability 

At the beginning of this doctoral work, all published work regarding VPR had either been 

carried out on the protease purified from cultures of the psychrotrophic Vibrio species (strain 

PA-44), or on the purified recombinant protease from E. coli, using a pBAD vector and 

Top10 cells 1, 277, 294, 302, 303, 305, 309, 310. The plan was to continue using that system. However, 
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when the first proline and tryptophan variants were being produced it became apparent that 

sufficient amounts of some of the variants could not be obtained for the planned experiments. 

Thus, the decision was taken to revamp the expression system. We opted to clone the gene 

of VPRΔC into a pET 11-a vector that utilizes the T7 expression system, known for efficient 

overexpression of cloned genes 330. The chosen E. coli expression strain was Lemo21 312, 

which contains the pLemo vector that has a T7 lysozyme under a rhamnose titratable 

promoter. As T7 lysozyme is a natural inhibitor of the T7 RNA polymerase 331, this system 

provides extra control over the rate of expression. During that work, it was observed that a 

mutation had occurred in the signal peptide of VPR, where an isoleucine had been replaced 

by a threonine in position ten of the signal peptide. Thus, prior to cloning the mutation T10I 

was incorporated and that led to around two- to four-fold increase in activity units recovered 

from cells. Likely, this was due to more efficient export into the periplasmic space where 

folding is not under as reducing conditions as in the cytosolic space 332. 

The cloning was successful and work on optimizing conditions was started. During that work 

a mistake led to the discovery that high concentrations of calcium increased the yields of 

VPRΔC considerably. This was especially clear in the case of some tryptophan variants that 

were being worked on at the time. In some of those cases, CaCl2 concentrations up to 100 

mM did improve the yields of the active protease considerably. These observations prompted 

the interest in the effects of those high calcium concentrations on the stability of VPRΔC. For 

VPRΔC, the optimum conditions for expression were found to be in 2xYT broth, 76 µM 

rhamnose and calcium concentrations above 25 mM. Thus, for uniformity in the expression 

of all VPR variants, the conditions for the cells after inducing the expression contained 100 

mM CaCl2, 76 µM rhamnose, as they were shaken at 18°C for 18 – 20 hours, before 

harvesting. This optimized system yielded around 100 times more enzyme than the older 

system, in addition to opening the door to expressing variants that were non-expressible in 

the older system. 

The first chromatography step in the purification protocol has been the affinity column N-

carbobenzoxy-D-phenylalanyl-triethylenetetramine (TETA). The z-D-Phe ligand of the 

TETA column binds into the active site of the protease very tightly and to elute the column, 

2 M guanidinium hydrochloride is required. As the column is thoroughly washed prior to 

elution, the peak observed in previous purifications was presumed to be just the protease. 
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However, when the protease expressed in the new system was eluted, it was very clear that 

the elution peak did consist of two separate peaks. One being sharp and eluting immediately, 

but the latter being very broad and eluting slowly. It also became clear, that activity 

coincided with the broad peak (See supplementary figure 2. of paper I). This indicated that 

previously observed sharp peaks in older purifications might be due to some unknown 

impurities. 

These impurities appeared to be RNA fragments as observed from spectroscopic data of the 

contaminants (Fig. 3.2).  

An agarose gel electrophoresis of the impurities indicated that these impurities were 

apparently two distinct RNAs in size range of around 100 nucleotides (data not shown). This 

realization and the utilization of a new expression system demanded a reestimation of the 

kinetic and thermostability parameters, as RNA may interfere with protein concentration 

estimation and have some interactions with the protein itself, which may affect stability. 

Reestimation of the enzymatic properties of the new recombinant VPRΔC showed that earlier 

Figure 3.2. The A) absorbance spectrum of the contaminant isolated from the phenyl-sepharose column. 
B) Fluorescence emission spectra of contaminants binding ethidium bromide before (solid line) and after 
(dashed line) RNase A digestion, excited at 300 nm. C) Circular dichroism wavelength scans of the 
contaminants.      
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kinetic data had underestimated the turnover number greatly, or by about of 3.3 times lower 

(Table 3.1). 

Table 3-1. Measured stability and kinetic parameters of recombinant VPRΔC from the new expression 
system utilizing the Lemo21 for expression and the stability and kinetic parameters of recombinant 
VPRΔC from the older expression system of Top10. 

 
Tm (°C) T50% (°C) kcat (s-1) KM (mM) kcat/KM (s-1mM-1) 

VPR∆C (Lemo21) 61.9 ± 0.4 53.8 ± 0.4 225.7 ± 12.0 0.178 ± 0.016 1238 ± 149 

VPR∆C (Top10) 65.1 ± 0.2 56.4 ± 0.2 68.2 ± 17.0 0.184 ± 0.017 371 ± 26 

 

No significant change was observed for the binding affinity (KM) of the new recombinant 

enzyme for the substrate, as would be expected for contaminants not interacting with the 

enzyme. The effects found on stability were more puzzling, as the new recombinant VPRΔC 

was consistently measured with a Tm and a T50% that was about 3°C lower than what had 

been reported for the older recombinant VPRΔC. These results are still rather ambiguous as 

no explicit explanation has been found. If changes to the protease due to the change of the 

expression system are ruled out, these results suggest some sort of an interactions between 

the protease and the RNA in the solution. Initial testing of inactivation rates for VPRΔC in 

the presence and absence of added RNA did not show any significant effects on T50%. 

However, this has not been pursued fully, in terms of incubation times and different 

concentration of RNA in the experiments. So, interactions between these RNA fragments 

and the protease cannot be ruled out as of now.  

As mentioned earlier, the fortuitous observation was made that an increase in the 

concentrations of CaCl2 up to 100 mM in the growth medium led to increased yields of the 

active protease. This suggested that added calcium interacts with the protease in the 

periplasmic space and/or components inside the periplasmic space of the host cell. The focus 

was set on elucidating how high levels of calcium stabilize VPRΔC. So, the effects of calcium 

concentration on melting points (Tm) of the PMSF inhibited enzyme, as well as on the rate 

of inactivation (T50%) of active samples, were measured. From these measurements, it was 

observed that concentrations of calcium in the low mM range did increase the melting point 

from 54.3°C, at 1 mM up to 62.2°C at 15 mM. From thermal inactivation experiments, 

however, the resistance against activity loss was still increasing at 250 mM. Inspection of 

the hyperbolic curve fitted to the half-lives at a constant temperature against calcium 
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concentration indicated that it was made of two separate curves (non-linear Scatchard plot: 

not shown) (Fig. 3.3). 

 

The apparent binding constants (Kapp) from these binding curves could be resolved into a 

single value of ~1 mM from the melting point data, and two apparent binding constants from 

the inactivation data with apparent binding constants (Kapp) of about ~1 mM and ~22 mM. 

This strongly suggested that two distinct calcium binding sites that bind calcium in the mM 

range exist in the structure of VPR (Fig. 3.3). In addition, the stronger of these sites was 

clearly stabilizing the structure whereas the weaker one only protected against inactivation, 

presumably through protection against proteolysis. In our paper 3, by comparisons of crystal 

structures of VPR, AQUI and SPRK, and info from MD-simulations, it was deduced that the 

stronger site was the Ca-1 site, whereas the weaker one is the Ca-2 site. Supporting this 

suggestion are results from a study where the corresponding loop in subtilisin BPN´ was 

found to be the one of the first sites of proteolysis in that structure. By introducing a calcium 

binding site into that loop, the resistance of BPN´ against proteolysis was increased in the 

presence of calcium 275.    

Examination of the effects of different calcium concentrations on the thermograms recorded 

on DSC showed that at higher calcium concentrations the unfolding transition becomes 

steeper and higher, indicating that the bound calcium in the Ca-1 site leads to higher 

unfolding cooperativity of the structure. However, at calcium concentrations above 15 mM, 

the activation Gibbs free energy barrier stopped increasing. This was due to a higher entropic 

penalty at higher calcium concentrations, presumably due to the fixation of the Ca-2 loop 

Figure 3.3. A) The effects of calcium ions on the melting point of PMS-VPRΔC as measured by CD. B) 
The effects of calcium inactivation rates of VPRΔC. Data is shown with error bars that represent the 
standard deviations of measured values. Red lines represent the best fits of data, a single hyperbolic fit 
for figure A and a double hyperbolic fit for figure B. 
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(Fig. 3.3 and Fig. 3.4), restricting available conformations of the structure of the native 

assembly that are not restricted in the transition state.  

3.2.1 Information on the unfolding process of VPRΔC from DSC 

This work has opened the door to utilizing DSC and other experimental techniques requiring 

protein in high concentrations. In fact, information obtained on the unfolding process as 

recorded by DSC has become the cornerstone of this doctoral research. VPRΔC behaves, 

under slightly alkaline buffer conditions where the protease is active, like a typical two-state 

irreversible system (Fig. 3.5). As shown in Fig. 3.4. B. the thermogram of VPRΔC is free of 

aggregating events, making it a relatively good system to work with on DSC. This is best 

seen in the similarities of the heat capacity traces after the unfolding event, that are almost 

identical in the rerun of the sample, demonstrating that the unfolded assemblies in both runs 

are essentially identical, with minimal amounts of aggregated or degraded protein.  

From the above it is clear, that the ΔCp change between the native and denatured states can 

be deduced from the difference of the heat capacity traces of the native and unfolded states 

pre-unfolding transitions, yielding a ΔCp of around ~16 kJ/mol to ~ 18 kJ/mol. This is a 

rather high value but might be expected for a kinetically stable system. Note, that this does 

Figure 3.4. A) The effect of different calcium concentrations on the unfolding transition of VPRΔC as 
recorded on DSC, at pH 8.6, with a temperature gradient of 1°C/min. B) Non-normalized thermograms 
of native VPRΔC at 15 mM calcium and pH 8.6 (black line) and the second run of the sample (red dotted
line) demonstrating irreversibility at the time-scale of the experiment.    
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not give any information on the ΔCp
‡ of unfolding, but one would presume that value to be 

some degree lower than the difference between native and denatured assemblies. 

VPRΔC consists of 276 amino acids and is, therefore, a relatively small protein. It can unfold 

in a more complex manner than described by the simple two-state irreversible model. This 

is seen for instance when the unfolding process is monitored at pH 5.0. At that pH, the 

thermogram showed a clear second unfolding event. This event became even clearer at low 

calcium concentrations (Fig. 3.6. A), as at pH 5.0 with 1 mM calcium a clear second peak 

became apparent, which is only slightly observable in the thermogram of VPRΔC at 15 mM 

calcium and pH 5.0 (Fig. 3.6. B). 

From these results, it is interesting to see that the structure of VPRΔC which appears to be a 

single domain with an active site in the middle, is seemingly composed of two distinct 

structural parts. This is indicated by an apparent loss of unfolding cooperativity within the 

structure at pH 5.0 at low concentrations of calcium. The loss of unfolding cooperativity 

may be related to the possible protonation of acidic residues, such as Asp, many of which 

appear to be coordinators of calcium in the structure of VPR. It may be hypothesized that 

this effect is due to compromised binding of calcium within the structure. 

Noting that the Ca-1 and Ca-3 sites appear to be the most relevant for the stability of the 

structure, either or both of these sites might have developed a reduced affinity for calcium 

at low pH. As discussed earlier in this thesis, interactions that enforce contacts between the 

C- and N-terminal parts of VPR tend to be important for thermostability. Thus, destabilizing 

either site might cause disconnection between the C- and N-terminal regions of the protein, 

Figure 3.5. A) The effect of different scan rates on the unfolding transitions of VPRΔC as recorded by
DSC at 15 mM calcium and pH 8.6. B) Arrhenius graphs calculated from unfolding thermograms, 
yielding a value for the activation energy of unfolding ~ 235 kJ/mol for all transitions. 
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resulting in two peaks appearing in their thermograms. This appearance of a second peak is 

an exciting observation, as identifying these structural components could shed light on 

important contacts for thermostability within the protein structure.      

  

3.3 The role of proline residues in loops 

In total, eight different VPR proline variants were constructed, comprising the single variants 

VPRΔC_N3P, VPRΔC_I5P, VPRΔC_N238P and VPRΔC_T265P, the double variant 

VPRΔC_N3P/I5P, the triple variants VPRΔC_N3P/I5P/N238P and VPRΔC_N3P/I5P/T265P, 

and the quadruple variant VPRΔC_N3P/I5P/N238P/T265P. As these were produced in the 

new expression and purification system, all the single variants and the double variant were 

recharacterized with respect to Michaelis Menten kinetic parameters (Table 3-2) and thermal 

stability (Table 3-3). Insertion of proline residues into the loops of VPR was found to have 

small effect on the catalytic efficiency of the mutants, contrary to what had been observed 

previously 304, 305.  There was a trend in the direction of higher Km values and higher kcat 

values with increased number of prolines inserted, but that resulted in similar catalytic 

efficiencies for different variants. The only exception was VPRΔC_T265P, although with no 

explicit explanation. This trend in the catalytic properties, being most prominent in the 

VPRΔC_N3P/I5P/N238P/T265P variant, is interesting as it goes against the idea of a rigid 

active site having lower Km values. It implies that the accumulative effects of proline 

exchanges cause a destabilization of the ES complex, not something that would be expected 

if these mutations cause rigidification around the active site. 

Figure 3.6. A) Non-normalized thermograms of native VPRΔC at 1 mM calcium and pH 5.0 (black line) 
and the second run of the sample (red dotted line) demonstrating irreversibility. B) Non-normalized 
thermograms of native VPRΔC at 15 mM calcium and pH 5.0 (black line) and the second run of the 
sample (red dotted line). 
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Table 3-2. The kinetic parameters of all proline variants measured proline variants at 25°C and pH 8.6. 

Variant kcat (s-1) KM (mM) kcat/KM (s-1mM-1) 

VPR∆C 225.7 ± 12.0 0.177 ± 0.016 1238 ± 149 

VPR∆C_N3P 235.4 ± 21.8 0.173 ± 0.013 1364 ± 60 

VPR∆C_I5P 201.6 ± 8.2 0.187 ± 0.010 1077 ± 37 

VPR∆C_N238P 224.6 ± 16.6 0.189 ± 0.026 1196 ± 84 

VPR∆C_T265P 166.5 ± 11.6 0.152 ± 0.019 1101 ± 104 

VPR∆C_N3P/I5P 231.8 ± 10.5 0.187 ± 0.009 1243 ± 77 

VPR∆C_N3P/I5P/N238P 229.5 ± 18.3 0.199 ± 0.024 1158 ± 72 

VPR∆C_N3P/I5P/T265P 221.5 ± 7.8 0.219 ± 0.014 1017 ± 74 

VPR∆C_N3P/I5P/N238P/T265P 259.3 ± 27.4 0.212 ± 0.014 1222 ± 95 

 

Table 3-3. Stability parameters of measured proline variants, showing the T50% values and Eact (inactivation) 

calculated from inactivation Arrhenius graphs. The melting point as measured by CD and fitted to a 
single sigmoidal curve and the melting point determined from DSC defined as the highest point of each 
graph.   

Variant T50%  
(°C) 

Eact (inactivation)
 

(kJ/mol) 
Tm (CD) 
(°C) 

Tm (DSC)  

(°C) 

VPR∆C 53.8 ± 0.4 218 ± 9 61.9 ± 0.4 63.9 ± 0.3 

VPR∆C_N3P  56.6 ± 0.3 203 ± 12 64.8 ± 0.1 66.8 ± 0.3 

VPR∆C_I5P  56.1 ± 0.2 199 ± 14 65.1 ± 0.2 65.7 ± 0.5 

VPR∆C_N238P 52.3 ± 0.2 209 ± 17 60.7 ± 0.1 63.6 ± 0.2 

VPR∆C_T265P 54.3 ± 0.2 206 ± 4 61.6 ± 0.2 64.5 ± 0.2 

VPR∆C_N3P/I5P 60.3 ± 0.4 208 ± 8 67.8 ± 0.3  72.0 ± 0.8 

VPR∆C_N3P/I5P/N238P 60.9 ± 0.5 207 ± 27 68.8 ± 0.2 72.0 ± 0.4 

VPR∆C_N3P/I5P/T265P  62.2 ± 0.6 194 ± 27 69.2 ± 0.2 73.6 ± 0.3 

VPR∆C_N3P/I5P/N238P/T265P  61.6 ± 0.6 182 ± 29 72.1 ± 0.3 77.2 ± 0.2 

 

The effects of the proline mutations on stability demonstrated that the N-terminal prolines 

were the most effective in increasing the stability of VPR, whereas the N238P and T265P 

variants were not effective, unless they were added on the VPRΔC_N3P/I5P variant. This 
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indicates that the stability of the loops and neighboring structural regions that N238P and 

T265P were proposed to rigidify are dependent on the stability of the N-terminus. The 

overall conclusion of these results is, therefore, that proline residues in loops increase the 

kinetic stability of these proteins. The likely mechanism is that the increased rigidity caused 

by the mutations increases the thermal flexibility of the structure. Thus, by maintaining the 

correct orientations of other interactions at higher temperatures, the proline residues act as 

some sort of anchor points at these sites in the structure. However, this increased stability 

was accompanied by loss in unfolding cooperativity, for most of the proline variants. 

3.3.1 Loss of unfolding cooperativity in proline variants 

Loss of the single step unfolding process was observed in all proline variants, except for 

VPRΔC_N238P and VPRΔC_T265P. The single N-terminal proline variants both showed a 

clear disconnect between structural parts within the protein during unfolding, as shown for 

VPRΔC_I5P in Fig.3.7. 

 

This suggests that the stability of the N-terminal region is crucial for maintaining the rest of 

the structure in the native conformation. Consequently, it is possible to overstabilize the N-

terminal region resulting in a two-step unfolding process. VPRΔC_I5P is a prime example of 

such an effect (Fig. 3.7). In the DSC thermograms of VPRΔC_I5P, two very distinct peaks 

appeared and according to Arrhenius graphs calculated form the unfolding rates at different 

scan-speeds, both transitions are under kinetic control (Fig. 3.7 B). Thus, there is a relatively 

stable intermediate in the unfolding process of VPRΔC_I5P (Fig. 3.8). 

Figure 3.7. A) The effect of different scan rates (0.5°C/min: blue, 1.0°C/min: black and 1.5°C/min: red)
on the unfolding transitions of VPRΔC_I5P recorded by DSC at 15 mM calcium and pH 8.6. B) Arrhenius 
graphs calculated from the unfolding thermograms from figure A). 



87 

The nature of this intermediate in the case of VPRΔC_I5P could partly be uncovered by the 

comparison and fitting of DSC and CD unfolding data (Fig. 3.8). From that comparison, it 

could be deduced that the first transition consists of around 70 % to 80 % of the secondary 

structure and two-thirds of the calorimetric enthalpy. This paints the picture of an 

intermediate that is quite energetic with a low secondary structure content, possibly due to a 

calcium binding site still being present. Considering the location of the mutation, and how 

the unfolding process of VPRΔC is affected by calcium binding (see chapter 3.2), we have 

come up with the hypothesis that the intermediate consists of the N-terminal region 

containing the Ca-3, site in addition to some other secondary structures. These may well be 

helix-E, containing the active serine residue, an idea which is supported by unfolding MD-

simulations published by another group 333. However, proper isolation and structural 

characterization of this intermediate has not been carried out yet. 

Figure 3.8. A) The unfolding process of VPRΔC_I5P (solid line) as monitored by DSC at pH 8.6 and 15 
mM, recorded with a 1°C/min temperature gradient and a rescan of the same sample (dotted line). B)
The partial unfolding of VPRΔC_I5P (solid line) and the sequential reheating of the sample 
demonstrating the irreversibility of the first event. C) Normalized DSC thermogram of the unfolding of 
VPRΔC_I5P (dotted line). D) Normalized CD melting curves of VPRΔC_I5P (black dots). The red and 
blue line represent the best fits of the unfolding process by CalFitter.  
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One very relevant observation from these DSC experiments of variants containing N-

terminal proline mutations, is that there is increased kinetic stability but an apparent loss of 

unfolding cooperativity. This loss of unfolding cooperativity may explain lower activation 

energies of inactivation observed for proline variants (Table 3-3). A prime example is the 

final product with a quadruple proline replacement VPRΔC_N3P/I5P/N238P/T265P, that did 

not show improved resistance against thermal inactivation (T50%) compared to the triple 

variants despite showing increased resistance against thermal denaturation (Tm). This could 

be interpreted as follows; the loss of molecular contacts along important protein-protein 

interfaces at high temperatures allow parts of the structure to become more flexible and prone 

to auto-proteolysis. However, by strengthening contacts at this presently unknown interface 

in VPRΔC_N3P/I5P/N238P/T265P, thermostability could be increased even further. That 

variant would unfold cooperatively with a melting point of the secondary structure that is 

closer to the observed highest peak of the DSC thermogram, that might result in greatly 

enhanced resistance against inactivation. That project that would need the crystal structure 

of VPRΔC_N3P/I5P/N238P/T265P along with unfolding MD-simulations, in order to 

pinpoint the interface that needs stabilization. By comparing that area of VPR with the 

structure of AQUI, a mutational strategy could be implemented to stabilize the interface that 

divides the VPR structure into separate unfolding units. 

3.3.2 Structural rigidity of proline variants 

Structural flexibility of proline variants was probed by using acrylamide fluorescence 

quenching. The results indicated restrictions of movements/accessibility in mutants 

containing the N-terminal mutations, which would be in line with a restricted access to Trp6. 

The N238P and T265P mutations however, apparently caused an increase in accessibility, 

resulting in a similar quenching profile for VPRΔC_N3P/I5P/N238P/T265P and VPRΔC at 

25°C (Fig. 3 in paper II and supplementary Table 3 of paper II) (Fig. 3.9). However, as will 

be discussed later, the fluorescence properties of VPRΔC are rather convoluted. This stems 

from the fact, that the enzyme contains four tryptophan residues that are highly intrinsically 

quenched in the native structure (Fig. 3.11). This means, that minor changes in the average 

rotameric position of a single tryptophan residue might cause large changes in the 

fluorescence properties of the protein due to relief of the suppression that prevented the 

emission of light. Thus, increased acrylamide quenching might not necessarily indicate that 
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the structure has become more flexible but rather that a tryptophan residue does not reside 

in an intrinsically quenched position as much as in other variants.   

A noteworthy observation that may be related to increased global rigidity of the protein 

structure of proline variants, especially in the case of the quadruple variant is derived from 

their DSC thermograms. The fact that VPRΔC and VPRΔC_N3P/I5P/N238P/T265P both 

produce well behaved DSC thermograms allowed for direct comparisons of the heat 

capacities of the native and denatured assemblies over a broad temperature range (Fig. 3.10). 

What is apparent from these two runs, is that the difference between the heat capacities of 

the native and denatured states is much higher in the case of VPRΔC_N3P/I5P/N238P/T265P 

compared with wild type. This means, that either the denatured assembly of the proline 

variant has a higher heat capacity than the denatured assembly of VPRΔC, or that the heat 

capacity of native state of the proline variant is lower than that of VPRΔC.  

The unfolded assemblies of the two have higher heat capacities, i.e. are able to distribute 

heat better, than their highly structured native states. In case of the proline variants, the 

conformational restrictions caused by the inserted residues could reduce the ability of the 

peptide chain to distribute heat throughout the water-protein system, hence it would lead to 

lower heat capacities of the native and denatured assemblies. Disregarding differences in the 

unfolded assembly between the variants for simplification, it would suggest that the native 

state of VPRΔC_N3P/I5P/N238P/T265P has a lower heat capacity than the native state of 

VPRΔC, possibly even lower if the assumption about the denatured assembly is correct. This 

Figure 3.9. Stern-Volmer graphs calculated from fluorescence quenching data of VPRΔC, 
VPRΔC_N3P/I5P and VPRΔC_N3P/I5P/N238P/T265P, between 310 nm – 410 nm. 



90 

would fit the picture of a structure that is more rigid, with restricted molecular movements 

and that cannot distribute the heat as well in the system.  

 

Adding to this is the non-zero heat capacity change observed prior to the unfolding transition 

of VPR and its variants, possibly indicating increased mobility within the structure as a 

function of temperature (Fig. 3.10). This pre-transition heat absorption appears to be a more 

prominent feature of VPRΔC_N3P/I5P/N238P/T265P than the wild type VPR. This would 

be suggestive of a structure that is able to absorb more thermal energy leading to increased 

flexibility before unfolding and is in line with the idea of increased thermal flexibility. 

However, to confirm speculations such as these, other experimental techniques are needed, 

such as NMR, fluorescence anisotropy, neutron scattering, deuterium exchange or MD 

simulations.     

3.4 Mapping the fluorescence attributes of VPR 

In the structure of VPRΔC, there are four tryptophan residues, W6, W114, W191 and W208. 

All of these, except for W191, are found in AQUI, which contains a tyrosine residue at this 

location. This residue has been exchanged for tryptophan which showed minimal effects on 

thermal stability, but did indicate some loss of catalytic activity 310. In the new expression 

system using high calcium concentrations, all Trp-to-Phe variants of VPR were expressible 

in sufficient yields. Initial characterization with respect to kinetics and stability were carried 

out on all tryptophan variants. All Trp single variants did exhibit some loss of stability, 

especially the W6F and W191F variants. The results for the W191F variant were quite 

Figure 3.10. Non-normalized thermograms of native A) VPRΔC and B) VPRΔC_N3P/I5P/N238P/T265P 
(red lines) and a second run of same samples (black line) recording the heat capacities of the denatured 
assembly. Black dotted lines are for highlighting the differences in heat capacity of the native state as a 
function of temperature compared to how the unfolded assembly changes with temperature. 
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surprising, considering that this tryptophan residue is not found in AQUI, instead AQUI 

contains a tyrosine in that position. The W6F variant was of special interest to this project 

being located at the N-terminal region, proximal to sites 3 and 5 as discussed previously. 

The activity parameters did follow a trend of lower kcat values and lower KM values, except 

for the W208F variant where the KM value was measured higher (Table 3-4). This was not 

investigated in more detail, but we also produced Trp-to-Tyr variants in the older expression 

system, but in very low yields. Initial data with that material suggested that the W208Y 

variant had a KM value around two times higher than VPRΔC. This result relates this residue 

to substrate binding, and thus provides an angle that might be beneficial to study, i.e. a site 

which can be monitored to learn more about how these structures maintain high catalytic 

efficiencies. 

