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Allosteric regulation is a common mechanism employed by complex biomolecular

systems for regulation of activity and adaptability in the cellular environment, serving

as an effective molecular tool for cellular communication. As an intrinsic but elusive

property, allostery is a ubiquitous phenomenon where binding or disturbing of a distal

site in a protein can functionally control its activity and is considered as the “second

secret of life.” The fundamental biological importance and complexity of these processes

require a multi-faceted platform of synergistically integrated approaches for prediction

and characterization of allosteric functional states, atomistic reconstruction of allosteric

regulatory mechanisms and discovery of allosteric modulators. The unifying theme and

overarching goal of allosteric regulation studies in recent years have been integration

between emerging experiment and computational approaches and technologies to

advance quantitative characterization of allosteric mechanisms in proteins. Despite

significant advances, the quantitative characterization and reliable prediction of functional

allosteric states, interactions, and mechanisms continue to present highly challenging

problems in the field. In this review, we discuss simulation-based multiscale approaches,

experiment-informed Markovian models, and network modeling of allostery and

information-theoretical approaches that can describe the thermodynamics and hierarchy

allosteric states and the molecular basis of allosteric mechanisms. The wealth of

structural and functional information along with diversity and complexity of allosteric

mechanisms in therapeutically important protein families have provided a well-suited

platform for development of data-driven research strategies. Data-centric integration of

chemistry, biology and computer science using artificial intelligence technologies has

gained a significant momentum and at the forefront of many cross-disciplinary efforts.

We discuss new developments in the machine learning field and the emergence of

deep learning and deep reinforcement learning applications in modeling of molecular

mechanisms and allosteric proteins. The experiment-guided integrated approaches

empowered by recent advances in multiscale modeling, network science, and machine
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learning can lead to more reliable prediction of allosteric regulatory mechanisms and

discovery of allosteric modulators for therapeutically important protein targets.

Keywords: allosteric regulation, multiscale modeling, Markov state models, network analysis, deep learning,

reinforcement learning, drug discovery

INTRODUCTION

Allosteric regulation is an efficient and robust mechanism
for molecular communication and signaling in the cell
employed by proteins for regulation of activity and adaptability
during processes of signal transduction, catalysis, and gene
regulation (Monod et al., 1965; Koshland, 1998; Changeux and
Edelstein, 2005; Popovych et al., 2006; Changeux, 2012). The
recent breakthroughs in nuclear magnetic resonance (NMR)
technologies have enabled dynamic studies of large biomolecules
at atomic resolution, and are now frequently employed as
powerful diagnostic tools of allosteric communications in
proteins (Boehr et al., 2006; Jarymowycz and Stone, 2006;
Mittermaier and Kay, 2006, 2009; Sprangers et al., 2007;
Korzhnev and Kay, 2008; Kalodimos, 2011; Kay, 2011, 2016;
Rosenzweig and Kay, 2014; Lisi and Loria, 2016, 2017;
Huang and Kalodimos, 2017; Jiang and Kalodimos, 2017).
Allosteric molecular events can involve complex cascades of
thermodynamic and rapid dynamic changes that occur on
different spatial and temporal scales. The thermodynamic-
centric energy landscape concepts and conformational selection
models of allosteric regulation have gained a considerable
prominence in recent years, rooted in the assumption that
statistical ensembles of preexisting conformational states and
communication pathways are intrinsic to a given protein system
(Astl et al., 2019) and allow for modulation and redistribution
induced by external perturbations, ligand binding, andmutations
(Gunasekaran et al., 2004; Tsai et al., 2008, 2009; del Sol et al.,
2009; Csermely et al., 2010, Zhuravlev and Papoian, 2010; Ma
et al., 2011; Wrabl et al., 2011; Hilser et al., 2012; Nussinov,
2012; Motlagh et al., 2014; Tsai and Nussinov, 2014; Nussinov
and Tsai, 2015; Guo and Zhou, 2016; Liu and Nussinov, 2016;
Astl et al., 2019). Conformational dynamics redistributions in
the absence of appreciable structural transformations are the
hallmark of the “entropy-driven” allosteric mechanisms in which
allosteric interactions can be mediated through alterations of
functional motions and rebalancing of rigid and flexible protein
regions (Cooper and Dryden, 1984; Stevens et al., 2001; Dam
et al., 2002; Kern and Zuiderweg, 2003; Frederick et al., 2007;
Tzeng and Kalodimos, 2009, Nesmelova et al., 2010; Kalodimos,
2011, 2012; McLeish et al., 2013; Li et al., 2014; Buchenberg
et al., 2017; Stock and Hamm, 2018; Wodak et al., 2019).
The quantitative elucidation of these highly dynamic and often
elusive processes continues to present formidable technical
and conceptual challenges. Despite significant advances, the
quantitative characterization and prediction of functional
allosteric states, interactions andmechanisms continue to present
highly challenging problems in the field. The fundamental
biological importance and complexity of these processes require
innovative computational and experimental approaches that

can advance current understanding of allosteric regulatory
processes. A systematic interdisciplinary effort is needed to
leverage the burgeoning knowledge about allosterically regulated
proteins to develop robust experiment-informed computational
tools for atomistic prediction of allosteric mechanisms. In
this review we discuss and analyze how recent advances in
biophysical simulations and network science can be integrated
with NMR spectroscopy experiments and leverage the rising
power ofmachine learning (ML) approaches to enable the reliable
quantitative characterization of allosteric regulation mechanisms
and facilitate allosteric drug discovery. We discuss in details
computational strategies that leverage biophysical and network-
based modeling with NMR experiments for characterization
and probing of allosteric regulatory mechanisms. The review
also critically discusses advantages and limitations of emerging
approaches including Markovian modeling and the information-
theoretical analysis of dynamic flows in allosteric networks in
addressing present challenges and open questions of allosteric
regulation mechanisms.

