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Roles of tRNA in cell wall biosynthesis

Kiley Dare and Michael Ibba*

Department of Microbiology, Ohio State University, Columbus, OH, USA

Abstract
Recent research into various aspects of bacterial metabolism such as cell wall and antibiotic
synthesis, degradation pathways, cellular stress, and amino acid biosynthesis has elucidated roles
of aminoacyl-transfer ribonucleic acid (aa-tRNA) outside of translation. Although the two enzyme
families responsible for cell wall modifications, aminoacyl-phosphatidylglycerol synthases
(aaPGSs) and Fem, were discovered some time ago, they have recently become of intense interest
for their roles in the antimicrobial resistance of pathogenic microorganisms. The addition of
positively charged amino acids to phosphatidylglycerol (PG) by aaPGSs neutralizes the lipid
bilayer making the bacteria less susceptible to positively charged antimicrobial agents. Fem
transferases utilize aa-tRNA to form peptide bridges that link strands of peptidoglycan. These
bridges vary among the bacterial species in which they are present and play a role in resistance to
antibiotics that target the cell wall. Additionally, the formation of truncated peptides results in
shorter peptide bridges and loss of branched linkages which makes bacteria more susceptible to
antimicrobials. A greater understanding of the structure and substrate specificity of this diverse
enzymatic family is necessary to aid current efforts in designing potential bactericidal agents.
These two enzyme families are linked only by the substrate with which they modify the cell wall,
aa-tRNA; their structure, cell wall modification processes and the physiological changes they
impart on the bacterium differ greatly.

INTRODUCTION
Aminoacyl-transfer ribonucleic acids (aa-tRNA) both deliver amino acids to the ribosome
for translation and participate as substrates in other reactions within the cell.1 One enzyme
family that uses tRNA substrates are the L,F-transferases, which transfer leucine or
phenylalanine to the N-terminus of proteins thereby targeting them for degradation via the
ClpS-ClpAP-mediated N-end rule pathway.2 aa-tRNAs are also the substrates for at least
two other processes that take place in the cell. These pathways modify existing cell wall
structures to evade antimicrobial action. Modification of PG, a component of the lipid
bilayer, by the attachment of lysine to form lysylphosphatidylglycerol (LysPG) was first
discovered in Staphylococcus aureus. The enzyme responsible for this reaction was termed
multiple peptide resistance factor (MprF) due to the observation that mprF gene disruptions
increased susceptibility of S. aureus to antimicrobial agents.3 Homologs of MprF are found
in various microorganisms, and some exhibit differential specificity for the amino acid they
attach to PG, resulting in a broader classification of these enzymes as aminoacyl-
phosphatidylglycerol synthase (aaPGS).4 This review focuses on the structure and
specificity of aaPGSs for their aa-tRNA and lipid substrates. The effect of aaPG formation
on bacterial survival in different environments and the regulation of aaPGS in various
bacterial species are briefly summarized.
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The Fem proteins use aa-tRNAs to form branched peptides on precursors used in cell wall
biosynthesis. These enzymes transfer the amino acid moiety from aa-tRNA to the lysine
(Lys), or in some cases diaminopimelic acid (DAP), in the pentapeptide of the peptidoglycan
precursor to form branched peptide chains that link these precursors to form the
peptidoglycan layer. The peptide bridges formed by Fem proteins differ among bacterial
species and their completion is paramount to the structural integrity of the cell wall.
Recently, bacterial resistance to β-lactam antibiotics targeting the cell wall has increased as
evidenced by the resistance of methicillin resistant S. aureus (MRSA) to vancomycin.5 The
efficacy of these antibiotics, which target peptidoglycan formation, can be increased by the
formation of truncated peptide bridges that result in inadequately linked peptidoglycan and
weak cell walls. As such the Fem family has been the subject of studies to develop novel
antibiotics to combat resistant microorganisms. The section on Fem transferases focuses on
peptide bridge formation, protein structure, and substrate recognition.

CONTROLLING NEGATIVITY: THE ROLE OF tRNA ADDITION TO PG
Many components of the cell wall contribute to its anionic nature such as lipid A, teichoic
acids, and phospholipids. The innate immune system of plants, fungi, and other bacteria
target this property by producing cationic antimicrobial peptides (CAMPs), which kill
invading bacterial species. Bacteria have developed several mechanisms to circumvent this
host defense; the production of secreted proteins to cleave or inhibit the binding of cationic
peptides, cationic peptide export, and the modulation of bacterial cell wall charge.6 The
addition of aminoarabinose to lipid A in gram-negative bacteria, alanine to teichoic acid in
gram-positives, and lysine to PG across the bacteria, help to neutralize negative cell wall
components. aaPGSs catalyze tRNA-dependent PG modification. Homologs of aaPGS are
encoded in 348 species of bacteria, spanning 93 genera of gram-positive bacteria (mostly
firmicutes and actinobacteria) and gram-negative bacteria (mostly preoteobacteria), and in
three archaeal Methanosarcina species.7 Most mprF homologs are found in plant and animal
pathogens, and soil and plant colonizing microorganisms. Distribution of mprF does not
occur uniformly across a given genus, for example, mprF is only found in 4 of the 42 known
Bacillus taxa. The transferase domains of the aaPGS homologs group into three types, with
more than one domain type found in one bacterial species. Forty-nine of the available
genome sequences encode more than one aaPGS homolog. The bacteria that contain more
than one homolog are most often gram-positive bacteria, particularly members of the
actinobacteria and clostridia.8 Nonpathogenic soil-dwelling microorganisms are thought to
possess this defense in response to bacteriocins produced by other bacterial species
inhabiting the same environmental niche.9 These aaPGS proteins possess varying structures
with different substrate specificities. Formation of aaPG confers different physiological
effects, and regulation of aaPG content of the membrane is controlled by different
mechanisms among bacterial species. The following section focuses on these differences
among aaPGS homologs.