Table 3-4. The stability parameters Tm and T50% and the Michaelis-Menten parameters of all Trp-Phe 
variants. 

Variant Tm (CD) (°C) T50% (°C) kcat (s-1) KM (mM) kcat/KM (s-1mM-1) 

VPR∆C 61.9 ± 0.4 53.8 ± 0.4 225.7 ± 12.0 0.178 ± 0.016 1238 ± 149 

VPR∆C_W6F 49.0 ± 0.6 40.7 ± 2.0 150.9 ± 31.9 0.145 ± 0.028 1098 ± 167 

VPR∆C_W114F 60.8 ± 0.2 52.5 ± 0.1 179.9 ± 21.9 0.151 ± 0.026 1249 ± 119 

VPR∆C_W191F 47.2 ± 0.1 37.5 ± 0.1 182.2 ± 17.9 0.116 ± 0.015 1583 ± 138 

VPR∆C_W208F 59.9 ± 0.2 52.3 ± 0.2 201.0 ± 32.4 0.231 ± 0.044 874 ± 57 
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3.4.1 Fluorescence properties of Trp variants 

As the main objective of this part of the study was to map the contribution of each tryptophan 

residue to fluorescence of VPRΔC, the steady state fluorescence of the native and denatured 

assemblies was measured in addition to acrylamide fluorescence quenching. However, it 

turned out that the native fluorescence of VPRΔC is highly intrinsically quenched, resulting 

in a native structure that is about ten-times less fluorescent than its denatured state (Fig. 

3.11). This entails that tryptophan fluorescence is highly sensitive to unfolding, or any 

structural changes in the microenvironment of the tryptophan residues. 

Figure 3.11. Comparisons of steady state fluorescence of the native (black line) and denatured (dotted 
red line) states of A) VPRΔC and B) VPRΔC_W6F. C) Stern-Volmer graphs calculated from fluorescence 
quenching by acrylamide of the native (black dotted line) and the denatured state (red dotted line) of 
VPRΔC.   
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As seen in Fig. 3.12, all the variants that lost a Trp for Phe cause some blue shift in emission 

that would suggest a more polar environment and usually some lowering of emitted light. 

However, these spectra do not allow for any resolution of the contribution of the fluorescence 

signal of the residues. Acrylamide quenching suggested a more permeable structure, the 

difference being most prominent for the two most unstable tryptophan variants W6F and 

W1191F (Fig. 3.13). 

It was decided that since mapping the fluorescence properties of the protein was 

unattainable, the unstable variants would be investigated further. Most of the focus in the 

next section will be on VPRΔC_W6F due to its location close to the N-terminus of the 

molecule, a part of the protein that has been shown to have a high impact on the stability of 

the protein structure. 

Figure 3.12. Steady state fluorescence emission spectra of VPRΔC_Trp-Phe variants at 25°C at pH 8.0 of 
the native states of A) W6F (blue line), B) W114F (red line), C) W191F (green line) and D) W208F
(golden line) compared to VPRΔC (dotted black line). 
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3.4.2 The VPRΔC_W6F variant 

VPRΔC_W6F was studied and characterized in further detail due to its high impact on the 

structure and the stability of the protein. The mutation caused a loss of unfolding 

cooperativity and stability, but the variant exhibited similar looking thermograms as the N-

terminal proline mutations did (see chapter 3.3) (Fig. 3.14 and 3.15). It is noteworthy, that 

the DSC and CD melting data showed that approximately 80 % of the secondary structure 

content was lost in the first transition (Fig. 3.15), almost the same as was found for the I5P 

variant (Fig. 3.8). This further supports the idea that the observed transitions consist of 

similar protein unfolding units. 

Figure 3.13. Stern-Volmer graphs for Trp variants of VPR. Acrylamide fluorescence quenching
determined at 25°C at pH 8.0 for the native state of A) W6F (blue), B) W114F (red), C) W191F (green) 
and D) W208F (gold) compared to VPRΔC (black dotted line). 
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In addition to being very destabilizing, the W6F modification is the first substitution that 

seems to have some real impact on the secondary structure of the protein. According to CD-

wavelength scans, there was apparently reduced ellipticity in the case of the variant 

compared with the wild type, particularly between 220 nm and 230 nm (Fig 3.14. C). This 

part of the spectrum chiefly reports on α-helical content within the structure. This loss in 

secondary structure content apparently decreases intra-molecular contacts resulting in 

destabilization of the protein. Increased loop content could also promote increased number 

of proteolytic sites and how accessible they are. From this data is it clear that Trp6 is highly 

important for the facilitation of contacts between important parts of the enzyme.  

Figure 3.14. A) A comparison of normalized DSC thermograms of VPRΔC (red) and VPRΔC_W6F (blue). 
B) Normalized CD melting curves of VPRΔC (red) and VPRΔC_W6F (blue). C) Mean residual ellipticity
of VPRΔC (red) and VPRΔC_W6F (blue) measured by CD. D) Arrhenius graphs calculated from the rate 
of inactivation for VPRΔC (red) and VPRΔC_W6F (blue).    
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MD simulations 

Initial inspection of MD simulation runs, paints a picture that support the statement made 

above. A general comparison of MD simulations of VPRΔC and VPRΔC_W6F suggest a 

difference in behavior of the two forms of the enzyme. In VPRΔC, the Trp6 residue spends 

most of its time tucked into the crevice between α-helix-A, β-sheet-6 and the loop between 

β-sheet-7 and the antiparallel β-sheet preceding α-helix-E (Fig. 3.16). However, in the MD-

simulation of VPRΔC_W6F, the aromatic side chain of the Phe6 residue does not reside in 

that pocket and is pointed towards the solvent during most of the simulation. This causes a 

cascade of structural changes within the structure, leaving the N-terminus and helix-A 

relatively unchanged except for residues 1 to 5, that are much less mobile than in the VPRΔC 

simulation (Fig. 3.16). 

Figure 3.15. Comparisons of CalFitter global fitting of DSC and CD data for VPRΔC (red) and 
VPRΔC_W6F (blue). A) CD data and fit of VPRΔC and C) the DSC data and fit of VPRΔC. B) CD data 
and fits of the two apparent transitions observed and D) the DSC data and fit of VPRΔC_W6F. The thick 
dotted line represents the fit of the first transitions and the small dotted line represents the second 
transition.  
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Figure 3.16. Snapshots from MD-simulations of A) VPRΔC frame 807/1251 and B) VPRΔC_W6F frame
1398/2502. Structures are in silico mutants created from the structure of VPR (1SH7). Red circles are to 
highlight areas of interest. 
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The simulations show that few of the α-helices that have unwound (Fig. 3.16). Most 

prominent changes can be associated with helix-C and helix-D that have shortened by a 

whole turn. Similarly, the last turn of helix-E, containing the active Ser220, becomes a little 

more stretched. Thus, there is evidence of structural changes in the MD-simulations that are 

supported by the CD-wavelength scans (Fig 3.14. C). However, at this time further analysis 

of the MD-simulations to pinpoint the changes in protein interactions that cause these 

structural changes have not been carried out. 

3.5 Active site dansylation of VPR and AQUI 

In order to test the hypothesis on whether the active site of VPRΔC is more mobile at lower 

temperatures than the active site of AQUI, a convenient label was needed to monitor active 

site dynamics. For that purpose, the fluorescent label dansyl fluoride was utilized. Dansyl 

fluoride reacts specifically with active alcohols and suits the purpose well of labeling the 

active site serine residue of VPRΔC and AQUI. Thus, by using steady-state and time-resolved 

fluorescence measurements, the differences in the environment and dynamics of the active 

site region of the two extremophilic enzymes would be examined. Dansyl fluoride was found 

to react with the active serine residue of VPRΔC and AQUI in a pseudo-first order fashion 

when carried out in cacodylate buffer containing 10 mM CaCl2, at 25°C and pH 7.0 (Fig. 

3.17). Other buffers applicable at around neutral pH, such as Tris, MOPS and imidazole, 

displayed second order reaction rates (Fig 3.17. B). These results indicated some side 

reactions, possibly between the buffer ion and the dansyl label that do not occur in the 

cacodylate buffer. Labeling efficiency was estimated to be around 99 % according to activity 

measurements (Fig. 3.17C). In addition, the calculated molar attenuation coefficient for the 

DNS-label at its λmax, around 340 nm, indicated a protein/label ratio of 1:1 (see Materials 

and Methods) (Fig. 3. 18). It is noteworthy, that the labeling reaction progressed at almost 

twice the rate in the case of AQUI versus VPRΔC (Fig. 3.17). The reason for this observation 

is not known but could indicate that the environment around the active serine in VPRΔC 

creates some steric hindrance, or some repulsive interactions. Labeling of the enzymes, 

followed by exhaustive washing to get rid of free labels, resulted in fully labeled protein 

molecules, having no observable effects on the structure of the protein as monitored by CD 

(Fig. 3.18).   
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Steady-state fluorescence measurements of native and denatured states of AQUI-DNS and 

VPRΔC-DNS, after exciting at 295 nm and 370 nm, were recorded. Excitation at 295 nm 

should be rather specific for tryptophan fluorescence. Our results indicated that there was 

some Förster resonance energy transfer (FRET) between tryptophan residues and the dansyl-

label, as tryptophan fluorescence of VPRΔC-DNS was about half of that emitted by unlabeled 

VPRΔC (Fig. 3.19). The label having a more complex emission, seemingly consisting of two 

separate peaks (Fig. 3.19. A). Similar trends were seen in the emission spectra of the 

denatured state, demonstrated by the fact that the denatured state of VPRΔC-DNS shows 

reduced tryptophan emission (Fig. 3.19. B and Fig. 3.11. A). However, the signal from the 

DNS-label is a single peak for the denatured states emitting much more light compared to 

Figure 3.17. A) Rate of VPR inactivation in the reaction with dansyl fluoride (DNSF) in MOPS buffer at 
pH 7.0 and 25°C, showing deviation from first order kinetics. B) Same data as in A) plotted 1/relative 
activity showing linearity and thus indicative of 2nd order kinetics. C) Example of the rate of inactivation 
of VPR (blue) in the reaction with DNSF in cacodylate buffer at pH 7.0 at 25°C and the control (red) in 
the same buffer containing 5 % 1.4-dioxane. D) Example of the rate of inactivation of AQUI (blue) in its 
reaction with DNSF in cacodylate buffer at pH 7.0 at 25°C and the control (red) in the same buffer 
containing 5 % 1.4-dioxane. 
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the native state, with a λmax at 500 nm (Fig. 3.19 B). This assessment of apparent FRET could 

be somewhat overestimated, however, as the label itself might be absorbing some light at 

295 nm, therefore, causing an overestimation of reduced Trp fluorescence. 

The emission spectra obtained when exciting the DNS-label specifically at 370 nm showed 

similar trends. The denatured states of AQUI-DNS and VPRΔC-DNS had essentially the 

same emission spectra, meaning that the environment of the label in both unfolded 

assemblies was very similar. The native emission signal showed that the label in the case of 

VPRΔC-DNS was more quenched than in the case of AQUI. The λmax (the emission peak), 

however, was around 585 nm in both cases (Figs. 3.19 C and D), indicating similar overall 

electrostatic environments in the active sites of both AQUI-DNS and VPRΔC-DNS. 

However, the more quenched fluorescence emission of VPRΔC-DNS indicated that the label 

in that case interacted more with a chemical moiety that is able to intrinsically quench the 

fluorescence of the dansyl label.     

Figure 3.18. Comparison of the absorption spectra of label free VPR (red) and dansylated VPR (blue), 
expressed as molar attenuation coefficients (MAC). B) Comparison of the absorption spectra of label 
free AQUI (red) and dansylated AQUI (blue), expressed as molar attenuation coefficients (MAC) C) 
Comparison of the CD wavelength scans of dansylated VPR (blue) and non-labeled VPR (red), expressed 
as mean residual ellipticity.   



101 

The λmax values for the native states were much higher than for the denatured assembly 

meaning that the environment of the label in the native state was much more polar than in 

the denatured state and thus more polar than a water environment 194. In addition, acrylamide 

quenching of label emission resulted in no apparent effect on the native states. However, the 

denatured signal was readily quenched. Taken together, these results suggest that the label 

is located in a highly polar environment within the protein, where the label emission is 

intrinsically quenched, and very inaccessible to extrinsic quenchers such as acrylamide.     

In addition to measuring steady state fluorescence, we measured time-resolved fluorescence 

decay at varying temperatures in order to determine if there were notable changes in active 

site dynamics between the two enzymes at varying temperatures (Table 3-5).  

The recorded fluorescence decay of native AQUI-DNS and VPRΔC-DNS exhibited complex 

decay patterns (Fig. 3.20. A), whereas the decay of the unfolded assembly for AQUI-DNS 

and VPRΔC-DNS display a single exponent decay (Fig. 3.20. B). The decays of the unfolded 

Figure 3.19. Emission spectra of VPRΔC-DNS and AQUI-DNS at 25°C and pH 8.0. A) The emission 
spectra of native structures when excited at 295 nm. B) The emission spectra of denatured assemblies 
when excited at 295 nm. C) The emission spectra of native structures when excited at 370 nm. D) The 
emission spectra of denatured assemblies when excited at 370 nm. 
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assemblies were essentially the same for AQUI-DNS and VPRΔC-DNS, decreasing linearly 

with temperatures (Fig. 3.21). These lifetimes could then be fitted, and the fit used to predict 

the lifetimes of the unfolded assemblies over the temperature range and used in fitting 

denatured decay in the native decay data sets (see Materials and Methods for details). 

As both AQUI-DNS and VPRΔC-DNS are kinetically stable proteases that unfold 

irreversibly, the assumption that some unfolded molecules are found in the samples is 

reasonable. Furthermore, a small fraction of unfolded molecules would give a high 

background due to the long lifetime of the dansyl-label in the unfolded structures. Utilizing 

this, the native decay could be reliably fitted by three different lifetimes, one of them being 

the unfolded lifetime, accounting for less than 1 % of the signal in most experiments.  

Figure 3.21. The temperature dependence of lifetimes of denatured VPRΔC-DNS and AQUI-DNS excited 
at at 370 nm. Black dots represent average values, the red line is the best line fit of the data and the gray 
area represents the standard deviation of the mean. 

Figure 3.20. Examples of lifetime measurements of A) native VPRΔC-DNS and B) denatured VPRΔC-DNS 
at varying temperatures. Showing the prompt (black), VPRΔC-DNS lifetime at 5°C (blue), 15°C (green), 
25°C (gold) and 35°C (red). 
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According to those measurements, both AQUI-DNS and VPRΔC-DNS have two native 

lifetimes, a shorter one, about 1 ns and a longer, one being between 2 ns and 3 ns (Table 3-

5). This means that the DNS-label has at least two different microenvironments in the native 

structure of AQUI-DNS and VPRΔC-DNS. The timescales of these two separate lifetimes of 

the two enzymes might suggest that these microenvironments are similar in both cases. 

However, these environments are not evenly populated over the measured temperatures, the 

short lifetime being favored in both enzymes at higher temperatures. In the case of AQUI-

DNS, this trend seems to be more extreme, with initial estimates at 5°C for indicating those 

states being almost equally populated. In the case of VPRΔC-DNS on the other hand, the 

distribution was about 80/20 between the states VPRΔC-DNS (Fig. 3.22). 

Table 3-5. The two fitted lifetimes of native VPRΔC-DNS and AQUI-DNS (t1 and t2) and their fraction of 
the total signal (f1 and f2). 

VPRΔC-DNS 

Temperature t1 (ns) t2 (ns) f1 f2 

5°C 1.26 ± 0.03 3.12 ± 0.13 0.79 ± 0.04 0.21 ± 0.04 

15°C 1.12 ± 0.06 2.81 ± 0.25 0.82 ± 0.01 0.18 ± 0.01 

25°C 1.05 ± 0.07 2.73 ± 0.21 0.84 ± 0.06 0.16 ± 0.06 

35°C 1.07 ± 0.05 2.66 ± 0.23 0.89 ± 0.01 0.11 ± 0.01 

AQUI-DNS 

5°C 0.67 ± N.A. 2.61 ± N.A. 0.47 ± N.A. 0.52 ± N.A. 

15°C 1.45 ± 0.35 2.66 ± 0.14 0.71 ± 0.09 0.29 ± 0.09 

25°C 1.29 ± 0.22 2.58 ± 0.19 0.80 ± 0.10 0.20 ± 0.09 

35°C 1.22 ± 0.04 2.62 ± 0.21 0.90 ± 0.03 0.10 ± 0.03 

55°C 1.02 ± 0.02 2.65 ± 0.43 0.95 ± 0.01 0.05 ± 0.01 

75°C 0.91 ± 0.05 2.25 ± 0.17 0.94 ± 0.02 0.06 ± 0.01 
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These results suggest that there may be differences in the active sites of AQUI and VPRΔC 

that can be detected by using the dansyl-label as a reporter group. Identifying what these two 

microenvironments represent in the actual structures of the enzymes is a bit harder and 

solving that problem might be problematic. However, by measuring under more varied 

conditions such as other pH levels in addition to labeling variants with enhanced or 

diminished catalytic efficiencies might shed a light on the meaning of these two lifetimes.       

 

  

Figure 3.22. The effects of temperature on the dominant shorter lifetime (t1) in the native states of AQUI-
DNS and VPRΔC-DNS.  
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4 Conclusions 

This work highlights the important characteristics and properties of the interaction network 

that is vital for the kinetic stability of VPR. A prime example is how the W6F mutation 

affects the whole protein, seemingly causing a vast collapse of the internal non-covalent 

interactions all around the protein structure, leading to destabilization of the protein fold. 

The same can be concluded from the proline exchange experiments, where observations 

indicated long-range synergic effects within the structure as a result of multiple proline 

replacements, contributing to the stability of the structure. 

Summarizing the results from the mutational studies reported in this thesis and the 

experiments revealing how calcium ions effect the unfolding process, there is evidence to 

indicate the presence of a weak point in the non-covalent bond interaction network. This 

network connecting two separate unfolding units. Loss of contact between those unfolding 

units or greatly increased stability in one of them, will cause a separation of unfolding events. 

A hypothesis was put forward as to which parts of the protein harbor the two structural 

moieties that the stability effects are centered around. Mutational studies at the N-terminal 

region indicated that one of the calcium ion binding sites (Ca-3) is responsible for 

strengthening the more stable part of the protein. Calcium ion and proline exchange 

experiments indicated that the region around a different calcium binding site (Ca-1) is 

responsible for contributing to the stability of the less stable region of the protein. Thus, 

strengthening the interactions within and between those two regions of the protein could be 

a good strategy in increasing the thermal stability of VPR.   

As shown in this thesis, the research model of comparing the similar structures of VPR and 

AQUI from the standpoint of their very different operational temperatures still has insights 

to give regarding kinetic stability and what molecular interactions are important for kinetic 

stability. In addition, the firsts steps in monitoring active site dynamics have been made. 

That work might help to shed some light on more detailed view on movements within the 

active site of these enzymes, in order to further explain the differences in their catalytic 

efficiencies.
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A B S T R A C T

Cloning into a pET 11a vector, followed by high-level expression of the cold adapted subtilase, VPR, utilizing the
rhamnose titratable T7 system of Lemo21, resulted in a dramatic increase of soluble protein compared to the
older system used. Expression optimization clearly shows the importance of calcium in the medium after in-
duction, both for stability of the proteinase and cell health. Characterization of the purified enzyme obtained in a
redesigned purification protocol which removed apparent RNA contaminants, resulted in a significantly higher
value for kcat than previously reported. The new recombinant protein exhibited slightly lower stability against
thermal denaturation and thermal inactivation. Our results also indicate that two of the calcium binding sites
have apparent binding constants in the mM range. Binding of calcium to the weaker of those two sites only
affects resistance of the enzyme against irreversible thermal inactivation. Differential scanning calorimetry re-
vealed a non-two-state denaturation process, with indication of presence of intermediates caused by unfolding of
calcium binding motifs.

1. Introduction

VPR is a subtilisin-like serine proteinase of the proteinase K family,
produced by the psychrophilic gram-negative bacterium Vibrio sp. PA-
44 [1,2]. The gene encoding the proteinase consists of 1593 base pairs
that yields the 530-residue precursor protein [3]. The precursor protein
consists of 3 domains, a 139 residue N-terminal intramolecular cha-
perone, a 291-residue catalytic domain and a 100 residue C-terminal
domain [3]. During folding and maturation of the protein the N-term-
inal domain is cleaved off in an intramolecular autocatalytic reaction
and so is the C-terminal domain, leaving a 29.7 kDa proteinase [3]. In
the present study we used a C-terminal truncated form of the enzyme,
VPRΔC, which we produced previously, for the purpose of mimicking
the structure of the thermophilic homologue, aqualysin I, for com-
parative studies of temperature adaptation [4]. VPRΔC, and several of
its mutated variants have been studied in relation to temperature
adaptation, activity/stability trade-offs and molecular flexibility [4–6].
In these studies, the properties of the psychrophilic VPRΔC have been
compared to those of the structural homologue aqualysin I (AQUI) from
the thermophile Thermus aquaticus [5–8]. Despite being closely struc-
turally related, these enzymes differ greatly with respect to thermal
stability and kinetic properties, reflecting their different temperature

adaptation [5–8]. VPRΔC contains three calcium binding sites which
have been shown to be highly important for structural stability of the
enzyme [1,7,9]. In addition, it has two disulfide bridges to stabilize the
protein structure [9]. These former studies of VPRΔC and its variants
have been somewhat hampered by the relatively low level of enzyme
production in the expression system we have used. We therefore aimed
for applying a more efficient expression system for production of VPRΔC
and variants for detailed structural and functional studies. In this paper
we present an efficient procedure to produce large quantities of highly
purified VPRΔC. To that end we utilized the T7 system of E. coli Lemo21
cells [10] and demonstrated the importance of high concentration of
calcium ions during protein expression and its interplay with rhamnose
concentrations in the tunable T7 system of Lemo21. In the aftermath of
this increased protein production, previously undetected impurities
were observed. Therefore, a revised protein purification protocol was
developed. For this reason, we report new values for measured kinetic
constants and a comprehensive examination of other physical proper-
ties of the new recombinant proteinase such as the effects of calcium on
structural stability and inactivation.

https://doi.org/10.1016/j.bbapap.2018.11.010
Received 5 July 2018; Received in revised form 22 November 2018; Accepted 26 November 2018

⁎ Corresponding author.
E-mail address: mmk@hi.is (M.M. Kristjánsson).

BBA - Proteins and Proteomics 1867 (2019) 152–162

Available online 28 November 2018
1570-9639/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/15709639
https://www.elsevier.com/locate/bbapap
https://doi.org/10.1016/j.bbapap.2018.11.010
https://doi.org/10.1016/j.bbapap.2018.11.010
mailto:mmk@hi.is
https://doi.org/10.1016/j.bbapap.2018.11.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbapap.2018.11.010&domain=pdf


2. Materials and methods

2.1. E. coli strains, plasmids and media

For plasmid production, the E. coli strain XL10-Gold acquired from
Agilent Technologies having the genotype: TetrD(mcrA)183 D(mcrCB-
hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte [F´
proAB lacIqZDM15 Tn10 (Tetr) Amy Camr] was used. The expression
strain used was Lemo21(DE3) from New England BioLabs, genotype:
fhuA2 [lon] ompT gal (λ DE3) [dcm] ΔhsdS/pLemo(CamR) λ DE3= λ
sBamHIo ΔEcoRI-B int::(lacI::PlacUV5::T7 gene1) i21 Δnin5
pLemo= pACYC184-PrhaBAD-lysY. Plasmids used in this study where
pBAD containing the truncated form of VPR (VPRΔC) [3,4] and pET-
11a-d used in high level expression of the proteinase. Ingredients for
media and plates were yeast extract, tryptone and agar from Bacto. For
plasmid cultures and agar plates LB-Miller broth containing 0.1mg/mL
ampicillin (Sigma) was used. Lemo21 cells for expression were grown
on LB-Miller plates containing 0.1mg/mL ampicillin (Sigma), 0.03mg/
mL chloramphenicol (AppliChem) and 0.1% (w/v) L-rhamnose (Sigma).
Liquid media for protein expression was 2xYT broth containing 0.1 mg/
mL ampicillin, 0.03mg/mL chloramphenicol, 400 μM isopropyl β-D-1-
thiogalactopyranoside (IPTG) (AppliChem) and varying concentrations
of L-rhamnose and Ca2+.

2.2. Cloning

Cloning of the subtilase was performed via overlap extension PCR
cloning [11] using Phusion® High-Fidelity DNA polymerase from NEB.
The primers used for the amplification of the VPRΔC gene from the
pBAD vector were the sense primer 5´CCCCTCTAGAAATAATTTTGTT
TAACTTTAAGAAGGAGATATACATATGTTAAAGAAAGTATTAAGTTG
TTG´3 and the anti-sense primer 5´CAAGGGGTTATGCTAGTTATTGCT
CAGCGGTTAAAAGTTTGCTTGGAGCGTC´3. These primers were ac-
quired from TAG Copenhagen. For amplification of the VPR mega-
primer a PCR reaction mixture containing 3.0 μM of sense and anti-
sense primers, 1.5 nM of the pBAD vector containing the VPRΔC gene,
200 μM dNTP, 4 U of Phusion polymerase and using the GC buffer, in a
total volume of 20 μL. The following program was used: mixture was
pre-heated at 98 °C for 30 s then thermo-cycles ran 25-times in the
following order: 98 °C for 10 s, 55 °C for 20 s, 72 °C for 50 s and repeat.
The final elongation step was performed at 72 °C for 10min followed by
cooling to 4 °C. After amplification, the PCR product was gel purified
from a 1% agar gel and the appropriate band was isolated using gel
extraction kit from NEB. The purified megaprimer was then used to
clone the gene into a pET-11-a-d vector. The PCR reaction mixture
contained the purified megaprimer in a 250-fold excess over the pET-
11a vector. Otherwise the mixture was as in the previous PCR reaction
mix. The PCR program was as following: denaturation at 99 °C for 2min
followed by 20 cycles of 95 °C for 50 s, 60 °C for 50 s and 68 °C for
12min. The final elongation step was carried out at 68 °C for 12min
and then the reaction was quenched by cooling to 4 °C. The remaining
methylated DNA of the template was then digested by adding DpnI
(Thermo Scientific) to a final concentration of 1 U/μL and incubated at
room temperature for 1.5 h, followed by transformation into XL10-Gold
cells and then plated on LB-discs that were grown overnight at 37 °C.
Single colonies were then picked and grown overnight in LB-Miller
broth containing ampicillin at 37 °C and rotated at 230 rpm. Plasmid
purification was carried out using the Monarch plasmid miniprep kit
from NEB, following their instructions. To verify that the cloning was a
success, samples were sent to Genewiz® for Sanger sequencing.

