
 

 

 

 
 

 

 

 

 
This is not the published version of the article / Þetta er ekki útgefna útgáfa greinarinnar 

 
 

Author(s)/Höf.: L. J. Monger; G. R. Runarsdottir; S. G. Suman 

 
 

Title/Titill: Directed coordination study of [Pd(en)(H2O)2]2+ with hetero-tripeptides 
containing C-terminus methyl esters employing NMR spectroscopy 

 
 

Year/Útgáfuár: 2020 

 
 

Version/Útgáfa: Post- print / Lokaútgáfa höfundar 

 
 

Please cite the original version: 

Vinsamlega vísið til útgefnu greinarinnar: 

 
Monger, L.J., Runarsdottir, G.R. & Suman, S.G. Directed coordination 
study of [Pd(en)(H2O)2]2+ with hetero-tripeptides containing C-
terminus methyl esters employing NMR spectroscopy. J Biol Inorg 
Chem 25, 811–825 (2020). https://doi.org/10.1007/s00775-020-01804-
0 

 
Rights/Réttur: © 2020 Society for Biological Inorganic Chemistry (SBIC) 

 

 



 1 

Directed coordination study of [Pd(en)(H2O)2]2+ 

with hetero-tripeptides containing C-terminus 

methyl esters employing NMR spectroscopy 

Lindsey J. Monger, Gerdur R. Runarsdottir, and Sigridur G. Suman   

Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland 

Keywords: GSH, Pd(II), NMR, potentiometry, tripeptide, AspAlaGly, β-AspAlaGly, 
TrpAlaGly 

Abbreviations: 

Ala – alanine 
Asp – aspartic acid 
Cys – cysteine 
En – ethylene diamine 
Fmoc – fluorenylmethoxycarbonyl 
Glu – glutamic acid  
Gly – glycine 
GSH – glutathione 
GSMe – S-methylated glutathione 
Trp – tryptophan 
Z – Benzyl carbamate 
 

Electronic Supplementary Material Figure SI 1 shows a summary of pH titration data. 

Figures SI 2 to 5 of pH dependent NMR spectra of 1-4. Figures SI 6A-9C of spectroscopic 

characterization data for 1-4, and SI Figures 10-19 of MS data for complexes. 

Corresponding Author 

Sigridur G. Suman; sgsuman@hi.is 



 2 

Abstract 

Alkylation of the C-terminus acids in small peptides allows direction to amine and amide 

coordination while changing the peptide composition to form tetradentate κ4[n,5,5], where n 

= 5, 6, 7, or 8 membered ring coordination geometries, can be achieved.  The alkylated 

tripeptide ligands, TrpAlaGly(OMe),  β-Asp(OtBu)AlaGly(OMe), Asp(OtBu)AlaGly(OMe), 

and the fully methylated GSH, γ-Glu(OMe)Cys(SMe)Gly(OMe), were synthesized and their 

coordination properties to [Pd(en)(H2O)2]2+ were studied. pH-dependent coordination was 

analyzed by NMR spectroscopy and the coordination to the alkylated tripeptides at selected 

pH values inferred from their NMR spectra. If selective coordination of amine/amide donors 

results in metal complexation, allowing for flexible and adjustable ligand frameworks, then 

this strategy could potentially be extended to other metal ions and peptide system. 

Introduction 

The complexation of biological peptides with various transition metal ions has been 

studied for many decades, specifically in the context of metallodrugs and metal toxicity [1-4]. 

In general, when complexed, peptides form stable 5-membered ring chelates through the 

amino, amide backbone or the carboxylate moiety [5]. Some amino acids have side chain 

groups that are capable of additional coordination, allowing for a variety of geometries [6-

15]. 

The formation of metal amide bonds requires the presence of a primary ligating 

group, and for simple oligopeptides, once amine coordination takes place the amide 

coordination is facilitated [14-16,5]. Pd(II) ions have a high affinity for nitrogen and soft 

sulfur donor atoms found in various organic ligands [17-22]. One characteristic feature found 

in the complexation of palladium(II) and small peptides is the ability of the metal ion to 

induce deprotonation of the amides [23,24]. In the absence of coordinating anions,  like 

chloride, the chelation of amides to the palladium ion is complete at pH values below 2, 

forming planar complexes with remarkable thermodynamic stability [23]. For tripeptides, 
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typical chelation takes place via amine, amide, and carboxylate donor groups to form κ4(NH2, 

N, N, O) tetradentate complexes [10]. 

Glutathione (GSH) is an omnipresent biologically active tripeptide and serves many 

functions in the body [25]. One distinct function of the GSH tripeptide is metal ion transport, 

this functionality is due to the fact that GSH has eight different possible binding sites for 

metals and its conformational flexibility [26-29]. Soft metal ions like palladium are known to 

coordinate through the thiolate, a soft base, whereas transition metal ions can also coordinate 

through the amide functions [25,30,31]. In aqueous solutions this coordination is pH 

dependent since it requires deprotonation of the amide donors. 

An unusual characteristic of glutathione is that it is an iso-peptide, where the glutamic 

acid residue forms a γ-peptide bond through its side chain, which increases the distance from 

the N-terminus amine to the adjacent amide and thiol moieties. This allows both the N-

terminus amine and the thiol to act as an anchoring site for the metal ion [14,32]. Glutathione 

is well studied in its native state [33-37,25] as well as the glutathione thioether derivative 

[38-40]. When GSH is reacted with K4PdCl2 in aqueous solution, [Pd(GSH)Cl].3H2O is 

formed which then dimerizes to form a chloride bridged species of the M2X2L2 type, where 

Pd(II) is coordinated through the thiol sulfur and amide group on the glycyl residue at a pH of 

7-10, forming a five membered ring [26]. When reacted with Ni(II), glutathione yielded a 

Ni(HL)·2H2O complex, which was reported to have octahedral geometry with the water 

molecules coordinated, one axial and one equatorial, and glutathione forming κ4[5,7,8]  

tetradentate coordination [41]. 

The iso-peptide structure of GSH, and its function as a metal ion transport brings up 

an interesting research question; Whether it is possible, through pH manipulations and 

protection of the carboxylate and thiol moieties, to direct chelation of modified GSH. If 
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selective coordination to amine/amide donors results in metal coordination of a κ4[7,5,5] 

tetradentate coordination; and if this strategy could potentially be extended to other metal 

ions and peptide systems. The thiol/thioether side chain of GSH imparts challenges for future 

bioinspired applications and therefore this work was extended by exchanging the cysteinyl 

residue for alanyl residue, and the glutamyl residue was exchanged for aspartic acid which 

has carboxylic acid side chain that could be coupled to form either the iso- or C-terminus 

coupled peptide. In this way, the formation of either κ4[6,5,5] or κ4[5,5,5] membered ring 

tetradentate coordination geometries can be achieved, allowing for a flexible, adjustable 

ligand framework for potential bioinspired catalyst design [42]. A similar approach has been 

employed featuring histidine on the C-terminus of di- and tri- peptides with κ4[5,5,6] type 

coordination [8,43]. 

To this effect, the novel alkylated tripeptides TrpAlaGly(OMe), 1,  β-

Asp(OtBu)AlaGly(OMe), 2, Asp(OtBu)AlaGly(OMe), 3, and the fully methylated GSH, γ-

Glu(OMe)Cys(SMe)Gly(OMe), 4 were synthesized (Figure 1). Using the aa-AlaGly(OMe) 

framework allowed distinctive NMR resonances for the alanyl and glycyl residues to be 

identified and interpreted, while avoiding hydrophobicity introduced by larger side chains. 

