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Capsaicin Is a Negative Allosteric
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Dhabi, United Arab Emirates, 5 Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine,
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In this study, effects of capsaicin, an active ingredient of the capsicum plant, were
investigated on human 5-hydroxytryptamine type 3 (5-HT3) receptors. Capsaicin
reversibly inhibited serotonin (5-HT)-induced currents recorded by two-electrode
voltage clamp method in Xenopus oocytes. The inhibition was time- and concentration-
dependent with an IC50 = 62 mM. The effect of capsaicin was not altered in the presence of
capsazepine, and by intracellular BAPTA injections or trans-membrane potential changes.
In radio-ligand binding studies, capsaicin did not change the specific binding of the 5-HT3
antagonist [3H]GR65630, indicating that it is a noncompetitive inhibitor of 5-HT3 receptor.
In HEK-293 cells, capsaicin inhibited 5-HT3 receptor induced aequorin luminescence with
an IC50 of 54 µM and inhibition was not reversed by increasing concentrations of 5-HT. In
conclusion, the results indicate that capsaicin acts as a negative allosteric modulator of
human 5-HT3 receptors.

Keywords: capsaicin, 5-HT3 receptor, Xenopus oocytes, HEK-293 cells, serotonin, allosteric modulator, docking

INTRODUCTION

Capsaicin, a unique alkaloid extracted from Chili peppers of Capsicum family, is responsible for the
hot pungent taste of this plant. Capsaicin together with dihydrocapsaicin constitute nearly 90% of
the capsaicinoid alkaloids found in chili pepper (O’Neill et al., 2012). In recent years, therapeutic
effects of capsaicin have been gaining increasing interest in various fields of medicine ranging from
analgesia, anti-inflammation, and obesity to treatment of cancer (Sharma et al., 2013; Srinivasan,
2016; Patowary et al., 2017; Zhang et al., 2020).

In earlier studies, it has been well established that capsaicin causes its pain-relieving effect by
activating and desensitizing the capsaicin receptor, which is known as “Transient receptor potential
cation channel, subfamily V, member 1” (TRPV1). TRPV1 is a non-selective, Ca2+ permeable cation
channel activated by protons, noxious heat, endogenous lipids, and exogenous ligands, such as
resiniferatoxin and capsaicin (Lumpkin and Caterina, 2007; O’Neill et al., 2012). Although, the
activation of TRPV1 is considered to be an important mechanism, the exact nature of the widely
ranging biological actions of capsaicin is currently unknown.
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The serotonin type three (5-HT3) receptor is a member of the
cys-loop family of ligand-gated ion channels. Fast depolarizing
synaptic actions of 5-HT are mediated by 5-HT3 receptors in the
central and peripheral nervous systems (Thompson and
Lummis, 2006). Currently, 5-HT3 receptor antagonists are used
in clinics for the treatment of chemotherapy-induced nausea,
vomiting, and irritable bowel syndrome (Thompson and
Lummis, 2007; Binienda et al., 2018). In recent years, there has
been renewed interest in exploring the therapeutical potential of
5-HT3 receptor modulators in various neuropsychiatric
disorders such as schizophrenia, depression, anxiety, and drug
abuse (Fakhfouri et al., 2019; Juza et al., 2020). In the present
study, using electrophysiological and biochemical methods, we
have investigated the effect of capsaicin on the functional
properties of human 5-HT3 receptors expressed in Xenopus
oocytes and HEK-219 cells.

