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Doctor of Chemical Engineering

Towards a Framework for the Development of Control-oriented Multiscale
Models of Dynamical Systems: Semibatch Emulsion Polymerization Case Study

by Jorge-Humberto URREA-QUINTERO

This work develops a framework for the construction of a control-oriented model
from a multiscale perspective, using a semibatch emulsion polymerization process
as a case study. First, a so-called full multiscale model (considering the macro-,
meso-, and micro-scopic scales) was developed which is composed of a set of Par-
tial/Ordinary Differential Equations and a kinetic Monte Carlo simulation (PDE/ODE
- kMC). Then, to obtain a reduced-order representation of the multiscale model, Vari-
ance Algebra concepts are used as a tool for representing, at the mesoscopic scale,
a disperse-phase system from which only statistical information is available. After
that, a dataset considering several process operational conditions is built to cap-
ture the main dynamics at the microscopic scale. This dataset is used to derive a
closed-form model of the microscopic state variables by adopting a statistical mod-
eling approach. The final obtained control-oriented model is composed of a set of
ODEs comprising the macroscopic and the mesoscopic scales that can be solved by
using standard ODEs integration schemes, whereas the microscopic scale variables
are conveniently defined as some of the system outputs, represented by a set of al-
gebraic equations. In order to consistently solve the full multiscale model, a numer-
ical scheme based on the Finite Element Method is developed capturing the non-
linear evolution of the Particle Size Distribution (PSD). The validity of the obtained
reduced-order model is verified through several simulations with respect to the sys-
tem inputs. Finally, the multiscale control-oriented representation is employed to
perform a batch output-controllability analysis based on a set-theoretic approach.
The proposed framework might be adopted as a tool for the derivation of dynam-
ical multiscale models keeping a good balance between their tractability and pre-
dictive capability, which can constitute an advantage when implementing real-time
optimization and process control.
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Chapter 1

Introduction

Multiscale modeling is a term employed in several fields which commonly refers
to a specific set of methods used for simultaneously describing the dynamics of
a system at a different time and length scales (Keil, 2012). For lumped processes,
Ordinary Differential Equations (ODEs) are adopted to describe the time evolution
of the system. For distributed processes, hyperbolic/parabolic Partial Differential
Equations (PDEs) are preferred to describe not only the temporal but also the spa-
tial evolution of the system. For instance, Navier-Stokes and Population Balance
Equations (PBEs) are the basis for the design and optimization of a wide variety
of dynamic processes (Christofides, 2001). In contrast, for processes where impor-
tant phenomena at microscopic scales take place, multiscale approaches coupling
continuum-type lumped/distributed parameter models with Molecular Dynamics
(MD) or kinetic Monte Carlo (kMC) simulations are implemented because of their
ability to describe phenomena that are inaccessible using macroscopic continuum
laws and equations (Vlachos, 2005).

All physical and chemical phenomena are inherently multiscale in nature, the macro-
scopic behavior observed at human scale is just the result of the interaction of ele-
mentary particles, either at the microscopic, molecular, atomic or sub-atomic scales.
Modeling these types of processes requires understanding the behavior of the sys-
tem at each scale having a relevant effect on the overall phenomenon. Accurate
and efficient multiscale models could be required for a better prediction of the be-
havior of a studied system, as well as for the design of better optimization/control
strategies. Given all the details and specificity found for each multiscale system
of interest, they must be considered as particular case studies (Christofides and
Armaou, 2006; Majumder and Broadbelt, 2006; Varshney and Armaou, 2008; Ra-
soulian and Ricardez-Sandoval, 2014; Crose et al., 2015; Rasoulian and Ricardez-
Sandoval, 2015; Crose et al., 2017).

PDE/ODEs - kMC-based multiscale modeling approaches have been receiving a lot
of attention in the international research community in the last few years in order
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to be used in optimization and control tasks (Christofides and Armaou, 2006; Ma-
jumder and Broadbelt, 2006; Varshney and Armaou, 2008; Rasoulian and Ricardez-
Sandoval, 2014; Crose et al., 2015; Rasoulian and Ricardez-Sandoval, 2015; Crose
et al., 2017; Kimaev and Ricardez-Sandoval, 2017). There is a significant number of
publications on multiscale processes modeling, optimization, and control, includ-
ing some recent reviews (Braatz et al., 2006; Ricardez-Sandoval, 2011; Vlachos, 2012;
Karolius and Preisig, 2018). Within those reviews, the main tools available to ad-
dress this kind of problems as well as some open research questions are well ex-
plained. It is important to remark that because of the curse of dimensionality as-
sociated to the multiscale models (Ricardez-Sandoval, 2011; Kimaev and Ricardez-
Sandoval, 2017), model-order reduction techniques are commonly applied for opti-
mization/control applications based on PDE/ODEs - kMC models (Rusli et al., 2006;
Kwon et al., 2013b; Chaffart, Rasoulian, and Ricardez-Sandoval, 2016; Chaffart and
Ricardez-Sandoval, 2017; Chaffart and Ricardez-Sandoval, 2018a). Model-order re-
duction has been mainly focused on the development of a closed-form model for
the microscopic-scale in order to both reduce the model computational load and to
quantify the associated uncertainty due to the stochastic nature of the kMC simu-
lations. However, less attention has been paid to the dimensional reduction of the
mesoscopic scale in order to reduce the number of the degrees of freedom would
result from adopting, e.g., a discretization technique to numerical approximate its
solution, while indirectly also decreasing the amount of the kMC executions. That
could be another alternative to deal with the curse of dimensionality.

A wide range of complex chemical processes could require a multiscale perspective
for the description of their dynamical evolution if high-quality product specifica-
tions are required, such as: the manufacture of on-chip copper inter-connections
by electrochemical deposition of copper into a trench (Rusli et al., 2006; Braatz et
al., 2006; Li et al., 2007), the growth mode transitions that occur during physical va-
por deposition of thin films from a fluid in a vertical, stagnation-flow geometry (Lam
and Vlachos, 2001; Christofides and Armaou, 2006); concentration variations in the
fluid in two dimensions for catalytic flow reactor (Majumder and Broadbelt, 2006;
Ulissi, Prasad, and Vlachos, 2011); batch crystallization process to produce tetrago-
nal hen-egg-white lysozyme crystals (Kwon et al., 2013a; Kwon et al., 2013b; Kwon
et al., 2014a; Kwon et al., 2014b; Kwon et al., 2014c); electrochemistry applications
as CO electro-oxidation, fuel cells, and batteries (Röder, Braatz, and Krewer, 2019;
Röder, Laue, and Krewer, 2019), among others.

In the chemical vapor deposition process, particularly, during the epitaxial thin film
growth process in the stagnation point flow chamber, the evolution of the surface
microstructure is captured through kMC simulations which represent the surface
roughness trajectories as a combination of absorption, desorption and migration
stochastic events (Christofides and Armaou, 2006). The multiscale nature of the pro-
cess has been captured using nonlinear PDEs embedded with lattice-based kMC
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simulations. Moreover, the control problem of obtaining thin films with uniform
surface roughness had been solved based on this PDE-kMC dynamical model (Ra-
soulian and Ricardez-Sandoval, 2015; Rasoulian and Ricardez-Sandoval, 2016).

On the other hand, stochastic fluctuations in the microscopic-scale has been han-
dled in a crystallization process, particularly, in the crystal growth of the tetragonal
form of hen-egg-white lysozyme. Kwon et al. (2013a); Kwon et al. (2013b) modeled
and controlled this protein crystallization process taking into account both nucle-
ation and growth rates. In that work, the growth of each crystal was simulated via
kMC comprising adsorption, desorption and migration events on the (110) and (101)
crystal faces. PBE were used to describe the evolution of the particle size and shape
distribution inside the reactor. Kwon et al. (2014a), Kwon et al. (2014b), and Kwon
et al. (2014c) coupled the PBE and the kMC simulation with the mass and energy
balances obtaining a multiscale representation for the crystallizer. Then, the multi-
scale model was used for the design of a Model Predictive Control (MPC) scheme
to regulate the average shape of the crystal population in a continuous operation
mode.

In summary, well-defined approaches for modeling at least the nanoscopic, mi-
croscopic, mesoscopic, and macroscopic scales in a variety of chemical processes
have been already developed (Gooneie, Schuschnigg, and Holzer, 2017; D’hooge et
al., 2016). Additionally, several algorithms to simulate multiscale systems have been
reported (Keil, 2012; Kwon, Nayhouse, and Christofides, 2015; Xie and Luo, 2017;
Xie, Liu, and Luo, 2018; Röder, Braatz, and Krewer, 2019), where the latest de-
velopments are focused on assuring the numerical stability and reduction of the
computational cost (both, of integrating the different scales and of solving the com-
plete multiscale model). However, despite the similarities between the crystalliza-
tion and Emulsion Polymerization (EP) process for synthesizing structured poly-
mer particles, the latter has not yet been tackled by means of a multiscale approach
that simultaneously takes into account scales below the mesoscopic-scale, e.g., the
microscopic-scale through a kMC simulation.

1.1 Motivation and objectives

Multiscale representation of batch processes has opened the possibility of a better
control of relevant microscopic state variables allowing the manufacture of special-
ized products with microscopic specifications (Braatz et al., 2006). Consequently,
it would be desirable to have a formal approach to evaluate the process capabili-
ties to meet the desired end-product quality specifications. One alternative of do-
ing that could be the process controllability verification from a multiscale perspec-
tive (Ricardez-Sandoval, 2011). Notwithstanding some controllability analyses have
been successfully applied to one-scale (semi)batch processes to design some trajecto-
ries through the process can be controlled to achieve the desired system performance
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(Srinivasan and Bonvin, 2007; Aumi and Mhaskar, 2009; Gómez-Pérez, Gómez, and
Alvarez, 2015), they have never been applied to the controllability analysis of batch
processes adopting a multiscale perspective. Two main limitations of the controlla-
bility verification from a multiscale perspective are: i. the natural complexities arise
from the multiscale representation because of the inherently uncertainty at the finer
scales (Ricardez-Sandoval, 2011), and ii. the general absence a closed-form model at
the finer scales (Christofides and Armaou, 2006; Varshney and Armaou, 2008). How-
ever, by applying a suitable model-order reduction procedure, it would be possible
to derive a control-oriented representation of the multiscale model such that, e.g., a
set-theoretic approach to verify the system controllability could be applied (Gómez
et al., 2015; Gómez-Pérez, Gómez, and Alvarez, 2015).

1.1.1 Main objective

To develop a framework for evaluating the controllability of multiscale systems that
explicitly considers the effect of microscopic variables over the final product quality
by the manipulation of macroscopic variables.

1.1.2 Specific objectives

1. Propose a control-oriented multiscale dynamical model for the selected case
study (i.e. core-shell morphology control in a free-radical polymerization pro-
cess).

2. Select an algorithm to solve the proposed multiscale model.

3. Analyze the effect of model parameter uncertainties on the process (uncer-
tainty analysis).

4. Extend the range of applicability of the set-theoretic controllability analysis to
the controllability analysis of a multiscale process.

5. Evaluate the process capabilities of achieving the desired product quality spec-
ifications via simulation.

1.2 Thesis contributions

In this work, a framework for the development of a control-oriented model from
a multiscale perspective is developed, using a semibatch emulsion polymerization
process as case study. This work adopts multiscale models represented by Par-
tial/Ordinary Differential Equations - kinetic Monte Carlo (PDE/ODE - kMC) set
of equations. The proposed framework is composed of the following stages: i. to
build a multiscale dynamical model combining the most representative scales of
the process; ii. to solve the full multiscale model adopting suitable numerical al-
gorithms for each of the considered scales; iii. to build a reduced-order model by
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means of the Variance Algebra concepts for the disperse-phase scale represented by
a PDE; iv. to generate a database by solving the full multiscale model considering as
much as possible admissible process operational conditions to capture the most rel-
evant dynamics of the microscopic scale; v. to apply a statistical modeling approach
for developing a closed-form model of the microscopic scale, while keeping a good
predictive capability of the model; and vi. to validate the obtained reduced-order
model by the verification of the process output controllability from the set-theoretic
approach.

The multiscale model representing the emulsion polymerization process is proposed
attempting to keep a good balance between model predictions accuracy and tractabil-
ity. It integrates microscopic-scale calculations based on kMC simulations (stochas-
tic). On the other hand, the mesoscopic scale representing the PSD (the dispersed
media) is carried out by adopting the FPE. The macroscopic scale is described based
on mass and energy balances (deterministic). The Variance Algebra concepts are
used to describe the stochastic nature of the particles growth kernel at the meso-
scopic scale. This approach is precisely the main step towards the construction of a
reduced-order multiscale model. To deal with the curse of dimensionality, the pro-
cedure based on the statistical modeling approach introduced by Hernandez (2018)
is adopted to derive a closed-form model for the microscopic scale. The proposed
method relies on testing hypotheses based on a wide range of versatile distribution
models instead of assuming a single specific distribution. A statistical model is ob-
tained by minimizing the variance of the error model, instead of the variance of the
data sample, thus reducing the effect of over-fitting. Based on such a procedure, the
problem of fitting a model based on a dataset generated by several realizations per-
formed from the kMC model solution is addressed. The developed control-oriented
model from the multiscale representation predicts the traditional macro- and meso-
scopic variables of the emulsion polymerization process, along with the average
number of free radicals and the secondary nucleation rate at the microscopic scale,
all with a low computational load.

Accordingly, this work develops a reasonable computational control-oriented model
while preserving a good level of detail in the formulation capturing information
from three different length scales. Although the macroscopic-scale description is
kept simple, it must be noticed that the modeling effort is on the microscopic-scale
representation (where an integration of chemical, colloidal and hydrodynamic events
is performed using the kMC technique (Hernández and Tauer, 2008a)), as well as in
the mesoscopic-scale (where even a reduced-order model is proposed for describing
the mean and standard deviation of the particle size distribution by means of only
two ODEs), and in an efficient scales integration. Considering these key points, the
model can be used as a base for developing a control strategy towards improving the
process productivity while avoiding secondary particle nucleation. For instance, it
is showed here that the batch output-controllability analysis based on a set-theoretic
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approach allows to verify whether it is possible or not to achieve a set of end-batch
quality specifications and how the definition of those specifications affects the size
of the so-called Controllable Trajectories Sets. Additionally, it is shown how the in-
formation of the computed sets can be used to define different reachable end-batch
specifications.

1.3 Thesis outline

Chapter 2: Theoretical foundations and literature review

This chapter reviews the literature pertaining to multiscale modeling approaches
and highlights the relevance of developing these models to bridge microscopic and
macroscopic domains. The challenges regarding multiscale modeling are summa-
rized in Section 2.1. Numerical methods that have been developed to approximate
the solution of multiscale models are analyzed in Section 2.2. Section 2.3 deals with
the approximations reported in the literature to obtain computational inexpensive
closed-form models at lower scales. Finally, controllability analyses to address this
problem are described at the end of this chapter in Section 2.4.

Chapter 3: Multiscale model of a free-radical semibatch emulsion polymerization
process

This chapter presents all the procedure for the multiscale model derivation and its
numerical solution. Chapter 3 is organized as follows. The process description and
multiscale mathematical model deduction are presented in Section 3.1. The compu-
tational strategy derived by using the FEM for numerically solving the multiscale
mathematical model is presented in Section 3.2. Finally, some concluding remarks
of the chapter are presented in Section 3.4.

Chapter 4: Multiscale model order reduction

This chapter contains the mathematical formulation regarding the derivation of a
reduced-order model for the mesoscopic scale and the statistical modeling proce-
dure adopted to build the closed-form model for the microscopic scale. Chapter 4
is organized as follows. The mesoscopic reduced-order model derivation based on
the Variance Algebra concepts is presented in Section 4.1. The closed-form model
derivation of the microscopic scale is presented in Section 4.2. Finally, chapter con-
clusions are presented in Section 4.5.

Chapter 5: Set-theoretic output-controllability analysis

In this chapter all the concepts about the bath output-controllability analysis from a
multiscale perspective are introduced and applied to a particular case study. Then
the output-controllabilty for the semibatch emulsion polymerization process is per-
formed. Chapter 5 is organized as follows. In Section 5.1, the foundations of the
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set-theoretic based batch output-controllability analysis are presented and the gen-
eral mathematical representation of the multiscale system addressed in this paper is
stated. In Section 5.2, the output-controllability analysis is performed for the free-
radical emulsion polymerization process. Afterwards, the simulation results are re-
ported. Finally, some concluding remarks of the chapter are presented in Section
5.3.

Chapter 6: Conclusions and future work

Finally, in this chapter some general conclusions are presented and a number of
suggestions for future work are presented.

1.4 List of publications

Following three papers encompassing the whole thesis were published as the result
of this research work:

1. Urrea-Quintero, J. H., Ochoa, S., & Hernández, H. (2019). A reduced-order
multiscale model of a free-radical semibatch emulsion polymerization process.
Computers & Chemical Engineering, 127, 11-24.

2. Urrea-Quintero, J. H., Michele, M., Ochoa, S., & Hernández, H. (2020). Multi-
scale modeling of a free-radical emulsion polymerization process: Numerical
approximation by the Finite Element Method. Computers & Chemical Engineer-
ing, 106974.

3. Urrea-Quintero, J. H., Hernández, H., & Ochoa, S. (2020). Towards a controlla-
bility analysis of multiscale systems: application of the set-theoretic approach
to a semi-batch emulsion polymerization process. Computers & Chemical Engi-
neering, 106833.
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Chapter 2

Theoretical foundations and
literature review

2.1 Modeling of Emulsion Polymerization (EP) processes

The most common approaches for modeling and simulating processes containing
a dispersed media (as is the case for EP processes) represent the system of inter-
est as a set of coupled ODEs-PDEs. However, such approximations assume that
the system behaves as a continuum entity, which does not represent closely the ac-
tual phenomenon. A suggested approximation for overcoming this is to combine
continuum models with coarse models by assuming that the system is not a contin-
uum but a collection of a very large number of particles. Thus, allowing to observe
the behavior of each of those particles separately, i.e., multiscale approaches (Ma-
tous et al., 2017). For the specific case of EP processes, the most recurrent approach
employed for modeling a particular EP process couples mass and energy balances
with PBEs (Crowley et al., 2000; Kiparissides, 2006; Sweetman et al., 2008; Hosseini,
Bouaswaig, and Engell, 2012). This type of approaches have shown to be very effec-
tive only in the simplest case of pure growth processes (Sheibat-Othman et al., 2017).

However, the real picture is more complicated than that because the particle size
is not the only factor distinguishing the particles from each other. Besides the size
of the particle, the characteristic length, volume, mass, age, composition, and other
characteristics of an entity in a distribution should be taken into account (Gunawan,
Fusman, and Braatz, 2004). This can be achieved by considering any of the above
particle characteristics as internal coordinates to describe the evolution of the Par-
ticle Size Distribution (PSD). The main issue in doing so is that by considering ad-
ditional internal coordinates leads to a multidimensional PBE system. Main draw-
backs of this are: i. reaching a solution of a multidimensional PBE is very challeng-
ing, still an open research problem up to four internal variables or dimensions (Gu-
nawan, Fusman, and Braatz, 2004; Reinhold and Briesen, 2015); ii. the stochastic na-
ture of the evolution of the internal variables is still neglected (Hosseini, Bouaswaig,
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and Engell, 2012); and iii. it is still not clear how to validate multidimensional PBE-
based models while models from different scales can be separately validated and
afterwards integrated in a coupled simulation scheme (D’hooge et al., 2016). For
instance, an alternative approach for solving the problem could be extending the
model by incorporating additional scales and representing the evolution of the sys-
tem in those scales through stochastic simulation approaches as Brownian Dynamics
or kMC simulations (Hernández and Tauer, 2008a).

Modeling EP processes is a challenging task because the rate of events that take
place in this process range from about 100 to 109 s−1 involving entities of very differ-
ent length scales, such as ions and molecules (< 1nm), macromolecules (1− 10nm),
polymer particles (10nm − 1µm) and monomer droplets (> 1µm) (Hernández and
Tauer, 2008b). Those difficulties in the modeling of EP reactors coupled with the
lack of robust online measurements for critical process parameters have forced prac-
titioners to use several empirical or semi-empirical equations. Furthermore, indus-
trial EP reactors suffer from process variability, that usually makes the process ir-
reproducible from batch to batch (Dimitratos, Elicabe, and Georgakis, 1994). This
variability includes random disturbances in the process operating conditions, which
in the EP case corresponds to stochastic fluctuations occurring at the finest scales
(D’hooge et al., 2016). For example, fluctuations of the particle state around the
mean size cause a stochastic broadness in the PSD (Hosseini, Bouaswaig, and En-
gell, 2012). For all these reasons, a very precise representation of the process is only
possible if different simulation techniques are integrated into a multiscale simulation
approach (D’hooge et al., 2016).

The integration of different scales in EP was initially done by incorporating the
mesoscopic scale of PSD in the macroscopic polymerization model (Dimitratos, Eli-
cabe, and Georgakis, 1994). Almost in parallel, the microscopic scale of radical dy-
namics and chain growth was considered using Gillespie’s stochastic simulation al-
gorithm (Gillespie, 1976), also known as kMC simulation. kMC was originally used
for modeling the molecular weight distribution of polymers (Tobita, Takada, and
Nomura, 1994), although without a multiscale integration. Integration of polymer-
ization models at different scales, including the micro-scale was explored for both
emulsion (Hernández, 2008) and mini-emulsion polymerization (Rawlston, 2010).
However, integrating the micro-, meso- and macro-scopic scales in a single model is
still challenging, particularly from the computational load point of view.

Up-to-date modeling approaches for describing the dynamic evolution of polymer-
ization processes include sophisticated descriptions at the meso- and micro-scopic
scales (Xie, Liu, and Luo, 2018; Xie and Luo, 2017; Yao, Su, and Luo, 2015; Yan,
Luo, and Guo, 2011). For example, full Computational Fluid Dynamic (CFD) sim-
ulations have been developed, which include the turbulence characteristic of the
fluid pattern inside the reactor (Xie, Liu, and Luo, 2018; Xie and Luo, 2017). Most of
the proposed approaches have resulted in an accurate representation of the studied
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phenomenon. However, they might be impractical for carrying out model-based op-
timization and control tasks in real-time implementations. Furthermore, it must be
noticed that selecting an adequate solution strategy for integrating continuum with
coarse models (in order to exchange information among the scales) is a very impor-
tant task (Gooneie, Schuschnigg, and Holzer, 2017). Such exchange of information
could lead to numerical instability during the numerical solution of the problem
(Ricardez-Sandoval, 2011). Additionally, numerical solution of the multiscale mod-
els imposes several restrictions as high computational load or the need for paral-
lelizable numerical schemes, not to mention that those models can hardly be used for
subsequent tasks such as process optimization and/or control because of the compu-
tational load and the lack of a closed-form of the scales below the mesoscopic-scale
(Xie and Luo, 2017).

