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ABSTRACT 16 

Airway epithelium restricts penetration of inhaled pathogens into the underlying 17 

tissue and plays a crucial role in innate immune defense against respiratory infections. 18 

The whooping cough agent, Bordetella pertussis, adheres to ciliated cells of human 19 

airway epithelium and subverts its defense functions through the action of secreted 20 

toxins and other virulence factors. We have examined the impact of B. pertussis 21 

infection and of adenylate cyclase toxin (CyaA) action on the functional integrity of air-22 

liquid interface (ALI)-cultured human bronchial epithelial cells. B. pertussis adhesion to 23 

the apical surface of polarized pseudostratified VA10 cell layers provoked disruption of 24 

tight junctions and caused drop of the trans-epithelial electrical resistance (TEER). The 25 

reduction of TEER depended on the capacity of the secreted CyaA toxin to elicit cAMP 26 

signaling in epithelial cells through its adenylyl cyclase enzyme activity. Both purified 27 

CyaA and cAMP signaling drugs triggered decrease of TEER of VA10 cell layers. Toxin-28 

produced cAMP signaling caused actin cytoskeleton rearrangement and induced mucin 29 

5AC production and IL-6 secretion, while inhibiting IL-17A-induced secretion of the IL-8 30 

chemokine and of the antimicrobial peptide beta defensin-2. These results indicate that 31 

CyaA toxin activity compromises the barrier and innate immune functions of Bordetella-32 

infected airway epithelia.  33 

 34 

KEYWORDS: B. pertussis, airway epithelia, CyaA, tight junctions, antimicrobial 35 

peptides, immunomodulatory cytokines 36 
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INTRODUCTION  38 

 Despite availability and world-wide use of pertussis vaccines, whooping cough 39 

(pertussis) remains the least controlled vaccine-preventable infectious disease. The 40 

illness is primarily caused by the Gram-negative coccobacillus Bordetella pertussis and 41 

about 10% of milder whooping cough cases are caused by the related organism B. 42 

parapertussishu. The agent is transmitted by aerosolized droplets (1, 2) and upon 43 

inhalation the bacteria bind to the ciliated epithelial cells along the airway. With 44 

progressing proliferation, B. pertussis can reach the bronchioles and lung alveoli. It was 45 

proposed that a large fraction of live bacteria recovered from infected mouse lungs may 46 

have been residing inside alveolar macrophages (3). B. pertussis was also repeatedly 47 

found to survive and proliferate inside human macrophages (4, 5) and within epithelial 48 

cells infected ex vivo (6, 7). Moreover, two month after an infant patient was diagnosed 49 

with whooping cough disease, persisting B. pertussis antigens could still be detected in 50 

its airway epithelial cells (8). However, it remains unclear whether intracellular survival 51 

of B. pertussis within host epithelial cells, or in alveolar macrophages, plays any role in 52 

the pathophysiology of whooping cough disease, which can last for up to three months. 53 

 B. pertussis produces a number of virulence factors that enable it to overcome 54 

the innate and adaptive immune defense functions of airway mucosa. Several types of 55 

adhesins produced in parallel (e.g. fimbriae, filamentous hemagglutinin (FHA), pertactin) 56 

appear to mediate adhesion of the bacteria to human ciliated epithelia or macrophage 57 

cells. B. pertussis further produces several complement resistance factors and at least 58 

two potent immunomodulatory toxins, the pertussis toxin (PTX) and the adenylate 59 

cyclase toxin-hemolysin (CyaA). These play a major role in subversion of host innate 60 
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and adaptive immune defense. The underexplored Type III Secretion System (T3SS) of 61 

Bordetellae then delivers immunomodulatory (BopN) and cytotoxic (BteA/BopC) 62 

effectors into host cells, but the mechanism by which the T3SS contributes to 63 

pathogenesis of B. pertussis infections remains unknown (2, 9, 10). 64 

 The adenylate cyclase toxin-hemolysin (ACT, AC-Hly or CyaA) plays a particular 65 

role in the initial phases of B. pertussis infection (11). CyaA belongs to the Repeats-in-66 

toxin (RTX) family of proteins and it consists of an N-terminal cell invasive adenylate 67 

cyclase enzyme domain (~384 residues) that is fused to a pore-forming RTX cytolysin 68 

(Hly) moiety (~1322 residues) (12, 13). Through binding to the CD11b subunit of the 69 

complement receptor 3 (αMβ2 integrin, CD11b/CD18, or Mac-1), the CyaA toxin primarily 70 

targets host myeloid phagocytes (14). It inserts into their cell membrane and upon 71 

forming a transmembrane conduit for influx of extracellular Ca2+ ions, CyaA delivers its 72 

N-terminal adenylate cyclase (AC) domain into the cytosol of cells (15). There the AC 73 

enzyme is activated by calmodulin and catalyzes massive and unregulated conversion 74 

of ATP into the second messenger molecule 3',5'-cyclic adenosine monophosphate 75 

(cAMP) (16). cAMP signaling then instantly ablates the bactericidal functions of the 76 

myeloid phagocytes, such as the oxidative burst and opsonophagocytic killing of 77 

bacteria by neutrophils and macrophages (16-20). In parallel, the Hly moiety 78 

oligomerizes into cation-selective pores and permeabilizes cells for efflux of cytosolic K+ 79 

ions, activating MAPK signaling (21).  80 

 With a reduced efficacy, CyaA can bind, penetrate and intoxicate by cAMP a 81 

variety of other host cell types that do not express CR3 (CD11b- cells), such as 82 

erythrocytes or epithelial cells (14, 22, 23). However, very little is known about how 83 
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CyaA action affects the function of airway epithelial linings. CyaA appears to translocate 84 

rather inefficiently through the apical membrane of polarized epithelial cells (24), but it 85 

could be delivered into epithelial cells by bacterial outer membrane vesicles (25). This 86 

raises the possibility that cAMP produced by OMV-delivered CyaA might compromise 87 

tight junction integrity and enable the free secreted toxin to access the basolateral side 88 

of the layer, from where it can rather efficiently invade epithelial cells (24). Moreover, B. 89 

pertussis bacteria were recently shown to secrete high amounts of CyaA in the 90 

presence of calcium and albumin, as present in human respiratory secretions (26-28). 91 

This indicates that intoxication of airway epithelial cells by CyaA-produced cAMP likely 92 

plays a more important role in the pathophysiology of B. pertussis infections than 93 

previously anticipated.  94 

 The airway epithelium represents the first line of innate immune defense against 95 

respiratory pathogens (29). The secreted mucins form a protective gel layer over the 96 

epithelial surface that traps inhaled particles and microorganisms, enabling their 97 

removal by the mucociliary escalator (29, 30). Expression of Toll-like receptors (e.g. 98 