NETWORK-BASED APPROACHES IN
STUDIES OF ALLOSTERIC REGULATION
MECHANISMS

It has been recognized that allosteric regulation is a global
property of protein systems that can be described by the residue
interaction networks in which the effector binding initiates a
cascade of coupled fluctuations propagating through the network
and eliciting long-range functional responses at distal sites
(Atilgan et al., 2004; Brinda and Vishveshwara, 2005, 2010;
del Sol and O’Meara, 2005; Bode et al., 2007; Sethi et al.,
2009; Vijayabaskar and Vishveshwara, 2010; Csermely et al.,
2013; Di Paola and Giuliani, 2015; Dokholyan, 2016). The
graph-based network approaches have offered a simple and
effective formalism for describing allosteric interactions, where
the dynamic fluctuations are mapped onto a graph with nodes
representing residues and edges representing weights of the
measured dynamic properties. The network-centric methods
have represented a powerful complementary strategy to physics-
based landscape models of protein dynamics by quantifying
global functional changes (Vendruscolo et al., 2002; Atilgan
et al., 2004; Brinda and Vishveshwara, 2005, 2010; Ghosh and
Vishveshwara, 2007, 2008; Hansia et al., 2009; Bhattacharyya
and Vishveshwara, 2011; Ghosh et al., 2011; Csermely et al.,
2012; Gasper et al., 2012; Bhattacharya and Vaidehi, 2014;
General et al., 2014; Dokholyan, 2016; Adhireksan et al., 2017),
identifying key functional centers and allosteric communication
pathways (Verkhivker et al., 2002; del Sol and O’Meara, 2005;
del Sol et al., 2006; Sethi et al., 2009, 2013; Vijayabaskar and
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Vishveshwara, 2010; Rivalta et al., 2012; Vanwart et al., 2012;
Farabella et al., 2014; Di Paola and Giuliani, 2015; Kalescky et al.,
2015, 2016; Hertig et al., 2016; Ricci et al., 2016; Stolzenberg
et al., 2016; Palermo et al., 2017; Zhou et al., 2017, 2019a,b;
Liang et al., 2019; Li et al., 2019). Recent years have witnessed
the proliferation of numerous computational tools for predicting
allosteric pathways and communications in proteins (Ming and
Wall, 2005, 2006; McClendon et al., 2009; Tehver et al., 2009;
Mitternacht and Berezovsky, 2011; Bowman and Geissler, 2012;
Panjkovich and Daura, 2012, 2014; Goncearenco et al., 2013;
Kaya et al., 2013; Stetz and Verkhivker, 2017). The network
studies have also suggested that rapid signal transmission of
allosteric interactions through small-world networks encoded in
protein folds may be a universal signature encoded in protein
families (Tsai et al., 2009; Di Paola and Giuliani, 2015). Significant
bodies of computational and experimental studies have shown
that integration of network-based approaches with structural and
biochemical studies can provide a robust platform for further
exploration and atomistic characterization of allosteric states and
regulatory mechanisms controlled by allostery.

Functional residues in residue networks are often connected
via strong evolutionary relationships (Lockless and Ranganathan,
1999; Suel et al., 2003; Halabi et al., 2009; Aguilar et al., 2012;
McLaughlin et al., 2012; Simonetti et al., 2013). Coevolution
of protein residues can reflect correlated functional dynamics
of these sites in mediating residue-residue contacts (Socolich
et al., 2005), protein folding transitions (Morcos et al., 2011),
and allosteric signaling in protein complexes (Wang et al., 2019).
Coevolving residues could also form direct communication
paths in the interaction networks with connections weighted
according to dynamic couplings and coevolutionary interaction
strengths between nodes (Chakrabarti and Panchenko, 2009,
2010; Nishi et al., 2011). Dynamic and coevolutionary residue
correlations may also act as synchronizing forces that determine
modular organization of allosteric interaction networks and
enable efficient allosteric regulation (Stetz and Verkhivker,
2017). These results have motivated the development of
novel community-based methods for modeling ensembles
of allosteric communication pathways in protein structures
(Tse and Verkhivker, 2015a,b; Verkhivker et al., 2016; Stetz
and Verkhivker, 2017). Using this computational framework,
it was found that efficient allosteric communications in
various signaling proteins could be controlled by structurally
stable functional centers that exploit dynamically coupled
residues in their local communities to propagate cooperative
structural changes. The important revelation of these studies
was that dynamic and evolutionary residue correlations may
act as synchronizing forces to enable efficient and robust
allosteric regulation.

Examining proteins as dynamic regulatory machineries that
fluctuate between functional allosteric states and modulated by
ligand binding or mutations is critical to understanding the
molecular principles of signaling in the cell. Computational
studies of allosteric regulation in signaling proteins have led to
important mechanistic insights, better atomistic understanding
of complex regulatory processes and continuous integration
with structural and functional experiments. A variety of
computational approaches have been extensively explored in

investigations of allosteric mechanisms in protein kinases. These
studies included experiment-guided structural modeling and
protein folding analysis (Levinson et al., 2006; Zhang et al.,
2006; Kornev et al., 2008; Han et al., 2011; Jura et al., 2011;
Shan et al., 2011, 2012, 2013; Taylor and Kornev, 2011; Tzeng
and Kalodimos, 2011; Levinson and Boxer, 2012, 2014; Taylor
et al., 2012a,b; Meharena et al., 2013; Shaw et al., 2014; Shukla
et al., 2014; Kornev and Taylor, 2015; Schulze et al., 2016;
Narayanan et al., 2017; Levinson, 2018; Ruff et al., 2018),
molecular simulations and free energy computations (Yang
and Roux, 2008; Dixit and Verkhivker, 2009, 2011a,b; Yang
et al., 2009; Arkhipov et al., 2013; Lin and Roux, 2013; Lin
et al., 2013, 2014; Dixit and Verkhivker, 2014; Meng and Roux,
2014; Fajer et al., 2017; Kim et al., 2017; Meng et al., 2017),
and network modeling (James and Verkhivker, 2014; Tse and
Verkhivker, 2015a,b,c; Czemeres et al., 2017; Stetz et al., 2017;
Astl and Verkhivker, 2019a,b). By examining residue interaction
networks in protein kinases a unifying mechanistic model
of allosteric coupling between the ATP-binding and substrate
binding sites conserved among kinases was proposed (Tse and
Verkhivker, 2015a,b,c; Stetz et al., 2017). A theoretical framework
for rationalizing binding preferences of the kinase inhibitors
was developed establishing the relationships between ligand
binding and modulation of the residue interaction networks
(Tse and Verkhivker, 2015a,b,c). Atomistic modeling of the ABL
kinase regulation using a combinationmolecular dynamics (MD)
simulations, structural perturbation methods and network-
centric analysis (Astl and Verkhivker, 2019a,b) has provided
evidence of allosteric interactions and communication pathways
in the ABL interaction networks that supported and explained the
underlyingmechanisms proposed in the pioneering NMR studies
(Saleh et al., 2017).

Computational studies of allosteric regulation in molecular
chaperones Hsp90 and Hsp70 have also been instrumental to the
progress in the field by complementing biochemical experiments
and providing a detailed dynamic view of the functional cycle
and mechanisms (Colombo et al., 2008; Morra et al., 2009,
Verkhivker et al., 2009; Morra et al., 2010, 2012; Matts et al.,
2011a,b; Chiappori et al., 2012, 2016; Dixit and Verkhivker, 2012;
Lawless et al., 2013; Verkhivker, 2014, 2018a,b; Paladino et al.,
2015; Stetz and Verkhivker, 2015, 2016, 2017, 2018; Czemeres
et al., 2017; Stetz et al., 2017). Using a network-based formalism
of allostery, computational studies have captured NMR-observed
direction-specific nature of signal propagation pathways in the
Hsp70 chaperone (Stetz and Verkhivker, 2015, 2017).

Studies of allosteric mechanisms have indicated that
integration of experiment-informed molecular simulations with
network-based formalisms of allostery may provide a convenient
and powerful platform for atomistic characterization of allosteric
states and regulatory mechanisms. The lessons from studies
of signaling proteins including protein kinases and molecular
chaperones have suggested that allosteric regulation mechanisms
can proceed via a non-trivial and often elusive combination of the
three classical models of allostery: induced fit, conformational
selection, and dynamic allostery. Computational modeling
and atomistic simulations of protein systems and functional
assemblies have shown that allosteric mechanisms may not
necessarily imply a simple switching between the crystal
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structures of the inactive and active states, but often represent
a complex regulatory machinery in which binding and external
perturbations could give rise to a spectrum of functionally
relevant and yet often hidden allosteric conformations exhibiting
a range of activity levels.