2.3. Transformation

Transformation of XL10-Gold was carried out by diluting PCR
samples or purified plasmids 50-fold into Eppendorf tubes containing
competent cells and kept on ice for 10 to 30min. Heat shock was

carried out at 42 °C for 60 s and again put on ice until being cooled
down. Samples were then diluted 5 to 20-fold into LB-Miller broth and
grown for 1 h at 37 °C. Cells were then plated onto LB-plates containing
ampicillin and grown overnight at 37 °C. Transformation of Lemo21
was carried out by adding 50 ng – 100 ng of purified plasmid to 50 μL of
competent cells and then following the same protocol as described
above. Lemo21 cells were plated onto LB-plates containing ampicillin,
chloramphenicol, rhamnose and then grown overnight at 37 °C.

2.4. Expression and optimization

For expression, single colonies of transformed Lemo21 cells were
incubated in starter cultures of 2xYT broth and cultivated at 37 °C and
230 rpm overnight. Starter cultures were then diluted 50× into 2xYT
expression cultures containing varying concentrations of L-rhamnose.
Cultivation was performed in an Innova®44 incubator (New Brunswick)
at 37 °C and 230 rpm in Erlenmeyer flasks with a volume of five times
the media volume. Cells were grown until A600 had reached 0.4–0.8
A.U. At that point the culture was made 400 μM in IPTG and varying
amounts of a sterile 4M CaCl2 solution was added. Cultivation was then
carried out in an Innova®44R incubator at 18 °C and shaken at 230 rpm
for 20 h. Cells were harvested by centrifugation at 4500×g at 10 °C for
15min. Samples of growth culture were withdrawn for A600 and su-
pernatant activity measurements. Harvested cell pellets were stored at
−25 °C until used.

2.5. Protein purification

Cell lysis was performed by dissolving a pellet in 1/20 of its culture
volume in 25mM Tris (Sigma), 10mM CaCl2 (Sigma) at pH 8.0. Then
dissolved DNase (Sigma) and lysozyme (Sigma) were added to a final
concentration of 1 μg/mL and 1mg/mL, respectively. The sample was
gently shaken for 2 h and flash frozen in liquid nitrogen and thawed at
room temperature with gentle shaking. These freeze/thaw cycles were
repeated 3 times with the last thawing being carried out at 4 °C over-
night. The sample was then centrifuged at 20,000 ×g at 4 °C for 45min
in a Beckman Coulter Avanti® J-26XP centrifuge. At that point activity
measurements were performed to estimate expression yields. The rest of
the supernatant was kept and made 80% saturated in (NH4)2SO4

(Sigma) and centrifuged at 20,000 ×g at 4 °C for 45min. The super-
natant was discarded, and the precipitate dissolved in 1/20–1/10 of the
original culture volume in 25mM Tris, 10mM CaCl2 at pH 8.0. All
column purification steps were performed using a BioLogic LP work-
station from BioRad. The sample was loaded on to a N-carbobenzoxy-D-
phenylalanyl-triethylenetetramine-Sepharose (z-D-Phe-TETA) column,
previously equilibrated with 25mM Tris, 10mM CaCl2 and pH 8.0
buffer. A wash was then preformed with 1M NaCl Tris-buffer followed
with another wash with buffer without salt. Elution was performed with
2M guanidinium chloride in the Tris-buffer and the eluted fractions
were diluted into 3M (NH4)2SO4 in the Tris-buffer in a 5:4 ratio. That
sample was then loaded immediately onto a phenyl Sepharose column,
previously equilibrated with 1M (NH4)2SO4 in Tris-buffer at pH 8.0.
The (NH4)2SO4 concentration was then lowered stepwise to 0M,
usually in two steps: to 0.4M, and the down to 0M. The elution buffer
consisted of 50% ethylene glycol in the same Tris-buffer. The final step
in the purification procedure was a run on a Q-sepharose column which
was meant to concentrate the sample and ensure that no RNA con-
tamination was present. The column was equilibrated with 25mM Tris,
10mM CaCl2, pH 8.0, before the sample was applied. Wash was per-
formed with the same buffer followed by elution using a linear NaCl
gradient from 0M to 0.5M. Active portions were pooled together and
made 20% ethylene glycol before being flash frozen in liquid nitrogen.
All samples were then stored at −25 °C.
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2.6. SDS-PAGE and estimation of protein purification

SDS-PAGE was performed on home cast 4%/12% gels. Mixing 40%
stock solution of acrylamide/bis-acrylamide (37/1) (Sigma), dH2O,
sodium dodecyl sulfate (Thermo Scientific), tetraacetylethylenediamine
(TEMED) (Merck) and ammonium persulfate (Sigma) [12] using Mini-
PROTEAN tetra Cell from BioRad. Samples for SDS-PAGE electro-
phoreses were all inhibited with PMSF (Sigma) to a final concentration
of 2.5mM prior to mixing with 4× LDS sample buffer (Invitrogen) and
denatured at 80 °C for 10min. After electrophoresis, gels were fixed in
2.5% H3PO4 and 50% ethanol. Gels were rinsed in water two times
before staining using Blue Silver stain [13]. The resulting gel was then
photographed on a BioRad GelDoc™ EZ Imager. Specific activity of all
samples was estimated by measuring activity against 0.5 mM Suc-AAPF-
NH-Np (Bachem) and protein concentration was determined by using
the Coomassie G-250 based assay as described by Zaman and Vervil-
ghen [14]. UV wavelength scans on contaminants were performed on a
Shimadzu UV-2700 spectrophotometer and ethidium bromide (Sigma)
fluorescence measurement were conducted using a Horiba FluoroMax-4
spectrofluorometer, with excitation wavelength of 300 nm and fluor-
escence was monitored between 550 and 650 nm.

2.7. Effects of temperature and pH on activity

Activity assays were carried out using a Shimadzu UV-2700 spec-
trophotometer connected to a Shimadzu TCC-100 temperature con-
troller. Activity was monitored at 410 nm over 15 s by using Suc-AAPF-
NH-Np as a substrate. To determine the effects of pH on activity, six pH
values were chosen and measured in triplicates. These were 3.8, 5.0,
6.2, 7.4, 8.6 and 9.8. Buffers used were glycine (Sigma) for pH 9.8. Tris
for 8.6 and 7.4, MES (Sigma) for pH 6.0 and acetate (Sigma) for 5.0 and
3.8. The substrate concentration of 1mM was used in those measure-
ments. Apparent pKa was fitted and calculated using a sigmoidal curve
fit using GraphPad Prism (GraphPad Software©). To estimate the ac-
tivity dependence on temperature, assays were carried out at seven
different temperatures in triplicates using 1mM Suc-AAPF-NH-Np in
100mM Tris,10mM CaCl2, pH 8.6 at the temperature being measured.
To further classify the effects accompanied by the changes in pH and
temperature, kinetic properties of the protease were determined by
Michaelis-Menten assay at pH 7.4, 8.6 and 9.8, at 25 °C and at the
temperatures 5 °C, 25 °C and 45 °C, at pH 8.6. Four different substrate
concentrations between 0.1 and 1.0 mM were used for all experiments
except for measurements done at pH 8.6 and 25 °C were seven substrate
concentrations were used. All measurements were done in triplicates.
Protein concentration was estimated by absorbance measurements at
280 nm using the molar attenuation coefficient calculated by the web-
based program ProtParam (https://web.expasy.org/protparam/)
(34,170M−1 cm−1) [15]. For substrate concentration estimation, assay
solutions containing enzyme and substrate were incubated overnight at
room temperature before diluting 10-fold and measuring absorbance at
410 nm, using 8480M−1 cm−1 for calculations [16]. All measurements
were at minimum done in triplicates. The calculations of kinetic con-
stants were performed by fitting the data to the Michaelis-Menten
equation using the analysis software KaleidaGraph (Synergy Soft-
ware©).

2.8. Stability measurements

T50% was determined by following the thermal inactivation at sev-
eral selected temperatures. From rates of inactivation we determined
T50%, defined as the temperature at which half of the activity was lost
after 30min. Samples were prepared by dialysis against a buffer con-
taining 25mM Tris, 15mM CaCl2, 100mM NaCl, 1 mM EDTA (Sigma)
and pH 8.95 at 25 °C. Half-life (t1/2) measurements on the other hand
were carried out at T50% under the same conditions as described, except
at varying Ca2+ concentrations from 0 to 250mM. Samples were

diluted 50–100-fold into the incubation buffer just prior to measure-
ments and aliquots were withdrawn and assayed for remaining activity.
Data analysis was performed using GraphPad Prism fitting data with a
double hyperbolic binding curve. To determine Tm, we used circular
dichroism (CD) spectroscopy and differential scanning calorimetry
(DSC). Samples were prepared by inhibition with PMSF followed by
dialysis overnight at 4 °C against 25mM glycine (Sigma), with varying
CaCl2 concentrations, 100mM NaCl and pH 8.6. Prior to Tm measure-
ments a CD spectrum was recorded for each sample on a Jasco J-1100
from 250 nm down to 200 nm at 25 °C using a 1mm cuvette. Melting
curves were recorded at 222 nm with a heating of 1 °C/min from 25 °C
to 85 °C. Protein concentration in these experiments was set to
0.1–0.3mg/mL. Data analysis was performed by normalizing data fol-
lowing a fitting to a sigmoidal curve using Kaleidagraph. Melting points
at varying calcium concentrations were fitted to a hyperbolic curve
using GraphPad Prism. Concurrent to these measurements differential
scanning calorimetry (DSC) scans were carried out using a MicroCal VP-
DSC. Experiments were run at 1 °C/min temperature gradient from
15 °C to 95 °C. Protein concentrations were between 0.8 and 1.2mg/
mL. Data analysis for DSC was performed using the Origin® software.
After buffer subtraction and concentration normalization, the data was
converted into plots of excess heat capacity versus temperature.
Differences in heat capacity of the folded and unfolded states were
eliminated by manually fitting linear segments close to the peak and
baseline created using the progress baseline option. Baseline was then
subtracted and the deconvoluted data set fitted to non-two-state model
[17]. Further analysis of data the sets included calculations of apparent
melting points (Tm(DSC)) by fitting a cubic function to the peaks of the
thermograms and solving the first derivative for the local maximum.
Also, the rate of unfolding (k(unfold)) was calculated:

=
−
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Q Q(unfold)
p

t

where v is the speed of the temperature gradient, Cp is the excess heat
capacity at a given temperature, Qt is the total heat evolved and Q is
heat evolved at a given temperature [18,19]. The activation energy of
unfolding (Ea) was calculated using the Arrhenius equation using cal-
culated unfolding rates above 5% heat evolved and under 95% to avoid
the relative high uncertainty in the end and beginning of the data. Half-
times of unfolding t1/2(DSC) were then calculated from k(unfold) along
with the activation free energy (ΔG‡):
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where R is the universal gas constant, T is the absolute temperature,
k(unfold) is the rate of unfolding at a given temperature, h is the Planck
constant and kb is the Boltzmann constant. The activation enthalpy
(ΔH‡) was calculated by:

= −E RTΔH a
‡

and the activation entropy (ΔS‡) was calculated as:

= −
T

ΔS ΔH ΔG‡
‡ ‡

The thermodynamic activation parameters ΔG‡, ΔH‡ and ΔS‡ were
calculated at temperatures corresponding to the apparent melting
points (Tm(DSC)).

3. Results

3.1. Cloning and expression optimization

Successful amplification of the VPR megaprimer was confirmed by
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agarose electrophoresis of the product and showed a band that was
around 1600 bp (Supplementary. Fig. 1) which was in good agreement
with the actual size of 1669 bp. After gel purification, overlap extension
PCR cloning, transformation and plasmid purification, four of the six
clones that were sequenced gave active clones. Optimization of condi-
tions during overexpression of VPR was carried out by varying rham-
nose concentration at a constant calcium concentration, and also where
calcium concentrations were varied, but at selected rhamnose con-
centrations. In the absence of rhamnose toxic effects of the proteinase
were clearly observed, as cultures grew slower and ended up at lower
cell density (Supplementary. Table 1). Even though the tunable Lemo21
system has proven to be a powerful tool in the expression of difficult
proteins [14] by using the titratable induction of T7 lysozyme via
rhamnose addition, this was not enough for the expression of VPRΔC.
The presence of Ca2+ after induction by IPTG was just as crucial for
overexpression of the proteinase. Experiments where rhamnose con-
centrations were varied at fixed Ca2+ concentrations showed that a
final concentration of 76 μM rhamnose resulted in the highest yield of
soluble protein at almost all Ca2+ concentrations (Fig. 1A)
(Supplementary. Table 1). In the absence of rhamnose the difference in
expression levels in the absence and presence of 100mM Ca2+ was
around 1000-fold. This is almost the same change as observed in the
absence of both Ca2+ and rhamnose, compared to that in the presence
of 76 μM rhamnose, but without Ca2+ (Fig. 1B) (Supplementary.
Table 1). Evaluation of how Ca2+ affects expression levels shows that

even small amounts of Ca2+ increase the yield of soluble protein
drastically. At higher Ca2+ concentrations yields do only increase
slightly, however. By using 100mM Ca2+ and 76 μM rhamnose in 1 L
cultures could yield up to 40,000 U as compared to 4 U without added
calcium and rhamnose, and 5500 U at this rhamnose concentration, but
in the absence of Ca2+. The effect of rhamnose on cell growth was quite
clear as in its absence A600 was ~ 2–4, but increased steadily to ~ 8–10
at higher concentrations, levelling off at around 152 μM rhamnose. The
effect of calcium on cell density was much smaller, but a trend was
observed indicating that higher calcium concentrations were beneficial
for cell growth (Supplementary. Table 1). This indicates that the cal-
cium present in the growth medium is not only aiding in correct folding
and stabilization of VPR but is also increasing the resistance of Lemo21
against the toxic effects caused by VPR.

3.2. Purification

The purification procedure consists of a (NH4)2SO4 salting out step,
followed by three column chromatography steps, an affinity column
using Z-D-Phe-TETA-Sepharose, followed by steps using phenyl-
Sepharose and Q-Sepharose columns. During elution from the affinity
column by 2M guanidinium chloride a sharp peak appeared with low
activity that was then followed by a broad peak with increased activity
(Supplementary. Fig. 2A). It turned out that the sharp front of the peak
contained contaminants. These contaminants could be separated from

Fig. 1. A. Effects of rhamnose concentration on VPR expression yields without added calcium (red bars), in the presence of 25mM CaCl2 (blue bars) and 100mM
CaCl2 (grey bars), recovered from harvested cells. B. Effects of CaCl2 concentration on VPR expression at 76 μM rhamnose. Red bars represent activity units recovered
from harvested cells. Blue bars represent activity units that leaked into the culture supernatant during cultivation. Error bars represent the standard deviation of the
mean.

Table 1
Purification table for VPRΔC expressed in Lemo21. Activity per mL after column steps is calculated from the average activity from collected active fraction.

Step. Volume (mL) Concentration (mg/
mL)

Activity (U/
mL)

Units (U) Total protein
(mg)

Specific activity
(U/mg)

Yield (%) Purification (fold)

Soluble fraction. 50 5.19 580 28,715 257 112 100 1.0
80% (NH4)2SO4 precipitate. 108 1.41 242 25,999 152 171 91 1.5
Z-D-Phe-TETA-Sepharose. ⁎

(Affinity column)
590 0.20 ⁎(0.13) ⁎⁎ 33 19,677 118 ⁎(79) ⁎⁎ 166 (250) 69 1.5 (2.2)

Phenyl-Sepharose.
(Hydrophobic interaction
column)

203 0.17 109 22,105 34 654 77 5.9

Q-Sepharose.
(Anion exchange column)

50 0.46 407 20,165 23 876 70 7.8

⁎ Protein concentration is likely be overestimated in these samples due to interference by ammonium sulfate and RNA present in the assay mixture in the Zaman
and Vervilghen procedure [14].

⁎⁎ In brackets are corrected values for protein concentration, where a blank was used simulating the composition of the assay mixture with respect to guanidinium
chloride and ammonium sulfate in Tris buffer. A possible interference by RNA in the sample has not been accounted for in these values, however.
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the proteinase on the phenyl-Sepharose column by lowering (NH4)2SO4

from 1M to 0.35–0.45mM where the contaminant peak elutes from the
column (Supplementary. Fig. 2B). The active peak fractions, which
were eluted from the column with 50% ethylene glycol, were pooled
and applied to a Q-sepharose column, which was eluted with a linear
salt gradient which resulted in a single sharp peak (Supplementary.
Fig. 2C), which migrated as a single band around 34–35 kDa on SDS-
PAGE (Fig. 2). Yields of activity units using this purification protocol
has been estimated to be from 60 to 75%. Specific activity of samples
has been measured at 874 ± 130 U/mg at room temperature (Table 1).
The contaminant that coeluted with the proteinase from the affinity
column was examined further. A wavelength scan (Fig. 3A.) revealed a
spectrum that is identical to that of pure nucleotides. Adding ethidium

bromide to the solution made it highly fluorescent indicating that it
contained either DNA or RNA strands. By adding RNase A and in-
cubating for 20min (Fig. 3B.) fluorescence was lost however, showing
that the contaminant is most likely a single stranded RNA [20]. At-
tempts to identify the contaminants further indicated that the im-
purities peak collected from the phenyl-Sepharose column contained
two rather small RNA fragments, but that were at least larger than
14 kDa as they did not pass through the cellulose membrane used for
dialysis of samples.

3.3. Characterization of enzymatic properties

The purified recombinant VPRΔC was characterized with respect to
effects of temperature and pH on its enzymatic properties. The tem-
perature dependence of activity was measured and showed that in the
presence of 10mM Ca2+, when monitoring activity only for 15 s, the
activity steadily increased up to 65 °C (Fig. 4A). The measured pH
profile is consistent with what to expect from a subtilisin-like serine
protease [21] with an ionizable histidine residue in the active site
having an apparent pKa of approximately 7 (Fig. 4B). As measurements
were done at 1mM Suc-AAPF-NH-Np these changes represent mostly
changes in kcat. Michaelis-Menten kinetic parameters measured on the
recombinant VPRΔC produced and purified in this new procedure was
found to have considerably higher values of kcat, whereas the Km values
were not significantly changed as compared to older values [4]. This
change in activity is most likely due to the removal of RNA from
samples as A280 measurements have been used to estimate protein
concentration, leading to overestimation of protein if RNA is present.
With increasing temperature, the turnover number increases to around
550 s−1 at 45 °C from 41 s−1 at 5 °C but is accompanied by a con-
comitant twofold increase in Km (Table 2). These trends are in line with
previously reported results for wild type VPR and other similar enzymes
[1,22]. The catalytic efficiency (kcat/Km) also increased with pH from
7.4 to 9.4 when measured at 25 °C, both as a result of increased kcat and
lowered Km (Table 3). This effect of pH may at least partly be attributed
to deprotonation of the active site histidine.

3.4. The stability of VPRΔC and the effects of Ca2+ on structural stability
and inactivation

Measurements of thermal inactivation rates showed that VPRΔC has
a T50% value of 53.8 ± 0.4 °C obtained from Arrhenius plots
(Supplementary. Fig. 3). This value is in line with results reported by
Kristjansson et al. [1] for the wild type, but is around 2.5 °C lower than

Fig. 2. SDS-PAGE of the purified VPRΔC expressed in Lemo21. Prestained
Protein Ladder with indicated molecular masses in kilodaltons are indicated for
size determination.

Fig. 3. A. Absorbance spectrum of contaminants recovered from phenyl-sepharose column. B. Fluorescence emission spectrum of ethidium bromide containing
contaminants, before RNase A digestion (black line) and after RNase A digestion (blue line). Sharp peaks observed are second order diffractions of the scattered
300 nm excitation light.
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what has been reported for the truncated VPRΔC variant [4]. The reason
for this discrepancy is not known, but experiments where the proteinase
was incubated with various RNA-contaminant concentrations did not
show any change in the rate of thermal inactivation. VPRΔC has three
calcium binding sites [9] and binding of calcium ions has been shown to
be highly important for the correct fold, thermal stability and protec-
tion against thermal inactivation of subtilases [2,7,23–25]. To estimate
the contribution of Ca2+ binding for stabilization of the enzyme against
thermal inactivation, we measured t1/2, the half-life of inactivation, at
different Ca2+ concentrations at T50% (53.8 °C). Results of these ex-
periments revealed that the resistance of the enzyme against thermal
inactivation was still increasing at 250mM Ca2+, the highest calcium
concentration used in these experiments (Fig. 5B). Values for melting
temperatures (Tm) obtained from melting curves measured by CD were
not increased however, at Ca2+ concentrations higher than 15mM
(Fig. 5A and 6B). Thermal stability of VPRΔC was also determined by
DSC in the presence of 1mM, 15mM and 100mM CaCl2 (Fig. 7A). Prior
to these experiments CD wavelength scans were recorded of the samples
and revealed no observable changes in the secondary structure of the
enzyme over that calcium concentration range (Fig. 6A). Plots of excess
heat capacity exhibited changes over the calcium range, where at
higher calcium concentration the total calorimetric heat increased.

Fig. 4. A. The effect of temperature on the activity of VPR measured in Tris-buffer containing 10mM CaCl2. Buffer was adjusted to pH 8.6 at each measured
temperature. The average of maximum activity measured was set to 1. B. The effect of pH on the activity of VPR in the presence of 10mM CaCl2. The average of
maximum activity measured was set to 1. Error bars represent one standard deviation of the mean.

Table 2
Kinetic parameters for the activity of VPRΔC against Suc-AAPF-NH-Np at
varying temperatures.

Conditions. Temperature
(°C) / pH

kcat (s−1) Km (mM) kcat/Km

(s−1 mM−1)

5 °C / 8.6 40.8 ± 2.1 0.115 ± 0.002 354 ± 24
25 °C / 8.6 225.7 ± 12.0 0.178 ± 0.016 1239 ± 149
45 °C / 8.6 552.3 ± 32.6 0.227 ± 0.038 2471 ± 347

Table 3
Kinetic parameters for the activity of VPRΔC against Suc-AAPF-NH-Np at
varying pH values.

Conditions. Temperature
(°C) / pH

kcat (s−1) Km (mM) kcat/Km

(s−1 mM−1)

25 °C / 7.4 193.1 ± 4.1 0.198 ± 0.004 984 ± 9
25 °C / 8.6 225.7 ± 12.0 0.178 ± 0.016 1239 ± 149
25 °C / 9.4 248.7 ± 14.3 0.133 ± 0.018 1948 ± 240

Fig. 5. A. Tm at different CaCl2 concentrations. Black dots represent average experimental values whereas the red line represents the hyperbolic fit. B). t1/2 at
different CaCl2 concentration measured at T50% (53.8 °C). Black dots represent average experimental values whereas the red line represents the double hyperbolic fit.
Error bars represent one standard deviation of the mean.
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Fig. 6. A. CD wavelength scan of VPRΔC with varying calcium concentrations at 25 °C; 1mM (blue dots), 15 mM (black dots) and 100mM (red dots) CaCl2. B.
Normalized melting curves of VPRΔC at varying calcium concentrations recorded by CD measurements. The buffer used was 25mM glycine, 100mM NaCl and pH 8.6
and with varying CaCl2 concentrations;1 mM (blue), 15mM (black) and 100mM (red) CaCl2. Dots represent normalized data points were solid lines represent
sigmoidal fits.

Fig. 7. A. Differential scanning calorimetric melting transitions for VPRΔC. Measurements were carried out in 25mM glycine, 100mM NaCl and pH 8.6 and at 1mM
CaCl2 (blue), 15mM CaCl2 (black) and 100mM CaCl2 (red). Scan rate was at 1 °C/min. B. Deconvolution of excess heat during the unfolding of VPRΔC at 1mM CaCl2.
Black dotted line represents the best fit of the total excess heat, blue solid line represents the excess heat of the first transition, black solid line represents the excess
heat of the second transition, red solid line represents the excess heat of the third transition, green solid line represents the excess heat of the fourth transition and the
grey solid line represents the total excess heat measured. C). Deconvolution of excess heat during the unfolding of VPRΔC at 15mM CaCl2. D). Deconvolution of excess
heat during the unfolding of VPRΔC at 100mM CaCl2.
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However, no changes were observable between unfolding traces during
CD melting between 15mM and 100mM Ca2+ (Fig. 6B). Fitting the
DSC melting curves to a non-two-state model gave the best the fits. We
observed that a model with four transitions best described the thermal
denaturation process of VPRΔC, as it adequately fits the curvature of the
data and the observed effects of calcium (Fig. 7B-D). The largest heat of
denaturation was associated with the second transition observed, that
also has a Tm corresponding to that measured by CD (Table 4.). The
calorimetric heat of denaturation of the second transition also only
shows difference between 1mM and 15mM calcium, following the
same trend as the melting temperatures determined by CD, indicating
effects of calcium binding occurring in that concentration range on the
α/β core structure of the protein. The calorimetric heat of denaturation
of the first transition is mostly unaffected by calcium concentration but
has a Tm around 4 °C lower than the melting point measured by CD.
Heat of denaturation of transitions three and four that occur 3 °C and
6 °C above the CD melting point are very responsive to calcium in the
solution over all calcium concentrations measured (Fig. 7B-D). Effects
of calcium binding on activation energies of unfolding (Table 5.) tell a
similar tale, as there is no change in activation free energy (ΔG‡) be-
tween 15mM and 100mM calcium but an increase of 1.1 kJ/mol from
1mM to 15mM. Over the calcium range measured activation enthalpy
(ΔH‡) increases, however this is followed by an increase in activation
entropy (ΔS‡), that after 15mM calcium starts to compensate for the
effect of the increasing activation enthalpy (ΔH‡). Binding of calcium
ions to specific binding sites clearly is the single most important factor
contributing to the stability of VPRΔC as is clearly demonstrated by
these results. This is further underlined by the fact that our attempts to
measure the stability of calcium depleted VPRΔC, by either DSC or CD,
were unsuccessful. Samples were almost completely denatured during
dialysis against a calcium free Tm buffer at 4 °C which contained 1mM
EDTA prior to CD and DSC experiments. The melting temperature was
however measurable on CD with no added calcium and no EDTA
(47.7 ± 0.3 °C). We contribute this destabilization in the presence of
EDTA to chelation of a tightly bound calcium ion by EDTA, rather than
destabilizing effects caused by EDTA on the structure, as t1/2 experi-
ments with no added calcium but in the presence of 1mM, 10mM and
100mM EDTA at 25 °C did not show any change in the rate of in-
activation.