aaPGSs Consist of Two Functional Domains
aaPGSs contain an N-terminal integral membrane domain and a C-terminal hydrophilic
domain that do not share sequence similarity with other proteins of known function. The
membrane domain varies in size and sequence, and is absent in some aaPGS homologs. On
the basis of secondary structure predictions the membrane domain consists of a variable
number of transmembrane-spanning α helices (between 4 and 14) that orient the hydrophilic
C-terminal domain toward the cytoplasm where the aa-tRNA substrate is located.7 aaPGS
homologs are predicted to contain an odd number of helices that orient the hydrophilic
domain toward the periplasm,3,10 which is unlikely due to the presence of aa-tRNA solely in
the cytoplasmic compartment and may indicate mis-annotated transmembrane-spanning
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domains.11 Truncation of transmembrane domains in MprF from Bacillus sub-tilis and
MprF1 from Clostridium perfringens produced in Escherichia coli results in the formation
of LysPG in vitro.7 A similar truncation of Pseudomonas aeruginosa AlaPGS resulted in a
soluble protein that remains associated with the membrane and is able to produce AlaPG in
vivo when expressed in E. coli.11 In the case of B. subtilis and C. perfringens, it is likely that
even with the loss of this domain the protein still strongly associates with lipid bilayer
allowing access to both substrates and retention of transferase activity. These findings
indicate that it is the hydrophilic C-terminal portion of the protein that is responsible for
amino acid transfer to PG.

S. aureus LysPGS contains two functional domains, a membrane-spanning region that flips
newly synthesized LysPG to the membrane outer leaflet and a hydrophilic C-terminal region
responsible for the transfer of Lys to PG.12,13 Deletion of the N-terminal region resulted in
the accumulation of LysPG in the inner leaflet and increased susceptibility to CAMPs and
decreased repulsion of positively charged cytochrome c.12 Out of the 14 transmembrane-
spanning regions encoded by S. aureus mprF, only 6 plus the C-terminal hydrophilic domain
were necessary for levels of LysPG production adequate to mediate CAMP resistance. These
two domains do not need to be co-translated to be functional, as expression of the two
domains separately restored bacterial CAMP resistance.12 Many mprF mutations result in
gain of function phenotypes that increase resistance to daptomycin, the last drug of choice to
treat MRSA infections.14–18 mprF deletion in S. aureus results in hypersusceptibility to
daptomycin, and recent data indicate that the expression of mprF-specific antisense RNA
also restores susceptibility in resistant strains.12,19 Other mutations in the transmembrane
domain lead to increased LysPG in the outer leaflet of the lipid bilayer, thereby reducing
CAMP binding.20

In Mycobacterium tuberculosis, aaPGS (lysX), is composed of three domains, a membrane-
spanning domain, one with lysyl-transferase activity (LysPG) and one with lysyl-tRNA
synthetase (LysRS) activity (lysU).21 From phylogenetic analyses of mprF paralogs, similar
fusions of lysyl-transferase with a LysRS domain may also exist in Streptomyces species.22

aaPGS Amino Acid Specificities and Binding Determinants
Modified species detected in lipid extracts from different bacterial species include alanyl-PG
(AlaPG), LysPG, lysyl-cardiolipin (LysCL), and ornithyl-PG (OrnPG).23–25 Three of the
corresponding amino acids, Lys, Ala, and Arg, act directly as substrates for aaPGSs. These
activities correspond to distinct proteins that specifically use Ala-tRNAAla, Arg-tRNAArg, or
Lys-tRNALys. These aa-tRNAs bind MprF and elongation factor Tu (EF-Tu) equally well,
indicating a possible mechanism of amino acid procurement and transfer to PG in the
membrane in parallel with protein synthesis.22,26,27 The contribution of the tRNA moiety of
aa-tRNA to the specificity of aaPGSs appears to be low. An alanylated 12-bp minihelix
exhibits unaltered kinetic parameters compared to full-length tRNA with AlaPGS from C.
perfringens. Furthermore, a non-cognate aa-tRNA, Lys-tRNAAsp, is also active, indicating
that recognition of the tRNA moiety is not critical for aaPGS activity.22 Studies of P.
aeruginosa AlaPGS indicated that the acceptor stem is critical for recognition, specifically
the C5–G68 base pair.11 Relaxed aaPGS specificity for tRNA is also demonstrated by the
ease with which various bacterial (S. aureus, B. subtilis, C. perfringens, P. aeruginosa, and
Rhizobium tropici) pathways can be reconstituted in E. coli, which naturally lacks such a PG
modification system but possesses similar tRNA substrates.4,26,28–30

