
 

 

 

 

 

 

 

 

 

 

Parallel Algorithm for Suffix Array Construction 

 

 

 

 

 

 

 

 

Juan David Quintero Gómez 

 

 

  

  

 

 

 

 

 

 

Universidad de Antioquia 

Facultad de Ingeniería 

Departamento de Ingeniería Electrónica y de Telecomunicaciones. 

Medellín, Colombia 

2019 



 

 

 

 

Abstract 

Due to the advances of the so-called Next Generation Sequencing technologies 

(NGS), the amount of genetic information has been significantly increased and it is 

expected to continue growing, so there is a need to efficiently storing this type of 

information and  an alternative to solve it, is the compression. In many phases of this 

process, suffix array is a fundamental part and their construction needs a lot of time. 

In this degree thesis, an algorithm was designed for the construction of suffix arrays 

on DNA sequences that combine different techniques and levels of parallelization 

and contribute to improving the performance in the compression process of this type 

of data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

1. Introduction 

 

DNA sequencing is the process of determining the nucleotide sequence (Adenine, 

Cytosine, Guanine, and Thymine) of a DNA fragment. It has had a revolution as a 

result of the so-called Next Generation Sequencing technologies (NGS), which allow 

sequencing of more than one billion nucleotides per day in a single machine with a 

comparatively low cost.  

The DNA sequence is useful for informing scientists of the kind of genetic information 

that is transported in a segment of DNA. Scientists can use this sequence information 

to determine data that can highlight changes in a gene that can cause disease or 

find patterns between sequences. Also, due to the advances in this technology, the 

amount of this data is expected to continue growing and, efficiently storing and 

analyzing this type of information becomes a computational challenge. 

Between the techniques that have emerged as an alternative to solve these 

problems, are full-text indexes and data compression algorithms. For both strategies, 

algorithms to build suffix arrays play an important role. 

One example of an application relying on suffix arrays, is the compression workflow 

presented in [1]. Their algorithm uses a referential compression technique that 

requires many alignments. For that purpose, the Burrows-Wheeler transform (BWT) 

and the FM-index  are used, which in turn depend on efficiently building suffix arrays. 

As reported in [1], the Suffix Array Constructor (SAC) is one of the parts that uses more 

time in the compression process, hence the interest and motivation for the 

development of this project with the aim of designing and implementing an 

algorithm for the construction of suffix arrays and obtaining better performance 

through the use of parallelism. 

A sequential version of the algorithm was implemented in C language and profiling 

of its execution. After, optimizations were made and several parallel versions were 

implemented in order to accelerate the execution time. To test its scalability and 

performance, public databases were used. 

The objectives of this thesis are presented in Section 1. In section 2 a review of the 

state of the art is presented in order to explain what is the SAC and the different 

approaches to obtain it. In section 3 the methodology is presented and the 

algorithm is described, explaining each of the main phases of this. Section 4 presents 

the results obtained when testing with a public dataset. 

 

 



 

 

 

 

1.1. General objective.  

To develop a suffix array algorithm for DNA sequences, combining different levels of 

parallelization with the purpose of reducing the execution time. 

 

1.2. Specifics objectives. 

- To study the related work for the construction of suffix array, different 

algorithms of sorting for integers and coarse-grained and fine-grained 

parallelization. 

- To design and implement a schema of parallelization to make the groups and 

subgroups of sorting which can be processed separately. 

- To develop a schema of parallelization for the sorting of the suffixes into each 

group in the indexing algorithm. 

- To incorporate strategies of parallelism SIMD developed previously. 

- To execute latency and scalability tests of the algorithms developed, 

comparing the effects of the different levels of parallelism applied and 

comparing the results with other relevant programs within the state of the art. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

2. Related Work 

This section will explain the SA and the different approaches to its construction, since 

this is the main structure that will be discussed along the rest of the document. 

 The suffix array (SA) of the string S is an integer array that provides the initial positions 

of the suffixes of S in lexicographic order with a lexicographically smallest suffix ($). 

This means that A[i] contains the initial position of the i-th suffix in ascending 

lexicographical order as shown in Figure 1. 

 

 

 

 

Figure 1. Suffix Array of the word “CANSONAS” after applying the SAC. 