ALLOSTERIC REGULATION AND
DETECTING ALLOSTERIC STATES
THROUGH INTEGRATION OF NMR
EXPERIMENTS AND COMPUTATIONAL
MODELING

The growing number of high-resolution crystal structures and
wealth of structural information about protein systems have
had an enormous impact on computational and simulation
approaches, facilitating development of knowledge-based
methods and advanced sampling techniques. However, allosteric
functional states in proteins are often highly dynamic and
short-lived representing low populated, high energy states that
are rarely directly observed in X-ray crystallography experiment.
A large amount of conformational sampling is typically needed
to uncover and isolate high-energy functional states simulations.
For instance, cryptic (or hidden) allosteric sites sporadically
appear during conformational transitions of a protein in the
presence of a bound ligand. These hidden allosteric sites are
invisible in crystal structures and can be detected due to the
stabilization of the low-populated, higher-energy conformation
by certain compounds. Even with the advanced sampling
techniques and enormous computer power that is now available,
the experimental validation and confirmation of allosteric states
represents the key component to ensure robust quantitative
modeling and analysis of allosteric mechanisms.

NMR spectroscopy is a powerful method for studying protein
dynamics and allosteric mechanisms by probing multiple time
scales and detecting residue-specific conformational changes
associated with ligand binding (Boehr et al., 2006; Jarymowycz
and Stone, 2006; Mittermaier and Kay, 2006, 2009; Sprangers
et al., 2007; Korzhnev and Kay, 2008; Kalodimos, 2011; Kay,
2011, 2016; Rosenzweig and Kay, 2014; Lisi and Loria, 2016,
2017; Huang and Kalodimos, 2017; Jiang and Kalodimos,
2017). The micro- to milli-second time scale protein motions
measured in relaxation-dispersion experiments can provide
information about the distribution of conformational states
and thermodynamics and kinetics of allosteric protein changes.
Protein dynamics can also be investigated by NMR methods
other than traditional relaxation experiments. Residual dipolar
couplings are sensitive to motions occurring across a vast
time scale, ranging from seconds to faster than nanoseconds.
Conformational changes in isotopically labeled proteins upon
ligand binding can be detected by two-dimensional heteronuclear
single quantum coherence (HSQC) spectroscopy for large
protein systems (Sprangers et al., 2007; Korzhnev and Kay,
2008). Chemical shift mapping of protein residues upon ligand
binding provides a specific and precise fingerprint of allosteric
propagation effects that allows to detect site-specific binding
responses, characterize pathways of allosteric communication

and differentiate between competitive and allosteric inhibitor
binding (Grutsch et al., 2016; Berjanskii and Wishart, 2017;
Krivdin, 2017; Nerli et al., 2018). The NMR technologies
have enabled structural studies of conformational dynamic
processes at atomic resolution and are used to identify coupled
networks and communication pathways in allosteric proteins
(Swain and Gierasch, 2006; Smock and Gierasch, 2009; Shi and
Kay, 2014; Grutsch et al., 2016). Relaxation dispersion NMR
methods have enabled detection and characterization of rare and
energetically excited conformational states that play significant
role in dynamic activation of protein function and allosteric
mechanisms (Vallurupalli et al., 2012; Kalbitzer et al., 2013;
Munte et al., 2013; Sekhar and Kay, 2013, 2019; Williamson
and Kitahara, 2019). Characterization of low-lying excited
states of proteins by high-pressure NMR under equilibrium
conditions can allow for detection of reversible transitions that
are functionally relevant, providing means for probing dynamic
energy landscapes of allosteric mechanisms (Kalbitzer et al.,
2013; Williamson and Kitahara, 2019). High-pressure NMR can
help to identify these conformations, including low populated
functional states, and characterize their energies and kinetics
of conformational changes (Williamson and Kitahara, 2019).
By measuring redistributions in the conformational entropy,
pressure-dependent chemical shifts can help to sequester low-
populated functional states (Kalbitzer et al., 2013; Munte et al.,
2013; Williamson and Kitahara, 2019).

Recent years have witnessed the development of various
approaches that investigate NMR chemical shift perturbations
to identify potential allosteric networks and structural dynamics
in proteins (Selvaratnam et al., 2011, 2012; Robustelli et al.,
2012; Cembran et al., 2014). NMR chemical exchange
saturation transfer (CEST) experiments can provide adequate
characterization of slower exchange processes, identify invisible
states, and slow conformational exchange (Long et al., 2014;
Anthis and Clore, 2015; Yuwen et al., 2017). NMR chemical
shift covariance (CHESCA) and projection (CHESPA) analyses
can identify blocks of dynamically coupled residues collectively
forming allosteric interaction networks (Selvaratnam et al., 2011,
2012; Boulton et al., 2014, 2018; Boulton and Melacini, 2016).
Allosteric proteins subjected to specific perturbations (ligand
binding, mutations) cause residues that belong to the same
effector-dependent allosteric network to exhibit a concerted
response signal. CHESCA approach can detect patterns of
correlated changes in the chemical shifts between apo and holo
states due to perturbations and isolate allosterically coupled
regions (Figure 1). This method is particularly effective in
detecting allosteric networks within dynamic and partially
unstructured regions (Boulton and Melacini, 2016; Boulton
et al., 2018). NMR chemical shift perturbations have been
recently used in combination with Markov model network
analysis to reveal the dynamic flow of communication between
allosteric communities in the protein kinases (Aoto et al.,
2016). NMR-guided computational modeling can leverage
CHESCA approach for computation of the chemical shift
correlation matrices in the known allosteric states obtained
using crystal structures of complexes with allosteric ligands.
The experimental NMR chemical shifts can guide molecular
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FIGURE 1 | Integration of NMR experiments and computational approaches for experiment-guided analysis of allosteric states and mechanisms.

simulations and network analysis by reporting on blocks of
dynamically coupled residues forming allosteric interaction
networks. Through integration of these experimental data into
accelerated atomistic simulations, a more detailed mapping
of the functional landscapes and relevant allosteric states can
be achieved.

Protein systems can be efficiently simulated on longer time
scales by accelerated meta-dynamics approaches (Limongelli
et al., 2013; Palazzesi et al., 2013, 2017; Sutto and Gervasio,
2013; Bonomi and Camilloni, 2017; Kuzmanic et al., 2017;
Yang et al., 2018; Brotzakis and Parrinello, 2019) where the
experimental and computed NMR chemical shifts (Shen and
Bax, 2010; Han et al., 2011) are often used to determine
collective variables (Granata et al., 2013; Xia et al., 2013;
Palazzesi et al., 2017). NMR chemical shifts can be also
evaluated using structure-based CamShift approach (Kohlhoff
et al., 2009) with collective variables defined as the difference
between experimental and calculated chemical shifts. These
NMR-guided simulation techniques have enabled adequate

sampling of the conformational space and robust structure
reconstruction using experimental constraints (Robustelli et al.,
2010; Cavalli et al., 2011; Granata et al., 2013). NMR chemical
shift observables can be also used in combination with other
collective variables in meta-dynamics simulations to guide the
efficient exploration of allosteric states and functional transitions
(Kimanius et al., 2015; Ansari et al., 2016).

