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Resumen 

 

La necesidad de incrementar la velocidad de transmisión en los sistemas de comunicaciones 

ópticas debido al aumento en la demanda de datos por parte de los usuarios finales ha dado el 

surgimiento al paradigma conocido como redes ópticas elásticas. Estas redes, principalmente 

basadas en sistemas Nyquist-WDM, permiten el aumento de la eficiencia espectral resultando en 

mayor capacidad de transmisión. Sin embargo, el espaciamiento reducido entre los canales ópticos 

generados en estas redes, resulta en Interferencia Inter-Canal (ICI, del inglés Inter-Channel 

Interference). Este fenómeno se ha modelado como ruido Gaussiano. Por lo tanto, su mitigación y 

diagnóstico es una tarea compleja que es actualmente investigado. Técnicas basadas en algoritmos 

de aprendizaje automático (en inglés Machine Learning) han surgido como herramientas para 

monitoreo y mitigación de diferentes efectos que ocurren en sistemas de comunicaciones ópticas. 

En este trabajo de grado, se proponen 2 técnicas para diagnosticar la ICI. La primera técnica se 

basa en el algoritmo Fuzzy c-Means (FCM) junto con el algoritmo K-Nearest Neighbors (KNN) 

para estimar el porcentaje de traslape espectral. La segunda técnica se basa en el cálculo de 

histogramas de la señal en fase y cuadratura, y posterior estimación de traslape espectral apoyado 

del algoritmo KNN. Se lograron porcentajes de acierto de hasta 92% y 70%, respectivamente para 

cada técnica. Para mitigación de la ICI, se aplicaron los algoritmos k-Means y KNN, donde, en 

escenarios simulados se alcanzaron ganancias de hasta 2 dB en términos de señal a ruido óptico 

(OSNR, del inglés Optical Signal to Noise Ratio) y para escenarios experimentales, se obtuvieron 

ganancias de hasta 1.3 dB. Finalmente, se pudo concluir que técnicas basadas en algoritmos de 

aprendizaje automático podrán ser útiles tanto para monitoreo de red, por ejemplo, para controlar 

frecuencias de las portadoras en futuros sistemas Nyquist-WDM, así como para la mitigación de 

diferentes fenómenos lineales y no lineales que afectan la transmisión de señales ópticas. 

 

Abstract 

 

The increment of data demand by end users creates the need of higher transmission rates in the 

current optical networks. The paradigm of elastic optical networks based on Nyquist-WDM 

systems seems to be a convenient solution where the spectral efficiency is increased. However, the 

low spectral spacing between channels generates Inter-Channel Interference (ICI), effect modeled 

as Gaussian noise. Therefore, monitoring, diagnostic and mitigation of ICI is an important issue to 

be researched. Moreover, Machine Learning (ML)-based techniques promise improvement of 

traditional monitoring and mitigation of different effects in optical communications. Thus, in this 

work, two ML techniques were proposed for ICI diagnostic. The first one is based on Fuzzy c-

Means (FCM) in joint with K-Nearest Neighbors (KNN) algorithm, for channel overlapping 

estimation. The second one is based on the calculation of histograms using the In-Phase and 

Quadrature signal components with KNN estimation. Results showed an accuracy up to 92% and 

70%, respectively. For ICI mitigation, the algorithms k-Means and KNN were applied for digital 

demodulation. In simulated scenarios, gains up to 2 dB of OSNR were obtained, while in 

experimental scenarios, gains up to 1.3 dB were achieved. Finally, these ML-based techniques 

could be implemented to improve monitoring techniques, for example, to control laser frequencies 

in future terabit gridless optical multicarrier systems and for mitigation of linear and non-linear 

fiber optical effects. 