4. Discussion

The successful cloning and expression of VPRΔC in Lemo21 cells has
opened the door for more protein production, making it feasible to
carry out experiments demanding higher protein concentrations as
expression levels are up to 100 times higher than in the older system.

The expression levels were found to be highly dependent on optimized
concentrations of calcium and rhamnose in the growth medium,
prompting the question of the role of high concentration of calcium in
the culture medium. This system is now being used in high-level pro-
duction of various mutants of VPR, some of which were non-expressible
in the older system. Some of the more unstable variants have even been
found to be more dependent on high levels of calcium in the media.

Characterization of the enzymatic properties of the new re-
combinant VPR shows that after implementing a reformed purification
protocol, kinetic analysis yielded significantly higher kcat values for the
enzyme against its synthetic substrate, than previously had been re-
ported. This is attributed to RNA contaminants which coeluted with the
proteinase from the affinity column and would interfere with A280

measurements when present in samples. The activity of the purified
proteinase is very responsive to temperature changes between 5 °C and
45 °C, showing a 14-fold increase in turnover number, but with a con-
comitant 2-fold increase in Km. Changes accompanied by changes in pH
between 7.4 and 9.8 show a one third increase in kcat and similar de-
crease in Km, these changes being attributed to changes in protonation
of the active His70 residue, in addition to neighboring ionizable re-
sidues possibly affecting substrate binding to some extent.

Stability against thermal unfolding and inactivation however, has
been measured consistently 2–3 °C lower than previously reported
[4,26] with no explicit explanation. The observed difference between
the effect of calcium concentration on rates of thermal inactivation (t1/
2) and global thermal stability (Tm) as determined by CD, strongly
suggests that two low affinity calcium binding sites may be present in
the enzyme, with calcium binding affinities in the mM range. This is
best demonstrated from the comparison of t1/2 and Tm against Ca2+

concentration. Plotting a hyperbolic curve to melting temperatures
against calcium concentration resolves in an apparent KD of ~ 1mM
(Fig. 5A), whereas plotting t1/2 as a function of calcium concentration
and fitting the data to a double hyperbolic curve (Fig. 5B) can be re-
solved to two apparent binding constants of ~ 1mM and ~ 22mM,
respectively. Thus, binding site with an apparent KD of ~1mM is cru-
cial for the thermal stability of the secondary structure and a second
binding site with an apparent KD of ~ 22mM is mostly important in
relation to resistance against thermal inactivation, rather than the sta-
bility of the α/β core structure of VPR. This explains why such high
calcium concentrations are beneficial in the culture media during ex-
pression in addition to some beneficial effects on cell density observed
at higher calcium levels. The last calcium binding site then likely has a
KD in the sub-mM range as indicated by the loss of stability of the en-
zyme in the presence of EDTA but without calcium, as compared to
conditions where neither calcium nor EDTA were added.

Changes to activation energies of unfolding determined by DSC at

Table 4
Melting temperatures as measured by CD and the four Tm recorded on DSC along with the calorimetric heats (ΔH) for each transition and the total calorimetric heat.
Standard deviation of the mean of experimental data is shown for every value except for total heat of denaturation where the normal sum distribution is shown.

[Ca2+]
mM

Tm

(°C) (CD)
Tm1

(°C)
ΔH1

(kJ/mol)
Tm2

(°C)
ΔH2

(kJ/mol)
Tm3

(°C)
ΔH3

(kJ/mol)
Tm4

(°C)
ΔH4

(kJ/mol)
Total ΔH
(kJ/mol)

1mM 54.3 ± 0.2 52.5 ± 0.9 118 ± 22 56.8 ± 0.7 160 ± 7 60.1 ± 0.6 123 ± 20 62.9 ± 0.5 41 ± 12 442 ± 16
15mM 62.2 ± 0.5 57.8 ± 0.6 133 ± 10 61.7 ± 0.4 187 ± 29 64.6 ± 0.5 140 ± 15 67.3 ± 0.2 45 ± 7 504 ± 17
100mM 61.8 ± 0.3 58.1 ± 1.4 113 ± 11 62.3 ± 1.1 190 ± 1 65.3 ± 0.7 180 ± 19 67.7 ± 0.6 70 ± 15 553 ± 13

Table 5
The thermodynamic activation parameters ΔG‡, ΔH‡ and ΔS‡ calculated from DSC thermograms at their respective apparent melting points (Tm(DSC)) along with the
half time at that temperature.

[Ca2+] mM Tm(DSC) (°C) t 1/2(DSC) (min−1) ΔG‡ (kJ/mol) ΔH‡ (kJ/mol) ΔS‡ (J/(mol*K))

1mM 58.9 ± 0.2 3.1 ± 0.1 97.0 ± 0.1 211 ± 3 343 ± 8
15mM 63.7 ± 0.3 2.5 ± 0.1 98.1 ± 0.2 238 ± 12 413 ± 35
100mM 65.0 ± 0.3 2.4 ± 0.1 98.2 ± 0.1 260 ± 9 478 ± 25
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different calcium concentrations show clear effects of calcium binding,
as up to 100mM calcium the activation enthalpy (ΔH‡) is increasing
indicative of new bonds forming or strengthening preexisting interac-
tions (Table 5). The accompanied increase in activation entropy (ΔS‡)
could then be attributed to a more ordered native state due to the
fixation of the weaker calcium binding motifs. As the activation free
energy (ΔG‡) does not increase after 15mM calcium due to entropy/
enthalpy compensation would then indicate that binding to the weakest
calcium binding site is entropically unfavorable for the stability of
VPRΔC. Melting profiles of the protein as determined by DSC revealed a
rather complex denaturation process. Based on a best fit to a non-two-
state model of the unfolding curves, a model with four transitions best
described the thermal denaturation process of VPRΔC (Fig. 7B-C).
Comparison of the Tm values of the four-transition model obtained from
the DSC data, showed that the second transition yielded Tm values
corresponding to those measured by CD (Table 4). This suggests that
the second transition, which also has the highest heat of denaturation,
may reflect on the unfolding of the major part of the secondary struc-
ture. When denaturation was measured at different calcium con-
centrations, it was observed that the heat of the first transition was little
affected by calcium concentration, but the last two (Tm3 and Tm4) were
highly responsive to calcium concentration. This may suggest that these
latter transitions, which become more prominent as the calcium con-
centration is increased, may reflect on unfolding events at one or more

of the calcium binding sites or neighboring parts of the protein stabi-
lized by these binding sites. These observations could then lend some
credence to a hypothetical Lumry Eyring style model and written out as:

⇌ ↔ ↔ →N P D D U1 2

were the double headed arrows are representing either a reversible or
an irreversible step. The native state (N) first undergoes partial un-
folding. The resulting transition state (P) is then a starting point for the
denaturing process ultimately leading to a near complete loss of the
secondary structure (D1). This state is however still retaining some
calcium binding capabilities. These calcium binding motifs are then last
parts to denature (D2), ending in the completely unfolded state of
VPRΔC (U).

The crystal structure of SPRK, a proteinase K-like subtilase from a
psychrotrophic Serratia species, was reported to have only one calcium
binding site occupied [22]. Structural similarity, with respect to geo-
metries and amino acid composition, of the calcium sites between VPR
and SPRK suggests however, that calcium binding site 2 (Ca-2), as well
as the Ca-1 site should also be present in SPRK [9]. The presence of a
Ca2+ ion at the site in the crystal structure of SPRK corresponding to
the Ca-3 site in VPR, strongly suggests that the Ca-3 site is the strongest
binding site in the protein (Fig. 8). The crystal structure shows that the
calcium ion at this site is coordinated by six different protein atoms [9].
AQUI, a thermostable homologue of VPR contains two calcium binding

Fig. 8. Superimposed three-dimensional structures of VPR (PDB ID: 1SH7) and SPRK (PDB ID: 2B6N). VPR is coloured light blue with green calcium atoms, whereas
SPRK is coloured grey with a golden calcium atom.
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sites, corresponding to Ca-1 and Ca-3 in VPR [27]. The Ca-3 binding site
shares a high degree of similarity in geometry and protein ligands to
that of VPR and so does the Ca-1 site although some differences in
orientation of the calcium ion are observed in the binding site [9,27].
AQUI has also been shown to have a weak calcium binding site that is
important for thermostabilization of the protein structure [28]. It is
highly likely that these weak binding calcium sites, that are important
for the stability of the secondary structure, are the same in both VPR
and AQUI, and based on the arguments discussed above, it would
suggest that this site is the Ca-1 site. Proteinase K also has the Ca-1
binding site, which has been shown to have a higher affinity for calcium
[25] than a second binding site in the protein. The second binding site
is located close to the N-terminus, bridging that part of the protein to
the C-terminus [29]. This second site is not present in VPR and other
closely related subtilases. Outside of the proteinase K family Ca-1 is
often considered to be a weak binding site such as in the case of sub-
tilisin BPN´ [24]. In addition, structures belonging to a thermostable
subtilase from Bacillus species Ak.1 and thermitase from Thermo-
actinomyces vulgaris the Ca-1 site was occupied with a sodium ion, while
a calcium ion was bound in the Ca-2 binding site [30,31]. So vastly
different affinities for calcium have been observed for similar sites in
the superfamily of subtilases.

In a molecular dynamics simulations study where VPR with the Ca-2
site occupied by calcium was compared to that of the enzyme with the
site without calcium bound, showed no effect of calcium binding on the
flexibility of that region of the protein. This was attributed to the pre-
sence of the disulfide bridge Cys67-Cys99 rigidifying that site and
minimizing the effects of calcium binding there [32]. This could in-
dicate that calcium binding to Ca-2 has minimal effects on conforma-
tional stability and could therefore be a site only affecting thermal in-
activation. This loop has been shown to contain the initial autolytic site
in the thermal inactivation of subtilisin BPN´ [33]. In fact, by elim-
inating this initial autolysis site and incorporating a calcium binding
site corresponding to the Ca-2 site loop in thermitase, it was possible to
improve the autolytic stability of the enzyme significantly in the pre-
sence of calcium. In the absence of calcium this mutant harboring the
new calcium binding site was less stable to thermal inactivation [33].
By analogy, calcium binding to the Ca-2 site in VPR may increase the
resistance of the enzyme to autolytic inactivation without contributing
significantly to the global stability of the folded protein.

Compiling this information, we hypothesize that the Ca-2 site is the
low affinity calcium binding site, with an apparent KD of ~ 22mM, and
mainly affects the rate of thermal inactivation, leaving that part of the
protein vulnerable to proteolytic degradation in the absence of bound
calcium. From this reasoning the Ca-1 is the second weak binding site
with an apparent KD of ~ 1mM, important for thermal stability of the
secondary structure and the Ca-3 site, is the strongest binding site,
formed during maturation of the subtilase and which would lock the
folded proteinase, in its kinetically stable and active form (Fig. 8).
These observations will pave the way for further investigations into
thermostability and temperature adaptation of VPR and AQUI.
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Abbreviations

PMSF Phenylmethylsulfonyl fluoride

Suc-AAPF-NH-
Np

Succinyl-AlaAlaProPhe-p-nitroanilide

DSC Differential scanning calorimetry
VPR A subtilisin-like serine proteinase from a psychrotrophic Vibrio

species

SPRK A subtilisin-like serine proteinase form a psychrotrophic Serratia
species

AQUI Aqualysin I; PRK, Proteinase K
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Figure 1. Supplementary. 1% agarose gel electrophoresis of the megaprimer used for gel 

extraction. Ladder used was O´RangeRuler 200bp DNA ladder from ThermoFisher Scientific. 

Lane 1 contains the megaprimer of the approximate size 1600bp.



Table 1. Supplementary. Overview of results from expression optimization experiments. All cultures were 20 mL and 10 mL were harvested for cell lysis. Values are based on averages from 1 to 7 measurements and standard deviation is shown were applicable.   

0 mM Calcium 

[Rhamnose] 0 µM 30 µM 76 µM 152 µM 304 µM 609 µM 

 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 

Average 4 49 2.50 1547 237 4.42 5679 259 6.72 5226 2074 7.58 3948 53 7.76 839 53 7.50 

S.D. 1 N.A. N.A. 15 N.A. N.A. 274 N.A. N.A. 69 N.A. N.A. 73 N.A. N.A. 126 N.A. 0.71 

10 mM Calcium 

[Rhamnose] 0 µM 30 µM 76 µM 152 µM 304 µM 609 µM 

 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 

Average 10352 13050 7.00 N.A. N.A. N.A. 29388 8935 8.59 20976 5733 9.00 13368 396 8.00 5872 396 8.00 

S.D. N.A. N.A. N.A. N.A. N.A. N.A. 578 170 0.07 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 

25 mM Calcium 

[Rhamnose] 0 µM 30 µM 76 µM 152 µM 304 µM 609 µM 

 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 

Average 3610 7953 7.14 26242 20717 7.76 35428 8882 8.07 38322 2422 8.49 26862 340 8.64 10417 340 8.25 

S.D. 47 N.A. N.A. 3686 3470 0.35 5666 196 0.31 1777 N.A. N.A. 3082 N.A. N.A. 3742 N.A. 0.36 

50 mM Calcium 

[Rhamnose] 0 µM 30 µM 76 µM 152 µM 304 µM 609 µM 

 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 

Average 2613 4482 3.12 18539 17832 6.30 31539 11081 6.50 33163 3935 7.24 17870 871 7.61 9201 871 6.89 

S.D. 127 N.A. N.A. 8339 1288 0.99 3246 2241 0.24 4524 N.A. N.A. 1351 N.A. N.A. 3479 N.A. 0.16 

75 mM Calcium 

[Rhamnose] 0 µM 30 µM 76 µM 152 µM 304 µM 609 µM 

 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 

Average 3964 8032 4.10 19112 23297 5.50 34110 17892 6.79 31566 3899 8.04 29612 2119 8.78 27435 2119 8.69 

S.D. 889 3223 0.26 5825 4095 0.70 3327 6315 0.61 7615 3348 0.82 4414 N.A. N.A. 2709 N.A. N.A. 

100 mM Calcium 

[Rhamnose] 0 µM 30 µM 76 µM 152 µM 304 µM 609 µM 

 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 

Average 4919 7507 3.95 28122 14679 6.09 37697 15173 6.84 29100 3322 8.59 22026 1251 8.99 14908 1251 9.49 

S.D. 388 N.A. N.A. 1247 5119 1.04 4937 5593 0.36 7632 2576 0.62 4339 N.A. N.A. 4545 N.A. N.A. 

125 mM Calcium 

[Rhamnose] 0 µM 30 µM 76 µM 152 µM 304 µM 609 µM 

 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 U/L cells U/L Supernatant A600 

Average N.A. N.A. N.A. N.A. N.A. N.A. 37754 17158 6.73 16377 1688 7.78 N.A. N.A. N.A. N.A. N.A. N.A. 

S.D. N.A. N.A. N.A. N.A. N.A. N.A. 368 188 0.04 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 

   







 
Figure 2. Supplementary. Purification steps of VPRΔC. A. Affinity column, equilibrated with 

a Tris calcium buffer. Washed with Tris calcium buffer containing 1 M NaCl followed by 

NaCl free buffer and then eluted with 2 M guanidinium chloride in Tris calcium buffer. B. 

Phenyl-sepharose column, equilibrated with a Tris calcium buffer containing 1 M ammonium 

sulphate. Stepwise lowered to 0 M ammonium sulphate and eluted with 50% ethylene glycol. 

C. Q-sepharose, equilibrated with Tris calcium buffer and washed with the same buffer. 

Eluted by a NaCl gradient fram 0.0 M to 0.5 M NaCl. Blue lines represent absorbance at 280 

nm and red lines represent conductivity in mS (Simens). Flow rate was set to 2 mL/min 

except for loading onto phenyl-sepharose (up to 8 mL/min) and elution from Q-sepharose (1 

mL/min). 

 



 
Figure 3. Supplementary. Arrhenius plot for rates of thermal inactivation of VPR∆C. Black 

dots represent the average values from experimental data. The red line is the linear best fit of 

the data. Error bars represent one standard deviation of the mean.

 

Table 2. Supplementary. Half-lives of inactivation (t1/2) and unfolding (t1/2(DSC)) of VPR∆C. 

Half-lives of inactivation were calculated using the best fit of half-lives of inactivation against 

absolute calcium concentration (accounting for EDTA concentration) (Figure 5. B).). Half-

lives of unfolding were calculated from DSC at temperatures corresponding to calculated 

melting points from DSC data fitting.  

[Ca2+]  
mM 

t1/2 (min-1) 
@53.8°C 

t1/2(DSC) (min-1) 
@53.8°C 

t1/2(DSC) @Tm1  
(min-1) / Tm1 (°C) 

t1/2(DSC) @ Tm2 
(min-1) / Tm2 (°C) 

t1/2(DSC) @ Tm3 

(min-1) / Tm3 (°C) 
t1/2(DSC) @ Tm4 

(min-1) / Tm4 (°C) 

1 mM 9 ± 1 10 ± 1 14 ± 3 /  
52.5 ± 0.9 

4.9 ± 0.6 /  
56.8 ± 0.7 

2.4 ± 0.2 / 
60.1 ± 0.6 

1.3 ± 0.1 /  
62.9 ± 0.5 

15 mM 29 ± 3 38 ± 6 13 ± 1 /  
57.8 ± 0.6 

4.6 ± 0.2 /  
61.7 ± 0.4 

2.1 ± 0.2 /  
64.8 ± 0.3 

1.1 ± 0.1 /  
67.3 ± 0.2 

100 mM 49 ± 3 65 ± 20 17 ± 6 /  
58.1 ± 1.4 

5.2 ± 1.0 /  
62.3 ± 1.1 

2.2 ± 0.2 /  
65.3 ± 0.7 

1.1 ± 0.1 /  
67.7 ± 0.6 
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Thermostabilization of VPR, a 
kinetically stable cold adapted 
subtilase, via multiple proline 
substitutions into surface loops
K. R. Óskarsson, A. F. Sævarsson & M. M. Kristjánsson*

Protein stability is a widely studied topic, there are still aspects however that need addressing. In this 
paper we examined the effects of multiple proline substitutions into loop regions of the kinetically 
stable proteinase K-like serine protease VPR, using the thermostable structural homologue AQUI as a 
template. Four locations for proline substitutions were chosen to imitate the structure of AQUI. Variants 
were produced and characterized using differential scanning calorimetry (DSC), circular dichroism (CD), 
steady state fluorescence, acrylamide fluorescence quenching and thermal inactivation experiments. 
The final product VPRΔC_N3P/I5P/N238P/T265P was greatly stabilized which was achieved without 
any noticeable detrimental effects to the catalytic efficiency of the enzyme. This stabilization seems 
to be derived from the conformation restrictive properties of the proline residue in its ability to act as 
an anchor point and strengthen pre-existing interactions within the protein and allowing for these 
interactions to prevail when thermal energy is applied to the system. In addition, the results underline 
the importance of the synergy between distant local protein motions needed to result in stabilizing 
effects and thus giving an insight into the nature of the stability of VPR, its unfolding landscape and how 
proline residues can infer kinetic stability onto protein structures.

Stabilization of proteins against various environmental factors are of interest in many fields of industry and sci-
ence, as application range and storage limit their usability in various processes. One of these factors, temperature, 
plays a pivotal role in this regard. In nature, temperature is one of the main evolutionary drivers of enzymes due 
to its direct effect on kinetic energies involved in biochemical reactions necessary to maintain life. With early life 
likely to have existed at high temperatures1–3, many branches of life have had to adapt to colder environments over 
time and thus overcoming slower reaction rates, with no pressure on selecting for thermostable proteins. Many 
examples of highly active unstable enzymes and thermostable enzymes with low activities at ambient tempera-
tures exist4–7. Observations like these prompted the activity/stability trade-off hypothesis. It states that to achieve 
high stability, molecular motions needed for rapid catalysis at lower temperatures are sacrificed. A recent study 
has however indicated that adenylate kinases from organisms that throughout their evolutionary history have 
evolved to cooler temperatures and again toward higher temperatures still retain relatively higher activities at 
lower temperatures, as in the case of B. stearothermophilus8. In contrast, thermostable enzymes that have never 
adapted to lower temperatures showed a much steeper dependence on temperature in order to maintain catalytic 
rates, as in the case of the enzyme from C. subterraneus and A. aeolicus8. This indicates that the activity/stability 
trade-off is more of an evolutionary artifact due to different evolutionary pressures, rather than an absolute rela-
tionship. In addition, lessons learnt from directed evolution on subtilisins also indicated that the activity/stability 
trade-off did not share a strict relationship, as higher stability without compromising activity at low temperatures 
could be achieved9 and higher activity at lower temperatures was possible without the loss of stability10. Working 
on that premise, thermostabilization of enzymes from cold adapted organisms would be a feasible method in 
designing stable enzymes that are highly active at a broad range of temperatures. One of the ways to achieve that 
goal would be by engineering of cold adapted enzymes via site directed mutagenesis using their thermostable 
structural homologs as templates. Thus, the aim of this study was to enhance the stability of a kinetically sta-
ble, cold adapted subtilisin-like serine protease, VPR5 and gain more insight into the molecular basis of kinetic 
stability of proteins. To this end a truncated version of VPR, VPRΔC

11, was subjected to single point mutations 
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incorporating the desired proline residues. The positions of proline residues were decided by using structural 
information from the thermostable structural homologue AQUI5,12. AQUI has four proline residues in loops 
not found in VPR, two of which are located near to the N-terminus, a third is located near a short loop between 
helices E and F in position 238 (VPR numbering) and the fourth is located on a loop following helix F (posi-
tion 265) (Fig. 1)13. Although many aspects of thermostability have been identified14 there is an observation of 
increased occurrence of proline residues in thermostable proteins14–17. This trend seems to be rather prevalent, 
genomic analysis of five cryophile genomes revealed a trend towards lower proline content in their proteomes18. 
Proline is unique among the natural amino acid residues in protein structures in containing a secondary amine 
group. This structural fact is the basis of the unique properties of the residue that restrict allowed conformations 
of the peptide backbone19. The effect of these restrictions is of interest with regards to kinetic stability. Kinetically 
stable proteins unfold irreversibly thus rely on high free energy barriers between the native and denatured states 
to maintain their activity20. Kinetically stable proteases also have evolved to have rigid native states that unfold 
in a highly cooperative manner21,22. Thus, the restriction of movements caused by proline substitutions could 
enforce pre-existing interaction within the protein structure23,24. In this study eight different proline variants 
were produced, purified and their properties measured. The variants produced were the single proline variants 
VPRΔC_N3P, VPRΔC_I5P, VPRΔC_N238P, VPRΔC_T265P, the double proline variant VPRΔC_N3P/I5P, the triple 
proline variants VPRΔC_N3P/I5P/N238P and VPRΔC_N3P/I5P/T265P and lastly the quadruple proline variant 
VPRΔC_N3P/I5P/N238P/T265P. The effects of these mutations on the properties of the enzyme were studied by 
circular dichroism (CD), differential scanning calorimetry (DSC), steady state fluorescence, acrylamide fluores-
cence quenching and Michaelis-Menten kinetics. The aim of enhancing the stability of VPRΔC was successful, as 
the final product, the quadruple proline variant was significantly stabilized without losing catalytic efficiency. In 
addition, the measured effects of proline exchange of the different variants did shed some light on the mode of 
action by which proline residues confer stability to the structure of VPR. The observed effects of prolines can be 
interpreted as restriction of movements leading to strengthening of pre-existing interactions by anchoring certain 
points within the structure that may lead to more allowed movements within the structure at higher temperatures 
without unfolding taking place. The effects of some proline substitutions showed clear signs of high local stabili-
zation and as a result unfolding intermediates were observed as cooperativity of unfolding is lost to some degree. 
However, incorporating proline residues at distant parts of the protein displays synergic effects causing overall 
higher stability of the protein structure.

Results
All proline variants were successfully overexpressed in the E. coli strain Lemo21 and purified to homogeneity 
following the reformed production and purification protocol25. Thus, all single and the N3P/I5P proline variants26 
have been recharacterized with respect to activity, thermal inactivation (T50%) and the melting of the secondary 
structure (Tm (CD)).

Figure 1.  (A) The three-dimensional structure of VPR (PDB ID: 1SH7). Residues shown as sticks and balls 
and marked with red labels are the native residues mutated to prolines in this study. In addition, the catalytic 
triad Ser220, His70 and Asp37 are also shown along with all the Trp residues in the structure as well as calcium 
ion coordinators. Calcium ions are shown as green spheres. (B) Superimposed three-dimensional structures of 
VPR (light blue) (PDB ID: 1SH7) and AQUI (Orange) (PDB ID: 4DZT). The native prolines of AQUI are shown 
as sticks and balls along with the native VPR residues mutated to prolines. Calcium ions are shown as green 
spheres for VPR and golden spheres for AQUI. Atomic specifiers for side chains are as follows: carbon atoms are 
coloured same as the secondary structure; nitrogen atoms are coloured blue; oxygen atoms are coloured red and 
sulphur atoms coloured yellow.
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Kinetics.  Kinetic parameters determined by Michaelis-Menten assays at 25 °C and pH 8.6 indicated only small 
changes in turnover numbers and affinity for the substrate for the different variants (Table 1). The only exception 
was the VPRΔC_T265P variant, where kcat and Km were consistently measured a little lower than for VPRΔC but 
resulted however in a similar value in terms of catalytic efficiency. The double and both triple proline variants 
showed little changes in turnover numbers, however this was accompanied by a trend towards slightly higher Km 
values. The final product of this study, the quadruple proline variant, also still retained its catalytic efficiency as 
compared to VPRΔC but had a slightly higher turnover number and Km value.