TLR2 and TLR4) and of the endotoxin receptor CD14 enables the airway epithelial cells 99 

to sense the presence of components released by infecting bacteria, such as the LPS 100 

and lipoproteins/lipopeptides, triggering secretion of cytokines and antimicrobial 101 

peptides (31, 32). Cytokines secreted by the epithelia can then act as chemoattractants, 102 

as pro/anti-inflammatory regulators, or as maturation signals for intraepithelial immune 103 

cells (32, 33). Tight packing of the epithelial cells through tight junctions plays a key role 104 

in the barrier function of the epithelial layer, preventing penetration of inhaled particles 105 

and microbes into the underlying tissue (34).  106 
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 We have previously shown that when grown in air-liquid interface cultures (ALI), 107 

the human bronchial epithelial cell line VA10 can form a pseudo-stratified epithelium 108 

that forms functional tight junctions, secretes IL-8 and antimicrobial peptides, and 109 

responds to bacterial components (35-38). Here, we used this model to analyze the 110 

effects of B. pertussis CyaA toxin action on the barrier function and immune response of 111 

bronchial epithelium. We show that B. pertussis infection and especially the elevation of 112 

cAMP by CyaA toxin compromises tight junction integrity and enhances mucin 113 

production, while modulating cytokine and antimicrobial peptide secretion by polarized 114 

airway epithelial cells.  115 
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MATERIALS AND METHODS 116 

Reagents and antibodies. Bronchial/Tracheal epithelial cell growth medium 117 

(B/TEGM) was obtained from Cell applications, USA. Dulbecco’s Modified Eagles 118 

Medium: Nutrient mixture F-12 (DMEM/F12) was purchased from Thermo Fisher, USA. 119 

Serum substitute Ultroser G was obtained from PALL Life Sciences, USA. Antibody 120 

against zonula occludens-1 (ZO-1; polyclonal Rabbit), junctional adhesion molecule A 121 

(JAMA; polyclonal rabbit), claudin-1 (monoclonal mouse), claudin-4 (polyclonal rabbit) 122 

and Alexa Flour 488 conjugated anti-mouse IgG were purchased from Thermo 123 

Scientific, USA. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (polyclonal 124 

rabbit), E-cadherin (polyclonal rabbit), and anti-Mouse IgG HRP antibodies were all from 125 

Santa Cruz Biotechnologies (USA). Anti-Bordetella serum (rabbit polyclonal) was a 126 

generous gift from Dr. Branislav Vecerek. Cy-3 conjugated anti-rabbit antibody was 127 

obtained from Sigma-Aldrich, USA. Rabbit polyclonal anti-cAMP antibody for 128 

competitive ELISA was obtained from Genscript, USA. Transwell permeable filter 129 

supports (0.4 µm pore size, Polyester membrane) were bought from Corning Costar 130 

Corporation, USA. F-actin staining was done with Alexa Fluor 488 phalloidin (Molecular 131 

Probes, Thermo Scientific, USA). Anti-human ZO-1 antibody was also obtained from BD 132 

biosciences. Radio-Immunoprecipitation Assay (RIPA) buffer was purchased from 133 

Sigma Aldrich, USA; and used along with protease inhibitor cocktail and phosphatase 134 

inhibitors obtained from Life Technologies, USA. Micro BCA Protein Assay kit for protein 135 

estimation was obtained from Thermo Fisher Scientific, USA. Recombinant human IL-136 

17A and human beta defensin-2 (hBD-2) standard TMB ELISA development kit were 137 

obtained from Peprotech, UK. Human CXCL8/IL-8 and human IL-6 ELISA kits were 138 
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purchased from R&D systems, UK. FITC Annexin V Apoptosis Detection Kit I was 139 

obtained from BD Biosciences, USA. Human MUC5AC ELISA kit was obtained from 140 

LifeSpan BioSciences, Inc; USA. Mouse monoclonal anti-CyaA antibody (9D4) was 141 

kindly provided by Erik L. Hewlett (University of Virginia School of Medicine, 142 

Charlottesville, USA). A mouse poly-clonal serum recognizing the S1 subunit of 143 

pertussis toxin was a kind gift of Nicole Guiso, Institut Pasteur, Paris, France and a mAb 144 

recognizing the N-terminal region of filamentous hemagglutinin was a kind gift of 145 

Camille Locht, Institut Pasteur Lille, France. Pertactin polyclonal rabbit serum was 146 

generated in SPF rabbits by immunization with recombinant purified P69 form of 147 

pertactin. 148 

Production and purification of CyaA. CyaA and the CyaA-AC- toxoid (with AC 149 

enzyme activity ablated by a GlySer dipeptide insert between residues 188 and 189) 150 

were produced in the E. coli strain XL1-Blue (Stratagene, La Jolla, CA). The proteins 151 

were purified by a combination of ion exchange chromatography on DEAE-Sepharose 152 

and hydrophobic chromatography on Phenyl-Sepharose, as described in detail 153 

elsewhere (20, 39) and were stored in 50 mM Tris pH 8.0, 8 M urea, and 2 mM CaCl2 154 

(TUC buffer) at -20 °C.  155 

Cell Culture and Air-Liquid Interface (ALI). An E6/E7 viral oncogene 156 

immortalized human bronchial epithelial cell line VA10 was cultured as described 157 

previously (40). Briefly, the cells were maintained in B/TEGM with antibiotic-antimycotic 158 

solution (0.1 mg/ml streptomycin, 100 U/ml penicillin, and 0.25 µg/ml amphotericin) at 159 

37 °C and 5% CO2. ALI cultures were set up on transwell permeable filter supports. 160 

Cells were seeded in B/TEGM medium with antibiotic-antimycotic solution. Three to four 161 
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days after seeding, medium was changed to DMEM/F12 supplemented with 2% 162 

Ultroser G and antibiotic-antimycotic solution on both apical and basolateral sides. 163 

Three to four days later the medium was removed from the apical surface. The cells 164 

were cultured at the air–liquid interface for 21 days, with media changed every second 165 

day. Mature ALI cultures (VA10 cell layers) that generated transepithelial resistance 166 

(TEER) of at least 350 Ω.cm2 were used for further studies.  167 

Bacterial strains and co-culture experiments. The Bordetella pertussis 168 

Tohama I (WT) isolate was obtained as the CIP 81.32 strain from the Collection of 169 

Institute Pasteur, Paris, France. The B. pertussis ΔcyaA mutant, carrying an in-frame 170 

deletion of the cyaA open reading frame on the chromosome (ΔcyaA) was constructed 171 

using the pSS4245 allelic exchange vector (generously provided by Dr. S. Stibitz), as 172 

described in detail elsewhere (19). B. pertussis strains were grown on BGA plates 173 

(Bordet-Gengou agar, Becton Dickinson) containing 15% defibrinated sheep blood. 174 

Colonies from a fresh plate were resuspended to OD600 = 0.2 in modified Stainer-175 

Scholte medium (supplemented with 1g/l of casamino acids and 1 g/l 2-hydroxypropyl-176 

β-cyclodextrin). The bacteria were grown overnight at 37 °C with shaking to OD600 = 1 177 

(2 x 109 colony forming units (CFU)/ml). Bacterial suspensions were diluted in 178 

