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Mistranslation of the genetic code
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Abstract

During mRNA decoding at the ribosome, deviations from stringent codon identity, or 

“mistranslation,” are generally deleterious and infrequent. Observations of organisms that decode 

some codons ambiguously, and the discovery of a compensatory increase in mistranslation 

frequency to combat environmental stress have changed the way we view “errors” in decoding. 

Modern tools for the study of the frequency and phenotypic effects of mistranslation can provide 

quantitative and sensitive measurements of decoding errors that were previously inaccessible. 

Mistranslation with non-protein amino acids, in particular, is an enticing prospect for new drug 

therapies and the study of molecular evolution.
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The flow of information from the genetic code to the protein code is an imperfect process. 

Errors in transcribing messenger RNA from the genomic template and in decoding mRNA at 

the ribosome typically occur at low levels, yielding protein populations with only minor 

sequence variability [1]. One of the primary effectors of this high degree of quality control is 

the aminoacyl-tRNA synthetase family of enzymes, which pair amino acids with their 

appropriate tRNAs to form aminoacyl-tRNAs for use as substrates in peptide synthesis by 

the ribosome [2]. Errors in aminoacyl-tRNA synthetase function can result in the production 

of mispaired aminoacyl-tRNAs and erroneous insertion of amino acids at codons in a 

manner not defined by the genetic code, a phenomenon called "mistranslation” [3, 4]. These 

deviations from the genetic code can be associated with a loss of protein structural and 

functional integrity as well as phenotypic defects and disease [5]. Recent work has 

demonstrated that mistranslation may benefit the cell in certain circumstances (see [6] and 

references therein) and that some organisms have selected for a higher degree of 

mistranslation than others [7–10]. Moreover, conditional cellular stress presents unique 

challenges to accurate aminoacyl-tRNA synthesis [11, 12], underscoring the emerging view 

of quality control as a dynamic process dependent on the cellular microenvironment and 

other evolutionary pressures.
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Introduction

Central to all life is the flow of information from a genetic code to an RNA and protein code 

[13]. Transcription of genetic information into an RNA code and translation of that RNA 

code into an amino acid sequence are processes that have long been thought to tolerate few 

errors. An inaccurately transcribed DNA base can result in an mRNA codon with different 

identity, and inaccurate decoding of mRNA codons at the ribosome can result in 

inappropriate amino acid insertion in a nascent peptide. Such errors in information flow can 

result in truncated and/or misfolded proteins, proteins with neutral or deleterious 

substitutions at critical residues [14], and an overall loss in protein function at the molecular 

and cellular levels [15].

Maintaining accurate ribosomal protein synthesis, in particular, is critical to all life. Atypical 

of most enzymatic processes in the cell, protein synthesis requires permissivity in the 

enzymatic binding site, allowing for dozens of substrate aminoacyl-tRNAs (aa-tRNAs) 

bearing the full complement of proteinogenic amino acids to be incorporated into proteins. 

The nature of genetically encoded amino acid sequences necessitates specificity at the 

ribosome for canonical aa-tRNAs, such that for each codon, only an aa-tRNA bearing the 

genetically encoded amino acid can bind and participate in protein synthesis. This specificity 

is achieved by ribosomal quality control mechanisms that rely on codon-anticodon 

interactions [16, 17] and discrimination against certain types of nonprotein amino acids 

(NPAs), which can be attenuated with ribosomal mutations [18, 19]. However, no such 

quality control mechanism exists in the ribosome to exclude aa-tRNAs formed from the 

linkage of a standard proteinogenic amino acid to a noncognate tRNA. In such a case, 

codon-anticodon interactions that pass the quality control steps at the ribosome will drive 

protein synthesis forward. Ribosomal quality control may instead act retrospectively, by 

increasing the frequency of errors in decoding a given mRNA, facilitating premature release 

of mis-synthesized peptides from the ribosome [20–22]. The phenomenon of amino acid 

insertion at a codon that codes for a different amino acid is termed “mistranslation,” and 

until recently has been thought to reflect a minor and infrequent imperfection in the protein 

synthesis machinery.