 

 



1. Introduction 

 

Advances in multicarrier optical transmission systems rely on digital signal processing (DSP)-

based coherent receivers have come out in the last years for increasing the transmission speed in 

optical fiber networks due to the ever-growing demand of data by end users [1]. Foreseeing these 

optical multicarrier scenarios, a flexible grid with a granularity of 12.5 GHz was recommended by 

the ITU-T for wavelength division multiplexing (WDM) in contradistinction to the spectral fixed-

grid of 50 GHz, to achieve higher data rate transmitting multiple channels as a single entity 

(superchannels) with a reduced channel spacing [2]. To further increase the spectral efficiency 

(SE), those channels (subcarriers), can be spectrally generated very close or even overlapped, 

resulting in interchanel-channel interference (ICI). This ICI, due to optical spectral overlapping, 

can be mitigated by several techniques using the information of the adjacent channels, such as: 

multiple inputs multiple outputs (MIMO)-based equalizers [3]–[6], bit-coding among subcarriers 

(i.e. Han-Kobayashi and Dirty-Paper coding [7] and bit-multiplexing including hard-decision FEC 

[8]) or in optical domain by means of wave mixing approaches [9], [10]. However, the flexibility 

granted by the future gridless scenarios with reconfigurable optical add/drop multiplexers 

(ROADM) at different nodes, will not guarantee that a channel affected by ICI could be equalized 

using information of adjacent channels [1]. Fig. 1 shows a gridless scenario where the channels 

are added and dropped out at different nodes such that, a channel can be affected by several 

adjacent channels during its transmission, and the information of such adjacent channels are not 

available at the end node [11], [12].  

Since ICI has been modeled as linear noise-like distortion [13], [14], estimation, monitoring and 

mitigation of ICI is an important and challenging issue in future gridless scenarios [15], [16]. 

Nevertheless, when channels are overlapped the data symbols belonging to a specific channel can 

interact among adjacent channels, resulting in non-symmetric deviation and/or redistribution of 

symbols seen in short time windows in a constellation diagram [17] (see Fig. 2). Detection of 

nonsymmetrical boundaries or thresholds in constellation diagrams have been performed by 

 
Fig. 1. Inter-Channel Interference in future Gridless WDM systems due the add-drop process 

of channels. 
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Machine Learning (ML) techniques [18]–[20]. Besides, traditional monitoring and demodulation 

methods has been improved by some of these techniques based on ML algorithms [16], [17], [20]–

[24].   

Thereby, in this work we propose two methods for spectral overlapping estimation using ML based 

on constellation diagram analysis. The first one is based on Fuzzy c-Means (FCM) combined with 

k-Nearest Neighbors (KNN), taking advantage of the partition matrix of membership degrees given 

by the FCM and the cluster centroid updating of the received symbols in a constellation diagram. 

The results will be submitted to scientific international journal. The second method estimates 

channel overlapping using KNN based on histograms of the In-Phase and Quadrature components 

of received symbols frames. 
 

Effectiveness of both methods are experimentally verified in a 3×16 Gbaud 16QAM Nyquist 

WDM system, with significant ICI due to reduced channel spacing. The proposal takes advantages 

of using ML algorithms which can be adapted to different scenarios when spectral overlapping 

may occur. Besides, the ICI tracking is performed using short frames of only 10k symbols, viable 

for practical monitoring tools. 

 

Besides, two demodulation techniques based on ML were applied to 100k symbols frames affected 

by ICI. k-Means and KNN were first applied to simulated Nyquist-WDM single channel scenario 

in VPIDesignSuite® software, reducing fiber non-linear effects by both techniques. The 

simulation results were presented and published in the proceedings of the Colombian Conference 

on Communications and Computing 2019 (COLCOM) congress organized by the IEEE [25]. 

Furthermore, both methods were applied to experimental frames of 100k symbols reducing ICI, 

reaching up a low-length training stage by KNN and gains by both algorithms, results obtained 

were presented and published in the proceedings of the Advanced Photonics Congress 2019 

organized by the OSA [26].  

 

The remainder of this work is organized as follows: in section 2, the respective monitoring methods 

are explained and detailed, demodulation methods are explained in section 3, simulated and 

experimental setup are described in section 4, results and discussion are given in section 5, 

finishing with conclusions in section 6.   

 

 

 

 

 

 
Fig. 2. 16QAM Spectral Overlapping Distortions for 36.3 dB of OSNR in a 17.6 GBds 

transmission. a) Single Channel. b) 6.8% Spectral Overlapping. c) 18% d) 24%. 