A combination of powerful and expensive NMR spectroscopy
equipment, biophysical techniques and protein expression
platforms is often required to obtain structures of allosteric
states for protein systems and experimental validation of short-
lived hidden functional conformations. Despite unique abilities
of NMR spectroscopy to detect highly dynamic events and
examine conformational landscapes of allosteric proteins, the
NMR applications for high-resolution reconstruction of allosteric
states are still fairly limited owing to complexity and cost
of these experiments. Hence, development of novel research
strategies based on innovative integration of NMR spectroscopy
and experiment-guided simulation approaches become especially
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important and clearly represent the most promising avenue for
further explorations going forward.

MARKOV STATE MODELS IN STUDIES OF
ALLOSTERIC REGULATION

Given the complexity of thermodynamic and kinetic factors
underlying allosteric regulatory events, the information-based
theory of signal propagation (Chennubhotla and Bahar, 2006,
2007; Chennubhotla et al., 2008) and stochastic Markov state
models (MSMs) (Prinz et al., 2011; McGibbon et al., 2014;
Pande, 2014; Shukla et al., 2015, 2017; Wu et al., 2016; Husic
and Pande, 2018) have become increasingly useful states-and-
rates network models with the continuously developing open
source software infrastructure (Cronkite-Ratcliff and Pande,
2013; Bowman, 2014; Bowman and Noe, 2014; Harrigan
et al., 2017). The MSMs have been successfully adopted for
describing the transitions between functional states during
allosteric events (Bowman et al., 2015; Hart et al., 2016;
Sengupta and Strodel, 2018). Combined with MD simulations,
MSM approaches can provide connectivity maps of states on
the free energy landscape, estimate the effect of allosteric
perturbations on the conformational equilibrium, and rigorously
describe kinetics of allosteric transitions. Recent advances in the
field have highlighted how MSM tools can help to recognize
structural and dynamic patterns of conformational ensembles,
identify functional allosteric states hidden in the conformational
ensembles and reconstruct allosteric mechanisms (Sengupta
and Strodel, 2018). Markov models have been employed for
understanding of the reaction mechanisms, thermodynamics
and free-energy landscape population shifts, the hierarchy of
timescales and the structural basis of allosteric events (Prinz et al.,
2011; Pande, 2014; Shukla et al., 2015, 2017; Zhou et al., 2017,
2019a,b).

When combined with appropriate general coordinates, MSM
could be a very powerful tool to reveal intrinsic states of the
proteins (Malmstrom et al., 2015). The important component
of the MSM approach in studies of allosteric systems is the
employment of robust dimensionality reduction techniques to
identify experimentally-informed collective variables that can
enhance sampling and provide efficient detection and separation
of functional allosteric states. Dimension reduction is often
performed using time-lagged independent component analysis
(TICA) (Schwantes and Pande, 2014; Perez-Hernandez and Noe,
2016; Noe and Clementi, 2017; Olsson et al., 2017). In these
approaches, the simulation samples can be divided into substates
assuming that conformations within each substate share kinetic
similarity and could interconvert rapidly (Bowman et al., 2009;
Zhou and Tao, 2018; Zhou et al., 2018a,b). t-SNE method was
recently developed as a dimensionality reduction method with
minimum structural information loss revealing that both one-
dimensional (1D) and two-dimensional (2D) models of t-SNE
method are superior to other tools in distinguishing functional
states of allosteric proteins (Zhou et al., 2018a,b). MSMs and
transition network models are widely applied to extract kinetic
descriptors from equilibrium simulations. Directed Kinetic

Transition Network (DKTN) which is a graph representation of
a master equation was developed for describing non-equilibrium
kinetics in allosteric proteins (Zhou et al., 2019a,b). Markov
modeling studies have also examined the timescales and intra-
molecular pathways implicated in allostery by introducingmaster
equation-based approach for allostery by population shift (Long
and Bruschweiler, 2011). Another study employed a graph-
theoretic approach and Markov stability analysis for modeling of
signaling pathways and characterization of allosteric sites (Amor
et al., 2014).

Current allosteric models have suggested that conformational
and dynamical distribution phase space accessible for allosteric
interactions in proteins is much larger than the experimentally
visible landscapes provided through crystallographic and NMR
experiments. As a result, external perturbations, such as
mutations and/or ligand binding that could significantly affect
conformational space and dynamic distribution of allosteric
proteins and can be employed as probes to explore functional
consequences of allosteric phenomena. The recently developed
Rigid Residue Scan (RRS) simulation method has been
shown as effective tool to perturb protein dynamics and
assess both conformational and dynamical redistributions in
allosteric systems (Kalescky et al., 2015, 2016). Using the RRS
method, the predictive models for light-oxygen-voltage-sensing
(LOV) domains allostery have been developed that identified
the experimentally verified mutants with distinctive allosteric
regulatory effects. The results of this analysis have suggested
how manipulating functional regions with light in LOV proteins
could link chemistry and allostery, providing a path for rational
engineering of LOV ontogenetic tools.

EXPLOITING ALLOSTERIC MECHANISMS
AND CRYPTIC BINDING SITES FOR
DISCOVERY OF ALLOSTERIC
MODULATORS

Multiscale simulations and MSM approaches have shown that
allosteric mechanisms may not necessarily imply a simple two-
state switch between the major inactive and active states, but
often represent a dynamic multilayered regulatory machine
in which binding and external perturbations could give rise
to a discrete spectrum of functionally relevant and yet often
hidden allosteric conformations exhibiting a range of activity
levels. Experiment-informed Markovian modeling studies have
shown a promise in adequately describing the hierarchy
of allosteric states by recognizing structural and dynamic
patterns of conformational ensembles and identifying functional
allosteric states that are hidden in the crystal structures of
allosteric proteins. Discovery of multiple hidden allosteric
sites by combining Markov state models and experiments has
been advanced and applied for antibiotic target TEM-1 β-
lactamase (Bowman et al., 2015). Bowman et al. used MSM
approach of a ligand-free protein to identify allosteric sites
based on several signatures of collective dynamics, namely the
presence of a pocket in a significant fraction of the population
and the presence of correlated motions between the newly
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discovered pocket and the active site which provides means
for allosteric communication between distant sites. The central
to this pioneering work is a close integration with labeling
experiments on TEM-1 β-lactamase that were performed to test
the existence of hidden allosteric sites as feasible targets for
allosteric drug design (Bowman et al., 2015). These illuminating
studies have shown for the first time the power of integrated
tools to identify, characterize and exploit hidden allosteric sites,
highlighting the robust nature of Markov modeling tools in
guiding the experiments. It has been argued that the wealth
of thermodynamic, kinetic and structural data derived from
MSMs can guide further development of experimental tools
for discovery of hidden allosteric states and invisible cryptic
allosteric binding sites.

The results suggest there are many undiscovered hidden
allosteric sites that can be characterized and targeted with
rational drug design (Cimermancic et al., 2016; Oleinikovas
et al., 2016; Beglov et al., 2018; Kuzmanic et al., 2020). The
hidden allosteric sites are invisible in crystal structures and
cryptic sites can emerge as a result of stabilization of rare,
high-energy states by small fragment probes. The allosteric
mechanisms of cryptic site formation may involve a delicate
interplay between induced-fit and conformational selection that
can be modeled using elaborate replica-exchange sampling
techniques (Oleinikovas et al., 2016). Collectively, experiment-
informed multiscale simulation studies have shown that these
tools can adequately describe complexity and stochasticity that
underlies the thermodynamics and hierarchy of allosteric states
and the molecular basis of allosteric mechanisms.