Mistranslation is typically limited to one erroneously inserted amino acid per 103–104 

translated codons [1]. Many mutations and environmental conditions are known to elevate 

this error rate beyond tolerable limits [5, 23]. Recent studies have uncovered differences 

between organisms in the requirement for quality control in protein synthesis [7, 10, 24], 

suggesting that perfect decoding may not be inherently ideal. Mistranslation of the genetic 

code in response to cellular stress has been shown in some cases to serve as a clear benefit 

for the cell [23]. It is a misinterpretation of an ambiguous term to equate "mistranslation" 

with "mistakes" in all cases, as variability in decoding is sometimes evolutionarily 

conserved and favorable [25, 26]. In this review, we highlight challenges and recent 

advances in the way variability in decoding is measured, address environmental and 

evolutionary determinants of quality control in protein synthesis, and reevaluate the way we 

view “errors” in translational decoding to more accurately reflect the range of positive and 

negative effects that mistranslation has on the cell.
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Mass Spectrometry as a Tool for Measuring Protein Mistranslation

One of the greatest challenges in studying mistranslation is quantitative measurement of 

amino acid substitutions, particularly low-frequency events. Traditionally, measurement of 

mistranslation has been carried out indirectly, by quantifying amino acid substitutions in 

exogenously expressed proteins, such as β-lactamase, green fluorescent protein, and others 

[27–29]. In these analyses, critical residues of the reporter protein of interest are mutated 

such that mistranslation of the codon of interest will restore the protein sequence and/or 

change the protein’s functionality. Reporter protein activity is quantified under various 

conditions, and residue-specific mistranslation is inferred as a result.

There are several drawbacks to this kind of analysis. Replication of exogenous genetic 

material and expression of a protein reporter alter the metabolic profile of the host organism, 

potentially confounding studies of natural variation in decoding [30]. Moreover, biologically 

relevant low-frequency amino acid substitution events may be undetectable or 

underrepresented in these systems, and this type of analysis erroneously assumes that 

mistranslated peptides have comparable half-lives to the accurately translated form [31]. 

Perhaps most importantly, these techniques are used for detection of specific amino acid 

substitutions at a chosen codon, limiting the scope of study to a case-by-case analysis in a 

specific primary sequence context. Given the anticipated variables that determine 

mistranslation, another drawback of these types of analyses is the assumption that they 

reflect mistranslation of all relevant codons. As a result, it has long been difficult to properly 

and sensitively quantify typical amino acid substitution rates on a per-codon basis with 

multiple amino acid residues, and to address global rates and effects of mistranslation.

More recently, sophistication in analytical mass spectrometry has provided the means for 

direct, highly sensitive measurement of mistranslation at each codon with multiple amino 

acids. In particular, liquid chromatography-electrospray ionization tandem mass 

spectrometry (LC-ESI-MS/MS) with or without the use of multiple reaction monitoring 

(MRM) mode is the new technique of choice [32–35]. Proteolytically digested protein 

samples are separated by liquid chromatography and the eluent peptides are ionized via an 

electrospray source. In the case of a linear triple quadrupole setup, a target peptide of 

interest is mass-selected on the first quadrupole and is fragmented in a collision chamber. 

Resulting fragment ions are mass analyzed on a second quadrupole. MRM mode entails 

analysis of a selected few fragment ions on the second quadrupole, which contrasts full scan 

MS/MS, in which all resulting fragment ions are quantified. MRM yields greater sensitivity 

than full scan MS/MS, allowing for greater detection of low-frequency mistranslation. 

Alternatively, fragment ions may be mass analyzed with an orbitrap type mass analyzer, 

which also offers a high resolution and sensitivity. These techniques allow for measurement 

of normal levels of mistranslation at each codon in a global fashion, and have provided the 

tools to examine perturbations from the norm caused by changes in the cellular environment.

Industrial protein manufacturers have largely pioneered this analysis as a method to test the 

quality and homogeneity of their protein products. A common method of large-scale human 

antibody production involves exogenous expression in Chinese hamster ovary (CHO) cells 

[36]. Mammalian protein production is convenient, as post-translational modifications are 
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typically similar to the human protein products, and alternative synthetic chemistry methods 

are expensive and inefficient by comparison. The primary downside is that organismal 

protein synthesis is subject to typically low-level variability in decoding, resulting in a 

statistical population of protein products with heterogeneity in the primary sequence [33–35, 

37].