2.  Optical spectral overlapping estimation based on Machine Learning  
 

2.1. Method based on Fuzzy c-Means and KNN 

 
Fuzzy c-Means so called the fuzzy version of well-known k-Means algorithm is a clustering 

technique with indirect classification that gives to each analyzed data a probability to be part to 

every single cluster [27]. In a constellation diagram analysis for m-QAM modulation formats, 

every ideal position of symbols is positioned as starting cluster centroid, when a received symbol 

is analyzed, the membership degree to every cluster is calculated based on distance to each 

centroid, minimizing the function (1) where 𝑁 is the number of clusters, 𝐾 is total received 

symbols, µ is the vector for closest clusters centroid and 𝑟 is the normalization matrix. 

 

𝐽 = ∑ ∑ 𝑟𝑛𝑘

𝐾

𝑘=1

‖(𝑥𝑛 − 𝜇𝑗)‖
2

𝑁

𝑛=1

                                 (1) 

 

For example, in a 16-QAM, every received symbol would have 16 membership degrees (one for 

each modulation symbol) as Fig. 3a shows, therefore, the classification results in a partition matrix 

of dimensions 16 × 𝐿 (where 𝐿 the total received symbols) with elements that are numbers from 

0 to 1, hence, after every membership degrees calculation, centroid position is updated by the mean 

of the closest symbols to every centroid. 

In a transmission channel with ICI, it is evidenced that the closest cluster is not always the correct 

one, it results in scenarios like Fig. 3b shows, where while noise increases, the belonging symbols 

suffers membership degree reduction. In the classification for demodulation, it is assigned to each 

 
Fig 3. a) Fuzzy c-Means Classification for received symbol in a 16-QAM modulation format with close channels 

scenario. b) Membership degrees for different spectral overlapping for a single received symbol at a 36.3 dB of OSNR 

transmission. 
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received symbol, the cluster with the highest membership degree, creating demodulation errors. 

Hence, it is verified that having a highest membership degree election of symbol for demodulation, 

FCM shows almost exact bit error rate (BER) performance as k-means does [25]. 

Using the given FCM matrix, the membership degrees are sorted in descending order and analyzed 

the belonging symbol position. It is counted how many symbols with the highest membership 

degree were the correct ones, and the same is done for the second, third, fourth-highest and so on 

up to the 16th highest (last) membership degree. 

 

Tables 1 to 3 shows the number of symbols that its closest centroid (1st) matches to the correct 

modulation value or second (2nd) and so on according to the sorted FCM matrix, for some spectral 

overlapping scenarios (including single channel), at 36.3 dB and 14.3 dB, respectively. 

 

Ch. Overlapping 

/ Centroid 

Closeness 

1° 2° 3° 4° 5° 6° 7° 8° 9° 10° 

Single Channel 100.000 0 0 0 0 0 0 0 0 0 

0% 99963 35 2 0 0 0 0 0 0 0 

18% 98777 1163 51 9 0 0 0 0 0 0 

30% 82890 12712 2651 1362 233 117 29 4 2 0 

Table 1. FCM classification for 36.3 dB of OSNR. 

  

Ch. Overlapping 

/ Centroid 

Closeness 

1° 2° 3° 4° 5° 6° 7° 8° 9° 10° 

Single Channel 99261 734 4 1 0 0 0 0 0 0 

0% 98006 1932 52 10 0 0 0 0 0 0 

18% 94702 4843 328 119 5 2 1 0 0 0 

30% 75822 16851 4225 2111 586 272 84 27 15 3 

Table 2. FCM classification for 19.3 dB of OSNR. 

 

Ch. Overlapping 

/ Centroid 

Closeness 

1° 2° 3° 4° 5° 6° 7° 8° 9° 10° 

Single Channel 85034 12679 1673 571 32 9 2 0 0 0 

0% 81606 14744 2492 991 106 47 11 3 0 0 

18% 76549 17488 3701 1662 376 154 56 12 1 1 

Table 3. FCM classification for 14.3 dB of OSNR. 