Lack of recognition of the tRNA moiety of aa-tRNA indicates that the aa moiety serves as a
more important determinant for substrate recognition. β-Aminoethylcysteienyl-tRNALys

serves as a substrate for LysPGS, indicating that the alipathic side chain of the lysine moiety
is not a discriminatory factor. However, the nature of the amino acid seems critical, as Cys-
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tRNALys is not recognized by the enzyme.27 The α-amino group is also an important
determinant for the enzyme as neither N-acetyl-alanyl-tRNAAla nor lactyl-tRNAAla are
substrates.31

Lipid substrate specificity has been tested through the use of chemically synthesized lipid
analogs, which showed that the terminal glycerol phosphate group of the PG head group is
critical for LysPGS to transfer Lys from tRNA to the free 3′ hydroxyl group of PG. Assays
with S. aureus LysPGS determined that 3′deoxy PG was not recognized as a substrate, while
2′deoxy PG is active, indicating exclusive transfer of Lys to the 3′ group.32,33 Isomerization
of the lysyl group between the 3′- and 2′hydroxyl group of PG was shown to be catalyzed
under strong acidic conditions in vitro.34 This isomerization may also occur under certain
physiological conditions as 3′ and 2′ isomer forms of LysPG have been detected in vivo.35,36

Cardiolipin (CL), also known as diphosphatidylglycerol, possesses a free 2′ hydroxyl group
and as such is not recognized by S. aureus LysPGS, however, LysCL is formed by the
LysPGS of Listeria monocytogenes.10,32,33,37 The polar head group of PG is also important
for substrate recognition by AlaPGS of P. aeruginosa, indicating homologs with differing
amino acid specificities recognize similar lipid elements.11 On the basis of the mutation of
conserved residues in AlaPGS lacking transmembrane-spanning helices, a mechanism of
transfer was proposed.11 Fatty acid chain saturation level and length seem to have little
effect on the recognition of PG substrates as many variations are found in the same
organism.11,37,38 A slight preference is shown by the S. aureus LysPG for endogenous lipids
over PG extracted from egg yolks. This may have to do with variation in fatty acid chain
composition, or a difference in the chirality of the PG glycerol moiety, which is a racemic
mixture in egg yolk.33

Several other species of aaPG have been detected in bacterial cell membranes. L-ornithine
lipids are phosphorus-free lipids synthesized under phosphate-limiting stress conditions in a
tRNA-independent manner.39 This allows phosphate normally allocated for cell wall
synthesis to be rerouted for use in nucleic acid synthesis via a biosynthetic pathway encoded
by the olsAB operon.39 D-AlaPG and D-AlaCL are found in Vagococcus fluvalis, GlyPG in
C. perfringens, and OrnPG in Bacillus cereus and Mycobacterium but it has yet to be
determined if the syntheses of these lipids species are tRNA-dependent.23,36,40 Multiple
aaPG species are found in Enterococcus faecium, including AlaPG, PG acylated with two
lysines and even L-ArgPG which is made by a dual specific aaPGS (Arg/LysPGS).7,24,41

The formation of different aaPG species (Figure 1) results in changes in cell membrane
properties, allowing bacteria to adapt to changing environmental conditions.

Physiological Effects of Cell Wall Charge Modulation
The formation of different aaPGs, such as from addition of Ala and Lys, allows different
membrane lipid–lipid interactions to occur and affects the packing and the fluidity of the
membrane.8 Liposomes containing LysPG exhibit increased resistance to Rb+ ions, while S.
aureus membranes exhibiting increased levels of LysPG correlate with increased fluidity
and decreased permeability to daptomycin.42,43 While the general trend of resistance to
CAMPs is seen for most organisms with PG modifications, PG aminoacylation also seems
to confer resistance to a broader range of conditions. The tRNA-dependent addition of Lys
to PG was originally discovered in S. aureus concurrently by looking for insertional
mutations that provided resistance to the CAMP gallidermin and the β-lactam oxacillin.3,44

This modification in S. aureus has been shown to mediate resistance to CAMPs produced by
neutrophils and plays an important role in the colonization of mice.3 Exposure of S. aureus
to acidic conditions increases LysPG levels, a physiological effect that is also observed in
Enterococcus faecalis and R. tropici.45 The formation of AlaPG in P. aeruginosa is also
linked to survival in acidic conditions induced by growth in sodium lactate, as well as
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resistance to the β-lactam, cefsulodin, the heavy metal ion Cr3+, and CAMP protamine.4