Fluorescence steady state emission and acrylamide quenching.  VPR contains four Trp residues 
(Trp6, Trp114, Trp191 and Trp208) (Fig. 1). In the native state of VPR these Trp residues are highly intrinsically 
quenched. This is well demonstrated by examination of the native and denatured steady state fluorescence spectra 
of VPRΔC (Supplementary Fig. 1 and Supplementary Table 1) where the denatured state was found to be ten times 
as fluorescent as the native state at 25 °C. This makes the protein sensitive to changes of the microenvironments 
around these Trp residues. All single proline variants showed a trend of higher λmax values (Table 2) indicating 
higher polarity around one or more of the Trp residues. These changes were notably higher for the VPRΔC_N238P 
and VPRΔC_T265P variants and these variants were also more quenchable by acrylamide than the wild type and 
had around 16% higher fluorescence, strongly suggesting changes in the environment of at least one Trp residue. 
The VPRΔC_N3P variant had 37% higher fluorescence than the wild type, but had an unchanged Stern-Volmer 
constant, but with a minor increase in λmax. VPRΔC_I5P had a lower Stern-Volmer constant with 16% higher 
fluorescence and a minor increase in λmax. Possibly this indicates some changes in the environment of Trp6 due 
to its proximity to these mutation sites. The fluorescence properties of the double proline variant VPRΔC_N3P/
I5P were different from the single variants. VPRΔC_N3P/I5P had the same relative amplitude as VPRΔC but with a 
slight blue shift in the spectrum indicating a more buried Trp residue. This was further supported by the quench-
ing data as VPRΔC_N3P/I5P had a considerably lower Stern-Volmer constant than VPRΔC, indicating reduced 
flexibility of the N-terminal and/or different dynamics of the N-terminus. These effects of the N3P/I5P mutation 
seem to be undone by the addition of N238P and T265P, as both relative intensity and the Stern-Volmer constants 
were higher for the triple proline variants. Those observations however, are likely to be due to changes in accessi-
bility of Trp residues other than Trp6 as these effects are similar as seen by these mutations on the wild type. The 
quadruple proline variant exhibited similar properties as the triple variants but with a small blue shift in its spec-
trum (Figs. 2 and 3). The effects of temperature on fluorescence properties were also investigated. Temperatures 
measured were 15 °C, 25 °C and 35 °C. All variants were stable under those conditions during measurements as 
seen in the λmax values and the gradual lowering in relative fluorescence intensities (Supplementary Tables 1 and 

Variant
kcat
(s−1)

Km
(mM)

kcat/KM
(s−1mM−1)

VPR∆C 225.7 ± 12.0 0.177 ± 0.016 1238 ± 149

VPR∆C/N3P 235.4 ± 21.8 0.173 ± 0.013 1364 ± 60

VPR∆C/I5P 201.6 ± 8.2 0.187 ± 0.010 1077 ± 37

VPR∆C/N238P 224.6 ± 16.6 0.189 ± 0.026 1196 ± 84

VPR∆C/T265P 166.5 ± 11.6 0.152 ± 0.019 1101 ± 104

VPR∆C/N3P/I5P 231.8 ± 10.5 0.187 ± 0.009 1243 ± 77

VPR∆C/N3P/I5P/N238P 229.5 ± 18.3 0.199 ± 0.024 1158 ± 72

VPR∆C/N3P/I5P/T265P 221.5 ± 7.8 0.219 ± 0.014 1017 ± 74

VPR∆C/N3P/I5P/N238P/T265P 259.3 ± 27.4 0.212 ± 0.014 1222 ± 95

Table 1.  Kinetic parameters of VPRΔC and proline variants. Values are expressed as the averages and the 
standard deviations of the mean.

Variant
Stern-Volmer
(M-1)

λmax
(nm) Relative intensity

VPR∆C 2.24 ± 0.12 335 ± 1 1.00 ± 0.03

VPR∆C/N3P 2.32 ± 0.18 337 ± 2 1.37 ± 0.02

VPR∆C/I5P 2.05 ± 0.13 337 ± 2 1.16 ± 0.05

VPR∆C/N238P 2.63 ± 0.25 339 ± 2 1.16 ± 0.07

VPR∆C/T265P 2.41 ± 0.14 338 ± 1 1.15 ± 0.08

VPR∆C/N3P/I5P 1.64 ± 0.07 334 ± 1 1.00 ± 0.03

VPR∆C/N3P/I5P/N238P 2.18 ± 0.05 339 ± 1 1.18 ± 0.08

VPR∆C/N3P/I5P/T265P 2.17 ± 0.05 338 ± 1 1.24 ± 0.03

VPR∆C/N3P/I5P/N238P/T265P 2.12 ± 0.19 336 ± 2 1.19 ± 0.06

Table 2.  Relative intensity of fluorescence calculated as area under the curve (AUC), the maxima of curves 
(λmax) and the Stern-Volmer constant at 25 °C and pH 8.0 of VPRΔC and the proline variants. Values are 
expressed as the averages and the standard deviations of the mean.
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2). At these temperatures accessibility to fluorophores did not seem so be affected to any extent as Stern-Volmer 
constants showed just a marginal trend of higher Stern-Volmer constants, often under one standard deviation 
(Supplementary Table 3). This is consistent with the notion that kinetically stable proteinases are highly rigid 
structures to reduce auto-proteolysis in their native state22,27. However, there is some information to be obtained 
from these results recorded between 15 °C and 35 °C. Cooperative effects caused by the combination of N238P 
and T265P on top of the VPRΔC_N3P/I5P variant seem to cause the native structure of the final product to 
become less responsive to acrylamide quenching as a function of temperature, which might be indicative of a 
more rigid and temperature tolerant structure because of changed dynamics within the protein due to synergy 
between N238P and T265P.

Stability.  The impact of proline exchange on the stability of VPRΔC showed strong evidence for local stabi-
lizing effects. This is best seen in the DSC thermograms with the emergence of an unfolding intermediate. None 
of the proline variants produced seem to have any notable effects on the secondary structure of the native state 
as seen in their CD wavelength spectra, the only notable changes being ascribed to concentration estimations 
i.e. the calculated depth of the spectra (Supplementary Fig. 2). However, structural changes were observed in the 
microenvironments of Trp fluorophores (Table 2) resulting from these mutations as shown in the steady-state 
spectra and acrylamide quenching data sets of proline variants (Figs. 2 and 3).

The N-terminal variants VPRΔC_N3P and VPRΔC_I5P.  Of the single proline variants, the N-terminal 
mutations had the most impact on the measured melting points as determined by CD and the rates of thermal 
inactivation (Table 3). VPRΔC_N3P and VPRΔC_I5P had higher melting points of the secondary structure (Tm 

(CD)) by 2.9 °C and 3.2 °C, respectively (Fig. 4) and T50% by 2.8 °C and 2.3 °C (Fig. 5). Accompanied with this 
increased stability was a considerable change observed in the recorded DSC thermograms of these variants. As 
for the truncated wild type, the curvature of the thermogram resembles a classic thermogram of a kinetically 
stable protein that unfolds in a rather cooperative manner following a two-state unfolding model (Fig. 6 and 
Supplementary Fig. 4)28. However, the thermograms of VPRΔC_N3P and VPRΔC_I5P exhibit a second tran-
sition peak, present with a maximum at considerably higher temperature than Tm (CD), or around 71.5 °C for 
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Figure 2.  Fluorescence emission of proline variants after excitation at 295 nm at pH 8.0. Intensities of emissions 
have been normalized against VPRΔC (dotted black line). (A) Emission of VPRΔC_N3P (Gold) and VPRΔC_I5P 
(purple). (B) Emission of VPRΔC_N238P (light blue) and VPRΔC_T265P (orange). (C) Emission of VPRΔC_
N3P/I5P/N238P (blue) and VPRΔC_N3P/I5P/T265P (green). (D) Emission of VPRΔC_N3P/I5P (red) and 
VPRΔC_N3P/I5P/N238P/T265P (black).
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VPRΔC_N3P (Fig. 6 and Supplementary Fig. 5) and 74.1 °C for VPRΔC_I5P (Fig. 6 and Supplementary Fig. 6). 
This shows that the major part of the three-dimensional structure had dissipated at or around 70– 80% according 
to CalFitter global fitting of CD melting curves that were recorded at 222 nm in tandem with DSC thermograms 
(Supplementary Figs. 4 and 5). This might indicate that the local stability of the N-terminus had been increased 
to such an extent that the cooperativity of the unfolding process was disrupted, thus leading to this apparent 
intermediate. In the case of VPRΔC_N3P the activation energy (Eact) of unfolding for the first transition was 

Figure 3.  Stern-Volmer graphs calculated form fluorescence quenching of proline variants between 
310–410 nm at pH 8.0. VPRΔC (black boxes with a dotted black line). (A) Quenching of VPRΔC_N3P (Gold) 
and VPRΔC_I5P (purple). (B) Quenching of VPRΔC_N238P (light blue) and VPRΔC_T265P (orange). (C) 
Quenching of VPRΔC_N3P/I5P/N238P (blue) and VPRΔC_N3P/I5P/T265P (green). (D) Quenching of VPRΔC_
N3P/I5P (red) and VPRΔC_N3P/I5P/N238P/T265P (black).

Variant
Tm (CD)
(°C)

Tm (DSC)
(°C)

ΔHcal
(kJ/mol)

T50%
(°C)

Eact (inactivation)
(kJ/mol)

t1/2 (60 °C)
(min)

VPR∆C 61.9 ± 0.4 63.9 ± 0.3 528 ± 35 53.8 ± 0.4 218 ± 9 7 ± 1

VPR∆C_N3P 64.8 ± 0.1 66.8 ± 0.3 533 ± 33 56.6 ± 0.3 203 ± 12 14 ± 1

VPR∆C_I5P 65.1 ± 0.2 65.7 ± 0.5 570 ± 11 56.1 ± 0.2 199 ± 14 13 ± 1

VPR∆C_N238P 60.7 ± 0.1 63.6 ± 0.2 556 ± 8 52.3 ± 0.2 209 ± 17 5 ± 1

VPR∆C_T265P 61.6 ± 0.2 64.5 ± 0.2 451 ± 51 54.3 ± 0.2 206 ± 4 8 ± 1

VPR∆C_N3P/I5P 67.8 ± 0.3 72.0 ± 0.8 646 ± 38 60.3 ± 0.4 208 ± 8 33 ± 3

VPR∆C_N3P/I5P/N238P 68.8 ± 0.2 72.0 ± 0.4 679 ± 37 60.9 ± 0.5 207 ± 27 38 ± 5

VPR∆C_N3P/I5P/T265P 69.2 ± 0.2 73.6 ± 0.3 697 ± 49 62.2 ± 0.6 194 ± 27 48 ± 7

VPR∆C_N3P/I5P/N238P/T265P 72.1 ± 0.3 77.2 ± 0.2 683 ± 16 61.6 ± 0.6 182 ± 29 39 ± 3

Table 3.  Thermostability parameters of VPRΔC and its proline variants. Parameters shown are Tm (CD) the 
melting point of PMSF inhibited enzymes as measured by CD, Tm (DSC) the apparent melting point of PMSF 
inhibited enzymes defined as the highest peak of DSC thermograms, ΔHcal the excess calorimetric heat released 
during unfolding, T50% the temperature where half of the activity has been lost over 30 min, Eact (inactivation) 
calculated form the slope of Arrhenius graphs used to calculate T50% and t1/2 at 60 °C calculated form the same 
Arrhenius graphs. Values are expressed as the averages and the standard deviations of the mean.
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increased when compared to the wild type (Table 4). However, when comparing VPRΔC_I5P, where the loss of 
cooperativity in the unfolding process was even more pronounced, to that of the wild type, the Eact values for the 
first transition did not change but was followed by the second transition having a much higher Eact. This infers 
that the first transition state is not as entropically favoured and that a good part of the enthalpic interactions are 
concentrated within the regions of the protein stabilized by the N-terminus and within the N-terminus itself, 
as Eact reflects on the activation enthalpy of unfolding. The N-terminus, where both these mutations are located 
also harbours the calcium 3 binding site, which has been suggested to be highly important for the overall stability 
of the enzyme (Fig. 7)25. Combined with the high activation energy of the second transition, this could indicate 
that the intermediate still retains the calcium-binding site 3. Even though VPRΔC unfolds in a rather cooperative 
manner, an elucidation of the chronological order of events during the thermal unfolding of wild type VPR using 
MD has been reported29. There, helix D close to the Ca1 binding site appeared to be the initiation point of ther-
mal unfolding. However, partial unfolding of helix A started soon thereafter and completely dissipated shortly 
after, but the Ca3 loop seemed to retain itself much longer. In the light of those restricting movements around the 
N-terminal site of helix A (Fig. 7) as a result of proline substitutions likely slows down the unfolding of that region 
substantially, promoting the appearance of an unfolding intermediate. According to these unfolding simulations 
helix E is one of the most stable parts of the protein and accounts for approximately 20% of the helical content of 
VPR. Thus, speculations that the unfolding intermediate might be consisting of the N-terminal calcium binding 
loop and helix E fits nicely.

The VPRΔC_N238P and VPRΔC_T265P variants.  The VPRΔC_N238P variant was the only mutation 
that caused destabilizing effects, having a ~1.2 °C lower Tm (CD) and 1.5 °C lower T50%. According to the Arrhenius 
graphs calculated from the DSC thermograms, VPRΔC_N238P (Supplementary Figs. 3 and 7) unfolded cooper-
atively like the wild type. Even though lowered stability was observed using CD and inactivation experiments, 
the same observations were not as evident in the DSC thermograms. The apparent melting point (Tm (DSC)) cor-
responded very well with that of the wild type, but the variant exhibited higher Eact and calorimetric heat of 
unfolding (ΔHcal) (Tables 3 and 4). This suggests that the mutation is indeed enforcing some interactions within 
the structure, but possibly not as entropically favourable as in the wild type. The VPRΔC_T265P variant did 
cause the smallest changes in the observed stability having Tm (DSC), Tm (CD) and T50% values around a half a degree 

Figure 4.  Normalized melting curves of proline variants in glycine buffer containing 15 mM CaCl2 and 100 mM 
NaCl. VPRΔC (black dotted line). (A) Melting of VPRΔC_N3P (Gold) and VPRΔC_I5P (purple). (B) Melting of 
VPRΔC_N238P (light blue) and VPRΔC_T265P (orange). (C) Melting of VPRΔC_N3P/I5P/N238P (blue) and 
VPRΔC_N3P/I5P/T265P (green). (D) Melting of VPRΔC_N3P/I5P (red) and VPRΔC_N3P/I5P/N238P/T265P 
(black).
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higher than that of the wild type. The variant however, had one of the least stable pre and post heat capacities 
recorded on DSC before and after the unfolding transition, complicating the baseline estimation and data analy-
sis. However, the Arrhenius graph constructed from DSC data (Supplementary Figs. 3 and 8) did indicate some 
loss of cooperativity during unfolding, but the data could not be reliably fitted to a more complex model than a 
simple two-state irreversible model, indicating that divergence from linearity observed may have arisen from 
poor baseline generation.

The VPRΔC_N3P/I5P variant.  The double N-terminal proline variant VPRΔC_N3P/I5P showed clear addi-
tive properties at first glance as it had an increased melting point (Tm (CD)) by 5.9 °C and T50% by 5.1 °C. However, 
the DSC thermogram did not exhibit the distinct second peak as was observed for the single proline N-terminal 
variants. The apparent melting point (Tm (DSC)) was around 4.2 °C higher than the Tm (CD), which is 2.0 °C higher 
than the difference obtained between Tm (DSC) and Tm (CD) for the wild type. Also, the Tm (DSC) of VPRΔC_N3P/
I5P more closely coincided with the estimated second peaks from the single N-terminal variants. Moreover, the 
Arrhenius graph calculated from thermograms showed a slight divergence from linearity and was also most reli-
ably fitted to a three-state model (Supplementary Figs. 3 and 9). This indicates that the unfolding is much more 
cooperative when the N-terminal proline substitutions are combined in the double variant. This combination 
of the two most stabilizing proline mutations therefore causes extra stabilization throughout the protein struc-
ture, including parts of the protein that did not directly benefit from the single proline mutations. This implies 
that the single N-terminal proline mutations better stabilize the N-terminus, but synergic effects caused by the 
combination of N3P and I5P lead to global stabilization of the structure. This effect may be partly explained 
by a two amino acid residue shift in the auto-cleavage site of the N-terminal during maturation of the protease 
as was reported on previously26. The two-residue extension at the N-terminus potentially adds new hydrogen 
bonds between the N-terminus and the loop following helix A and anchors these interactions via the movement 
restricting proline residues. In the crystal structure, residues Tyr22 to Phe26 in that loop can form hydrogen 
bonds via the facilitation of water molecules to residues Ser271 to Ala273 on the C-terminus of the protein, with 
mainchain-mainchain distances between residues Asn25 and Leu272 being as low as 7.4 Å (Fig. 7). In addition, 
the hydrophobic interface of helix A on the N-terminus takes part in the formation of a hydrophobic core along 
with residues on helix E, helix F, residues Leu268 and Leu269 of the C-terminal region that also form a part of this 

Figure 5.  Arrhenius plots calculated form the thermal inactivation of proline variants in Tris buffer containing 
15 mM CaCl2. VPRΔC (black boxes with a dotted black line). (A) Thermal inactivation of VPRΔC_N3P (Gold) 
and VPRΔC_I5P (purple). (B) Thermal inactivation of VPRΔC_N238P (light blue) and VPRΔC_T265P (orange). 
(C) Thermal inactivation of VPRΔC_N3P/I5P/N238P (blue) and VPRΔC_N3P/I5P/T265P (green). (D) Thermal 
inactivation of VPRΔC_N3P/I5P (red) and VPRΔC_N3P/I5P/N238P/T265P (black).
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hydrophobic core. Thus, reduced movements of the N-terminal region which are observed in the fluorescence 
quenching experiments of this variant (Table 2), may facilitate the increased cooperativity of unfolding compared 
to the single N-terminal variants, by stabilizing interactions between these parts of the protein at higher temper-
atures. This is achieved by possible extra H-bonds or enforcement of pre-existing ones reflected in the higher 
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Figure 6.  Deconvoluted differential scanning thermograms showing the excess heat during the unfolding 
process of the proline variants in a glycine buffer containing 15 mM CaCl2 and100 mM NaCl. VPRΔC (dotted 
black line). (A) Unfolding of VPRΔC_N3P (Gold) and VPRΔC_I5P (purple). (B) Unfolding of VPRΔC_N238P 
(light blue) and VPRΔC_T265P (orange). (C) Unfolding of VPRΔC_N3P/I5P/N238P (blue) and VPRΔC_N3P/
I5P/T265P (green). (D) Unfolding of VPRΔC_N3P/I5P (red) and VPRΔC_N3P/I5P/N238P/T265P (black).

Variant
Eact

1

(kJ/mol)
Eact

2

(kJ/mol)
ΔHcal-fit

1

(kJ/mol)
ΔHcal-fit

2

(kJ/mol)

VPR∆C 235 ± 2 N.A. 542 ± 5 N.A.

VPR∆C_N3P 251 ± 5 285 ± 20 318 ± 20 227 ± 19

VPR∆C_I5P 235 ± 3 356 ± 13 399 ± 7 180 ± 6

VPR∆C_N238P 248 ± 2 N.A. 564 ± 4 N.A.

VPR∆C_T265P 229 ± 2 N.A. 471 ± 5 N.A.

VPR∆C_N3P/I5P 261 ± 9 283 ± 6 176 ± 20 477 ± 19

VPR∆C_N3P/I5P/N238P 270 ± 11 279 ± 3 120 ± 13 567 ± 13

VPR∆C_N3P/I5P/T265P 259 ± 10 326 ± 8 224 ± 20 481 ± 18

VPR∆C_N3P/I5P/N238P/T265P 215 ± 8 383 ± 7 275 ± 17 425 ± 15

Table 4.  Parameters resulting from fitting deconvoluted DSC thermograms (Fig. 6), averaged from at least 
three separate runs using CalFitter 1.2. Values shown are the activation energy (Eact) of unfolding transitions 
of PMSF inhibited VPR variants and ΔHcal-fit the calorimetric enthalpy of the fits. Numbers in superscript refer 
to the chronological order of transitions from the native to unfolded state. All values are represented with their 
95% confidence interval.
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Eact values that would indicate that the stabilization is rather enthalpic in nature and explaining the higher ΔHcal 
observed for VPRΔC_N3P/I5P and variants containing that mutational combination.

The VPRΔC_N3P/I5P/N238P variant.  Due to the considerable stabilization of VPRΔC_N3P/I5P it was 
of interest to see how the addition of the mutations N238P and T265P would impact the stability. VPRΔC_N3P/
I5P/N238P increased the Tm (CD) by 1.0 °C compared to N3P/I5P but had negligible beneficial effects on T50% 
(Table 3) This variant had the same apparent melting point Tm (DSC) as VPRΔC_N3P/I5P indicating some higher 
degree of cooperativity in the unfolding as is reflected in the Arrhenius graph constructed form DSC thermo-
grams (Supplementary Figs. 3 and 10). However, fitting of data using CalFitter a three-state unfolding process 
was needed to adequately fit it. The results gave Eact values (Table 4) slightly higher than for VPRΔC_N3P/I5P for 
the first transition, which was consistent with the effects observed from the N238P mutation on the wild type. The 
fact that the second transition was almost unaffected suggests that the N238P mutation does not affect the stabil-
ity of the N-terminal region or parts of the protein directly impacted by the N-terminal mutations. The increased 
stability of VPRΔC_N3P/I5P/N238P is thus localized to parts of the protein corresponding to the first transition. 
Thus, placing the initiation point of thermal unfolding around that mutation. MD-simulation at different temper-
atures have suggested that the initiation point of unfolding is helix D29. Helix D is proximal to the Ca1 site, a site 
that is important for the stability of the structure25,30,31. Thus, by restricting movements and enforce interactions 
to that part of the protein might stabilize it at higher temperatures. Why this mutation had destabilizing effects 
when added to the wild type but stabilizes the structure when VPRΔC_N3P/I5P is the template, is an interesting 
observation. The site of the N238P mutation is on a loop at the C-end of helix E, a helix that may well be one of the 
more stable parts of the structure29. The mutation does cause loss of H-bond potentials that could be the reason 
for the detrimental effects observed on the wild type template. However, having stabilized the N-terminal region 
to a higher degree compared to the rest of the protein the loss of H-bond potential does not show detrimental 
effects. This may mean that the part of the protein affected by the N238P mutation i.e. helix E, helix F and possibly 

Figure 7.  (A) Superimposed closeup of the N-terminals of VPR (light blue) (PDB ID: 1SH7) and AQUI 
(orange) (PDB ID: 4DZT) comparing the H-bond potential of both enzymes (red lines H-bonds in AQUI 
and blue lines H-bonds in VPR). (B) Closeup of the part of the protein in the closest vicinity of the N238P 
and T265P mutations in the structure of VPR. (C) Closeup highlighting the residues making up a part of the 
hydrophobic core and N-terminal interface to the main part of the protein in the structure of VPR. Calcium 
ions are shown as green spheres for VPR and golden spheres for AQUI. Atomic specifiers for side chains are as 
follows: carbon atoms are coloured same as the secondary structure; nitrogen atoms are coloured blue; oxygen 
atoms are coloured red and sulphur atoms coloured yellow.
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helix D are reliant on the N-terminal and parts directly stabilized by the proline N-terminal mutations. Thus, the 
discrepancies in the effects of N238P on VPRΔC and VPRΔC_N3P/I5P can be explained if there is a chronological 
order to events in the unfolding of VPR and its variants. In the case of VPRΔC the area affected by N238P unfolds 
early and immediately thereafter the rest of the protein unfolds. In the case of VPRΔC_N238P the proline might 
anchor that part of the protein and rigidify it, but the parts that this area is being anchored to do not provide 
the matching interactions needed for increased stability, hence the structure unfolds as in the case of the wild 
type, possibly with more cooperativity. When the N-terminus has been stabilized by the N3P/I5P mutations 
the anchoring points within the structure crucial for the stability of the N238P region do stay intact at higher 
temperatures, thus increasing the stability of the variant and increasing the apparent cooperativity of unfolding 
compared to VPRΔC_N3P/I5P (Fig. 6). This shows that the terminal regions and the major bulk of the protein 
are finely tuned in the wild type to unfold in a very cooperative manner, strengthening the idea that cooperativity 
in the unfolding of kinetically stable proteins are under some evolutionary pressures. It also suggests that the 
chronological order of the unfolding events is an aspect worth looking into regarding the effectiveness of proline 
substitution.

The VPRΔC_N3P/I5P/T265P variant.  VPRΔC_N3P/I5P/T265P increased the Tm (CD) by 1.4 °C, the T50% 
by 1.9 °C and Tm (DSC) by 1.6 °C when compared to VPRΔC_N3P/I5P (Table 3). The thermogram for this variant 
shows clear signs of an intermediate state and was thus fitted to a three-state model (Supplementary Figs. 3 and 
11). The T265P mutation had little to no effect on Eact of the first transition indicating that the mutation causes 
the first transition state to be less entropically favored as the melting point is indeed higher, a similar observation 
as was made in the case of VPRΔC_T265P. However, in this case it was very clear that a second transition was 
present which yielded a considerably higher Eact values for VPRΔC_N3P/I5P/T265P than VPRΔC_N3P/I5P and 
an increased apparent melting point. This may suggest considerable synergic interaction between the area affected 
by T265P and the region of the enzyme affected by N3P/I5P. This rings true as the loop where T265P is located 
interacts with the Ca3 site, most notably Arg14 and has multiple H-bonding potentials with Arg252, Ser254 
and Asp 274 along with the addition of cation-π interaction with Tyr270, possibly yielding the higher activation 
energy of the second peak. Enforcing these interactions would in turn help maintaining the hydrophobic core 
of the protein due to the proximity to Leu268 and Leu269 to the mutation site (Fig. 7). In addition, Thr265 lies 
on an adjacent loop to Asp196 a main coordinator of the calcium ion at the Ca1 site with α-carbon distances in 
the crystal structure of just 7.0 Å (Fig. 7). Anchoring this part of the protein which harbours many interactions 
between terminals of the protein, in addition of being in close proximity to the Ca1 site, has the potential of facil-
itating the correct orientations of these interactions at higher temperatures thus explaining the increased stability 
of both transitions.