Alkylation of the C-terminus both increases non-aqueous solubility and directs coordination 

to the N-donors. Additionally, a weaker ester donor group potentially serves as a non-rigid 

donor offering an open coordination site at the metal center for application such as 

bioinspired catalysis [42]. Tryptophan was selected due to its five possible coordination sites; 

in addition to the primary amino and carbonyl functional groups of the acid, indole 

complexation has been reported through the secondary amine, [44] the C2 carbon, [45,46] 

and the C3 carbon [47]. The amino acids β-Asp(OtBu) and Asp(OtBu) both have five 

different coordination sites possible, the amine, two amide groups,  and the two esters. The 

iso-peptide, 2, and the C-terminus coupled 3 allow for the possibility of a direct comparison 
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of chemical reactivities based on the five versus six membered chelates in future studies. 

TrpAlaGly(OMe), 1,  was chosen as a sulfur free alternative for coordination to form chelates 

larger than six. Currently, it was of interest to see the coordination behavior of these ligands 

and confirm the different chelate ring sizes could be verified where the ring size is increased 

at the N-terminus rather than at the C-terminus [8,43,41].  

The coordination properties of tripeptides 1-4 to [Pd(en)(H2O)2]2+ were studied in 

water.  [Pd(en)(H2O)2]2+ was selected to prevent dimerization of the metal ion [48], and study 

the initial formation of the Pd complex. pH-dependent coordination was analyzed by NMR 

spectroscopy and the coordination to the alkylated tripeptides at selected pH values inferred 

from their NMR spectra and reported literature. The molecular ions of the complexes formed 

were identified in mass spectra.  

 
Materials and methods 

Instrumentation 

The NMR spectra were measured at ambient temperature. 1H, COSY and 13C nuclear 

magnetic resonance spectra were recorded on a Bruker Avance 400 MHZ spectrometer at 400 

and 101 MHz, respectively. Solvents used were D2O, DCl, and NaOD. Infrared spectra were 

recorded on a Nicolet Avatar 360 FT-IR (E.S.P.) spectrophotometer using KBr pellets. Mass 

spectra were recorded on a micrOTOF-Q spectrometer, equipped with E-spray atmospheric 

pressure ionization chamber (ESI). All pH measurements were performed at 298 K with 

Mettler Toledo pH and conductivity meter using certified buffer solutions of pH 4.01, 7.00, 

and 10.01. 

Solvents and reagents used were purchased from Sigma-Aldrich and used without 

further purification unless otherwise stated. Alanylglycine, Fmoc-Asp(OtBu)-OH, Fmoc-
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Asp(OH)-OtBu, Z-Trp, and EDC-Cl use in peptide coupling were purchased from Bachem. 

Solvents used were distilled under nitrogen and dried using standard methods [49]. Thiol 

methylation of GSH was performed with modification of a published procedure [50]. 

Alanylglycine esterification was completed by reacting it with trimethylchlorosilane [51] and 

4 was isolated as the hydrochloride salt. [Pd(en)Cl2] [52] and [Pd(en)(H2O)2](NO3)2 [53,54] 

were prepared according to published procedures. 

pH Titrations 

The pH potentiometric titrations were carried out in 15 ml samples using four different metal 

to ligand ratios (0:1, 1:1, 2:1, 4:1). During titration argon was bubbled through the samples to 

prevent oxygen and carbon dioxide and to prevent aggregation of the samples. The 

concentration of the ligand was fixed at ~3.2x10-3 M and the metal concentration adjusted to 

fit desired ratios. The ionic strength of the samples was adjusted with KCl to 0.2 M in a 60-

fold excess to suppress complex formation due to competitive binding of the Cl—. The 

titrations were carried out at constant temperature (298 K). The use of acid to lower the pH 

before titration was omitted because the t-butyl ester is subject to acid catalyzed hydrolysis. 

The analytes were titrated with standardized potassium hydroxide and 30 to 40 data points 

were obtained for each titration curve. The apparent equilibrium constants were evaluated 

from the titration data (Table 1) as defined by Equations 1 and 2, using the evaluation 

function on the Excel sheet CurTiPot, developed by Prof. Gutz,[55] where M, L and H 

represent [Pd(en)(H2O)2]2+ ion, the ligand and protons, respectively:  

𝑝𝑀 + 𝑞𝐿 = 𝑟𝐻	 ⇋ 𝑀𝑝𝐿𝑞𝐻𝑟 

𝛽!"# =	
𝑀!𝐿"𝐻#

[𝑀]"[𝐿]"[𝐻]# 

NMR experimental procedure 
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The experiments were performed in D2O. A stock solution of the ligand (0.020M) and a stock 

solution of the Pd(II) (0.040M) complex were mixed in a 1:1 ratio, for a final concentration 

of 5.0 x 10-3. The ionic concentration was increased to 0.100M with KCl and the pH adjusted 

with NaOD. Stock solutions were prepared fresh daily. The reaction mixture was monitored 

over a 48 h period using NMR spectroscopy. The results were analyzed using 1H and COSY 

NMR techniques. 

General procedure for compound characterization by MS 

The [Pd(en)(H2O)2]2+ complex was dissolved in water, the ligand added in 1:1 ratio, and the 

pH increased to 10 to 11 with 0.1 M NaOH. The solution was allowed to stand for 1 hour, 

then the water distilled off under reduced pressure, and the residue washed with ether to 

remove free ethylenediamine. The complex was extracted from the residue with MeOH. The 

methanol solution was diluted for ESI-MS spectra. Complexes with ligands 1-3 were 

obtained in the negative scan mode, and complexes with 4 in the positive scan mode. The 

complex molecular peaks were simulated to compare with found peaks. The spectra are 

shown in SI Information Figures 10-19. 

Synthesis 

Coupling procedure: Coupling reactions were executed by adding N-protected amino acids 

to HOBt in a 1:1 molar equivalent and stirring in chloroform at 0°C. Once the solution 

cooled, EDC-HCl (1.1 mol eq) was added and stirred for 30 min. AlaGly(OMe)-HCl (1 mol 

eq) was added, followed by drop-wise addition of triethylamine (1.05 mol eq). The solution 

was stirred under slight N2 flow at ambient temperature for 24 hrs. Product was washed with 

water, dried with MgSO4 and the CHCl3 removed in vacuo. The product was then washed 

with ether and dried in a vacuum desiccator to obtain clean product. 
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Z-TrpAlaGly(OCH3) [56] 1a: Coupling reaction was executed using coupling procedure. 

Reaction was ran with 50 ml of CHCl3. Z-Trp (1.153 g, 3.407 mmol), HOBt (0.460 g, 3.407 

mmol), EDC-HCl (0.719 g, 3.748 mmol), ala-gly(OMe)-HCl (0.670 g, 3.407 mmol), and 

triethylamine (0.50 mL, 3.578 mmol). The product was purified by washing with water (3 x 

20 mL), drying with MgSO4, then removing the chloroform under reduced pressure. The 

yield was 1.607 g (98.1%). 1H NMR (400 MHz, CDCl3) δ 8.42 (s, 1H, NHindole), 7.61 (d, J = 

7.9 Hz, 1H, Hindole-C5), 7.32 (p, J = 3.9, 2.9 Hz, 6H, ArCBZ), 7.29 (d, J = 8.1 Hz, 2H, Hindole-C8), 

7.20 – 7.12 (t, J = 7.5 Hz, 1H, Hindole-C7), 7.07 (t, J = 7.5 Hz, 1H, Hindole-C6), 7.03 – 6.99 (m, 

1H, Hindole-C2), 6.77 (d, J = 5.6 Hz, 1H, NHGly), 6.61 (s, 1H, NHAla), 5.78 – 5.71 (m, 1H, 

NHAsp), 5.16 – 5.03 (m, 2H, CH2-CBZ), 4.56 (d, J = 6.9 Hz, 1H, α-HAsp), 4.46 (q, J = 7.2 Hz, 

1H, α-HAla), 3.85 (dd, J = 18.1, 5.6 Hz, 1H, α-HGly), 3.77 – 3.64 (m, 1H, α-HGly), 3.68 (s, 3H, 

ROCH3 Gly), 3.24 (qd, J = 14.6, 6.4 Hz, 2H, β-HTrp), 1.20 (d, J = 7.0 Hz, 3H, β-HAla). 13C 

NMR (101 MHz, CDCl3) δ 172.27(C=OAla), 171.62(C=OTrp), 170.31(C=OGly), 

156.39(C=OCBZ), 136.34(C9indole), 136.23(ArCBZ), 128.69(ArCBZ), 128.63(ArCBZ), 

128.38(ArCBZ), 128.26(ArCBZ), 127.39(C4indole), 123.65(C2indole), 122.38(C7indole), 

119.87(C6indole), 118.86(C5indole), 111.43(C3indole), 110.09(C8indole), 100.11(ArCBZ), 77.48, 

77.16, 76.84(CDCl3), 67.31(CH2CBZ), 55.92(α-CTrp), 52.43(OCH3 Gly), 48.92(α-CAla), 41.18(α-

CGly), 28.67(β-CTrp), 18.01(β-CAla). 