The straightforward way to generate a suffix array is to sort all suffixes using a 

comparison-based sorting algorithm. It starts by sorting according to only the first 

symbol of each suffix, then successively organize the order by expanding the 

evaluated part of each suffix. The main idea to develop a more efficient algorithm is 

to take advantage of the fact that each suffix of the string is also a suffix of another 

suffix of the string. The suffix array construction algorithms (SACAs) that take 

advantage of this property can be divided into three classes: prefix-doubling, 

recursive and induced copying.  

The first class of SACAs, prefix-doubling, sorts the suffixes of a string by their prefixes. 

The idea was first applied to suffix array construction by Manber and Myers [2], and 

later optimized by Larsson and Sadakane [3] in order to construct a data structure 

more space- and cache-efficient, and simpler to construct alternative to suffix trees. 

The second class of SACAs recursively sorts a subset of the suffixes, this result is used to 

infer  the  sort  of  remaining  subset,  and  finally  merge  the  two  sorted  subsets to 

get the SA. The final class of SACAs, induced copying, uses already-sorted suffixes to 

induce the sort of all suffixes. 



 

 

 

 

3. Algorithm developed 
 

3.1. Methodology 

 

The RadixSort and Insertion Sort algorithms were studied, characterizing the problem 

to statistically verify the variation in the dimension of the data as it iterates and 

considering the impact of the cardinality of the alphabet. After studying some 

sorting algorithms and since the construction of suffix array is an iterative process, 

these were incorporated into the partial sorting of the suffixes and data structures 

required for the complete sorting of the suffix array were designed and 

implemented. 

Then, the parallel versions were developed using different approaches in order to 

improve the execution time of the algorithm. Finally performance tests were realized 

also using Vtune1 in order to identify how much time each operating block spent and 

thus recognize the bottlenecks and measure the efficiency. Vtune helps showing 

how much time each function of the algorithm spends and the distribution of jobs 

between the threads that are being used. 

The evaluation of the algorithm was made with the dataset obtained from the Pizza  

&  ChiliCorpus 2 found in [4]. 

The algorithm was developed in C using the OpenMP API in order to add parallelism 

by using multithreading. 

3.2. Algorithm description 

To construct the suffix array it is necessary to represent the string S in suffixes (rows in 

Figure 2). The characters in the first column (highlighted in yellow in Figure 2) are 

called the Valid Chars (VC) and need to be sorted before proceeding to the next 

iteration.  

                                                        
1 https://software.intel.com/en-us/vtune 
2 http://pizzachili.dcc.uchile.cl/texts.html 



 

 

 

 

 

Figure 2. Suffixes array for the string “CANSONAS” and VC for the first iteration. 

After sorting the VC of the first iteration, the column containing the second character 

of each suffix become the new VC for the second iteration (see Figure 3). It should 

be noted that as a result of the first iteration, the previous VC (already sorted), form 

what we call subgroups, as shown in different colors in Figure 3. A subgroup is a set of 

suffixes that have the first i-1 characters in common in the i-th iteration. For any 

iteration, the VC must be sorted within each subgroup. 

 



 

 

 

 

 

Figure 3. Second iteration in the process of suffixes array construction with the formed 

subgroups. 

After sorting each of the characters in the second column according to the defined 

subgroups, the third column produces eight subgroups all containing only one 

character (see Figure 4). This means that all the suffixes have already been sorted 

and the SAC algorithm ends. 



 

 

 

 

 

Figure 4. Third and last iteration of the suffixes array construction, each subgroup 

have only one element. 

3.3. Algorithm implementation 

The block diagram for the developed algorithm is shown in Figure 5. In the first block 

called Init, the input string S and the unsorted suffix array (SA) are received. At this 

stage the necessary structures are created for the algorithm development: 

- The Bounds Array: this structure is a binary array and it stores the limits between 

the different subgroups; if a position of the array has a '1', it means that index is 

the last of a subgroup. The Bounds Array has the same size as SA. 

- The Sorted Suffixes (SS): this array is binary and it indicates if a suffix has been 

fully sorted or not. A suffix has been sorted when it is the only element of the 

subgroup; „1‟ means sorted and „0‟ means not sorted. SS has the same size as 

SA. 

- Valid Chars (VC): This array contains the VC of the current iteration, it has the 

same size of S. 



 

 

 

 

 

Figure 5. Block diagram for the developed algorithm 

The main part of the algorithm is composed by the next three blocks. VC Selection is 

to obtain the VC of each iteration, the VC array is filled in this stage. 