DMEM/F12 with 10% FCS and no antibiotics to ~2 x 107 CFU/ml and incubated further 179 

at 37 °C for 1 hour before addition to the apical side of VA10 cell layers at a multiplicity 180 

of infection (MOI) of 50 (unless stated otherwise). It was controlled by Western blotting 181 

that there was no observable difference in the production of FHA, PTX, and pertactin 182 

between the WT B. pertussis and the CyaA-deficient B. pertussis ΔcyaA strains (Fig. 183 

S1).  184 
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Trans-epithelial electrical resistance (TEER). TEER was measured with a 185 

Millicell-ERS volt-ohm meter (Millipore, USA). For experiments with B. pertussis, the 186 

bacteria in DMEM/F12 with 10% FCS and no antibiotics were added to the apical side 187 

of VA10 cell layers. CyaA or CyaA-AC- was diluted in DMEM/F12 with 2% UltroserG 188 

and antibiotic-antimycotic solution. Background resistance of empty transwell filters was 189 

subtracted. The TEER was calculated as Ω.cm2
. 190 

In control experiments forskolin (5 µg/ml) or 100 µM di-butyryl cAMP (Santacruz 191 

Biotechnologies, USA) were dissolved in Dimethyl Sulfoxide (DMSO) according to 192 

manufacturer’s instructions. The final concentration of DMSO was kept at 0.1% v/v or 193 

less and did not affect the expression of target genes or TEER at this concentration. 194 

Adenylate cyclase assay. Adenylate cyclase (AC) activities were measured as 195 

previously described in the presence of 1µM calmodulin (41). One unit of AC activity 196 

corresponds to 1 µmol of cAMP per minute at 30 °C. For determination of CyaA 197 

penetration across the cell layer, 10 µl of the basal chamber medium was assayed at 24 198 

hours after apical B. pertussis infection.  199 

 Apoptosis assay. VA10 cell layers were treated with TUC buffer, CyaA, or 200 

CyaA-AC- as mentioned above for 24 hours at 37 °C and the cell layers were washed 201 

twice with PBS-EDTA. Cells were detached with Trypsin-EDTA for 7-10 minutes at 37 202 

°C and 10% Fetal calf serum was added. The cells were washed twice and assayed for 203 

apoptosis by the FITC Annexin V Apoptosis Detection Kit I according to manufacturer’s 204 

instructions. 205 

Immunofluorescent staining. For confocal microscopy, cells on transwell 206 

support membranes were washed twice with ice-cold PBS and fixed using cold 207 
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methanol (-20 °C) for 15 minutes, permeabilized with acetone (-20 °C) for 50 seconds 208 

and rinsed with methanol again. Sequential rehydration was carried out using 70 %, 50 209 

%, and 30 % methanol at 4 °C for 5 minutes each. After fixation, the cell layers were 210 

washed with PBS and blocked with 5 % BSA in PBS for 30 minutes at room 211 

temperature. After fixation and blocking, the membrane with cell layer was extracted 212 

from the polystyrene support using sharp forceps. The cells were probed with the 213 

primary antibody diluted in 2% BSA in PBS for 60 minutes, washed three times with 214 

PBS and stained in 2 % BSA with fluorochrome-conjugated secondary antibody along 215 

with DAPI (1 µg/ml) for 30 minutes. Finally, the cell layers were washed with PBS, 216 

rinsed once with distilled water, and mounted on a clean microscopic slide in 217 

Vectashield mounting medium (Vector laboratories). Immunofluorescent images were 218 

obtained using Olympus FV-1000 confocal microscope (Olympus Corporation, Tokyo, 219 

Japan). Tight Junction Organization Rate (TiJOR) was calculated using an ImageJ 220 

macro (42), to evaluate the damage to tight junction networks. TiJOR (entire image) 221 

was calculated by evaluating the entire representative images obtained from confocal 222 

microscopy. TiJOR for Bordetella foci was calculated by evaluating the specific areas of 223 

images where the bacteria were localized. Correspondingly, an area of untreated cell 224 

layers was arbitrarily chosen as a control to best represent the tight junction network. 225 

The starting area (60 x 60 units) and parameters (20 polygons, 4 steps) of evaluation 226 

were kept constant through all ‘Bordetella foci’ evaluations. Mucin 5AC and F-actin 227 

staining was quantified using Image J. 228 

cAMP assay. ALI-grown VA10 cell layers were treated with indicated 229 

concentrations of CyaA (0.1, 0.5, 5 µg/ml) added apically or basally for 30 minutes at 37 230 
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°C in DMEM with 10% FCS. The reaction was stopped by lysing the cells with 0.2% 231 

Tween in 50 mM HCl. cAMP levels in the lyzate were determined by a competitive 232 

ELISA as mentioned elsewhere (43, 44). cAMP concentrations were normalized to total 233 

protein content determined using a Micro BCA protein assay kit (Bio-Rad, Rockford, 234 

USA).  235 

Mucin 5AC ELISA. Intracellular mucin 5AC production was measured using the 236 

Human MUC5AC ELISA kit (LifeSpan BioSciences, Inc; USA) according to 237 

manufacturer’s instructions. Toxin treated VA10 cell layers were detached from the 238 

membrane, lysed by a sequential freeze-thaw procedure (4 times, freezing in liquid 239 

nitrogen, thawing in 37 °C water bath), centrifuged, and the supernatant was used for 240 

ELISA.  241 

Cytokines and hBD-2 measurement. IL-17A, CyaA, or both, were added in 242 

DMEM/F12 with 2% UltroserG and antibiotic-antimycotic solution to the basolateral side 243 

of VA10 cell layers. Basolateral supernatants were collected after 24 hours of 244 

incubation, and cytokine/hBD-2 levels were determined by ELISA according to 245 

manufacturer’s instruction. Concentrations were calculated from calibration curves using 246 

the MasterPlex ReaderFit software (Hitachi SolutionsAmerica, San Diego, CA, USA) by 247 

generating four parameter logistic curve-fit. 248 

RNA isolation and quantitative real time PCR. Total RNA was isolated using 249 

the NucleoSpin RNA kit (Macherey-Nagel, Germany, Cat.No. 740955) and quantified 250 

using a Nanodrop spectrophotometer (Thermo Scientific, USA). Isolated RNA was 251 

reverse transcribed into first strand cDNA using High capacity cDNA reverse 252 

transcription kit according to manufacturer’s instructions ( Life Technologies, USA). The 253 
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cDNA was quantified with Power SYBR green Universal PCR master mix (Applied 254 

Biosystems, USA) on a 7500 Real time PCR machine (Applied Biosystems, USA). 255 

Ubiquitin C (UBC) gene was used as a reference in all the quantitative real time PCR 256 

(q-RT PCR) experiments. A non-template control was included in all experiments. Some 257 

primers were designed using Primer3 or Perl primer (Table S1). All additional primers 258 

were purchased from Integrated DNA technologies (PrimeTimeTM predesigned qPCR 259 