Fmoc-β-Asp(OC(CH3)3)AlaGly(OCH3) 2a: Coupling reaction was executed  using 

coupling procedure. Fmoc-Asp- OtBu  (2.783 g, 6.764 mmol), (HOBt) (0.914 g, 6.764), 

EDC-HCl (1.426 g, 7.440 mmol), ala-gly(OMe)-HCl (3) (1.330 g, 6.764) and TEA (0.99 mL, 

7.102 mmol). The yield was 3.682 g (98.3%). 1H NMR (400 MHz, CDCl3) δ 7.77 (d, J = 7.5 

Hz, 2H, ArFmoc), 7.63 (d, J = 7.6 Hz, 2H, ArFmoc), 7.41 (t, J = 7.5 Hz, 2H, ArFmoc), 7.37 – 7.31 

(m, 2H, ArFmoc), 7.11 (d, J = 5.7 Hz, 1H, NHGly), 6.61 (d, J = 7.5 Hz, 1H, NHAla), 6.20 (d, J = 

8.3 Hz, 1H, NHAsp), 4.67 (h, J = 7.3 Hz, 1H, α-HAla), 4.54 (dt, J = 9.1, 4.7 Hz, 1H, α-HAsp), 
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4.36 (q, J = 10.4, 9.1 Hz, 2H, CH2Fmoc), 4.23 (t, J = 7.2 Hz, 1H, CHFmoc), 4.18 – 3.97 (m, 2H, 

α-HGly), 3.71 (s, 3H, ROCH3 Gly), 2.99 – 2.76 (m, 2H, β-HAsp), 1.49 (s, 9H, RO(CH3)3Asp), 

1.42 (d, J = 7.0 Hz, 3H, β-HAla). 13C NMR (101 MHz, CDCl3) δ 172.56(γ-C=OAsp), 

170.43(C=OAla), 170.16(C=OAsp), 169.96(C=OGly), 156.36(C=OFmoc), 143.99(ArFmoc), 

141.37(ArFmoc), 127.80(ArFmoc), 127.19(ArFmoc), 125.33(ArFmoc), 120.05(ArFmoc), 

82.51(ROC(CH3)3Asp), 67.31(CH2Fmoc), 52.48(OCH3Gly), 51.53(α-CAla), 48.83(α-CAsp), 

47.26(CHFmoc), 41.23(α-CGly), 38.31(β-CAsp), 28.06(OC(CH3)3Asp), 18.60(β-CAla). IR (KBr, 

cm-1) 3300 (s, N-H, N-H2), 1744 (s, C=O-OCH3), 1730 (sh, C=O-OC(CH3)3), 1693 (s, Amide 

I), 1539 (s, Amide II), 1249 (sh, C=O-OC(CH3)3), 1220 (s, C=O-OC(CH3)3), 1158 (s, C=O-

OCH3). MS (ESI/Positive) M (C29H35N3O8) = 553.6120, M/Z found(calc) = 

576.2318(576.2316) [M+Na+] 

Fmoc-Asp(OC(CH3)3)AlaGly(OCH3) 3a: Coupling reaction was executed  using coupling 

procedure. Reactant amounts are as follows. Fmoc-Asp(OtBu)-OH (1.406 g, 3.418 mmol), 

HoBt (0.462 g, 3.418 mmol), EDC-HCl (0.462 g, 3.418 mmol), ala-gly(OMe)-HCl (0.672 g, 

3.418 mmol), TEA (0.5 mL, 3.588 mmol). The yield was 1.807 g (95.3%).  1H NMR (400 

MHz, CDCl3) δ 7.85 – 7.69 (m, 2H), 7.66 – 7.51 (m, 2H), 7.40 (td, J = 7.6, 1.1 Hz, 2H), 7.31 

(td, J = 7.5, 1.2 Hz, 2H), 6.89 (s, 2H), 5.88 (d, J = 8.3 Hz, 1H), 4.51 (p, J = 7.0 Hz, 1H), 4.43 

(d, J = 7.0 Hz, 1H), 4.22 (t, J = 6.9 Hz, 1H), 4.12 – 3.89 (m, 2H), 3.72 (s, 3H), 2.94 – 2.66 

(m, 2H), 1.52 – 1.32 (m, 11H). 13C NMR (101 MHz, CDCl3) δ 172.09(γ-C=OAsp), 

171.24(C=OAla), 170.75(C=OAsp), 170.20(C=OGly), 143.83(C=OFmoc), 143.76(ArFmoc), 

141.45(ArFmoc), 127.94(ArFmoc), 127.24(ArFmoc), 125.15(ArFmoc), 120.18(ArFmoc), 

82.30(ROC(CH3)3Asp), 67.48(CH2Fmoc), 52.47(OCH3Gly), 51.50(α-CAla), 49.20(α-CAsp), 

47.24(CHFmoc), 41.28(α-CGly), 37.53(β-CAsp), 28.17(OC(CH3)3Asp), 17.73(β-CAla). IR (KBr, 

cm-1)  3307 (s, N-H, N-H2), 1754 (sh, C=O-OCH3), 1732 (s, C=O-OC(CH3)3), 1654 (s, 

Amide I), 1533 (s, Amide II), 1246 (sh, C=O-OC(CH3)3), 1216 (s, C=O-OC(CH3)3), 1153 (s, 
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C=O-OCH3).  MS (ESI/Positive) M (C29H35N3O8) = 553.6120, M/Z found(calc) = 

576.2316(576.2313) [M+Na+] 

TrpAlaGly(OCH3) 1: The protecting group Z was removed by adding Z-TrpAlaGly(OMe) 

(1.515 g, 3.255 mmol) and 150 mg 10% catalyst loaded Pd/C together and evacuating the 

flask, backfilling with argon. Dry methanol (~20 mL) was syringed in. A balloon filled with 

H2, attached to a needle, was inserted into the top of the septum and the N2 was flushed out of 

the flask and replaced with H2.[57] (Care must be taken because Pd/C is pyrophoric and can 

cause organic solvents to ignite when air is present) The reaction mixture was stirred 

overnight with the H2 balloon attached. When finished, the H2 is flushed out by argon and the 

product is filtered through Celite on a fritted filter and washed with an additional 20 mL of 

methanol. Methanol was removed under reduced pressure with slight heat. Yield was 0.912 g 

(85%) 1H NMR (400 MHz, CDCl3) δ 8.30 (s, 1H, NHindole), 7.69 (d, J = 7.8 Hz, 1H, NHAla), 

7.65 (dd, J = 7.9, 1.0 Hz, 1H, Hindole-C5), 7.36 (dt, J = 8.1, 1.0 Hz, 1H, Hindole-C8), 7.20 (ddd, J 

= 8.2, 7.0, 1.2 Hz, 1H, Hindole-C7), 7.11 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H, Hindole-C6), 7.07 (d, J = 

2.4 Hz, 1H, Hindole-C2), 6.99 (t, J = 5.4 Hz, 1H, NHGly), 4.51 (p, J = 7.2 Hz, 1H, α-HAla), 4.07 – 

3.91 (m, 2H, α-HGly), 3.78 – 3.73 (m, 1H, α-HAsp), 3.73 (s, 1H, ROCH3 Gly), 3.35 (ddd, J = 