 

Single channel scenario at 36.3 dB of OSNR (considered as low-noise) in Table 1, shows that all 

the 100k symbols belongs to the first membership degree. While in Table 3 where OSNR is 14.3 

dB, the first membership degree counts on 85k symbols and 12.679 symbols were correct at the 

second closest centroid. Moreover, the penalty created by the low OSNR is compared to spectral 

overlapping, in Table 1, the 30% channel overlapping scenario gave 12.712 at the second choice, 

almost the same as single channel with 14.3 dB of OSNR. 

After the process carried out with the FCM algorithm, the resulted counting vectors are taken as 

inputs to the KNN algorithm to estimate the percentage of spectral overlapping. The election of 

KNN parameters was performed varying the number of neighbors and the length of training data 



to obtain the best accuracy in all cases. The Fig. 4a shows that there is an accuracy variation lower 

than 6% between using only 25% or more than 90% of the symbols for training. Fig. 4b shows that 

a good value of neighbors is 3 for all cases.  
 

2.2. Method based on KNN applied to Histograms 

The second channel overlapping estimation method is based on analysis given by histograms of 

both In-Phase and Quadrature values of symbols of frames of 10k. The histograms are constructed 

following 2 parameters, first one are the bins which are the total number of slots where In-Phase 

and Quadrature range values are divided. For example, if the bins value of an ideal 16-QAM 

constellation (see orange dots in Fig. 5a) is 10, the range -3 to 3 will give a bin slot each 0.6 units. 

The second one are the counts, that are equivalent to the total of symbols that “fall” into each bin 

slot, for example, in ideal 16-QAM, all the symbols with an In-Phase value of -3, will “fall” into 

the bin around -3. For an overall view, Fig. 5a shows a constellation diagram of a frame of 10k 

symbols affected by a 12.5% channel overlapping at 19.3 dB of OSNR with its respective In-Phase 

histogram in Fig. 5b.  

It is noticeable that the counts at the ideal 16-QAM symbols positions, give maximum values. 

Therefore, respective maximum and minimum counts values of both In-Phase and Quadrature 

components of frames of 10k symbols are given as features to KNN algorithm where an estimation 

 
Fig 4. KNN channel overlapping estimation a) Amount of training data vs Accuracy. b) Variation of k vs 

Accuracy. 
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Fig. 5. a) 16-QAM constellation affected by 12.5% channel overlapping at 19.3 dB of OSNR. b) In-Phase 

component histogram of 10k symbols frame affected by 12.5% channel overlapping at 19.3 dB of OSNR.   



of channel overlapping is made. Table 4, shows the In-Phase component features contribution to 

the KNN algorithm. Additionally, Quadrature component and the OSNR of signal is given as 

features as well, resulting in a total of 17 features per frame. 
 

1° Counts 

Minimum 

(In 

Phase) 

2° Counts 

Minimum 

(In 

Phase) 

3° Counts 

Minimum 

(In 

Phase) 

1° Counts 

Maximum 

(In Phase) 

2° Counts 

Maximum 

(In Phase) 

3° Counts 

Maximum 

(In Phase) 

4° Counts 

Maximum 

(In Phase) 

Counts 

vector 

length 

Table 4. Features extracted from In-Phase Component Histogram. 
 

3. Machine Learning-based Demodulation 
 

3.1. Demodulation based on K-Nearest Neighbors 

 

KNN is a supervised Machine Learning algorithm that based on certain training data, classifies 
different classes of data. Applied to a constellation diagram analysis, each received symbol would 
have an In-Phase component and Quadrature one and must be part of a modulation number or class 
(0-15 for 16-QAM). Each received symbol is compared with k-nearest training data following the 

Euclidean distance (equation (2), where 𝑋𝑟 is the received symbol and 𝑋𝑡 is an arbitrary training 
symbol) according to its IQ values (see Fig 6). 

 

𝑑(𝑋𝑟 , 𝑋𝑡) = √(𝐼(𝑋𝑟) − 𝐼(𝑋𝑡))2 + (𝑄(𝑋𝑟) − 𝑄(𝑋𝑡))2      (2) 

Classification is made by choosing the most common class value among those “k” chosen 
neighbors classes as Fig. 6 shows. The training data is composed by certain % of 81 different 
frames of 100.000 received symbols each one affected by various channel spacing that goes from 

 
Fig. 6. KNN-based demodulator applied to a 16-QAM constellation. 