Assays) and were used at a final concentration of 500 nM according to manufacturer’s 260 

instructions, unless stated otherwise. All primers gave a single PCR product as 261 

evaluated with the aid of a melting curve. The default cycling conditions were as 262 

followed: 1) initial denaturation; 95°C for 10 min followed by 40 cycles of: 2) 263 

denaturation step; 95°C for 15 sec and 3) annealing/extension step: 60°C for 1 min. The 264 

2(-ΔΔCT) Livak method was utilized for calculating fold difference over untreated control 265 

(45).  266 

Western blot analysis. CyaA-treated cell layers were washed three times with 267 

ice-cold PBS, incubated for 30 min on ice with complete RIPA lysis buffer. The lyzate 268 

was cleared at 12,000 rpm for 10 min at 4°C and its protein content was determined by 269 

the Bradford method (Bio-Rad, USA). The proteins were separated by SDS-PAGE (4-270 

12% gradient Bis-Tris SDS gels, Life Technologies, USA) and transferred onto a PVDF 271 

membrane (Millipore, USA) using the NuPage blotting kit (Life Technologies, USA). 272 

Upon blocking with 5% non-fat skimmed milk in 1x PBS with 0.05% Tween 20 (PBST), 273 

the membranes were probed with primary antibodies diluted 1:200-1:1000 in PBST with 274 

0.5% non-fat skimmed milk or 2% bovine serum albumin, according to recommendation 275 

of antibody manufacturers. Upon repeated washing, the detected proteins were 276 
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revealed with 1:10,000-diluted horseradish peroxidase (HRP)-linked secondary antibody 277 

(Sigma Aldrich, USA) using the Pierce ECL plus chemiluminescence substrate (Thermo 278 

Scientific, USA) and an Image Quant LAS 4000 station (GE Healthcare, USA). 279 

Statistical analysis. Normally distributed results for q-RT PCR experiments are 280 

represented as means and standard error of the means from at least three independent 281 

experiments. For comparison of differences between two groups, the unpaired 282 

Student’s t-test was used. For comparison of more than two groups, one-way ANOVA 283 

test was used. For comparison of two different categorical independent variables, two-284 

way ANOVA was used. Tukey’s test or Dunnett’s test were used for post hoc analysis. 285 

P value of less than 0.05 was considered statistically significant. All the statistical 286 

analysis was performed with the Prism 6 software (Graph Pad, USA). The axis was split 287 

in some graphs to facilitate accurate representation of the trends. 288 

  289 
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RESULTS 290 

 B. pertussis infection compromises tight junction integrity of differentiated 291 

epithelial cell layers. We first assessed the impact of B. pertussis infection on tight 292 

junction integrity of differentiated ALI-grown VA10 bronchial epithelial cell layers. As 293 

documented in Fig. 1A, upon bacterial infection of the apical side at an approximate 294 

multiplicity of infection (MOI) of 50:1, the trans-epithelial electrical resistance (TEER) of 295 

the pseudostratified VA10 cell layers dropped progressively over 24 hours. Compared 296 

to mock-treated cell layers, the TEER was significantly reduced already after 12 hours 297 

of infection with the wild-type B. pertussis strain that produced an active CyaA toxin. 298 

Infection with the CyaA-deficient ΔcyaA strain caused a delayed and slower drop of 299 

TEER of the VA10 layer, which was not significantly different from the spontaneous 300 

decrease of the TEER of mock-treated VA10 layers. At 24 hours after infection, the 301 

difference in the magnitude of TEER decrease provoked by the WT and the ΔcyaA 302 

strains was statistically significant. Therefore, we examined the tight junction integrity of 303 

VA10 layers after 24 hours of infection by confocal immunofluorescence microscopy. As 304 

shown in Fig. 1B, in untreated VA10 cell layers the staining for the zonula occludens 1 305 

protein (ZO-1) revealed a normal ZO-1 network that is characteristic for functional tight 306 

junctions. Upon infection by both B. pertussis WT and B. pertussis ΔcyaA bacteria, the 307 

apical ZO-1 network was disrupted and delocalized. As determined by calculation of the 308 

Tight Junction Organization Rate (TiJOR) for representative series of entire confocal 309 

images (Fig. 1C), an infection by CyaA-secreting WT bacteria caused a more 310 

pronounced ZO-1 network disruption than an infection by the ΔcyaA strain. The ZO-1 311 

network was particularly disrupted in the areas designated as Bordetella foci, where 312 
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bacteria were adhering and growing in clusters (Fig. 1D). Again, a stronger decrease of 313 

TiJOR was reproducibly observed in the foci of CyaA-secreting WT bacteria than 314 

beneath the foci of the ΔcyaA mutant. This indicated that action of the CyaA toxin was 315 

specifically involved in disruption of the barrier function of the infected VA10 epithelial 316 

cell layers.  317 

 CyaA-produced cAMP signaling disrupts the barrier function of VA10 318 

layers. In line with the previous observation of Eby et al. (2010) on T84 intestinal 319 

epithelial cells, CyaA elevated cAMP more efficiently when acting from the basolateral 320 

side than from the apical side of the polarized VA10 bronchial epithelial cells (Fig. 2A). 321 

Basal side exposure to increasing CyaA concentrations yielded up to ten-fold higher 322 

levels of cytosolic cAMP than what was generated by equal amounts of CyaA applied to 323 

the apical side. At the highest used CyaA concentration of 5 µg/mL, translocation of the 324 

toxin across the basolateral membrane resulted in up to 2489±1659 pmoles of 325 

cAMP/mg of cellular protein, as compared to 158±41 pmoles of cAMP/mg protein when 326 

equal CyaA amounts were applied apically (Fig. 2A). In line with that, treatment with 500 327 

ng/ml of CyaA from the basolateral side triggered a steady decrease of TEER of the 328 

polarized VA10 layer already within the first hour from addition (Fig. 2B). In contrast, 329 

while the AC enzyme activity of CyaA in the used medium was rather stable over 330 

prolonged incubation times (Fig. S2), a reduction in TEER could only be observed after 331 

more than five hours from addition of equal amounts of CyaA to the apical side.  332 

 The CyaA-triggered decrease of TEER was clearly due to CyaA-elicited cAMP 333 

signaling and was not due to toxin-induced cell death, since the viability of CyaA-treated 334 

VA10 cells was not affected over the incubation period (Fig. S3). Moreover, no TEER 335 
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decrease was observed upon treatment with equal concentrations of the catalytically 336 

inactive CyaA-AC- toxoid that is unable to convert ATP to cAMP (Fig. 2C). Indeed, the 337 

CyaA-elicited TEER decrease could be mimicked by treatment of the VA10 cells with 338 

Forskolin (FSK, 5 µg/mL), an activator of the cellular adenylyl cyclase enzyme isoforms, 339 

or by the cell-permeable cAMP analogue dibutyryl-cAMP (db-cAMP, 100 µM). 340 

Compared to the DMSO solvent control, these cAMP signaling-eliciting compounds 341 

provoked a 70 % or 50 % reduction of TEER (Fig. 2D).  342 

 It was important to test if upon infection of the apical surface of the polarized 343 

epithelial layer by B. pertussis the secreted CyaA could cross the pseudostratified cell 344 

layer to penetrate cells from their basal side. Therefore, we assessed the amounts of 345 