MATERIALS AND METHODS

Mature female Xenopus laevis frogs were obtained from Xenopus
leavis I, Ann Arbor, MI, USA. Experiments and methods used in
this study were in accordance with the Guide for the Care and
Use of Laboratory Animals of the National Institutes of Health
(Bethesda, MD, USA) and our protocol (A9/08) was approved by
the Institutional Animal Care and Use Committee at the College
of Medicine and Health Sciences, United Arab Emirates
University. Clusters of oocytes were removed surgically under
benzocaine (0.03% w/v; Sigma, St.Louis, MO) anesthesia.
Individually dissected oocytes were stored for 2 to 8 days in
modified Barth’s solution (MBS) containing (in mM): NaCl 88;
KCl 1; NaHCO3 2.4; CaCl2; 2; MgSO4 0.8; HEPES 10 (pH 7.5),
supplemented with sodium pyruvate 2 mM, penicillin 10,000 IU/
L, streptomycin 10 mg/L, gentamicin 50 mg/L, and theophylline
0.5 mM. Human 5-HT3A receptor cRNA (3 ng in 50 nl) was
injected into each oocyte as described before (Ashoor et al.,
2013). In co-expression of subunit combinations, cDNAs for 5-
HT3A and 5-HT3B subunits, were mixed in ratios of 1:1 (or 1:2),
respectively. Following day, oocytes were placed in a 0.2 ml
recording chamber and superfused at a constant rate of 3 to 5 ml/
min. The bathing solution consisted of: 95 mMNaCl; 2 mM KCl;
2 mM CaCl2; and 5 mM HEPES 5 (pH 7.5). The oocytes were
impaled with two standard glass microelectrodes filled with a 3
M KCl (1–3 MW) and voltage clamped at a holding potential of
−70 mV using GeneClamp-500B amplifier (Axon Instruments
Inc., Burlingame, CA). Current responses were digitized by A/D
converter and analyzed using pClamp 10.4 (Molecular Devices-
Axon Instruments, San Jose, CA USA) or Origin™ (Originlab
Corp. Northampton, MA, USA), run on an IBM/PC. Compounds
were applied by addition to the superfusate. Capsaicin ((E)-N-[(4-
Hydroxy-3-methoxyphenyl)methyl]-8-methyl-6-nonenamide,
≥98%; Cat. No. 0462), capsazepine (≥99%; Cat. No. 0464),
BAPTA (≥95%; Cat. No. 2786/100), 5-HT, 2-methyl-5HT,
and MDL72222 (Tropanyl 3, 5-dichlorobenzoate; ≥99; Cat.
No. 0640) were purchased from Tocris Cookson (St. Louis, MO).

Dihydrocapsaicin (98%; Cat. No. 03813), vanillin (99% Cat. No.
V1104), and all chemicals used in preparing the solutions were
provided by Sigma-Aldrich (St. Louis, MO, USA). Procedures for
the injections of BAPTA (50 nl, 100 mM) were performed as
described previously (Oz et al., 1998). Injections were performed
10 min prior to recordings using oil-driven ultra microsyringe
pumps (Micro4; WPI, Inc. Sarasota, FL, USA). Stock solutions of
capsaicin were prepared in DMSO. Vehicle (DMSO) alone did not
affect 5-HT3 receptor function when added at concentrations as
high as 0.3% (v/v), a concentration twice above the most
concentrated application of the agents used.

Synthesis of cRNA
The cDNA clones of the human 5-HT3A and 5-HT3B subunits
were provided by OriGen Inc. (Rockville, MD). Complementary
RNAs (cRNAs) were synthesized in vitro using a mMessage
mMachine RNA transcription kit (Ambion Inc., Austin, TX).
The quality and size of synthesized cRNAs were confirmed by
denatured RNA agarose gels.

Radioligand Binding Studies
Oocytes were injected with 10 ng human 5-HT3 cRNA, and
functional expression of the receptors was assessed by
electrophysiology on day three. Isolation of oocyte membranes
was carried out by modification of a method described earlier
(Oz et al., 2004). Briefly, oocytes were suspended (20 ml/oocyte)
in a homogenization buffer (HB) containing HEPES 10 mM,
EDTA 1 mM, 0.02% NaN3, 50 mg/mL bacitracin, and 0.1 mM
PMSF (pH 7.4) at 4°C on ice and homogenized using a
motorized Teflon homogenizer (six strokes, 15 s each at high
speed). The homogenate was centrifuged for 10 min at 800 g. The
supernatant was collected, and the pellet was resuspended in HB
and re-centrifuged at 800g for 10 min. Supernatants were then
combined and centrifuged for 1 h at 36,000g. The membrane
pellet was resuspended in HB at the final protein concentration
of 0.5 to 0.7 mg/ml and used for the binding studies.

Binding assays were performed in 500 ml of 10 mMHEPES (pH
7.4) containing 50 ml of oocyte preparation and 1 nM [3H]GR65630
(Perkin-Elmer, Inc. Waltham, MA, USA). Nonspecific binding was
determined using 100 mM MDL72222. Oocyte membranes were
incubated with [3H]GR65630 in the absence and presence of
capsaicin at 4°C for 1 h before the bound radioligand was
separated by rapid filtration onto GF/B filters pre-soaked in 0.3%
polyethylenemine. Filters were then washed with two 5-mL washes
of ice-cold HEPES buffer and left in 3 mL of scintillation fluid for at
least 4 h before scintillation counting was conducted to determine
amounts of membrane-bound radioligand.