14.5, 4.4, 0.9 Hz, 1H, β-HTrp), 2.97 (dd, J = 14.5, 8.6 Hz, 1H, β-HTrp), 1.72 – 1.65 (m, 2H, 

NH2Trp), 1.31 (d, J = 7.0 Hz, 3H, β-HAla). 13C NMR (101 MHz, CDCl3) δ 175.44(C=OTrp), 

172.66(C=OAla), 170.35(C=OGly), 136.53(C9indole), 127.56(C4indole), 123.29(C2indole), 

122.45(C7indole), 119.79(C6indole), 119.03(C5indole), 111.51(C3indole), 111.42(C8indole), 55.45(α-

CTrp), 52.48(ROCH3 Gly), 48.51(α-CAla), 41.28(α-CGly), 30.67(β-CTrp), 17.36(β-CAla). IR (KBr, 

cm-1) 3389 (sh, N-H, N-H2), 3296 (b, N-H, N-H2), 3056 (m, aromatic C-H stretch), 1749 (s, 

C=O-OCH3), 1655 (s, Amide I), 1517 (s, Amide II), 1213 (s, C=O-OCH3), 745 (s, aromatic 

C-H bend). UVVis(CHCl3), 𝜀281 = 6114 L/mol⋅cm. Specific rotation [α]D = -18.76° 

(2.5mg/100mL, DMSO). MS (ESI/Positive) MW (C17H22N4O4) = 346.164, M/Z found(calc) 
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= 347.1714(347.1709) [M+H+]. CHN: (C17H22N4O4) found(calc) %, C: 58.78(58.95), H: 

6.38(6.40), N: 15.91(16.17). 

β-Asp(OC(CH3)3)AlaGly(OCH3) 2: The protecting group Fmoc was removed by stirring 

Fmoc-β-Asp(OtBu)AlaGly(OMe) (3.778 g, 6.764 mmol) (2a) in 10 mL of DMF at 110 ºC for 

40 min [58]. Methanol was added to the DMF and was washed with 3x10 mL hexane. The 

DMF was removed in vacuo and the product purified with flash chromatography. Yield for 

this reaction was 2.120 g (94%) and after purification 1.296 g. 1H NMR (400 MHz, CDCl3) δ 

8.20 (d, J = 6.3 Hz,1H, NHAla),8.03(d,J=7.2Hz,1H, NHGly),4.63(q,J=7.2Hz,1H, α-HAla), 4.38 

(d, J = 6.9 Hz, 1H, α-HAsp), 4.05 (qd, J = 17.6, 5.5 Hz, 2H, α-HGly), 3.75 (d, J = 5.7 Hz, 3H, 

ROCH3 Gly), 3.26 (ddd, J = 72.9, 17.2, 4.4 Hz, 2H, β-HAsp), 1.51 (s, 9H, RO(CH3)3), 1.47 (d, J 

= 7.1 Hz, 3H, β-HAla). 13C NMR (101 MHz, CDCl3) δ 172.86(γ-C=OAsp), 171.90(C=OAla), 

170.60(C=OAsp), 170.49(C=OGly), 82.83(ROC(CH3)3Asp), 52.46(OCH3Gly), 51.68(α-CAsp), 

49.12(α-CAla), 41.20(α-CGly), 38.51(β-CAsp), 28.05(OC(CH3)3Asp), 17.76(β-CAla). IR (KBr, cm-

1) 3385 (b, N-H, N-H2), 3307 (b, N-H, N-H2), 1743 (sh, C=O-OCH3), 1728 (s, C=O-

OC(CH3)3), 1653 (s, Amide I), 1541 (s, Amide II), 1254 (s, C=O-OC(CH3)3), 1210 (s, C=O-

OC(CH3)3), 1155 (s, C=O-OCH3). UVVis(CHCl3), 𝜀258 = 1638.3 L/mol⋅cm. Specific rotation 

[α]D = -353.1° (2.5g/100mL, DMSO). MS (ESI/Positive) M (C14H25N3O6) = 331.368, M/Z 

found(calc) = 354.1633(354.1636) [M+Na+]. CHN: (C14H25N3O6) found(calc) %, C: 

50.28(50.75), H: 7.11(7.60), N: 13.86(12.68). 

Asp(OC(CH3)3)AlaGly(OCH3) 3: The protecting group Fmoc was removed using the same 

as procedure used above. Fmoc-Asp(OtBu)AlaGly(OMe) (2.453 g, 4.443 mmol) (3a). The 

yield was 82%. 1H NMR (400 MHz, CDCl3) δ 8.39 – 8.29 (d, J = 6.7 Hz, 1H, NHAla), 7.87 (t, 

J = 5.9 Hz, 1H, NHGly), 7.26 (CDCl3), 4.58 (p, J = 7.0 Hz, 1H, α-HAla), 4.50 (d, J = 6.2 Hz, 

1H, α-HAsp), 3.98 (qd, J = 17.8, 5.6 Hz, 2H, α-HGly), 3.71 (s, 3H, ROCH3 Gly), 3.11 (t, J = 6.6 

Hz, 2H, β-HAsp), 1.42 (d, J = 4.1 Hz, 13H, RO(CH3)3 Asp, β-HAla). 13C NMR (101 MHz, 
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CDCl3) δ 172.75(γ-C=OAsp), 170.77(C=OAla), 170.24(C=OAsp), 168.44(C=OGly), 

82.93(ROC(CH3)3 Asp), 52.30(OCH3 Gly), 50.23(α-CAsp), 49.95(α-CAla), 41.04(α-CGly), 

36.23(β-CAsp), 28.00(OC(CH3)3 Asp), 17.59(β-CAla). IR (KBr, cm-1) 3360 (b, N-H, N-H2), 

3235 (b, N-H, N-H2), 1755 (sh, C=O-OCH3), 1728 (s, C=O-OC(CH3)3), 1670 (s, Amide I), 

1545 (s, Amide II), 1249 (s, C=O-OC(CH3)3), 1214 (s, C=O-OC(CH3)3), 1158 (s, C=O-

OCH3). UVVis(CHCl3), 𝜀286 = 157.97 L/mol⋅cm. Specific rotation [α] = -1.4°(2.5g/100mL, 

DMSO). MS (ESI/Positive) M (C14H25N3O6) = 331.368, M/Z found(calc) = 

332.1816(332.1816) [M+H+]. CHN (C14H25N3O6)⋅1/2  H2O  found(calc) %, C: 49.60(49.40), 

H: 7.58(7.70), N: 12.31(12.35).  

γ-Glu(OMe)Cys(SMe)Gly(OMe) 4: The methyl esterification of GSH(SMe) was completed 

by adding GSH(SMe) (0.520 mg, 1.620 mmol) to distilled MeOH (20ml) along with 

trimethylchlorosilane (0.825 mL, 6.510 mmol) [51]. This mixture was stirred under N2 for 24 

h. An additional 0.825 mL of Me3SiCl was added and the reation stirred for another 24h. The 

solvent was removed in vacuo, and the product stirred in diethylether. The ether was 

decanted off resulting in isolation of a white hydroscopic powder as the hydrochloride salt of 

4. The yield was 0.514 g (82%). 1H NMR (400 MHz, D2O) δ 4.52 (dd, J = 8.7, 5.3 Hz, 1H, α-

HCys), 4.13 (t, J = 6.7 Hz, 1H, α-HGlu), 3.98 (d, J = 1.5 Hz, 2H, α-HGly), 3.79 (s, 3H, ROCH3 

Glu), 3.69 (s, 3H, ROCH3 Gly), 2.99 – 2.91 (m, 1H, β-HCys), 2.80 (dd, J = 14.1, 8.7 Hz, 1H, β-

HCys), 2.62 – 2.45 (m, 2H, β-HGlu), 2.27 – 2.12 (m, 2H, γ-HGlu), 2.08 (s, 3H, RSCH3 Cys). 13C 

NMR (101 MHz, D2O) δ 174.15(δ-C=OGlu), 173.06(C=OGly), 171.76(C=OCys), 

170.14(C=OGlu), 53.65(OCH3Glu), 52.79(OCH3Gly), 52.62(α-CGly), 52.16(α-CCys), 41.20(α-

CGlu), 34.87(β-CCys), 30.65(SCH3), 25.26(β-CGlu), 14.63(γ-C=OGlu).  IR (KBr, cm-1): 

3396(ms), 3257(ms) (N-H, R2-NH), 3059(ms, N-H, R-NH3+), 1748 (s, C=O-OCH3), 1645(s, 

Amide I). UVVis(H2O), 𝜀258 =  30.8 L/mol⋅cm. Specific rotation [α]D = -209.75° 
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(2.5g/100mL, DMSO). MS (ESI/Positive): M (C13H24N3O6S) = 349.40, M/Z found(calc.) = 

350.1380(350.1370) [M+H+]. 

