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Abstract

Faithful translation of mRNA into the corresponding polypeptide is a complex multistep process, 

requiring accurate amino acid selection, transfer RNA (tRNA) charging and mRNA decoding on 

the ribosome. Key players in this process are aminoacyl-tRNA synthetases (aaRSs), which not 

only catalyse the attachment of cognate amino acids to their respective tRNAs, but also selectively 

hydrolyse incorrectly activated non-cognate amino acids and/or misaminoacylated tRNAs. This 

aaRS proofreading provides quality control checkpoints that exclude non-cognate amino acids 

during translation, and in so doing helps to prevent the formation of an aberrant proteome. 

However, despite the intrinsic need for high accuracy during translation, and the widespread 

evolutionary conservation of aaRS proofreading pathways, requirements for translation quality 

control vary depending on cellular physiology and changes in growth conditions, and translation 

errors are not always detrimental. Recent work has demonstrated that mistranslation can also be 

beneficial to cells, and some organisms have selected for a higher degree of mistranslation than 

others. The aims of this Review Article are to summarize the known mechanisms of protein 

translational fidelity and explore the diversity and impact of mistranslation events as a potentially 

beneficial response to environmental and cellular stress.

When the sequence of amino acids in a newly synthesized protein is different to the 

genetically encoded sequence, a gene is said to have been mistranslated. There are several 

steps where this alteration may occur. Mistakes during DNA replication are on the order of 

~10−8 and are kept to this extremely low level by a robust suite of error prevention, 

correction and repair mechanisms1–5, while transcription of DNA into mRNA has error rates 

~10−5 that are also prevented by complex proofreading and degradation systems6,7. The next 

step in gene expression, protein synthesis, offers the greatest opportunity for errors, with 

mistranslation events routinely occurring at a frequency of ~1 per 10,000 mRNA codons 

translated8 (Fig. 1).

An error rate of 10−4 during protein synthesis equates to around 15% of all proteins in the 

cell containing at least one misincorporated amino acid under optimal growth conditions9,10. 
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While the elevated error rates observed during protein synthesis can in part be attributed to 

the complexity of translating mRNA into protein, as the ribosome must select the correct 

aminoacyl-transfer RNAs (aa-tRNAs) from a large pool of near-cognate substrates fast 

enough to sustain an elongation rate of 10–20 amino acids per second11–13, there are 

mechanisms that exist at multiple checkpoints during protein synthesis to minimize the 

frequency of translational errors. However, when compared to earlier steps during gene 

expression, error rates remain relatively high. This raises the questions of why cells appear 

to be more tolerant of errors at the level of protein synthesis, and could such errors be 

directly or indirectly beneficial in some cases?

Mechanisms of translational fidelity and error

The translation of genetic information into functional proteins is a multistep process with 

regulatory mechanisms at each level to ensure accuracy (Fig. 2). First, amino acids are 

correctly paired with their cognate tRNAs by aminoacyl-tRNA synthetases (aaRSs)14. 

Aminoacylation occurs in a two-step reaction: cognate amino acids are activated within the 

aaRS catalytic domain to form an aminoacyl-adenylate (aa-AMP); then, the activated amino 

acid is transferred to the 3′ OH of the terminal adenosine on the tRNA acceptor stem of its 

cognate tRNA, forming an aa-tRNA15. Next, with the help of elongation factors (EFs), the 

ribosome selects the appropriate aa-tRNA substrate by matching the anticodon of the tRNA 

with the corresponding mRNA codon occupying the aminoacyl site (A site) of the ribosome. 

Peptide bond formation with the neighbouring aa-tRNA in the peptidyl site (P site) results in 

elongation of the polypeptide chain, and this process is repeated as mRNA is decoded using 

aa-tRNAs until synthesis of the protein is complete and the ribosome dissociates from the 

mRNA.