Recent advances in understanding allosteric regulation and
activation mechanisms of therapeutic signaling proteins such as
protein kinases have fueled unprecedented efforts to discover
targeted allosteric inhibitors. Allosteric kinase inhibitors do not
compete with ATP and could be more selective by binding to the
regulatory sites outside of the ATP binding site (Dar and Shokat,
2011). Allosteric kinase inhibitors can improve target specificity
and play an important role in the precision medicine initiative in
oncology. NMR and X-ray crystallography studies have revealed
a detailed atomistic picture of allosteric regulation in many
protein kinases, showing how interacting signaling modules
form a multilayered regulatory mechanism that exploits various
allosteric switch points powered by binding or phosphorylation
at different sites of the regulatory kinase complexes (Saleh et al.,
2017). Recently discovered allosteric inhibitors of the ABL kinase
GNF-2, GNF-5, and ABL001 (Asciminib) bind to the allosteric
pocket near the C terminus of the ABL kinase domain stabilizes
the inactive conformation of the kinase (Adrian et al., 2006;
Zhang et al., 2010). Using solution NMR, X-ray crystallography,
mutagenesis and hydrogen exchange mass spectrometry, it was
shown that allosteric inhibitors can induce long-range structural
and dynamic changes in the remote ATP-binding site (Adrian
et al., 2006; Zhang et al., 2010; Wylie et al., 2017; Schoepfer
et al., 2018). While the field of kinase inhibitors has enjoyed
unprecedented success manifested in multiple FDA approved
drugs, the development of allosteric kinase activators has been
lagging behind. The mechanisms underpinning allosteric action
of kinase activators can proceed by destabilization of the inactive
state, stabilization of the active state, facilitating of the active

state, and dynamic responses to phosphorylation in regulatory
sites (Dar and Shokat, 2011; Fang et al., 2013; Hu et al.,
2013; Cowan-Jacob et al., 2014). Structural and biochemical
studies of allosteric inhibitors and activators of ABL kinase
have indicated that structural environment near the allosteric
pocket can serve as a sensor of ligand binding, triggering either
stabilization of the inactive state or large conformational shift
and activation. Furthermore, synergistic actions of allosteric and
ATP competitive inhibitors have provided evidence that binding
can perturb dynamics at distal regions and elicit ligand-specific
communication between binding sites. Computational studies
have detailed how allosteric inhibitors and activators may exert
a differential control on allosteric signaling between binding
sites (Astl and Verkhivker, 2019a). It was found that while
inhibitor binding can strengthen the inhibitory ABL state and
induce allosteric communications directed from the allosteric
pocket to the ATP binding site, DPH activator may induce a
more dynamic kinase state and preferentially activate allosteric
couplings between the ATP and substrate binding sites (Astl and
Verkhivker, 2019a).

By combining computational and experimental approaches
a significant progress has been made in discovery of allosteric
modulators of Hsp90 and Hsp70 chaperones. Recent studies
have demonstrated that the C-terminal domain (CTD) of
Hsp90 is important for dimerization of the chaperone and
contains a second nucleotide binding site (Marcu et al., 2000a,b).
The bacterial gyrase inhibitor novobiocin, a member of the
coumeromycin family of antibiotics, is an Hsp90 antagonist
that was found to inhibit a second ATP binding site at the
C-terminus. Novobiocin binds the C-terminal nucleotide pocket
and displaces both ATP and geldanamycin, and inhibits Hsp90’s
function (Marcu et al., 2000a,b). The principal advantage of
C-terminal inhibition over N-terminal inhibition is the lack of
a heat shock response upon ligand binding at the C-terminus
of Hsp90. The first compounds that clearly differentiated
between the C-terminus of Hsp90 and DNA gyrase, and
converted a well-established gyrase inhibitor into a selective
Hsp90 inhibitor were initially reported by Donnelly and Blagg
(2008), Matts et al. (2011a), Matts et al. (2011b), Garg et al.
(2016, 2017a,b), Hall et al. (2016), Khandelwal et al. (2016),
and Kumar MV et al. (2018). The first experimental-guided
computational prediction and mapping of hidden allosteric sites
in Hsp90 combined NMR analysis, proteolytic fingerprinting
and photoaffinity labeling with multiscale modeling of Hsp90
interactions and docking (Matts et al., 2011a,b). Computational
predictions provided the first atomic resolution model of
Hsp90 binding with the C-terminal modulator that fully
satisfies the available experimental data and provide key insight
for the structure-based design of allosteric Hsp90 inhibitors.
In the subsequent study, a novel, computational approach for
the discovery of allosteric inhibitors based on the physical
characterization of signal propagation mechanisms was applied
to the Hsp90 chaperone (Morra et al., 2010). By characterizing
the allosteric hotspots of the inter-domain communication
pathways, dynamic pharmacophore models to screen small
molecules were developed. The computational predictions
were combined with experimental validation showing that
the selected molecules bind the allosteric sites of Hsp90,
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exhibit anti-proliferative activity in different tumor cell lines,
and destabilize Hsp90 client proteins (Morra et al., 2010).
The recent series of studies by Colombo and colleague have
reported results of computer-aided design and synthesis of new
allosteric ligands with micromolar to nanomolar anticancer
activities, demonstrating the power of computational approaches
in discovering allosteric modulators that can probe the
relationships between structure dynamics and function of the
Hsp90 proteins and regulatory complexes with client proteins
(Sattin et al., 2015; D’Annessa et al., 2017; Masgras et al., 2017;
Ferraro et al., 2019; Hu et al., 2020; Sanchez-Martin et al., 2020).
Computational targeting of the Hsp90 client proteins based
on the prediction of locally unstable substructures in proteins
was used to develop potent probes and peptides blocking
Hsp90-client interactions (Colombo et al., 2020). Recent
efforts have also produced small molecules that can inhibit
the inter-chaperone protein-protein interactions for Hsp70
chaperone (Gestwicki and Shao, 2019). These chemical probes
have shown a considerable promise in interrogating chaperone
networks in a range of models. Design, synthesis, and biological
evaluation of small molecules that regulate the interaction
between two Hsp70 and HOP chaperones reported the first class
of compounds that specifically modulate these protein-protein
interactions and inhibit protein folding events (Zaiter et al.,
2019). An integrated computational and experimental approach
probed allosteric mechanisms of Hsp70 binding, showing that
symbiotic employment of different research tools in dissecting
allosteric events in signaling proteins can be instrumental
to discover selective allosteric modulators of protein
functions (Rinaldi et al., 2018).