Aequorin Luminescence Assay
Luminescence experiments were performed according to
methods and protocols described earlier (Walstab et al., 2007),
with some modifications. Human embryonic kidney (HEK 293)
cells stably expressing apoaequorin (HEK293-AEQ17 cells;
Button and Brownstein, 1993) were cultured as described
previously for HEK-293/EM4 cells (Oz et al., 2010). Cells were
seeded in 25-cm2 cell culture flasks in Dulbecco’s modified
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Eagle’s medium (DMEM)/Ham’s F12 (1:1) + 10% fetal bovine
serum to obtain a cell density of 50% to 70%, and the following
day, transiently transfected with cDNA encoding human 5-HT3A

receptor (3 µg) using Lipofectamine 2000 reagent (Thermo
Fisher Scientific-Invitrogen, Waltham, MA) according to the
manufacturer’s instructions. Two days after transfection, cells
were harvested by centrifugation and resuspended in 0.5 ml (25-
cm2

flask) DMEM/Ham’s F12 (1:1) + 0.1% bovine serum
albumin. The cell suspension was incubated with 10 mM
Coelenterazine h (Thermo Fisher Scientific-Invitrogen,
Waltham, MA, USA) for three hours at room temperature in
the dark. After loading, cells were harvested by centrifugation
and resuspended in assay buffer containing 150 mM NaCl, 1.8
mMCaCl2, 5.4 mMKCl, 10 mMHepes, and 20 mMD-glucose at
pH 7.4 at the approximate cell density of 3 to 5 × 106 cells/ml.
Cell suspension (60 ml) was preincubated with 20 µl capsaicin in
a 96-well plate for 10 min. at room temperature and activated by
20 ml of 10 mM 5-HT injection. Luminescence was measured
using a Luminoskan (Thermo Fisher Scientific, Waltham, MA,
USA) equipped with an injector and recorded at a sampling rate
of 2 Hz for up to 60 s. At the end of the experiments, cells were
lysed with Triton X-100 0.1% (v/v) and CaCl2 50 mM, and
aequorin luminescence was recorded to obtain the maximum
Ca2+ response. Each capsaicin concentration was measured in
quadruplicates in two experiments. Data were exported to
software Origin™ 8.5 (Originlab Corp. Northampton,
MA, USA). Peak values in relative light unit (RLU) for 5-HT
responses were obtained by subtraction of baseline luminescence
from the agonist-induced peak luminescence and normalizing to
maximal Ca2+ response.

Data Analysis
For the nonlinear curve fitting and regression fits of the dose-
response curves and radio-ligand binding data, the computer
software Origin™ 8.5 (Originlab Corp. Northampton, MA,
USA) was used. In functional assays, average values were
calculated as mean ± standard error means (S.E.M.). Statistical
significance was analyzed using ANOVA or Student’s t test and
post hoc Bonferroni test was used following ANOVA.
Concentration-response curves were obtained by fitting the
data to the logistic equation,

y = (Emax �Emin)=(1 + ½EC50�n)f g + Emin,

where x and y are concentration and response, respectively, Emax

is the maximal response, Emin is the minimal response, EC50 is
the half-maximal concentration, and n is the slope factor.

Docking Studies
Docking calculations were performed on 5HT3 receptor (Protein
Data Bank ID code 4PIR (Hassaine et al., 2014)). Docking of
compounds capsaicin, dihydrocapsaicin, vanillin, and
capsazepine to structural model was made by Autodock Vina
program (Trott and Olson, 2010), results were verified using
Gold docking software, which is part of CSD Discovery suite
from Cambridge Crystallographic Data Center (Groom et al.,
2016). Ligand files were downloaded from PubChem structural

database (Kim et al., 2018). Ligand and receptor files were
prepared using m Autodock Tools (ADT) (Morris et al., 2009).
Polar hydrogens, united atoms Kollman charges and solvation
parameters were identified, files were saved in PDBQT format.
Affinity grid maps of 30 Å × 30 Å × 30 Å with spacing 0.375 Å
were added. Grid center was designated x, y, z dimensions:
139.00, 219.00 and 273.00. These coordinates correspond to
allosteric binding site of 5HT3 receptor for ginger compounds
identified in an earlier study (Lohning et al., 2016) on human
5HT3 receptor. Docking calculations were performed using the
Lamarckian genetic algorithm (LGA) (Morris et al., 1998).
During the docking procedure, both the protein and ligands
were considered as rigid. The poses with lowest binding free
energy were aligned with receptor for further analysis of
interactions. Binding poses were verified by Gold docking
program. In GOLD docking was prepared using the Hermes
program and wizard for docking with default parameters such as
population size (100); selection- pressure (1.1); number of
operations (10,000); number of islands (1); niche size (2); and
operator weights for migrate (0), mutate (100), and crossover
(100). The active site with a 10 Å radius sphere was defined by
selecting an active site residue of protein. Default Genetic
Algorithm settings were used for all calculations and a set of
10 solutions were saved for each ligand. GOLD was used by a
GoldScore fitness function.

RESULTS

In initial experiments, fast inward currents activated by 5-HT (1
mM) or 2-methyl-5-HT (10 mM) were completely inhibited by
0.5 µM MDL72222, a specific 5-HT3 receptor antagonist,
indicating that functional 5-HT3 receptors are expressed in
Xenopus oocytes (n = 7). Capsaicin (100 µM for 1 min) alone
did not induce current responses in oocytes expressing 5-HT3

receptors in the absence (n = 5) and presence of 0.5 µM
MDL72222 (n = 5).