Amino acid selection

For the cell, the consequences of aaRSs failing to discriminate between amino acids is 

potentially disastrous and could lead to mistranslation of proteins and activation of cellular 

stress responses16. The challenge to correctly recognize the 20 proteinogenic amino acids 

centres around their limited diversity in chemical space, which makes it difficult to 

accurately select substrates from a pool of structurally similar constituents17. The main 

mechanism to preserve fidelity is aaRS active-site screening of the substrate pool using size 

and physicochemical properties18. However, the diversity of amino acid functional groups is 

insufficient for the completely accurate selection of some cognate amino acid substrates and 

can result in misactivation by aaRSs18. For example, Ala–tRNA synthetase (AlaRS) has 

difficulty discriminating between its cognate Ala and the near-cognates Ser (differing by a 

single hydroxyl group) and Gly (lacking the methyl group) based on the topology of the 

active site and size of the amino acid, respectively19. Consequently, AlaRS must counter the 

problem of non-cognate amino acid activation with a variety of proofreading mechanisms20.

In addition to misactivation of genetically encoded proteinogenic amino acids (GPAs), cells 

also encounter non-proteinogenic amino acids (NPAs) environmentally or as metabolic by-

products, and must discriminate against these substrates to prevent aberrant use in protein 

synthesis. NPAs include D-amino acids that arise during amino acid synthesis and amino 
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acids that are damaged by reactive oxygen species (ROS)21,22. In Escherichia coli, oxidation 

of Phe via the Fenton reaction produces a racemic mixture of p-Tyr, o-Tyr and m-Tyr, and E. 
coli PheRS is able to effectively prevent misactivation of p-Tyr and o-Tyr through a 

mechanism of steric exclusion involving a key Ala residue within the amino-acid-binding 

pocket. However, the meta position of the hydroxyl group of m-Tyr prevents steric 

hindrance, leading to misacylation of tRNAPhe with m-Tyr23, which can substantially 

decrease cellular viability if m-Tyr is misincorporated into the proteome24. Proteomic 

incorporation of NPAs has been described in all domains of life (reviewed extensively in ref. 

25), with recent focus on their role in human disease26,27. Work to date shows that the 

cytotoxicity of NPA misincorporation varies greatly depending on the chemical nature of 

both the NPA and the GPA being replaced.

Transfer-RNA selection

A diverse pool of tRNAs with different sequences are responsible for relaying specific 

amino acids to the ribosome. Beyond primary sequence differences, the structural and 

functional diversity of tRNAs is further expanded through post-transcriptional 

modifications28 (see Box 1). This diversity poses a unique challenge to aaRSs, which must 

effectively discriminate against non-cognate tRNAs while still selecting for multiple 

isoacceptors (tRNAs that accept the same amino acid)29. tRNA sequence elements and 

modification states serve as identity elements for their cognate aaRS, allowing for accurate 

selection from the complex pool of tRNA substrates30,31. While highly effective in 

preventing misselection of tRNAs, selection based on modification leaves the cell sensitive 

to conditions that can alter the modification state of the tRNA pool; for example, the 

efficient aminoacylation of some tRNALeu species in E. coli is dependent on i6A37 

modification (attachment of an isopentenyl group to the adenine at position 37), which 

improves codon recognition. In cells that are defective in this modification pathway, RNA 

polymerase sigma S (rpoS) translation is perturbed due to an inability to efficiently decode 

transcripts (like rpoS) that contain a high abundance of rare Leu codons32. Environmental or 

nutritional stress has also been shown to alter the modification state of the tRNA pool33. 

During oxidative stress, ROS accumulate within the cell and oxidize tRNAs, leading to 

mistranslation (reviewed in ref. 34).

Beyond structural differences, the ability of aaRSs to accurately select tRNAs is also 

dependent on the overall composition of substrates in the tRNA pool35. In several cases, 

tRNA pool imbalance has been observed to directly contribute to mistranslation via 

increased competition for limited cognate tRNA substrates. Overexpression of GlnRS, for 

example, results in misacylation of tRNATyr, which can be prevented by concomitantly 

increasing cognate tRNAGln expression, demonstrating that not only the level of tRNA 

substrates within the tRNA pool, but also the ratio of aaRS to cognate tRNA substrate, help 

maintain aminoacylation fidelity35.