Training data



a single channel to an overlapping of 30% stimulating ICI. Each scenario has different OSNR 
values that goes from 14.3 to 36.3 dB (see Fig. 7).  

The choosing of k and percentage of training data was made by BER performance of demodulation 
following the curves at Fig. 8, where best BER values were achieved with k=15 and 3.240 symbols 

for training (0.04% of each frame). 

 
3.2. Demodulation based on k-Means 

 

k-Means is a clustering classification algorithm with hard partitioning of data (Each symbol will 

be part of only one cluster) [27], that calculates centroids given a number of clusters (16 for 16-

QAM). The initials values of centroids are given as the 16-QAM ideal constellation points. 

Classification starts by assigning closest centroid class to each received symbol as Fig 9 shows. 

The k-means algorithm is generalized by the equation (3) where k is the number of clusters and n 

is the total number of symbols that belong to the j cluster. Centroid’s position is updated by the 

mean estimation of the classified data (4). Algorithm iterates until centroids do not change their 

position [28].  

𝐽 = ∑ ∑‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

𝑛

𝑖=1

𝑘

𝑗=1

     (3)           𝑐𝑗 =
1

𝑛
∑ 𝑥𝑖

(𝑗)

𝑛

𝑖=1

     (4) 

 

 
Fig. 8. 16QAM KNN-based demodulator a) Variation of k vs BER. b) Training Sequence Length vs BER. 
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Fig. 7 Data Base configuration for training phase of KNN based demodulation. 
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4. Simulation and Experimental Setup 

4.1. Simulation Setup  
 

Single carrier 16-QAM Nyquist coherent optical system at 32 Gbaud is modeled in 

VPIDesignSuite® (see Fig. 10). Pseudo Random Binary Sequence (PRBS) with length of 65536 

bits is generated to be mapped in 16-QAM modulation format. Optical modulation is based on 

single drive MachZehnder Modulator (SD-MZM) including a continuous wave laser with different 

linewidth: 1 kHz, 25 kHz and 100 kHz. Launch power of 0 dBm and 9 dBm is guaranteed by ideal 

amplifier at the output of the optical transmitter. Signals are transmitted through single mode 

 

Fig 10. Simulation Setup of a 3x16 Gbaud 16QAM Nyquist-WDM. 
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Fig. 9. 16-QAM k-Means based demodulation. 
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nonlinear dispersive fiber (SMNDF) with distances up to 90 km. Optical noise is injected to yield 

and OSNR values from 0 to 25 dB. The optical coherent receiver includes a laser with the same 

configuration as the one used at the transmitter side. DSP module includes chromatic dispersion 

compensation, clock recovery and 5-taps LMS equalizer using a training sequence of only 300 

symbols. 

 

4.2. Experimental Setup 

Fig. 11 shows the experimental setup based on three lasers arrangement with 100 kHz linewidth 

that are used to generate 3×16 Gbaud 16QAM Nyquist WDM system. The digital-analog converter 

(DAC) operates at 64 Gsamp/s and the center and side frequency channels are generated using 

different DACs to produce uncorrelated signals. Random bit sequences are mapped to generate 

16-QAM symbols using a root raised cosine filter with roll-off factor of 0.1. Resulting in spectral 

widths of 17.6 GHz for each channel. The spacing between channels goes from single channel 

scenario to, 18 GHz (close channels), 17.6 GHz (0% overlap), 17 GHz (6.8% overlap), 16.5 GHz 

(12.5% overlap), 16 GHz (18% overlap), 15.5 GHz (24% overlap) and 15 GHz (30% overlap). 

Optical noise is aggregated to yield an OSNR of 14.3 to 36.3 dB. The receiver counts with a 

coherent wideband receiver of 35 GHz electrical bandwidth, then the signal is digitized by an 80 

Gsamp/s real-time oscilloscope, finishing with an offline digital signal processing based on 

Matlab. 