NEW DEVELOPMENTS IN MODELING OF
ALLOSTERIC REGULATION:
INFORMATION-THEORETICAL ANALYSIS
OF DYNAMIC FLOWS AND ENTROPY
TRANSFER IN PROTEINS

The emerging computational approaches that are now
employed for studies of allosteric states and mechanisms
include experiment-informed network approaches, Markovian
modeling and also the information-theoretical methods that
model dynamic flows and entropy transfer in complex systems.
By describing protein dynamics as a dynamically evolving
network of interconnected modules, the topological regularities
of the network structure can be identified, while filtering out
the relatively unimportant details. A modular description of
a network can be viewed as a compression of that network
topology, and the problem of community identification can
be viewed as a problem of finding an efficient compression of
the network structure and topology. Using this premise, the
challenge of identifying the community structure of complex
networks describing dynamic energy landscapes of allosteric
proteins can be reformulated as an information-theoretic
approach. Flow-based model methods operate through a
stochastic walk on the dynamics of the network rather than
on its topological structure, where communities consist of
dynamically interconverting conformations among which the

dynamic flow can persist for a long time and define functionally
significant states (Rosvall and Bergstrom, 2007, 2008, 2010, 2011;
Lancichinetti and Fortunato, 2009; Schaub et al., 2012; Rosvall
et al., 2014; Kawamoto and Rosvall, 2015). This information-
theoretical analysis can quantify the structure and dynamics
of the proteins from a unified perspective in which short term
dynamics is integrated into a long term behavior of the system
through a modular description of dynamic flows occurring
on a given network (Figure 2). In this approach, a random
walk is used as a proxy for the dynamic flow on the network.
The map equation method implemented by the Infomap
algorithm (Edler et al., 2017) can find the optimal community
partition of the dynamic conformational ensembles on different
time scales (derived from MD simulations or MSM maps of
macrostates) and identify dynamically persistent (as opposed
to topology-derived) communities of functional macrostates.
This dynamic flows method compresses the flows by aggregating
nodes (states) with rapid stochastic movements, revealing
network regularities as distinct dynamic modules in which
flows are contained on a given time scale. The map equation
has been also extended to the higher-order Markov dynamics
(Lancichinetti and Fortunato, 2009; Lambiotte et al., 2011,
2019; Schaub et al., 2012; Rosvall et al., 2014; Delvenne et al.,
2015; Salnikov et al., 2016). NMR chemical shift perturbations
have been combined with Markov modeling and information-
theoretical analysis to reveal the dynamic flow of communication
between allosteric communities and identify critical residue
nodes within the communication pathways in protein kinases
(Aoto et al., 2016).

This information-theoretical approach can also explore the
dynamic evolution of the hierarchical multi-layered interaction
networks and has a potential to uncover hidden allosteric states
associated with the different dynamic time scales (Figure 2).
Synchronization and causality are basic non-linear phenomenon
observed in diverse complex systems, including allosterically
regulated proteins. When studying allosteric mechanisms and
communications in proteins, it is important not only to
detect synchronized allosteric states, but also to identify causal
relationships between them. The knowledge of information-
theoretic measures is essential for the analysis of information
flow between allosteric states and presents a challenging
problem (Hlavácková-Schindler et al., 2007). The problem of
finding a measure that is sensitive to the directionality of
the flow of information has been explored using non-linear
Granger causality of time series (Ancona et al., 2004). An
asymmetric quantity termed Transfer Entropy (TE), has been
proposed to estimate the directionality of the coupling and
flow of information (Schreiber, 2000). The information-theoretic
approaches measuring causal influences in multivariate time
series (Hlavácková-Schindler et al., 2007; Ito, 2016; Darmon
and Rapp, 2017) can be also applied to studies of allosteric
protein states and mechanisms. The quantitative models of
information flow between two correlated processes (Schreiber,
2000) were adopted to quantify time delayed correlations and
entropy transfer between residue pairs as a measure of allosteric
coupling in proteins (Hacisuleyman and Erman, 2017a,b).
Through analysis of entropy transfer, one can determine residues
that act as drivers of the fluctuations of other residues, thereby
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FIGURE 2 | Overview of the information-theoretic framework for modeling of allosteric states and communications. The upper panel presents structure-based

community detection. The lower panel illustrates modeling of the dynamical flows on the MSM maps of states and hierarchical dynamics-based detection of allosteric

states and persistent communities.

determining causality in the correlations and identifying residues
that act as drivers of allosteric communication in proteins
(Hacisuleyman and Erman, 2017a,b). The relative entropy
concept from information theory was used as a quantitative
metric to develop a method for measurement of the population
shift during allosteric transitions (Zhou and Tao, 2019). The
developed relative entropy-based dynamical allosteric network
(REDAN) model was sucessfully applied to the second PDZ
domain (PDZ2) in the human PTP1E protein, providing an
accurate assessment of allosteic pathways (Zhou and Tao, 2019).
A rigorous mathematical framework offered by the information-
theoretical formalism of dynamic network flows combined with
biophysical simulations may prove to be useful for finding
modular patterns and dynamically persistent communities
of macrostates. The integration of this methodology with
NMR experiments can aid in the better identification of
functional allosteric states by matching evolution of dynamic
communities against the NMR chemical shift patterns and
biophysical experiments.

THE RISE OF THE MACHINES:
ALLOSTERIC MECHANISMS THROUGH
THE LENS OF MACHINE LEARNING

Over the last few years, advances in the ML field have driven
the design of new computational systems that improve with

experience and are able to model increasingly complex chemical
and biological phenomena (Goh et al., 2017; Korotcov et al., 2017;
Chen et al., 2018a; Popova et al., 2018; Dimitrov et al., 2019;
Mater and Coote, 2019). ML techniques have been successfully

applied to various computational chemistry challenges (Husic

and Pande, 2018), pharmaceutical data analysis (Burbidge
et al., 2001), protein–ligand binding affinity prediction problems

(Ballester and Mitchell, 2010, Decherchi et al., 2015), dissecting
molecular determinants of protein mechanisms and biochemical

reactions (Li et al., 2015, Cortina and Kasson, 2018, Shcherbinin
et al., 2019). Data-intensive ML modeling can be also applied

for detection and classification of allosteric protein states. The
integration ofMarkovmodeling, simulations andML approaches

into robust and reproducible computational pipelines with the

experimental feedback can be explored for atomistic modeling

and classification of allosteric states (Figure 3). Several ML
algorithms including decision tree and artificial neural networks

were employed in combination with MSM approaches to
develop classification models of functionally relevant allosteric

conformations that exhibit very similar tertiary structures (Zhou

et al., 2018a,b). Despite the lack of significant conformational

change between allosteric states of the second PDZ domain
(PDZ2) in the human PTP1E protein, which is a prototypical

example of dynamics-driven allostery, it was demonstrated that
both algorithms could build effective prediction models and

provide reliable quantitative evaluation of the contributions from
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FIGURE 3 | A general prototypical workflow of MSM approaches and ML modeling for detection and classification of functional allosteric states.

individual residues to the difference between the two allosteric
states (Zhou et al., 2018a,b). A high prediction accuracy and
sensitivity of the ML models to small structural and dynamic
changes have demonstrated the utility of these approaches in
probing subtle allosteric changes. Deep neural networks were
used in combination with MD simulations of the PDZ3 domain
of PDS-95 revealing that allosteric effects can be quantified as
residue-specific properties through two-dimensional property-
residue maps (Hayatshahi et al., 2019). These residue response
maps could accurately describe how different protein residues are
affected by allosteric perturbations exerted on the protein system.
Another ML-based analysis of protein dynamics was employed
to compare the binding modes of TEM-1 β-lactamase in different
catalytic states (Wang et al., 2019). While conventional analysis
methods including principal components analysis (PCA) could

not differentiate TEM-1 in different binding modes, neural
networkmodels resulted in an excellent classification scheme that
differentiated between closely related functional states (Wang
et al., 2019). This study has provided a unique insight into the role
and specific function of individual residues, highlighting their
contributions to the delicate thermodynamic balance between
allosteric states.