CyaA accumulating in the basal chamber medium of transwells with VA10 cell layers 346 

infected by B. pertussis from the apical side. As shown in Fig. 2E for two MOI, 347 

detectable amounts of adenylate cyclase enzyme activity (CyaA) were found in the 348 

basal chamber medium after 24 hours of infection of the apical surface and cAMP 349 

accumulated in the infected cells (Fig. 2F).   350 

 The CyaA-produced cAMP signaling did not significantly alter the expression of 351 

genes encoding the tight junction proteins, such as ZO-1 (TJP1), occludin (OCLN), and 352 

claudin-1 (CLDN1) (Fig. 3A). However, as revealed by immunodetection in whole cell 353 

lyzates (Fig. 3B), the action of CyaA provoked a progressive decrease of the detectable 354 

amounts of several tight junction marker proteins, such as occludin, ZO-1, junctional 355 

adhesion molecule A (JAMA), and claudin-1. In particular, the detected amounts of 356 

occludin and ZO-1 proteins were strongly decreased already within 1 hour after toxin 357 

addition to cell layers. The JAMA and claudin-1 protein amounts decreased noticeably 358 
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only after 24 hours of incubation with the toxin, whereas the amounts of claudin-4 and of 359 

the adherens junction marker E-cadherin were almost not affected (Fig. 3B). The CyaA-360 

produced cAMP signaling thus provoked a rapid and selective degradation of some but 361 

not all of the tight junction proteins. 362 

 In line with the drop of occludin and ZO-1 protein amounts, a clear reduction of 363 

ZO-1 network organization in CyaA-treated cell layers was observed by confocal 364 

microscopy (Fig. 3C). CyaA treatment resulted in reduced TiJOR, whereas CyaA-AC-
 365 

did not affect tight junction integrity (Fig. 3D), confirming that CyaA compromised the 366 

tight junction integrity through cAMP signaling.  367 

 CyaA induces mucin production and actin reorganization in polarized VA10 368 

cells. The mucus layer plays an important role in anti-microbial innate defense 369 

mechanisms, where mucin 5AC and mucin 5B are the predominant mucin species 370 

secreted by airway epithelia. As shown in Fig. 4A, CyaA-produced cAMP signaling 371 

strongly enhanced expression of the Muc5AC and Muc5B genes, as did cAMP elevation 372 

by forskolin (Fig. S4A). As detected by mucin 5AC-specific ELISA (Fig. 4B) and 373 

confocal immunofluorescence imaging (Fig. 4C and 4D), the CyaA-treated VA10 cell 374 

layers contained increased amounts of intracellularly accumulated mucin 5AC. 375 

Moreover, in line with previous observations made on neuroblastoma, epithelial or 376 

monocytic cells exposed to CyaA (46-48), the CyaA-elicited cAMP signaling provoked 377 

reorganization of the actin cytoskeleton in polarized VA10 cells (Fig. 5A and 5B). 378 

 cAMP signaling of CyaA differentially affects production of antimicrobial 379 

peptides and cytokines. B. pertussis infection of cultured non-polarized bronchial 380 

epithelial cells was previously shown to result in a pro-inflammatory alteration of 381 
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expression profiles of NFκB-regulated genes, but the role of CyaA in these alterations 382 

was not analyzed (49). Therefore, we used qPCR to investigate the impact of CyaA 383 

toxin action on expression of genes encoding cytokines and antimicrobial 384 

peptides/proteins that are known to play an important role in innate immune functions of 385 

the epithelial layers (Fig. 6). In the examined set of genes encoding antimicrobial 386 

peptides/proteins (Fig. 6A to 6F), such as cathelicidin (CAMP), human beta defensin-1 387 

(hBD-1), human beta defensin-2 (hBD-2), lysozyme (LZY), secretory leukocyte 388 

peptidase inhibitor (SLPI) and lactoferrin (LTF), a significant downregulation of 389 

expression of the hBD2-encoding gene was observed already within 1 hour after CyaA 390 

addition to the basolateral side of the VA10 layers (Fig. 6C). In contrast, the CyaA-391 

induced changes of the mRNA levels for CAMP, hBD1, LZY, SLPI and LTF proteins 392 

was not significant (Fig. 6A, B, D, E, and F). 393 

 CyaA action resulted in a statistically significant suppression of expression of 394 

genes for the proinflammatory cytokines tumor necrosis factor-alpha (TNF-α), 395 

interleukin-1 beta (IL-1β), and interleukin 8 (IL-8). The effect was noticeable within 1 396 

hour from CyaA addition and it was most pronounced after 24 hours of toxin treatment 397 

(Fig. 6G, 6I and 6K). On the contrary, within 1 hour from toxin addition, the action of 398 

CyaA provoked some enhancement of expression of genes coding for interleukin-1 399 

alpha (IL-1α), interleukin-6 (IL-6), and interleukin-10 (IL-10). However, the expression of 400 

these genes returned to basal levels, or below them, within 24 hours from toxin addition 401 

(Fig. 6H, 6J and 6L). All these effects reflected the cAMP signaling capacity of CyaA 402 

and could be elicited by drugs elevating cAMP levels in cells, while the CyaA-AC- toxoid 403 

had no effect (Figure S4B, S4C, S4D, and S6). 404 
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 CyaA modulates IL-6, IL-8, and hBD-2 secretion in VA10 cell layers. To verify 405 

that the altered gene expression levels translated into altered levels of secreted 406 

cytokines and antimicrobial peptides, the cells were treated with 500 ng/mL of CyaA in 407 

the presence or absence of IL-17A. This cytokine was shown to activate the innate 408 

immune functions of epithelial cells (50), such as the expression of the TNF gene (TNF-409 

α, Fig. S5A), or of the DEFB4A gene (hBD-2, Fig. S5B). Indeed, CyaA action could 410 

eliminate this enhancing effect of IL-17A treatment at least in part, whereas CyaA-AC- 411 

could not (Fig. S5). 412 

 To corroborate the impact of CyaA action on production of the canonical 413 

epithelial cytokines IL-6 and IL-8 (51), and of the antimicrobial peptide hBD-2 (50), the 414 

VA10 cell layers were treated with 500 ng/mL of CyaA in the presence or absence of 415 

stimulation with 100 ng/mL of recombinant IL-17A. The levels of IL-6, IL-8, and hBD-2 416 

secreted into the basolateral supernatant of the cultures after 24 hours of treatment 417 

were then determined by ELISA. As shown in Fig. 7, CyaA treatment triggered an 418 

enhanced secretion of IL-6 even in the absence of any stimulation and the effect was 419 

potentiated in the presence of IL-17A (Fig. 7A). In contrast, CyaA action alone had no 420 

effect on the amount of secreted IL-8, while this was enhanced upon stimulation with IL-421 

17A and CyaA action interfered only marginally with the enhancing effect of IL-17A 422 

stimulation (Fig. 7B). Similarly, despite of a reduced expression of the defensin gene (cf. 423 