While CAMP resistance can be explained by electrostatic repulsion (LysPG) or modulation
of membrane fluidity and permeability (LysPG and AlaPG), which differ depending upon
the peptide, the mechanism of β-lactam resistance in the presence of LysPG is less
obvious.46 β-Lactam antibiotics are anionic in nature and affect the cross-linking of
peptidoglycan in the periplasm during cell wall synthesis. Transpeptidases required for this
activity possess a single membrane-spanning domain and carry out reactions on lipid-linked
substrates; thus, the presence of LysPG may directly affect the activity of the transpeptidase
by interaction with the protein or indirectly by optimally positioning the substrate. Lipid
species such as CL enhance the activity of MurG in E.coli,47 linking lipid content and
peptidoglycan biosynthesis in regulating cell wall turnover and the cell cycle.48 Resistance
to the charged glycopeptide, vancomycin, which also inhibits peptidoglycan cross-linking,
varies among S. aureus isolates. The presence of LysPG in these strains variously enhances,
diminishes, or has no effect on vancomycin resistance.44,49,50 In addition, S. aureus isolates
with wild-type MprF but resistant to daptomycin have also been discovered,14,51–55

emphasizing the importance of the contribution of the genetic background and regulatory
networks to antibiotic resistance against vancomycin and daptomycin.54

Regulation of aaPG Formation
aaPGs are expressed during all stages of growth, but their biosynthesis can be further
enhanced under certain environmental conditions. AaPGS regulation has not been studied in
detail and whether the activity is controlled allosterically at the protein level or regulation
occurs at a transcriptional level remains unclear. Expression of mprF and two additional
CAMP resistance mechanisms, dltABCD and vraFG, in S. aureus, are upregulated by the
apsRSX/GraRSX system in response to the presence of CAMPs.56–58 This system consists of
a membrane-bound histidine kinase sensor, ApsS/GraS, which is able to bind extracellular
CAMPs via a membrane sensor loop that contains anionic amino acid residues.56,57 The
transcriptional response regulator, ApsR/GraR, becomes activated when it is phosphorylated
by ApsS/GraS. The third component, ApsX/GraX, is of unknown function. S. aureus and
Staphylococcus epidermidis both possess an apsRSX system, and are able to sense different
CAMPs by variation in the number of negatively charged amino acid residues in the
membrane sensor loop of ApsS. The mechanism behind this preferential binding of certain
CAMPs over others is not currently known. In Staphylococcus species, this system
upregulates the expression of lysine biosynthetic genes, and this is thought to provide excess
lysine for PG modification with little impact to translation.57 Upregulation of mprF and
dltABCD by the aps system has been shown to occur during the exponential phase of S.
aureus growth. The expression of both modification enzymes is repressed by the agr two
component system, a regulator of the aps system that is involved in quorum sensing, during
stationary growth. Growth-phase-dependent regulation influences the susceptibility of S.
aureus to antimicrobial peptides, thus cell surface charge appears to be tightly controlled in
this organism.59 The apsRSX system is highly conserved in gram-positive bacterial species
including L. monocytogenes, Clostridium dificile, Bacillus anthracis, Staphylococcus
haemolyticus, and S. epidermidis.58 In L. monocytogenes, the related system, virSR, appears
to regulate genes involved in cell wall stress response, including mprF and dltABCD.60

These cell wall modifications have also been implicated in L. monocytogenes virulence in a
mouse model.10

BUILDING BRIDGES: ROLE OF aa-tRNA IN PEPTIDOGLYCAN LINKAGES
Cell wall integrity is critical for bacterial survival; cell wall peptidoglycan serves both as a
barrier to osmotic pressure and a scaffold for attachment of various proteins including
virulence factors.61–63 As such, the correct formation of the peptidoglycan layer is the target
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of many antibiotics. β-lactam antibiotics target the D,D-transpeptidases that catalyze the
final cross-linking step of peptidoglycan synthesis.64 Resistance to these antibiotics in many
gram-positive organisms results from the production of modified D,D- transpeptidases or
low-affinity penicillin-binding proteins (PBPs).65 The addition of a complete side chain to
peptidoglycan precursors is necessary for resistance to β-lactams-mediated by low-affinity
PBPs found in S. aureus, Streptococcus pneumoniae, and to a lesser extent Enterococcus
faecalis.65–71 As resistance increases to β-lactams, transferases that synthesize
peptiodglycan side chains have been targeted for the development of new antibiotics. These
proteins mostly belong to the Fem nonribosomal peptidyl transferases that use aa-tRNA as
the amino acid donor to synthesize the peptide cross-bridges that link peptidoglycan strands.
Another mechanism for tRNA-independent branching is the activation of the β-carboxyl of
D-aspartate by phosphorylation and subsequent ligation to cell wall precursor by Racfm and
Aslfm, respectively, in E. faecium.72 In S. aureus, femA, femB, and femX (fmhB) were shown
to be essential for the incorporation of glycine into the side chains of peptidoglycan
precursors.73–75 The femAB locus was initially identified as a factor essential for methicillin
resistance (fem) in S. aureus by insertional mutagenesis of chromosomal genes and a screen
for reduced expression of resistance mediated by penicillin-binding protein 2A
(PBP2A).74,76 These Fem proteins are composed of two distinct structural classes that differ
in terms of substrate recognition and the peptide linkages they form, as described below.