There are two predominant modeling approaches of EP processes, classified by Vale
and McKenna (2005) as level-one and level-two models. Level-one models assume
that all polymer particles have the same average volume. In contrast, level-two
models incorporate the latex PSD by means of PBEs, allowing to investigate on
the link between the reaction kinetics, particle nucleation, and growth (Vale and
McKenna, 2005). However, PBE-based models require refined constitutive mod-
els of the phenomena occurring in the process to extend their predictive capabil-
ities, which are not always easy to derive. Another limiting factor of the PBE-
based models adoption is that the more complete the models, more complex they
are and more computationally extensive they numerical solution become (Vale and
McKenna, 2005; Sheibat-Othman et al., 2017).

There are several ways in which the constitutive models regarding the EP process
can be improved. For instance, by including additional mechanisms of the reaction,
by accounting for the hydrodynamics effects on coagulation (Sheibat-Othman et
al., 2017), by extracting semi-deterministic kernels for the physical phenomena (e.g.,
the particle growth kernel) directly from the experimental data (Hosseini, Bouaswaig,
and Engell, 2013), by incorporating the stochastic nature of the PSD evolution (e.g.,
an stochastic term to account for the growing particle fluctuations (Hosseini, Bouaswaig,
and Engell, 2012; Urrea-Quintero, Ochoa, and Hernández, 2019)) or by taking into
account additional length scales into the simulation and representing the system
evolution in those scales through stochastic approaches as Brownian Dynamics (Hernán-
dez and Tauer, 2008a) or kMC simulations (Urrea-Quintero, Ochoa, and Hernán-
dez, 2019).

2.2 Numerical methods for solving multiscale models described
by PDE/ODEs – kMC system of equations

In recent years, many papers have been published dealing with the numerical so-
lution of multiscale models described by a PDE/ODEs – kMC set of equations (see
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Ricardez-Sandoval (2011) and Röder, Braatz, and Krewer (2019), and the references
therein, for a review of the already proposed numerical schemes). In general terms,
the numerical solution of such multiscale models possess two main bottlenecks: i.
the need of the solution of the PBE by means of an efficient numerical scheme and
ii. the stochastic nature of the microscopic scale evolution, properly capture by the
kMC simulation but still too expensive. Regarding the numerical solution of the
PBEs, many papers have been published dealing with their numerical approxima-
tion in recent years. Some relevant works and reviews are the following: Rigopoulos
and Jones (2003); Immanuel and III (2003); Gunawan, Fusman, and Braatz (2004);
Vale and McKenna (2005); Vale and McKenna (2007); Schütte and Wulkow (2010);
Bouaswaig and Engell (2010); Hosseini, Bouaswaig, and Engell (2012); Bertin et
al. (2016); Sheibat-Othman et al. (2017); Omar and Rohani (2017). Roughly speak-
ing, the numerical methods used to solve the PBEs can be classified into moment
methods, stochastic methods (such as Monte Carlo simulations), and discretization
methods (such as finite element methods, finite difference/volume methods, and
sectional methods). The lowest computation time can be obtained by using moment
methods, but they only capture a few statistical moments of the PSD. Stochastic
methods are suitable when random dynamics of the population want to be simu-
lated (e.g., nucleation and aggregation), but the evolution of only a small number
of particles can be included. Discretization methods allow the computation of the
full PSD, but although the first statistical moment of the PSD is accurately capture,
sometimes they fail capturing the higher moments due to the high numerical diffu-
sion and dispersion (Bouaswaig and Engell, 2010). Among discretization methods,
finite differences and finite volume methods are more practical due to their easy
implementation, but the finite element method (FEM) can be adapted to represent
more complex PSDs (Rigopoulos and Jones, 2003; Vale and McKenna, 2005; Sheibat-
Othman et al., 2017).

Discretization techniques are one of the most popular numerical methods to solve
PBEs-based models. Those discretization techniques basically differ in the choice of
the mesh selection as well as the global population properties that want to be con-
served (Bertin et al., 2016). High-resolution methods are an interesting option for
solving PBEs which are advection-dominated. These techniques are able to capture
a high accurate solution on coarse meshes by conditioning the solution through a
function called flux limiter. That function tends to high order accuracy in the PSD
smooth region and a first order scheme is used in the vicinity of large gradients.
These methods reduce numerical diffusion present in first order discretization and
also eliminating the oscillations caused by higher order discretization schemes (Gu-
nawan, Fusman, and Braatz, 2004). The main drawback of these methods is that
still require large computational time and often cannot be used to perform neither
sensitivity analyses nor optimization tasks (Majumder et al., 2010).

Another class of discretization methods often used to solve PBEs is the method of
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weighted residuals (Finlayson, 2013), which is a general technique to solve problems
formulated as differential equations in science and engineering. The methods associ-
ated with this technique retrieve the full distribution by approximating the solution
with a series of basis functions. Local basis functions that lead to the so-called FEM
can be adopted to preserve the generality and flexibility of the numerical scheme by
capturing highly irregular distributions (Zienkiewicz, Taylor, and Zhu, 2013). The
main feature of the FEM over the finite difference methods and other discretiza-
tion techniques is the recovery of the entire PSD as well as their flexibility in coping
with any possible formulation of the PBE (Rigopoulos and Jones, 2003). Several ap-
plications of the FEM to solve PBEs-based problems are summarized in (Vale and
McKenna, 2005; Sheibat-Othman et al., 2017). It has been argued that the adop-
tion of the FEM to solve PBEs typically results in severe oscillations that cannot be
alleviated neither by introducing an artificial diffusion term nor by increasing the
number of elements (Mesbah et al., 2009). However, it is also well documented that
if the Péclet (Pe) number is kept small enough, i.e. Pe < 1, it is possible to obtain
a satisfactory solution of the problem if a smooth function is transported far from
Dirichlet boundaries (Donea and Huerta, 2003b), which is the case, for example, of
the Fokker-Planck equation (FPE) formulation to represent the evolution of the PSD
presented in (Hosseini, Bouaswaig, and Engell, 2012; Urrea-Quintero, Ochoa, and
Hernández, 2019) or the example presented in (Donea and Huerta, 2003b) to cope
with the advection-diffusion of a Gaussian hill.

In the FEM, the solution is approximated through linear combinations of prede-
fined interpolation functions and the PDE is translated into an algebraic system by
means, for instance, of the minimization of the weighted residual (Wriggers, 2008;
Zienkiewicz, Taylor, and Zhu, 2013). The main advantages of the FEM over other
discretization techniques are the recovery of the entire PSD and its flexibility in cop-
ing with any possible formulation of the PBE (Rigopoulos and Jones, 2003). As a
disadvantage of the FEM, the numerical solution might be characterized by severe
oscillations that require special attention in setting up the simulation, such as mesh
discretization associated with a low Péclet number (Pe) or the use of a stabilizing
term (Donea and Huerta, 2003b).

2.3 Closed-form for microscopic scales

Small scale chemical reactions are well studied and recognized to be stochastic by
nature (Schnoerr, Sanguinetti, and Grima, 2017). At fine scales, chemical reactions
are better modeled by the Chemical Master Equation (CME) which describes reac-
tions as discrete probabilistic events (Gillespie, 1976; Gillespie, 2007). While the so-
lution of the CME can be obtained using traditional numerical methods for solving
ODEs, the challenge of finding a solution lies in the number of states that need to be
evaluated. For systems with even a relatively small size, the CME cannot be solved
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since the number of possible states is prohibitively large Gillespie (2007). This im-
poses a limitation towards the direct application of the CME to obtain an estimate of
system states. In fact, no analytic solutions to the CME are known for most systems.
Moreover, stochastic simulations are computationally expensive, making system-
atic analysis and statistical inference a challenging task (Schnoerr, Sanguinetti, and
Grima, 2017; Evans and Ricardez-Sandoval, 2014). The scope of this work is not to
present a detailed literature review on the topic, but numerous solution methods
have been designed to approximate the solution of the CME. Some relevant refer-
ences on the topic are Jahnke (2011); Kazeev et al. (2014); Schnoerr, Sanguinetti,
and Grima (2017). Particularly, Evans and Ricardez-Sandoval (2014) presented an
interesting work where the so-called Multiple Scenario Chemical Master Equation
(MSCME) algorithm is introduced. MSCME models and analyze uncertainty prop-
agation in the CME. Analysis indicated that the proposed algorithm showed a good
prediction of uncertain parameters and could be an alternative to the most widely
used method, the kinetic Monte Carlo algorithm.

The microscopic scale of PDE/ODEs – kMC multiscale models, which is represented
by the kMC simulation, is the most critical part from the computational viewpoint
since it requires a computationally intensive stochastic solution. The main con-
cern is that it lacks a closed mathematical form. Few authors have already pro-
posed some approaches to obtain closed-forms estimates from the kMC simulations
(Rasoulian and Ricardez-Sandoval, 2015; Rasoulian and Ricardez-Sandoval, 2016;
Crose et al., 2015; Crose et al., 2017; Chaffart and Ricardez-Sandoval, 2018a; Ki-
maev and Ricardez-Sandoval, 2019). The drawbacks of such approximations are
that they are limited only to the linear regime of the problem (Crose et al., 2015;
Crose et al., 2017), require a sensitivity analysis via a Monte Carlo simulation over
the parameters domain, which entails a large number of samples from the uncer-
tain parameter distribution (Rasoulian and Ricardez-Sandoval, 2015; Rasoulian and
Ricardez-Sandoval, 2016), requires a large dataset to train the model (Kimaev and
Ricardez-Sandoval, 2019), or leads to the construction of a stochastic PDE, which is
later solving in conjunction with the other scales, increasing the dimension of the
problem (Chaffart and Ricardez-Sandoval, 2018a). Furthermore, those procedures
were developed for each case and it is not clear how to generalize them as a tool to
build closed-form models based on kMC simulations for the EP case here consid-
ered.

Crose et al. (2015, 2017) developed a multiscale model and operation framework
for plasma-enhanced chemical vapor deposition (PECVD) on thin film silicon solar
cells. The model captures the gas-phase reaction and transport phenomena that lead
to the deposition of the thin film across the wafer. They were able to study the evo-
lution of the thin film surface microstructure at different spatial locations across the
wafer. The relationships among substrate temperature, gas-phase mole fraction of
SiH3, and the thing film growth rate were plotted were a clear nonlinear behavior
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appears above 500 K. Thus, the data from the kMC simulation was used to construct
linear growth rate equations which depend on the temperature by ignoring the non-
linear effects restricting the study to the region below 500 K. The linear growth rate
equations were fitted using standard least square methods.

Rasoulian and Ricardez-Sandoval (2015a,b, 2016) presented an algorithm to design
a robust estimator that can mimic the multiscale model of an epitaxial thin film
growth process for online control and optimization purposes. The model parameter
uncertainties were considered by using first-order power series expansion (PSE). It
was shown that the robust estimator bounded multiple realizations of the multiscale
model under parameter uncertainty. The algorithm presented by the authors is quite
straightforward and its capabilities to obtain closed-form models of the microscopic
states was proved. It is fair to say that the algorithm presented by the authors is
the best up to date candidate to be applied to multiscale systems represented by
PDE/ODEs - kMC models. However, the requirement of the sensitivity analysis as
a prerequisite of the algorithm imposed a challenge in its adoption as the authors al-
ready pointed out. The reason is that the sensitivity analysis requires a Monte Carlo
simulation over the parameters domain and this requires a large number of samples
from the uncertain parameter distribution (Rasoulian and Ricardez-Sandoval, 2014).
It is not always possible to perform such a Monte Carlo simulation over the parame-
ters domain by taking enough samples to reconstruct the full probability distribution
of the microscopic states due to the curse of dimensionality associated with the mul-
tiscale models. Additionally, although the authors mentioned that their proposed
algorithm is applicable regardless of the type of probability distribution assigned
to the uncertain parameters, such an uncertainty was assumed to be normally dis-
tributed in the study. This means the closed-form models of the microscopic states
represent normally distributed uncertainty as well. Therefore, if a different distribu-
tion on the parameters is assumed and if additional statistical moments rather than
the mean value and the standard deviation are required to characterize the micro-
scopic states, it not clear how this procedure can be generalized.

Aside from the methods developed with aim of a closed-form model derivation
at the microscopic effect, there are some additional works that have focused on
the quantification and uncertainty propagation at this scale (see, e.g., Rasoulian
and Ricardez-Sandoval (2014); Chaffart and Ricardez-Sandoval (2017); Kimaev and
Ricardez-Sandoval (2017); Kimaev, Chaffart, and Ricardez-Sandoval (2020)). Those
works are worth to be mentioned because the PCE method, that leads to a deter-
ministic description of a stochastic process and can be used to approximate the kMC
simulation, has been adopted as an efficient technique to uncertainty propagation
in the multiscale system where discrete scales are modeled without the need of con-
sidering a closed-form expression, just as in the case of the microscopic scale in the
polymerization application presented in this work.
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The capabilities and functionality of the PCE are acknowledged as a way to approx-
imate the kMC simulation in multiscale approaches, specially because of the critical
role uncertainty might play at fine scales for the accurate prediction of variables at
coarser scales. However, in the case study presented in this work, the goal was not to
propagate the uncertainty, but to handle high computational complexity at the mi-
croscopic scale as a statistical modeling problem where exploiting the advantages of
the method proposed by Hernandez (2018), bearing in mind other statistical model-
ing approaches could be adopted as well. Consequently, the importance of quantify
and propagates microscopic scale uncertainty is admitted studying its effect but will
be left to future.

In summary, approaches to handle probability distribution functions other than Gaus-
sian distributions have been developed in the literature and used in the context of
multiscale modeling, see e.g. Kimaev and Ricardez-Sandoval (2017); Chaffart and
Ricardez-Sandoval (2017); Chaffart and Ricardez-Sandoval (2018b). However, no
closed-form model of the microscopic scale accounting for distributions beyond the
Gaussian have been reported.

2.4 Set-theoretic based controllability analysis of batch pro-
cesses

One key property that must be evaluated when designing a control structure for a
dynamic system is the controllability. According to Kalman (1959), controllability
is the property of dynamical systems by which an initial state of a system can be
steered to another state by a control input sequence in a finite time interval. How-
ever, in most cases, controllability is taken for granted, perhaps, since some influ-
ence of the system inputs over its outputs is observed when open-loop simulations
are performed. Currently, determining to what extent a multiscale system is con-
trollable (i.e. whether a set of microscopic state variables can be driven to meet
some desired product quality specification), is still an open research topic. In a very
complete review of the topic design and control of multiscale systems, by Ricardez-
Sandoval (2011), the author pointed out that one of the limitations when designing
control strategies from a multiscale perspective is the lack of availability to measure
on-line the system properties at the lower scales. In that review, it was argued that
maybe the most promising strategy to overcome this limitation is to improve the sys-
tem controllability, by proposing a robust design at the smaller length scales. This
could avoid the need for on-line sensors measuring molecular or microscopic state
variables, which is fundamental for classical control, at the expense that any external
perturbation or uncertainties that were not considered while designing the under-
lying microscopic or molecular system may result in loss of performance and poor
product quality. The mentioned review closed by calling for more research on this
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subject to validate this promising alternative, which seems to be the most practical
method that may exist to control multiscale systems.

A controllability analysis could be performed following different approaches based
on system characteristics. For example, if the system can be approximated by a liner
representation around a stable operating point, then Kalman rank condition can be
applied for investigating its controllability (Kalman, 1959). However, if a suitable
linear approximation of the system is not available, and/or it lacks a stable oper-
ating point (which is the case in batch processes), another kind of approximation
must be adopted in order to evaluate the system controllability. This implies that
batch processes are not controllable in Kalman’s sense. That is why, from the clas-
sical control theory viewpoint, batch processes are simply not controllable (Gómez
et al., 2015).

Only few works have addressed the controllability problem of batch processes in
the open literature, which are: (Srinivasan and Bonvin, 2007; Gómez, Gómez, and
Alvarez, 2010; Gómez et al., 2015; Gómez-Pérez, Gómez, and Alvarez, 2015). Con-
trollability analysis of batch processes possess additional challenges in comparison
to continuous, because: i. they lack a steady-state operating point and ii. at least one
of state variables is irreversible. Hence, it is expected that batch processes evolve far
away from their initial conditions to reach some end-point product quality specifi-
cations (Srinivasan and Bonvin, 2007; Gómez et al., 2015).Some of these mentioned
drawbacks have been addressed in the work by Gómez et al. (2015). In that work,
authors claimed that, from the set-theoretic viewpoint, it is possible to find a state-
space region in which an admissible control action sequence exists such that the
system is driven from an initial condition to a final desired point. This state-space
region is defined by the Controllable Trajectories Set (CTS). The computation of the
CTS can be viewed as an approach to perform a state controllability analysis for
batch processes. In this direction, controllability analysis based on a set-theoretic
approach has been successfully applied to batch processes from a single-scale point
of view (e.g. macroscopic scale) (Gómez-Pérez, Gómez, and Alvarez, 2015; Gómez
et al., 2015). However, to the author’s knowledge, such approximation has not been
applied to the output-controllability analysis of batch processes from a multiscale
perspective (i.e., in processes represented by PDE/ODEs – kMC multiscale mod-
els). Two main limitations for applying the mentioned set-theoretic approach to the
controllability analysis from a multiscale perspective are: i. the intrinsic curse of
dimensionality of sets computation, which increases exponentially as the number of
state variables increases, and ii. the methodology requires a closed-form model of
the process, which is usually not available when scales below the mesoscopic scale
are included in a multiscale modeling approach (Christofides and Armaou, 2006;
Varshney and Armaou, 2008). These two limitations are addressed in the present
work, in order to extend the range of applicability of the controllability analysis
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based on a set-theoretic approach to the batch output-controllability analysis of pro-
cesses represented by PDE/ODE-kMC multiscale models. First, in order to obtain a
multiscale model suitable for the controllability analysis, a statistical modeling ap-
proach is proposed as a tool to formulate a closed-form model of the microscopic
states. On the other hand, to face the curse of dimensionality in sets computation, a
variance algebra approach is used for deriving a reduced-order model of the meso-
scopic scale model. As a case study, a semi-batch emulsion polymerization pro-
cess represented by a multiscale approach recently introduced by Urrea-Quintero,
Ochoa, and Hernández (2019) is considered. This problem is relevant because a
lack of controllability could represent a limitation in some polymerization processes
when high product quality is required. In many polymer production processes, high
product quality requires minimizing/maximizing multiple product quality specifi-
cations. Such a problem may result in a limited set of viable process trajectories,
giving more relevance to process controllability analysis to get the most out of its
dynamical properties (Murray, 2003). By adopting the procedure proposed in this
work, it would be possible to carry out a controllability analysis for any system rep-
resented by a PDE/ODEs - kMC multiscale model. As it will be shown in Chapter
5, the batch output-controllability analysis proposed here (based on a set-theoretic
approach) allows verifying whether it is possible or not to achieve a set of end-batch
quality specifications from a multiscale perspective, given the available admissible
inputs. This means, that it allows verifying if the available manipulated inputs have
the desired effect on the microscopic state variables. Other advantages of perform-
ing a batch output-controllability analysis are: i. the verification of the feasibility
of the end-product quality specifications prior to the definition of a control policy.
This could be particularly helpful for designing reference trajectories such that the
end-product quality specifications are achieved even if external disturbances appear
(Gómez-Pérez, Gómez, and Alvarez, 2015). ii. The possibility of implementing op-
timal control structures (e.g. a model predictive controller), such that the process
can be safely steered from an initial condition to the desired final state while remain-
ing inside the CTS. This means that neither the inputs nor the states constraints are
violated (Aumi and Mhaskar, 2009).

State-space controllability was defined by Kalman (1959) for Linear Time Invariant
(LTI) systems and later extended to the nonlinear case by Sussmann and Jurdje-
vic (1972). To verify if a LTI system is controllable, it is enough to compute Kalman’s
controllability matrix and verify if its rank is equal to the state-space dimension.
In that case, it is said that the system is fully controllable. For the nonlinear case,
one option is to iteratively compute Lie’s brackets to verify the system accessibil-
ity (Sussmann and Jurdjevic, 1972). However, the accessibility property is weaker
than the state controllability property. Then, in order to claim a nonlinear system as
controllable, not only the accessibility rank condition must be fulfilled, but it must
be reversible (Sontag, 1998). State-space controllability in the nonlinear case is only
a local property, that is, a nonlinear system is locally controllable around a system
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equilibrium or operating point but seldom anything else can be said in the global
sense (Sontag, 1998).

Skogestad and Postlethwaite (2007) defined the output-controllability as the ability
to achieve an acceptable control performance; that is, to keep the system outputs
within specified bounds from a reference value using available inputs and avail-
able measurements of the outputs, even if unknown but bounded disturbances ap-
pear. A common characteristic in both, the state-space controllability and the output-
controllability is that the result of the analysis is a yes/no answer (i.e. the system
is/is not controllable). However, it is not possible to conclude to what extent a non-
linear system is controllable (in any, the state-space or the output- controllability
sense), or how much effort (energy) is required to reach the desired final state. In the
authors’ opinion, such missing information would be very valuable for being used
in the simultaneous design-control of multi-scale systems.

In a batch process, the objective is to obtain a product with a defined specification
that is set by conducting a sequence of steps (i.e. to obtain a set of states within de-
fined final conditions from an initial condition within a given process time) (Gómez-
Pérez, Gómez, and Alvarez, 2015). Then, the control problem can be seen as a steer-
ing problem in which the system must be safely driven from an initial condition to
a final desired one (Aumi and Mhaskar, 2009). Commonly, the final specification
is reached by tracking a predetermined reference trajectory (Chen and Sheui, 2003).
Such a reference trajectory should be designed by taking into account the system
state-space domain to guarantee the end-product specification feasibility (Aumi and
Mhaskar, 2009). However, there is not only one safe path that could be followed,
but a bounded hypervolume can be computed which contains on all the possible
controllable trajectories given the set of admissible inputs and a suitable model of
the system.

The following considerations must be taken into account to address the batch output-
controllability problem: i. full state controllability is not required to achieve the final
product specifications. Indeed, a system that is not fully state controllable still could
be output controllable (Yuan, Chen, and Zhao, 2011). In batch processes, the out-
put is typically composed only by a subset of the system states. ii. The number of
outputs that can be independently controlled cannot exceed the number of available
inputs to be manipulated (Srinivasan and Bonvin, 2007). iii. Two types of control ob-
jectives are desired to be met in batch processes, namely, run-time profiles tracking
and run-end values fulfillment (Srinivasan and Bonvin, 2007). iv. Since controllabil-
ity addresses the problem of the existence of inputs that result in the desired system
performance, some deviations from the nominal run-time profiles are accepted as
long as the run-end values are reached (Gómez-Pérez, Gómez, and Alvarez, 2015).