The second loop block is sorting of SA with the Radix Sort algorithm, based on the 

VC. The Radix sort algorithm was selected after test revealed that it was the fastest 

for most inputs. Although we considered using Insertion Sort for the cases when it was 

better, the extra control cost would make it yet slower. Therefore, only Radix Sort is 

used. 

The third is the construction of the subgroups of sorting. Group Builder does this task 

based on Bounds Array and SS. 

At this stage, the Bounds Array is modified according to the following criteria as 

shown in Figure 6: 

- If the previous valid character of the suffix is different from the previous valid 

character of the previous suffix (see first column in Figure 6), it is necessary to 

mark the Bounds Array with „1‟ in the same position of the suffix. This is 

because at that point they are part of different subgroups. 

- If the SS array, in any position has a value of „1‟, it is necessary to mark the 

Bounds Array with „1‟ in the same position. This is because that subgroup 

contains only one character, this means that it is totally sorted. 

- If the suffix was already covered, it is necessary to mark the Bounds Array with 

„1‟ in the same position. This is because the suffix is totally sorted. A suffix has 

been covered when the VC for the current iteration is $. 

This process is performed for each subgroup, for this, it is necessary to check whether 

there are more subgroups before continuing with the next iteration. 

All this is done iteratively until all the suffixes are totally sorted. The end of the iterative 

process is determined by an auxiliary variable that does the logic operation AND 

with each element of the SS array; if any suffix has not been sorted yet, the process is 

repeated. 



 

 

 

 

 

Figure 6. Second iteration of the suffixes array construction with the criteria that use 

de GroupBuilder for fill the Bounds Array. 

3.4. Parallel Versions 

 

After validating the Sequential version, two parallel versions were developed 

considering two design approaches. In the first, called Intergroup Parallel SAC 

algorithm, due to the conformation of the subgroups, the job of these is divided 

between the threads, this is an approach, one thread is responsible for reviewing the 

bounds array and deploy the other threads to sort a subgroup, every thread obtains 

the VC, sort them, and make the new subgroups as shown in the Figure 7.  

 

 



 

 

 

 

 

Figure 7. Block diagram for the Intergroup Parallel SAC algorithm, with the job divided 

by threads. 

Based on a parallel version of Radix-Sort [5] and VC Selection, the second version 

called Intragroup Parallel SAC algorithm was developed, in which in the moment of 

VC selection and sorting, the threads are deployed, as shown in the Figure 8, but in 

the final of every one is necessary to synchronize, also, the GroupBuilder is realized 

only by one thread.

 

Figure 8. Block diagram for the Intragroup Parallel SAC algorithm, the threads are 

deployed in the VC Selection and RadixSort. 

After the design and implementation of the algorithm, the performance tests done 

with Vtune showed that in the Intergroup Parallel SAC and Intragroup Parallel SAC 

versions, a lot of time was spent in the administration of the threads (creation and 

destruction), therefore other two versions were developed: 

- Hybrid Intergroup: it is a combination between the intergroup parallel SAC 

and the Sequential version. From a certain threshold value of the subgroup 

size, no more threads are deployed and the sequential execution is invoked 

instead for the remaining subgroups sorting. 

- Hybrid Intragroup: it is a combination between the intragroup parallel SAC 

and the Sequential version. From a certain threshold value of the subgroup 



 

 

 

 

size, no more threads are deployed in the Radix-Sort algorithm and VC 

selection and they are executed sequentially. 

4. Results and discussion 

The performance tests were executed using as input the dataset DNA of Pizza &  

ChiliCorpus, as mentioned in section 3.1. The size values of the input strings were: 1, 5, 

10 and 50 million characters. 

The objective was to compare the different strategies implemented, look at the 

scalability of all versions and analyze the speed-ups obtained. Tests were executed 

with 2, 4 ,8, 16, 32, 64 threads on a workstation with a dual Intel Xeon Gold 6152, with 

44 cores, 88 threads and 192 GB of RAM.  

Figure 9. Comparison of the execution time between the different versions 

implemented with a 50 M size input and varying the number of threads. 

Of the five versions developed, the Intragroup Parallel SAC version was the slowest, 

more than the Sequential as shown in Figure 9. As the number of threads increases, 

the runtime of the Intragroup version worsens; this is because every time that the 

Radix-Sort algorithm and the VC Selection are invoked, threads are created and 

many times they only have to process very small groups making the thread 

administration overhead relatively more expensive. 



 

 

 

 

 

Between the Intragroup and Hybrid intragroup versions, the difference is from certain 

threshold value of the subgroup size, the algorithm continues to execute sequentially. 