The remarkable rise of deep learning (DL) relying on the
robust function approximations and representation properties
of deep neural networks has provided us with new tools to
automatically find compact low-dimensional representations
(features) of high-dimensional data (LeCun et al., 2015).
DL models have achieved outstanding predictive performance
making dramatic breakthroughs in a wide range of applications,
including automatic speech processing and image recognition
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(Toledano et al., 2018; Kim et al., 2019; Hey et al., 2020; Wu
et al., 2020). In the words of Geoffrey Hinton who is the
founder of DL technologies “Deep Learning is an algorithm
which has no theoretical limitations on what it can learn; the
more data you give and the more computational time you
provide the better it is” (LeCun et al., 2015). Deep neural
network methods were successfully applied to predict intrinsic
molecular properties such as atomization energy based on simple
molecular geometry and element types (Rupp et al., 2012). DL
models were recently used for structure-functional prediction of
cancer mutations and functional hotspots of ligand binding in
cancer-associated genes (Agajanian et al., 2018). The developed
models can capture∼90% of experimentally validatedmutational
hotspots and yield novel information about molecular signatures
of driver mutations. In the recent studies, we have proposed
novel DL architectures capable of predicting functional protein
hotspots directly from raw nucleotide sequence information
(Agajanian et al., 2019). These studies have shown that DL
models can learn high importance features from raw genomic
information and produce reliable recognition and classification
of functionally significant cancer mutation hotspots. Moreover,
these DL models can often outperform computational predictors
of cancer mutations that are based on protein sequence and
structure features (Agajanian et al., 2019). The success of DL tools
in deciphering important functional phenotypes directly from
primary sequence information is encouraging as these models
can bypass the need for a large number of empirically-derived
functional and structural features. However, ML methods often
result in “black box” models with limited interpretability. There
has been an explosion of interest in transparent and interpretable
ML models to enable more efficient data mining and scientific
knowledge discovery (Holzinger et al., 2014). Our investigations
have also provided a roadmap how to combine DL predictions of
functional sites with subsequent biophysical analysis to aid in the
interpretability of ML models and facilitate their applications in
biological problems (Agajanian et al., 2018, 2019).

One of the primary goals of artificial intelligence (AI) is
to produce fully autonomous agents that interact with their
environments to learn optimal behavior, improving over time
through trial and error. An important mathematical framework
for experience-driven autonomous learning through interactions
with the environment is reinforcement learning (RL) (Sutton
and Barto, 1981; Barto, 1994; Botvinick, 2012; Hassabis et al.,
2017). While previous RL approaches lacked scalability and
were limited to fairly low-dimensional problems, a marriage
between deep neural networks and RL resulted in the new
rapidly evolving field of deep reinforcement learning (DRL) that
has achieved remarkable success in game-oriented and various
scientific applications, attaining a wide popularity and celebrity-
like following among researchers (Mnih et al., 2015; Silver
et al., 2017; Botvinick et al., 2019; Jaderberg et al., 2019; Senior
et al., 2019). DRL concepts leverage and symbiotically combine
neural network modeling with reinforcement learning, in which
optimization strategies are crafted based on the trade-offs and
competition between rewards and punishments rather than
conventional deterministic or stochastic exploration methods.
After years of serving as a mere inspiration rather than a practical

tool, DRL techniques have taken off overcoming scalability and
data limitation issues, and exploding into one of the most intense
areas of AI research. Recent years have witnessed the expansion
of DRL applications into biomedical research including but not
limited to biomedical informatics, drug discovery (Baskin, 2020;
Grebner et al., 2020), and toxicology (Chary et al., 2020).

The rationale for employing DRL technologies in studies
of allosteric regulation is to capitalize on conceptual and
algorithmic similarity between Markov decisions processes
(MDPs) which are at the core of RL methods and Markovian
modeling of allosteric states in proteins. Several methods
adopted RL-based conceptualization to develop MDP algorithms
for conformational mapping of the protein landscapes and
detection of functional allosteric states. REinforcement learning
based Adaptive samPling (REAP) algorithm has shown a
considerable promise by adopting RL principles in which an
agent (or learning algorithm) takes actions in an environment
(conformational protein landscape) to maximize a reward
function (Shamsi et al., 2018). In this study, the action is
associated with launching a pool of simulations along different
collective variables (reaction coordinates), with the reward
function proportional to the efficiency of a reaction coordinate
to sample space and detect unknown states, and the agent
selecting the directions which are most rewarding ultimately
leading to the optimal adaptive strategy (Shamsi et al., 2018).
Similar concepts were used to develop a goal-oriented sampling
method, termed fluctuation amplification of specific traits (FAST)
for rapid search of conformational space and identification of
distinct functional states by balancing search near promising
solutions (exploitation) and attempts to find novel solutions
(exploration). Inspired by the RL ideas, this methods runs pools
of simulations from starting points chosen based on the reward
functions that encourages discovery of new conformations with
selected physical properties (Zimmerman and Bowman, 2015;
Zimmerman et al., 2018). Generative neural networks have
been recently proposed as a tool for the discovery of efficient
collective variables that are fundamental for adaptive exploration
of the conformational landscapes and finding functional states
and hidden allosteric states by guiding sampling toward poorly
explored regions (Chiavazzo et al., 2017; Chen et al., 2018b;
Hernandez et al., 2018; Mardt et al., 2018). MD simulations were
combined with DL approach to train an autoencoder (Hinton
and Salakhutdinov, 2006) in order to generate new protein
conformations andmine conformational space of the bound state
from an ensemble of unbound protein structures (Degiacomi,
2019). Another interesting study employed autoencoder-based
detection algorithm to explore dynamic allostery induced by
ligand binding based on the comparison of time fluctuations
of distance matrices obtained from MD simulations in ligand-
bound and unbound forms (Tsuchiya et al., 2019). In this
method, the autoencoder neural network is first trained on
the time fluctuations of protein motions in the apo form, and
the trained autoencoder is then applied to analyze patterns of
fluctuations in the holo form. Using this elegant implementation
of RL approach, the authors mapped allosteric communication
networks of the dynamically coupled residues and ligand pockets
in the PDZ2 domain induced by binding (Tsuchiya et al.,
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2019). Allosteric pocket crosstalk defined as a temporal exchange
of atoms between adjacent pockets in the MD trajectories
can produce a fingerprint of hidden allosteric communication
networks (La Sala et al., 2017). The recent RL-inspired studies of
allosteric systems suggested that simulation-drivenMLmodeling
and analysis of conformational landscapes may uncover rarely-
populated functional states and shed the light on the key features
of allosteric communications between visible and hidden binding
pockets in proteins.