Results and discussion 
 

The synthesis and characterization of three new tripeptide ligands (Figure 1, 1-3) is 

reported here. Although the parent tripeptides have been identified as fragments in protein 

digestion, [59-61] the ligands 1-3 were not synthesized previously. The thioether of 

glutathione is reported [62] and has been studied, [38-40] while the product of complete 

methylation is reported here for the first time (Figure 1, 4).  

 

   
Figure 1. The tripeptides synthesized and used in Pd binding studies 

 

Synthesis 

The synthesis of the tripeptides was achieved using solution phase peptide synthesis. 

Solution phase synthesis has many benefits for short peptide synthesis, including larger scale 

synthesis and less consumption of materials [63-65]. Either Z- or Fmoc-protecting groups 

were used in coupling reactions (Scheme 1), based on availability and cost of the protected 

amino acid.  

The choice to use both the methyl ester and t-butyl ester on 2 and 3 presented itself 

with a variety of challenges in the synthesis. The t-butyl ester was selected as a commercially 

available protection on the Fmoc protected aspartic acid, and the methyl ester protection was 
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chosen over the t-butyl or ethyl because of facile completion of the esterification reaction for 

the methyl ester with quantitative yields. The reaction scheme is shown in Scheme 1. 

Dipeptide AlaGly was alkylated to AlaGly(OMe), and coupled with Z-(1) or Fmoc-protected 

α- or β-Asp(OtBu)(OH) (2,3) starting material in a coupling reaction that was optimized for 

facile workup. 

Esterification reactions to produce t-butyl or ethyl esters required long reaction times, 

and resulted in incomplete esterification, and loss of yields. Challenges presented themselves 

in the selection of a deprotection method for the Fmoc or Z and work-up procedures to obtain 

pure compounds. Methyl ester hydrolysis is catalyzed by basic conditions above a pH of 10, 

whereas t-butyl esters are catalytically hydrolyzed in acidic conditions below a pH of 2 and is 

very sensitive to heating [66]. Complications arose during work-up due to the common 

solubilities of the product and side products, making separation difficult, this was solved 

through selection of solvent and base for the reaction.  

Standard Fmoc cleavage procedures in basic medium could not be employed. 

Attempted deprotection of Fmoc-Asp(OtBu)AlaGly(OMe) and Fmoc-β-

Asp(OtBu)AlaGly(OMe) using standard basic conditions resulted in the formation of 

aspartimide. DMF solvent mediated Fmoc cleavage worked well although residual DMF 

content likely contributed to very hygroscopic behavior of the crude compounds. Dry, well 

behaved, analytically pure compounds were isolated after washing them thoroughly with dry 

solvent after flash chromatography.   

Attempts to precipitate out the HCl salt of 2 and 3 produced the partially hydrolyzed 

t-butyl ester species. Dry reaction conditions under inert air were used to precipitate the 

products using a HCl/Et2O solution. Synthesis and purification of 1, (Scheme 1) was 

straightforward using standard methods when employing the Z amine protecting group. After 

isolation and purification 1-3 were stored under nitrogen in the freezer. 



 15 

Two possible synthetic routes were explored to achieve complete alkylation of GSH 

to form 4 (Scheme 2). S-alkylated GSH, (GSMe) is commercially available, while fully 

methylated glutathione is not. For the desired experimental quantity, GSH was used as a 

starting material and both carboxylate esters and the thiol were alkylated to form the methyl 

esters of glutathione. In Route 1, esterification is followed by thiol methylation. Complete 

alkylation using Route 1 proved unsuitable, since the basic aqueous conditions employed 

caused hydrolysis of the methyl esters. In the second approach, (Route 2) the thioether is 

formed first, followed by the esterification reaction. These successive reactions showed 

complete alkylation forming the hydrochloride salt of 4. 

All tripeptides were fully characterized using 1H, 13C, COSY, and HSQC, NMR 

spectroscopy, as well as ESI-MS, IR, UV-vis, and elemental analysis. MS, 1H and 13C are 

provided in the supplementary information (Figures SI 6A-9C). 

  

Scheme 1. Synthesis scheme for ligands 1-3 
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Scheme 2. Synthesis scheme for ligand 4 

 
Binding motifs and coordination geometries were investigated for compounds 1-4 in water 

with the metal ion [Pd(en)(H2O)2]2+ employing 1H-NMR spectroscopy and potentiometric 

titrations. 

Potentiometric studies 

 
Determination of the pKa of ligands using pH titrations 

Ligands 1 - 4 contain methyl esters on the C-terminus of the tripeptides. With the t-

butyl esters protecting the side chain of the aspartic acid residue on 2 and 3, and the cysteinyl 

of 4 transformed into a thioether, only the amine deprotonation needs to be determined. The 

experimentally determined pKa values are listed in Table 1. The pH titrations curves are 

shown in SI information Figure SI 1. Conventionally, acid would be added to the mixture to 

ensure the entire pH range is covered. However, this was not possible here due to the acid 

hydrolytic sensitivity of the t-butylester. As a consequence, the titrations begin in the mid-pH 

range. Amino acid titrations normally need to cover the full pH value range in order to 

determine the pKa of the carboxylate, which is observed below a pH of 3 [67]. However, in 
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collection of data. 

HO N
H

H
N

O O O

OH
ONH2

O N
H

H
N

O O O

O
ONH2

S

SH

HO N
H

H
N

O O O

OH
ONH2

SH

O N
H

H
N

O O O

O
ONH2

S

GSH

Route 1

Route 2

γ-Glu(OMe)Cys(SMe)Gly(OMe) 4



 17 

Ligand 1 has an amine and two amide groups as well as an indole amine group. By 

itself, ligand 1 shows amine deprotonation at a pH of 9.25. The reported pKa of free 

tryptophan is 9.34 [67]. Again for 2, the amine group is the only measurable pKa, this was 

found to be 8.78. For 3 the experimentally determined pKa was 8.56, where the pKa for 

aspartic acid is 9.66 [67]. Compound 2 amine, being further away from the peptide bond 

experiences less effects than 3. For compound 4 two deprotonations seem to occur, one at 

8.26 and another at 9.95. The pKa value at 8.26 may correspond to deprotonation of the 

partially hydrolyzed thioether, where the pKa for the thiol on GSH is 8.75 [67]. The second 

pKa found is the amine deprotonation, where for GSH this value is 9.65. These differences in 

the pKa values of the amino acid and the corresponding peptides are due to peptide bond 

formation. 

Titrations of the ligands with [Pd(en)(H2O)2]2+ 

Titrations of 1-4 with [Pd(en)(H2O)2]2+ were performed in three different ligand to 

metal ratios. The titration curves are shown in Figure SI 1 along with the ligand titrations. As 

[Pd(en)(H2O)2]2+ is added to the ligand solution, there is a drop in pH due to the Lewis acid 

nature of Pd(II). When more ligand is added, the shift to lower pH values is diluted for 2:1 

ratio of ligand to metal and insignificant at a 4:1 ratio. This observation suggests that the 

plots for a 2:1 ratio is a combination of the free ligand and the 1:1 ratio titration. This pattern 

is also observed in the 4:1 titration data. It is clear from the plots that the en successfully 

inhibits the formation of bis type complexes, even with the addition of excess ligand. 