The VPRΔC_N3P/I5P/N238P/T265P variant.  The final product, VPRΔC_N3P/I5P/N238P/T265P was 
also the most stable variant with a melting point of 72.1 °C (Tm (CD)), 10.2 °C higher than the wild type and 4.3 °C 
higher than VPRΔC_N3P/I5P. T50% values were however least affected, being slightly lower than that of VPRΔC_
N3P/I5P/T265P, but yielded an increase of 7.8 °C as compared to the wild type. The largest increase in stability 
was recorded by DSC with an apparent melting of 77.2 °C (Table 3), which was 13.3 °C higher than the wild 
type and 5.2 °C higher than VPRΔC_N3P/I5P. However, this was accompanied by a very clear unfolding inter-
mediate, with both transitions being more stable than seen in any other variant especially the second transition 
(Supplementary Fig. 12). A notable change that was observed was the low Eact fitted to the first transition and 
the very high Eact of the second transition. This is a similar observation as for VPRΔC_I5P, where the overlap of 
unfolding events was low and the estimated Eact of the first transition was also low. This supports the idea that the 
first part to unfold is a major part of the α/β structure, as its unfolding would lead to the exposure of hydrophobic 
residues which would be entropically more unfavourable than the subsequent unfolding of the terminal region, 
along with at least calcium binding site 3. This latter process would be entropically favourable due to the release 
of the bound calcium ion and as a consequence would transform a rigid calcium binding loop into a flexible loop 
thus increasing the entropy of the system32,33. The synergic effects in this variant show that both transitions are 
highly stabilized, but the second transition is the more affected. From the VPRΔC_N3P/I5P/T265P variant it is 
clear, that the T265P mutation has synergic effects with the terminal region of the protein. The quadruple proline 
variant adds implication of synergic effects between N238P and T265P. These two mutation sites are located on 
loops on the either side of helix F and neighbouring residue of the N238P site is Glu236 on helix E that likely 
forms a salt-bridge to Arg252 located on helix F. Ser254 located on the loop at the C-end of helix F can form 
a H-bond to Arg14 as mentioned earlier and is also involved in two mainchain-mainchain H-bonds that can 
be formed between Ser254 and Leu268, a partner in the hydrophobic core of the protein. In addition, Leu268 
forms two mainchain-mainchain H-bonds to Phe198, possibly providing extra stabilization to the Ca1 binding 
site by restricting the neighbouring Asp196, a main coordinator in that calcium binding site (Fig. 7). Restricting 
movements at this site might be crucial for maintaining local interactions at higher temperatures, increasing the 
thermostability of the enzyme resulting from the combined effects of N238P and T265P.

Discussion
This work focused on VPRΔC, a cold active subtilisin-like serine protease from the proteinase K family5. VPRΔC 
is expressed as a preproenzyme, containing a N-terminal intramolecular chaperone that is cleaved off during 
maturation leaving a 28 kDa active protease with an α/β-fold11,13,34. This maturation leaves a kinetically stable 
enzyme in a process that may be similar to what has been described for α-lytic protease11,13,25,34,35. During this 
maturation the calcium binding site 3 (Ca3) (Fig. 1) is likely formed. VPRΔC contains three calcium binding sites 
and calcium binding is one of the most important structural factors contributing to the stability of the enzyme. 
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The most important calcium binding sites for the stability are believed to be calcium binding site 1 (Ca1) (Fig. 1), 
mainly coordinated by the conserved Asp196 residue and Ca3 located in the N-terminal region25,30. The third 
calcium binding site is the low affinity Ca2 site thought to mainly serve as a defence against exogenous proteoly-
sis25. The aim of the study was to explore the effects of insertion of proline residues into loops on the stability and 
activity of VPR and to construct a more stable VPR variant. The aim of creating a more thermostable variant of 
VPR by proline substitutions into loops was successful and this stabilization was achieved without losing catalytic 
efficiency. The use of the thermostable structural homolog AQUI as a template for selecting proline mutations 
was therefore a successful strategy. Research has been carried out on AQUI36 where the same proline residues 
were exchanged to the corresponding residues in VPR, also indicated that the N-terminal proline residues were 
the most important with regards to thermostability. In that study the DSC thermograms were recorded at pH 7.4 
in a filtered phosphate buffer containing 1 mM calcium, that would leave a very low concentration of calcium 
in the samples after dialysis and filtration37. There the mutant AQUI_P7I (corresponding to I5P) exhibited a 
thermogram with an apparent melting point almost 20 °C lower than the wild type. However, the thermogram of 
AQUI_P5N (corresponding N3P) a small peak was observed in front of the main transition, which had a similar 
unfolding initial temperature as AQUI_P7I. In the light of the results obtained for the VPR proline variants in the 
present study, these rather drastic but varied effects observed in the DSC thermograms of these N-terminal AQUI 
variants, further support the hypothesis that the Ca3 site is one of more important sites for the stability of these 
protein structures. The extremely low calcium concentrations in those AQUI experiments may however further 
exacerbate the destabilizing effects of the N-terminal mutations, as the two corresponding calcium binding sites 
in AQUI (Ca1 and Ca3) may be partly or fully depleted of calcium due to phosphate coprecipitation. In addition, 
P240N (corresponding to N238P) and P268T (corresponding to T265P) did also cause destabilization although 
not to the same extent as in the N-terminal variants. Thus, all these proline residues do serve a stabilizing role in 
the structure of AQUI.

This study also sheds some light on the way proline residues affect protein kinetic stability. Proline exchanges 
have been observed to have either a beneficial or detrimental effect on protein stability, even detrimental when 
mutation sites were selected on basis of structural comparisons to more stable structural homologues38–41. What 
causes these discrepancies in observations made on proline substitutions is not clear and a subject of debate 
regarding the importance of proline residues in protein structures. In the present study none of the variants 
showed any significant changes in their secondary structures, according to the far UV CD wavelength scans 
(Supplementary Fig. 2). An aspect of proline exchanges to consider is the loss of H-bonds due to the cyclic nature 
of the side chain of the residue which cannot therefore act as a H-bond donor. The N-terminal proline substi-
tutions are not expected to cause any loss of H-bonds based on the crystal structure. The N238P and T265P 
substitutions however, do cause a loss of hydrogen bonding potential. In the case of N238P the potential of 
the N238 side-chain to Gln235 main-chain H-bond is lost, possibly, to a degree explaining the loss of stability 
resulting from this mutation when the wild type was used as a template. In the case of the T265P mutation the 
most likely H-bond potential to be lost is from the side-chain of Thr265 and the side-chain of Lys267, which 
effect is expected to be rather benign as it is solvent exposed, thus reducing its expected lifetime in the struc-
ture. The only measurable evidence for structural changes in the native state of proline variants were obtained 
from steady-state fluorescence spectroscopy and acrylamide quenching experiments (Figs. 2 and 3). Quenching 
experiments showed restricted accessibility to Trp residues accompanied with VPRΔC_I5P, and even more in the 
case of the VPRΔC_N3P/I5P variant. In those experiments Trp6 could be acting as a reporter on dynamics of the 
N-terminal region. The N-terminal mutations are thus likely to be causing restrictions of movements within the 
N-terminal region. These observations agree with the idea that the disproportional local stabilization within the 
N-terminus of the protein is caused by the restricted movements resulting from the N-terminal proline residues. 
This increased local stability leads to the emergence of an unfolding intermediate that could be observed in DSC 
thermograms of all proline variants containing N-terminal mutations, implicating the N-terminus as a part of the 
unfolding intermediate. The highly energetic second transition also fits well with observations on the effects of 
calcium on the calorimetric enthalpy of unfolding for VPR, as it has been shown that the calorimetric enthalpy of 
denaturation increases with increased calcium concentration in the buffers25. Measured melting points by CD do 
not increase above 10 mM calcium, but the rates of inactivation, the calorimetric enthalpy and the apparent melt-
ing point measured by DSC still increase up to 100 mM due to binding to the low affinity Ca2 site (Fig. 1) and the 
moderate affinity Ca1 site25. This shows that in the unfolding of VPR the calcium binding sites contribute greatly 
to the calorimetric heat evolved during unfolding and that changes to these sites would likely be well observable 
in DSC thermograms. Stabilization of the overall structure is also achieved however, thus the local stabilization 
of the N-terminal part reverberates throughout the structure. The N-terminal region interacts with several parts 
of the protein. Helix A that holds two of the Ca3 coordinating residues also is part of the hydrophobic interface 
between the N-terminus and the main body of the protein through Ile11 and Leu8 (Fig. 7). The Ca3 binding loop 
also contains Arg10 that can form a H-bond network with several residues at the C-terminal part of the protein, 
in addition to cation-π interaction with Tyr270. For VPRΔC_N3P/I5P it is apparent that the stability of the second 
transition of the DSC thermograms is not affected to a large extent but most of the stabilization is reflected in the 
first transition. VPRΔC_N3P/I5P shifts the autocatalytic site by two residues26 and this provides more H-bond 
potential between these extra residues and the loop following helix A in a location where the loop is proximal to 
the C-terminal parts (Fig. 7). Thus, the N-terminal prolines might be seen acting as anchors maintaining these 
interactions between distant parts of the protein at higher temperatures. In addition, the stabilization of the pro-
tein structure caused by the VPRΔC_N3P/I5P creates an environment where N238P and T265P can contribute 
more to stabilization. Fluorescence quenching experiments of the single N238P and T265P variants indicate 
changes in the microenvironments of a Trp residue or residues. As seen in lower intrinsic quenching, higher 
sensitivity to acrylamide quenching and a red shift in λmax indicating a more polar environment. These same 
observations are very apparent when these mutations are added onto the VPRΔC_N3P/I5P template (Table 2). 
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How T265P and N238P effect VPRΔC and VPRΔC_N3P/I5P show that the microenvironment of a Trp residue, 
likely other than Trp6, is clearly influenced. Considering proximity in the structure, Trp191 is a strong candidate 
for being that Trp residue, a residue that might probe for change in movements around the Ca1 site and its main 
coordinator Asp196. Synergic effects between the N238P and T265P mutations indicate reduced movements as a 
function of temperature on the affected fluorophore as the change in Stern-Volmer constants between 15 °C and 
35 °C are lower for VPRΔC_N3P/I5P/N238P/T265P compared to the temperature effects observed for VPRΔC_
N3P/I5P/N238P and VPRΔC_N3P/I5P/T265P. These synergic effects observed in fluorescence quenching might 
indicate that N238P and T265P are indeed affecting the same fluorophore.

In this study we demonstrated that insertion of proline residues into loops contributed significantly to the 
stability of VPRΔC variants. The mode of action is likely by restricting movements at critical points in the struc-
ture that enforces pre-existing interactions by anchoring certain parts of the protein in correct positions at higher 
temperatures. The restrictive nature of proline residues could thus decrease the flexibility of the structure at low 
temperatures but allow for more movement at higher temperatures without losing the structural integrity of the 
protein by retaining the interactions as more thermal energy is applied to the system. The conclusion of these 
observations would be that the role of proline residues in loops in the kinetic stability of proteins is to allow for 
more thermal flexibility of the structure42. Proline substitution is an effective way to stabilize kinetically stable 
proteins, however as shown their position within the protein structure is of utmost importance. Surface loops 
are good targets due to the structural nature of the residue that may leave some H-bonds unfulfilled within the 
protein core, possibly causing destabilization of the structure43,44. As proline residues seem to enforce important 
interactions, including interactions between distant parts of the primary structure, it would mean that the effects 
of prolines in the structure could be rendered useless if a crucial counterpart to the interaction being strength-
ened is destabilized to a certain degree or not present. Explaining the non-additive nature of combining proline 
mutations in this study and some of the discrepancies observed in proline mutagenic studies so far. Although 
the stability of the final product is greatly increased compared to the wild type, an unfolding intermediate was 
observed in the unfolding process. This may explain the higher degree of stabilization observed in CD and DSC 
as compared to T50% values and the trend of lower activation energies of inactivation (Eact (inactivation)) (Table 4) of 
the more stable proline variants as the intermediate state may be a good target for exogenous proteolysis27. Under 
our standard experimental conditions this intermediate is not observable in the unfolding process of the wild 
type. However, when unfolding takes place at pH 5 and 1 mM CaCl2, conditions known to be destabilizing for the 
enzyme, an intermediate could be observed (Supplementary Fig. 13). This intermediate bears many similarities 
to what was observed in case of the VPRΔC_I5P unfolding process (Supplementary Figs. 6, 13, 17 and 18). Under 
these destabilising conditions it may be that calcium binding is compromised. However, if the calcium ion con-
centration is increased to 15 mM the first transition is stabilized and the intermediate is not as readily observed 
(Supplementary Fig. 13). These observations fit our ideas concerning the unfolding pathway and the role of the 
Ca1 binding site25, as a compromised Ca1 binding site could lead to destabilisation of a possible unfolding initia-
tion point at helix D29. In addition, low pH values could destabilise further interactions important for the stability 
of the protein structure but less so for the intermediate state. This information thus indicates that there is a met-
astable intermediate along the unfolding pathway that is poorly structured and which by tweaking conditions, 
or by increasing the local stability of the N-terminal region can become kinetically trapped along the unfolding 
pathway causing the apparent loss of cooperativity in the unfolding process. This also suggests that the quadruple 
variant has the potential to be stabilized even further by tweaking the stability of the first transition and increasing 
the cooperativity of unfolding. As a result, VPRΔC_N3P/I5P/N238P/T265P is a prime candidate for further work 
exploring enzyme kinetic stability, thermostability, protein engineering and temperature adaptation.

Materials and Methods
Site directed mutagenesis.  All mutations were done on the gene of VPRΔC (a C-terminal truncated 
form of wild type VPR)13, contained in a pET-11a-d vector25. Proline variants were obtained with site-di-
rected mutagenesis using Q5 site-directed mutagenesis kit from New England Biolabs (NEB) following their 
protocol. Mutagenic primers used to produce the variants were designed using the web tool NEBaseChanger 
(NEBaseChanger.neb.com), except for the I5P variant which was made using the Quickchange Site directed 
Mutagenesis Kit from Stratagene, following their protocol (Table 5). Mutagenic PCR products were all trans-
formed into XL10-Gold from Agilent Technologies, genotype: TetrD(mcrA)183 D(mcrCB-hsdSMR-mrr)173 
endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte [F´ proAB lacIqZDM15 Tn10 (Tetr) Amy Camr]. Plasmid purifi-
cation was done with the Monarch plasmid miniprep kit from NEB, following their instructions. All mutations 
were verified by Sanger sequencing performed by Genewiz.

Expression and purification.  All proline variants were expressed in the E. coli strain Lemo21 (NEB) from 
a pET-11a-d vector, utilizing the T7 polymerase/T7 lysozyme system45. Liquid media used for the expression of 
all variants was 2xYT broth containing 0.1 mg/mL ampicillin (Sigma), 0.03 mg/mL chloramphenicol (Sigma) and 
76 µM rhamnose (Sigma). Cultures were grown to a density of A600 ~ 0.4–0.8 A.U. and expression was initialized 
by adding isopropyl β-D-1-thiogalactopyranoside (IPTG) (AppliChem) to a final concentration of 400 µM fol-
lowed by the addition of sterile 4 M CaCl2 (Sigma) to give a final concentration of 100 mM and grown at 18 °C and 
230 rpm for 20–24 hours. All proline variants were purified to homogeneity as described in25.

Activity assays.  All activity assays were performed in 100 mM Tris, 10 mM CaCl2 at pH 8.6 using 
Suc-AAPF-NH-Np as a substrate. Kinetic parameters of proline variants were characterized by Michaelis-Menten 
assay monitoring activity at 25 °C against Suc-AAPF-NH-Np at seven different substrate concentrations, up 
to 1.00 mM, and monitoring ΔA410 over 15 seconds. Enzyme samples were dialyzed against the assay buffer 
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overnight at 4 °C and concentration was estimated by A280 measurements using the calculated molar attenuation 
coefficient 34,170 M−1cm−1 46. Exact substrate concentrations were determined at 410 nm, using the molar atten-
uation coefficient 8,480 M−1cm−1 47. Data points were then fitted to the Michaelis-Menten equation using the 
analysis software KaleidaGraph (Synergy Software).

Fluorescence.  Steady state fluorescence was recorded for each variant at 15 °C, 25 °C and 35 °C on a 
Fluoromax-4 spectrofluorometer (Horiba Scientific) equipped with a circulating water bath for temperature 
control. All samples were inhibited by PMSF to a final concentration of 2.5 mM followed by dialysis against 
50 mM Tris, 10 mM CaCl2 and pH 8.0 overnight at 4 °C. Prior to fluorescence experiments absorbance spec-
tra were recorded from 400 nm down to 220 nm and absorbance tuned to 0.03–0.05 A.U. at 295 nm in a 0.4 cm 
quartz cuvette (Spectrocell) used for fluorescence experiments. In addition to recording native fluorescence of 
all variants, steady state fluorescence of the denatured state was also recorded for VPRΔC, VPRΔC_N3P/I5P and 
VPRΔC_N3P/I5P/N238P/T265P, where samples were heated to 90 °C for 15 minutes and fluorescence measured 
at 25 °C. All samples were excited at 295 nm using 3 nm entrance slit width and fluorescence monitored between 
310 nm and 450 nm using a 5–8 nm exit slit width for native samples and 2–3 nm for denatured samples. Relative 
fluorescence was then calculated as:
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where Fn. is the normalized fluorescence intensity, CPS the recorded fluorescence intensity, [P] the protein con-
centration, exi. the exit slit width used and FVPRΔC the concentration and exit slit width normalized fluorescence 
for native VPRΔC. The peak of each fluorescence spectra was then fitted to a cubic function, solving the first deriv-
ative for the local maximum (λmax). AUC (area under curve) was calculated for all variants via the trapezoidal 
rule and the relative emission efficacy calculated by dividing the results with the average fluorescence intensity for 
native VPRΔC. In addition, acrylamide quenching was conducted on all variants, using a 2.5 M stock of molecular 
biology grade acrylamide (Sigma). Sample preparation and experimental conditions were as described above. 
Each aliquot of acrylamide added to samples was followed by thorough mixing and one min resting time for 
temperature equilibration. The effectiveness of quenching was calculated by fitting the data with the Stern-Volmer 
equation:
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where F0 and F are the fluorescence intensities in the absence and presence of quencher between 310 nm and 
410 nm, [Q] is concentration of quencher and Ksv is the Stern-Volmer constant calculated via linear regression. 
Corrections of fluorescence intensities were performed on the data to account for dilutions due to additions of 
acrylamide.

Thermal stability.  Prior to thermal inactivation experiments, samples were dialyzed against a 25 mM Tris 
buffer containing 15 mM CaCl2, 100 mM NaCl, 1 mM EDTA and at pH 8.95 (Sigma) overnight at 4 °C. Samples 
were then heated to selected temperatures and aliquots withdrawn at timed intervals for assaying remaining 
activity using 0.5 mM Suc-AAPF-NH-Np. The observed first order rate constants were then used to construct 
Arrhenius-plots that were analysed by linear regression using KaleidaGraph, from which the T50% (the temper-
ature where half of the activity was lost after thirty minutes) and Eact (inactivation) (corresponding to the slope of the 
Arrhenius graph) values were then calculated.

Unfolding of the secondary structure was monitored by circular dichroism (CD). Prior to measurements 
samples were inhibited by PMSF at a final concentration of 2.5 mM followed by dialysis against a 25 mM glycine 
buffer containing 100 mM NaCl and 15 mM CaCl2 at pH 8.6 overnight at 4 °C. Melting curves of protein samples 
(0.1–0.4 mg/mL) were recorded at 222 nm with a heating rate of 1 °C/min from 25 °C to 90 °C on a Jasco J-1100 
spectropolarimeter. Data analysis and Tm (CD) determination was performed as described in25. Concurrent CD 

Primer Sequence

N3P fw. CGTTCAAAGCCCGGCGATTTGGG

N3P rv. GCTTCATTTGAAACAACAG

I5P fw. GTTCAAAGCAACGCGCCGTGGGGGCTAGACCG

I5P rv. CGGTCTAGCCCCCACGGCGCGTTGCTTTGAAC

N3P/I5P fw. GCCGTGGGGGCTAGACCGAATA

N3P/I5P rv. GCCGGGCTTTGAACGGCTTCATTTG

N238P fw. ACAAGAAAACCCGGGCTTAACTCCGCTTC

N238P rv. AAGTACAAGGCTGCAACG

T265P fw. AAGAGGCACCCCGAATAAACTGC

T265P rv. GTGTCAGAAACCTTATTCTC

Table 5.  Sequences of mutagenic primers used.
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wavelength scans were also recorded on a Jasco J-1100 from 250 nm down to 200 nm at 25 °C using a 1 mm 
cuvette.

Differential scanning calorimetry (DSC) was used to record thermograms of the unfolding process using a 
MicroCal VP-DSC. Prior to measurements, samples were inhibited by PMSF at a final concentration of 2.5 mM 
followed by dialysis against a 25 mM glycine buffer containing 100 mM NaCl and 15 mM CaCl2 and pH 8.6 over-
night at 4 °C. Prior to loading, protein samples (0.4–1.2 mg/mL) and buffers were degassed for 15–30 min at 
10 °C. Thermograms were then recorded from 15 °C to 95 °C with a temperature gradient of 1 °C/min. Initial 
data analysis was performed by Origin software where buffer subtraction and concentration normalization was 
carried out. Due to a slow downward sloping post heat capacities recorded at high temperatures for some variants 
(Supplementary Fig. 14), the Origin software was used to normalize data sets by baseline generation to con-
vert data sets into plots of excess heat capacity versus temperature. Initial data analysis consisted of calculating 
the AUC (area under curve) of each excess heat capacity plot via the trapezoidal rule yielding the calorimetric 
enthalpy (ΔHcal), including recalculations for VPRΔC data sets from25. The apparent melting points (Tm (DSC)) were 
found by fitting a cubic function to the highest peak of the thermograms and solving the first derivative for the 
local maximum. The rate of unfolding (k(unfold)) was calculated as:
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−
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where v is the speed of the temperature gradient, Cp is the excess heat capacity at a given temperature, Qt is the 
total heat evolved and Q is heat evolved at a given temperature4,25,28,48. The unfolding rates were then used to 
plot Arrhenius graphs and used as assistance in further analysis. Due to the complexity of some thermograms 
CalFitter v1.2 (https://loschmidt.chemi.muni.cz/calfitter/)49 was utilized to separate unfolding events. The model 
CalFitter used for fitting irreversible transitions is a modification of the Arrhenius equation:
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where k is the rate of unfolding, Eact is the activation energy of unfolding, R is the gas constant, T is the absolute 
temperature and Tact is an expression of the preexponential factor A, that has been transformed into exponent 
with the single new parameter Tact for more robust parameter estimation. The average of normalized DSC scans of 
variants and a normalized CD melting curves were simultaneously subjected to global fitting using CalFitter. As 
CalFitter cannot account for the downward slopes as observed in some thermograms the normalized excess heat 
thermograms were fitted instead. For fitting of normalized curves ΔCp of each transition was fixed at 0 along with 
the slope (see supplementary for reflections on data analysis). The unfolding model selected for the wild type and 
variants that did not exhibit complex unfolding was a two-state irreversible model confirmed by DSC scan-rate 
experiments (Supplementary Fig. 15)28. Variants that did exhibit more complex unfolding a three-state model 
with both transitions being irreversible, was used. The model was chosen by running scan-rate experiments on 
VPRΔC_I5P (the variant with the most prominent second unfolding transition) (Supplementary Figs. 16, 17 and 
18) revealing that both transitions exhibited scan-rate independent activation energies with more accumulation 
of the intermediate at slower scan-rates. In addition, reheating experiments50 on VPRΔC_I5P up to 70 °C and 
VPRΔC_N3P/I5P/N238P/T265P up to 72 °C showed no signs of refolding (Supplementary Figs. 19 and 20) in case 
of the first transition. In addition, protein stability dependence on protein concentration which was measured 
by recording melting points on CD at 0.1 mg/mL, 0.2 mg/mL and 0.4 mg/mL for both VPRΔC and VPRΔC_I5P 
(Supplementary Fig. 21), showed no concentration dependence for either variant, excluding the possibility of 
oligomerization causing the observed second transitions.

Molecular modelling and graphical data representation.  Molecular graphics and H-bond analysis 
was performed with UCSF Chimera51 using the crystal structure of AQUI (4DZT) and VPR (1SH7)13. Data sets 
were plotted using GraphPad Prism 6 for Windows, GraphPad software.
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Reflections on data analysis. 

In this paper we utilized DSC and CD to analyse the unfolding processes of VPRΔC and its 

proline variants. The unfolding process of VPRΔC follows a classical two state irreversible 

pathway as seen from its DSC thermogram (Fig. 6) and resulting Arrhenius graph 

(Supplementary Fig. 3). However, six out of nine enzyme constructs measured in this work did 

show evidence of divergences from the cooperative unfolding observed for the wild type. In 

this paper we utilized CalFitter 1.2 1 in order to analyse all data sets in the same working 

environment. However due to unstable pre and post heat capacities of some variants, most 

notably VPRΔC_T265P, all data sets were converted into excess heat thermograms. Thus, the 

change in heat capacity due to unfolding could not be considered. Thus, we opted to report on 

Eact values instead of activation Gibbs free energies, activation enthalpy or activation entropy. 

