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Reference: Biol. Bull. 196: 335-337. (June 1999) 

Archaeal Aminoacyl-tRNA Synthesis: Unique 
Determinants of a Universal Genetic Code? 

M. IBBA’, A. W. CURNOW’, J. BONO’, P. A. ROSA2, C. R. WOESE3, AND D. SGLL’ 

‘Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 
06.520-8114; ‘Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories of the 
NIAID, National Institutes of Health, Hamilton, Montana 59840; and “Department of Microbiology, 

University of Illinois, Champaign-Urbana, Illinois 61801 

The accurate synthesis of aminoacyl-tRNAs is essential 
for faithful translation of the genetic code and is assumed to 
be one of the most highly conserved processes in biology. 
Recently, this dogmatic view has been called into question 
by the sequences of a number of archaeal genomes; for 
example, the genomic sequence of Methanococcus jann- 
aschii does not contain open reading frames (ORFs) encod- 
ing homologs of the asparaginyl-, cysteinyl-, glutaminyl-, 
and lysyl-tRNA synthetases (l-3). Furthermore, the full 
complement of aminoacyl-tRNAs necessary for translation 
is not entirely formed by the aminoacyl-tRNA synthetases 
(AARS). In a significant number of cases, the AARSs 
activate a non-cognate amino acid, and the generation of the 
correct aminoacyl-tRNA pair is brought about subsequently 
by a second protein. The use of such pathways for the 
formation of Gln-tRNAG’” (via Glu-tRNAG’“) and Sec- 
tRNAS”” (vin Ser-tRNAS”” ) is well documented in all the 
living kingdoms (4, 5). Moreover, in several Archaea, an 
additional aminoacyl-tRNA, Asn-tRNA*““, is also formed 
by transformation of a mischarged tRNA rather than by 
direct aminoacylation with asparaginyl-tRNA synthetase. 
Biochemical evidence indicates that aspartyl-tRNA syn- 
thetase initially synthesizes Asp-tRNA*““, which is subse- 
quently converted to Asn-tRNA*“” in a distinct tRNA- 
dependent transamidation reaction (6). 

The use of two-step (indirect) aminoacylation pathways 
for the formation of Asn-tRNA*“” and Gln-tRNAG’” in 

This paper was originally presented at a workshop titled Evolution: A 

Moleculur Point of View. The workshop, which was held at the Marine 
Biological Laboratory, Woods Hole, Massachusetts, from 24-26 October 

1997, was sponsored by the Center for Advanced Studies in the Space Life 
Sciences at MBL and funded by the National Aeronautics and Space 
Administration under Cooperative Agreement NCC 2-896. 

some organisms circumvents the need for the enzymes that 
catalyze one-step formation of these molecules, the aspar- 
aginyl- (AsnRS) and glutaminyl-tRNA synthetases (GlnRS) 
respectively. Consequently, it is not surprising that genes 
encoding these enzymes have not been found in the com- 
pleted genomic sequences of organisms that employ one or 
both of the indirect pathways. However, in addition to 
lacking AsnRS and GlnRS, the genomic sequences of the 
euryarchaeons M. jannaschii and Methanobacterium ther- 
moautotrophicum do not contain homologs of known cys- 
teinyl- (CysRS) or lysyl-tRNA synthetases (l-3). Although 
no adequate explanation yet exists for the apparent absence 
of CysRS, several members of the Archaea, including M. 
jannaschii, do contain a functional lysyl-tRNA synthetase 
(LysRS) that has, however, no resemblance to known bac- 
terial or eukaryal LysRSs or any other sequences in the 
public database (7). This is in contrast to all other AARSs, 
which are highly conserved throughout the living kingdom. 
The high degree of conservation is exemplified by the 
invariant classification of AARSs into one of two classes 
defined by the presence of characteristic amino acid se- 
quence motifs and topologically distinct nucleotide binding 
folds (8). This is not true of the recently identified archaeal 
LysRSs, which are class I-type AARSs and are thus easily 
distinguished from their known bacterial and eukaryal coun- 
terparts, which are class II enzymes. Although this novel 
type of LysRS was initially assumed to be confined to 
certain Archaea, continued genomic sequencing efforts 
have suggested that it may also occur in some bacteria. This 
was confirmed by the cloning of a gene encoding a func- 
tional archaeal-type LysRS from the Lyme disease spiro- 
chete Borrelia burgdorferi (9). The spirochetes are a phy- 
logenetically distinct bacterial group, and the existence of 
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archaeal-type genes in these organisms raises doubts about 
our understanding of their evolutionary origin and develop- 
ment. 