Therefore, it is sufficient to study the species present in the 1:1 ratio in order to identify all of 

the metal coordinated species in the mixtures. As before the initial pH was not adjusted with 

the addition of acid, preventing observation of amine deprotonation, and allowing only the 

observation of amide deprotonation. The amide deprotonation takes place at significantly 

lower pH upon coordination, in the range of 7.33 to 7.65, as the Pd(II) coordination drives the 



 18 

deprotonation at a lower pH. No discernible deprotonation could be identified for solution 4 

with [Pd(en)(H2O)2]2+ 

Table 1. Protonation values of the Pd(II) 
complexes of tripeptide ligands 

 1 2 3 4 
Ligand     

pKa1 (amine) 9.25 8.79 8.56 8.21 

 
    

Ligand + M     

pKa1 (amide) 7.65 7.33 7.42 ~ 
pKa2 (amide) 7.65 7.33 7.42 ~ 

 
pH dependent NMR studies 

pH-dependent NMR studies were performed in D2O. A stock solution of the ligands (1-4) 

(0.020M) and a stock solution of the Pd(II) (0.040M) complex were mixed in a 1:1 ratio, for 

final concentrations of 5.0 x 10-3 M. The ionic concentration was increased to 0.100 M with 

KCl and the pH adjusted with NaOD. The reaction mixture was monitored over a 48-h period 

using NMR spectroscopy.  

pH dependent coordination of [Pd(en)(H2O)2](NO3)2 with 1.  

The initial pD of the mixture of [Pd(en)(H2O)2]2+ and 1 resulted in a pD value of 4.76. 

This resulted in the formation of two metal complex isomers, in approximately a 1:1 ratio 

(Figure 2). One of the isomers shows a large downfield shift for the α-C protons on the 

tryptophan residue, indicating primary amine coordination, followed by amide chelation, as 

indicated by the shift of the β-CH on the alanine residue. Furthermore, the en group is still 

present, as seen by the presence of its bound singlet at 2.71 ppm, leading to proposed 

structure Pd-1A. The second isomer present at this pH has a mono-coordinated 

ethylenediamine. 
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In a mono-coordinated ethylenediamine, the methylene protons are no longer 

equivalent, and they split to form three resonances [68]. For the second isomer, the multiplet 

at 2.50 ppm integrates to 2 protons corresponding to the distant CH2 group of en. The 

multiplets at 2.14 ppm and 2.30 ppm integrate to one H each and represent the two non-

equivalent protons closer to the Pd ion. 

  

pD Species present % Ester Hydrolysis 
R (OMe) R’ (OtBu) 

4.76 A ~50% B ~50% ~10 ~ 
6.52 B ~100% ~ ~19 ~ 
7.92 C ~100% ~ ~75 ~ 

11.54 C ~75% D ~25% 100 ~ 
 
Figure 2. Possible coordination geometries of 1 (5 mmol L-1) with [Pd(en)(H2O)2]2+ (5 mmol 
L-1) (cKCl = 100 mmol L-1) over the pD range of 4.75-11.54, with hydrolysis values present 
after 1 hour. 

Evidence for indole amine coordination is seen in the doubling of all resonances for 

the entire indole moiety, with downfield shifts ~0.10 ppm. The indole coordination appears to 

be accompanied by both amides coordinating as seen by the shift in the α, and β-C protons 

for the tryptophan, alanine, and glycine residues. The corresponding coordination geometry is 

shown for Pd-1B, where an 8 membered ring has formed between the indole amine and the 
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alanine amide, which then continues to the glycine amide, replacing one of the 

ethylenediamine donors to form a tridentate species. As the pD is increased to 6.52, this 

second isomer, Pd-1B, is the only species present in the NMR spectrum.  

Increasing the pD to 7.92 results in complete dissociation of en as evidenced by 

appearance of free en signals at 2.77, leading to likely carboxylate ligation and suggests Pd-

1C as the best model for this pH. The disappearance of the methyl ester signal (3.78 ppm) 

and the parallel appearance of MeOD at 3.37 ppm confirms ~75% methyl ester hydrolysis. 

Palladium catalyzed hydrolysis of methyl esters for alanylglycine is known to occur at a pH 

of 4-5 [69,70], however base catalyzed hydrolysis of methyl esters tends to start at pH values 

greater than 10 [66], indicating observed ester hydrolysis is Pd(II) catalyzed.  

At pD of 11.54 the methyl ester is completely hydrolyzed and a new minor species 

appears (Pd-1D), as indicated by a shift in the methylene group of glycine. This new species 

is tentatively a hydrolyzed Pd(II), i.e. containing [71] a coordinated hydroxo group rather 

than the carboxylate group. At basic pH values, the fourth coordination site in Pd(II) peptides 

complexes has been reported as occupied by hydroxide ions [23][72,73]. 

pH dependent coordination of [Pd(en)(H2O)2](NO3)2 with 2  

Initial pD of the [Pd(en)(H2O)2]2+ and 2 solution was 5.01. Observed coordination 

geometry of 2 and [Pd(en)(H2O)2]2+ is shown in Figure 3. Complexation was seen 

immediately by the downfield shift of the α-C Asp protons as well as the β-C Asp protons 

and the broadening and doubling of the en methylene protons of the [Pd(en)]2+, due to the 

trans effect. This suggests a monodentate binding geometry as as seen in Pd-2A. However, 

some methyl ester hydrolysis (10%) and t-butyl hydrolysis (< 8%) is also occurring. No 

evidence of bidentate coordination of the peptide was observed at this pH. 
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At pD of 6.93 an upfield shift of the Asp α-CH and hydrolysis of the Asp t-butyl ester 

was observed, as indicated by the appearance of a t-butanol signal. Two species appear to be 

present, both with the coordination geometry Pd-2B; the majority (>80%) showing probable 

κ2(NH2, OtBu) binding and the other (<20%) showing κ2(NH2, O-) binding due to t-butyl 

ester hydrolysis. Hydrolysis of the methyl ester reaches ~20% as indicated by the growing 

MeOH signal. Negligible change was associated with the chemical shifts of Ala and Gly 

moieties. No evidence of amide chelation was present. 

 

pD Species present % Ester Hydrolysis 
R (OMe) R’ (OtBu) 

5.01 A ~100% ~ ~10 ~8 
6.93 B ~100% ~ ~20 ~20 
9.21 C ~100% ~ ~65 ~35 

11.06 C ~70% D ~30% 100 ~70 
 

Figure 3. Possible coordination geometries of 2 (5 mmol L-1) with [Pd(en)(H2O)2]2+ (5 mmol 
L-1) (cKCl = 100 mmol L-1) over the pD range of 5.01-11.06, with hydrolysis values present 
after 1 hour. 

As many as 4 isomers were present at a pD of 9.61 due to varying degrees of 

hydrolysis of the methyl and t-butyl ester. The coordination geometry of all of the isomers is 

represented by Pd-2C. This assignment is deduced by dissociation of en and a concomitant 

shift of the Ala and Gly protons signaling amide binding, suggesting a κ4(NH2, N, N, O) 
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coordination geometry. Methyl and t-butyl ester hydrolysis was estimated to be ~65%/35% 

respectively, where the t-butyl ester hydrolysis was likely Pd-catalyzed, induced by the 

proximity of the ester to the Pd-NH2 group. 

At highly basic conditions of pD at 11.20 complete hydrolysis of the methyl ester was 

observed, and t-butyl ester hydrolysis was ~70%, while the major species maintained the 

coordination geometry shown as Pd-2C. Another minor species was observed via the shift of 

the Gly methylene protons suggesting dissociation of the Gly carboxylate from the metal. 