Because variability in decoding can increase in certain environmental contexts, the exact 

growth media must be carefully controlled and quality control in protein products must be 

monitored frequently. Under conditions of tyrosine (Tyr) limitation, it was recently 

discovered that CHO cells suffer growth defects and accumulate phenylalanine (Phe) at Tyr 

codons in heterologously-produced monoclonal antibodies at frequencies as high as 0.7%, a 

value much greater than that quoted for typical mistranslation (~0.01%) [12, 34]. Upon 

further examination, it was discovered that tyrosyl-tRNA synthetase (CHO TyrRS), the 

enzyme responsible for producing Tyr-tRNATyr in the CHO cytoplasm, exhibits inherently 

poor discrimination against Phe, which is similar in structure to cognate Tyr [12]. As a 

result, CHO TyrRS produces Phe-tRNATyr which, when used as a substrate for protein 

synthesis at the ribosome, results in Phe misincorporated at Tyr codons. By increasing the 

bioavailability of tyrosine to CHO cells, this mistranslation is greatly decreased [38], 

indicating that amino acid starvation and poor discrimination by CHO TyrRS were 

responsible for mistranslation-dependent heterogeneity in the protein product.

Bacterial tyrosyl-tRNA synthetase (TyrRS) is highly specific for Tyr over Phe, even under 

Tyr limitation [39], so the poor discrimination exhibited by this higher eukaryote is 

surprising. This may be of particular interest to the study of diseases such as 

phenylketonuria, in which the ratio of Phe to Tyr is similarly affected [40], and results in 

human neurological defects similar to many diseases involving mutated aaRSs [5, 41]. 

Treatment of phenylketonurics includes dietary restriction of Phe and supplementation with 

Tyr such that normal intracellular Phe/Tyr ratios are maintained in the absence of adequate 

phenylalanine hydroxylase activity. In a broader sense, the absence of stringent quality 

control to limit mistranslation at Tyr codons in CHO cells is further evidence that the 

evolutionary determinants for accuracy in protein synthesis are apparently varied. Many 

specific and conditional mistranslation events are known [11, 12, 23, 26, 35, 37, 42, 43], and 

we are just beginning to scratch the surface of which types of amino acid substitutions occur 

in which organisms, under what conditions, by what mechanisms, and to what effect.

Evolutionary Surprises in Decoding Dynamics

Most organisms contain at least 20 aminoacyl-tRNA synthetases (aaRSs) [44], which pair 

tRNAs with each proteinogenic amino acid to produce aminoacyl-tRNAs (aa-tRNAs), the 

substrates for ribosomal protein synthesis (Figure 1). For the ribosome to perform its 

function accurately, aaRSs must bind only their appropriate, or "cognate," amino acids and 

tRNAs, lest misacylated aa-tRNAs be synthesized. aaRSs accomplish this discriminatory 

task primarily by exclusion of incorrect or "noncognate" amino acids and tRNAs. 

Noncognate amino acids and tRNAs that vary in size, shape, charge, and/or hydrophobicity 

will be excluded from respective binding pockets. Because tRNAs differ from one another 

by a larger surface area and more discriminatory functional groups than amino acids, tRNA 
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selection is typically the lesser challenge [45–47]. aa-tRNA synthesis is a two-step process 

[2]. In the first step, aaRSs catalyze the synthesis of activated amino acids, called 

aminoacyl-adenylates (aa-AMPs) using the chemical energy stored in ATP. These aa-AMPs 

are the substrates for the second catalytic step, whereby the aminoacyl moiety is transferred 

to the 3'-OH of a tRNA bound to the aaRS. In the event that a noncognate amino acid is not 

excluded in the binding pocket, it may be activated, forming an aa-AMP. Some aaRSs 

prevent subsequent aminoacyl-tRNA formation by hydrolyzing misactivated aa-AMP, a 

processed termed "pre-transfer editing" [48], which is tRNA-dependent in some cases [49]. 