Peptide Bridges Differ Among Bacterial Species
Addition of amino acids to form branched peptides occurs at the ε-amino group of L-lysine,
meso-DAP, or LL-DAP in the pentapeptide stem linked via a lactyl group to an N-acetyl
muramic acid (MurNAc) moiety. The pentapeptide bridge consists of (L–Ala)-(D–Glu)-X-
(D–Ala)-(D–Ala); where X is meso-DAP, Lys, or ornithine (Orn), depending on the bacterial
species. Addition of glycine to meso-DAP in M. tuberculosis, and Mycobacterium leprae,
and to L,L-DAP in Streptomyces coelicolor play important roles in antimicrobial
resistance.77–79 (see also Tables 1 and 2 for further details).

MurM, a FemA homolog found in S. pneumoniae, has different activities among bacterial
strains. In S. pneumoniae, MurM adds either serine or alanine to ε-L-lysine, while a second
fem family protein, MurN, adds alanine forming a dipeptide branch.115 Different strains of
S. pneumoniae contain different allelic forms of MurM, some of which exhibit increased
peptidoglycan branching. The increase in the proportion of branched peptidogylcan in
combination with low-affinity PBPs results in penicillin resistance.87,116

These branched peptides can be synthesized on either peptidoglycan precursor, UDP-N-
acetyl-muramyl-pentapeptide (UDP-MurNAc-pentapeptide), free in the cytoplasm or further
on in the lipid synthesis process when the peptidoglycan precursors are associated with the
membrane. Lipid I (undecaprenylphosphate-MurNAc-pentapeptide) is formed in the first
lipid-linked step in cell wall synthesis by MraY, which transfers the soluble UDP-MurNAc-
pentapeptide to the lipid carrier undecaprenylphoshpate (C55-P). The translo-case MurG
subsequently links UDP-activated N-acetylglucosamine (UDP-GlcNAc) to the muramoyl
moiety of lipid I, yielding lipid II.88 MurM is able to use either lipid I or lipid II as a
substrate in vivo, indicating that the N-acetylglucosaminyl group of lipid II is not necessary
for MurM lipid precursor recognition.117 Figure 2 illustrates the peptidogly-can formation
and cross-linking portion of cell wall biogenesis including the known Fem enzyme family
members and their precursor specificities.

The proteins FemA, FemB, and FemX are responsible for the addition of five glycines to a
lipid-bound cell wall precursor in S. aureus.81,118 FemX catalyzes the addition of the first
glycine to the ε-amino group of L-Lysine of lipid II, followed by the addition of two
glycines by FemA, and two more glycines by FemB.105,118 In this sequential amino acid
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addition reaction, Gly-tRNAGly was found to be the rate-limiting substrate.105 Three out of
five tRNAGly isoacceptors encoded in S. aureus are recognized by the FemABX proteins but
are not used in protein synthesis.119 The terminal glycine transferred by FemB from Gly-
tRNAGly is linked via D,D-transpeptidase to the fourth D-Ala of a neighboring pentapeptide
chain. This addition occurs sequentially, and the presence of FemABX in the same reaction
has been shown to inhibit the formation of the full-length glycine chain. This indicates that
each of the proteins only recognize the sugar moiety of the peptidoglycan precursor, and
bind to substrate equally independent of the number of glycines attached, thereby inhibiting
the catalysis of the other proteins in the reaction.105

A gene with sequence similarity to S. aureus fmhB was characterized in E. faecalis and was
found to catalyze the addition of L-Ala to free UDP-MurNAc-pentapeptide in vitro.120

Peptidoglycan chains are linked by a branch of two L-Ala, the activity of hep-tapeptide
formation was found to be the result of an additional protein, BppA2, the addition of which
allowed peptide bridge formation to be reconstituted in vitro. The BbpA1 protein of E.
faecalis is more directly related to the well-characterized Fem family protein, FemX of
Weissella viridescens, but is an ortholog of MurM from S. pneumoniae.68 FemX of W.
viridescens is ideal for in vitro studies as it is a highly soluble protein that catalyzes the same
reaction as FmhB of E. faecalis preferentially on peptide precursors that exist as free
molecules in the cytoplasm.121 It is these two characteristics, solubility and the preference of
free UDP-MurNAc as a substrate, that initially separated FemX of W. viridescens into a
different subclass than that of the enzymes found in S. aureus, E. faecalis, and S.
pneumoniae. A third distinctive characteristic, the lack of a helical domain, was discovered
by protein crystallization and is discussed below.