The Hybrid Intragroup version improves the execution time but it does not benefit 

from parallelism as shown in Figure 9, because as the number of threads increases 

the execution time remains constant. With the Hybrid Intragroup algorithm is possible 

to save time of administration of the threads for the small groups, but it is not 

scalable. 

The Intergroup parallel SAC algorithm is better at runtime compared to the 

Sequential version but as the number of threads increases, the runtime also does. This 

is because a lot of time is spent on the administration of the threads (creation and 

destruction) since for small groups it is more expensive in time to create the threads 

than the group sorting. 

In all versions, as the size of the input is greater, the runtime also increases but in 

almost all of them that increase is almost linear and with large slopes. In the best 

version, the increase in time is not more significant as shown in Figure 10. 

As the input size increases, the time difference between the versions becomes more 

significant and the use of the best version becomes more relevant. 



 

 

 

 

Figure 10. Comparison of the execution time between the different versions, varying 

the input size and with a fixed number of threads. 

The best version is the Hybrid Intergroup, there is a higher speed-up and it is scalable 

as shown in Figure 11. It has a good distribution of tasks between the threads 

responsible of each subgroup and the combination with the sequential algorithm 

also reduces the time of administration of the threads, spending most of the time in 

the execution of the Radix-Sort algorithm. 

The speed-up increases up to 48 threads, from there it is more or less constant and 

there is no significant improvement in runtime. It is important to keep in mind that in 

this version only as many threads are created as needed, for example, if in one of 

the iterations there are only 4 subgroups of ordering and it is configured for 32 

threads, only 4 threads are actually created which makes it more efficient. 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 11. Execution time and speed-up of the Hybrid Intergroup version. 

5. Conclusions 

In this thesis, an algorithm for the construction of suffix arrays has been presented 

since it is a very important process within the compression of DNA and it needs 

considerable time to be built. Then, parallel versions were developed with the 

aim of improving the execution time. Latency and scalability tests were realized, 

obtaining as a best result the Hybrid Intergroup version with a maximum speed-up 

of 123 with respect a Sequential version and input size of 50 million and 64 

threads. 

 

- When studying some sorting algorithms and performing tests to choose which 

one to use for the construction of suffix array, it was found that from an input 

size less than or equal to 25 elements the Insertion-Sort is better with respect to 

the Radix-Sort that was the chosen finally. The reason for not using both 

depending on the input size is that the time saving is not as significant since it 

would be necessary to include another conditional to choose which of the 

two algorithms will sort a certain group. 

- The best performing version was the Hybrid Intergroup, since tasks are better 

distributed between the threads and then stop to be created when the task 



 

 

 

 

of administrating them is more expensive than their contribution to the 

algorithm, for that reason, its combination with the sequential version is 

beneficial. 

- As the size of the input increases, the relation between the time in which the 

threads work and the time of their administration is greater, which makes the 

use of threads more relevant. 

- The use of threads doesn‟t always translate into less execution time since their 

administration also requires time and an example of this were the Intergroup 

and Intragroup versions, which were purely parallel and it was more expensive 

to create and destroy a thread for small sorting groups. 

- Assigning multiple independent tasks to a thread is more efficient, an example 

is the intergroup approach since in this, the thread is responsible for doing all 

the process to a sorting group during the iteration, in contrast to the 

intragroup approach since the threads are deployed to do only one 

particular task among all. Synchronizing all of them for such small tasks will be 

more expensive. 

 

6. REFERENCES 

 [1] Guerra Aníbal, Efficient Storage of Genomic Sequences in High Performance 

Computing Systems, PhD Thesis, UdeA.  

 

[2] Manber, U., Myers, G.: Suffix arrays: A new method for on-line string 

searches. In:Proceedings of the First Annual ACM-SIAM Symposium on Discrete 

Algorithms.pp. 319–327. SODA ‟90 (Jan 1990) 

[3] Larsson, N.J., Sadakane, K.: Faster suffix sorting. Theoretical Computer 

Science387(3), 258–272 (2007)] 

[4] Johannes Fischer, Florian Kurpicz : Dismantling DivSufSort 

[5] H. Wang‟s, “A faster openmp radix sort implementation,” 2017, accessed: 

2019-10-14. [Online]. Available: 

https://haichuanwang.wordpress.com/tag/algorithm/ 

https://haichuanwang.wordpress.com/tag/algorithm/