Fig. 6C), CyaA activity did not significantly reduce the basal amount of hBD-2 secreted 424 

from cells within 24 hours of toxin action. However, in the presence of CyaA the 425 

enhancing effect of IL-17A on secretion of hBD-2 was suppressed, showing that CyaA 426 

activity counteracts the IL-17A-induced hBD-2 production by epithelial cells (Fig. 7C).  427 
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DISCUSSION 428 

We used here the model of ALI-grown differentiated human bronchial epithelial 429 

VA10 cells to assess the impact of B. pertussis infection on airway epithelial layers, 430 

placing a particular emphasis on the contribution and role of CyaA in compromising of 431 

the epithelial barrier and innate immunity functions. 432 

 B. pertussis is an obligatory human pathogen with no known environmental 433 

reservoir. The mouse model of respiratory infection replicates certain aspects of human 434 

pertussis pathophysiology, but does not reproduce the full spectrum of the disease 435 

symptoms. These symptoms can be rather truly reproduced in the recently developed 436 

baboon infection model, the use of which is limited by high cost and low numbers of 437 

animals available per test group (52). The need for detailed understanding of the 438 

infection thus calls for the development of alternative in vitro models for controlled 439 

studies on molecular aspects of B. pertussis interaction with the airway epithelium.  440 

 Mammalian epithelial cells grown as submerged monolayers may lack important 441 

phenotypic and physiological features of the polarized differentiated human airway 442 

epithelial tissue. Indeed, highly differentiated primary human airway epithelial cell layers 443 

and cultured HBE-2 bronchial epithelial cells were recently be used for infection with B. 444 

pertussis to study the role of fimbriae in bacterial adherence to ciliated cells (53). We 445 

used here VA10 epithelial cells, polarized and differentiated at an air-liquid interface 446 

(ALI), which form pseudostratified epithelial layers with apicobasal polarity, functional 447 

tight junctions and TEER, the hallmarks of epithelial barrier function (40, 54). A previous 448 

study from our group showed that infection by the opportunistic pathogen Pseudomonas 449 

aeruginosa provokes complete loss of TEER, where the barrier function of ALI-grown 450 
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VA10 layers is obliterated by a coordinated action of numerous secreted cytotoxic 451 

factors (37). In contrast, B. pertussis infection produced a relatively modest reduction in 452 

TEER of the epithelial layer and this process involved the action of CyaA. Our results on 453 

polarized VA10 cells confirm the observations of Eby et al. (2010) that polarized T84 454 

cell monolayers were rather resistant to cAMP intoxication by CyaA applied to the apical 455 

side. Indeed, CyaA penetrated polarized cells more efficiently across the basolateral 456 

membrane (cf. Fig. 2A). Importantly, we have observed here that CyaA secreted by B. 457 

pertussis attached to the apical side can cross the pseudostratified epithelial layer and 458 

act on cells from their basal side. This indicates that in the course of natural Bordetellae 459 

infections the CyaA toxin action compromises the barrier function of airway epithelia. 460 

 The cell polarity effect of CyaA action on epithelial cell layers is intriguing and 461 

deserves further investigation. One of its plausible explanations could be the specific 462 

localization of phosphodiesterase 4D to the cytosolic side of the apical membrane. 463 

Indeed, phosphodiesterase 4 is regulated by the cAMP-activated protein kinase A 464 

(PKA) and forms a cAMP diffusion barrier on the apical side of airway epithelia (55). 465 

Alternatively, an unfavorable composition of the apical membrane might present a 466 

particular obstacle for efficient membrane insertion and translocation of CyaA into 467 

cytosol of epithelial cells. Delivery of the AC enzyme of CyaA into cytosol of cells was 468 

previously shown to depend on the presence of cholesterol-rich lipid microdomains 469 

through which the AC domain of membrane-inserted CyaA can accomplish the 470 

translocation across the lipid bilayer into the cytosolic compartment to catalyze 471 

formation of cAMP (15). The apparently higher efficacy of CyaA translocation through 472 

the basal membrane might then potentially be due to its lipid composition and higher 473 
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cholesterol or glycolipid content. On airway epithelial cells the expression of the 474 

proteinaceous receptor for CyaA (CD11b/CD18) has not been observed (56, 57) and in 475 

the absence of CD11b/CD18 expression the toxin might be binding to surface 476 

expressed glycosylated structures, such as the gangliosides clustered in the membrane 477 

microdomains (43, 58-60). This hypothesis would go well with the observed apicobasal 478 

polarity in the distribution of receptors on airway epithelia (61, 62). 479 

 We show here that CyaA secreted by B. pertussis bacteria adhering to the apical 480 

surface can cross the epithelial layer as the functionality of tight junctions gets 481 

compromised. It remains to be established if this is due to the sole action of the CyaA 482 

toxin. B. pertussis produces a number of other virulence factors that might affect tight 483 

junction integrity of epithelial layers. It is conceivable that pertussis toxin, tracheal 484 

cytotoxin, type III secretion effectors, or dermonecrotic toxin action may cooperate with 485 

CyaA in compromising tight junction functions. Moreover, in the context of bacterial 486 

infection, the CyaA toxin or the pertussis toxin delivered through the apical membrane 487 

by outer membrane vesicles (25, 63) might also be involved in attenuation of tight 488 

junction integrity. Such attenuation of tight junctions would open the paracellular route 489 

for the free secreted CyaA to access the basal side of the cell layer; intoxicate epithelial 490 

cells effectively and thus generate a positive feedback loop of sustained elevation of 491 

cAMP and disruption of tight junction integrity.  492 

We show here that CyaA-provoked loss of TEER is accompanied by decrease of 493 

detectable amounts of several tight junction proteins, whereas their mRNA expression 494 

levels are not significantly affected. This indicates that CyaA-provoked degradation of 495 

those proteins. Similar reduction in levels of ZO-1 and occludin has also been observed 496 
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upon treatment of Caco-2 cell layers with Staphylococcus aureus α-toxin that 497 

permeabilizes cellular membrane and enables influx of extracellular calcium ions into 498 

cells (64). Indeed, elevation of intracellular Ca2+ concentration due to ionomycin was 499 

shown to cause drop in TEER (65-67). Translocation of the AC domain polypeptide 500 

across the cell membrane is itself accompanied by calcium influx and in certain cell 501 

types the CyaA-generated cAMP can open the L-type calcium channels (68, 69). CyaA 502 

oligomerizes into pores that mediate efflux of potassium ions, as does the α-toxin. On 503 

the other hand, almost no impact on TEER and tight junction protein localization was 504 

observed in VA10 cells upon treatment with the CyaA-AC-toxoid (cf. Fig. 3), while the 505 

toxoid still causes a spike of calcium influx into cells and triggers potassium efflux from 506 

cells (68, 70, 71). Furthermore, the effects of CyaA action could largely be mimicked by 507 

cAMP elevation in cells exposed to forskolin or to db-cAMP, a cell-permeable cAMP 508 

analogue. It can thus be concluded that deregulated signaling of CyaA-produced cAMP 509 

was the dominant mechanism by which CyaA provoked loss of tight junction integrity of 510 