Figure 1A shows the recordings of currents activated by 5-
HT (1 mM) in control (on the left), after 10 min capsaicin (100
µM) application (in themiddle), and after 20 min of washout (on
the right). Figure 1B presents the time course of the capsaicin
effect on the maximal amplitudes of currents (n = 6–8 oocytes).
Amplitudes of currents remained unchanged and stable during
the course of experiments in the presence of vehicle (0.3% v/v
DMSO; n = 5). However, current amplitudes decreased gradually
during the application of 100 µM capsaicin and completely
recovered after 15 to 20 min of washout period (Figure 1B).
Inhibition of 5-HT3 receptor-induced currents by capsaicin was
concentration-dependent with an IC50 of 62 ± 5 µM and a slope
of 1.4 (Figure 1C).

An open-channel blocker would access its binding site during the
channel opening time and the extent of drug inhibition would be
independent of its pre-incubation time. However, close examination
of the time course of capsaicin inhibition showed fast and slow phases
with the respective time constants of t1/2fast = 6 s. and t1/2slow =
0.8 min, arguing against open channel blockade (Figure 2A).
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Without preincubation, co-application of capsaicin (100 µM) and 5-
HT (1 µM) induced a 46 ± 5% inhibition of controls (n = 4). TRPV1
receptors are endogenously expressed and activated by capsaicin in
Xenopus tropicalis frogs (Ohkita et al., 2012).We have tested the effect
of capsazepine (10 µM), a competitive antagonist of TRPV1 receptors
(Figure 2B) on capsaicin inhibition of 5-HT3 receptors. The extent of
capsaicin inhibition is not altered in the presence of capsazepine
(ANOVA, n = 5–7, P>0.05). Capsazepine (10 µM) alone did not

cause any significant change in the amplitudes of 5-HT3 receptor-
mediated currents (ANOVA, n = 4, P>0.05). Capsaicin has been
shown to release Ca2+ and interact directly with second messenger
pathways (Savitha et al., 1990; Kim et al., 2005; Xu et al., 2012; Chien
et al., 2013; Kida et al., 2018). Considering the time course of capsaicin
effect, it was possible that capsaicin acts bymodulating the effects Ca2+

activated kinases on 5-HT3 receptor (Zhang et al., 1995; Jones and

A

B

C

FIGURE 2 | Inhibitory effect of capsaicin on 5-HT3 receptor increases with
pre-application times and independent of TRPV1 receptors and intracellular
Ca2+ levels. (A) Capsaicin inhibition of 5-HT3 receptor as a function of pre-
incubation time. Exponential decay curve with two time constants tfast and
tslow, shows the best fit for data point in the figure. Each data point
represents the means ± SEM from 7 to 8 oocytes. (B) Effects of capsazepine
(10 µM) on 5-HT (1 µM) induced currents (n = 5–7). Bars represent the means
± S.E.M. (C) Effect of BAPTA injection on the capsaicin inhibition of 5-HT-
induced currents. 5-HT (1 mM)-induced currents were recorded before and
after 10 min capsaicin (100 mM) application in oocytes injected with 50 nl
distilled-water (controls, n = 5) or 50 nl of BAPTA (200 mM, n = 6). Bars
represent the means ± S.E.M.

A

B

C

FIGURE 1 | Effects of capsaicin on the function of human 5-HT3 receptors
expressed in Xenopus oocytes. (A) Representative traces of currents activated by
5-HT (1 µM; on the left), coapplication of 5-HT and 100 µM capsaicin after 10 min
capsaicin pre-application (middle), 20 min wash-out (right). (B) Effect of capsaicin
application on the normalized amplitudes of currents activated by 5-HT (1 µM) at
5 min intervals. Current amplitudes were normalized to first agonist application in
each experiment. Solid bar represents application time for capsaicin (100 µM).
Data points represent means ± S.E.M. of 7–8 cells. (C) Capsaicin inhibits the
function of 5-HT3 receptor in concentration-dependent manner. For all
concentrations used, capsaicin was applied for 10 min. Data points represent
mean ± S.E.M. (n = 6–8).
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Yakel, 2003; Hu et al., 2004). Therefore, we tested the effect of the
Ca2+ chelator BAPTA on capsaicin inhibition of 5-HT3 receptors
(Figure 2C). In oocytes injected with BAPTA, extent of capsaicin
(100 µM) inhibition was not significantly different from controls
(controls injected with 50 nl distilled water, ANOVA, n = 5–6, P >
0.05), indicating that the effect of capsaicin is notmediated by changes
in intracellular Ca2+ levels.