Proofreading of aa-tRNA

aaRS proofreading ensures accurate aa-tRNA synthesis, which helps maintain the fidelity of 

translation and can occur at a pre-transfer step or post-transfer after catalytic linkage of an 

incorrect amino acid to a tRNA.
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Pre-transfer editing activities vary widely between enzymes and remain poorly understood, 

but often involve either selective release of misactivated amino acids or enzymatic 

hydrolysis of the aa-AMP. Selective release of non-cognate aa-AMP is thought to depend on 

decreased binding affinity within the amino-acid-binding pocket, leading to premature 

release of the amino acid from the active site. Hydrolysis of misactivated aa-AMP has been 

observed in both tRNA-dependent and -independent reactions, which involve either 

conformational change to the aminoacylation active site or trans-location of the aa-AMP to 

an alternative editing site to facilitate specific recognition and hydrolysis of non-cognate aa-

AMP10,36–38.

In cases where pre-transfer editing does not eliminate misactivated amino acids, 

approximately half of the aaRSs possess additional proofreading activities that selectively 

deacylate non-cognate aa-tRNAs both in cis and trans. Resolution of misaminoacylated 

tRNAs in cis requires translocation of the aa-tRNA acceptor stem from the synthetic active 

site to a hydrolytic editing site. Once repositioned, the misaminoacylated tRNA is resolved 

through hydrolysis of the ester linkage and both amino acid and tRNA are released39,40. 

Much like the active site, aaRS post-transfer editing activity is mediated by the topology of 

the editing site, with size and steric hindrance precluding correctly paired aa-tRNAs from 

aberrant hydrolysis.

In addition to cis-editing, most cells possess trans-editing mechanisms, which allow 

resampling of aa-tRNA by aaRSs to monitor aa-tRNA pool fidelity and the use of stand-

alone trans-editing factors, whose sole function is to resolve misaminoacylated tRNAs29,41. 

One of the best-defined examples of trans-editing is found in the AlaXp family of proteins, 

comprised of freestanding editing domains that specifically hydrolyse misaminoacylated 

Ser–tRNAAla19. In addition to proteinogenic amino acids, misaminoacylation of tRNAs with 

non-protein amino acids is also monitored by cis- and trans-editing factors. For example, D-

aminoacyl-tRNA deacylases target and hydrolyse both D- and L-aminoacyl-tRNAs and in 

doing so prevent misincorporation of a wide range of amino acids during protein 

synthesis42–44.

Errors in decoding at the ribosome

In the event that misaminoacylated tRNAs avoid cis- and trans-editing mechanisms, several 

mechanisms ensure correct aa-tRNA decoding at the ribosome. First, discrimination between 

correct and non-cognate aa-tRNAs occurs through interaction with translation factors. The 

prokaryotic and eukaryotic EFs, EF-Tu and eEF1a, respectively form a ternary complex with 

aa-tRNAs and guanosine triphosphate (GTP), which protects against premature deacylation 

and facilitates delivery to the ribosome45. The interaction between the aa-tRNA and EF is 

thermodynamically tuned to bind cognate amino acid:tRNA pairs, while misaminoacylation 

perturbs this interaction such that an increase in binding affinity may prevent release of the 

aa-tRNA, or a decrease may lead to premature release of the aa-tRNA46–50 before ribosome 

delivery.

If misaminoacylated tRNA is successfully delivered to the ribosome, additional proofreading 

occurs within the A site of the ribosome based on aa-tRNA position and affinity12,51–59. 