VA10 layers. However, this was not complete when the cells were treated with forskolin 511 

or db-cAMP. This indicates that also ATP depletion triggered by CyaA may have been 512 

involved in the disruption of tight junction integrity upon prolonged exposure of cells to 513 

CyaA. Indeed, Eby et al. (2012) have observed that 500 ng/mL of CyaA could cause 514 

ATP depletion in epithelial cells and a loss of tight junction integrity following ATP 515 

depletion was previously observed (72, 73).  516 

A further element that might be contributing to loss of TEER and barrier function 517 

of the CyaA-treated epithelial layer likely was the cAMP-induced reorganization of actin 518 

and cell shape change. CyaA activity was previously shown to promote cell shape 519 
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changes in rat alveolar epithelial cells (47). Moreover, CyaA action through transient 520 

inactivation of RhoA (48), was shown to cause massive actin cytoskeleton 521 

rearrangements and membrane ruffling in macrophages, where Rho activity was shown 522 

to be important for the maintenance of the barrier function of epithelia (74). 523 

In this respect, it is noteworthy that elevation of cellular cAMP can have 524 

contrasting effects on tight junction function, depending on the cell/tissue type. For 525 

example, cAMP at certain levels promotes localization of occludin and ZO-1 to tight 526 

junctions in Caco-2 cells (75). Further, CyaA toxin action on innate immune functions of 527 

the polarized epithelium comprised the transcriptional upregulation of mucin genes, 528 

which has also been seen upon infection with B. pertussis (49). Our results show a clear 529 

cAMP-mediated increase of amounts of the goblet cell marker mucin 5AC in VA10 cell 530 

layers. A cAMP-mediated increase in mucin secretion has been reported previously (76) 531 

and it is plausible to speculate that CyaA action could promote differentiation of p63 532 

positive basal cells (phenotype of VA10 cells) into mucin-producing goblet-like cells, as 533 

seen upon IL-13 treatment (54). Enhanced mucin production might then be supporting 534 

B. pertussis infection and transmission, as the bacteria exploit mucin as a binding 535 

substrate (49, 77) and are transmitted in mucus containing aerosol droplets (78). 536 

Another effect of CyaA action on the VA10 cell layers consists of modulation of 537 

transcription of genes encoding important cytokines and antimicrobial peptides. CyaA 538 

treatment resulted in pronounced downregulation of the DEFB4A gene coding for hBD-2 539 

already at 1 hour post CyaA treatment and the secretion of hBD-2 was reduced to basal 540 

level in the presence of CyaA even upon concomitant stimulation by IL-17A (cf. Fig. 541 

7C). Since it has been shown that B. pertussis is susceptible to bacteriostatic action of 542 
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hBD-2 (79), the suppression of hBD-2 production by CyaA may represent an important 543 

contribution to overcoming of innate immune mechanisms of the epithelia by B. 544 

pertussis.  545 

The other effects of CyaA action comprised enhanced secretion of IL-6 from 546 

epithelial cells, as observed previously (80) and decrease of IL-17A-induced secretion 547 

of IL-8. The effects on transcription of genes encoding the TNF-α, IL-10, IL-1β, or IL-1α 548 

cytokines were statistically significant but their biological relevance remains to be 549 

corroborated. Many of the above-mentioned genes are modulated by the nuclear factor 550 

kappa-B (NF-kB) (81). For example, the hBD-2 gene has three NF-kB binding sites in its 551 

promoter region (82) and NF-kB activation mediates the initial transcriptional response 552 

in epithelial cells infected by B. pertussis (49). On the other hand, cAMP signaling can 553 

selectively modulate NF-kB activity and can yield both pro-inflammatory and anti-554 

inflammatory responses that are highly tissue/gene-dependent (83). Our results show 555 

that cAMP signaling can upregulate expression of the genes encoding IL-6 and mucin 556 

5AC, known to be positively regulated by NF-kB (84, 85); whereas it downregulates the 557 

transcription of genes encoding hBD-2 and IL-1β, which are also controlled by NF-kB 558 

(82, 86). This complexity of regulation is due to modulatory effects of the cAMP/PKA-559 

activated signaling pathways on the transcriptional co-activators that are directly 560 

controlled by the cAMP response element binding protein (CREB) (87). It has been 561 

shown that PKA phosphorylated CREB can indirectly inhibit NF-kB by competing for its 562 

co-activator, the CREB-binding protein (CBP) (88). Expression of genes encoding 563 

mucin 5AC and IL-6 has been described to be dually regulated by CREB and NF-kB 564 
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(89, 90). Hence, the strength and duration of the signal and tissue/gene specificity will 565 

decide if the expression of a certain gene is upregulated or downregulated.  566 

IL-17A is an important pro-inflammatory cytokine secreted by activated T cells 567 

(Th17). It signals through the IL-17 receptor of epithelial cells and stimulates production 568 

of important cytokines, such as IL-6 and IL-8 (51), or of antimicrobial peptides, like hBD-569 

2 (50). Our results suggest that although IL-17 would be produced by the immune cells 570 

arriving to the site of B. pertussis infection, the action of CyaA may be skewing the 571 

response of epithelial cells to such IL-17 stimulation. It would potentiate IL-17A-induced 572 

IL-6 secretion (cf. Fig. 7A) but suppress the IL-17A-induced hBD-2 production. 573 

Moreover, CyaA action caused only a modest inhibition of the IL-17A-induced 574 

production of the neutrophil attracting chemokine IL-8. This must not necessarily be a 575 

problem for the infecting bacterium, as cAMP intoxication by the secreted CyaA 576 

paralyzes the bactericidal functions of neutrophils very efficiently (18).  577 

In conclusion, we present here a model of B. pertussis infection of polarized 578 

human bronchial epithelial cells forming pseudostratified layers, where specific effects 579 

on the function of bronchial epithelium could be attributed to CyaA toxin activity. This 580 

will facilitate deciphering of the molecular mechanisms of action of B. pertussis 581 

virulence factors on airway epithelia. 582 

  583 
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FIGURE LEGENDS 843 

FIG 1: B. pertussis infection compromises the tight junction integrity of VA10 844 

bronchial epithelial cell layers. (A) The apical surfaces of mature ALI-grown VA10 cell 845 

layers were infected (MOI = 50) with B. pertussis (WT) or its CyaA deficient mutant 846 

(ΔcyaA). Transepithelial electrical resistance was measured across cell layers at 847 

different time intervals. Data represents mean ± SEM (N = 5). ** p<0.01, **** p<0.0001 848 

compared to untreated; # p<0.05 compared to WT (two-way ANOVA). (B) Confocal 849 

images of VA10 cell layers treated for 24 hours as in (A), washed, fixed, and stained for 850 

ZO-1 (green), Bordetella (red) and nuclei (blue). N = 4, scale bar 10 µm. Reconstructed 851 