Srinivasan and Bonvin (2007) introduced a definition of batch output-controllability
and a quantitative notion of stability that takes into account the finite-time nature
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of batch processes. Additionally, they pointed out that since two types of objectives
need to be met in batch processes, namely, run-time profiles and run-end values,
these two aspects must be combined in an appropriate definition of controllability.
The authors stated that controllability is a property that should inform whether or
not there exist (open-loop) inputs that bring about the desired performance of the
system. Consequently, they defined that a batch system is output-controllable if it
is possible to find a sequence of control actions that can simultaneously guaran-
tee the run-time tracking profiles while run-end values are met. This batch output-
controllability definition certainly incorporates all the elements to verify whether a
batch process is or is not controllable. However, some drawbacks of this approach
are: i. in order to verify the controllability of a nonlinear system, it is necessary to
linearize its model; ii. the analysis still gives a yes/no answer about the controllabil-
ity of the batch system, but no further information about, e.g., the process limitations
are given; iii. it is assumed that the run-time profiles have been already predefined
(usually by means of offline optimization) which does not leave room to improve
the process performance while it is running on through, e.g., a run-time redesign-
ing trajectory approach that could deal with unexpected disturbances/uncertainties.
Therefore, it would be desirable that the results of a controllability analysis allow
finding a group of trajectories that could be used for fulfilling the end-batch require-
ments, instead of having a one-single trajectory to follow.

In order to address some of the above mentioned drawbacks, Gómez et al. (2015)
proposed a set-theoretic based approach for the controllability analysis of batch sys-
tems. As stated by the authors, some remarkable points of this approach are: i. the
results obtained by this approach go beyond a yes/no answer, i.e. quantitative in-
formation about the system capabilities and limitations can be obtained from sets
computation. Using this information, further analyses could be performed, as for
example, process optimization, trajectories design and control structure selection
(Gómez-Pérez, Gómez, and Alvarez, 2015; Gómez et al., 2015). ii. The physical re-
strictions over the system’s inputs, states, and outputs can be naturally included as
part of sets computation leading to a realistic result from the application point of
view.

In this work, Srinivasan and Bonvin (2007) output-controllability definition is adopted.
Then, to verify the output-controllability of batch processes, the set-theoretic method-
ology developed by Gómez et al. (2015) is used here as the framework for addressing
the output-controllability analysis of a multiscale system. The mentioned methodol-
ogy includes three main steps: 1. to compute the reachable sets for each of the i-steps
belonging to the finite sequence of N steps; 2. to compute the controllable set for each
of these i-steps; and 3. to compute the subset called CTS, which is the intersection
between both, the reachable and the controllable sets, in each of the i-steps. In this
work, the algorithm proposed by Gómez et al. (2015) to estimate the Controllable
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Trajectories Set (CTS) is adopted as part of the framework for evaluating the control-
lability of multiscale systems based on a set-theoretic approach. It is important to
notice that computing the controllable trajectory set requires both, the calculation of
the reachable and controllable sets. The difficulty of computing these sets for nonlin-
ear systems that are subject to input-output constraints has been an impediment in
the successful implementation of the sets-based controllability analysis. The curse of
dimensionality is perhaps the major drawback in the computational approximation
of the different required sets (Gómez et al., 2015).
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Chapter 3

Multiscale model of a free-radical
semibatch emulsion
polymerization process

Abstract

In this chapter, the micro-, meso- and macro-scopic scales are combined into the
framework of PDE/ODEs - kMC multiscale models to simulate the synthesis of core-
shell particles by emulsion polymerization. The multiscale model is proposed at-
tempting to keep a good balance between model predictions accuracy and tractabil-
ity. This model integrates microscopic scale calculations based on kinetic Monte
Carlo (kMC) simulations (stochastic). The mesoscopic scale representation of the
dispersed media is carried out by the Fokker-Planck Equation (FPE) for describing
the stochastic nature of particle growth. The macroscopic-scale (deterministic) is
described based on mass and energy balances. The developed model predicts the
traditional macro- and mesoscopic variables, along with the average number of free
radicals and the secondary nucleation rate at the microscopic scale.

3.1 Derivation of the set of equations for the multiscale dy-
namical model

The process considered here is a semi-batch surfactant-free emulsion polymerization
of a polymer P2 in the presence of polymer P1 that is assumed monodisperse, initi-
ated by a water-soluble initiator I. Monodispersity is assumed in order to observe
the evolution of the particle size distribution (PSD) from a single particle size. The
usefulness of this assumption has been recognized since several decades ago ((Over-
beek, 1982; Ugelstad et al., 1985)). The process aims to grow core-shell particles of
P2 in P1 by the continuous addition of monomer M. Particularly, core-shell systems
(and structured polymers in general) are relevant for high-performance applications,
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for example in the synthesis of nanocomposites for energy storage and dielectric ap-
plications (Huang and Jiang, 2015), catalysts (Mei et al., 2007), and biomedical appli-
cations (Sounderya and Zhang, 2008), just to mention a few.

It is assumed that during the polymerization process the kinetic mechanism in Table
3.1 governs the polymer P2 production. Here, I is the initiator, R•o are the primary
free-radicals formed by the initiator decomposition, R•i,j are radical chains, R•i+1 are
radical chains plus one monomer unit, M is a monomer unit, Pi+j is a dead poly-
mer of chain length i + j as a result of termination by recombination between two
growing chains of length i and j, both in the aqueous phase, R•jmax−1 is a radical
chain formed by jmax − 1 monomer units, [R•jmax

]p is a radical chain formed by jmax

monomer units which is considered as a new polymer particle, all of them in the
aqueous phase. [R•i ]aq and [R•i ]p represents monomeric radical chains, [M]aq and
[M]p represents the monomer units, in each side of the aqueous – polymer interface,
respectively. [R•i,j]pk are free radical chains, [R•i+1]pk are free radical chains plus one
monomer unit, [M]pk is a monomer unit, and [Pi+j]pk is a dead polymer of chain
length i + j as a result of termination by recombination between two growing chains
of length i and j, both in the polymer phase.

TABLE 3.1: Free-radical polymerization mechanism.

Phase Step Mechanism

Aqueous

Initiator decomposition 2 I
kd−−→ 2 R•o

Propagation R•i + M
kp−−→ R•i+1

Termination

by recombination

R•i + R•j
kt−−→ Pi+j

by disproportionation

R•i + R•j
kt−−→ Pi + Pj

Nucleation R•jmax−1 + M
kp−−→ [R•jmax

]p

Aqueous-
polymer
interface

Radicals Dynamic [R•i ]aq
ka−−⇀↽−−
ko

[R•i ]p

Swelling [M]aq

Keq =
[M]p

[M]Sat
aq−−−−−−⇀↽−−−−−− [M]p

Polymer
Propagation [R•i ]pk + [M]pk

kp−−→ [R•i+1]pk

Termination

by recombination

[R•i ]pk + [R•j ]pk

kt−−→ [Pi+j]pk

by disproportionation

[R•i ]pk + [R•j ]pk

kt−−→ [Pi]pk + [Pj]pk

At the beginning of the polymerization process, the reactor is charged with polymer
P1 seeds. Then the reactor is heated up until the reaction temperature T is reached,
starting the polymerization reactions. Once the reactor reaches the reaction tempera-
ture, it is fed with both I and M until the end of reaction time. Since the polymeriza-
tion reactions are highly exothermic, the reactor is cooled using a jacket that keeps
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its temperature in a bounded interval. It is assumed here that any change in the
jacket temperature Tj occurs instantaneously, thus it dynamic evolution is neglected
and not model. Both flows, I and M, and the jacket temperature Tj can be used all
together or any combination of them as manipulated process inputs to control the
outputs.

The multiscale model for describing the dynamic evolution of free-radical polymer-
ization couples macroscopic variables (e.g., input flows and the reactor temperature)
with microscopic quantities (e.g., the average number of free-radicals and the sec-
ondary nucleation rate). These two microscopic states are critical to satisfactorily
obtain structured polymer particles with the desired size and morphology. Macro-
scopic and microscopic scales are connected through the definition of a mesoscopic
scale which represents the evolution in time of PSD inside the reactor.

A very important aspect of the multiscale model is the exchange of information
among the different scales. At lower-scales the model requires information about
the state of the system (temperature, composition, etc.) which is determined at
upper-scales. At the same time, the upper-scales require parametric and structural
information of the system, which is obtained at lower-scales. Therefore, top-down
and bottom-up information exchange procedures must be clearly defined. Figure
3.1 shows a schematic representation of the scale interactions for the EP process,
where the information exchanged among scales is indicated by directional arrows
that show the direction in which the information flows.

3.1.1 Macroscopic scale model

The macroscopic model is composed of the traditional mass and energy balances.
Assumptions to derive the macroscopic model included: the density and the over-
all heat transfer coefficient remain constant, the monomer is fed in excess which
implies that all monomer eventually goes to the polymer phase (Klein, Kuist, and
Stannett, 1973) which implies that:

[M]aq = [M]sat
aq = 0.607e3− 91.258e3/T, (3.1)

The mass balance for both aqueous and polymer phases and the energy balance are
given by:

Mass Balance for water:

d(ρwVΦaq)

dt
= FIρw (3.2)

Balance for the initiator in the aqueous phase:
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FIGURE 3.1: Scales exchange information scheme of the emulsion
polymerization multiscale model. FM and FI are the initiator and
monomer flows rate, respectively , T and Tj are the temperature of
the reactor and the jacket, respectively, [I]aq is the initiator concentra-
tion in the aqueous phase, [M]p is the monomer concentration in the
polymer phase, Φaq is the water volume fraction, [M]sat

aq is the satu-
ration concentration of the monomer in the aqueous phase, n̄ is the
average number of free-radicals, Ns is the secondary nucleation rate,

and VCell is the reference volume of the microscopic scale.

d([I]aqΦaqV)

dt
= FI [I]aq0 − kd[I]aqΦaqV (3.3)

Balance for the monomer in the polymer phase:

d[M]p
dt

=
1

V(1−Φaq)

(
FM[M]p0 − rpV − (1−Φaq)[M]p

dV
dt

+ V[M]p
dΦaq

dt

)
(3.4)

Total mass balance:

d(ρV)

dt
= FMρM + FIρw (3.5)

Energy balance inside the reactor:

d(ρCpVT)
dt

= FMρMCpM TM + FIρwCpw TI −U
(

4V
Drd

)
(T − Tj)− rpV∆Hr (3.6)
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where ρ is the mixture density (water, monomer, and polymer P2), ρw is the wa-
ter density, ρM is the monomer M density, Cp is the mixture heat capacity (water,
monomer, and polymer P2), CpM is the monomer M heat capacity, Cpw is the water
heat capacity, kd is the initiator decomposition rate coefficient, rp is the polymer-
ization rate, U is the overall heat transfer coefficient, Drd is the reactor diameter
(assuming a cylindrical reactor), ∆Hr is the reaction enthalpy, FI and FM are the ini-
tiator and monomer flows rate, respectively: TM, TI , and Tj are the temperature of
the monomer stream, initiator stream, and the jacket, respectively. Φaq is the wa-
ter volume fraction, [I]aq is the initiator concentration in the aqueous phase, [M]p is
the monomer concentration in the polymer phase, V is the reactor volume, T is the
temperature inside the reactor; [I]aq0 is initiator concentration in the feed stream and
[M]p0 is concentration of the monomer in the feed stream.

The rate of polymerization rp is given as follows (Odian, 2004):

rp =
Npkp[M]p

NA
n̄(x) (3.7)

with rp given in mol/cm3 s and x = [V, Φaq, [I]aq, [M]p, T, FM, FI , Tj], the process
variables at the macroscopic scale and

Np =
6(1−Φaq0)

πd3
p0

, (3.8)

where Np is the particle number concentration inside the reactor, kp is the propaga-
tion rate coefficient, NA is the Avogadro number, dp is the average polymer particle
diameter, and n̄ is the average number of free-radicals inside the polymer particles.
The latter is computed at the microscopic scale. In practice, the number of particles
changes over time, as a result of secondary nucleation and coagulation. However,
these effects are neglected here. In other words, this work focuses only on the kinetic
behavior and growth of the seed particles.

Although the use of equation (3.7) for determining polymerization rates seems quite
straightforward, the average number of radicals per particle in a given polymeriza-
tion system cannot be measured directly but must be estimated. For this purpose,
Smith and Ewart (1948) proposed their famous recursion equation for describing the
distribution of the number of radicals inside the polymer particles.

The Smith-Ewart recursion formula can be obtained from the more general Chemical
Master Equation (CME) formulation as in equation (3.9) (Hernández, 2008):

dNn

dt
=

ρ

Np
(Nn−1 −N) + k0 [(n + 1)Nn+1 − nNn]

+
kt

NAv
[(n + 2)(n + 1)Nn+2 − n(n− 1)Nn] (3.9)
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where Nn is the number concentration of particles containing n radicals, ρ is the rate
of radical capture (s−1), k0 is the rate of radical desorption (s−1), kt is the rate of the
termination and v is the volume of a polymer particle.

In order to obtain analytical expressions for n̄ from the solution of the recursion
equation. Smith-Ewart model describes the time evolution of the number of particles
containing n radicals by considering the kinetic events leading to the free radicals
capture and loss within the polymer particles (Smith and Ewart, 1948). The typical
Smith-Ewart’s conditions are: case 1 (n̄� 1): chain transfer of radicals to monomers
and subsequent desorption from the particles and termination in the aqueous phase
is much faster than radical absorption and propagation. Case 2 (n̄ = 0.5): instanta-
neous termination when a second radical enters the latex particles already contain-
ing a radical instantaneous termination occurs. Case 3 (n̄ � 1): when the pseudo-
first-order rate coefficient for bimolecular termination is very small while termina-
tion in the aqueous phase and desorption are less important. Examples of cases 1, 2,
and 3 are given by Penlidis, MacGregor, and Hamielec (1988), Huo et al. (1988), and
Sajjadi and Yianneskis (2003), respectively. However, equation (3.9) has been used
as the basis for much more complex analytical and numerical solutions.

3.1.2 Mesoscopic scale model

The mesoscopic scale is associated with the size of the polymer particles inside the
reactor, meaning the Particle Size Distribution (PSD). The Fokker-Planck Equation
(FPE) is adopted in combination with mass and energy balance equations to simulate
the dynamical evolution of the PSD as a stochastic process. The following equation
refers to the associated Langevin equation of the stochastic process:

G′(r, t) = G(r, t) + K(r, t)
dWt

dt
(3.10)

The growth rate model is given by:

G(r, t) =
dr
dt

=
kp MwM

4πr2ρPol NA
n̄(x)[M]p. (3.11)

where G and G′ are the deterministic and stochastic growth rate kernels, respec-
tively, K is a function which determines the fluctuation of the particles size around
their mean value, and dWt is the differential update of a Wiener process. It should be
noticed that equation (3.10) has the form of a standard stochastic differential equa-
tion, with G referred to as the drift coefficient, while K is called the diffusion coeffi-
cient. The higher the value of K, the higher the effect of the stochastic component in
the particle’s growing process. This translates into a broader particle size dispersion.
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MwM is the monomer molecular weight and ρPol is the structured polymer density.
The evolution of the population density function (ηr(r, t)) of the stochastic process
in equation (3.10) is represented by the FPE given by (Beers, 2006):

∂ηr(r, t)
∂t

= −∂(G(r, t)ηr)

∂r
+

∂

∂r

(
D(r, t)

∂ηr

∂r

)
on Ωr (3.12)

where D = 0.5K2 and Ωr ∈ R is the particles size domain. G and D can be in-
terpreted as the advection and diffusion coefficients, respectively. The diffusion
coefficient is a main factor that influences the predictive capabilities of the FPE to
fit the PSD obtained from experimental results. In general, it is a function of the
particle size and time, but following the approach by Hosseini, Bouaswaig, and En-
gell (2013), it is chosen here as D = D(r), only depending on the particle radius.

The initial condition of the FPE is given by a normal distribution that represents the
initial PSD of the seeds inside the reactor, as follows:

ηr(r, t = 0) = ηr0 =
1√

2πσr0

exp
(
− (r− r̄0)2

2σ2
r0

)
(3.13)

where r̄0 and σr0 are the mean value and the standard deviation of the PSD of the
seeds, respectively. Neumann type boundary conditions are defined at the left and
right sides of Ωr, that is at the boundaries ∂Ωr, to preserve the total amount of the
particles inside the reactor over the whole simulation time, as follows:

∂ηr

∂r
= 0 on ∂Ωr (3.14)

3.1.3 Microscopic scale model

In this work, n̄ is computed by means of a microscopic model solved via a kMC
simulation method instead of approximating it to the typical Smith-Ewart’s limiting
cases. Thus, equation (3.7) closes the problem of EP kinetics to the determination
of the concentration of monomer in the particles ([M]p), the number of polymer
particles (Np) and the average number of radicals per particle (n̄), which in turn
depends on the processes of radical capture, radical desorption, radical generation,
chain transfer and radical termination.

The kMC method was formally presented by Gillespie (1976) as a method for obtain-
ing singular realizations of processes described by the Chemical Master Equation
(CME). The full kMC approach repetitively generates two random numbers (r1 and
r2) with an uniform distribution between 0 and 1 to simulate the chemical reactions
stochastically: r1 governs the time-step between reaction events, denoted as τ; r2
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determines which reaction occurs at the given instant based on the reaction proba-
bilities Pν. The two random numbers are generated repetitively until the sum of all
τi (i = 1, 2, . . . , Nτ) is equal or greater than a desired reaction time Nτ. The reaction
events time step is defined as:

τi =
1

a0(x)
ln
(

1
r1

)
(3.15)

where a0 is the total rate defined as a0 = ∑m
ν=1 aν and aν is the propensity function,

or stochastic rate, of the νth reaction channel. x refers to the species concentration at
the microscopic scale. Moreover, the reaction probabilities are defined as:

µ−1

∑
ν=1

Pν < r2 <
µ

∑
ν=1

Pν (3.16)

where µ ∈ [2, m] is the index of the selected reaction channel and Pv is the probability
of the v-th reaction channel, which is obtained based on the fraction of the total
reaction rate as:

Pv =
aν

∑m
ν=1 aν

. (3.17)

The kMC simulation calculates the average number of radical per particle n̄ in a
small reactor volume Vcell with k polymer particles and the rate of new formed
polymer particles Ns, secondary particle nucleation rate. k = 1, . . . ,Np, where
Np = NpVcell the total number of particles within Vcell . Regarding Vcell , two as-
sumptions are made: (i) it is a continuous homogeneous medium, that is, it has uni-
form properties throughout its volume; and (ii) it has periodic boundary conditions
meaning that each particle escaping through one face of the volume will re-enter
through the opposite face (boundary). This is a reasonable assumption since the aim
is not to capture spatial variations but to understand the overall reaction kinetics
inside the reactor.

The following six competitive events are considered in the kMC simulation (Hernán-
dez and Tauer, 2008b): (i) initiator decomposition in the aqueous phase, (ii) radical
capture by polymer particles, (iii) propagation and (iv) termination by recombina-
tion reactions in the aqueous phase, (v) termination in the particle phase, and (vi)
dead polymer absortion. Therefore, the m = 6 propensity functions a1, . . . , a6 are
defined as:
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Aqueous-phase Initiation: a1 = kd‖C[I]aq VwNA‖ (3.18)

Aqueous-phase Propagation: a2 =
kp

NAVw
‖C[M]w VwNA‖‖CnVwNA‖ (3.19)

Aqueous-phase Termination: a3 =
kt

NAVw
‖CnVwNA‖ (‖CnVwNA‖ − 1)(3.20)

Living polymer absorption: a4 =
kc

NpNAVw
‖CnVwNA‖Np (3.21)

Dead polymer absorption: a5 =
kc

NpNAVw
‖C[P]VwNA‖ (3.22)

Termination in particles: a6 = max

[
0,

6ktn(n− 1)
πNAd3

p

]
(3.23)

where C[I]aq , C[M]w , Cn, and C[P] are initiator concentration, monomer concentration,
radical concentration, and polymer concentration at the microscopic scale, respec-
tively; Vw = (1−Φo)Vcell is the aqueous phase volume in cm3; and ‖x‖ means the
nearest integer to x. Regarding equation (3.23), since this is a microscopic approach
to the reactions taking place inside a single particle, n̄ cannot be used. It is there-
fore necessary to use the actual number of radicals n in the particle k considered to
execute this event. While the microscopic approach differs from the standard macro-
scopic approach, both of them are equivalent when a large number of individual par-
ticles are sampled according to the chemical master equation (Gillespie, 1977). Dif-
ferent research groups working on polymer reaction engineering have already recog-
nized the benefits of implementing stochastic models (such as kinetic Monte Carlo)
in emulsion polymerization (Araújo et al., 2001; Butte, Storti, and Morbidelli, 2002;
Vale and McKenna, 2005; Sheibat-Othman et al., 2017; Marien et al., 2019; Zetterlund
and D’hooge, 2019).

Additionally, the apparent radical absorption coefficient is determined from (Hernán-
dez and Tauer, 2007):

kc = 2πDr NA

(
17.95πNpd4

p

6
+ dp

)
(3.24)

where Dr is the diffusion coefficient of the primary radicals.

It is remarked here that the typical method for describing the apparent radical ab-
sorption coefficient employs d2

p and dp dependencies. However, d2
p and dp depen-

dencies are constrained to small changes in particle size and polymer contents (Hernán-
dez and Tauer, 2008a). Accordingly, the more general equation (3.24) used in this
work captures the evolution of radical capture by changing from the dp to the d4

p

behavior as the polymer contents in the dispersion increases.

The event to be executed is determined by introducing the aν computed in equations
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(3.18) - (3.23) into equations (3.15), (3.16), and (3.17). The event to be executed is
given by µ in equation (3.16). Due to the random nature of r1 and r2 in equations
(3.15) and (3.16), the kMC event execution is completely stochastic.

All the kMC simulation variables must be updated after the event selection. Defin-
ing the living R and dead P polymer chains arrays such that each entry contains the
information of a single particle within Vcell . Additionally, a new random number
r3 ∼ U (0, 1) is generated to pick up the particle in which the event will take place,
hence R and P are updated following the probabilities given by:

Termination:
j

∑
j′=1

Rj′ > r3

k

∑
i=1

Ri (3.25)

Living polymer absorption:

(
j

∑
j′=1

Rj′kcRj′

)
> r3

(
k

∑
i=1

RikcRi

)
(3.26)

Dead polymer absorption:

(
j

∑
j′=1

Pj′kcDj′

)
> r3

(
k

∑
i=1

PikcDi

)
(3.27)

with

kcRj′ ,i = kcRj′−1,i−1
+ kc

Rj′,i

∑k
j′,i=1 Rj′,i

(3.28)

kcDj′ ,i = kcDj′−1,i−1
+ kc

Pj′,i

∑k
j′,i=1 Pj′,i

(3.29)

where j is the smallest integer that satisfies each of the above conditions.