Although baseline subtraction leads to a loss of information and possibly precision in parameter 

estimation, our observation was that the accuracy holds and was improved when working with 

data sets that showed signs of slow aggregation appearing as downward sloping post heat 

capacities after the thermogram peak. In addition, proteases such as αLP and SGPB that are 

produced with intramolecular chaperones and are entirely dependent on them for folding, as is 

the case for VPR, have shown to have very large ΔCp
‡ and ΔG‡ values 2. Together this results 

in highly temperature dependent ΔG‡ curves, making free energy comparisons hard between 

variants without having a value for ΔCp
‡. Thus, we feel that reporting Eact values we get more 

reliable results for comparison between proline variants as baseline subtraction was always 

performed in the same manner. For the wild type and variants showing cooperative unfolding 

the simplest model for irreversible unfolding holds true: 

�
��
→ � 

where N stands for the native state, D for the denatured one and k1 is the rate of unfolding at a 

given temperature. Variants that exhibited divergences from the irreversible two-state model 



2 
 

did all fit best to a three-state irreversible model rather than a Lumry-Eyring unfolding. The 

model that best fitted the data had both steps being irreversible: 

�
��
→ �

��
→ � 

where I stands for the intermediate and k2 stands for the unfolding rate of the intermediate state 

at a given temperature and used to calculate the activation energy of the second transition. 

Partial unfolding experiments also indicated that the first transition was irreversible or at least 

slow enough that it did not come into effect during experiments (Supplementary Fig. 19 & 20).  

Supplementary Figures and Tables. 

Supplementary Fig. 1. Fluorescence emission of VPRΔC at 25°C and pH 8.0 before heat 

treatment (dotted line) and after heat treatment (solid line). Heat treatment was carried out by 

heating at 85 °C for 15 min and then cooled down before measurements. 
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Supplementary Table 1. Relative fluorescence intensities of proline variants calculated as the 

AUC of fluorescence curves at different temperatures and of the denatured state at 25 °C. Along 

with the standard deviation of the mean. 

Variant 15 °C 
(Relative 
intensity) 

25 °C 
(Relative 
intensity) 

35 °C 
(Relative 
intensity) 

Denatured 25 °C 
(Relative 
intensity) 

VPR∆C 1.12 ± 0.02 1.00 ± 0.03 0.95 ± 0.03 10.02 ± 0.04 
VPR∆C/N3P 1.46 ± 0.08 1.37 ± 0.02 1.28 ± 0.06 Not measured 
VPR∆C/I5P 1.28 ± 0.04 1.16 ± 0.05 1.12 ± 0.07 Not measured 
VPR∆C/N238P 1.26 ± 0.07 1.16 ± 0.07 1.09 ± 0.06 Not measured 
VPR∆C/T265P 1.25 ± 0.08 1.15 ± 0.08 1.07 ± 0.09 Not measured 
VPR∆C/N3P/I5P 1.10 ± 0.04 1.00 ± 0.03 0.94 ± 0.01 11.01 ± 0.27 
VPR∆C/N3P/I5P/N238P 1.30 ± 0.10 1.18 ± 0.08 1.13 ± 0.10 Not measured 
VPR∆C/N3P/I5P/T265P 1.34 ± 0.01 1.24 ± 0.03 1.17 ± 0.01 Not measured 
VPR∆C/ N3P/I5P/N238P/T265P 1.31 ± 0.08 1.19 ± 0.06 1.10 ± 0.05 10.73 

 

Supplementary Table 2. λmax values for proline variants calculated as the maxima of 

fluorescence curves at different temperatures and for the denatured state at 25 °C. Along with 

the standard deviation of the mean. 

Variant 15 °C 
(nm) 

25 °C 
(nm) 

35 °C 
(nm) 

Denatured 25 °C 
(nm) 

VPR∆C 335 ± 1 335 ± 1 336 ± 1 357 ± 1 

VPR∆C/N3P 337 ± 2 337 ± 2 337 ± 2 Not measured 

VPR∆C/I5P 337 ± 2 337 ± 2 337 ± 2 Not measured 

VPR∆C/N238P 339 ± 1 339 ± 2 339 ± 2 Not measured 
VPR∆C/T265P 337 ± 1 338 ± 1 338 ± 1 Not measured 

VPR∆C/N3P/I5P 334 ± 1 334 ± 1 334 ± 1 358 ± 1 
VPR∆C/N3P/I5P/N238P 339 ± 1 339 ± 1 339 ± 1 Not measured 

VPR∆C/N3P/I5P/T265P 338 ± 1 338 ± 1 338 ± 1 Not measured 
VPR∆C/ N3P/I5P/N238P/T265P 336 ± 2 336 ± 2 336 ± 2 358 

 

Supplementary Table 3. Stern-Volmer constants calculated from quenching data between 310 

nm – 410 nm at different temperatures and for the denatured state at 25 °C. Along with the 

standard deviation of the mean. 

Variant 15 °C 
(M-1) 

25 °C 
(M-1) 

35 °C 
(M-1) 

Denatured 25 °C 
(M-1) 

VPR∆C 2.13 ± 0.14 2.24 ± 0.12 2.25 ± 0.26 15.00 ± 0.30 

VPR∆C/N3P 2.00 ± 0.12 2.32 ± 0.18 2.66 ± 0.19 Not measured 
VPR∆C/I5P 1.96 ± 0.04 2.05 ± 0.13 2.30 ± 0.22 Not measured 

VPR∆C/N238P 2.49 ± 0.17 2.63 ± 0.25 2.75 ± 0.23 Not measured 

VPR∆C/T265P 2.17 ± 0.08 2.41 ± 0.14 2.45 ± 0.25 Not measured 

VPR∆C/N3P/I5P 1.55 ± 0.11 1.64 ± 0.07 1.77 ± 0.02 15.69 ± 0.24 
VPR∆C/N3P/I5P/N238P 2.05 ± 0.06 2.18 ± 0.05 2.41 ± 0.23 Not measured 

VPR∆C/N3P/I5P/T265P 1.94 ± 0.06 2.17 ± 0.05 2.48 ± 0.07 Not measured 

VPR∆C/ N3P/I5P/N238P/T265P 2.05 ± 0.23 2.12 ± 0.19 2.19 ± 0.22 15.67 
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Supplementary Fig. 2. CD wavelength scans of proline variants in glycine buffer containing 

15 mM CaCl2 and 100 mM NaCl at 25 °C. VPRΔC (black dotted line). A. CD wavelength scans 

of VPRΔC_N3P (Gold) and VPRΔC_I5P (purple). B. CD wavelength scans of VPRΔC_N238P 

(light blue) and VPRΔC_T265P (orange). C. CD wavelength scans of VPRΔC_N3P/I5P/N238P 

(blue) and VPRΔC_N3P/I5P/T265P (green). D. CD wavelength scans of VPRΔC_N3P/I5P (red) 

and VPRΔC_N3P/I5P/N238P/T265P (black). 
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Supplementary Fig. 3. Arrhenius graphs calculated from unfolding rates calculated from DSC 

thermographs for VPRΔC (black dotted line) A. VPRΔC_N3P (Gold) and VPRΔC_I5P (purple). 

B. VPRΔC_N238P (light blue) and VPRΔC_T265P (orange). C. VPRΔC_N3P/I5P/N238P (blue) 

and VPRΔC_N3P/I5P/T265P (green). D. VPRΔC_N3P/I5P (red) and 

VPRΔC_N3P/I5P/N238P/T265P (black). 
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Supplementary Fig. 4. CalFitter 1.2 global fits (red line) of VPRΔC normalized DSC 
thermogram (A) (black line) and CD melting profile (B) (black dots). Assay conditions: 25 mM 
glycine, 15 mM CaCl2 and 100 mM NaCl at pH 8.6. Global fit parameters were: Eact = 235 ± 2 
kJ/mol, Tact = 87.4 ± 0.3 °C and ΔHcal-fit = 542 ± 5 kJ/mol.  
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Supplementary Fig. 5. CalFitter 1.2 global fits (red line for transition 1 and blue line for 

transition 2) of VPRΔC_N3P normalized DSC thermogram (A) (black line) and CD melting 

profile (B) (black dots). Assay conditions: 25 mM glycine, 15 mM CaCl2 and 100 mM NaCl at 

pH 8.6. Global fit parameters were: Eact
1 = 251 ± 5 kJ/mol, Eact

2 = 285 ± 20 kJ/mol, Tact
1 = 87.0 

± 0.8 °C, Tact
2 = 90.8 ± 1.3 °C, ΔHcal-fit

1 = 318 ± 20 kJ/mol and ΔHcal-fit
2 = 227 ± 19 kJ/mol.   
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Supplementary Fig. 6. CalFitter 1.2 global fits (red line for transition 1 and blue line for 

transition 2) of VPRΔC_I5P normalized DSC thermogram (A) (black line) and CD melting 

profile (B) (black dots). Assay conditions: 25 mM glycine, 15 mM CaCl2 and 100 mM NaCl at 

pH 8.6. Global fit parameters were: Eact
1 = 235 ± 3 kJ/mol, Eact

2 = 356 ± 13 kJ/mol, Tact
1 = 89.3 

± 0.4 °C, Tact
2 = 89.2 ± 0.6 °C, ΔHcal-fit

1 = 399 ± 7 kJ/mol and ΔHcal-fit
2 = 180 ± 6 kJ/mol.   
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Supplementary Fig. 7. CalFitter 1.2 global fits (red line) of VPRΔC_N238P normalized DSC 

thermogram (A) (black line) and CD melting profile (B) (black dots). Assay conditions: 25 mM 

glycine, 15 mM CaCl2 and 100 mM NaCl at pH 8.6. Global fit parameters were: Eact = 248 ± 2 

kJ/mol, Tact = 85.5 ± 0.2 °C and ΔHcal-fit = 564 ± 4 kJ/mol. 
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Supplementary Fig. 8. CalFitter 1.2 global fits (red line) of VPRΔC_T265P normalized DSC 

thermogram (A) (black line) and CD melting profile (B) (black dots). Assay conditions: 25 mM 

glycine, 15 mM CaCl2 and 100 mM NaCl at pH 8.6. Global fit parameters were: Eact = 229 ± 2 

kJ/mol, Tact = 89.4 ± 0.3 °C and ΔHcal-fit = 471 ± 5 kJ/mol. 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

35 40 45 50 55 60 65 70 75 80 85

A)
C

p
 (

kJ
/(

m
o
l*

K
))

Temperature (°C)

0.0

0.2

0.4

0.6

0.8

1.0

35 40 45 50 55 60 65 70 75 80 85

B)

F
ra

c
ti
o
n
 U

n
fo

ld
e
d

Temperature (°C)



11 
 

  

Supplementary Fig. 9. CalFitter 1.2 global fits (red line for transition 1 and blue line for 

transition 2) of VPRΔC_N3P/I5P normalized DSC thermogram (A) (black line) and CD melting 

profile (B) (black dots). Assay conditions: 25 mM glycine, 15 mM CaCl2 and 100 mM NaCl at 

pH 8.6. Global fit parameters were: Eact
1 = 261 ± 9 kJ/mol, Eact

2 = 283 ± 6 kJ/mol, Tact
1 = 86.2 

± 1.3 °C, Tact
2 = 91.8 ± 0.4 °C, ΔHcal-fit

1 = 176 ± 20 kJ/mol and ΔHcal-fit
2 = 477 ± 19 kJ/mol.   
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Supplementary Fig. 10. CalFitter 1.2 global fits (red line for transition 1 and blue line for 

transition 2) of VPRΔC_N3P/I5P/N238P normalized DSC thermogram (A) (black line) and CD 

melting profile (B) (black dots). Assay conditions: 25 mM glycine, 15 mM CaCl2 and 100 mM 

NaCl at pH 8.6. Global fit parameters were: Eact
1 = 270 ± 11 kJ/mol, Eact

2 = 279 ± 3 kJ/mol, 

Tact
1 = 83.6 ± 1.4 °C, Tact

2 = 92.0 ± 0.3 °C, ΔHcal-fit
1 = 120 ± 13 kJ/mol and ΔHcal-fit

2 = 567 ± 13 

kJ/mol.   
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Supplementary Fig. 11. CalFitter 1.2 global fits (red line for transition 1 and blue line for 

transition 2) of VPRΔC_N3P/I5P/T265P normalized DSC thermogram (A) (black line) and CD 

melting profile (B) (black dots). Assay conditions: 25 mM glycine, 15 mM CaCl2 and 100 mM 

NaCl at pH 8.6. Global fit parameters were: Eact
1 = 259 ± 10 kJ/mol, Eact

2 = 326 ± 8 kJ/mol, 

Tact
1 = 87.7 ± 1.4 °C, Tact

2 = 90.3 ± 0.4 °C, ΔHcal-fit
1 = 224 ± 20 kJ/mol and ΔHcal-fit

2 = 481 ± 18 

kJ/mol.   
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Supplementary Fig. 12. CalFitter 1.2 global fits (red line for transition 1 and blue line for 

transition 2) of VPRΔC_N3P/I5P/N238P/T265P normalized DSC thermogram (A) (black line) 

and CD melting profile (B) (black dots). Assay conditions: 25 mM glycine, 15 mM CaCl2 and 

100 mM NaCl at pH 8.6. Global fit parameters were: Eact
1 = 215 ± 8 kJ/mol, Eact

2 = 383 ± 7 

kJ/mol, Tact
1 = 97.3 ± 1.6 °C, Tact

2 = 91.3 ± 0.3 °C, ΔHcal-fit
1 = 275 ± 17 kJ/mol and ΔHcal-fit

2 = 

425 ± 15 kJ/mol.   

 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

35 40 45 50 55 60 65 70 75 80 85

A)
C

p
 (

kJ
/(

m
o

l*
K

))

Temperature (°C)

0.0

0.2

0.4

0.6

0.8

1.0

35 40 45 50 55 60 65 70 75 80 85

B)

F
ra

c
ti
o
n
 U

n
fo

ld
e
d

Temperature (°C)



15 
 

 

 

Supplementary Fig. 13. DCS thermogram (A) and CD melting profile (B) of VPRΔC at two 

different calcium ion concentrations, 1 mM (black line) and 15 mM (red line) at pH 5.0 in a 25 

mM acetate buffer and 100 mM NaCl. CalFitter 1.2 global fits (red line for transition 1 and blue 

line for transition 2) of VPRΔC at 1 mM CaCl2 and pH 5.0 of normalized DSC thermogram 

(black line) (C)  and normalized CD melting profile (black dots) (D) Global fit parameters were: 

Eact
1 = 210 ± 3 kJ/mol, Eact

2 = 252 ± 25 kJ/mol, Tact
1 = 77.7 ± 0.5 °C, Tact

2 = 81.9 ± 2.2 °C, 

ΔHcal-fit
1 = 342 ± 9 kJ/mol and ΔHcal-fit

2 = 89 ± 8 kJ/mol.   
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Supplementary Fig. 14. Buffer subtracted differential scanning thermograms showing the 

excess heat during the unfolding process of the proline variants in a 25 mM glycine buffer 

containing 15 mM CaCl2 and 100 mM NaCl. VPRΔC (dotted black line). (A) Unfolding of 

VPRΔC_N3P (Gold) and VPRΔC_I5P (purple). (B) Unfolding of VPRΔC_N238P (light blue) and 

VPRΔC_T265P (orange). (C) Unfolding of VPRΔC_N3P/I5P/N238P (blue) and 

VPRΔC_N3P/I5P/T265P (green). (D) Unfolding of VPRΔC_N3P/I5P (red) and 

VPRΔC_N3P/I5P/N238P/T265P (black). 
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Supplementary Fig. 15. (A) Thermograms of VPRΔC in a 25 mM glycine buffer containing 15 

mM CaCl2 and100 mM NaCl at three different scan rates, 0.5 °C/min (blue line), 1.0 °C/min 

(black line) and 1.5 °C/min (red line). (B) Arrhenius graph showing the rate of unfolding at 

three different scan rates calculated from VPRΔC thermograms 25 mM glycine buffer containing 

15 mM CaCl2 and100 mM NaCl, 0.5 °C/min (blue line), 1.0 °C/min (black line) and 1.5 °C/min 

(red line). 
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Supplementary Fig. 16. (A) Thermograms of VPRΔC_I5P in a 25 mM glycine buffer 

containing 15 mM CaCl2 and100 mM NaCl at three different scan rates, 0.5 °C/min (blue line), 

1.0 °C/min (black line) and 1.5 °C/min (red line). (B) Arrhenius graph showing the rate of 

unfolding at three different scan rates calculated from VPRΔC_I5P thermograms 25 mM glycine 

buffer containing 15 mM CaCl2 and100 mM NaCl, 0.5 °C/min (blue line), 1.0 °C/min (black 

line) and 1.5 °C/min (red line). 
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Supplementary Fig. 17. CalFitter 1.2 global fits (red line for transition 1 and blue line for 

transition 2) of VPRΔC_I5P normalized DSC thermogram (A) (black line) and CD melting 

profile (B) (black dots). Assay conditions: 0.5 °C/min, 25 mM glycine, 15 mM CaCl2 and 100 

mM NaCl at pH 8.6. Global fit parameters were: Eact
1 = 227 ± 2 kJ/mol, Eact

2 = 330 ± 7 kJ/mol, 

Tact
1 = 89.6 ± 0.3 °C, Tact

2 = 90.3 ± 0.5 °C, ΔHcal-fit
1 = 348 ± 3 kJ/mol and ΔHcal-fit

2 = 158 ± 3 

kJ/mol.   
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Supplementary Fig. 18. CalFitter 1.2 global fits (red line for transition 1 and blue line for 

transition 2) of VPRΔC_I5P normalized DSC thermogram (A) (black line) and CD melting 

profile (B) (black dots). Assay conditions: 1.5 °C/min, 25 mM glycine, 15 mM CaCl2 and 100 

mM NaCl at pH 8.6. Global fit parameters were: Eact
1 = 229 ± 2 kJ/mol, Eact

2 = 338 ± 16 kJ/mol, 

Tact
1 = 89.9 ± 0.4 °C, Tact

2 = 89.5 ± 0.7 °C, ΔHcal-fit
1 = 475 ± 8 kJ/mol and ΔHcal-fit

2 = 147 ± 7 

kJ/mol.   
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Supplementary Fig. 19. Complete (black line) and partial (red line) unfolding of VPRΔC_I5P 

followed by a reheating of complete unfolding (black dotted line) and reheating of partial 

unfolding (red dotted line). Assay conditions: 1.0 °C/min, 25 mM glycine, 15 mM CaCl2 and 

100 mM NaCl at pH 8.6. 
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Supplementary Fig. 20. A) Complete unfolding of VPRΔC_N3P/I5P/N238P/T265P (black 

line) followed by reheating of the resulting denatured assembly (purple dotted line) confirming 

the irreversibility of the full unfolding process. B) Partial unfolding of 

VPRΔC_N3P/I5P/N238P/T265P fitted using CalFitter 1.2. CalFitter analysis was carried out 

using the reheat feature in the program. Input data consisted of three thermograms: total 

denaturation of the protein (black solid line and fitted curves purple dotted lines), partial 

unfolding of the protein by heating a native sample to 72 °C (red solid line and fitted curves 

green dotted lines) and reheating of that partially unfolded sample to 72 °C (blue solid line and 

the fitted curve golden dotted line). Prior to fitting via CalFitter samples were subjected to 

thermocycle baseline subtraction. The best fitting model was a three-state model with two 

irreversible transitions. Assay conditions were 25 mM glycine, 15 mM CaCl2 and 100 mM 

NaCl at pH 8.6. 
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Supplementary Fig. 21. Protein concentration effects on melting points measured on CD of 

VPRΔC (A) and VPRΔC_I5P (B). The three protein concentrations tested were approximately 

0.1 mg/mL (blue dots), 0.2 mg/mL (black dots) and 0.4 mg/mL (red dots). Assay conditions 

were 25 mM glycine, 15 mM CaCl2 and 100 mM NaCl at pH 8.6.  
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Abstract 

Kinetic stabilization seems to be especially prevalent among proteases from different clans, to 

combat harsh environments. These enzymes are produced as pro-proteins with intramolecular 

chaperones, facilitating correct folding followed by autoproteolysis, leaving the active folded 

protease domain. The folded domains are often highly structured proteins with the the active 

state locked in a kinetic trap. In this paper we demonstrate the effects of substituting a conserved 

N-terminal Trp residue to Phe in the cold adapted subtilase VPR, belonging to the proteinase K 

subfamily. Results show that this Trp residue plays a pivotal role in the kinetic stability of VPR. 

Replacing the N-terminal Trp residue to Phe caused a drastic reduction in resistance against 

thermal denaturation, proteolysis and diminished unfolding cooperativity. This is a result of the 

collapse of certain internal protein interactions, facilitated by the Trp residue. The Trp-Phe 

mutation leading to a less structured protein as indicated by circular dichroism, fluorescence 

spectroscopy and MD-simulations. These results demonstrate that the kinetic stability of VPR 

might be in large part facilitated by few key residues that maintain the “lock” that keeps the 

structure in its kinetic trap. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1. Introduction 

Protein stability can be described in general terms by having two major facets, a thermodynamic 

one and a kinetic one. The thermodynamic part describes the equilibrium between the native 

state and the unfolded states along with all intermediates on that pathway. The kinetic part 

describes the rate of which these states can sample, thus describing the energy barriers 

separating the states [1]. These two facets do however not contribute evenly to the prevalence 

of the native active form of proteins. Thus, proteins can be roughly divided into kinetically 

stable and thermodynamically stable structures. Thermodynamically stable proteins are 

proteins that fold to their native state under “physiological” conditions without any major 

kinetic barriers. Kinetically stable proteins on the other hand can undergo an irreversible 

transition trapping them in a nonfunctional state. The purest examples of structures that are 

under kinetic control, might be many extracellular proteinases [1, 2]. These proteins are 

expressed with intramolecular chaperones (IMC) that are essential for folding and when folding 

has finished the protease cleaves the IMC off and degrades it, leaving the active structure  [1, 

3-5]. These IMCs are often quite sizeable, reaching 77 residues in the case of subtilisin E and 

174 residues in the case of α-lytic protease where the IMC is almost as large as the active 

enzyme (198 residues) [3, 6, 7]. This amount of resources spent on the production of these 

IMCs is a marker of the importance of these kinetically stable structures for their ability to carry 

out their biological function, which is the hydrolysis of peptide bonds in the harsh extracellular 

environment providing their bacterial originators with nutrients. As a result the native structure 

of these kinetically stable proteases tend to be extremely compact and rigid structures that 

unfold in a highly cooperative manner with large ΔG‡ and ΔCp
‡ compared to structural 

homologs that are not under kinetic control [8-10]. In addition, those native states are often just 

marginally, or not at all thermodynamically stable compared to their unfolded states and are 

only able to carry out their biological function due to the enormous energy barrier separating 

the two states [1, 4, 11]. In this paper we will report on changes in the kinetic stability of VPRΔC 

[12] accompanied by a single Trp-Phe mutation located on the N-terminal region of the enzyme. 

The effects were probed utilizing molecular dynamics (MD), differential scanning colorimetry 

(DSC), circular dichroism spectroscopy (CD), steady state fluorescence, fluorescence 

quenching, thermal inactivation assays (T50%) and Michalis-Menten activity assays. VPRΔC is 

a cold adapted subtilisin-like serine proteinase of the proteinase K family whose gene was 

isolated from the Gram-negative bacterium Vibrio sp. PA-44 [13, 14]. The C-terminal truncated 

form of VPR, VPRΔC is produced as a pre-pro protein containing a 139 residue IMC and a 276 



 

residue catalytic domain [15, 16]. The mature active form of VPRΔC contains three calcium ions 

that have been shown to be extremely dependent on calcium ion concentration for its stability 

both as protection against proteolytic degradation as well as the stability of its overall structure 

[15]. One of these calcium ion binding sites (Ca3) is in a loop on the N-terminal part of the 

protein, that likely is formed after the cleavage of the loop connecting the IMC domain and the 

catalytic domain, locking the structure in its kinetic trap. The N-terminal region has been shown 

to be highly important part of the protein structure and mutation studies, where Pro residues 

were introduced in order to rigidify and stabilize it, have been shown to be successful [17]. 

However, located near to that calcium binding site is a highly conserved Trp residue that is 

found in a broad array of related subtilases. In the structure of VPRΔC_Trp6 is tucked in a pocket 

located between the N-terminal calcium binding loop and the major bulk of the enzyme, thus 

having contact to many distant parts of the protein. It was thus of interest to probe its effects on 

the stability of VPRΔC as its conservation, location and orientation might indicate an important 

role in the kinetic stability of VPR. The resulting variant VPRΔC_W6F showed evidence of 

drastic changes both in activity, stability and ease of expression, where it was found to be much 

more dependent on high calcium ion concentrations in the expression cultivation. The variant 

showed drastic loss in stability, with a 12.6 °C lower melting point and 13.1 °C lower T50% 

along with the emergence of an unfolding intermediate that was observable in DSC 

thermograms. Fluorescence and CD wavelength scans indicated strongly that major changes to 

the structure of the enzyme occurred as a result of this mutation, with indication of a reduced 

α-helical content in the structure. Those observations were supported by MD simulations that 

showed unraveling of distant helical structures due to the breakdown of an H-bond network and 

contacts that were reliant on the presence of that Trp residue. The mutation seemingly does not 

disrupt the N-terminus itself in such a drastic way. MD simulations show a Phe rotamer that is 

much more solvent exposed pointing out of the pocket that Trp residue resides in in the wild 

type. The effects the mutation had on the activity parameters suggested stronger substrate 

binding, but slower turnover numbers using Suc-AAPF-NH-Np as a substrate at 25 °C. 

However, using Arrhenius graphs to calculate the thermodynamic parameters of activation for 

catalysis indicated that the W6F variant had lower activation enthalpy and a more negative 

value for the activation entropy. These results that could indicate a more flexible/softer protein 

surface, suggesting that the W6F variant might be more active at very low temperatures [18]. 