If this does not occur, a mispaired aa-tRNA may be synthesized and released, providing a 

substrate for mistranslation at the ribosome. Approximately half of the aaRSs bear a 

catalytic domain independent of the canonical aa-tRNA synthetic site. This separate 

“editing” domain serves to hydrolyze misacylated tRNAs. Termed “post-transfer editing,” 

aa-tRNA hydrolysis may be performed by an aaRS in cis, prior to aa-tRNA release, or upon 

re-binding a misacylated aa-tRNA species in trans [50]. In addition, freestanding post-

transfer editing domain homologues serve as an additional layer of quality control [51–54]. 

Post-transfer editing limits the population of mischarged tRNA species that may threaten 

accurate decoding at the ribosome. The types of aaRS editing have been reviewed 

extensively elsewhere [3].

The standard genetically encoded proteinogenic amino acids are not the only threats to 

quality control in aa-tRNA synthesis. Additional "non-protein" amino acids (NPAs) with 

similar physiochemical properties to proteinogenic amino acids must be discriminated 

against by relevant aaRSs. In the past year, post-transfer editing has been implicated to a 

greater degree as a mechanism by which the cell is protected from NPAs generated under 

conditions of stress. In E. coli, phenylalanyl-tRNA synthetase (PheRS) bears a post-transfer 

editing domain, the activity of which is dispensable under normal conditions. The near-

cognate proteinogenic amino acid Tyr is not misacylated to tRNAPhe to a degree that 

threatens cellular viability, and PheRS editing-deficient mutants survive in the presence of 

Tyr. Under conditions that favor the formation of reactive oxygen species, however, PheRS 

editing is critical for cellular survival. It was discovered that the NPA meta-tyrosine (m-Tyr) 

accumulates under oxidative stress, is charged appreciably to tRNAPhe and is translated at 

Phe codons[11]. Taken together, this suggests that post-transfer editing by E. coli PheRS, 

while not necessary under normal conditions, is critical to protect the cell from cytotoxic 

mistranslation with a NPA under conditions of oxidative stress. In the yeast Saccharomyces 

cerevisiae cytosolic PheRS similarly bears post-transfer editing domain activity, whereas 

mitochondrial PheRS relies instead on high discrimination in the activation step to maintain 

quality control (Figure 2). Mutational attenuation of mitochondrial PheRS selective 

discrimination for Phe/Tyr from ~12,000:1 to ~700:1 limits growth on respiratory media and 

prevents mitochondrial biogenesis[55]. Ablation of cytoplasmic PheRS editing activity has 

no effect on Phe/Tyr selectivity, and mutants maintain viability but become sensitive to 

elevated Phe:Tyr ratios. The S. cerevisiae post-transfer editing mutant also exhibits a 

phenotypic loss of viability under conditions of oxidative stress (unpublished data). This 

suggests that post-transfer editing by S. cerevisiae cytosolic PheRS and E. coli PheRS may 

be conserved in part to protect the cell from mistranslation of Phe codons with the NPA m-

Tyr that accumulates under conditions of oxidative stress.
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Similarly, post-transfer editing by E. coli leucyl-tRNA synthetase (LeuRS) has been shown 

to typically be dispensable, and the near-cognate proteinogenic amino acid isoleucine (Ile) is 

not an efficient substrate for LeuRS [56]. Under conditions that favor the accumulation of 

certain near-cognate proteinogenic amino acids and NPAs, LeuRS post-transfer editing is 

critical [57, 58]. Norvaline is an efficient substrate for LeuRS and may represent a 

significant threat to quality control at leucine codons under conditions of oxygen limitation, 

which induce intracellular norvaline accumulation [56, 57]. Again, it seems that evolution 

may favor the conservation of post-transfer editing in part to protect the cell against 

cytotoxic mistranslation of the genetic code with NPAs, some of which are only biologically 

relevant threats to the cell under stress conditions. More examples of this phenomenon are 

likely to arise in the near future, and current models will be refined as broad analysis with 

new tools from mass spectrometry allow us to uncover additional mistranslated noncognates 

and we begin to better understand the role of NPAs.