Two events modify the number of free-radicals inside a particle k at time t, nt
pk

, as
follows: (i) if a living polymer absorption event is executed then nt

pk
= nt−τi

pk + 1
in the particle where the event occurs; (ii) if a termination event is executed then
nt

pk
= nt−τi

pk − 2 in the particle where the event occurs. With τi given by equation
(3.15). At the end of one kMC execution,

n̄ =
∑nevents

i=1 ∑
Np
k=1 nti

pk τi

Np ∑nevents
i τi

. (3.30)

The secondary nucleation rate Ns is initiated as equal to zero which implies that at
the beginning of the polymerization process only P1 particles are present. There-
fore, growing chains of monomer M larger than jmax are considered as new poly-
mer particles. Thus, Ns is updated at each kMC execution as follows: Ns(k) =

Ns(k − 1) + Rnew, where Rnew is equal to the number of growing monomer chains
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that reached a chain length larger than jmax. At the end of the kMC execution, Ns is
divided by the kMC time-length event.

The nucleation mechanism considered occurs by homogeneous nucleation as it as-
sumes that a new particle is formed when a water-soluble oligomer reaches a critical
chain length. This new formed particle becomes insoluble and precipitating as a
new particle. Admittedly, heterogeneous nucleation is highly likely to occur in het-
erophase systems, but it has been shown, e.g., by Ocepek et al. (2017); Rocha-Botello
et al. (2019); Wang et al. (2020), that this homogeneous nucleation mechanism based
on a critical oligomer solubility is a decent approximation for the nucleation process.

Finally, jmax is a critical size for oligomer precipitation (chain collapse) resulting in
the formation of a new secondary particles. Since thermal motion contributes with a
fluctuating repulsive force, the length at which the chain collapses may vary around
the average critical chain length (jmax), but for simplicity, it is assumed that all chains
collapse at such critical length (Ferguson, Russell, and Gilbert, 2002).

It is highlighted that the purpose of using kMC simulation for estimating n̄ is ob-
taining a more precise estimation of its value, since kMC reflects the true discrete
nature of the Chemical Master Equation for scarce entities (such as radicals inside
particles). Whereas other estimation methods assume the number of radicals in-
side a particle as a continuous variable. Furthermore, kMC also allows detecting
changes in n̄ when the environmental conditions of the particles change. Addition-
ally, the only purpose of performing the kMC simulation is not to estimate n̄ but
Ns (rate of secondary nucleation). This last one is a microscopic variable that gives
information of the quality of the produced polymer and it is hard to track either by
using empirical or semiempirical models or via online measurements. By adopting
a kMC simulation, a reliable estimation of Ns is obtained and the construction of
the data-driven model could spot how this microscopic variable is related to both
macroscopic variables and inputs of the polymerization process. This last feature
presents remarkable advantages when analyzing, e.g., the process controllability or
designing a control strategy to regulate Ns.

3.2 Multiscale model solution strategy

3.2.1 Mesoscopic scale: Finite Element Method

The FPE is an advection-diffusion equation which describes the evolution of a prob-
ability distribution function over time. Time-dependent or unsteady advection-
diffusion problems combines both parabolic and hyperbolic characteristics of the
PDEs. Advection-diffusion type problems possess hyperbolic characteristics due to
the appearance of the advection term, which yields a solution traveling into the di-
rection affected by the advection coefficient. If the advection part goes to zero, a
pure diffusion equation arises and the problem becomes parabolic, which means
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that the solution will not travel but spread in all directions over the spatial do-
main. Therefore, solution procedures for advection-dominated problems should dif-
fer from those of either advection or diffusion dominated nature.

In this work, the Finite Element Method (FEM) is adopted to numerically solve the
FPE formulation to describe the PSD of the emulsion polymerization process. The
first step is the derivation of the weak form of equation (3.12).

Assuming that t f > 0 is the final simulation time (referred as reaction time as well)
and ηr0 ∈ L2(Ωr). Using the standard notation for Sobolev spaces H1(Ωr), H2(Ωr),
H1((0, t f );L2(Ωr)), C1([0, t f ];L2(Ωr)) (see Flotron and Rappaz (2013)), a classical
weak formulation of (3.12) consists in looking for

ηr ∈ L2((0, t f );H1(Ωr)) ∩ C0([0, T];L2(Ωr)) (3.31)

such that:

∫
Ωr

w
∂ηr

∂t
dr +

∫
Ωr

w
(

∂ (G(r, t)ηr)

∂r

)
dr−

∫
Ωr

w
(

∂

∂r

(
D(r, t)

∂ηr

∂r

))
dr = 0,

∀w ∈ V (3.32)

where the test functions w belongs to the space V of H1(Ωr) functions and do not
depend on time. V is the space of weighting functions w. The time dependence of ηr

can be translated to the trial space St, which varies as a function of time. St consists
of real-valued functions ηr defined on Ωr.

Now, integrating by parts the weak form of equation (3.12), the following is ob-
tained:

∫
Ωr

w
∂ηr

∂t
dr +

∫
Ωr

w
(

∂ (G(r, t)ηr)

∂r

)
dr

−
∫

Ωr

∂w
∂r

(
D(r, t)

∂ηr

∂r

)
dr +

∫
∂Ωr

w
(

∂ηr

∂r
· n
)

dΓ = 0 (3.33)

In a compact notation, equation (3.33) reads:

(w, ηrt) + a(w, ηr) + l(w) = 0 (3.34)

(w, ηr(r, 0)) = (w, ηr0)

with:
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(w, ηrt) =
∫

Ωr

w
∂ηr

∂t
dr (3.35)

a(w, ηr) =
∫

Ωr

w
(

∂ (G(r, t)ηr)

∂r

)
dr−

∫
Ωr

∂w
∂r

(
D(r, t)

∂ηr

∂r

)
dr (3.36)

l(w) =
∫

∂Ωr

w
(

∂ηr

∂r
· n
)

dΓ (3.37)

The spatial discretization of the unsteady advection-diffusion equation by means
of the Galerkin approach consists of defining two finite dimensional spaces Sh ∈
H1(Ωr) and V h ∈ H1(Ωr) as subsets of S and V . The so-called semi-discrete Galerkin
formulation is obtained by restricting form (3.33) to the above finite dimensional
spaces, namely, for any t ∈ [0, t f ] find ηh

r ∈ Sh
t such that for all wh ∈ V h,

(wh, ηh
rt
) + a(wh, ηh

r )− l(wh) = 0, ∀wh ∈ V h (3.38)

(wh, ηh
r (r, 0)) = (wh, ηr0)

At this point, Ωr must be seen as discretized into nel elements Ωe
r, with 1 ≤ e ≤ nel .

As an index rule, A and B are used to represent global node numbers in the finite
element mesh: 1 ≤ A, B ≤ nnp. The system of ODEs is then obtained. Recall
that the time dependence of the solution ηh

r (r, t) is taken into account by the time
dependency of the nodal values of the unknowns ηrA = ηrA(t). The approximation
ηh

r (t) can be written as:

ηh
r (r, t) = ∑

A∈N
NA(r)ηr A(t) (3.39)

where N = {1, 2, . . . , nnp} denotes the set of global node numbers in the finite el-
ement mesh and NA is the shape function (piecewise polynomial) associated with
node A. As standard in Galerkin approximation, the arbitrary test functions w are
interpolated by the same shape functions.

Finally, the usual assembly process delivers the semi-discrete system of ordinary
differential equations (Wriggers, 2008; Zienkiewicz, Taylor, and Zhu, 2013):

Mη̇r + (C(t) + K)ηr = 0 (3.40)

where ηr is the vector of the unknowns and η̇r their time derivatives. M, C, and K are
the consistent mass matrix, the advection matrix, and the diffusion matrix, respec-
tively. These matrices are obtained by topological assembly of elements contribution
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as follows:

M = AeMe Me
ab =

∫
Ωe

r

NaNbdr

C(t) = AeCe Ce
ab =

∫
Ωe

r

Na(G(r, t) · ∇Nb)dr (3.41)

K = AeKe Ke
ab =

∫
Ωe

r

∇Na · (D(r)∇Nb)dr

where A denotes the assembly operator, 1 ≤ a, b ≤ nen and nen is the number of
element nodes.

If the standard Galerkin method is adopted, the time-marching schemes should only
involve first time derivatives of the unknowns. One of the most popular methods
for time discretization are the so-called Crank-Nicholson scheme (trapezoidal rule)
given by:

M
∆ηr

∆t
+

1
2
[(C(t + ∆t) + K)ηr(t + ∆t)] +

(
1− 1

2

)
[(C(t) + K)ηr(t)] = 0 (3.42)

which is second-order accurate in time.

The Galerkin approximation for solving advection-diffusion problems as the FPE
given by equation (3.12) loses its best approximation property when the non-symmetric
convection operator (C in equation (3.40)) dominates the diffusion operator (K in
equation (3.40)) in the transport equation, and, consequently, spurious node-to-node
oscillations appear. To avoid this occurrence, the mesh discretization step size should
be related to advective-diffusive features of equation (3.12). A practical test for ver-
ifying the accurateness of the numerical solution obtained with the Garlerkin ap-
proximation is offered by the Péclet number:

Pe =
G̃∆r

D̃
(3.43)

where G̃ and D̃ are measures of G(r, t) and D(r), respectively, and ∆r refers to the
spatial step size (Donea and Huerta, 2003a). If Pe is large (i.e., Pe > 1), the prob-
lem becomes advection dominated and the Galerkin approach leads to inaccurate
solutions represented by non-physical oscillations.
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3.2.2 Macroscopic scale: time-integration of the ODEs set

The macroscopic scale dynamics are governed by the set of ODEs presented in equa-
tions (3.2) - (3.6). This set of ODEs have to be solved numerically at each gauss inte-
gration point regarding to the FEM spatial discretization in the mesoscale, in which
the growth kernel (G(r, t)) is evaluated and linked to the macroscopic states.

The set of ODEs from equations (3.2) - (3.6) leads in general to an initial value prob-
lem of the form which can be formally written as:

ẋ(t) = f (x, r, n̄, t) with x(0) = x0 (3.44)

Adopting as integration scheme a generalized midpoint rule

x = xn + ∆t f (xn+λ) (3.45)

yields an equation for the variables x at time t depending upon quantities at time
tn. Defining xn+λ = λx + (1− λ)xn, and choosing λ = 1/2, the trapezoidal rule is
obtained.

It is convenient to preserve the local character of the macroscopic states within each
element Ωe

r of the FEM discretization scheme. Then we have here the case of a time-
dependent gauss point coupled problem (Wriggers, 2008). This idea of the integra-
tion algorithm has been extensively adopted for the solution of general elasto-plastic
material deformation problems, see e.g. (Simo, 1998; Souza Neto, Owen, and Pe-
riae, 2008). Investigations regarding the consistency, stability, and accuracy of the
solution algorithm were already performed, see e.g. (Simo, 1998). Consistency and
stability are essential properties for establishing convergence of the numerical solu-
tion for arbitrary small time steps. Figure 3.2 shows a schematic description of the
algorithm for the global-local iteration. To guarantee the accuracy of the numerical
approximation, it is required the convergence of the mesoscopic scale. That is, a
global iteration must be performed such that ‖η̂ri+1 − η̂ri‖ < tol, where η̂ri and η̂ri+1

are Newton-Raphson approximations of ηr at iteration i and i + 1, respectively. If
‖η̂ri+1 − η̂ri‖ < tol, then ηr(t) ≈ η̂ri+1 and the time is increased by ∆t. xg

i and x̂g
i are,

respectively, the value of the macroscopic and microscopic state variables defined at
the gauss point and their numerical approximation at the Newton-Raphson i iter-
ation. It is important to remark that the local-global algorithm presented in Figure
3.2 highlights the element-wise definition of the multiscale problem. That is, the full
multiscale problem is solved in each individual element of the discretized domain
and then all is assembled to reconstruct the full PSD.
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FIGURE 3.2: Algorithm for the local-global integration.

3.2.3 Microscopic scale: kinetic Monte Carlo algorithm

The probability that the system is in a particular state or configuration can be de-
scribed by the CME given the stochastic nature of processes taking place at fine-
scales. While the solution of the CME can be obtained using traditional numerical
methods for solving ODEs, the challenge of finding a solution lies on the number
of states that need to be evaluated. For systems with even a relatively small size,
the CME cannot be solved since the number of possible states is prohibitively large
(Gillespie, 2007). This imposes a limitation towards the direct application of the
CME to obtain an estimate of system states.

The kMC method, also known as Stochastic Simulation Algorithm (SSA), was for-
mally presented by Gillespie (1976) as a method for obtaining singular realizations
of processes described by the Chemical Master Equation (CME). Due to the stochas-
tic nature of the kMC method used to describe the evolution of the microscopic
states, the results obtained from the simulations could be different. Particularly if
the simulation time at this scale becomes large (up to some seconds). This would
induce considerable fluctuations in the system state trajectories. One alternative to
reduce such fluctuations is to use the kMC to simulate events in the order of femto
to nano seconds. The second alternative is to run the kMC algorithm not only once
but several times. Then taking the average among system states realizations until
algorithm fluctuations stabilizes. Later approach has been used as an effective tech-
nique dealing with kMC stochasticity, see, e.g., Chaffart, Rasoulian, and Ricardez-
Sandoval (2016); Kimaev and Ricardez-Sandoval (2017). This averaging process is
a kind of coarse-grained methodology in which the information of one microscopic
variable is propagated in a bottom-up information exchange procedure to the coarse
scale (Chatterjee and Vlachos, 2006). Both approximations were explored to update
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coarser scales in the EP process. However, it was the second one that presented con-
vergence results. The number of kMC execution producing acceptable fluctuations
is determined iteratively. Thus, at the beginning, the kMC algorithm is executed 5
times each time that the microscopic scale is triggered and the number of iterations
is increased by 5 until it reaches 100. Then, both macro- and meso-scales are updated
with an average scenario value for both n̄ and Ns. It was noticed that up to 40 kMC
executions kMC fluctuations have significant effect on the macroscopic states, but
after this value that effect is almost neglectable. Consequently, 50 kMC executions
are chosen to perform all the multiscale simulations.

Scales updating are determined by two triggers: i. maximum change of monomer
concentration and ii. maximum change of the particle size. Any of the triggers is ac-
tivated when the monomer concentration or the mean particle size change more than
5% from one simulation time to another. Then, the kMC simulations are executed.
A maximum simulation time is established and a discretization through the simu-
lation time is carried out. The time step is determined by the rate of change of the
state variables in both macro- and meso-scales, e.g., if ∆xi = xi(t)− xi(t− 1) > tol,
time step is equal to δt, otherwise, the time step is equal to δt/10. Where xi is a state
variable on either macro- or meso-scales. Once macro- and meso-scales are executed,
microscopic scale is executed as well and macro- and meso-scales parameters are up-
dated. At the beginning, all process parameters for macro- and meso-scales should
be settled at their initial conditions.

One characteristic of the kMC simulation is that it is cumulative in time. That is,
if the kMC simulation time is very large, the number of executed events becomes
very large too. This imposes a computational limitation and a restriction in the max-
imum process simulation time that could be simulated with the kMC method. In
this work, two-temporal conditions are established, one for the maximum time step
in the macro- and meso-scales and another one for the maximum simulation time in
the microscopic scale. At the macro- and meso-scales, the maximum allowed time
step is 100 s. While, at the microscopic scale, the maximum kMC simulation allowed
time is 50 s. Because of the kMC simulation time is fixed in 50 s, the values of n̄ and
Ns are extrapolated to the total macro- and meso-scales simulation time step.

The flowchart of the kMC algorithm is presented in Figure 3.3. Additionally, it il-
lustrated how each scale takes part in the simulation. In the right hand side of the
Figure, the kMC algorithm is detailed.

3.3 Multiscale model simulation results

3.3.1 Kinetic and thermodynamic multiscale model parameters

Parameters values used in the simulation are reported in Tables 3.2 - 3.5. Table 3.2
summarizes the kinetic and thermodynamic parameters related with both macro-
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FIGURE 3.3: Flowchart of the kMC algorithm.

and meso-scales. Table 3.3 shows reactor input feed flows. Table 3.4 presents the
initial conditions for the state variables at the macroscopic-scale. Table 3.5 shows
values for the kinetic and thermodynamic parameters used in the kMC simulation.
From Table 3.5, it is noticed that some of the kMC simulation parameters depend on
the conditions at the macroscopic-scale coupling these two scales.

TABLE 3.2: Kinetic and thermodynamic parameters at macro-and
meso-scales.

Parameter Value Units Parameter Value Units
NA 6.023× 1023 molecules/mol CpP2

1.77 J/g K
∆Hr −87500 J/mol CpM 1.17 J/g K
Drd 100 cm CpP1

1.4 J/g K
MwM 86.09 g/mol dp0 100× 10−7 cm
MwI 270.322 g f 0.9
ρw 1 g/cm3 U 0.025 W/cm2 K
ρP2 1.3 g/cm3 ΦSeed 0.2
ρM 0.8722 g/cm3 Φaq 0.8
ρP1 1.06 g/cm3 kp 1.29× 107 cm3/mol s
Cpw 4.18 J/g K kd 8.6× 10−5 s−1

TABLE 3.3: Reactor feed conditions.

Parameter Value Units Parameter Value Units
FM 41.6667 cm3/s TM 298.15 K
Fred 6.9444 cm3/s Tred 298.15 K
Fox 6.9444 cm3/s Tox 298.15 K

The particles size domain is defined as Ωr ∈ [20, 150] nm. The total reaction time is
taken as t f = 18000 s. The values of r̄0 and σr0 for the initial condition of the PSD
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TABLE 3.4: macroscopic-scale initial conditions.

Parameter Value Units
V 1× 106 cm3

Φaq 0.8
[I]aq 0 mol/cm3

[M]p 0 mol/cm3

T 333.15 K
Tj 333.15 K

TABLE 3.5: Kinetic and thermodynamic parameters at the micro-
scopic scale.

Parameter Value Units Parameter Value Units
kB 1.381× 10−23 J/K kt 1.13× 1010 1/mol s
Vcell 1× 10−14 l µw 0.355 cP
Φp 1−Φaq VMr 0.046 l/mol
dp0 dp nm MMr 96.16 g/mol
[M]aq [M]sat

aq mol/l VMm 0.075 l/mol
FM FMρM/MwMV mol/l s MMm 86.09 g/mol
FI FIρw/MwIV jmax 18
[I]0 [I]aq mol/l dr 0.526 nm
[I]Feed 1× 10−3 mol/l mr 0.664 g

were taken as 50 nm and 5 nm, respectively.

3.3.2 Simulation results for the process nominal conditions

The flowchart of the algorithm proposed in this work to solve the multiscale model
for the EP process is presented in Figure 3.4.

Simulations were carried out in a 2.50 GHz Intel Core i7− 3537U with 8GB RAM.
Multiscale simulation based on the FPE takes an average of 5 h to simulate the 5 h
of the polymerization process.

Figure 3.5 shows the macroscopic-states trajectories. Three simulations were run to
show the stochastic effect at the microscopic scale. V, Φaq and [I]aq match for all
three simulations because they are not directly coupled with the microscopic state
variables. Figure 3.5 shows the three different trajectories obtained for [M]p and T.
From the Figure, it is observed how every update in n̄r̄ implies a jump in both [M]p

and T states trajectories. It is also observed that each simulation follows a different
trajectory because of the stochastic evolution of n̄r̄.

From Figure 3.5, it is observed that [M]p stabilizes faster than the other macroscopic
state variables, implying that the monomer is consumed at a high rate. Thus, the
polymer particles are effectively produced. An evidence for such affirmation is that
[M]p profile does not have large changes and [M]p values are within a bounded
region over the simulation time. The jumps in each [M]p trajectory are due to the n̄
stochastic updating. Another evidence of the polymerization success is the fact that
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FIGURE 3.4: Multiscale algorithm for the emulsion polymerization
model solution.

(a) (b)

(c)

(d)

(e)

FIGURE 3.5: Macroscopic states trajectories: (a) V the volume of the
reactor, (b) Φaq water volume fraction, (c) [I]aq initiator concentra-
tion in the aqueous phase, (d) [M]p the monomer concentration in the

polymer phase, and (e) T the reactor temperature.
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the Φaq is a decreasing function of time which implies that the dissolved medium
has been replaced for new polymeric material. Additionally, from Figure 3.5, it is
possible to observe that the [I]aq tends to stabilize as time proceeds, which means
that the initiator has been consumed as a result of the chemical reaction with the
monomer particles.

Figure 3.6 shows the evolution of the microscopic states. From Figure 3.6, it is ob-
served that every n̄r̄ update occurs randomly in time. This is because the micro-
scopic state simulation is triggered based on the macro- and meso-scopic scales con-
ditions which are different for every simulation. Notwithstanding the stochastic
nature of micro-states evolution, for each of the three simulations the value of n̄r̄

remains bounded.

(a)

(b)

FIGURE 3.6: Microscopic states trajectories: (a) n̄r the average number
of the free-radicals and (b) Ns the secondary nucleation rate.

Something noteworthy from Figure 3.6 is that the process was in a Smith-Ewart II
type condition during the considered simulation time due to the fact that the aver-
age number of free radicals per particle remained close to 0.5. On the other hand,
from Figure 3.6, it is possible to observe that secondary nucleation rate over the
first hour and a half of the simulation time. This implies that new polymer par-
ticles of the added monomer M appeared, which is not desirable since the final
end-product characteristics would deteriorate. However, because of the multiscale
model structure, the microscopic scale is linked with the macroscopic scale. There-
fore, one could take advantage of this coupling between scales to implement an op-
timization/control strategy for minimizing the secondary nucleation rate over the
whole process trajectory. Precisely, one of the major challenges in the production of
structured polymers is minimizing the secondary nucleation, which becomes more
critical if the process starts with an adverse condition as it is the case presented here.
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Figure 3.7 shows the initial (solid line) and final (dashed line) PSD of the polymer
particles. Figure 3.7 shows that if a constant value for D is adopted, the PSD evo-
lution over time preserves the Gaussian distribution shape of the initial condition.
That is, the polymer particles size spreads symmetrically with respect to its mean
value. From Figure 3.7, it is also seen that the dynamical evolution of the PSD does
not present an appreciable sensitivity with respect to the stochastic fluctuations in n̄.

FIGURE 3.7: PSD: initial condition for the FPE (solid line). Final con-
dition for the FPE with D = 2.5× 10−10 nm2/s (dashed line).