Earlier electrophysiological studies reported that capsaicin
inhibits the function of voltage-gated Na+ channels (Lundbaek
et al., 2005; Wang et al., 2007) and K+ channels (Kuenzi and
Dale, 1996), and Ca2+ channels (Hagenacker et al., 2005) in a
voltage-dependent manner. We plotted the current-voltage (I-V)
relationships of 5-HT3 receptor-induced currents before and
after 15 min capsaicin (100 µM) application (Figure 3A).
Extent of capsaicin inhibition was not altered by changing
membrane potentials (Figure 3B). Subunit combination of 5-
HT3 receptors has been shown to alter effects of various drugs
(Thompson and Lummis, 2007; Barnes et al., 2009). We
compared the effect of capsaicin (100 mM) between 5-HT3A

and 5-HT3AB subunits. Results indicated that the extent of
capsaicin inhibition was not statistically different among 5-
HT3A, 5-HT3AB (injected with cRNA ratio of 5-HT3A and 5-
HT3B subunits, respectively), and 5-HT3AB (ratio of 1:2)
receptors (n = 5–7, ANOVA, P>0.05; Figure 3C).

Capsaicin may inhibit 5-HT3 receptor by competing with the
binding of 5-HT to the receptor. For this reason, we examined 5-
HT concentration-responses in the absence and presence of 100
µM capsaicin (Figure 4A). Capsaicin inhibited maximal 5-HT
responses without causing a significant change in EC50 values (in
the absence and presence of capsaicin were 1.4 ± 0.3 and 1.9. ±
0.4 mM, respectively; n = 6–8), suggesting noncompetitive
inhibition. In radioligand binding experiments, specific binding
of [3H]GR65630 was inhibited by increasing concentrations of 5-
HT in oocyte membranes containing 5-HT3 receptor (Figure
4B). The IC50 values for 5-HT inhibition of [3H]GR65630
binding were not significantly altered by 100 mM capsaicin (in
the absence and presence of capsaicin were 591 ± 154 and 612 ±
141 nM, respectively; ANOVA, n = 8–11; P>0.05). Similarly,
increasing capsaicin concentrations did not change the specific
binding of [3H]GR65630 (Figure 4C).

We also investigated whether the vanillyl group in capsaicin is
involved in the inhibition of 5-HT3 receptors. Application of
vanillin (100 µM, for 15 min), which has only a vanillyl group,
did not affect the 5-HT3 receptor (ANOVA, n = 8, P>0.05). In
contrast, the application of 100 µM dihydrocapsaicin, which
contains a vanillyl residue and an acyl chain, inhibited 5-HT3

receptors to 62% ± 6% (ANOVA, n = 6–9, P<0.05) suggesting
that the inhibition of 5-HT3 receptors requires the acyl chain,
which causes the compound to be lipophilic.

In HEK-293-AEQ17 cells transfected with human 5-HT3

receptor, application of 5-HT induced concentration-
dependent increases in aequorin luminescence with an EC50

value of 2.3 mM and slope of 2.7 (n = 4–5 for each concentration
point). Aequorin response to 5-HT (10 mM) was completely
inhibited by 0.5 mM granisetron (n = 4). In coelenterazine h-
loaded HEK-293-AEQ17 cells not transfected with 5-HT3,

injection of 30 mM 5-HT did not cause luminescence
activation (n = 4). Application of capsaicin (100 mM) alone did
not cause a significant change in baseline aequorin luminescence
(n = 4). Figure 5A shows the capsaicin inhibition of 5-HT3

receptor mediated aequorin responses. Capsaicin inhibited in
concentration-dependent manner with an IC50 value of 54 mM.
Figure 5B represents the extent of capsaicin (50 mM) inhibition
on aequorin luminescence induced by 3, 10, and 30 mM 5-HT in
HEK-293-AEQ cells transfected with human 5-HT3 receptor.

A

B

C

FIGURE 3 | Effects of membrane potential and subunit combination on capsaicin
inhibition of 5-HT-activated currents. (A) Current-voltage relationships of 5-HT
(1 mM)-activated currents before and after 10 min pre-application of 100 µM
capsaicin. Data points are the means ± SEM (n = 5) measured from 2-s voltage
ramps. (B) Inhibition of 5-HT-activated current by 100 µM capsaicin at different
membrane potentials. Capsaicin inhibition of 5-HT-activated currents did not
change significantly at different membrane potentials (P>0.05, ANOVA; n = 5).
(C) The effect of 100 mM capsaicin on human 5-HT3A, 5-HT3A and 5-HT3B
receptors co-expressed in subunit ratios 1:1 and 1:2. Currents were activated by
3 µM and 30 µM 5-HT for 5-HT3A and 5-HT3AB receptor combinations,
respectively. The bar graph shows mean ± SEM from 5 to 7 oocytes.
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There was no statistically significant difference in the extent of
capsaicin inhibition at increasing 5-HT concentrations
(ANOVA, n = 8–11; P>0.05).