Defining Mistranslation, Deviation from the Norm, and Effects on the Cell

In recent years, mistranslation has been viewed through a different lens than in previous 

decades. This is due in part to the observation of high degrees of mistranslation tolerated in 

certain species and the discovery of conditional increases in the frequency of mistranslation 

that mitigate environmental stress. Under conditions of oxidative stress, non-methionyl 

tRNAs can be methionylated by methionyl-tRNA synthetase from E. coli [25], yeast [26], 

and mammals [23]. Because methionine may spontaneously react with reactive oxygen 

species (ROS) that are formed under oxidative stress, methionine residues mistranslated at 

non-methionyl codons may serve as ROS "sinks," to be later safely reduced by methionine 

sulfoxide reductases [59]. Such “adaptive translation” is reviewed extensively in [6]. In one 

notable example the Candida albicans CUG codon is inherently decoded in an ambiguous 

manner, and the resulting proteomic and phenotypic diversity [9] may make this 

opportunistic pathogen a "moving target" for the host’s adaptive immune system [8].

Taken together, these examples illustrate the substantial difficulty in simply defining 

mistranslation, given the degree to which some organisms tolerate or benefit from codon 

ambiguity. “Mistranslation,” “errors” in protein synthesis, and “accuracy” in translation are 

terms that implicitly assign a negative value to deviations from stringent definitions of 

codon identity. Moreover, consideration of the basal level of mistranslation on a per-protein 

level is too limited in scope, as the full complement of proteins in the cell has, by the 

statistical nature of misincorporation, a wide range of primary sequences (Figure 3). This 

“statistical protein” model implies a frequency of misincorporation at every codon, such that 

any given amino acid has a certain probability of translation at a given codon. Quality 

control mechanisms inherent to the translation machinery limit these errors, but the system 

is imperfect and dynamic; perturbations in amino acid pools [11, 12], modification in the 

copy number or modification status of tRNAs [60–62], aaRSs [29], can all change the 

frequency of translated amino acids at a given codon. Expanding this picture to include 

every newly synthesized protein in new growth conditions and retaining the non-degraded 

protein from all previous growth conditions further complicates the picture of the 

mistranslation frequencies of protein sequences in the cell.
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Because the primary sequence of a protein determines its fold and function, variation in the 

primary sequence can result in "neomorphic" proteins, which bear new and different 

functions in binding and catalysis than those of the parent protein. Variations in protein 

sequence due to genetic mutation are the basis of evolution, resulting in heritable allelic 

diversity. Mutation is typically deleterious or neutral at best, but occasionally refines or 

gives new beneficial function to a protein. These heritable mutant proteins may grant the 

organism a selective advantage and thus the new sequence becomes a feature of the species.

Mistranslation in a protein population instead results in non-heritable diversity at the protein 

level. A population of proteins with variability in their primary sequence may have varying 

degrees of mistranslation with many different amino acids at many different positions, 

potentially yielding neomorphic individual proteins. Proteins with neomorphic moonlighting 

functions implicated in disease have been discussed elsewhere [63, 64]. Under normal 

conditions, the effects of low-frequency mistranslation may be minimal. In conditions that 

increase the frequency of these replacement events, drastically varied peptide sequences 

may become a double-edged sword: whereas randomness in protein populations may 

decrease the binding and catalytic function of a protein population as a whole and can result 

in aggregation and growth defects [5], individual proteins with neomorphic properties may 

grant the cell access to new and beneficial binding partners and catalytic activities not 

derived from the genetically-encoded primary sequence. The cost-benefit calculus of protein 

quality control thus depends on environmental factors and the complement of tools for 

combating the negative effects of mistranslation at the disposal of the organism in question. 

Perhaps some NPAs conditionally charged to tRNAs will be discovered to have a role that 

benefits, rather than harms the cell. Such a conditional increase in the protein alphabet 

implies new modes of binding and, depending on the chemical properties of the NPA, 

possibly unknown modes of catalysis.