It is remarked that all above simulations were performed by adopting a constant
vale for the diffusion parameter D. However, it is well known that the shape of the
final PSD in an emulsion polymerization process tends to be skew-normal rather
than gaussian (Hosseini, Bouaswaig, and Engell, 2012). Hosseini, Bouaswaig, and
Engell (2013) proposed different dependencies of the diffusion coefficient (linear,
quadratic, and exponential) on the particles size to increase the flexibility of the FPE
in capturing the shape of the experimental PSD. Here, we will take the same idea
and propose the following expression for the diffusion coefficient:

D(r) = β j rk (3.46)

with j = 1, 2, 3 and k = 0, 2, 4. It is pointed out here that the choice of the power
of k = 4 dependency, instead of an exponential expression, is due to the fact that
the exponential dependency makes the bigger particles grow too faster. But the real
picture is that should exist an upper bound value which limits the particles growing
rate. The value of the parameters were adapted such that the diffusion coefficient
belongs to the same scale magnitude within the range in which the particles pop-
ulation is concentrated over the whole simulation domain, that is, approximately
between 20 nm and 150 nm. Additionally, β j units must be consistent such that D(r)
has units of nm2/s. The values of the β j parameters are summarized in Table 3.6.

On the other hand, as was already mentioned, attention must be paid to the stabil-
ity of the numerical method to consistently solve the FPE. That means, Pe number
should remain small (it is suggested lower than 1) to guarantee a good performance
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TABLE 3.6: β j parameters of the diffusion coefficients.

Parameter Value Units
β1 2.5× 10−10 nm2/s
β2 2.5× 10−7 1/s
β3 2.5× 10−2 1/nm2 s

of the numerical scheme. To determine the mesh size as a function of the space coor-
dinates within the spatial domain, the following procedure is adopted: i. G(r, t) and
D(r) are computed offline. It is remarked here that because of the value of G(r, t)
and D(r) do not depend on ηr, they can be computed by considering only the set
of ODEs at the macroscopic scale coupled with the closed-form at the microscopic
scale. ii. A coarse mesh is created by dividing Ωr into e = 100 uniform elements Ωe

r.
iii. The characteristic elements size ∆r is given as function of both G(r, t) and D(r):

∆r
∣∣∣
Ωe

r

= min
{

D(re/2)

G(re/2, t)
P̄e, 1

}
(3.47)

with re/2 the value of r at the middle point of each element. Therefore, a local
remeshing step is performed by establishing a maximum value of Pe equal to P̄e =

0.01.

Figure 3.8 shows the final PSD for the different cases of D dependency of r. It is
observed in the Figure that the PSD evolves from a gaussian initial condition to a
final gaussian condition when D is taken as a constant value. However, it is possi-
ble to observed that the system evolves from a gaussian initial condition towards a
skew-normal distribution once D is defined such that a dependency of r is specified.
That result matches with the experimental result presented by Hosseini, Bouaswaig,
and Engell (2013) in which, at the end of the process time, it is expected to have
a larger diffusion for the bigger particles sizes (long right-tale or right-skewness).
Furthermore, from Figure 3.8, it is noticed that a longer right-tail is obtained if the
order of the D dependency is increased from the power of 2 to the power of 4. In
order to make that result more evident, the value of the first three moments of the
final PSD are summarized in Table 3.7. It is the value of the skewness that deter-
mines in which side of the distribution the tail is larger and how large is compared
to a gaussian distribution. In this case the tail is larger at the right hand side of the
distribution meaning that at the end of the reaction there are more polymer particles
of bigger sizes than polymer particles of smaller sizes.

3.3.3 Growth kernel and diffusion parameter analysis

Regarding the the growth kernel (G), it is remarked that the its rate of change over
time is determined by the rate of change of [M]p, which reaches its steady-state value
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FIGURE 3.8: Final PSD for the different D dependencies of r.

TABLE 3.7: Final PSD statistical moments.

Statistical moments
Dependency Mean [nm] Std. dev. [nm] Skewness
β1 86.2987 21.9055 0
β2 r2 85.3651 19.0904 1.0515
β3 r4 83.8233 16.6425 1.8738

in a small time compared to the process simulation time. This causes an impercepti-
ble change of G over time which is not capture by the performed simulations. On the
other hand, regarding the particles size domain meshing, when ∆r is kept constant,
the Pe number is too large for the smallest values of r. This makes the numerical
solution unstable and the simulation does not converge. Then any simulation result
by keeping ∆r constant is reported.

Figure 3.9 shows both the growth kernel (G) and diffusion coefficient (D) values
over the spatial domain and the ∆r and Pe which determines the numerical scheme
stability. Figure 3.9a shows the chance of G over the particles size domain. It is ob-
served that G is higher for the smallest polymer particles than for the biggest ones.
This means that the smaller is the size of the polymer particles, the more they grow.
In Figure 3.9b, the comparison of D values are plotted for the three proposed de-
pendencies of the particles size. Figure 3.9c shows how the meshing rule change
as function of the D values. As expected, a finer mesh is generated in the zone of
the spatial domain where the advection dominates over diffusion (the region of the
smallest polymer particles) and becomes coarse once the diffusion dominates over
advection. Finally, the Pe number is plotted in Figure 3.9d for a constant ∆r and for
∆r given by equation (3.47). When ∆r is kept constant, the Pe number is too large
for the smallest values of r (exponential-like curves plotted in the log scale). On the
other hand, when ∆r varies as in equation (3.47), the Pe number equals 0.01 for the
space domain portion in which ∆r < 1 and then is even smaller. Only by vary-
ing ∆r the numerical stability of the solution is preserved and the adopted method
converged as expected.
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(a)

(c)

(b)

(d)

FIGURE 3.9: (a) Growth kernel G, (b) diffusion coefficient D, (c) ∆r
meshing rule, and (d) Pe number for both uniform and non-uniform

meshes, i.e., constant and adaptive ∆r, respectively.

3.4 Chapter concluding remarks

A multiscale model for describing the dynamic evolution of free-radical polymer-
ization was successfully derived. The developed multiscale model includes the tra-
ditional macroscopic and mesoscopic dynamics of the free-radical polymerization
process, and also the average number of free-radicals and secondary nucleation rate
(which are important microscopic states). These two microscopic states are critical to
satisfactorily obtaining structured polymer particles with the desired size and mor-
phology.

A computational model by the adoption of the FEM was developed. Such a com-
putational model was composed of a set of algebraic nonlinear set of equations and
allowed an efficient computation of the nonlinear evolution of the multiscale model.
Particularly, by adopting the FEM, it was possible to accurately capture the evolu-
tion of the PSD taking several nonlinear expressions for the diffusion coefficient. Ad-
ditionally, the multiscale problem was defined in an element-wise fashion allowing
the solution of both macroscopic and microscopic scales locally within each element.
Then, the local solution was assembled in the usual FEM way by saving a lot of effort
in the coding procedure. The robustness and versatility of the FEM-based numerical
scheme was successfully through several simulations.
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Chapter 4

Multiscale model order reduction

Abstract

In this chapter, on the one hand, mesoscopic-scale representation of the dispersed
media is carried out by using Variance Algebra concepts for describing the stochas-
tic nature of particle growth. On the other hand, to deal with the curse of dimen-
sionality, the procedure based on the statistical modeling approach introduced by
(Hernandez, 2018) is adopted to derive a closed-form model for the microscopic
scale. When the obtained reduced-order models at the mesoscopic and at the micro-
scopic scales are assembled with the model at the macroscopic scale, a convenient
representation of the system is obtained from the control viewpoint. This because
the reduce-order model can be written as a set of ODEs representing a nonlinear
dynamical system with a direct realization of the outputs of interest (e.g., the micro-
scopic states). Therefore, the obtained model is suitable for being used in optimiza-
tion/control tasks. The main novelty of this chapter is the implementation of the
tools described above to develop the reduced-order model for the multiscale model
presented in Chapter 3.

4.1 Reduced-order model for the mesoscopic scale: Variance
Algebra approach

4.1.1 Reduced-order model derivation

The mesoscopic scale refers to the size of polymer particles inside the reactor, de-
scribed by the Particle Size Distribution (PSD). Frequently, predictions of the distri-
bution of the particle sizes in Emulsion Polymerization (EP) (e.g. for online mon-
itoring, optimization, and control of latex properties) are carried out by formulat-
ing Population Balance Equation (PBE) based models (Puschke and Mitsos, 2016;
Gil, Vargas, and Corriou, 2016; Tjiam and Gomes, 2014; Hosseini, Oshaghi, and
Engell, 2013; Dokucu, Park, and Doyle, 2008b). Typically, a PBE is composed of
the following terms: the distribution (also called the population density), which
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is a function of the internal coordinates; the growth/dissolution rate, and the cre-
ation/depletion rate. Internal coordinates usually are the characteristic length, vol-
ume, or mass, but it can also be age, composition, and other characteristics of an en-
tity in a distribution (Gunawan, Fusman, and Braatz, 2004). The creation/depletion
rate term in the PBE represents phenomena such as nucleation, aggregation, ag-
glomeration, breakage, attrition, and material leaving or entering the system can be
a function of other variables including the distribution. Consequently, a highly non-
linear function of their arguments should be considered, which typically involves
integrals. Therefore, the PBE is a hyperbolic-type integrodifferential partial equa-
tion. The solution of this type of Partial Differential Equations (PDEs) is expected
to be of the shock-wave type imposing the challenge of requiring high-performance
numerical resolution schemes for its solution (Bouaswaig and Engell, 2010).

As reported by Hosseini, Bouaswaig, and Engell (2012), classical PBE models of EP
are not capable of predicting the evolution of the breadth of the experimental par-
ticle size distributions correctly even when a high-resolution discretization method
is used to suppress the numerical errors. Also, by re-tuning the model parame-
ters the model predictions did not fit the experimental results which points out a
structural inadequacy of the conventional deterministic growth models in describ-
ing the experimentally observed broadening phenomenon. To overcome this draw-
back, Hosseini, Bouaswaig, and Engell (2013) proposed two different approaches for
improving the predictive capability of classical PBE. In the first approach, a stochas-
tic extension for the PBE formulation was added to the deterministic growth ker-
nel. This formulation augmented the deterministic particle growth kernel by in-
cluding the stochastic nature of the particle growth process, resulting in the incor-
poration of a stochastic differential equation (Langevin equation) for polymer par-
ticle growth. Langevin equation evolves over time according to the Fokker-Planck
Equation (FPE). In the second approach, the growth kernel was extracted from the
characteristics of the transient experimental PSD leading to a semi-empirical growth
kernel which relates the states variables of the EP process to the particle size. While
the first approach accounted for the inhomogeneities of the growth process, the sec-
ond one aimed to extract a semi-deterministic growth kernel from the trajectories
of the characteristic curves of the transient experimental PSD. Hosseini, Bouaswaig,
and Engell (2013) reported that both approaches were effective in overcoming the
limitations of the original PBE models of emulsion polymerization to describe exper-
imental results. However, the FPE-based approach resulted to be more convenient of
applying when studying the dynamical evolution of a particle distinctive property
(e.g., size or shape) of the population, rather than to obtain a detailed mechanistic
approach (Grosso et al., 2010). The mentioned FPE-based approach has recently been
used by several authors to model the evolution of crystal size distributions (Grosso
et al., 2010; Tronci et al., 2011; Grosso et al., 2011; Cogoni et al., 2014).



4.1. Reduced-order model for the mesoscopic scale: Variance Algebra approach 51

Notwithstanding the improvements reported, the solution of the FPE is still compu-
tationally highly expensive and therefore, coupling it with a kinetic Monte Carlo
(kMC) simulation (microscopic scale) could become computationally prohibitive,
especially for using it in online applications for optimization and/or process con-
trol. Additionally, a rigorous derivation of expression to describe fluctuations of the
particle size around the mean value (diffusion coefficient) is still missing. In order
to address these two issues, Variance Algebra concepts are applied for obtaining a
reduced (lower-order) model for predicting the behavior at the mesoscale. In the
following, the derivation of the equations of the so-called reduced-order model for
describing the mean and standard deviation of the particle size distribution is pre-
sented.

The formulation of the reduced-order model begins with the adoption of the same
growth rate kernel of the polymer particles given in equation (3.11) to the FPE con-
struction, as follows:

dr
dt

=
kp MwM

4πr2ρPol NA
n(x)[M]p, (4.1)

where kp is the propagation rate coefficient and MwM is the monomer molecular
weight, and ρPol the structured polymer density. It is possible to assume that n is a
random variable with the following properties since the number of radicals varies
among particles. That is:

E(n) = n̄ (4.2)

V(n) = σ2
n (4.3)

where E(n) and V(n) are the mean value and the variance of n, respectively. There-
fore, n̄ is the mean value and σn is the standard deviation of the number of free-
radicals per particle, respectively.

For a pure zero-one kinetics emulsion polymerization system it follows that:

n̄ = 0.5 (4.4)

σ2
n =

1
4

Np

Np − 1
≈ 1

4
(4.5)

because Np is generally a large number. It is also assumed that the variation of
monomer concentration inside the particles is negligible.



52 Chapter 4. Multiscale model order reduction

A particle size could vary among particles, then, r is a random variable. A normal
distribution is assumed, as suggested by Hosseini, Bouaswaig, and Engell (2012), as
follows:

r = r̄ + σrZr (4.6)

In equation (4.6), r̄ is the mean value of a particle size, σr is the standard deviation
of the particle radius and Zr is a standard normal random variable (N ∼ (0, 1)) that
represents the size variation among different particles, but remains constant in time
for each specific particle. Therefore, the following equations are obtained:

r2 = r̄2 + 2r̄σrZr + σ2
r Z2

r (4.7)

dr
dt

=
dr̄
dt

+ σr
dZr

dt
+ Zr

dσr

dt
(4.8)

Equations (4.2)-(4.8) can be grouped in a single equation as follows:

4π
(
r̄2 + 2r̄σrZr + σ2

r Z2
r
) (dr̄

dt
+ σr

dZr

dt
+ Zr

dσr

dt

)
=

kp MwM[M]p
ρPol NA

n (4.9)

From equation (4.9), it is possible to take the expected value and the variance, then,
by assuming that σr � r̄, the dynamical evolution of the expected value of a polymer
particle size is given by equation (4.10):

dr̄
dt

=
kp MwM[M]p

4πρPol NA (r̄2 + σ2
r )

n̄− 2r̄σr

(r̄2 + σ2
r )

dσr

dt
(4.10)

If instead of the expected value we take the variance, the following equation is ob-
tained:

2σr
2 (2r̄2 + σr

2) (dr̄
dt

)2

+ 4r̄σr
(
r̄2 + 4σr

2) dr̄
dt

dσr

dt

+
(

r̄4 + 14r̄2σr
2 + 15σr

4
)(dσr

dt

)2

=

(
kp MwM [M]p σn

4πρPol NA

)2

(4.11)

Replacing equation (4.10) and performing some additional maths, equation (4.12)
is obtained which describes the dynamical evolution of the standard deviation of a
polymer particle size:
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dσr

dt
= − 2r̄σr

r̄2 + σr2

(
r̄2 + 2σr

2
(

1− r̄2

r̄2 + σr2

))( kp MwM [M]p
4πρPol NA

)
n̄
Π

+

(
kp MwM [M]p

4πρPol NA

) √
Ψ

Π
(4.12)

with Π

Π = r̄4 + 14r̄2σr
2 + 15σr

4 + 8σr
4
(

r̄2

r̄2 + σr2

)(
1 +

r̄2

r̄2 + σr2

)
−8σr

2 (r̄2 + 4σr
2) ( r̄2

r̄2 + σr2

)
(4.13)

where Ψ is given by:

Ψ =

(
2r̄σr

r̄2 + σr2

(
r̄2 + 2σr

2
(

1− r̄2

r̄2 + σr2

))
n̄
)2

−

 r̄4 + 14r̄2σr
2 + 15σr

4 + 8σr
4
(

r̄2

r̄2+σr2

) (
1 + r̄2

r̄2+σr2

)
−8σr

2 (r̄2 + 4σr
2) ( r̄2

r̄2+σr2

)
(

2
σr

2

r̄2 + σr2

(
1 +

r̄2

r̄2 + σr2

)
n̄2 − σn

2
)

(4.14)

Equation (4.12) can be simplified by assuming that σ4
r � r̄4, as follows:

dσr

dt
≈

(
kp MwM [M]p
4πρPol NA r̄

)
r̄2 + 6σr2

(√
Ξ− 2σr

r̄2 + σr2

(
r̄2 + 2σr

2
(

1− r̄2

r̄2 + σr2

))
n̄
)

(4.15)

where Ξ is given by:

Ξ = σn
2 (r̄2 + 6σr

2)− Υσr
2n̄2

with



54 Chapter 4. Multiscale model order reduction

Υ =

(
1 +

1

1 + σr2

r̄2

)(
1 + 6 σr

2

r̄2

1 + σr2

r̄2

)
− 4

(
1−

σr
2

r̄2

1 + σr2

r̄2

(
2

1 + σr2

r̄2

− 1

))2

It could be possible that under some conditions equation (4.15) has an imaginary
part. The condition to obtain such imaginary part is given by the following inequal-
ity:

σn
2

n̄2 < Υ
σr

2

r̄2(
1 + 6 σr2

r̄2

) (4.16)

Figure 4.1 shows a graphical representation of the condition given by equation (4.16),
which corresponds to the feasible zone. The solid line represents the condition for
which the right hand side of equation (4.16) equals its left hand side. Meanwhile, the
unfeasible zone corresponds to the case where the right hand side of equation (4.16)
lower than its left hand side. From Figure (4.1), it is possible to observe that the
most critical value occurs when the ratio sigmar/r̄ is equal to 87%, giving a value
of σ2

n/n̄2 = 0.2. Even for this condition, if the number of free-radicals follows a
binomial distribution, σ2

n/n̄2 = 0.3333, meaning that equation (4.16) still does not
have any imaginary part. Moreover, since in this work is assumed that r is nor-
mal, σr/r̄ � 1/3 (otherwise, it would describe particles with a negative size) and,
σ2

r /r̄2 � 1/9, then σ2
n/n̄2 should be negative in order to obtain imaginary results.

Therefore, the right hand side of equation (4.16) is always positive and results in real
values for a normal distribution of r (i.e. lying on the feasible zone).

Feasible zone

Unfeasible zone

FIGURE 4.1: Graphical representation of the feasible condition given
by equation 4.16 (feasible zone).

Assuming that the EP process evolves from a polydisperse condition, equations
(4.10) and (4.15) are enough to describe both the mean and standard deviation of
the PSD of the process. Accordingly, the developed reduced-order model at the
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mesoscopic scale is composed of only two ordinary differential equations represent-
ing the mean and the standard deviation of the PSD. The main feature of this model
is that it can be coupled with the macro- and micro-scopic models for obtaining a
multiscale process representation.

4.1.2 Simulation results based on the reduced-order model

It is noteworthy that the first term in the right-hand side of the equation (4.10) is
quite similar with the deterministic growth rate kernel given in equation (3.11); the
difference is σ2

r in the denominator. Consequently, it is possible to appreciate that
equation (4.10) describes the growth of the particle radius similar as in equation
(3.10), where the second term in the right-hand side of the equation (4.10) takes into
account the stochastic fluctuations in the particle growth process.

In this work, equation (4.12) is contrasted with the diffusion coefficient in equation
(3.12). It is known from equations (3.10) and (3.12) that K2 = 2D, where K is in units
of nm/

√
s, while, equation (4.12) is in units of nm/s. Hence, K2 ≈ (dσr/dt)2 τM =

2D, where τM is a characteristic time of the mesoscopic-scale and it is in units of s.
Thus, equations (4.17) and (4.18) refer to the growth kernel and an expression for the
dispersion coefficient in the reduced-order model, respectively.

G =
kp MwM[M]p

4πρpNA (r̄2 + σ2
r )

n̄− 2r̄σr

(r̄2 + σ2
r )

dσr

dt
(4.17)

D ≈ τM
2

(
dσr

dt

)2 [nm2

s

]
(4.18)

Figure 4.2 shows the dynamical evolution of both G and D for the reduced-order
model. In Figure 4.2a, G and G, the growth kernel dynamical evolution for both the
reduced-order model (solid line) and the FPE (dotted line) models are compared.
From Figure 4.2a, it is seen that for both models the growth kernel is very similar,
which is an expected result because the only difference in the growth kernel for both
models are the σ2

r correction term that appears in the first term in right-hand side of
equation (4.10). On the other hand, Figure 4.2b shows the dynamical evolution of the
dispersion coefficient D for the reduced-order model (solid line) and the dispersion
coefficient D for the FPE based model (dotted line), which is assumed to be constant.
For the reduced-order model, the maximum value of D corresponds to the initial
condition of the simulation which is D = 5.107 × 10−5 nm2/s and the minimum
value ofD corresponds to the final condition of the simulation which isD = 4.286×
10−6 nm2/s. The range in which D varies for the reduced-order based model is
about the same order of magnitude of the value that D takes in the FPE simulation
for yielding similar final mean and standard deviation in particle size distribution
(D = 2.5× 10−5 nm2/s). However, it is important to remark that for the reduced-
order model case, D is a parameter that depends on a characteristic time τM, that
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was taken as τM = 100 s in these simulation results which is a representative time
scale of the phenomena occurring at the mesoscopic-scale.

(a)

(b)

FIGURE 4.2: (a) Growth kernel and (b) dispersion coefficient: the
reduced-order model (solid line), FPE (dotted line).

It is important to notice that Variance Algebra based approach might also be used
to describe the dynamics of other relevant distributions in the EP system, such as
molecular weight distribution, particle shape distribution, particle morphology dis-
tribution and even particle composition distribution. For the particular case of par-
ticle shape distribution for example, Tauer and Hernandez (2010) have shown that a
certain shape parameter can be defined to described a wide range of particles from
perfect spheres to discs to needle-like particles. The distribution of the shape param-
eter could be described by a mean and a standard deviation whose evolution can be
tracked using two ordinary differential equations derived from Variance Algebra,
using a similar approach as the one presented in this work. This would be an impor-
tant contribution to the model, because radical dynamics is significantly influenced
by particle shape and not only particle diameter.

Figure 4.3 shows the dynamical evolution of r̄ (asterisk) and r̄ ± σr̄ (circle). r̄ and
r̄ ± σr̄ were overlapped with the probability density function (p.d.f.) (solid line)
constructed assuming a Gaussian distribution for the polymer PSD. From Figure 4.3,
it is seen that the dynamical evolution of the PSD does not present an appreciable
sensitivity to the stochastic oscillation in n̄r̄, i.e., there is not any visible jump neither
over r̄ nor σr̄ trajectories.
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FIGURE 4.3: The reduced-order model PSD dynamical evolution: r̄
(asterisk), r̄± σr̄ (circle) and p.d.f. (solid line).

4.2 Closed-form model for the microscopic-scale: statistical
modeling approach

4.2.1 Closed-form model derivation

In this chapter, the procedure based on the statistical modeling approach introduced
by Hernandez (2018) is adopted to derive a closed-form model for the microscopic
scale. Compared to the traditional methods as the Analysis of Variance (ANOVA),
the main advantages of this procedure are: i. no particular distribution is assumed
over the data, which facilitates its application; ii. the parameters estimation can be
made independently using a standard parameter identification method, and iii. the
method incorporates the effect of the extreme values or outliers.