 

 



 

2. Materials and Methods 

2.1 Site directed mutagenesis, expression and purification 

The W6F mutation was introduced into the gene of VPRΔC, contained in a pET-11-a-d vector 

[15], via Quick-change utilizing Phusion® High-Fidelity DNA polymerase from NEB, 

following their PCR protocols. Primers used to introduce the mutation were acquired from TAG 

Copenhagen, having the sequence 5'-CAAAGCAACGCGATTTTTGGGCTAGACCG-3' for 

the forward primer and 5'-CGGTCTAGCCCAAAAATCGCGTTGCTTTG-3' for the reverse.  

Following the PCR protocol, DpnI (Thermo Scientific) was added to a final concentration of 1 

U/mL and incubated at 37 °C overnight. For plasmid amplification, samples were transformed 

into XL10-Gold cells (Agilent Technologies) following the producer´s protocol. Plasmid 

purification was carried out using the Monarch plasmid miniprep kit (NEB), following their 

instructions. Samples were then sent to Genewiz® for verification via Sanger sequencing. 

Expression of the mutant was carried out in Lemo21 cells (NEB) [19], transformation and 

cultivation protocol were the same as described in [15], except for the addition of 100 mM 

CaCl2 during expression, which was needed for successful expression of the variant. 

Purification was as described in [15]. 

2.2 Activity assays 

All activity assays were performed in 100 mM Tris, 10 mM CaCl2 at pH 8.6 using Suc-AAPF-

NH-Np as a substrate. Kinetic parameters for the wild type and the W6F variant were 

characterized by Michaelis-Menten assay monitoring activity at varying temperatures against 

Suc-AAPF-NH-Np at different substrate concentrations, up to 1.00 mM, and monitoring ΔA410 

over 15 seconds. Enzyme samples were dialyzed against the assay buffer overnight at 4 °C and 

concentration was estimated by A280 measurements using the calculated molar attenuation 

coefficient 34,170 M-1cm-1 for the wild type and 28,670 M-1cm-1 for the W6F variant [20]. Exact 

substrate concentrations were determined at 410 nm, using the molar attenuation coefficient 

8,480 M-1cm-1 [21]. Data points were then fitted to the Michaelis-Menten equation using the 

analysis software KaleidaGraph (Synergy Software). 

2.3 Fluorescence 

Steady state fluorescence was recorded at 25°C on a Fluoromax-4 spectrofluorometer (Horiba 

Scientific) equipped with a circulating water bath for temperature control. All samples were 

inhibited by PMSF to a final concentration of 2.5 mM followed by dialysis against 50 mM Tris, 



 

10 mM CaCl2 and pH 8.0 overnight at 4°C. Prior to fluorescence experiments absorbance 

spectra were recorded from 400 nm down to 220 nm and absorbance adjusted to 0.03 - 0.05 

A.U. at 295 nm in a 0.4 cm quartz cuvette (Spectrocell) used for fluorescence experiments. In 

addition to recording native fluorescence, steady state fluorescence of the denatured state was 

also recorded, where samples were heated to 90°C for 15 minutes and fluorescence measured 

at 25°C. All samples were excited at 295 nm using 3 nm entrance slit width and fluorescence 

monitored between 310 nm and 450 nm using a 5-8 nm exit slit width for native samples and 

2-3 nm for denatured samples. Relative fluorescence was then calculated as:   

𝐹𝑛. =
(

𝐶𝑃𝑆
[𝑃] ∗ 𝑒𝑥𝑖.2

)

𝐹VPRΔC
 

where Fn. is the normalized fluorescence intensity, CPS the recorded fluorescence intensity, [P] 

the protein concentration, exi. the exit slit width used and FVPRΔC the concentration and exit slit 

width normalized fluorescence for native VPRΔC. The peak of each fluorescence spectra was 

then fitted to a cubic function, solving the first derivative for the local maximum (λmax). AUC 

(area under curve) was calculated for all variants via the trapezoidal rule and the relative 

emission efficacy calculated by dividing the results with the average fluorescence intensity for 

native VPRΔC. In addition, acrylamide quenching was conducted on all variants, using a 2.5 M 

stock of molecular biology grade acrylamide (Sigma). Sample preparation and experimental 

conditions were as described above. Each aliquot of acrylamide added to samples was followed 

by thorough mixing and one min resting time for temperature equilibration. The effectiveness 

of quenching was calculated by fitting the data with the Stern-Volmer equation: 

Fo

𝐹
= 1 + 𝐾𝑆𝑉[𝑄] 

where F0 and F are the fluorescence intensities in the absence and presence of quencher between 

310 nm and 410 nm, [Q] is concentration of quencher and Ksv is the Stern-Volmer constant 

calculated via linear regression. Corrections of fluorescence intensities were performed on the 

data to account for dilutions due to additions of acrylamide.  

2.4 Thermal stability 

Prior to thermal inactivation experiments, samples were dialyzed against a 25 mM Tris buffer 

containing 15 mM CaCl2, 100 mM NaCl, 1 mM EDTA and at pH 8.95 overnight at 4 °C. 

Samples were then heated to selected temperatures and aliquots withdrawn at timed intervals 



 

for assaying remaining activity using 0.5 mM Suc-AAPF-NH-Np. The observed first order rate 

constants were then used to construct Arrhenius-plots that were analysed by linear regression 

using KaleidaGraph, from which the T50% (the temperature where half of the activity was lost 

after thirty minutes) and Eact (inactivation) (corresponding to the slope of the Arrhenius graph) 

values were then calculated.  

Unfolding of the secondary structure was monitored by circular dichroism (CD). Prior to 

measurements samples were inhibited by PMSF at a final concentration of 2.5 mM followed 

by dialysis against a 25 mM glycine buffer containing 100 mM NaCl and 15 mM CaCl2 at pH 

8.6 overnight at 4 °C. Melting curves of protein samples (0.1 – 0.4 mg/mL) were recorded at 

222 nm with a heating rate of 1°C/min from 25 °C to 90°C on a Jasco J-1100 CD spectrometer. 

Data analysis and Tm (CD) determination was performed as described in [17]. Concurrent CD 

wavelength scans were also recorded on a Jasco J-1100 from 250 nm down to 200 nm at 25°C 

using a 1 mm cuvette. 

Differential scanning calorimetry (DSC) was used to record thermograms of the unfolding 

process using a MicroCal VP-DSC. Prior to measurements, samples were inhibited by PMSF 

at a final concentration of 2.5 mM followed by dialysis against a 25 mM glycine buffer, 

containing 100 mM NaCl and 15 mM CaCl2 and pH 8.6, overnight at 4 °C. Prior to loading, 

protein samples (0.3 – 1.2 mg/mL) and buffers were degassed for 15 - 30 min at 10 °C. 

Thermograms were then recorded from 5 °C until fully unfolded with a temperature gradient of 

1 °C/min. Buffer subtraction and concentration normalization was carried out using the Origin 

software. Reheat runs of unfolded samples were carried out confirming irreversibility [22]. 

Prior to data analysis DSC data sets were normalized by generating baselines to convert data 

sets into plots of excess heat capacity versus temperature using the Origin software. The 

apparent melting points (Tm (DSC)) were found by fitting the peaks with a cubic function and 

solving the first derivative for the local maximum. Data fitting was carried out using the online 

tool CalFitter 1.3 (https://loschmidt.chemi.muni.cz/calfitter/) [23]. To fit the wild type DSC 

data a two-state irreversible unfolding model was used: 

𝑁
𝑘1
→𝐷 

where N stands for the native state, D for the denatured one and k1 for the first order rate 

constant of unfolding that follows the Arrhenius equation [24]. In order to fit the data for the 

W6F variant a three-state model was used:  

https://loschmidt.chemi.muni.cz/calfitter/


 

𝑁
𝑘1
→ 𝐼

𝑘2
→𝐷 

where N stands for the native state, I stands for an intermediate state, D for the denatured state, 

k1 stands for the first order rate constant of the first transition and k2 for the first order rate 

constant of the second transition as has been done for other variants of VPR exhibiting a second 

transition [17]. Prior to fitting, the average of at least three separate excess heat DSC 

thermograms and the average of at least three separate normalized CD melting profiles were 

subjected to global fitting on the CalFitter server. As the data sets were deconvoluted and 

normalized ΔCp
‡ was set as a fixed value of 0 kJ/mol. The model which CalFitter uses for fitting 

irreversible transitions is a modification of the Arrhenius equation: 

𝑘 = exp (−
𝐸𝑎𝑐𝑡
𝑅

(
1

𝑇
−

1

𝑇𝑎𝑐𝑡
)) 

where k is the rate of unfolding, Eact is the activation energy of unfolding, R is the gas constant, 

T is the absolute temperature and Tact is an expression of the preexponential factor A, that has 

been transformed into an exponent with the single new parameter Tact, for more robust 

parameter estimation. From the resulting fits the activation Gibbs free energy (ΔG‡) can be 

calculated: 

ΔG‡ = −𝑅𝑇 ln (
𝑘(𝑇) × ℎ

𝑘𝑏 × 𝑇
) 

where R is the universal gas constant, T is the absolute temperature, k(T) is the first order rate 

constant of unfolding at a given temperature, h is the Planck constant and kb is the Boltzmann 

constant. The activation enthalpy (ΔH‡) was calculated by: 

ΔH‡ = 𝐸𝑎 − 𝑅𝑇 

and the activation entropy (TΔS‡) was calculated as: 

𝑇ΔS‡ = ΔH‡ − ΔG‡ 

The thermodynamic activation parameters ΔG‡, ΔH‡ and ΔS‡ were calculated at temperatures 

corresponding to the apparent melting points (Tm (DSC)). 

2.5 Molecular dynamics (MD) simulations 

MD simulations were carried out for both VPRΔC and VPRΔC_W6F using the Gromacs X.X.X 

software package (www.gromacs.org) on a parallel architecture utilizing the CHARMM22* 

http://www.gromacs.org/


 

force field [25] for simulations. In order to provide starting structures for the simulations the 

X-ray crystal structure of VPR (PDB ID: 1SH7) [26] was modified using UCSF Chimera [27]. 

In-silico modifications of VPRΔC consisted of C-terminal deletion, deleting Gly276 and 

succeeding residues. In the case of VPRΔC_W6F the newly made VPRΔC structure was subjected 

to in-silico mutagenesis of Trp6 choosing a rotamer for the new Phe6 residue that closely 

resembled the native Trp rotamer. Structures were soaked in TIP3P dodecahedral water with a 

minimum of 1 nm between the protein and the edge of the water box, all succeeding MD 

simulations were then conducted under the periodic boundary condition. Preparation of models 

was as follows: (i) steepest energy minimization of 10,000 steps; (ii) addition of two sodium 

ions to counter the system charge; (iii) steepest descent energy minimization of 10,000 steps; 

(iv) solvent equilibration for 100 ps at 300 K while restraining the protein and bound calcium 

atoms by a harmonic potential with a force constant of 1000 kJ(mol-1nm-2); (v) pressure 

equilibration of the system without any positional restraints was conducted under NPT 

ensemble at 1 bar, 300 K for 4 ns using a Parrinello-Rahman barostat; (vi) temperature 

equilibration of the system to 300 K utilizing Berendsen thermostat under NVT ensemble; (vii) 

a 2 ns thermalization in NVT conditions at 300 K under isotropic pressure at 1 bar using the 

velocity-rescale thermostat [28]. 

The productive MD simulation was carried out for 500 ns for VPRΔC and 1000 ns for 

VPRΔC_W6F under the NVT ensemble using the velocity-rescale thermostat [28] using a 

coupling constant 0.2 ps at 300 K. For heavy atom bonds the LINCS algorithm was used setting 

both LINCS-order and LINCS-iter as 4 [29]. Waals and Coulomb interactions were cutoff at 

0.8 nm. Long-range electrostatic interactions were calculated using the Particle-Mesh Ewald 

(PME) summation scheme [30]. 

3. Results 

The tryptophan exchange variant VPRΔC_W6F was successfully expressed and purified to 

homogeneity. However, the variant was found to be much more sensitive to calcium 

concentrations in the expression cultivate compared to the wild type. Additions of calcium up 

to 100 mM concurrently with inducing the expression were needed for reliant optimal 

production of the variant [15]. 

3.1 Kinetics 



 

The determined Michaelis Menten kinetic parameters showed both lower turnover number and 

Km for the variant as compared to the wild type at 25 °C at pH 8.6, that resulted in somewhat 

lower catalytic efficiency (Table 1). 

Table 1. Kinetic parameters of VPRΔC and VPRΔC_W6F. Values are shown as averages and the 

standard deviation of the mean of at least three separate experiments. 

 
kcat (s-1) KM (mM) kcat/KM (s-1mM-1) 

VPR∆C 225.7 ± 12.0 0.178 ± 0.016 1238 ± 149 

VPR∆C/W6F 150.9 ± 31.9 0.145 ± 0.028 1098 ± 167 

 

Monitoring the effects of temperature on the turnover number show changes in 

activity/temperature relationships. Plotting measured kcat values in Arrhenius graphs (Fig. 1) to 

calculate the thermodynamic parameters of activation for catalysis show that the W6F variant 

has lower activation enthalpy and a more negative values for activation entropy (Table 2). 

Figure 1. Arrhenius plot calculated form the rate of catalysis of Suc-AAPF-NH-Np at pH 8.6 

and temperatures ranging from 15 - 45 °C. Red dots represent measured values for VPR and 

the red line represent the best linear fit of the data. Blue dots represent measured values for the 

W6F variant, and the blue line represents the best linear fit.  

 

 

 



 

Table 2. The thermodynamic activation parameters for the catalysis of Suc-AAPF-NH-Np at 

25 °C. Parameters shown are the activation Gibbs free energy of catalysis (ΔG‡), activation 

enthalpy of catalysis (ΔH‡) and the activation entropy of catalysis (TΔS‡). 

 
ΔG‡ 

(kJ/mol) 

ΔH‡ 

(kJ/mol) 

TΔS‡ 

(kJ/mol) 

VPR∆C 59.6 36.7 -22.9 

VPR∆C/W6F 60.6 32.2 -28.4 

 

3.2 Structural effects 

To monitor changes in the structure of the variant compared to the wild type, fluorescence 

spectroscopy and CD wavelength scans did provide information strongly suggesting a less 

structured protein (Fig. 2). The steady-state fluorescence spectrum of the variant suggests that 

the microenvironments around some or all of the remaining Trp residues (Trp114, Trp191 and 

Trp 208) are much more exposed to a more polar environment as seen in the shift of around 11 

nm of the maxima of the emission curve. In addition, the remaining fluorophores do emit more 

in comparison to the wild type fluorophores as the area under the curve stays the same with one 

less Trp residue (Table 3), indicating less intrinsic quenching, reflecting changes in dynamics 

and/or orientation of the residues. In addition, the microenvironments of the remaining Trp 

residues have become more permeable to acrylamide, as evidenced by a considerably higher 

Stern-Volmer constant, adding more evidence for a less structured protein (Fig. 3C) (Table 3). 

Table 3. Calculated Stern-Volmer constants from acrylamide quenching experiments, the 

maxima of emission curves (λmax) and the relative fluorescence calculated as area under curve 

(AUC) recorded at pH 8.0 at 25 °C. Values are represented as averages and standard deviation 

of the mean of at least three separate experiments.   

 Stern-Volmer (M-1) λmax (nm) AUC (relative)  
Native Denatured Native Denatured Native Denatured 

VPR∆C 2.23 ± 0.31 14.71 ± 0.66 335.4 ± 0.6 357.4 ± 0.2 1.00 ± 0.03 10.02 ± 0.03 

VPR∆C/W6F 4.98 ± 0.66 13.50 ± 0.58 345.7 ± 3.8 356.6 ± 0.8 1.03 ± 0.11 5.71 ± 1.21 

 

CD wavelength scans also indicate changes in the secondary structure. The upward shift in the 

spectrum of VPRΔC_W6F indicates that the protein is less structured than the wild type. In 

addition, that shift is very noticeable around 222 nm, suggesting that a major part of the 

structure lost may be α-helical [31].  



 

 

Figure 2. A) Steady state fluorescence spectrum of the native states of VPRΔC and VPRΔC_W6F 

at pH 8.0 and 25 °C. B) Steady state fluorescence spectrum of the denatured states of VPRΔC 

and VPRΔC_W6F at pH 8.0 and 25 °C. C) Stern-Volmer graph showing the quenching effects 

of acrylamide on VPRΔC and VPRΔC_W6F at pH 8.0 and 25 °C. Error bars represent standard 

deviation of the mean of measurements. D) CD wavelength scans of VPRΔC and VPRΔC_W6F 

at pH 8.6 and 25 °C. All measurements were done in triplicates at least. 

Those observations were supported by MD simulations that showed unraveling of helices D 

and C (Crystal structure), that are located in close proximity to calcium binding sites 1 and 2, 

due to the breakdown of an H-bond network and contacts that were reliant on the presence of 

that Trp residue. The mutation seemingly does not disrupt the N-terminus itself in such a drastic 

way. As MD simulations show a Phe rotamer that is much more solvent exposed pointing out 

of the pocket that Trp residue resides in in the wild type. This may lead to some changes in the 

stability of this region. The N-terminal which is highly mobile in wild type simulations, 

becomes much more static in the VPRΔC_W6F simulation however, possibly indicating that the 

N-terminus is mostly dependent on the calcium binding site for its stability whereas the Trp 

residue is a relay of contacts stabilizing the rest of the structure. 



 

3.3 Stability 

The stability of the W6F variant was greatly diminished, with T50% and Tm values dropping by 

13.1 °C and 12.6 °C, respectively (Table 4) (Fig. 3). It is therefore clear that the mutation greatly 

affects the kinetic stability of the variant and the resistance against proteolytic degradation (Fig. 

3. A). In addition to this, the W6F variant does show loss of cooperativity during unfolding, as 

the DSC thermogram clearly shows a second peak (Fig. 3. C). Thus, an intermediate state forms 

during the unfolding of the W6F variant. This possibly explains the lower activation energies 

measured in inactivation experiments (Table 4) as a less structured intermediate would be more 

prone to autoproteolytic degradation. DSC thermograms also indicate that the heat capacity of 

the native state of the W6F variant might be lower than that of the wild type. This is hard to 

estimate however, due to the apparent increased aggregation of the W6F variant. This can be 

observed as downward sloping of heat capacity traces post unfolding transition, as well as from 

the difference in heat capacities of the first and second run of the W6F variant (Fig. 3. C and 

D). 

Table 4. Thermostability parameters of VPRΔC and its W6F variant. Parameters shown are 

T50%, the temperature where half of the activity has been lost over 30 min calculated from 

Arrhenius graphs, Eact (inactivation) calculated from the slope of Arrhenius graphs, Tm (CD) 

the melting point of the PMSF inhibited enzymes as measured by CD, Tm (DSC) the apparent 

melting point of PMSF inhibited enzymes calculated as the highest peak of DSC thermograms. 

Numbering refers to the order of peaks. Values are represented as averages and standard 

deviations of the mean of at least four separate experiments.      

 
T50% 

(°C) 

Eact (inactivation) 

(kJ/mol) 

Tm (CD) 

(°C) 

Tm (DSC)
1 

(°C) 

Tm (DSC)
2 

(°C) 

VPR∆C 53.8 ± 0.4 218 ± 9 61.6 ± 0.5 63.9 ± 0.4 N.A. 

VPR∆C/W6F 40.7 ± 2.0 154 ± 14 49.0 ± 0.6 49.3 ± 0.2 59.4 ± 0.4 

 



 

Figure 3. A) Arrhenius plots calculated from thermal inactivation of the wild type (red) and 

the W6F variant (blue) in Tris buffer containing 15 mM CaCl2, error bars represent the 

standard deviation of the mean. B) Normalized secondary structure melting profiles of the wild 

type (red) and the W6F variant (blue) recorded on CD at 222 nm in a glycine buffer at pH 8.6 

containing 15 mM CaCl2. C) Example of a native (solid line) and reheat scan (dotted line) DSC 

scan of the wild type. D) Example of a native (solid line) and reheat scan (dotted line) DSC 

scan of the W6F variant. 

Averages of deconvoluted DSC thermograms and averaged CD melting profiles were subjected 

to global fitting using CalFitter 1.3 (Fig. 4) (Table 5). The wild type was fitted to a two-state 

irreversible model, whereas the W6F variant was fitted to a three-state kinetically stable model. 

The fitting shows that the first transition of the W6F variant involves the major part of the 

secondary structure with the second transition being around 20% of the CD signal. The second 

transition however has very high values for both the activation enthalpy and activation entropy 

compared to the first transition. This information suggests that the second transition is that of 

an intermediate that has lost most of its regular secondary structure, but which still maintains 

strong and ordered molecular interactions. In addition to the location of the mutation this 

strongly suggests that the second transition involves the N-terminal part of the protein and the 



 

calcium 3 binding site located there (Fig. 5). The loss of cooperativity due to this single 

mutation might thus be due to disconnection between the N-terminal part and the rest of the 

protein molecule. In the crystal structure of VPR, the side chain of Trp6 resides in a pocket in 

close proximity to the loop between the main coordinators of the calcium 1 binding site, Pro171, 

Gly173 and Asp196, a site proposed to be highly important for the stability of the secondary 

structure [15, 17]. In addition, Trp6 has the potential to form sidechain-mainchain H-bond to 

Ser202, a residue relatively close to Asp196 (Fig. 5) that might be important for the stability of 

sheets 6 and 7 (Figs. 5).  

Table 5. Results of CalFitter 1.3 using the global fit function fitting together deconvoluted DSC 

data and normalized CD data. Parameters shown are the activation Gibbs free energy (ΔG‡), 

activation enthalpy (ΔH‡) and the activation entropy (ΔS‡). Values are calculated at 

temperatures corresponding to their respective Tm (DSC). Numerals indicate observed order of 

transitions. Data is represented with their 95% confidence interval.    
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VPR∆C/W6F 94.1 ± 0.1 96.4 ± 0.1 177 ± 1 285 ± 2 83 ± 1 189 ± 2 

 



 

 

Figure 4. Results of CalFitter 1.3 global fits of DSC and CD data of VPRΔC and VPRΔCW6F. 

A) Fit (black dotted line) of averaged and deconvoluted DSC thermograms of VPRΔC (red line). 

B) Fit (black dotted line) of averaged and normalized CD melting profiles of VPRΔC (red line). 

C) Fits (black dotted lines) of averaged and deconvoluted DSC thermograms of VPRΔCW6F 

(blue line). D) Fits (black dotted lines) of averaged and normalized CD melting profiles of 

VPRΔCW6F (blue line). 



 

 

Figure 5. The crystal structure of VPRΔC. Marking the calcium ion binding sites, the active site 

(Ser220, His70 and Asp37), relevant α-helixes (C, D, E and F), β-sheets (6 and 7), the 

coordinators of the Ca-1 ion Asp196 and Pro171, neighboring residues of Trp6, Thr180, 

Ser181, Ser202 and Gln203 and  the crystalline rotameric state of theTrp6 residue. 

4. Discussion 

The work presented here demonstrates in further detail the importance of the N-terminal part 

of VPR and its role in maintaining the kinetic stability of the structure. In addition, this work 

highlights how finely tuned the unfolding process of the wild type is under our standard assay 

conditions. Unfolding cooperativity has been pointed out to be extremely important for 

kinetically stable proteinases to carry out their biological roles [8]. Intermediate unfolded states 

are targets for proteolytic cleavage and are aggregation prone [1]. Using mutagenic studies and 

investigation of the effects of calcium on the unfolding process, the N-terminus of the protein 

has become a site of interest [15, 17, 32]. The N-terminal region harbors the highly coordinated 

calcium binding site 3 (Ca3) that is likely formed during its maturation process, locking the 

enzyme in its kinetic trap and has been shown to be very influential for the stability of the 

protein structure [17]. Thus, we pointed our focus on the highly conserved Trp6 residue, located 



 

on the small helix A with its sidechain tucked between the N-terminus and other parts of the 

protein. The decision was taken to exchange the residue for a smaller aromatic group (Phe) to 

investigate the effects of how fewer contacts in that area might affect the protein. It became 

quite clear early on that the stability of the resulting variant was highly compromised, as 

expression of the variant provided very low yields of protein. Sufficient expression was not 

achieved until relatively high concentrations of calcium were added to the expression culture 

medium along with IPTG for induction. A final concentration of 100 mM CaCl2 was observed 

to give constant acceptable yields. These high calcium concentrations have only been correlated 

with resistance against proteolytic cleavage [15]. Interestingly the structure of the Trp variant 

seems to be affected and evidence of dissolution of parts of the secondary structure became 

apparent in CD wavelength scans. In addition, changes were observed in the steady state 

fluorescence spectrum of the variant where a large red shift indicated that the remaining three 

Trp residues in the structure were in a more polar environment. Furthermore, this was 

accompanied by higher Stern-Volmer constants indicating better access to fluorophores by 

acrylamide [33]. MD simulations provided extra insight into the effects on the structure and 

show far reaching effects on the structure. Accompanying the 12.6 °C lower melting point and 

13.1 °C lower T50%, was a clear indication that an intermediate state was formed during 

unfolding. From observation on how the single mutation W6F completely disrupted the 

cooperativity of the unfolding process, it is clear that important interactions must have been 

broken. In MD simulations the rotameric states of Trp6 in the wild type and Phe6 in the variant 

differ remarkably. Trp6 resides almost always in its pocket maintaining the H-bond to Ser202 

and proximity to Gln203 and the loop area around Thr180 and Ser181. However, Phe6 in the 

mutant spends most of the simulation pointing out toward the solvent. Thus, the aforementioned 

interactions are completely lost. Residues 180, 181, 202 and 203 are located on the C-terminals 

of β-sheets 6 and 7, that both contain coordinators of the calcium ion in the Ca1 site (Fig. 5). 

Changed dynamics there might be a part of the reason why helices D and C partly unravel 

during the simulation. This idea would fit with the hypothesis that the Ca1 site is very important 

for maintaining the secondary structure of VPR [15]. Thus, the role of Trp6 might be to infer 

stability from the N-terminus to the main structure of VPR, possibly in part through interactions 

with the Ca1 site. Moreover, these structural changes cause changes to the activity of the W6F 

variant. Showing lower activation enthalpy change during catalysis and higher activation 

entropy change. These results would suggest a more flexible/softer surface, of the protein, 

suggesting that the W6F variant might be more active at very low temperatures. 
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