Enzyme Structure and RNA Substrate Recognition
The structures of two Fem family members have been determined, FemA from S. aureus,
and FemX from W. viridescens.122,123 As shown in Figure 3, FemA consists of a helical
portion and a globular domain that can be separated into two subdomains (domains 1A and
1B). These two domains consist of three-dimensional folds similar to those of the histone
acetyltransferase (HAT) domain present in the GCN5-N-acetyl transferase (GNAT) protein
superfamily.124 Recent investigation of the structure of MurM using the FemA structure as a
basis for modeling found a domain structure similar to N-myristoyl transferases (NMT).
Each domain consists of a five stranded mixed polarity β-sheet with four α-helices. Two of
the α-helices lie on top of the β-sheet parallel with the β-strands, while the other two α-
helices are stacked on the bottom, one in parallel, the other at a 60º angle.
Superimpositioning of the two subdomains with the HAT domain of Tetrahymena GCN5
led to rms (root mean sqaure) deviations of 1.5 and 1.7 Å for residues in common with
subdomain 1A and subdomain 1B, respectively. The two subdomains superimposed with
each other have an rms deviation of 2.4 Å. The globular domain consists of additional
structures not found in the HAT domain, including a pair of β-strands that extend from
domain 1A, a pair of α-helices that lie on top of domain 1B, and a C-terminal α-helix. A
deep L-shaped channel corresponding to the binding pocket of domain 1B in comparison to
a HAT-like domain fold runs across the surface of FemA and is thought to bind to UDP-
MurNAc-hexapeptide linked to lipid II.122 Recent evidence comparing MurM with NMT
structural folds suggest that the C-terminal region is critical for activity, which is supported
by the loss of transferase activity in truncated MurM and FemA proteins.87,118 The
crystallized protein of FemA is lacking these C-terminal residues as well as a 12-residue
loop segment that was not visible on the electron density map, and it is possible the missing
residues may bury the proposed peptide-binding cleft, supporting an active site location
more similar to that proposed in MurM.125 The helical arms found in domain 2 are similar to
those found in seryl-tRNA synthetases (SerRS), and are responsible for forming a flexible
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platform to interact with the tRNA substrate.126,127 This structure is thought to play a
similar role in FemA, by holding Gly-tRNAGly during Gly transfer to the growing
pentaglycine bridge. In MurM, the 30aa variable sequence coincides with the helical arm
region found in SerRS and is thought to determine the protein’s specificity for either Ala-
tRNAAla or Ser-tRNASer.87,125 The FemA homolog, MurM, has been shown to recognize the
acceptor stem, and/or the TΨC stem loop of tRNAAla, the same portion of the tRNA that is
bound by the helical arms in SerRS.116

The structure of FemX from W. viridescens varies from FemA by one major structural
detail; it is the first characterized Fem protein lacking the antiparallel coiled-coil domain
formed by the helical domain that is expected to bind Gly-tRNAGly.123 This feature further
sorts it into its own subclass along with substrate preference and protein cellular
localization, separating it from the other 50 FemABX-related sequences that form subclass I.
W. viridescens FemX also consists of a globular domain with two structural subdomains
separated by a cleft proposed to be the UDP-MurNAc-pentapeptide binding site as
evidenced by co-crystallization with this molecule. Domain 1A consists of a six-stranded
mixed polarity β-sheet surrounded by five α-helices. Domain 1B consists of a seven-
stranded β-sheet surrounded by six α-helices. The two domains can be superimposed with
rms deviation of 2.0 Å for common atoms. Superimpositioning of FemX with FemA yields
an rms deviation of 2.8 Å for the 302 common Cα atoms. FemX differs from FemA in two
minor and the major structural detail previously mentioned. The N-terminal β-strand, β1, of
FemA is absent in FemX. Second, there is no equivalent found in FemX for the β-hairpin
β6–β7, which lengthens the β-sheet of domain 1B and strengthens the junction between the
two domains. The strand β1 is replaced in FemX by a loop. The lack of the β6–β7 hairpin
can be explained by a sequence deletion in FemX, which is also found in other members of
the Fem proteins such as FmhB from S. aureus.81 An additional structural variation is that
the coiled-coil domain 2 of FemA is replaced in FemX by a small loop but this deletion does
not affect the global fold of the protein. The central core is comparable to FemA, and
consists of a four-stranded mixed polarity β-sheet connected by two helices. This central
core domain appears to be a functionally conserved feature common to both the FemABX
and GNAT superfamilies. Binding of the UDP-MurNAc-pentapeptide, which was co-
crystallized with FemX, occurs in the cleft formed at the interface between the two domains,
and is mostly in contact with domain 1A. The binding site can be divided into four regions
that interact with the peptidoglycan precursor including the long loop β5–β6, the end of helix
α11, the loop β2–β3, and the end of helix α2.123 Domain 1B residues implicated in binding
as a result of co-crystallization are located in loop α7–α8. Structural differences between the
complexed and uncomplexed FemX are minor, with notable spatial differences observed for
Lys36, Tyr215 of α8, and Tyr256 of β10. In this structure, binding of the UDP-MurNAc-
pentapeptide orients FemX in a manner that exposes the lysine side chain to solvent, while
the electron density of the ε-amino group of this lysine is missing from the crystal structure,
indicating that this may not be a key feature in the mechanism of FemX.