The main assumption to compute the closed-form model for the microscopic scale is
that the stochastic fluctuations of the microscopic states to be approximated do not
have a significant impact over the solution of the coarse scales. In other words, it
is enough to take a regularized function of the microscopic states coupled with the
coarse scales to describe the evolution of the system without affecting the reliability
of the model.

To find a closed-form model of the microscopic states n̄ and Ns, it is required to gen-
erate a suitable database from the kMC simulation. This database must contain as
much as possible of the different conditions in which the EP process could evolve
at the microscopic scale. Additionally, it is necessary to apply step by step the pro-
cedure for the statistical modeling presented by Hernandez (2018), namely: i. the
transformation and standardization of the response variables and the definition of
the predictor functions; ii. the selection of the next most promising factor; iii. the
test of the significance of the next most promising factor; iv. the computation of the
coefficient of the next most promising factor; v. the update of the standardized re-
sponse variable to remove the effect of the predictor function; vi. the computation
of the original model coefficients; and vii. the calculation of the performance of the
model.
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The closed-form model must relate the microscopic states with the macro-, meso-
scopic scales or even with the system inputs which allows the employment of the
model for optimization/control tasks. The method proposed by Hernandez (2018)
is based on the following general statistical model used for describing a certain ran-
dom response variable Y (e.g., n̄ or Ns) as a function of a set of random predictor
variables X (e.g., FM, FI , T, Tj, [I]aq, [M]p, Φaq):

q(Y) = b0 +
n

∑
i=1

bimi(X) + ε (4.19)

The function q represents any linear or nonlinear transformation of the response
variable, b0 is an independent coefficient, bi represents the coefficients of the i-th
predictor function mi for each of the i = 1, . . . , Nmi predictor functions considered,
and ε is the random error of the model, namely:

ε(b) = q(Y)− b0 −
n

∑
i=1

bimi(X) (4.20)

with b = [b0, . . . , bn]. The predictor function mi may represents any general non-
linear function involving one or more random predictor variables Xi from the set of
random predictor variables X.

In principle, the best statistical model describing the response variable Y should pro-
vide the minimum error variance Var(·) while being unbiased and parsimonious.
That is, the best model should provide a solution to the following multi-objective
optimization problem:

minimize
b,X

{Var(ε(b)), mi (X)}

s.t. E(ε(b)) = 0
(4.21)

where E(·) is the expected value operator.

The first step is the transformation and standardization of the variables. Firstly, the
transformation function of the response variable q(Y) to be used are defined by:

q(Y) = q

(
Yn̄

YNs

)
=

[
ln(n̄)

Ns

]
(4.22)

Secondly, the standardized transformed response variable is obtained as follows:
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Y∗ =
q(Y)− 〈q(Y)〉

max(q(Y))−min(q(Y))
(4.23)

Next, it is necessary to define the predictor functions to be considered in the analy-
sis: mi(X). The number of predictor functions that can be considered is unlimited,
independently of the number of experiments, unlike modeling based on degrees of
freedom. However, the closed-form model will depend on the number of the exper-
iments despite the number of significant factors resulting. This because significance
is more difficult to prove in smaller samples. For this work the predictor functions
are defined as follows:

Y∗ = b0 + b1t + b2V + b3Φaq + b4[I]aq + b5[M]p + b6T (4.24)

+b7r̄ + b8σr + b9FM + b10FI + b11Tj

Variables in equation (4.24) were selected because they relate the process input vec-
tors (FM, FI, Tj) to the macroscopic and mesoscopic states vectors (V, Φaq, [I]aq,
[M]p, T, r̄, σr) to predict the evolution of the microscopic states (n̄ and Ns). V, Φaq,
[I]aq, [M]p, T, r̄, and σr vectors collect values of the macroscopic and mesoscopic
states in the inputs (FM, FI, Tj) space. It is important to remark that the time vector t
is included here because there exists the possibility that external factors not consid-
ered in the analysis are affecting the results. t can be used to test the independence.

Then, the standardized transformed factor for each predictor function is obtained as
follows:

X∗j =
mj(X)− 〈mj(X)〉

max(mj(X))−min(mj(X))
(4.25)

The second step is the selection of the next most promising factor. Therefore, the
correlation coefficients between Y∗ and each X∗i are computed and the standardized
transformed factor with the largest absolute correlation coefficient X∗m is identified.

The third step is to test the significance of the next most promising factor. Con-
sequently, the best probability model describing the overall behavior of Y∗ should
be identified. Next, both positive and negative subgroups of experiments must be
determined. The positive and negative subgroups are those for which mj(X) ≥
〈mj(X)〉 and mj(X) ≤ 〈mj(X)〉, respectively. Then, the smaller subgroup must be
identified (for critical resolution). Finally, the validity of the overall model using the
smaller subgroup data is tested. If the alternative hypothesis cannot be rejected, then
the coefficient b∗m is significant.
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Before performing the hypothesis test a certain relative tolerance can be used as a
filter. By default, the value of the tolerance is set at 0.05, purposely chosen similar to
the conventional value used for the significance value. The hypothesis test is only
performed if the difference between the mean values of both subgroups is larger
than the tolerance.

The fourth step is to calculate the coefficient of the most promising factor. That is, if
the coefficient b∗m is significant, then:

b∗m =
Cov(Y∗, X∗m)

Var(X∗m)
. (4.26)

Otherwise, if b∗m is not found significant, or if |b∗m| is below the relative tolerance 0.05,
then b∗m = 0. The significance of b∗m is determined by a statistical test. Such a test
determines whether the b∗m value is significantly different from zero or not.

The fifth step is updating the data. The standardized response variable must be
updated to remove the effect of the predictor function X∗m already included in the
model, as follows:

Y∗ = Y∗ − b∗mX∗m (4.27)

The predictor function X∗m is removed from the list of the factors available. The
procedure must be repeated from the second step if the list of factors is not empty.
Otherwise, it is possible to proceed with the following step.

The sixth step is to calculate the original model coefficients. The values of the coef-
ficient in the original model, equation (4.19), and the independent coefficient can be
computed by using equations (4.28) and (4.29).

b0 = 〈q(Y)〉 −
n

∑
i=1

bi 〈mi(X)〉 (4.28)

bi = b∗i
max(q(Y))−min(q(Y))

max(mi(X))−min(mi(X))
(4.29)

The seventh step is to calculate the performance of the model. Calculate the residuals
of the original model by using equation (4.30).

ε = ε∗(max(q(Y))−min(q(Y))) (4.30)
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Consequently, identify the best probability model describing the behavior of the
residuals using a standard parameter identification method. Thus, determine the
variance of the residuals (Var(ε)) for the best probability model identified. Finally,
the R2 goodness-of-fit could be computed as:

R2 = 1− ∑ ε2

∑ (q(Y)− 〈q(Y)〉)2 (4.31)

and the adjusted R2 goodness-of-fit as:

R2
adj = 1− Var(ε)

〈(q(Y)− 〈q(Y)〉)2〉
(4.32)

An implementation of the method in R language can be found in the supplementary
information in (Hernandez, 2018), where also several application examples were in-
cluded.

The required database to obtain the close-form models of the microscopic scales is
generated by running the kMC simulation iteratively over the whole domain of the
microscopic input parameters. That is: V ∈ [1× 106, 2.5× 106] cm3, Φaq ∈ [0.45, 0.8],
[I]aq ∈ [0, 1.8× 10−7] mol/cm3, [M]p ∈ [0, 1.8× 10−4] mol/cm3, T ∈ [328.15, 348.15]
K, r̄ ∈ [50, 90] nm, σr ∈ [5, 25] nm, FM ∈ [20.83, 62.50] cm3/s, FI ∈ [6.94, 20.83]
cm3/s, and Tj ∈ [323.15, 353.15] K. Such an iteration is performed by adopting a
Monte Carlo method where an uniform distribution was assuming for the input
parameters. The closed-form models are given by:

ln (Yn̄) = −2.5416− 5.6020× 103[M]p + 1.5313× 10−2FM (4.33)

+7.3867× 10−2Tj + 0.3220ε

YNs = 7.7269× 1017 − 4.3564× 1025[I]aq + 2.7490× 1017FI + 4.2516× 1017ε

(4.34)

They fit with R2 = 53.4429% and R2
adj = 63.0253% for Yn̄ and R2 = 82.9849% and

R2
adj = 96.6499% for YNs , respectively. Additionally, equations (4.33) and (4.34) are

independent of t.

4.2.2 Simulation results based on the closed-form

For the sake of comparison, the same simulation performed to generate the database
is executed again but, instead of the kMC model, the closed-form of the micro-
scopic scale states is used. Figure 4.4 shows the comparison between the generated
database with the kMC simulation and the results obtained by using the closed-form
of the models. In Figure 4.4, it is possible to appreciate that the closed-form models
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(black vertical lines) are able to capture with a good extent the results of the kMC
simulations (blue dots).
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FIGURE 4.4: Microscopic states evolution comparison between the
full-multiscale (blue dots) and closed-form models (black vertical
lines) for all the combined FI and FM values: (a) free-radicals inside

the polymer particles and (b) rate of secondary nucleation.

Figure 4.5 shows the dynamical evolution of macroscopic states. From the Figure, it
is noticed that the total reactor volume increase over time due to the fact that both
the initiator and the monomer are added at a constant rate from the beginning to
the end of the batch time. Additionally, from the Figure, it is observed that [M]p

stabilizes really fast (after about 500 s), which is really fast with respect to [I]aq, who
tend to stabilize once at the end of the reaction time. On the other hand, Φaq is
always decreasing. This means that [I]aq as well as [M]p are effectively consumed
to form new monomer chains. The fact that the T variation remains bounded and
small benefits the reaction conditions in such a way that the reaction rate does not
decrease significantly to slow down the particles growing process allowing to reach
the desired particles size at the of the batch time.

Figure 4.6 shows the dynamical evolution of the PSD by considering only the power
of 4 dependency of D, that is for D = 2.5× 10−2r4. From Figure 4.6, it can be seen
that the full particles population shifts in the increasing direction of the particles
size. This occurs in agreement with the nonlinear form of D, which establishes that
the bigger polymer particles grow faster than the smallest one causing the observed
asymmetry in the PSD. Additionally, from Figure 4.6, the polymer particles growth
appears to decrease over time. This can be observed from the fact that although
snapshots of the PSD dynamical evolution were taken every 6000 s, the peak value
of the plotted PSDs are not equidistant. This is consistent with the definition of the
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(a) (b)

(c)

(d)

(e)

FIGURE 4.5: Macroscopic states trajectories: (a) V the volume of the
reactor, (b) Φaq water volume fraction, (c) [I]aq initiator concentra-
tion in the aqueous phase, (d) [M]p the monomer concentration in the

polymer phase, and (e) T the reactor temperature.

growth kernel due to the fact that the advection effect in the FPE presents a nonlinear
decreasing behavior in the positive direction of the particles size.

FIGURE 4.6: Dynamical evolution of the particle size distribution
(PSD).

Figure 4.7 shows the dynamical evolution of microscopic states adopting the closed-
form given by equations (4.33) and (4.34), respectively. From Figure 4.7a, it is ob-
served that at the beginning of the simulation n̄ takes the overall highest value.
However, a value close to 0.55 is reached very fast and then n̄ remains close to that
value during the remaining reaction time. This result is consistent with the result
presented in Figure 3.6a in Chapter 3 where the value of n̄ also fluctuates around
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a value of 0.55. On the other hand, Figure 4.7b shows the evolution the secondary
nucleation rate Ns. From Figure 4.7b, it is seen that neither the initial value of Ns

nor the time at which Ns reached a value equal to zero are accurately captured by
the closed-form model (see Figure 3.6b). This evidences the difficulties of captur-
ing the nonlinear behavior of this microscopic state. However, it is remarked here
that the general decreasing trend of Ns is captured by the closed-form model while
drastically reducing the computational cost of solving the full multiscale model. Ad-
mittedly, even though not perfect, simulations adopting this closed-form model are
much less computationally expensive than those based on the kMC method, and
therefore might be much more suitable for optimization and control purposes.

(a)

(b)

FIGURE 4.7: Microscopic states trajectories: (a) n̄ the average number
of the free-radicals and (b) Ns the secondary nucleation rate.

4.3 Computational cost analysis: comparison between the full
multiscale model v.s. the reduced-order based models

For the sake of comparison between different model approaches, namely, i. the full-
multiscale model (FEM-kMC), ii. the multiscale model by adopting the closed-form
model for the microscopic scale (FEM-ClosedForm), iii. the reduced-order model
presented in (Urrea-Quintero, Ochoa, and Hernández, 2019) (RO-kMC), and iv. the
reduced-order model coupled with the closed-form model for the microscopic scale
(RO-ClosedForm), some simulations are performed in a a 2.50 GHz Intel Core i7−
7700 with 32GB RAM.

The FEM-kMC model is taken as a reference as the true solution of the multiscale
problem. Mean value (Mean), standard deviation (Std. dev.), and skewness (Skw)
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TABLE 4.1: Comparison between the full-multiscale model and its
order-reduction approximations.

Statistical moment

Model Mean [nm] Std. dev. [nm] Skw DB
Relative

Sim. time [%]
FEM-kMC 82.3581 17.0904 1.7515 0 100
FEM-ClosedForm 82.8233 16.6425 1.7938 0.0918 2.15
RO-kMC 79.7492 20.9364 0 0.2673 13.15
RO-ClosedForm 81.2847 21.5284 0 0.3077 0.01

are taken for each of the four final PSDs to have an idea of how much they vary
among them. Additionally, the Bhattacharyya distance (DB) was computed for the
four cases to measure the closeness between each of the final PSD being considered
and the true solution.

Let ηrp and ηrq represent two probability distributions over the same domain Ωr, the
Bhattacharyya distance is defined as

DB(ηrp , ηrq) =

√
1−

∫
Ωr

√
ηT

rp
ηrq dr. (4.35)

The Bhattacharyya distance DB(> 0) is directly proportional to the degree of dis-
similarity of different probability distribution functions, being equal to 0 for two full
overlapped probability distribution functions (Aherne, Thacker, and Rockett, 1998).

The four considered approaches evolved towards a comparable final PSD which
are however endowed by remarkable differences. From Table 4.1, it is observed
that both FEM-kMC and FEM-ClosedForm models capture the skewness of the final
PSD, i.e., its nonlinear evolution. In contrast, the limitation of both RO-kMC and RO-
ClosedForm is that the gaussian shape of the PSD is preserved in time. Moreover,
the most expensive simulation corresponds to the FEM-kMC model as expected (see
Table 4.1). Nevertheless, no significant differences can be noted in terms of the mean
value and the standard deviation. This fact is reflected in small Bhattacharyya dis-
tances. The adoption of the closed-form model for the microscopic scale represents
the main computational load reduction. The FEM-ClosedForm model is the best
candidate if a trade-off between computational cost and accuracy is desired. On the
other hand, the RO-kMC is the most appropriate approach to preserve the stochas-
tic nature of the microscopic scale in terms of the average of free-radicals and rate
of secondary nucleation (only mean ± std. dev. of the PSD are computed), while
saving some computational time (0.01% w.r.t. the full FEM-kMC model).
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It is remarked that because of the computational cost, the most appropriate repre-
sentations to be used on optimization/control tasks are the two adopting the closed-
form model of the microscopic scale. However, the FEM-ClosedForm imposes an ad-
ditional challenge with respect to the RO-ClosedForm model, namely, the solution
of the FPE. From the control viewpoint, the FEM-ClosedForm model requires the
adoption of a specialized framework for the control of nonlinear distributed process
systems. Such frameworks, by the way, typically leads to the adoption of model-
order reduction techniques because of the high computational cost of determining
the control actions (see Christofides (2001) and Meurer (2017) for more details). Con-
sequently, the RO-ClosedForm model seems to be the most appropriate representa-
tion to being adopted in optimization/control tasks. By using this model most of the
traditional control theory could be applied.

4.4 Sensitivity analysis

In terms of industrial applications, it is important to understand (among others),
two main aspects: i. the effect of both monomer and initiator flows as manipulable
inputs over the final PSD. Since the inputs might determine the shape of the final
PSD, they can be used to drive the process towards a desired final PSD such that a
final-end product quality is attained. ii. The effect of the uncertainty of the PSD at
the beginning (ηr0) of the polymerization process. If ηr0 has a significant impact over
the final PSD, it could be not possible to reach the final desired PSD, which implies
a deterioration on the final end-product quality.

Regarding the effect of both the monomer and the initiator flows as manipulable
inputs over the final PSD, a sensitivity analysis of the flows at the input over the final
PSD is performed. To perform such an analysis a Monte Carlo simulation is designed
to iteratively solve the FEM-ClosedForm model and evaluate 250 combinations of
for both the monomer flow FM ∈ [20.83, 62.50] cm3/s and the initiator flow FI ∈
[6.94, 20.83] cm3/s. Both input flows are varied adopting an uniform distribution
discretized within the defined inputs range.

Figure 4.8 shows the three first statistical moments of the final PSD and the Bhat-
tacharyya distance (BD) with respect to the final PSD obtained by adopting the nom-
inal values of the flows at the input. From Figures 4.8a,b, and c, it is possible to
observe that the monomer flow has a significant impact over the shape of the final
PSD. In contrast, the initiator flow does not have almost any effect (Figure 4.8d).
However, because of the high correlation among the statistical moments and FM, ex-
plained by their monotonic increasing or decreasing behavior, it is possible to con-
clude that the three moments can not be determined independently, instead the full
final PSD can be. That result is expected due to the fact that the diffusion coefficient
is neither directly nor indirectly coupled with the inputs.
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(a) (b)

(c) (d)

FIGURE 4.8: Impact of the input flows over the final PSD: (a) r̄, (b) σr,
and (c) Skw., the mean value, the standard deviation, and the skew-

ness of the PSD, respectively, (d) BD, the Bhattacharyya distance.

The fact that FI does not have any significant effect over the final PSD (see Figures
4.8a, b, and c) is advantageous since the rate of the secondary nucleation is directly
related to this input flow (see equation (4.34)). Consequently, FM can be used to tune
the final PSD while FI can be used to control the rate of the secondary particle nu-
cleation. This strategy can be exploited to improve the quality of the final polymeric
material.

Regarding the effect of the uncertainty of ηr0 of the polymerization process, a sen-
sitivity analysis of the r̄0 and σr0 over the final PSD is performed. To perform such
an analysis a Monte Carlo simulation is designed, as in the flows case, to iteratively
solve the FEM-ClosedForm model and evaluate several combinations of values of
r̄0 ∈ [40, 60] nm and σr0 ∈ [1, 12.5] nm. Both r̄0 and σr0 are varied using an uniform
distribution discretized with 250 samples.

Figure 4.9 shows the three first statistical moments of the final PSD and the Bhat-
tacharyya distance with respect to the final PSD obtained by adopting the nominal
values of both r̄0 and σr0 . From Figures 4.9a,b, and c, it is possible to observe that
both r̄0 and σr0 indeed have an impact over the shape of the final PSD. From Figure
4.9d, it is possible to observe that the final PSD changes with the variation of ηr0 .
That means, a high uncertainty on ηr0 can influence the prediction capabilities of the
multiscale model.

It is remarked here the fact that, by comparing Figures 4.8a,b,c and 4.9a,b,c, it is
possible to observe that the variation in the monomer flow has a higher impact over
the final mean value and skewness of the final PSD, while the uncertainty about ηr0

has major impact over the standard deviation of the final PSD. Finally, if we compare
Figures 4.8d and 4.9d, it is possible to notice that the monomer flow has a higher
overall impact over the shape of the final PSD than ηr0 . For instance, max(DB) =
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(a)

(c)

(b)

(d)

FIGURE 4.9: Impact of the PSD initial condition over the final PSD: (a)
r̄, (b) σr, and (c) Skw., the mean value, the standard deviation, and the
skewness of the PSD, respectively, (d) BD, the Bhattacharyya distance.

0.3714 for the FM variation case, while max(DB) = 0.1676 for the ηr0 variation case.

4.5 Chapter concluding remarks

In this chapter, the mesoscopic-scale representation of dispersed media was car-
ried out by using Variance Algebra concepts for describing the stochastic nature
of particle growth. This was the first step towards the construction of a control-
oriented model. The reduced-order model was proposed for describing the mean
and standard deviation of the particle size distribution by means of only two ODEs
at the mesoscopic-scale. On the other hand, the closed-form model derivation at
the microscopic scale was treated as a statistical modeling problem which made the
problem only dependent on the quality of the dataset used to build the regression.
That is, if the closed-form model prediction wants to be improved, only more kMC
simulations are required to increase the size and diversity of database. The closed-
form model derivation is the second step in the development of the control-oriented
model. The combination of the reduced-order model at the mesoscopic scale with
the macroscopic scale model leads to a model composed only of ODEs. The micro-
scopic states could be taken as system outputs and their evolution can be obtained
from the numerical integration of the set of ODEs using any standard numerical
method as the Runge-Kutta 4th order method.
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Chapter 5

Set-theoretic output-controllability
analysis

Abstract

This work presents a framework for evaluating the controllability of multiscale sys-
tems based on a set-theoretic approach. Calculation of the Controllable Trajectories
Set is the core of the set-theoretic approach. From a multi-scale perspective, such
calculation is a computationally- intractable problem. Therefore, to overcome the
intrinsic curse of dimensionality of the problem, Variance Algebra concepts and a
statistical modeling approach are combined to obtain a closed-form allowing to per-
form an output-controllability analysis for a multiscale system. A semi-batch emul-
sion polymerization process is adopted as a case study. Results have shown that
both, the final Particle Size Distribution (mesoscopic variable) and the secondary
particle nucleation rate (microscopic variable) are output-controllable. Evaluating
the controllability of lower-scale variables (i.e. below macroscopic) could both, miti-
gate the dependency of the current control strategies of on-line measurements at the
lower scales and help to better understand the process capabilities of achieving the
desired product quality specifications.

5.1 Set-theoretic based batch output-controllability analysis

5.1.1 Batch output-controllability from the multiscale perpective

We will focus on processes which could be described through a multiscale dynamical
model composed of lumped and spatially distributed states as follows:
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dxl

dt
= F (x, u, θ), xl(t = 0) = xl0, on Ω1 (5.1)

∂xd

∂t
= A(x) + g(x, u, θ), xd(e, t = 0) = xd0(e), on Ω2 (5.2)

xm(ti) = Π(δt, x(γ, ti), u, θ), on Ω3 (5.3)

y = H(x, u, θ) (5.4)

δt = t + ∆tm (5.5)

h
(

x,
dx
dη

, u, x̄
)

= 0, on Γ (5.6)

x̄ = L(xm) (5.7)

Equations (5.1), (5.2), and (5.3) represent the macroscopic, mesoscopic, and micro-
scopic descriptions of the system over the respective domains Ω1, Ω2, and Ω3.