DRL is a continuous trial-and-error based sampling-learning
process where the agent tries to apply different combination of
actions on a state to find the highest cumulative reward. Although
DRL methods can tackle a wide range of learning problems
with a rigorous mathematical formulation, the challenges posed
by the properly crafted interplay between rich data acquisition
and delayed rewards remains a significant impediment to
the widespread of RL methods in many application domains,
including prediction of allosteric protein states and mechanisms.
The challenges of DRL approaches often lie in the art of designing
robust reward function. The hybrid reward functions with a
weighted combination of topological, dynamic, and network-
based rewards describing different characteristics of allosteric
states may represent a potentially interesting strategy to mitigate
the inherent deficiencies of RL and DRL methods. For this, the
rewards may be treated as neural networks trained on the set of
known allosteric states. A new saga in the rapidly evolving DRL
field was the development of episodic-based DRL algorithms that
estimate the value of actions and states using episodic memories
where the agent stores each encountered state along with the sum
of rewards obtained during the n time steps (Botvinick et al.,
2019). The episodic memory-based models can be extended to
develop curiosity reward bonus functions for efficient exploration
of the environment and detecting states in the poorly accessible
regions (Han et al., 2020). In this context, DRL framework
that iterates episodes of DRL and community decomposition of
the dynamic network flows on the conformational landscapes
may enhance the interplay between sampling and learning, thus
facilitating identification of hidden allosteric states. Different
from traditional DRL approaches, this strategy can consider
communities of states as intermediate stages in the learning
process, rather than unique states, which could potentially lead
to a more robust and versatile learning procedure (Figure 4).

Deep neural network (DNN)models, most notably variational
autoencoder (VAE) (Gomez-Bombarelli et al., 2018) and
generative adversarial networks (GANs) (Sorin et al., 2020;
Zhong et al., 2020) have proven fruitful in chemical discovery
and molecular design of novel synthesizable chemical probes.
Automated chemical design approaches employed VAE neural
networks for a data-driven continuous representation of
molecules (Gomez-Bombarelli et al., 2018). GAN models are
often considered as one of the most significant advances in the
field of machine learning, and their success has generated a
considerable momentum with growing number of applications
including molecular design of novel chemical probes and
materials (Guimaraes et al., 2017; Kadurin et al., 2017a,b;
Olivecrona et al., 2017; Yu et al., 2017; Gupta et al., 2018;
Polykovskiy et al., 2018; Putin et al., 2018a,b) (Figure 4).

By leveraging sequence data generation (SeqGAN) approach
(Yu et al., 2017); Objective-Reinforced Generative Adversarial
Networks (ORGAN) (Guimaraes et al., 2017) combines GANs
and RL to apply the GAN framework to molecular design with
domain-specific rewards and feedback. Of particular importance
is MolGAN, an implicit, generative model for small molecular
graphs that circumvents the need for expensive graph matching
procedures and adapts GAN approach to operate directly on
graph-structured data (Cao and Kipf, 2018). CycleGAN provides
unpaired image-to-image translation using Cycle-Consistent
Adversarial Networks (Zhu et al., 2017). MolCycleGAN, which
extended the CycleGAN framework with an added loss and extra
encoding network, maps from distribution to distribution on
unpaired samples, so it can amplify the size of our dataset in
the process by taking all of the pairing combinations rather than
relying on a training dataset of predefined molecule-inhibitor
pairs (Maziarka et al., 2020). The advantage of MolCycleGAN
is the ability to learn transformation rules from the sets of
compounds with desired and undesired values of the considered
property. The methodological and algorithmic progress in GAN
applications to molecular discovery has been further catalyzed
by the development of several comprehensive benchmarking sets
embedded into a sophisticated cheminformatics infrastructure
supporting open-source implementations of molecular features
and learning algorithms (Olson et al., 2017; Polykovskiy et al.,
2018; Racz et al., 2019). Despite recent developments in GANs
models, the applicability of these tools for molecular design
continues to present a promise rather than a validated strategy,
lacking systematic and comprehensive tools to target specific
protein families and interrogate molecular mechanisms. There is
also growing interest in generative models which can incorporate
both chemical and structural information about small molecules
and their interactions with protein targets.

SYNERGIES AND LIMITATIONS OF
COMPUTATIONAL APPROACHES FOR
QUANTITATIVE MODELING OF
ALLOSTERIC REGULATION

A systematic interdisciplinary effort is needed to leverage
the burgeoning knowledge about allosterically regulated
proteins in the development of experiment-informed data-
oriented computational tools for prediction of allosteric
mechanisms and allosteric drug discovery. The main advantage
of experiment-informed Markovian modeling is the ability of
this technique to adequately describe hierarchy of allosteric
states and the molecular basis of allosteric mechanisms.
Using a combination of NMR-guided simulations and MSM
approach, we can determine structural and dynamic patterns
of conformational ensembles and identify functional allosteric
states that are hidden in the conformational ensembles. The
critical challenges of these methodologies for modeling allosteric
regulation phenomenon is selecting a set of experimentally-
informed collective variables defined by the intrinsic dynamics
to provide the optimal projection of the landscape into
functional allosteric states. In this context, the newly emerging
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FIGURE 4 | An overview of data-intensive ML platform for allosteric research and allosteric drug discovery.

information-theoretical flow approaches and modeling of
entropy transfer in proteins can represent viable complementary
tools for adequate reconstruction of functional conformational
landscapes in proteins. The proposed integration of biomolecular
simulations and NMR experiments with machine learning into a
comprehensive research platform is expected to produce a toolkit
of approaches for prediction of allosteric states and mapping of
allosteric mechanisms.

Network algorithms, information-theoretical approaches and
DL models may be time-consuming and require a systematic
exploration and engineering of features and neural net
architectures with a constant and evolving feedback from
NMR experiments to validate and confirm predictions. Several
different ML architectures can be further explored to address
potential efficiency and convergence problems including transfer
learning, imitation learning, episodic control and dueling
networks. To achieve synergies and robust integration of
emerging technologies for predicting allosteric regulation
mechanisms, a new open science infrastructure development
is required which implies extensive sharing of experimental

and computational data, software and knowledge across many
discipline. Through integrative studies of allosteric mechanisms
empowered by biophysical and data science approaches we
can expand the toolkit of to dissect and interrogate allosteric
mechanisms and functions in the therapeutically important
protein families.

CONCLUSION

The growing body of computational and experimental studies
has shown that integration of data-driven biophysical
and ML approaches can bring about new drug discovery
paradigms, opening up unexplored venues for further
scientific innovation and unique biological insights. The
integration of computational and NMR approaches into a
novel research platform that explores experiment-informed
physical simulations, Markov state modeling, information-
theoretical formalism of dynamic allosteric networks under
the unified umbrella of machine learning will key to dissect
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molecular rules of allosteric regulation. The innovative
cross-disciplinary approaches that expand the knowledge,
resources and tools for studies of allosteric regulation can
promote a broader usage of new technologies to understand
and exploit allosteric phenomenon through the lens of
chemical biology, material science, synthetic biology and
bioengineering. By developing an open science infrastructure
for machine learning studies of allosteric regulation and
validating computational approaches using integrative
studies of allosteric mechanisms, the scientific community
can expand the toolkit of approaches and chemical probes
for dissecting and interrogation allosteric mechanisms in
many therapeutically important proteins. The development
of community-accessible tools that uniquely leverage the
existing experimental and simulation knowledgebase to enable
interrogation of the allosteric functions can provide much
needed impetus to further experimental technologies and enable
steady progress.
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