The results of docking calculations are presented in Figure 6.
All binding poses of capsazepine are located at the interface
between transmembrane domain (TMD) and extra cellular

domain. This binding site is situated in similar position with
allosteric binding site predicted by (Lohning et al., 2016). Free
energy of binding predicted by Autodock Vina for most
favorable docking pose is −7.8 kcal/mol. Gold has predicted
similar binding poses for capsazepine. Inside of the capsazepine
binding pocket Gln56 and Pro274 form hydrogen bonds with the
hydroxyl on the benzazepine group of capsazepine, while Gln184
makes hydrogen bond with amide group of the capsazepine.
Phe222 as well as backbone part of the Glu53 and Lys54 interact
with the benzazepine moiety of the capsazepine.

The preferable positions of capsaicin and dihydrocapsaicin
are located in upper part of the TMD between TM4, TM3 and
TM1. Free energy of binding predicted by Vina for best ranking
pose of capsaicin is −7.8 kcal/mol. Dihydrocapsaicin has
comparable binding free energies. Gold docking program has
predicted similar binding poses. Capsaicin alkyl chain makes
hydrophobic interaction with the amino acids residues located
on TM3 helix such as Ile283, Leu282 as well as with the backbone
of Tyr286. This alkyl chain also makes hydrophobic contact with
the amino acids residues located on TM4 helix such as Trp454,
Trp456, and Leu455. Methoxyphenyl group of capsaicin makes
hydrogen bond with the backbone of the Tyr223 located on the
TM1 helix. The interaction of the capsaicin that includes three
helices belonging to the one subunit of the TMD may interfere

A

B

FIGURE 5 | Effects of capsaicin on 5-HT-induced Ca2+ influx through human
5-HT3 receptors. (A) Concentration-dependent inhibition of 5-HT3 receptors
by capsaicin. Aequorin luminescence induced by 3 mM 5-HT was recorded as
a measure of an increased cytosolic Ca2+ concentration in coelenterazine
h-loaded HEK-293-AEQ17 cells heterologously expressing human 5-HT3
receptors. Capsaicin was present 10 min before and during 5-HT application.
Data are expressed as percentages of the response to 5-HT in the absence
of capsaicin (means ± SEM; n = 5). (B) The effects of capsaicin (50 µM) on
aequorin luminescence activated by 3 mM, 10 µM, and 30 mM 5-HT. Bars
represent means ± SEM; n = 16.

A

B

C

FIGURE 4 | Effect of capsaicin on 5-HT concentration-response relationship
and binding of [3H]GR65630 to 5-HT3 receptor expressed in Xenopus
oocytes. (A) Concentration-response curves for 5-HT-activated currents in
the absence and presence of 100 µM capsaicin. Data points represent the
mean ± S.E.M. (n = 6–8). The curves depict the best fit of the data to the
logistic equation described in the methods. The concentration-response for
capsaicin is normalized to maximal control response. (B) Effects of capsaicin
on the displacement of specific [3H]GR65630 binding by nonlabeled 5-HT in
oocyte membranes. Membrane preparations were pre-incubated 100 mM
capsaicin for 1 hour. The concentration of [3H]GR65630 was 1 nM. Data
points indicate means ± SEM from 8 to 11 measurements from 3
experiments. (C) Effects of increasing concentrations of capsaicin on the
specific binding of [3H]GR65630 (1 nM). Data points indicate means ± S.E.M
from 7 to 10 measurements.
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with the pore opening that includes rearrangement of
transmembrane helices. It can explain experimental funding
presented in this paper that capsaicin works as effective
negative allosteric modulator. The results of the docking
calculations for vanillin show that it can bind to both binding
pockets with similar predicted binding free energy −4.8 kcal/mol.
In the transmembrane binding pocket, vanillin is situated
between TM4 and TM3 helices. Aldehyde group of vanillin
interacts with the Tyr286 on TM3 helix, hydroxyl group makes
hydrogen bond with Asn141. Phenol makes hydrophobic contact
with Trp459 on TM4.

DISCUSSION

Results indicate that capsaicin inhibits the function of human 5-
HT3 receptors. Inhibition by capsaicin is time and concentration
dependent with IC50 values of 62 and 54 µM in Xenopus oocytes
and HEK-293 cells, respectively. The results of functional and
radio-ligand binding studies indicate that capsaicin does not
share the same binding site with 5-HT and act as a negative
allosteric modulator of 5-HT3 receptor.