During selection of the correct tRNAs to match the mRNA codons, aa-tRNA complexes 
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undergo structural fluctuations that allow them to scan the codon while remaining bound to 

the EF that is anchored to the large subunit of the ribosome. Selection of an incoming 

ternary complex depends primarily on codon:anticodon interactions60. Formation of the 

correct, fully complementary codon:anticodon complex locks the aa-tRNA:EF:GTP complex 

(the A/T state) and induces structural rearrangements in the decoding centre of the small 

ribosomal subunit. When correct aa-tRNA is present, GTP hydrolysis releases the EF from 

the aa-tRNA, thus allowing translocation of aa-tRNA to the P site and subsequent peptide-

bond formation. Ribosomal interactions with additional tRNA-specific sequences and 

modifications facilitate accurate selection of aa-tRNAs based on kinetic discrimination 

during the initial selection stage and subsequent proofreading stage. For example, 

transversion of a tRNAAla GGC-specific A–U pair at the top of the anticodon loop leads to 

misincorporation of Ala at near-cognate Val GUC codons61.

Much like amino selection during tRNA charging, misreading of codons can also occur in 

response to stresses that disturb the balance of the cellular tRNA pool and the availability of 

aa-tRNAs62. As the ribosome primarily interacts with non-cognate tRNAs during 

translation, tRNA abundance is critical to the accuracy of protein synthesis, especially 

within the context of transcripts containing rare codons55. Codon usage varies and the 

impact of rare codons on translation fidelity is readily observed using recombinantly 

produced proteins. For example, production of yeast proteins containing the Arg AGA codon 

(rarely used in E. coli) results in misincorporation of Lys, but is abrogated by co-expression 

of tRNAArg63. Similarly, the stochastic nature of aa-tRNA sampling by the ribosome causes 

decoding errors during periods of amino acid limitation64. In an effort to maintain the high 

rates of translation necessary for cellular viability during periods of specific amino acid 

limitation, the cell may prevent ribosome stalling caused by deacylated tRNA entering the A 

site by instead selecting near-cognate aa-tRNAs that differ by a single base within the 

anticodon domain, resulting in missense translational error65–67. This phenomenon has been 

observed in response to Phe starvation where Leu is misincorporated at Phe codons due to 

preferential misreading of UUC codons, and during Asn starvation where Asn codons AAU 

and AAC are misread as Lys codons68,69.

Mistranslation

The impact of failure in proofreading is mistranslation, which encompasses any action that 

results in a loss of fidelity while decoding genetic information during protein synthesis. 

Mistranslation may be specific for a single amino acid substitution at many near-cognate 

codon positions, or may be the result of random misincorporation of amino acids across the 

entire proteome70 (Table 1). Depending on the source of mistranslation, the impact to the 

proteome can range from ‘local’ mistranslation (a change at a single codon) to ‘regional’ 

mistranslation (substitution of one amino acid for another, regardless of codon) to ‘global’ 

mistranslation (indiscriminate misincorporation of an amino acid). Regional mistranslation 

events, resulting in near-cognate amino acid substitutions, occur naturally in bacteria as a 

response to environmental stressors. Many antibiotics mechanistically target the bacterial 

ribosome, resulting in codon-specific local mistranslation events and aberrant protein 

synthesis71,72. For example, in vitro studies of streptomycin mechanisms of action revealed 

an increase in the frequency of misreading errors at the ribosome due to decreased fidelity of 
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pyrimidine recognition73. Observations in E. coli provided quantitative examples of 

ribosome-mediated decoding errors in vivo by monitoring the incorporation of Cys into 

flagellin (normally Cys-free), and found that pyrimidine misreading causes Arg CGU and 

CGC codons to be recognized as Cys UGU and UGC codons74,75. Global analyses of the E. 
coli proteome, made possible by recent advances in quantitative mass spectrometry, have 

yielded codon-specific measurements of mistranslation that range from 0.1% to 40% (Table 

1).