Outlooks

The fact of conditional mistranslation is no longer a surprise, but the tools for deeper study 

of its possible significance have been lacking until recently. Greater analytical power 

afforded by sensitive mass spectrometry and bioinformatic tools will soon make this the 

technique of choice for the study of mistranslation. Mass spectrometry can be used to 

directly detect and quantify low-level mistranslation as well as identify, in a codon-specific 

manner, the kinds of noncognate amino acids translated, and under what conditions. 

Particularly, knowledge of the role and prevalence of mistranslation with NPAs will be 

expanded; additional NPAs may be identified at multiple codons with multiple phenotypic 

effects. A global picture of mistranslation in wild-type organisms from multiple branches of 

the tree of life, under various conditions, will provide a picture of evolutionarily conserved 

quality control mechanisms and various degrees of permissive decoding. aaRSs in particular 

are deeply conserved cellular factors, due to their central role in translation, and it is 

expected that variation in aaRS specificities between organisms may provide targets for 

therapeutic and antibiotic treatment [65]. High throughput use of these techniques may be 

used to identify and treat protein disease on a per-patient basis. We may even see the design 

of synthetic NPAs that target specific aaRSs under certain conditions, a prospect that has 

many implications for cellular synthetic protein chemistry and drug discovery. Translation 
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of specific codons with NPAs has already been used to introduce novel chemistry into cells, 

which allows for new analytical techniques, protein-drug conjugation, and novel protein 

interactions in vivo [66–69].

Recently, it was discovered that the NPA β-aminomethylalanine (BMAA) is mistranslated at 

serine (Ser) codons in human tissue [43]. Media supplementation with serine drastically 

reduces the degree of this mistranslation, suggesting that noncognate BMAA competition 

with cognate Ser for seryl-tRNA synthetase may be the source of the error in protein 

synthesis. Ingestion of BMAA is associated with an increased risk for neurodegenerative 

disorders such as amyotrophic lateral sclerosis, Alzheimer’s disease, and Parkinsonism [70–

72]. It is a tantalizing prospect to use dietary supplementation with cognate amino acids as a 

treatment for diseases such as these, as proteinogenic amino acids are cheap to produce, are 

widely available over the counter, and are normal human metabolites. It is conceivable that 

inducing specific changes in amino acid pools, chemically modifying the selectivity of 

aaRSs, or designed NPA treatment may be used in various combinations to combat many 

diseases with minimal deleterious effects on the patient.
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Figure 1. Aminoacyl-tRNA synthesis and quality control mechanisms
aa-tRNA synthesis is a two-step process, with checkpoints at each step to ensure proper 

product formation. An aminoacyl-adenylate formed by the activation of a noncognate amino 

acid may be hydrolyzed by pre-transfer editing mechanisms in the active site of the aaRS. 

Misactivated amino acids that escape pre-transfer editing may be acylated to tRNA, forming 

aa-tRNA. If an aaRS bears a post-transfer editing domain, mispaired aa-tRNA may be 

hydrolyzed, releasing the amino acid and tRNA.
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Figure 2. Non-protein amino acids as a threat to quality control in aminoacyl-tRNA synthesis
NPAs that pose a threat to translational fidelity bear similar physiochemical and structural 

features compared to cognate amino acids. E. coli PheRS post-transfer editing activity 

prevents release of tRNAPhe charged with the NPA m-Tyr, which differs from cognate Phe 

by a single oxygen atom [11]. E. coli LeuRS post-transfer editing activity prevents release of 

tRNALeu charged with norvaline, which differs from cognate Leu by a methylene group [56, 

58].
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Figure 3. Mistranslation and the statistical proteome
Represented here are various copies of a single protein arising from translation in low- or 

high-frequency mistranslation systems. Amino acids inserted at appropriate codons are 

shown as blue. Inappropriately inserted amino acids are represented as green and red. 

Typical mistranslation is infrequent, resulting in protein populations with minor variability. 

In organisms that naturally mistranslate more frequently [7, 10], or in conditions that 

promote less stringent quality control [12, 23, 25, 26], protein populations become more 

diverse in their primary sequences. Proteins arising from “statistical proteomes” have 

various folding and binding properties, resulting in phenotypic diversity in the host 

organism. Expanded to include all proteins in a cell, the effects of mistranslation can be 

drastic at the molecular and cellular levels.
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