On the basis of mutational analysis of the hypothetical UDP-MurNAc-pentapeptide binding
pocket the complex hydrogen bonding network formed by Lys36, Arg211, and a lesser
extent, Tyr215 were shown to be essential for FemX transferase activity in W.
viridescens.128 Interactions between Lys36 and Arg211 and UDP-MurNAc-pentapeptide
(both phosphate groups and both D-Ala residues) maintain the substrate in a bent
conformation essential for catalysis. The Tyr215Phe change resulted in a 25-fold loss of
transferase activity, indicating that the hydrogen bond network formed by this residue is
important but not essential for activity. FemX Tyr215Leu was insoluble suggesting that
stacking interactions between Tyr215 and Arg211 play a role in protein folding. Despite the
integral role of Lys36 and Arg211 in FemX they are not highly conserved in members of the
Fem family. Mutational studies based on chemical modification of W. viridescens FemX
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when bound to Ala-tRNAAla showed Asp109 to be an absolutely conserved residue in fem
ligases that when mutated to asparagine results in a 230-fold loss of activity.129 Earlier
studies of the catalytic mechanism of FemX from W. viridescens based on sequencing of the
protein and mutation of conserved residues led to the identification of Gln29 as being the
only conserved potentially catalytic residue.121 Additionally, mutations in Gly292 and
Pro110 also led to loss of activity, but normal protein yields indicated no conserved residue
that might plausibly form acyl intermediates thought to be crucial in the catalytic activity of
FemX.121 This study also found Phe305 and Tyr216 to be important aromatic residues,
potentially forming aromatic–aromatic interactions with the tRNA substrate.121 Also, as
previously mentioned, truncation of the C-terminus of FemX led to inactivity, implicating a
role of these residues in catalytic activity.121

Fem Recognition of aa-tRNA Differs from aaRS
In order for tRNAs to be used as substrates by Fem proteins they must first escape their
primary role in the cell, ribosomal protein synthesis. In S. aureus, this complication is
avoided by three encoded tRNAGly isoacceptors that bind poorly to EF-Tu, therefore
avoiding the cellular translational machinery.130 These three tRNAGly isoacceptors, out of
five encoded tRNAGly molecules, have a UCC anticodon, while the remaining two have
UCC and GCC anticodons. In S. epidermidis, the tRNAGly utilized for peptidoglycan
synthesis has the universally conserved D-loop residues G18 and G19 changed to UU or CC,
rendering these charged tRNA molecules inactive in protein synthesis. Additionally, the
tRNA substrate of fem transferases in S. epidermidis has an additional base pairing in the
anticodon loop between C32 and G38, which is thought to sufficiently distort the anticodon
loop to render it incapable of binding to the translation machinery. Ser is also incorporated
into S. epidermidis peptide linkages, however, no distinguishing mutations in tRNASer able
to synthesize these bridges have been identified. Identification of W. viridescens FemX
recognition elements of the tRNA moiety was determined by site-directed mutagenesis of
the tRNAAla acceptor stem based on the FemA crystal structure. This led to the
identification of two cytosines, C72 and C71, which are essential for transferase activity
using chemically acylated minihelix mimics of the tRNAAla acceptor stem as substrates.
Mutation of the G30-U70 wobble base pair did not affect enzyme activity, indicating that
this key identity element for AlaRS is not recognized by FemX.131 Experiments conducted
using Ser-tRNAAla, Gly-tRNAAla, and Ala-tRNAAla resulted in Gly and Ala incorporation
into the pentapeptide indicating that the enzyme preferentially transfers Ala over the larger
amino acid Ser, and shows flexibility in its use of Ala by transferring both the L and D
stereoisomers.132 This is due to the unfavorable interactions that take place with the acceptor
stem when larger amino acids are attached to the tRNA body. FemX is able to discriminate
against the smaller amino acid, Gly, via recognition elements present in the tRNA body.
Minihelices mimicking the acceptor stems of tRNAAla, tRNASer, and tRNAGly were
chemically acylated with Ala; while Ala-tRNASer was a viable substrate, Ala-tRNAGly was
discriminated against as well as the cognate Gly-tRNAGly, whose acceptor stem contains
C72 and G71.131,132 Figure 4 highlights differences in tRNAs used in peptidoglycan
synthesis versus isoacceptors used in translation. Inhibitors are being developed by the
synthesis of stable tRNA analogs, 2′-deoxy-adenosine, adenosine 3′-phosphate analogs, and
aryl sulfanilamides, all of which mimic the tetrahedral transition state thought to be part of
the MurM catalyzed reaction.133–136