Many mistranslation events (and corresponding proofreading mechanisms) are conserved 

across all domains of life. For example, in a similar fashion to E. coli LeuRS, yeast LeuRS 

misaminoacylates tRNALeu with the near-cognate Ile, resulting in regional mistranslation 

events76. Far less is known about mistranslation in archaea, with a few studies showing in 
vivo regional mistranslation events mediated by aaRSs. For example, in the 

hyperthermophile Aeropyrum pernix, low-temperature stress causes ~2% substitution of Met 

at Leu codons due to misacylation of tRNALeu by MetRS77. While the mechanisms of 

translation fidelity are probably conserved in archaea, as exemplified by the initial discovery 

of misaminoacylated tRNA trans-editing in archaea, the impact of protein mistranslation on 

archaeal physiology remains largely unexplored78,79.

Beneficial mistranslation

While errors in protein synthesis are traditionally viewed as detrimental to cellular 

processes, emerging evidence suggests beneficial roles for mistranslation in certain 

biological contexts. In fact, many aaRSs possess broad polyspecificity for non-cognate 

amino acids, suggesting that absolute translational fidelity may not be completely necessary 

under many physiological conditions, and that under some, mistranslation is able to improve 

cellular viability in response to environmental, nutritional or immunological stress80,81. For 

example, the ability to accurately sense and mount an efficient response to stress is essential 

for the maintenance of cellular viability, and alterations in translational fidelity and protein 

structures can be utilized by cells to monitor and respond to adverse environmental 

conditions. Similarly, the ability to produce altered proteins may also enable cellular survival 

during these periods of stress.

Mistranslation enhancing cell viability

Fluctuations in temperature, osmolarity and chemical growth conditions may be perceived as 

stress events by the cell if they fall outside normal growth parameters82,83. Oxidative stress 

is of particular concern, with ROS arising through external factors, such as chemical stress, 

and internally as a byproduct of metabolic processes. As a counter to oxidative stress, cells 

across all domains of life have evolved a conserved adaptive response to limit proteome 

damage—MetRS phosphorylation increases during ROS stress, resulting in a decrease in 

specificity for tRNA substrates and global methionylation of non-methionyl tRNAs70,84,85. 

Increased Met misincorporation acts as a sink for ROS, thus decreasing detrimental 

oxidation of critical active site residues within the proteome86. In E. coli, MetRS post-

translation modification instead limits tRNA mismethionylation, providing a mechanism by 

which mistranslation can be regulated, leading to increased stress resistance87.
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Amino acid limitation is a common source of nutritional stress, to which cells respond 

through transcriptional and translational reprogramming events88,89. During amino acid 

limitation, the response to excess near-cognate amino acid can be either detrimental or 

beneficial, depending on the amino acid involved. For example, strains of E. coli with 

proofreading-defective ValRS grow poorly in presence of non-cognates Thr and α-

aminobutyrate90. Additionally, misincorporation of Ser at Ala codons in E. coli with AlaRS 

deficient in proofreading activity is conditionally lethal in the presence of excess Ser20. 

While amino acid misincorporation conferred a negative fitness cost to the cell in the above 

cases, the addition of Val or the NPA norvaline to Ile-depleted cultures of E. coli or 

Acinetobacter baylyi with proofreading-deficient IleRS conferred a growth advantage91,92. 

While little is known about the specific effects of amino acid substitutions, these 

observations underscore the importance of contextual amino acid identity and highlight the 

diversity of amino acid misincorporation responses to stress. This last point is well 

illustrated by recent studies of clinical isolates of Mycobacteria tuberculosis, where 

antibiotic resistance results from mutations in the glutamine amidotransferase GatCAB that 

lead to tRNA misacylation and subsequent mistranslation93,94.

Beyond presumed metabolic impacts, mistranslation can also enhance survival by creating 

antigenic diversity in surface proteins for some pathogens95. Parallel exploration of 

mistranslation in two species of yeast, Saccharomyces cerevisiae and Candida albicans, has 

provided context to the role of mistranslation in pathogenicity. Local mistranslation in C. 
albicans, mediated by poor tRNA substrate recognition by aaRSs, results in 0.5% to 6% 

misincorporation of Ser at Leu (CUG) codons96. In addition, Ser misincorporation increases 

the antigenic diversity of C. albicans, facilitating evasion of host innate immune 

response95,97. More broadly, Ser misincorporation also provides a mechanism to promote 

adaptive phenotypic diversity, illustrative of a more general principle by which 

mistranslation can potentially be beneficial for cellular viability and survival98,99. Similar to 

C. albicans, several members of the Mycoplasmataceae aaRSs have evolved with degenerate 

(or absent) proofreading mechanisms that allow for misacylation of cognate tRNAs100,101. 