 

 

5. Results and Discussions 

5.1.  Spectral Overlapping Estimation 

 

   5.1.1. Method based on FCM plus KNN 

 

Channel overlapping estimation is made based on the analysis of the partition matrix given by 

FCM algorithm, comparing highest and non-highest membership degrees of a received symbol 

with its actual belonging symbol. 

Results shown that at higher channel overlapping, higher is the amount of symbols where closest 

centroid to received symbols is not the correct one. Fig. 12 shows curves of percentage of actually 

correct symbols that are correct at the a) the highest, b) second highest and c) third highest, 

membership degree respectively according to FCM classification matrix vs OSNR for different 

channel spacing. Fig 12a shows that for a 30% of channel overlapping, the actual amount of 

symbols belonging to the highest membership level is 83% at 36.3 dB of OSNR. This means that 

ICI impairment gives an important error even when noise is minimum. Fig 12b shows the amount 

 

Fig 11. Experimental Setup of a 3x16 Gbaud 16QAM Nyquist-WDM. 
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of classified symbols where the belonging symbol had the second higher membership degree, 

besides, Fig 12c shows that almost 3% symbols are the third option as membership degree 

decrements at 30% channel overlapping and at 36.3 dB of OSNR.  

 

The estimation results are based on percentage of accuracy using KNN. Spectral overlapping is 

predicted when resulted counting vectors of frames of 10k are inputs to KNN algorithm. Two 

possible monitoring scenarios are examined. The first one is seen in Fig. 13, where the OSNR is 

known by receiver and the spectral overlapping is estimated based on that value. It is noticed that 

when signals OSNR is high and channels experience low spectral overlapping e.g spacing of the 

same data rate, not overlapping at all (18 GHz spacing) or at single channel scenario, the resulted 

 

Fig 13. Channel-overlapping estimation accuracy based on FCM + KNN for every single OSNR values. 
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Fig 12. FCM Results a) Percentage of symbols where modulation symbol with first membership degree were 

correct ones. b) Second highest membership degree. c) Third highest. 
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vectors due the FCM classification is almost the same (almost all the symbols belong to the closest 

centroid), nonetheless, when these scenarios are considered, estimation accuracy gives up to 85% 

at 21.3 dB of OSNR. Likewise, when these scenarios are not considered, 92.4% is obtained at 21.3 

dB of OSNR. Hence, when OSNR is introduced as a feature into the KNN algorithm, accuracy 

percentage obtained was 76.23% and when single channel and close channels scenarios are not 

considered, the percentage obtained was 84%. The second monitoring scenario is when the signal 

OSNR is not known by the receiver, the KNN algorithm is trained and tested with only the counting 

vectors obtaining a 72% accuracy percentage when single channel and close channels scenario are 

not considered. 

 

5.1.2. Method based on KNN applied to Histograms 

 

The estimation results are based on percentage of accuracy using KNN. Channel overlapping is 

predicted when features of In-Phase and Quadrature histograms are inputs to KNN algorithm. This 

monitoring technique, brings two possible scenarios too. The first one is seen in Fig. 14, where the 

OSNR is known by receiver and the channel overlapping estimation is made based on that value. 

Likewise, as previous technique, histograms max-min values of counts given by single channel 

scenario and close channels scenarios (18 GHz spacing), are almost the same, thus, when these 

scenarios are considered, estimation accuracy presents 70% average accuracy. Likewise, when 

these scenarios are not considered, this average value is almost 80%. The second monitoring 

scenario (OSNR is not known by the receiver), shown a 66% accuracy percentage when single 

channel and close channels scenario are not considered. 

 
 

5.2. Demodulation 

 

5.2.1. Simulation Results 

 

Our first step was the emulation of nonlinear noise-like distortions in Matlab. AWGN was 

added to yield OSNR values from 0 to 25 dB. 