CONCLUSION
The ability to modify PG in the membrane by the addition of amino acids is important for
bacterial survival under different conditions. Modulation of net membrane charge plays a
role in resistance to several antibiotics, such as daptomycin. Although the physiological
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effects of these aaPG modifications have been studied in detail, an aaPGS structure is now
required to further characterize the catalytic residues of the hydrophilic transferase domain.
Perhaps once one of the enzymes is crystallized, structural alignment will correlate paralog
sequence diversity to the broad range of aa-tRNA substrates recognized by these enzymes.
Substrate docking or co-crystallization will also help clarify aaPGS recognition elements of
the tRNA moiety, which to date points to primary recognition of the amino acyl moiety with
little recognition of the tRNA body.22,27,31,32 Additionally, in order to investigate the role of
aaPGS in antibiotic resistance, a better understanding of the function of the flippase domain
in vivo for additional bacterial strains is necessary. A study of the residues and substrate
recognition elements of the flippase domain may provide an additional basis for the
development of novel antibiotics. As shown in S. aureus this domain is critical for cationic
peptide resistance and it appears to be the sole flippase responsible for aaPG translocation
across the membrane.13 However, variation in the flippase domain among bacterial species
could complicate the development of broad range inhibitors. The development of new
antibiotic compounds is critical as mutations in LysPGS of MRSA enhance resistance to
daptomycin, one of the last drugs in the antibiotic arsenal used to treat such multidrug
resistant strains. Furthermore, the identification of aaPGS homologs responsible for other
amino acid modifications of PG is necessary. These modifications are of interest due to the
fact that the presence of aaPG has different effects on bacterial strains in varying
environmental conditions. Identification of the conditions under which these modifications
play a role in survival may lead to the identification of aaPG species in vivo that to date have
only been found in vitro.

Although functional homologs, Fem proteins bear no structural similarity to aaPGSs.
Research on the structure of this class of enzymes is more advanced due to the
crystallization of FemA of S. aureus and Fem X of W. viridescens. Substrate-binding
elements for UDP-MurNAc-pentapeptide have been identified via co-crystallization and
site-directed mutagenesis.122,123,128 Similar mutagenesis studies have been carried out for
the aa-tRNA substrate, but co-crystallization with this second substrate of Fem has yet to be
carried out.132 This is of some importance as the two structures differ by the presence or
absence of a helical domain, which is purported to bind tRNA in the context of FemA. Also,
a more in-depth mutational study of tRNA body and amino acyl moiety has been carried out
for FemX recognition of Ala-tRNAAla than FemA recognition of its cognate substrate Gly-
tRNAGly.132 In order to definitively characterize the recognition elements of the aa-tRNA
and UDP-MurNAc-pentapeptide substrates in the formation of branched chain peptides
further studies of the two currently crystallized Fem proteins are needed. Additional
structures of Fem family members with varying aa-tRNA specificities would be integral for
full functional characterization of this cell wall modification. Also, to date, the investigation
into recognition elements of all Fem proteins responsible for peptide synthesis in a single
organism has yet to be determined. Fully understanding this process will allow for the
development of more potent inhibitors of cell wall synthesis, and perhaps negate bacterial
resistance to some current antimicrobial agents.
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FIGURE 1.
Aminoacyl-phosphatidylglycerol synthase (aaPGS) modifications contribute to the charge of
the cell wall. Shown are the known modifications and the resulting charge of the modified
phosphatidylglycerol (PG).
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FIGURE 2.
Formation of the peptidoglycan layer in some bacterial species involves peptide bridges
formed by Fem proteins. Shown is a schematic of cell wall biogenesis, below each precursor
the amino acid specificity of the Fem enzyme(s) found in the organism listed to the left is
indicated in the same color text as the precursor used by the enzyme for amino acid transfer.
For Enterococcus faecalis the distinction of which lipid precursor that is preferred by the
enzyme has not been determined. For Weissella viridescens, FemX only adds the first amino
acid, the other two are added by a second unknown enzyme or enzymes.

Dare and Ibba Page 21

Wiley Interdiscip Rev RNA. Author manuscript; available in PMC 2013 December 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 3.
Structural comparisons of Staphylococcus aureus FemA and Weissella viridescens FemX.
(a) Sequence and structure of FemA with an additional coiled coil absent in FemX. (b)
Domains 1A and 1B of W. viridescens FemX. The two proteins can be structurally
compared to the catalytic domains of the histone acetyltransferase of Tetrahymena
thermophila (c), and the serotonin acetyltransferase of Ovis ovaries (d). From a review
published by Mainardi et al.70
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FIGURE 4.
tRNA isoacceptors predominantly utilized by Fem proteins in peptidoglycan biosynthesis.
Differences found to be important for Fem recognition or features that are detrimental to
protein synthesis in red. In blue are the differences between the two co-purified tRNA
species shown to be preferred substrates of Staphylococcus epidermidis FemA.
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TABLE 2

Peptide Bridge Composition of Bacterial Species with δ-L-Ornithine or ω-L,L-Diaminopimelic Acid at
Position 3 of the Pentapeptide

Interpeptide bridge composition Species Figure References

Peptidoglycan variation type A3β with D-alanine at position 4 and δ-L-ornithine at position 3

 →Gly2–3→ Micrococcus radiodurans 14f 110

 →L-Ala3→ Bifidobacterium globosum 22c 111

 →L-Ala→L-Thr→L-Ala→L-Ser→Gly→ Bifidobacterium longum 22b 112

 →L-Ala→L-Thr→L-Ala→L-Ser→Gly→ Propionibacterium petersonii 15a 113

 →Gly→ Mycobacterium tuberculosis 76

 →Gly→ Mycobacterium leprae 77

 →Gly→ Streptomyces coelicolor 78

 →Gly5→ Streptomyces roseochromogenes 15a 114

 →Gly5→ Acanthocephalus tumescens 27a 96
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