Our data raise several evolutionary questions, and the first 
is about the aminoacyl-tRNA synthetases themselves. If 
these enzymes are not evolving as orthologs despite the 
orthology of the translation apparatus [and the constancy of 
genetic code, with exceptions that are relatively recent com- 
pared to the findings at issue (lo)], then we must compare 
the relation between evolution of the aminoacyl-tRNA syn- 
thetases and that of translation in general and the structure 
of the genetic code in particular. It appears that, at the time 
that the universal ancestor of all life gave rise to the primary 
lineages, the aminoacyl-tRNA synthetases had not achieved 
as settled an evolutionary condition as is generally assumed. 
Second, if the existing universal phylogeny is indeed rep- 
resentative of organismal lineages, then our data speak to 
the general issue of which functions in the cell were firmly 
established when the universal ancestor gave rise to the 
primary lineages. 
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Discussion 

OLSEN: How to explain the absence of a cysteinyl-tRNA syn- 

thetase? 

IBBA: That’s still a question for us. There are a number of 
possibilities that one could easily envisage. The most obvious 
of these is the existence of a seleno-cysteine like pathway. 
However, this would raise the question of how the cell would 
achieve the specificity that it needs, since it is very hard to 
distinguish between seleno-cysteine and cysteine when both are 
present as free amino acids. We have examined this possibility 
and find no evidence for it. We think that the problem could be, 
as with the LysRS, that it’s a non-recognizable CysRS. Here is 
a possibility; if we look carefully through the genomic se- 
quence, we find three PheRS subunits, whereas we know there 
are only two subunits in PheRS. In fact, one of these three 
subunits could be CysRS. Another possibility is that there is 

some vastly complex editing reaction that results in cysteine 
synthesis in the active site; but I don’t see how that would work. 
We are now testing our assumption that there is a CysRS among 
the three subunits. 

ELLINGTON: Have you considered a third hypothesis, that 
coming out of the last common ancestor, we weren’t quite rid of 
all of the vestiges of the RNA world, and that in the common 
ancestor tRNA, charged tRNAs were all made in the same way 
by ribozymes? Then during the divergence past the progenote, 
we could have had selective replacement by the protein en- 
zymes. 

IBBA: The problem with that hypothesis is that the selectivity 
for different amino acid is insufficient in an RNA context. Mike 
Yarus showed that the selectivity between valine and isoleucine 
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is less than one to two hundred. In comparison, the isoleucyl 
tRNA synthetase can only discriminate at a level of one to two 
hundred, but then uses the full power of a protein to edit out 
valine. Consequently I don’t think that a full complement of 
aminoacyl tRNAs could be made by ribozymes. Of course, a 
very limited complement is possible, but I don’t think that the 
required discrimination is achievable with an RNA. 

ELLINGTON: That’s a different question, and I think there are a 
lot of people who might disagree with that. 

CAVALIER-SMITH: I didn’t understand why, in your second sce- 
nario for the lysyl-tRNA synthetase, you suggested gene transfer 

rather than a change in the specificity of an amino-acyl tRNA 
synthetase. 

IBBA: I’m hedging my bets at the moment. In the glutamine and 
glutamate cases, it’s very easy to envisage which synthetase arises 
from another by looking at the sequences and by looking at the 
specificity. Our best candidate here would be that LysRS arose as 
a duplication of ArgR-also a Class I synthetase. ArgRS has some 
unique biochemistry, and we have begun to see lots of that in the 
LysRS. Therefore, it is possible that there was a duplication and 
diversification of ArgRS to give the class I LysRS, followed by 
loss of the class II type of LysRS. 
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