Z stack projections are shown below the main image. (C) Tight Junction Organization 852 

Rate (TiJOR) was calculated for representative entire images from four independent 853 

experiments using ImageJ; bars represent mean ± SEM, N = 4; * p<0.05 according to 854 

one-way ANOVA. (D) Areas, where the growth of adhering bacteria was localized, were 855 

manually selected and the TiJOR was calculated for images from four independent 856 

experiments. An area of untreated cell layers was arbitrarily chosen as a control and 857 

analyzed using the same parameters. N = 4, bars represent mean ± SEM; ** p<0.01, *** 858 

p<0.001 according to one-way ANOVA compared to untreated. Untreated cell layers 859 

were used as control.  860 

FIG 2: CyaA-mediated cAMP intoxication disrupts tight junction integrity. (A) VA10 861 

cell layers were treated with CyaA toxin in DMEM plus 10% FCS from the apical or 862 

basolateral side for 30 minutes. Cellular cAMP levels were determined and normalized 863 

to cellular protein concentration. N = 3. (B) CyaA (500 ng/ml) or TUC buffer in 864 

DMEM/F12 was added to the apical or basolateral side of VA10 cell layers and TEER 865 
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was measured at several time intervals of incubation at 37 °C and expressed as relative 866 

TEER (%), taking the starting TEER as 100%. N ≥ 3; * p<0.05, **<0.01, ****p<0.0001 867 

compared to TUC (two-way ANOVA). Cell layers were treated with CyaA or the 868 

catalytically inactive CyaA-AC- toxoid (C); 5 µg/ml of forskolin (FSK) or 100 µM 869 

dibutyryl-cAMP (db-cAMP) (D); from the basolateral side and TEER was measured at 870 

time 0 and 24 hours. The shown values represent mean ± SEM, N = 3. * p<0.05, ** 871 

p<0.01 compared to control (Student’s t-test). (E) VA10 cell layers were apically infected 872 

with B. pertussis WT at different MOIs and after 24 hours the amount of adenylate 873 

cyclase toxin that reached the basal chamber medium was determined. Bars represent 874 

mean ± SEM, N = 4, ** p<0.01 compared to MOI = 0 (one-way ANOVA). The basal 875 

medium was free of any culturable bacteria, as verified by plating 100 µl of the medium 876 

on BGA plates. (F) VA10 cell layers were infected as in (E) and the cellular cAMP levels 877 

were determined. Bars represent mean ± SEM, N = 4, * p<0.05, ** p<0.01 compared 878 

MOI = 0 (one-way ANOVA).     879 

FIG 3: CyaA-produced cAMP signaling causes disruption of tight junction 880 

complexes. (A) VA10 cell layers were treated from the basolateral side with 500 ng/ml 881 

of CyaA for 1, 6, and 24 hours at 37 °C and the levels of mRNA for tight junction 882 

proteins were assayed by q-RT PCR; UBC was used as a reference gene. Bars 883 

represent the mean ± SEM, N = 3. (B) Cell layers were treated as described in (A), 884 

lysed, and probed by immunoblotting with antibodies recognizing the tight junction 885 

complex proteins. GAPDH was used as a loading control and the blots are 886 

representative of two independent experiments. (C) Cell layers were treated 500 ng/ml 887 

of CyaA, CyaA-AC-, or TUC buffer from the basolateral side for 24 hours at 37 °C. 888 
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Confocal images of fixed cell layers were stained for the tight junction protein ZO-1 889 

(green). The scale bar is 100 µm. Tight Junction Organizational Network rate (TiJOR) 890 

for the entire image was calculated for ZO-1 (B). Bars represent mean ± SEM of three 891 

experiments; * p<0.05 compared to TUC (one-way ANOVA). 892 

Fig 4: CyaA enhances mucin production in epithelial cell layers. (A) 500 ng/ml 893 

CyaA, 1000 ng/ml CyaA-AC-, or TUC buffer in DMEM/F12 was added to the basolateral 894 

side of VA10 cell layers for 3 or 24 hours at 37 °C. Relative expression of genes 895 

encoding mucin 5AC and mucin 5B were analyzed by q-RT PCR. Bars represent mean 896 

± SEM of three experiments. *** p<0.001, **** p<0.0001 compared to TUC (one-way 897 

ANOVA). (B) Cell layers were treated with 500 ng/ml of CyaA, CyaA-AC-, or TUC buffer 898 

for 24 hours as mentioned in (A) and the amounts of intracellularly accumulated mucin 899 

5AC were measured by ELISA. Bars represent mean ± SEM of three experiments. * 900 

p<0.05 compared to TUC (students t-test). (C) Cell layers were treated as in (B), fixed, 901 

stained for the goblet cell marker mucin 5AC (red) and imaged by confocal microscopy. 902 

Scale bar is 100 µm. (D) Mean fluorescence intensity (± SEM) of mucin 5AC staining; N 903 

= 3, ** p<0.01 compared to TUC (one-way ANOVA).    904 

FIG 5: CyaA disrupts actin cytoskeleton in epithelial cell layers. (A) Cell layers 905 

were treated as in Fig. 4C, fixed with paraformaldehyde and stained for F-actin with 906 

Alexa Fluor 488-phalloidin (green). Scale bar is 100 µm. (B) Mean fluorescence 907 

intensity (± SEM) of F-actin staining; N = 3, p<0.05 compared to TUC (one-way 908 

ANOVA). 909 

FIG 6: CyaA modulates expression of genes encoding antimicrobial peptides and 910 

cytokines/chemokines. VA10 cell layers were treated from the basolateral side with 911 
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CyaA (500 ng/ml) in DMEM/F12 for 1, 6, and 24 hours; or TUC buffer. (A-L) Relative 912 

expression of genes encoding the antimicrobial peptides/proteins (A) Cathelicidin, (B) 913 

human beta defensin 1, (C) human beta defensin 2, (D) lysozyme, (E) secretory 914 

leukocyte peptidase inhibitor, (F) lactoferrin; and for the cytokines/chemokines (G) 915 

tumor necrosis factor-α, (H) interleukin-1α, (I) interleukin-1β, (J) interleukin-6, (K) 916 

interleukin-8, and (L) interleukin-10, were analyzed by q-RT PCR. UBC was used as a 917 

reference gene. Bars represent mean ± SEM, N = 3; ns indicates non-significant; *, p< 918 

0.05; **, p<0.01; ***, p<0.001, ****, p<0.0001 compared to TUC control (one-way 919 

ANOVA). 920 

FIG 7: CyaA enhances secretion of IL-6, while inhibiting secretion of IL-8 and 921 

hBD-2 upon stiµlation by IL-17A. VA10 cell layers were treated from the basolateral 922 

side with IL-17A (100ng/ml), CyaA (500 ng/ml), or both for 24 hours. IL-6 (A), IL-8 (B), 923 

and hBD-2(C) secretion levels were assayed from the basolateral supernatant by 924 

ELISA. Bars represent mean ± SEM of three replicates from a single experiment 925 

representative of 3 independent experiments. 926 

 927 
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