This species exhibits probable formation of a Pd-hydroxo species, as suggested by 

coordination geometry Pd-2D.  

pH dependent coordination of [Pd(en)(H2O)2](NO3)2 with 3 

A mixture of [Pd(en)(H2O)2]2+ with 3 at a pD of 3.77 did not result in complexation 

judged by the fact that the resonances from the [Pd(en)(H2O)2]2+ complex remained intact. 

The amine protons shifted by 0.04 ppm, due to the change in pH, but all other resonances 

remain unchanged. The overall integration for ethylene diamine was low, due to precipitation 

of [Pd(en)(H2O)2]2+ from solution. This precipitation is consistent with reports stating that 

amine coordination to the [Pd(en)]2+ fragment does not take place until a pH of 4 due to 

competitive binding to Cl— [23]. 

 

pD Species present % Ester Hydrolysis 
R (OMe) R’ (OtBu) 

3.77 3 ~100% ~ ~0 ~0 
4.71 A ~55% 3 ~45% ~12 ~5 
7.34 A ~100% ~ ~35 ~5 

11.20 B ~100% ~ 100 ~30 
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Figure 4. Possible coordination geometries of 3 (5 mmol L-1) with [Pd(en)(H2O)2]2+ (5 mmol 
L-1) (cKCl = 100 mmol L-1) over the pD range of 3.75-11.25 with hydrolysis values present 
after 1 hour. 

At a pD of 4.71 the formation of a new species, Pd-3A (Figure 4) was observed. The 

tripeptide formed a tridentate species with Pd(II) that has a mono-coordinated 

ethylenediamine occupying the fourth coordination site. Evidence for this structure was seen 

in a significant shift of α- and β-C protons of the three amino acid residues, along with the 

doubling and broadening of the ethylene diamine resonance at 2.77 ppm. Free tripeptide 3 

was still present amounting to about ~50% based on integrations. Convergence of the NMR 

resonances at pD of 7.34 evidenced coordination geometry Pd-3A becomes the major 

species. At this pD the methyl ester starts hydrolyzing, and after 8h about 35% of the ester 

has been hydrolyzed. 

After raising the pD to 11.20, the formation of tetradentate species Pd-3B is 

evidenced by the upfield shift of the α-C protons for glycine by 0.3 ppm and the complete 

dissociation of coordinated ethylene diamine, which was observed as free en at 2.78 ppm. At 

this pD, the methyl ester was completely hydrolyzed, and the t-butyl ester was ~30% 

hydrolyzed after 8h. 

pH dependent coordination of [Pd(en)(H2O)2](NO3)2 with 4  

The reaction of [Pd(en)(H2O)2]2+ with 4 at a pD of 2.30, observed via NMR, formed a 

species that appears to have κ2(S,N) coordination (Pd-4A, Figure 5). Initially, glutathione 

was bound to the metal through the thioether, as seen in the downfield S-methyl shift from 

2.18 ppm to 2.46 ppm, as time progresses the thioether hydrolyzes resulting in the formation 

of MeOD. This hydrolysis started at ~5%, and after 48 hours had increased to ~72%. The en 

remains coordinated but shifts due to trans effects from 2.71 ppm to 2.85 ppm, this shift is 

accompanied by broadening of the signal. The evidence for cysteinyl amide coordination was 
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seen in the downfield shift of the α-CH by 0.38 ppm, as well as the downfield shift of the β-C 

protons.  

As the pD was raised to 3.06, Pd-4A only achieves ~50% formation, and mono-

coordinated complex Pd-4B accounts for the other 50% speciation. Support for the formation 

of this species is the upfield shift in the α-C Glu residue to 3.8 ppm and the downfield shift of 

the Glu β-, and γ-methylene protons. This coordination was also supported by the en 

resonance at 2.72 ppm. Here the fourth coordination could be stabilized by a chloride ion, a 

water molecule or possibly by the formation of a dimer. The thioether is hydrolyzed by 

approx. 55% after 1 hour. Although challenging to integrate accurately, the esters appear 

intact at pH values lower than 3.60. 

At a pD of 7.70 the Pd-4A species was no longer present. The en group shifts to 2.78 

ppm, signifying dissociation from the metal center. The slight upfield shift of the methyl ester 

protons of the Glu residue from 3.89 to 3.83 ppm signify chelation to the Glu carboxylate, 

forming a 5 membered chelate with the coordination geometry Pd-4C. Methyl ester 

hydrolysis was quantified at 21% after 1 hour forming methanol. The thioether remains 

intact.  

   

pD Species present 
% Ester/Thioether 

Hydrolysis 
R (OMe) R” (SMe) 

2.30 A ~ 100% ~ ~ ~ 0 ~ 30 

3.06 A ~ 50% B ~ 50% ~ ~ 0 ~ 55 
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7.70 C ~ 90 B ~ 10 ~ ~ 21 ~ 0 

8.70 C ~ 80 D ~ 20 ~ ~ 80 ~ 0 
11.30 C ~ 30 D ~ 30 E ~ 30 100 ~ 0 

 
Figure 5. Possible coordination geometries of 4 (5 mmol L-1) with [Pd(en)(H2O)2]2+ (5 mmol 
L-1) (cKCl = 100 mmol L-1) over the pD range of 2.30-11.30 with hydrolysis values present 
after 1 hour. 

Pd-4C was still the major species at a pD value of 8.70, but a new minor species with 

tetradentate κ4(NH2,N,N,O) was formed, as represented by Pd-4D. This observation was 

supported by a quadruplet observed at 4.19 ppm corresponding to Cys α-C, and by a Glu α-C 

protons triplet at 4.55 ppm. Further coordination was evidenced an upfield shift of the Glu β- 

(0.15 ppm), and γ- (0.25 ppm) methylene protons. 

  Once the basic pD of 11.30 is reached, the formation of a third species was observed; 

the probable Pd-hydroxo species (Pd-4E). At these basic conditions the methyl esters were 

fully hydrolyzed, while the thioether remains intact.  

Mass Spectra of Pd(II) complexes with 1-4. 

The complexes were not amenable to isolation from aqueous solutions because of the 

multiple species present in solution and separation of products proved a serious challenge. As 

identification of the species present, mass spectra were obtained. The results summarized in 

Table 2 and SI Figures 10-19 show the found and simulated spectra for the complexes. pH of 

10.5 was chosen assuming that molecular peaks of the expected complexes could be 

identified in the mass spectrum. At high pH it is expected to see the carboxylate of the C-

terminus amino acid as the fourth donor to Pd(II) or alternatively, either Cl— or OH— from 

the solution mixture. 

The methyl ester hydrolysis is rapid and only ligand 1 showed peaks with the methyl 

ester intact. The t-butyl ester was observed in spectra of 2 and 3. Ligand 4 confirmed an 

intact thioether.  
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Table 2. Summary of expected and found molecular ion peaks in the mass spectra of 1-4 with 
[Pd(en)(H2O)2]2+ at pH of ~10.5. 

Ligand Species expected by NMR Species found by MS 

1 Pd-1C 
major 

Pd-1D 
minor ~ Pd-1C 

major 
Pd-1D 
minor 

Pd-1B 1) 
minor 

2 Pd-2C 
major 

Pd-2D 
minor ~ Pd-2C 

major 
Pd-2D 
minor ~ 

3 Pd-3B 
major 

~ ~ Pd-3B 
major 

Pd-3A 2) 
minor ~ 

4 Pd-4C 
One third 

Pd-4D 
One third 

Pd-4E 
One third 

Pd-4C/E 
major 

Pd-4D 
minor ~ 

1) Hydrolyzed methyl ester 

2) With and without ester hydrolysis 

 

The complexes predicted by NMR did show their molecular ion peaks in the mass 

spectrum. Ligands 1 and 3 showed presence of ethylene diamine in minor peaks that could be 

caused by incomplete removal of free ethylene diamine during sample preparation.  