It is assumed that Ω1, Ω2, and Ω3 overlap only at their common interface γ(⊆
Γ) = Ω1 ∩ Ω2 ∩ Ω3, where Ω = Ω1 ∪ Ω2 ∪ Ω3 spans the whole process domain.
x = xl(t) ∪ xd(e, t) ∪ xm(ti) ∈ X ⊆ Rn is the state-space vector; xl(t) ∈ Rl denotes
the vector of macroscopic state variables described by a set of Ordinary Differen-
tial Equations (ODEs); and xd(e, t) ∈ Rd denotes the vector of mesoscopic state
variables described by a set of Partial Differential Equations (PDEs). For instance,
e = [e1, e2, e3] ∈ Ω2 ⊆ R3 is the vector of internal coordinates. y ∈ Y ⊆ Rm

is the vector of the outputs which corresponds to a subset of x (Y ⊆ X ), y can
be composed by some of the states or any combination among them. t ∈ [0, t f ]

is the time (t f is the batch end-time). A(x) is a dissipative, possibly nonlinear,
spatial differential operator which includes up to second-order spatial differential
derivatives. This means the spatial differential operator represents the most com-
mon physical phenomena, namely, advection, diffusion or advection-diffusion type
problems. F (x, u, θ), H(x, u, θ), and g(x, u, θ) are nonlinear, possibly time-varying,
vector functions which are assumed to be sufficiently smooth with respect to its ar-
guments. u(t) ∈ U ⊆ Rp is the vector of the input variables which are assumed
to be piecewise continuous functions of time, θ(t) ∈ Rq is the vector of the system
parameters which are common to all scales and could be updated at any time within
the batch time, xl0 is the vector of initial conditions for the macroscale model, and
xd0 is a smooth vector function of e.

Function Π is a time-stepper function which describes the system at microscopic
scale. This function interacts via an input/output structure and may be unavailable
in a closed-form. It uses xm(ti−1) and macroscopic, mesoscopic or both state vectors
at the interface γ as input, evolves over the time-interval δt, and produces states
xm(ti). The vector function h (x, (dx/dη) , u, x̄) represents the boundary conditions
which depend upon x̄, the coarse realization of the microscopic states, linking the
macroscopic with the microscopic states. Coarse variables are defined through the
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restriction operator denoted as L(·). Typically, they are lower order statistical mo-
ments of microscopic states selected such that the coarse-dynamics are observable.

Equations (5.1), (5.2), and (5.3), as a whole, describe the dynamical evolution of a
dispersed-phase process or a process containing particles as a dispersed-phase sys-
tem. For instance, crystallization and precipitation, dissolution, deposition (e.g.,
chemical vapor deposition), polymerization, fermentation, cell growth, division dif-
ferentiation, and death, among others (Ramkrishna and Singh, 2014). The macro-
scopic model could be derived from the mass and energy balances whereas the
mesoscopic model can be derived from the Population Balance Equations (PBEs)
framework. The microscopic model accounts for the simulation of a well-stirred
chemically reacting system by stepping in time to successive molecular reaction
events in exact accord with the premises of the Chemical Master Equation (CME)
(Gillespie, 2007).

Batch processes are processes that by nature have some irreversible states (Gómez
et al., 2015). Therefore, it is expected at least one of the macroscopic variables repre-
sented by equation (5.1) to be irreversible (Haddad, Chellaboina, and Nersesov, 2008).
This means the following condition must be satisfied: for some i = 1, 2, . . . , n, and
∀t = [t1, t2, . . . , ti−1, ti, ti+1, . . . , t f ], it follows that x(i)l (ti−1) ≥ x(i)l (ti) ≥ x(i)l (ti+1)

or x(i)l (ti−1) ≤ x(i)l (ti) ≤ x(i)l (ti+1); e.i., xl is a function that increases or decreases
monotonically ∀xl ∈ Ω1 and u ∈ U .

The following definition introduced by Srinivasan and Bonvin (2007) is rewritten
here for the batch output-controllability, as follows:

Definition 1 (Batch Output-Controllablity). Let y be the vector of the system outputs
(eq. (5.4)) to be controlled. System (5.1) - (5.3) is locally batch-output controllable
from t0 on, if it is possible to construct a set of admissible control actions sequence
ui ∈ U , i = 1, . . . , N, such that, for every initial condition xt0 ∈ Ω0 and yt0 ∈ Y0, the
convergence of the system to a final bounded region xt f ∈ Ω f is guaranteed while y
is driven to the given final desired run-end specification Y f in both a finite time t f

and a finite sequence of N steps.

Remark 1. With the above definition two issues are addressed simultaneously: i. the
existence of the run-time trajectories that must be followed to reach the end-time
specification; ii. the feasibility of the end-batch specification due to the existence of
at least one trajectory such that with the available control actions the system can be
driven from the initial condition to the desired final one.

5.1.2 Sets definition

To better understand the concept of the CTS, the following definitions are re-called
here that were given by Gómez et al. (2015) and Gómez-Pérez, Gómez, and Al-
varez (2015).
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Consider a nonlinear dynamical system such that:

ẋ = F(x, u, θ)

y = H(x, u, θ) (5.8)

with u(t) ∈ U ⊆ Rp the admissible control actions vector, x(t) ∈ X ⊆ Rn is the
states vector, F(·, ·) is defined in the X × U space, y(t) ∈ Y ⊆ Rm is the outputs
vector, and H(·, ·) is defined in the Y × U space.

Definition 2 (Reachable Set in time t). Given a set Ωτ, the Reachable setRt(Ωτ) from
Ωτ in a time t > τ is the set of all states vector x for which exists a x(τ) ∈ Ωτ ∈ X
and u(·) ∈ U such that x(t) = x:

Rt(Ωτ) = {z ∈ X |∃x ∈ Ωτ ∧ u ∈ U : z = ϕ(t, τ, x, u)}, (5.9)

where z is the final state to be reached. This means, Rt(Ωτ) is the set of all state-
space vectors that can be reached by the system evolution from Ωτ in a time t by
means of the admissible control actions.

Remark 2. The information provided by the reachable set at the batch time t = t f

could be used in two different ways: (a) to verify the feasibility of the end-batch
specifications if their are chosen a priori or (b) to define the end-batch specifications
such that they belong to the interior of the reachable set at t f .

Definition 3 (Controllable Set in time t). Given a set Ωτ, the Controllable set Ct(Ωτ)

to Ωτ in a time t < τ is the set of all states vector x for which exists a x(τ) ∈ Ωτ ∈ X
and u(·) ∈ U such that if x(t) = x then x(τ) ∈ Ωτ:

Ct(Ωτ) = {z ∈ X |∃u ∈ U : ϕ(t, τ, x, u) ∈ Ωτ}. (5.10)

This means, Ct(Ωτ) is the set of all state-space vectors from which, given the admis-
sible control actions, it is possible to arrive to the set Ωτ.

Remark 3. Ct(Ωτ) must not be a single state-space point but a small state-space re-
gion. This because the probability of driving the system to a single point is equal to
zero. The size of Ct(Ωτ) could be thought as a controller accuracy constraint. That
is, if Ct(Ωτ) is almost a point in the state-space, a very precise control strategy must
be implemented to drive the system inside Ct(Ωτ). In contrast, if Ct(Ωτ) is a small
state-space region, a more flexible control strategy could be adopted.
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Definition 4 (Controllable Trajectories Set from Ω0 to Ω f in time t). Given the sets
Ω0 and Ω f , the Controllable Trajectories Set (CTS) τt(Ω0, Ω f ) from Ω0 to Ω f in a
time t is the set of all state vectors that belongs to the Reachable set Rt(Ω0) and the
Controllable set Ct(Ωt) in a time t:

τt(Ω0, Ωt) = {x ∈ X |∃x ∈ Rt(Ω0) ∧ x ∈ Ct(Ωt)}. (5.11)

This means, τt(Ω0, Ω f ) is the intersection in the state-space between Rt(Ω0) and
Ct(Ωt) that determines the states in which an admissible control action exists such
that the states can be driven from an initial condition Ω0 to the final desired ones Ω f

in the batch time t f .

Remark 4. If the interior of the CTS is not empty, it is said that the batch process is
output-controllable to the selected end-batch specification Ω f . However, once the
process is running, to effectively reach the end-batch specifications, the system must
be driven from the batch initial conditions to the final ones through the interior of the
CTS during the whole batch time. If the process reaches a state outside the CTS in
any time, the states would not converge to the desired final condition. Consequently,
the ideal situation is that the CTS occupies the biggest portion of the state-space
such that more state variables can converge to the end-batch conditions (Gómez-
Pérez, Gómez, and Alvarez, 2015). The main reason why the process would not be
driven through the interior of the CTS are process parameter uncertainties, model
mismatches, and disturbances.

According to the above definitions, the existence of a non-empty CTS guarantees
the existence of a possible trajectory to be followed to meet the end-batch specifica-
tions. Moreover, if it is assured that the system is driven through the CTS, then, it is
expected that the run-end specifications are indeed fulfilled.

As the batch output-controllability analysis based on the sets theory is a procedure to
compute the entire state-space domain which the system can evolve within, it would
be possible to use the sets information in the three following ways: first to verify
whether a predefined end-batch specifications belong to the CTS; second to compute
the reachable set at the last step N and select feasible values for the end-batch spec-
ification such that they belong to the interior of this set. This second option is more
related to a process design approach, but it is a suitable option in which the system
is designed such that its controllability is already guaranteed. The last option, that
could be considered as the more practical one from the engineering viewpoint, is to
establish upper and lower constraints for each of the controlled outputs, not a fixed
end-batch criterion (as it is the usual approach). This option can be seen as related to
the so-called zone-control approaches (González and Odloak, 2009), in which rather
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than to forcing the system to be driven to a fixed small state-space region, the control
objective specification is relaxed to a bounded zone.

In summary, the batch output-controllability framework described above allows ver-
ifying through the computation of the CTS: i. if the system outputs are controllable
to an end-batch specification in a finite time t f and ii. if the states of the system con-
verge to a bounded final space Ω f in both a finite time t f and a finite sequence of N
steps. Both conditions are verified through the computation of the CTS.

5.1.3 Sets approximation by a randomized algorithm

Many problems in theory control that have a considerable computational complex-
ity have been solved using randomized algorithms. These algorithms are simple
and efficient, e.g., in the analysis and design of robust control systems (Calafiore,
Dabbene, and Tempo, 2003; Tempo, Calafiore, and Dabbene, 2005). Applications
such as aerospace control, control of hard disk drives, congestion control of high-
speed networks, the controllability/reachability analysis of discrete-time piecewise
affine systems and the nonlinear model predictive control have been successfully
tackled by using randomized algorithms as well (See Tempo, Calafiore, and Dabbene (2013)
for a more detailed review of the applications).

A randomized algorithm was introduced by Gómez et al. (2015) for the compu-
tational estimation of the reachable, controllable, and controllable trajectories sets
for nonlinear systems that are subject to constrains within a polynomial calculation
time. The algorithm presented by Gómez et al. (2015) allowed the authors to ob-
tain reliable approximations of the sets with both a bounded error and a risk fail-
ure quantification. The same algorithm was adopted by Gómez-Pérez, Gómez, and
Alvarez (2015) for the controllability analysis and reference trajectories design of
some semi-batch reactors. Here the randomized algorithm introduced by Gómez
et al. (2015) to compute both the reachable and the controllable sets is summarized
below.

Algorithm 1: Reachable set computation. Given: An initial condition set Ω0, an
error and a fail risk (ε and δ), a state constrain set X ⊆ Rn, and a control variable
constraint set U ⊆ Rp.

(1) Find the sample size by the Chernoff inequality N ≥ (1/2ε2) log(2/δ).

(2) Get N samples x v Uniform(X ) and u v Uniform(U ).

(3) Obtain the prediction x(t + ∆t) in accordance with equation (5.8).

(4) Return an estimation of the reachable setR(Ω0) such that,

PN
{

x ∈ X N | P(R(Ω0))− P̂(R(Ω0); x) > ε
}
≤ 2 exp(−2Nε2)
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Algorithm 2: Controllable set computation For the computation of the controllable
set, the algorithm 1 applies in the same way. The only difference is that in step
(3), the system given by equation (5.8) must be solved in reverse time, that is for
x(t− ∆t).

Algorithm 3: Controllable trajectories set computation Given: An initial condition
set Q′, a final condition set QN , and N.

(1) Find N reachable sets in i-steps (i = 1, 2, . . . , N) to Q0, that is:

R1(Q′),R2(Q′), . . . ,RN(Q′).

(2) Find N controllable sets in i-steps (i = 1, 2, . . . , N) to QN , that is:

C1(QN ), C2(QN ), . . . , CN(QN ).

(3) Calculate each of the controllable trajectories set using the intercepts between
the i reachable set Ri(Q0) and the (N − i) controllable set CN−i, for every (i =
1, 2, . . . , N), as follows:

Q0,N(Q0,QN) = Q0

Q1,N−1(Q0,QN) = R1(Q0) ∩ CN−1(QN) = Q1

Q2,N−2(Q0,QN) = R2(Q0) ∩ CN−2(QN) = Q2

. . . = . . .

QN−1,1(Q0,QN) = RN−1(Q0) ∩ C1(QN) = QN−1

QN,0(Q0,QN) = QN

Thus, the controllable trajectories set for N-steps from Q0 to QN is the se-
quence:

CTS = {Q0,Q1,Q2, . . . ,QN−1,QN}.

5.1.4 Multiscale model order reduction

The multiscale model described by equations (5.1), (5.2), and (5.3) is a high dimen-
sional one because of the spatial differential operator A in equation (5.2) and be-
cause of function Π in equation (5.3), which is stochastic by nature, lacks from a
closed-form mathematical representation. Therefore, from the set-theoretic view-
point, verifying the system output-controllability from a multiscale perpective is al-
most impossible without applying a suitable model order reduction technique. In
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this work, a procedure to reduce the model dimension is proposed, although other
approaches could be adopted as well (see, e.g., Varshney and Armaou (2008)). The
proposed procedure to obtain the reduced order model is based on the ideas pre-
viously introduced in Chapter 4, which have shown to be effective in a free-radical
polymerization process. The aim of the model order reduction procedure proposed
here is to obtain a low-order computationally-tractable representation of the multi-
scale system which allows performing the batch output-controllability analysis by
the computation of the CTS.

Set-theoretic based output-controllability analyses possess a computational challenge
since the computation of the required sets is classified as a NP-hard problem (Blan-
chini, 1999; Kerrigan, 2001). For the batch output-controllability analysis, a conve-
nient representation of the multiscale model is through a set of ODEs assembled as
the system in equation (5.8). Such an ODEs system should comprise all the infor-
mation of the dynamical evolution of both macroscopic and mesoscopic scales as
state variables and the evolution of the microscopic scale as either system states or
outputs such that they could be a function of the macroscopic and mesoscopic states
as well as the inputs. A reduced order model in the form of equation (5.8) can be
solved through efficient standard algorithms for ODEs integration reducing the sets
computational cost.

From the problem definition, the macroscopic scale is already represented by a set of
ODEs that describes the dynamical evolution of the macroscopic state variables (see
equation (5.1)). On the other hand, the mesoscale corresponds to a PDE which repre-
sents the evolution of the dispersed phase of the system (see equation (5.2)). In this
case, different spatial discretization methods can be applied to obtain a set of ODEs
from the PDE. For the PBE type models, there is a plethora of spatial discretiza-
tion methods that could be implemented such as finite volume or finite elements
methods (See Gunawan, Fusman, and Braatz (2004), Bouaswaig and Engell (2010),
John and Suciu (2014), and Mohammadi and Borzì (2015) for some approaches).
However, most of those discretization techniques lead to a set of tens to hundreds
of ODEs usually depending on the number of selected spatial points in which the
spatial differential operator A is approximated. Such selected spatial points could
be determined either by the particularities of A (e.g., A representing an advection-
diffusion problem) or could be defined by the geometry of the spatial domain (it
can be defined as a line, a square, or even as an irregular more complex geometry).
Consequently, the mentioned discretization techniques could lead to computational
expensive numerical schemes to solve the multiscale model, that might make the
output-controllability analysis no viable because of the dimension of the mesoscopic
state-space.

Another alternative is applying the method of moments which has shown to be
effective in some cases to derive a set of ODEs composed by a small number of
equations from a PDE (e.g., see Vafa, Shahrokhi, and Abedini (2013) and Bajcinca et



5.1. Set-theoretic based batch output-controllability analysis 77

al. (2015)). The method of moments leads to a set of reduced number of ODEs. How-
ever, the limitation is that the stochastic nature of the defined internal coordinates of
the PBE could not be accurately captured (Hosseini, Bouaswaig, and Engell, 2012).
One solution to the above drawback could be the adoption of a stochastic version
for the internal coordinates kernel as was proposed by Hosseini, Bouaswaig, and
Engell (2013). The result is the Fokker-Planck Equation (FPE) which also presents
several issues regarding the required numerical scheme and computational cost for
solving it: i. the lower-order numerical schemes might suffer from instability and
loss of accuracy of the probability density function (p.d.f.) in the tail regions (Kumar
and Narayanan, 2006), ii. higher-order numerical schemes result again in a set of
a larger number of ODEs requiring considerable computational effort, which, at the
same time, limits the use of the model into optimization or control tasks (Kumar and
Narayanan, 2006; Lötstedt and Ferm, 2006; Gathungu and Borzì, 2017).

Therefore, in this work, it is proposed a different approximation to obtain a reducer
order model of the mesoscopic scale: the Variance Algebra approach applied to dy-
namical systems introduced by (Hernandez, 2016). The Variance Algebra is partic-
ularly powerful because it can be used for modeling the effect of random variables
in nonlinear systems. The Variance Algebra is used for describing fluctuations of
the state variables around their mean value with a simple mathematical represen-
tation that describes the dynamical evolution of the first statistical moments. This
approach can be seen as a model-order reduction technique for the PDE that rep-
resents the dispersed phase (Urrea-Quintero, Ochoa, and Hernández, 2019). With
the adoption of the Variance Algebra, it is possible to build a lower-order model
which captures both the mean and the standard deviation of the states variables at
the mesoscopic scale taking as a reference a stochastic kernel for their dynamical
evolution.

Regarding to the microscopic model, represented by a kMC simulation and which
requires a computationally intensive solution, the main concern is that it lacks of
a closed mathematical form. In this work, a general procedure applying statistical
modeling and analysis of experiments previously presented by Hernandez (2018)
is proposed to obtain a closed-form model of the microscopic scale. Based on such
a procedure, the problem of fitting a model based on a dataset generated by some
kMC simulations performed from the multiscale model solution given by equations
(5.1) - (5.3) can be addressed. The advantages of adopting this procedure, compared
to other approaches, are: i. the problem of the closed-form development is handled
as a general regression problem without any further assumption about the states and
inputs system relation (e.g., linear, quadratic, exponential, etc.); ii. no prior distribu-
tion is assumed over the data obtained through the kMC simulation which is partic-
ularly convenient in this case because the kMC method approximates the Chemical
Master Equation without assuming any prior distribution of the system evolution
(Gillespie, 2007); and iii. the statistical modeling method successfully incorporates
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the effect of the extreme values, usually representing the system high non-linearities.
All the procedure to obtain a closed-form model from the kMC dataset in a free-
radical emulsion polymerization process was already presented in chapter 4. The
obtained closed-form model for the free-radical polymerization process relates the
microscopic states variables with the macroscopic scale and the system inputs allow-
ing the use of the model for the output-controllability analysis.

5.2 Application to the batch output-controllability analysis
to a free-radical emulsion polymerization process

5.2.1 Control-oriented multiscale-based dynamical model

At this point, for the sake of clearness, it is remarked that equations (3.2)-(3.6), (3.12),
and the kMC simulation represent the multiscale model in the form of equations
(5.1), (5.2), and (5.3), which corresponds to a PDE/ODEs - kMC multiscale sys-
tem. In contrast, equations (3.2)-(3.6), (4.10), (4.15), (4.33), and (4.34) represent the
multiscale model in the form of equation (5.8), which is a suitable control-oriented
representation, the so-called RO-ClosedForm model, to perform the batch output-
controllability analysis based on the set-theoretic approach proposed here. Conse-
quently, henceforth this RO-ClosedForm model representation of the emulsion poly-
merization process is adopted as the model to perform the set-theoretic based batch
output-controllability analysis procedure discussed in Section 5.1.

5.2.2 Output-controllability analysis

In this case study, the verification of the end-point feasibility of the mesoscopic states
means verifying whether it is possible or not to control the process towards a final
PSD shape to guarantee the end-product quality. From the reachable sets analysis
viewpoint, all the final achievable mean and standard deviation values of PSD are
evaluated by means of the inputs manipulation, given the states initial condition Ω0.
From the CTS viewpoint, the feasibility of reaching an end-conditionY f is evaluated,
given a set of admissible inputs and an initial state condition Ω0.

The total batch time to produce the structured polymer particles is expected to be
5 h. However, it is required a minimum time for the processes to be started. Thus,
in this case, the starting time is 0.5 h –the required time to [M]p be stabilized– and
the values of the states at that time are taken as the initial set Ω0 to compute the
reachable and controllable sets. Consequently, the simulated batch time to compute
all the sets is 4.5 h.

For the computation of the sets based on the proposed randomized algorithm, the
critical parameter determining the accuracy of the sets estimation is the taken num-
ber of samples of the states variables and the inputs over their admissible sets X
and U , respectively. The Chernoff inequality is a good first estimator of the number
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of samples to be taken. For example, if an error ε = 0.01 and a fail risk δ = 0.02
are desired, then the number of samples should be taken is N ≥ 46× 103. In this
work, for the computation of the reachable sets, it was tested that for N > 50× 103

no improvement over the approximation of sets was obtained. Thus, N = 50× 103

was selected as the number of samples for the state variables and the inputs for the
computation of all the reported simulations regarded to the reachable sets. On the
other hand, for a good estimation of the controllable sets, it was necessary to choose
a different number of samples for the states variables and for the inputs. This is justi-
fied due to the fact that during the computation of the controllable sets a percentage
of the computed trajectories could not belong to the set of the end-product qual-
ity specifications. Then causing the lost of several of those computed trajectories.
Consequently, to obtain a good estimation of the controllable sets, it was necessary
to take ten times more samples of the inputs than the state variables. That was,
N = 50× 103 for the state variables and N = 500× 103 for the inputs. Then, every
state initial condition was combined with ten different inputs values. It is remarked
here that an additionally simulation was performed where the same number of sam-
ples (N = 50× 103) were taken for both the states variables and inputs. However, no
difference in the estimation of the controllable sets was observed, but combining an
initial condition with different inputs values was more efficient. Table 5.1 summa-
rizes the simulation parameters for the computation of both the reachable and the
controllable sets.