Capsaicin has been shown to release Ca2+ from intracellular
stores, modulate store-operated Ca2+ channels, and interact with
various Ca2+ sensitive kinases in a TRPV1 receptor-independent
manner (Savitha et al., 1990; Kim et al., 2005; Xu et al., 2012;
Chien et al., 2013; Kida et al., 2018). Considering the time-course
of capsaicin effect, it was possible that Ca2+ activated kinases may
be involved. However, capsaicin inhibition of 5-HT3 receptor
remained unaltered in oocytes injected with BAPTA. Furthermore,
capsaicin alone did not cause changes in holding current, which is
moderately sensitive to Ca2+ due to the presence of Ca2+-activated
Cl− channels in Xenopus oocytes (Dascal, 1987). Similarly,

application of capsaicin alone did not activate aequorin
luminescence in HEK-293 cells, suggesting that intracellular Ca2+

is not involved in observed effects of capsaicin.
Capsaicin in the concentration ranges used in this study has

been shown to act directly on various ion channels in a TRPV1
independent manner. Capsaicin directly modulates the functions
of voltage-gated Na+ channels (Bielefeldt, 2000, IC50 = 40 µM;
Duan et al., 2007, IC50 = 39 µM; Wang et al., 2007, IC50 = 76 µM;
Tomohiro et al., 2013, IC50 = 100 µM), K+ channels (Grissmer
et al., 1994, IC50 = 158 µM; Kuenzi and Dale, 1996, IC50 = 21 µM;
Wu et al., 2011, IC50 = 103 µM; Aréchiga-Figueroa et al., 2017,
IC50 = 10 µM), and Ca2+ channels (Kuenzi and Dale, 1996, IC50 =
44 µM; Castillo et al., 2007, IC50 = 38 µM). In the present study,
capsaicin inhibited 5-HT3 receptors with IC50 values of 54 and 62
µM which are comparable to values obtained in other studies on
the direct effects of capsaicin.

In various dermatological disorders, topical application of
capsaicin has been widely used for analgesia and shown to
provide adequate absorption from the skin and good
bioavailability (Rollyson et al., 2014). In topically applied
preparations, the concentration of capsaicin ranges between 3 and
260 mM (0.1–8%) (Bley, 2013). Assuming that 2% of topically
applied capsaicin is absorbed into the skin (Lee et al., 1997;Wohlrab
et al., 2015), it is likely that the concentration of capsaicin in the
dermis ranges between 60 and 5.2 mM for 0.1% and 8% cutaneous
applications, respectively. Importantly, membrane concentration of
capsaicin is expected to be greatly higher than that in extracellular
compartments due to its high lipophilic structure with a LogP
(octanol–water partition coefficient) value of 3.8 (Rollyson et al.,
2014; Swain and Kumar Mishra, 2015). Following subcutaneous or
intravenous administration in animals, the concentrations of
capsaicin in the brain and spinal cord were approximately 5-fold
higher than that in blood (O’Neill et al., 2012). Thus, modulation of

A B

C

FIGURE 6 | Docking studies on capsaicin, dihydrocapsaicin, capsazepine, and vanillin. (A) 5HT3 receptor with best ranking poses of the docked capsaicin,
dihydrocapsaicin, capsazepine, and vanillin. Proposed binding site for capsazepine and vanillin is located at interface with transmembrane domain (TMD). Proposed
binding site for capsaicin and dihydrocapsaicin is located in the TMD. (B) 3D and 2D binding interactions within capsazepine binding pocket showing potential key
residues. Residues that form hydrogen bond with capsazepine are shown in CPK color. (C) 3D and 2D binding interactions within capsaicin binding pocket showing
potential key residues. Residue that forms hydrogen bond with capsaicin is shown in CPK color.
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5-HT3 receptors demonstrated in this study may be of
pharmacological relevance.

In electrophysiological studies, capsaicin inhibited the
maximum 5-HT responses without altering EC50 of the 5-HT,
indicating that capsaicin does not compete with the 5-HT
binding site of the receptor. In addition, in radio-ligand
binding studies, binding of competitive 5-HT3 receptor
antagonist [3H]GR65630 was not significantly affected by
capsaicin, further suggesting that capsaicin does not interact
with the 5-HT binding site. Furthermore, aequorin luminescence
studies in HEK-293-AEQ17 cells indicated that the extent of
capsaicin inhibition of aequorin responses was not changed
significantly by increasing 5-HT concentrations. Thus, the
results of electrophysiological, luminescence, and radioligand
binding experiments indicate that capsaicin acts as an allosteric
inhibitor of 5-HT3 receptor. Importantly, in a recent in silico
docking study, a high scoring allosteric and hydrophobic
capsaicin binding site located at the interface between the
extracellular and transmembrane domain of 5-HT3A receptor
subunit has been identified (Lohning et al., 2016). Our results are
also in agreement with an earlier study investigating the effects of
more than 200 odorous compounds, terpenes, alcohols, and
pungent substances (Ziemba et al., 2015), reporting that
various gingerol derivatives, capsaicin and polygodial, inhibit
5-HT3 receptors. Furthermore, our results indicated that
dihydrocapsaicin, but not vanillin, inhibited 5-HT3 receptor,
suggesting that the lipophilicity is an important property for
capsaicin effect on this receptor.