 
Fig 14. Channel-overlapping estimation accuracy based on Histograms + KNN for every single OSNR 

values. 
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Simulation of 16-QAM modulation format was introduced in such distortions emulation. LMS 

equalization was applied, and then, each ML technique were separately implemented after the 

equalizer module. BER vs ONSR curves are shown in Fig. 15. It is noticed that none of the three 

ML techniques improves the performance of LMS equalizer, this is because emulated effects in 

Matlab are totally mitigated by the LMS equalizer, leaving no errors to be corrected by the ML 

techniques. 

Fig. 16 shows BER performance vs OSNR for the coherent optical system, with launch power 

of 0 dBm, in back to back (B2B) scenario. Fig. 17 shows the cases of 25 km and 50 km of 

transmission distance using laser linewidth of 1 kHz, 25 kHz and 100 kHz. In Fig. 16a, it can be 

seen a sightly gain of ∼ 0.2 dB by using both clustering techniques (k-Means and FCM). Due to it 

is B2B, the clustering corrects the impact of optical devices impairments, such as laser linewidth. 

In Fig. 17e, a BER value of 1×10−4 is reached at 14 dB after LMS equalization, while this same 

 
Fig 15. Channel-overlapping estimation accuracy based on Histograms + KNN for every single OSNR 

values. 
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Fig 16. OSNR vs BER for 0 dBm launch power in B2B simulated link. (a) Distance: 0 km, Linewidth: 1 kHz (b) 

Distance: 0 km, Linewidth: 25 kHz (c) Distance: 0 km, Linewidth: 100 kHz. 

0 2 4 6 8 10

10
-4

10
-3

10
-2

10
-1

OSNR [dB]

B
E

R

 

 

 

Hard Decision

k-Means

FCM

KNN

0 2 4 6 8 10

10
-4

10
-3

10
-2

10
-1

OSNR [dB]

B
E

R

 

 

 

Hard Decision

k-Means

FCM

KNN

4 6 8 10 12 14 16 18 20 22 24

10
-4

10
-3

10
-2

10
-1

OSNR [dB]

B
E

R

 

 

 

Hard Decision

k-Means

FCM

KNN

a) b) c)



BER was reached by using clustering at 12 dB, being the highest gain achieved for cases with  

launch power of 0 dBm. For 100 kHz linewidth scenarios, results using clustering techniques 

shown a BER value around 2×10−4after 20 dB for 20 km (see Fig. 17c) and 1.3×10−3 after 22 dB 

for 50 km of transmission distance (see Fig. 17f). Clustering techniques outperforms the BER in 

comparison with only electrical equalization, for all the cases simulated with a launch power of 0 

dBm. KNN did not show better performance than LMS equalization. Actually, the performance 

was worst in scenarios of 1 kHz and 25 kHz of laser linewidth. Scenarios of 90 km transmission 

 
Fig 18. OSNR vs BER for 9 dBm launch power at 20 km and 50 km transmission distance. a) Distance: 20 km, 

Linewidth: 1 kHz. (b) Distance: 20 km, Linewidth: 25 kHz. (c) Distance: 20 km, Linewidth: 100 kHz. (d) 

Distance: 50 km, Linewidth: 1 kHz. (e) Distance: 50 km, Linewidth: 25 kHz. (f) Distance: 50 km, Linewidth: 

100 kHz. 
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Fig 17. OSNR vs BER for 0 dBm launch power at 20 km and 50 km transmission distance. a) Distance: 20 

km, Linewidth: 1 kHz. (b) Distance: 20 km, Linewidth: 25 kHz. (c) Distance: 20 km, Linewidth: 100 kHz. 

(d) Distance: 50 km, Linewidth: 1 kHz. (e) Distance: 50 km, Linewidth: 25 kHz. (f) Distance: 50 km, 

Linewidth: 100 kHz. 
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distance were simulated with laser linewidth of 25 kHz and 100 kHz, BER values of 1.7×10−3and 

1.9×10−2 were obtained by using clustering at 12 dB and 16 dB, respectively, keeping a gain of 2 

dB compared with hard decision demodulation after LMS equalization.  