In both cases, the proteome diversity generated through these processes has been suggested 

to provide a mechanism to increase phenotypic diversity and evasion of host immune 

responses.

Aminoacyl-tRNA and translation-mediated stress response signaling

In addition to abnormal proteins having direct impacts on fitness, mistranslation can also 

alter stress response signalling. For example, deacylated tRNA accumulates within the cell 

during amino acid starvation, and as this deacylated tRNA enters the A site of the bacterial 

ribosome, the ribosome briefly pauses and transfers the tRNA to a ribosome-associated 

protein, RelA, to initiate the stringent response. On binding deacylated tRNA, RelA begins 

to synthesize (p)ppGpp, which serves as a global alarmone, triggering functional 

reprogramming of the cell in response to stress102–104. However, misaminoacylation of 

tRNA can mask amino acid starvation in sensing mechanisms such as the stringent response; 

in E. coli, defects in PheRS aa-tRNA proofreading lead to an increase in misaminoacylated 

Tyr–tRNAPhe, reduced accumulation of deacylated tRNA, and subsequent misregulation of 

the stringent and other amino acid stress responses24.
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Eukaryotes use a similar mechanism to the stringent response to respond to amino acid 

starvation by monitoring accumulation of deacylated tRNA in the cytoplasm (Fig. 3). In the 

yeast general amino acid control (GAAC) pathway, deacylated tRNA interacts with the 

protein kinase general control non-depressible 2 (Gcn2p). This activates a cascade that 

results in a global decrease in translation while preferentially increasing the expression of 

GCN4 (mechanism reviewed in ref. 105), a transcription factor that regulates expression of 

~400 core stress response genes, including those for amino acid biosynthesis. Activation of 

this stress response programme is coordinated by a global decrease in translational capacity 

of the cell, and is critical to yeast’s ability to respond to nutrient stress. Recently, work from 

our lab has demonstrated that reduction of aminoacylation fidelity through aaRS-mediated 

mistranslation events leads to dysregulation of the GAAC. In a yeast cytoplasmic PheRS aa-

tRNA-proofreading-deficient strain, accumulation of misaminoacylated Tyr–tRNAPhe 

prevents accurate sensing of Phe starvation by the GAAC by limiting the pool of deacylated 

tRNAPhe106.

Adaptive versus non-adaptive mistranslation

Stress events can be segregated based on the characteristics and outcome of the stress event. 

Acute stress may be classified as any atypical cytotoxic stress (for example, antibiotic, 

chemical or ROS) that the cell must resolve to maintain viability. Resolution of acute stress 

events is achieved through transient cellular adaptation (for example, non-adaptive 

mistranslation), where modification of existing cellular mechanisms counteracts stress 

events. For example, when faced with an acute oxidative stress, oxidation of a critical Cys 

active site residue in E. coli ThrRS causes misaminoacylation of Ser–tRNAThr, which may 

provide a mechanism to sense oxidant levels in the environment107.

In addition to acute responses, mistranslation can also serve to enable cellular 

reprogramming to coordinate metabolic responses to stress108. Cells regularly encounter 

nutrient limitation in the form of carbon limitation or amino acid starvation, which are 

typically cyclic in nature and mediated by autoregulatory biosynthesis mechanisms, ensuring 

that cellular resources are only being redirected during times of need109,110. Response to 

intermittent stress events, such as these, requires programmable adaptation while limiting 

the rate of overall cellular growth111. In this context, mistranslation through the use of near-

cognate amino acids in place of cognate amino acids as substrates for protein synthesis 

allows the cell to maintain translation rates while it initiates a programmed adaptive 

response112.