Controllable sets computation

From the product quality viewpoint, end-use properties of latexes obtained by the
emulsion polymerization are highly correlated with the final PSD of the latex (Sheibat-
Othman et al., 2017). Therefore, it is very common in emulsion polymerization ap-
plications to establish the final shape of the PSD as the primary controlled output
(Crowley et al., 2000; Dokucu, Park, and Doyle, 2008b; Puschke and Mitsos, 2016).
Regarding the final shape of the PSD, either of the following two different control
objectives can be established to control the process such that both final value of the
average and final value of the standard deviation of the PSD are: 1. attained or 2.
kept inside some defined lower and upper bounds. The first objective forces to con-
trol the process to a specific narrow Y f set, for instance, only a predefined final PSD
shape is allowed. The second objective gives a more flexible alternative due to the
fact the system is operated such that not a specific PSD must be obtained but only
its mean value and standard deviation must be bounded. Besides, the secondary
particle nucleation rate Ns also plays an important role in the end-use properties of
structured latexes. If a very high number of new polymer particles of the monomer
M are formed, the polymer quality would be deteriorated and the final PSD becomes
affected (Ferguson, Russell, and Gilbert, 2002). Therefore, an additional restriction
for the process operation could be defined such that Ns is kept as lower as possible
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TABLE 5.1: Simulation parameters for the computation of the reach-
able and the controllable sets.

Initial conditions for the reachable sets computation
State Value Units
V 1.1743× 106 cm3

Φaq 0.7223
[I]aq 4.9149× 10−8 mol/cm3

[M]p 1.0229× 10−4 mol/cm3

T 332.2694 K
r̄ 55.8228 nm
σr 5.8907 nm
Initial conditions set for the controllable sets computation
State Interval Units
V [1× 106, 2.5× 106 cm3

Φaq [0.45, 0.75]
[I]aq [4.2× 10−8, 1.7× 10−7] mol/cm3

[M]p [0, 1.8× 10−4] mol/cm3

T [328.15, 348.15] K
r̄ [53, 90] nm
σr [5, 15] nm

Admissible inputs set
Input Interval Units
FM [21, 62.5] cm3/s
FI [7, 21] cm3/s
Tj [323.15, 353.15] K

during the whole batch time. Furthermore, the advantage of the multiscale model-
ing approach of the EP process over traditional modeling approaches is the possibil-
ity of verifying whether it would exist a feasible trajectory to control the process by
keeping Ns as low as possible, ideally close to zero. That is a trajectory that could
minimize the rate of secondary nucleation along the batch time.

As secondary controlled outputs, relevant process states can be selected and end-
batch constrains specified. For the adopted EP process, those relevant states are
V, [M]p, and T. Constraints as maximum monomer concentration inside the poly-
mer particles [M]p and maximum final volume of the reactor V could be taken into
account as well as maximum and minimum allowed reactor temperatures T, which
is the key process variable operation for keeping the free-radical associated reactions
activated. The primary controlled output and all the additional states constraints
should be met taking into account the physical limitations of the process inputs such
as the maximum and minimum flow rates or the maximum cooling jacket capacity,
to be taken into account in the definition of the admissible inputs (Hosseini, Oshaghi,
and Engell, 2013; Gil, Vargas, and Corriou, 2016).

Figures 5.1a,b show the reachable sets for ten different equidistant moments in time
of both average and standard deviation of the PSD, respectively. From Figures 5.1a,b,
it is observed how both the mean and standard deviation of the PSD can evolve
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FIGURE 5.1: Feasible PSD shapes based on the reachable sets. a r̄
reachable sets. b σr reachable sets. c PSD worse and best scenarios.

given the set of admissible inputs. By taking the maximum and minimum values of
r̄ and σr at the final time, the PSDs in Figure 5.1c are obtained. Figure 5.1c shows the
initial condition as well as both worst and best scenarios of the reachable PSD at the
end of the batch time. The worst scenario is composed by the minimum r̄ and the
maximum σr, which represents the lowest batch reactor yield and highest particles
size dispersion. On the other hand, the best scenario is composed by the maximum r̄
and the minimum σr, which represents the highest batch rector yield with the lowest
particles size dispersion. The remarkable fact here is that, establishing as control
objective the case 2., where both the final value of the average and the final value of
the standard deviation of the PSD are kept inside a defined upper and lower bounds,
any PSD shape within the worst and the best scenarios can be selected.

Figure 5.2 also shows the reachable sets computed for Ns by means of equation
(4.34), the closed-form model of the secondary nucleation rate. From Figure 5.2,
it is possible to observe that even if the initial condition of Ns is different from zero,
it could be possible to reach the condition Ns = 0 at time t = 0.45 h and that condi-
tion could be hold during the remaining batch time. However, Figure 5.2 shows as
well that under some conditions Ns could never be equal to zero through the whole
batch time.

Figure 5.3 shows reachable sets for the macroscopic state variables. Results reported
in Figure 5.3 allows identifying which are the realistic values that can be chosen
as end-batch constraints. From Figures 5.3b,c, it is verified the boundedness of the
states that are not taken as controlled outputs, namely, Φaq, and [I]aq, which indeed
remain bounded over the whole batch time. Additionally, from Figure 5.3a, it is
possible to see that the reachable set of V at the final simulated time belongs to the
interval [1.85× 106, 2.21× 106] cm3; from Figure 5.3d, it is possible to observe that
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FIGURE 5.2: Reachable Ns set.

the reachable set of [M]p at the final simulated time belongs to the interval [0.27×
10−4, 1.66× 10−4] mol/cm3; and, from Figure 5.3e, it is possible to observe that the
reachable set of T at the final simulated time belongs to the interval [328.5, 347.2] K.
Therefore, the end-batch constraints for V, [M]p, and T should be established within
those intervals.

In summary, from the reachable sets analysis, the following boundaries were found
from the reachable sets for the primary controlled outputs at time t f : r̄ = [72.12, 80.59]
nm, σr = [7.99, 18.71] nm, Ns = [0, 1.76 × 1018] No. of new formed particles/V,
and the following boundaries were found from the reachable sets for the secondary
controlled outputs at time t f : V = [1.85 × 106, 2.21 × 106] cm3, [M]p = [0.27 ×
10−4, 1.66× 10−4] mol/cm3, and T = [328.5, 347.2] K.

Computation of the Controllable Trajectories Set

Three simulation cases are considered to check the existence of a non-empty CTS.
The following three different scenarios are established by considering the reachable
sets obtained at the end of the batch time, t f . In scenario 1, the control objective
is selected such that narrow end-batch specifications are defined and the outputs
are constrained to be inside the reachable set at time t f . Examples dealing with
this type of scenario include the works by Liotta, Georgakis, and El-Aasser (1997);
Immanuel and III (2002); Doyle, Harrison, and Crowley (2003); Dokucu, Park, and
Doyle (2008a). In scenario 2, the control objective is defined such that the output con-
straints fulfill certain upper or lower final end-product quality specifications but are
not restricted to a specific value or small region. Those constraints are defined so that
the final end-product quality specifications belong to the interior of reachable sets at
time t f , but are flexible enough to easily control the process into them. This type
of scenario have has been addressed in the works by Semino and Ray (1995); Liotta
et al. (1997); Crowley et al. (2000); Flores-Cerrillo and MacGregor (2002); Immanuel,
Wang, and Bianco (2008). Finally, in scenario 3, the control objective is defined as
in the scenario 2, but the upper and lower constraints are shifted up such that the
controllable sets at time t f could be shrunk. Therefore, not only the probability of
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FIGURE 5.3: Reachable macroscopic states sets: a. V cm3, b. Φaq, c.
[I]aq mol/cm3, d. [M]p mol/cm3, e. T [K].

reaching the end-batch specifications diminishes but the control action availability
to reject any external disturbance at the end of the batch time could decrease as well
(Gómez-Pérez, Gómez, and Alvarez, 2015), resulting in a reduction in the size of the
CTS. Some published works dealing with this scenario type are the works by Gentric
et al. (1999); Vicente, Leiza, and Asua (2003); Zeaiter, Romagnoli, and Gomes (2006).

The purpose of formulating the scenario 2 is to show the effectiveness of the batch
output-controllability analysis for engineering applications where it is not required
to meet too conservative but minimum yield specifications. Once those minimum
yield requirements are met, all the remaining constraints can be relaxed. The aim of
formulating scenario 3 is to show that if the end-batch specifications are settled such
that the process yield is maximized (i.e. to produce polymer particles as higher as
possible with a small dispersion, as the best scenario shown in Figure 5.1), the CTS
size is shrunk over the whole batch time. This could imply a diminishing process ca-
pacity to deal with the uncertainties and disturbances or, in other words, the system
control capacity decreases.

Table 5.2 summarizes the output bounds which define the sets of the end-batch spec-
ifications for the computation of both the controllable set and the CTS for scenario 1,
scenario 2, and scenario 3, respectively.

It is remarked from Table 5.2 that the most restrictive condition in scenario 1 is for r̄,
which corresponds to a tolerance of 5% for that output. In the Ns case, the tolerance
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TABLE 5.2: Output bounds for the sets of the end-batch specifications
for the computation of both the controllable set and the CTS for sce-

nario 1, scenario 2, and scenario 3.

Scenario
Outputs Y fsc1 Y fsc2 Y fsc3

V [1.90× 106, 2.20× 106] [1.90× 106,−−] [1.97× 106,−−]
[M]p [0.36× 10−4, 0.72× 10−4] [−−, 0.72× 10−4] [−−, 0.54× 10−4]
r̄ [75.20, 77.05] [75.20,−−] [78.90,−−]
σr [8.00, 10.00] [−−, 11.00] [−−, 9.50]
Ns [0, 0.59× 1018] [−−, 0.59× 1018] [−−, 0.38× 1018]

is of 10%, while for V, [M]p, and σr tolerance are 20%, 20%, and 15%, respectively. It
is also remarked that for scenario 2 and scenario 3 only upper or lower restrictions
are established for each of the outputs, which implies a relaxation of the control
objectives.

Figure 5.4 shows both the controllable and the controllable trajectories sets for sce-
nario 1. From Figure 5.4, it is possible to observe that indeed is possible to drive the
system from the initial condition Ω0 to the final desired condition Y f . In particular,
it is possible to see that r̄ is successfully driven to a narrow final condition, while, at
the same time, σr is restricted to be inside a particular interval. Another important
observed result is that there exists a set of possible trajectories to follow such that
the polymer particles can be produced with the desired size while keeping Ns close
to zero. Finally, from Figure 5.4, it is possible to observe that the imposed restric-
tions to V and [M]p are met. In conclusion, because the control objective in scenario
1 can be fulfilled and all the constraints are met, the output-controllability for that
scenario is successfully verified, which means that the process can be controlled to
those selected end-batch specifications.

Figure 5.5a shows the controllable sets for scenario 2. Figure 5.5b shows the control-
lable sets for scenario 3. Figure 5.5c shows the overlapping of the CTS for scenarios
2 and 3. From Figure 5.5a, it is possible to observe that the results for scenario 2 are
quiet similar to the results for scenario 1 (see Figure 5.4a). The most evident differ-
ences are the sizes in the controllable sets for both r̄ and σr at time t f , these are bigger
for scenario 2 because of the relaxation in the end-batch specifications. On the other
hand, by comparing the controllable sets between scenario 2 and scenario 3 (see Fig-
ure 5.5a and Figure 5.5b, respectively), it is possible to observe a difference in their
size, time by time, in each of the controllable sets, for every output. This is due to
the fact that the end-batch specifications in scenario 3 are more restrictive than those
defined in scenario 2. The end-batch specifications in scenario 3 cause that all the
controllable sets shrank. Finally, Figure 5.5c compares the CTS for scenario 2 and
scenario 3. There, it is possible to observe that, time by time, all the CTS related
to scenario 2 have a bigger size compared to the CTS related to scenario 3. Again,
this is the result of the different end-batch specifications defined for each scenario.
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a b

FIGURE 5.4: Controllable sets and CTS for scenario 1.

Scenario 2 takes into account a wide end-batch specification in comparison to the
narrow end-batch specification for scenario 3.

In conclusion, because the control objectives are fulfilled and all the constraints are
met, the batch output-controllability has been successfully verified for both, scenario
2 and scenario 3, meaning that the process can be controlled to the selected end-
batch specifications. The remarkable difference between scenario 2 and scenario 3
is that the CTS is smaller for scenario 3 than the CTS for scenario 2, which could
imply a decrease in the capacity of the system to reject disturbances. Additionally,
it is remarked that by means of a batch output-controllability analysis applied to
multiscale systems as the case study showed here, trial and error approaches, of-
ten adopted at industry to design materials with microscopic specifications, could
be replaced for a more systematic approach where the manipulation of the events
occurring at the fine scales can be linked to the dynamics at the coarse scales. Then
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a b c

FIGURE 5.5: Controllable sets and CTS for scenarios 2 and 3.

such finer scales can be controlled through the manipulation of the process inputs to
improve the overall product quality.

5.3 Chapter concluding remarks

The batch output-controllability was applied to a semi-batch emulsion polymeriza-
tion process where three different scenarios were simulated. In the first scenario was
demonstrated that if the end-product quality specifications belongs to the inside of
reachable set at the end-batch time, then indeed exist a non-empty set of control-
lable trajectories through the system can be driven to fulfill the end-batch product
quality specifications. Scenarios two and three were designed to show that the size
of the CTS can be affected by the selection of the end-batch specifications. Very re-
strictive end-batch specifications shrunk the CTS and could make the system more
susceptible to the external disturbances or model uncertainties. Therefore, it was
evidenced that not only the final end-product quality specification but the size of
the CTS should take into account to successfully operate the process. The advantage
of performing the batch output-controllability based on the set-theoretic approach
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is that the sets information could be used to determine the multiscale process per-
formance limitations and to better design a robust control strategy which not only
accounts for macroscopic control objectives but for mesoscopic and microscopic as
well.





89

Chapter 6

Conclusions and future work

6.1 General Conclusions

A framework for obtaining a control-oriented model from a multiscale perspective
which describes the dynamic evolution of a free-radical emulsion polymerization
process was successfully implemented. The developed multiscale model includes
the traditional macroscopic and mesoscopic dynamics of the free-radical emulsion
polymerization process, and also the average number of free-radicals and secondary
nucleation rate. These two microscopic states are critical to satisfactorily obtaining
structured polymer particles with the desired size and morphology. Results of the
multiscale model simulation showed consistency with respect to experimental re-
sults reported in the literature.

Two contributions were done regarding the computational efficiency of the full free-
radical emulsion polymerization multiscale model. The first contribution was the so-
lution of the Fokker-Planck Equation (FPE) by using a Finite Element Method (FEM)
which allowed to accurately capture the nonlinear evolution of Particle Size Distri-
bution (PSD). Additionally, the multiscale problem was defined in an element-wise
fashion allowing the solution of both macroscopic and microscopic scales locally
within each element. Then, the local solution was assembled in the usual FEM way
which saved a lot of effort in the coding procedure and allowed the implementation
of an efficient computational solution. The second contribution was the develop-
ment of a closed-form model of the kinetic Monte Carlo (kMC) simulation. The
closed-form model derivation was treated as a statistical modeling problem which
made the problem only dependent on the quality of the dataset used to build the
regression. That is, if the closed-form model prediction wants to be improved, only
more kMC simulations are required to increase the size and diversity of database.
By using this closed-form model, the computational time required to solve the FPE-
based multiscale model was dramatically reduced requiring only 2.15% of the com-
putational time with respect to the FPE-kMC model and with a low impact over the
accuracy of the solution. Furthermore, the required computational time to solve the
model combining the mesoscale reduced-order approach and the closed-form for
the microscopic scale required 0.01% of the computational time with respect to the
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full multiscale model (FPE-kMC representation). Because of the development of the
closed-form model of the microscopic scale and the computational cost reduction on
the model solution, this multiscale approximation could be used when implement-
ing, e.g., a real-time optimization of the process to control the product quality at the
microscopic scale which is the final aim of the application.

Bhattacharyya distance was adopted to measure the similarities between the final
PSDs obtained by considering four different model configurations, namely, FEM-
kMC (or the full multiscale model), FEM-ClosedForm, RO-kMC, and RO-ClosedForm
(the full reduced-order model). It was showed that the four considered model con-
figurations evolved towards a similar PSD. Moreover, different simulations were
performed to test that the closed-form model of the microscopic scale was able to
successfully capture the main dynamics of the kMC simulation. Because of the good
trade-off between predictability and simplicity, and the overall low computational
cost, the RO-ClosedForm model appears as a suitable tool to be used when imple-
menting optimization/control strategies to achieve the desired process yield.

A batch output-controllability analysis for a multiscale system was successfully ap-
plied by using the RO-ClosedForm model. Three different scenarios were simu-
lated to verify the batch output-controllability analysis. In the first scenario was
demonstrated that if the end-product quality specifications belongs to the inside of
reachable set at the end-batch time, then indeed exist a non-empty set of control-
lable trajectories through the system can be driven to fulfill the end-batch product
quality specifications. Scenarios two and three were designed to show that the size
of the CTS can be affected by the selection of the end-batch specifications. Very re-
strictive end-batch specifications shrunk the CTS and could make the system more
susceptible to the external disturbances or model uncertainties. Therefore, it was ev-
idenced that not only the final end-product quality specification but the size of the
CTS should be taken into account to successfully operate the process. The advantage
of performing the batch output-controllability based on the set-theoretic approach
is that the sets information could be used to determine the multiscale process per-
formance limitations and to better design a robust control strategy which not only
accounts for macroscopic control objectives but for mesoscopic and microscopic as
well.

It is worthy to remark that, by using the framework presented in this work, it is pos-
sible to develop a control-oriented models from a multiscale perspective capturing
information of the process from different length scales and combining both a good
accuracy in the representation and low computational cost to its numerical solution.
On the other hand, by means of the batch output-controllability analysis applied to
the multiscale system, trial and error approaches (often adopted at industry to de-
sign materials and devices with microscopic specifications), could be replaced for
a more systematic approach where the manipulation of the events occurring at the
finer scales would be linked to the dynamics at the coarse scales. This link among
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scales can be exploited to control the process fulfilling some microscopic product
quality specifications. A common requirement within the specialized chemical in-
dustry.

6.2 Future work

The current research can potentially be extended in different ways as follows:

Multiscale modeling of the free-radical emulsion polymerization process: The
main goal during the the development of the model representing the emulsion poly-
merization process was the integration of the macro-, meso, and micro-scopic scales
in a consistent framework. The key aspect for doing so was the understanding about
the required information by the kMC simulation such that the right information was
propagated up and down among the scales. Consequently, both the macro- and
meso-scopic scales models were kept as simple as possible and the main effort was
put on the kMC simulation. Based on this, as future work, both the macro- and
meso-scpic scales models can be improved. Some ideas to improve the model at
the macroscopic scale are: i. some impurities on both the initiator and monomer
feeds can be incorporated in their respective balances; ii. the shrinkage phenomena
of the polymer particles can be incorporated on the volume balance; and iii. the
polymerization kinetics considering the reactions occurring in the aqueous phase
can be added to the polymerization reaction taking into account only the reaction on
the polymer phase. Some ideas to improve the model at the mesoscopic scale are:
i. to incorporate the nucleation and coagulation phenomena of the polymerization
process as a source term in the Fokker-Planck Equation; ii. to link the secondary nu-
cleation rate with the Fokker-Planck Equation such that the population new formed
particles appears on this scale giving a bimodal particle size distribution; iii. to
define the polymer particles morphology as an additional internal variable for the
derivation of a multidimensional Fokker-Planck Equation which represents not only
the particles size but their morphology as a set of couple partial differential equa-
tions.

Order reduction of the multiscale model: In this work, the Variance Algebra ap-
proach was adopted to derive a reduced-order model for the mesoscopic scale. The
reduced-order model was able to successfully capture the two first statistical mo-
ments of the particle size distribution under the assumption that the polymer parti-
cles grow following a Gaussian distribution and it holds during the whole polymer-
ization reaction time. However, it was evidenced from the Fokker-Planck Equation
solution that the particle size distribution evolves from a Gaussian distribution to-
wards a skew-like Gaussian distribution. To overcome this limitation of the Variance
Algebra approach, one alternative could be to include additional statistical moments
in the reduced-order model derivation or to assume a log-normal distribution of the
polymer particles and to derive the same two statistical moments from the same
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Variance Algebra methodology but capturing the skew-like Gaussian distribution at
the end of the polymerization time. Another alternative could be to apply a model-
order reduction technique such as the well-known Proper Orthogonal Decomposi-
tion framework directly over the Fokker-Planck Equation and to obtain a suitable
set of basis functions able to capture its nonlinear evolution. However, the main
limitation of this approach might be the requirement of a representative dataset of
the solution of the full multiscale model to build the basis functions of the reduced-
order model. This because to obtain a representative dataset of the full multiscale
model would requires high computational resources.

Regarding the closed-form of the microscopic scale, a good option to improve its
prediction capabilities could be the adoption of a so-called Gaussian Process Model.
This kind of approach has shown to be a robust regression tool, also suitable for clas-
sification, and reinforcement learning tasks. Approaches based on Gaussian Process
Models could be useful to clearly identify such conditions which minimize the sec-
ondary nucleation rate. In order to mitigate the computational cost could cause the
construction of a Gaussian Process Model, some adaptive sampling techniques can
be tested, where samples from the kMC simulation would be added to an existing
dataset in an iterative procedure. A so-called surrogate model is then generated
from available information with an intrinsic lack of knowledge, which in turn can
be investigated and next used to obtain further observations. This iterative process
can be guided to be performed in an optimal manner enlarging the dataset with
only new relevant information and always trying to increase the closed-form model
prediction capabilities.

Numerical solution of the multiscale model: The Finite Element Method formula-
tion was kept as simple as possible meaning that none stabilization term was added
for the convective part of the Fokker-Planck Equation. This was possible only by
using a non-uniform mesh such that the Péclet number remained small. However,
if the problem becomes highly advection dominated or the dimension of the prob-
lem becomes larger, the Discontinouos Galerkin method is suggested instead of the
standard Galerkin method. The reason is that this method is naturally stable for
advection-diffusion problems and locally conservative. The main drawback would
be the complexity in the coding procedure. Some stabilization techniques based of
the addition of an artificial diffusion would be first explored if they are required.

Control related tasks: In this work, a set-theoretic approach was adopted to verify
whether a set of end-product quality specifications can be achieved by considering
the process states and inputs constraints. The natural next step is the implementa-
tion of a control structure which effectively allows to reach such end-product quality
specifications. However, some additional control related tasks could be performed
as well using the sets information. A first task might be to maximize the process
controllability. This can be achieved by computing the Controllable Trajectories Sets
size and then defining an optimization problem where the cost function takes this
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size information and then tries to maximize their size by varying some design pa-
rameter as the reactor volume, the heat transfer area between the reactor and the
jacket, among others. Higher Controllable Trajectories Sets means improved process
controllability. Another option would be the optimization of the process initial con-
ditions such that the overall process controllability could be maximized. Last, but
not least, the Controllable Trajectories Set information would be used as the con-
straints in an dynamical optimization problem to optimize the process performance,
by implementing for example, a non-linear model predictive controller.
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