 

Discussion 

Coordination of [Pd(en)(H2O)2]2+ with 1 through the indole nitrogen led to an unusual 

8 membered chelate. Predictions could be made for 5-, 7- or 8-membered chelates with 1, 

although 8-membered chelates are rare [74]. Formation of an initial 5-membered ring via the 

amine and the Ala amide was observed at the lowest pH (Figure 2, Pd-1A). Five membered 

chelate coordination of Trp with the [Pd(en)]2+ fragment has been reported, from the indole 

C3 to the carboxyl O [47], as well as Pd(II) and Pt(II) bis-tryptophan complexes, in which 

coordination proceeds through the amine N, and carboxyl O [75,76]. 

The indole C2 proton is the most acidic proton and is most likely to leave when 

interacting with a Lewis acid [45]. C2-indole coordination together with Ala amide would 

lead to a less-strained 7-membered ring. Palladacycles with indoles have been reported, 

where the Pd(II) center is sigma bonded to the C2 carbon and the indole nitrogen is 
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functionalized to form a 6-membered chelate with the palladium [46]. One more possibility is 

an 8-membered ring with the indole nitrogen and the nearest amide. Examples of h1 

coordination of Ru(II) with indole nitrogen show that it is not deprotonated [44] in such 

coordination, and is in that way comparable to amine coordination. The pKa of the indole 

proton in [(cymene)Ru(h1-indoline)(CH3CN)2]2+ was determined to be 5.2 or much lower 

than for free indole [77]. An NMR spectrum of 1 and Pd(II) mixed with two equivalences of 

base in DMSO-d6 confirmed the loss of the amide resonances, but the N1 proton was still 

present. The C2 proton was located in the NMR spectrum of 1 with [Pd(en)(H2O)2]2+ leading 

to the conclusion that 1 formed an 8 membered chelate with Pd2+ at all pH values, albeit a 

minor species at pH of 4.7. The k4[8,5,5] coordination is dominant in the mixture at high pH 

as well. An interesting result here is that the indole nitrogen is a strong donor for the Pd(II) 

center competing efficiently with the normally dominating amine donor group in peptide 

coordination. 

 
Figure 6. Percent ester hydrolysis as a function of pH.  

Ligands 2 and 3 were expected to form respectively six and five membered chelates 

with the amine and the nearest amide. This was achieved but in an unpredictable manner. At 

0

10

20

30

40

50

60

70

80

90

100

3 4 5 6 7 8 9 10 11 12

%
 E

st
er

 H
yd

ro
ly

sis

pH

1 (Methy ester)
2 (Methyl ester)
2 (t-Butyl ester)
3 (Methy ester)
3 (t-Butyl ester)



 28 

moderate pH values, 2 preferred a 5-membered chelate with the amine and the side-chain 

ester carbonyl oxygen (Figure 3, Pd-2B) promoting ester hydrolysis. This coordination type 

(N,O) is well known for simple amino acids [78].  Ligand 3 shows significantly less Pd2+ 

promoted t-butyl ester hydrolysis and formed a conventional 5-membered chelate. This 

chelation begins with the amine and continues through both amides, immediately rearranging 

the en ligand from bidentate to a mono-coordinated mode. The en was completely dissociated 

by a pD of 11.20, at which point the free carboxylate coordinates to form k4[5,5,5] chelate. 

Ligand 3 shows multiple isomers that represent various forms of hydrolyzed ester 

combinations. Ligand 2 coordination is more strongly pH driven, where the Pd-2B 

coordination prevails until a pH of 7.33 (Table 1), at which point the amides are deprotonated 

and the en dissociates completely, leading to tetradentate k4[6,5,5] complexation of 2 with 

Pd2+. No mono-coordinated en was observed with 2. The importance of the five membered 

chelate over the six membered chelate is only overcome at high pH where the amides are 

deprotonated regardless. 

Considering both carboxylates and the thiol were alkylated, ligand 4 showed 

coordination preferences that were highly pH dependent. At low pH the amine/thioether 

coordination prevails (Figure 5, Pd-4A) forming five-membered κ2(S,N) chelate, promoting 

Pd-catalyzed thioether hydrolysis. This hydrolysis is analogous with the t-butyl ester 

coordination and subsequent hydrolysis seen for 2. The thiol group on GSH normally has 

strong influence on GSH coordination chemistry [35,38,39,53]; however, by forming the 

thioether, this reactivity was curbed at neutral and high pH values by preventing formation of 

the 5-membered κ2(S,N) ring normally favored for GSH complexation. Both being iso-

peptides, ligands 2 and 4 show similar coordination preferences at neutral and high pH 

values, where coordination starts at the amine, but the chelation to the carboxylate (Figure 5, 

Pd-4C) is preferable to either 6- (2) or 7- (4) membered chelate formation with the nearest 
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amide. Only at high pH values for 4 does chelation proceed through the amides and the 

formation of the k4[7,5,5] chelate was observed. 

Methyl ester hydrolysis (Figure 6) significantly impacts coordination preferences of 

1-4 at high pH where the free carboxylate competes to displace ethylenediamine and 

complete tetradentate coordination around the Pd2+ ion. At neutral pH, methyl ester 

hydrolysis was more prominent for 1 compared to the other ligands (Figure 6). The methyl 

ester hydrolysis for 2 and 3 was comparable, while the t-butyl ester for 2 experienced 

significantly more Pd(II) catalyzed hydrolysis [17,18] driven by the coordination preference 

of 2 to form a 5-membered ring at a pH lower than the pKa of the ligand (Table 1, Figure 5).   

Conclusions 

 
Three new alkylated tripeptides 1-3 were synthesized and characterized fully using 

solution phase synthesis in high yields. A synthetic route to fully alkylate GSH, 4, is reported 

as well. The four tripeptides were explored as ligands for Pd(II) in water at different pH using 

ethylenediamine complex [Pd(en)(H2O)2]2+ to explore stepwise coordination and draw out 

differences in ligand properties. 

The ligands 1-4 formed coordination geometries as k4[n,5,5] (n = 8,7,6,5) chelates. 1 

and 3 formed k4[8,5,5] and k4[5,5,5] respectively, at low pH values and this chelation 

dominated at all pH values explored. The observed coordination appears driven by different 

viewpoints; Where 1 forms a strong bond as a neutral donor to Pd(II) through the sidechain 

indole nitrogen and the nearest amide, while 3 forms a traditional 5-membered chelate with 

N-terminus amine and the nearest amide.  Compounds 2 and 4 chose the N-terminus amine 

with an ester to form five membered chelates preferably to the respective 6- and 7-membered 

chelates of the N-terminus amine and the nearest amide. These five membered chelates 

dominated the coordination until the pH was sufficiently high to deprotonate the amides 
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suggesting that 5-membered chelate stability is more important than the amine/amide 

coordination even for a soft ion such as Pd(II). 

The tripeptides chosen exhibited their maximum expected chelating ring sizes at the N 

terminus and confirmed it is possible to form complexes with k4[n,5,5] (n = 8,7,6,5) chelates 

that may be employed to adjust ligand frameworks for bioinspired catalyst design in future 

work. The molecular ions of the complexes were found and matched with their simulated 

isotope patterns in the ESI MS of the complexes. 

The esters showed significant hydrolysis that was both pH dependent and Pd(II) 

catalyzed. The Pd(II) catalyzed hydrolysis was significant for 2 and 4, where the coordinated 

carboxylate-esters and thioether hydrolyzed at lower pH than the free functional groups. 

Despite the ester hydrolysis the study successfully drew out interesting differences in the 

coordination of these ligands and directed coordination geometries using pH manipulations 

was successfully carried out. The 8-membered chelate with 1 was unexpected as well as the 

differences in chelation amenability of 2 and 3. Ligand 4 was expected to show k4[7,5,5] 

coordination when fully alkylated and this was successfully achieved, but only at highly 

alkaline conditions. The variety in coordination behavior of 4 observed agrees with the notion 

that the GSH amine and thiol moieties may be its most important donor groups. 
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