Cells may also encounter persistent stress that is unresponsive to transient or programmable 

adaptive responses. For example, a mutagenic event that reduces translation fidelity is one 

form of persistent stress resulting in a constitutive pressure that the cell must overcome to 

maintain viability. Several examples of aaRS mutations have been directly linked to 

observations of human disease and substantial fitness cost113,114. In other cases where 

mistranslation is very high, however, cells have been shown to develop robustness to 

increased error rates by increasing protein turnover to maintain proteome homeostasis99. In 

effect, if cells can maintain viability when translation fidelity is initially reduced, the 

accompanying increase in mistranslation (for example, adaptive mistranslation) can be 
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beneficial by promoting phenotypic heterogeneity and increasing the probability of 

successfully adapting to stress115,116. Given that specific mechanisms such as aaRS 

oxidation impair quality control on exposure to stress, adaptive mistranslation provides a 

potentially potent mechanism to promote survival (Fig. 4).

Outlook

As we consider the full spectrum of mistranslation, it is clear that some organisms can 

tolerate a substantial amount of misincorporation and that these events have the potential to 

confer selective fitness advantages at the organismal level. Recent work has started to 

provide data to support mechanistic models for the potential benefits of adaptive 

mistranslation, but to date these studies have been confined to individual mistranslation 

events. Recent technical advances now provide the opportunity to substantially broaden our 

understanding of the role of mistranslation by allowing measurement of the rates of both 

misaminoacylation and mistranslation in vivo117,118. Such accurate error rate measurements 

will provide a means to properly establish the relevance of mistranslation in physiological 

contexts by delineating how the level of mistranslation correlates with a cell’s ability to 

adapt, survive and thrive under different conditions. Furthermore, conditions where 

mistranslation affords a distinct advantage will provide a context for defining mechanisms of 

adaptive mistranslation both at the population and single-cell levels. Studies at the single-

cell level, while more challenging, are of particular importance as they have the potential to 

provide new mechanistic insights as to how mistranslation impacts phenotypic 

heterogeneity, which opens avenues to test the role of mistranslation in microbial evolution, 

antigen presentation, bacterial persistence and metabolic diversity.
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Box 1

Structure and modification of tRNA

Transfer RNAs are typically 70–90 nucleotides in length with a cloverleaf-like secondary 

structure characterized by anticodon (AC), dihydrouridine (D) and thymidine–

pseudouridine–cytidine (TΨC) stem-loops and an acceptor stem (ACC, orange 

circles)127. Although transcribed with the same nucleotide bases as mRNA (A, U, C, G), 

ribonucleosides of tRNAs undergo extensive post-transcriptional chemical modification 

(PTrM) at an average of 9–11% of bases per mature tRNA, representing the most highly 

modified RNA species within the cell128. These modifications are very diverse, with 

more than 100 different structures identified to date in different tRNAs.

The occurrence and distribution of modifications across all tRNAs for a representative 

prokaryote (E. coli) and eukaryote (S. cerevisiae) are illustrated in the tRNA structures 

below. Modified positions marked with a green circle represent PTrMs known to be 

essential to the structure, activity and recognition of tRNA substrates. tRNAs from 

organisms across all domains of life share characteristic modification profiles in the AC 

loop at positions 32, 34 and 37 that ensure translational accuracy during decoding at the 

ribosome. PTrMs are also fundamental to the formation of the canonical tRNA tertiary 

structure: positions 16, 17 and 20 within the D loop and position 54 in the T loop are 

essential for tRNA structural stability and flexibility. While the role of PTrMs in the 

context of translation has been well characterized, investigation of tRNA-specific PTrM 

functions remains largely underexplored, leaving the roles of the majority of tRNA 