Fig. 18 shows BER vs OSNR curves for cases with launch power of 9 dBm for 20 km and 50 

km of transmission distance. Gain of 2 dB using clustering is obtained for 20 km of transmission 

distance with 25 kHz of laser linewidth at 12 dB of OSNR (see Fig. 18b). After 14 dB of OSNR, 

the BER obtained by using the adapted ML techniques, is higher than 3.1×10−3, 5×10−3, 

1.6×10−2 for 1 kHz, 25 kHz and 100 kHz, respectively, at 50 km of transmission distance. For 

launch power of 9 dBm, KNN’s performance is always better than LMS’s in terms of BER, except 

when 100 kHz linewidth is used at 50 km transmission distance (see Fig. 18f), obtaining BER 

values higher than 1.8×10−2. 
 
5.2.2. Experimental Results  

Fig. 19a to Fig. 19g show the performance of k-Means and KNN-based demodulation methods in 

terms of BER as a function of OSNR values for different channel spacing, including single 

channel. Results show better performance using the k-Means and KNN-based demodulation than 

the conventional demodulation based on hard decision. With both proposed demodulations, same 

gains up to 0.8 and 0.7 dB are reached for BER values at 7.6 × 10−3 and 1 × 10−2,  respectively 

for channel spacing of 16 GHz (see Fig. 19f). Moreover, it can be noticed that higher gains are 

obtained according channel spacing is reduced. It means the ICI effects are mitigated and this 

mitigation seems to be equally by both methods. For example, at channel spacing of 15.5 GHz 

(24% channel overlapping) in Fig. 19g, a gain of ~1.3 dB is obtained at BER of 3.1 × 10−2, while 

for a channel spacing of 18 GHz (no overlap), gain is negligible (see Fig 1b). Besides, it is noticed 

that demodulation based on k-Means shows a slightly better performance than KNN at low 

interference scenarios. 

 

 

 

 
 

Fig. 19.  BER vs OSNR for different spectral overlapping. a) Single Channel. b) Close Channels. c) 0% Channel 

Overlapping. d) 6.8%. e) 12.5%. f) 18%. g) 24%. 
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6. Conclusions 
 

Two Machine Learning-based methods are experimentally applied to determine if any 16-QAM 

received signal has been affected by spectral overlapping in a 3×16 Gbaud Nyquist-WDM system. 

The methods were designed without information of adjacent channels and both methods give an 

estimation of optical spectral overlapping using frames of only 10k received symbols. First 

method, based on Fuzzy c-Means (FCM) and K-Nearest Neighbors (KNN) estimates the optical 

spectral overlapping based on resultant sorted counting vectors from the FCM matrix. Accuracy 

obtained reached up to 92% and 72% of accuracy with previous knowledge of the measured 

OSNR, and without the OSNR, respectively. The second method based on certain features of In-

Phase and Quadrature histograms and with use of KNN reached up to 80% accuracy when 

information is OSNR is given, and 66% when the OSNR information is not known by receiver. 

Therefore, both methods could be used as monitoring tools to control lasers frequencies in future 

terabit gridless multicarrier systems.  

Furthermore, KNN, k-Means and FCM algorithms were adapted for 16-QAM non-symetrical 

demodulation in a simulated coherent optical system. Algorithms were implemented in DSP-based 

coherent receiver, after LMS equalizer module. Results showed that KNN slightly increases the 

BER when launch power of 0 dBm. It is due to nonlinear effects of the optical fiber are not 

stimulated and the training data was chosen with symbols affected by nonlinear distortions. Whilst 

with launch power of 9 dBm, for 1 kHz and 25 kHz of laser linewidth, a gain up to 2 dB is obtained. 

The use of clustering techniques (k-Means and FCM), outperforms conventional demodulation in 

all cases, presenting both, same performance for all scenarios.  

Besides, it is experimentally demonstrated the use of k-Means and KNN algorithms to minimize 

ICI impact in gridless Nyquist-WDM systems. The proposed methods improved conventional 

demodulation in all cases, achieving gains up to 0.7 dB at BER of 1 × 10−2. The mitigation of ICI 

was the same by k-Means and KNN, and k-Means shown better performance when the channel 

overlapping was minimum. Thus, these demodulation techniques would be useful to be 

implemented in future elastic/flexible networks. Finally, computational complexity is an issue to 

be further explore by all the proposed methods. 
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