As a highly lipophilic agent, capsaicin has been shown to alter
physicochemical properties of cell membranes, perturb the
bilayer structure, and inhibit the functions of various ion
channels (Lundbaek et al., 2005; Lundbaek et al., 2010;
Ingólfsson et al., 2014). Thus, it is likely that capsaicin first
dissolves into the lipid membrane, changes the physicochemical
properties of the cell membrane and, subsequently or
simultaneously, diffuses and reaches to binding site(s) located
on the transmembrane domains of the 5-HT3 receptor.
Consistent with this assumption, direct effects of capsaicin on
several ion channels including the 5-HT3 receptor usually require
several minutes to reach steady-state maximal levels. Similarly,
several minutes of application times (5–15 min) are prerequisite
for actions of several lipophilic and allosteric modulators such as
steroids, endocannabinoids, and cannabinoids (Oz et al., 2002a;
Oz et al., 2002b; Yang et al., 2010a; Yang et al., 2010b) on 5-HT3

receptors (for reviews, Oz, 2006; Oz et al., 2015; Al Kury et al.,
2018), suggesting that the binding site(s) for these allosteric
modulators is located inside the lipid membrane. Notably, these
results also indicate that drug exposure time rather than channel
opening is important for the effects of these lipophilic
modulators, suggesting that they can interact with the channel
during the closed state.

Computational results suggest that capsaicin and dihydrocapsaicin
bind to allosteric transmembrane binding site situated between
transmembrane (TM), TM1, TM2, TM3, and TM4 in close
proximity to extracellular domain. Capsaicin and dihydrocapsaicin
make hydrophobic interactions with TM4, TM3 and hydrogen bond

with TM1, which may stabilize 5HT3 in closed conformation.
Capsaicin and dihydrocapsaicin have bended conformation inside
of the binding pocket where flexible alkyl tail is situated between
TM4 and TM3 making hydrophobic contact with them. According
to the docking calculations, capsazepine has preferable binding
position between extracellular and transmembrane domain making
hydrogen bonds inside of the binding site. Although capsazepine is
structural analog of capsaicin it is less flexible.Vanillin binds to both
allosteric binding sites with similar probability while in the
transmembrane binding site it makes interactions with the amino
acids located on TM3 and TM4 helices.

Recently, capsaicin has been shown to inhibit glycine (Thakre
and Bellingham, 2017; Thakre and Bellingham, 2019) and a7-
nicotinic acetylcholine receptors (Alzaabi et al., 2019) indicating
that, in addition to 5-HT3 receptors, other members of ligand-
gated ion channel family are also targets mediating wide range of
pharmacological actions of capsaicin. In conclusion, our results
indicate that capsaicin acts as a negative allosteric modulator of
not only homomerically, but also heteromerically (5-HT3AB with
1:1 and 1:2 ratio) expressed human 5-HT3 receptor.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

ETHICS STATEMENT

The animal study was reviewed and approved by the Institutional
Animal Care and Use Committee at the College of Medicine and
Health Sciences, United Arab Emirates University (Protocol
A9/08).

AUTHOR CONTRIBUTIONS

EEN, TP, LH, and AHA conducted experiments and analyzed
the data. TP, DEL, K-HSY, and FCH assisted on data analysis
and writing the manuscript. MO planned and organized the
study. All authors contributed to the article and approved the
submitted version.

FUNDING

The research in this study was supported by grants from CMHS,
UAE University and Kuwait University-The Kuwait Foundation
for the Advancement of Sciences (KFAS).

Nebrisi et al. Capsaicin on 5-HT3 receptor

Frontiers in Pharmacology | www.frontiersin.org August 2020 | Volume 11 | Article 12748

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


REFERENCES

Al Kury, L. T., Mahgoub, M., Howarth, F. C., and Oz, M. (2018). Natural Negative
Allosteric Modulators of 5-HT3 Receptors. Mol. (Basel Switzerland) 23, 3186.
doi: 10.3390/molecules23123186

Alzaabi, A. H., Howarth, L., El Nebrisi, E., Syed, N., Susan Yang, K. H., Howarth, F. C.,
et al. (2019). Capsaicin inhibits the function of a7-nicotinic acetylcholine receptors
expressed in Xenopus oocytes and rat hippocampal neurons. Eur. J. Pharmacol. 857,
172411. doi: 10.1016/j.ejphar.2019.172411
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