PTrMs unknown. Alteration to tRNA modifications within the AC loop often result in 

decoding error or decoding biases at the ribosome33, 129. In yeast, for example, stress-

induced alteration in tRNA modification by Trm4p (tRNA:m5C methyltransferase) leads 

to an increase in the modification of m5C (5-methylcytosine) at the wobble position (34) 

of tRNALeu, resulting in preferential decoding of TTG codons and translation of 

transcripts with high occurrence130. Recent investigations have highlighted the 

implications of PTrM alteration by linking a number of human pathologies directly to 

defects in tRNA PTrMs (extensively reviewed in ref. 131).
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Figure 1. Opportunities for mistranslation
Protein mistranslation may result from errors accumulated at multiple steps within the cell’s 

replicative cycle. During genome duplication, misreading by DNA polymerase leads to 

amino acid substitutions through direct alteration of the genetic code. Likewise, misreading 

of DNA templates by RNA polymerases may result in transcriptional errors that alter 

specific amino acid identity. More frequently, mistranslation occurs at the proteome level 

during translation, due to misacylation of tRNA (via defects in aaRS, tRNA modification or 

amino acid imbalance), or through decoding errors at the ribosome.
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Figure 2. Aminoacylation and proofreading of tRNA
Usually, aaRSs efficiently select cognate amino acids and tRNAs from a pool of near-

cognate substrates through structural and kinetic discrimination. However, occasionally, 

non-cognate amino acid substrates are activated, which may be resolved through hydrolysis 

of the aa-AMP (pre-transfer editing) at the active site. If misactivated amino acids are 

aminoacylated to tRNA (an issue common for near-cognate amino acids), an additional 

proofreading mechanism may hydrolyse the aminoacyl linkage (post-transfer editing) at the 

aaRS. Misaminoacylated tRNAs that initially escape proofreading mechanisms may be 

resampled and removed from the aa-tRNA pool by aaRSs and trans-editing factors. Aside 

from aaRS-mediated proofreading, misaminoacylated tRNAs are subjected to additional 

counter selection through thermodynamic interactions with EFs that deliver substrates to the 

ribosome and during codon decoding at the ribosome. The impact of misaminoacylated 

tRNAs that bypass these proofreading mechanisms (which results in amino acid 

misincorporation) may be further eliminated by degradation of the mistranslated protein. 

The surviving proteins that contain incorrectly incorporated amino acids are mistranslated, 

which may impact cellular survival and fitness.

Mohler and Ibba Page 19

Nat Microbiol. Author manuscript; available in PMC 2017 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Misacylation of tRNA can mask amino acid starvation
Both prokaryotic and eukaryotic cells have evolved mechanisms to specifically monitor the 

levels of deacylated tRNA within the cell. In bacteria, during stress conditions such as amino 

acid starvation, deacylated tRNA within the A site of the ribosome is transferred to RelA, 

which synthesizes (p)ppGpp and leads to induction of the stringent response. In eukaryotes, 

the global level of deacylated tRNA is directly monitored by the protein kinase Gcn2p. 

When bound to deacylated tRNA, Gcn2p reduces the global translation rate, initiating the 

GAAC stress response to promote cell survival. In both cases, tRNA misaminoacylation may 

directly inhibit the accurate sensing of deacylated tRNA levels in the ribosome and delay 

stress response activation. eIF2α, eukaryotic initiation factor 2α; P, phosphorylation.
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Figure 4. Strategies for adaptation and survival
Protein translation and the corresponding machinery are centrally positioned to assess the 

severity of stress and modulate the stress response, and quality control (QC) probably plays 

an important role in the maintenance of cellular homeostasis beyond the scope of proteome 

fidelity. In some instances, it may be appropriate for the cell to temporarily inactivate QC 

mechanisms to delay the stress response and maintain growth rates (proliferation) until the 

stress event has been resolved. However, as a cell encounters stress, the consequences of 

stress response activation must be weighed carefully against the deleterious effects of the 

stress itself, often leading to downregulation of cellular processes (dormancy). Observations 

of the cellular response to stress, however, are less polarized and are more accurately 

reflected as an intersection of proliferation and dormancy states governed by a practical 

balance of QC regulation, which ensures cellular viability (survival).
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