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ABSTRACT 

Gaining Computational Insight into Psychological Data: Applications of Machine Learning with 

Eating Disorders and Autism Spectrum Disorder 

by Natalia Stewart Rosenfield 

 

Over the past 100 years, assessment tools have been developed that allow us to explore mental 

and behavioral processes that could not be measured before. However, conventional statistical 

models used for psychological data are lacking in thoroughness and predictability. This provides 

a perfect opportunity to use machine learning to study the data in a novel way. In this paper, we 

present examples of using machine learning techniques with data in three areas: eating disorders, 

body satisfaction, and Autism Spectrum Disorder (ASD). We explore clustering algorithms as 

well as virtual reality (VR).  

Our first study employs the k-means clustering algorithm to explore eating disorder behaviors. 

Our results show that the Eating Disorder Examination Questionnaire (EDE-Q) and Clinical 

Impairment Assessment (CIA) are good predictors of eating disorder behavior. Our second study 

uses a hierarchical clustering algorithm to find patterns in the dataset that were previously not 

considered. We found four clusters that may highlight the unique differences between 

participants who had positive body image versus participants who had negative body image. The 

final chapter presents a case study with a specific VR tool, Bob’s Fish Shop, and users with ASD 

and Attention Deficit Hyperactivity Disorder (ADHD). We hypothesize that, through the 
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repetition and analysis of these virtual interactions, users can improve social and conversational 

understanding. 

Through the implementation of various machine learning algorithms and programs, we can study 

the human experience in a way that has never been done. We can account for neurodiverse 

populations and assist them in ways that are not only helpful but also educational. 
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 1 Introduction 

The field of psychology is a relatively new science, officially recognized as its own discipline in 

1879 [1]. Before the science was developed, people were still interested in the topics that 

psychologists study today. Philosophers have been studying the human experience since as early 

as 400 B.C., both physically and mentally [1]. However, at that time there was no way to 

measure the mental faculties in any reliable way; rather, it was all speculation and introspection. 

Over the past 100 years, assessment tools have been developed that allow us to explore mental 

and behavioral processes that could not be measured before. Psychologists now use objective 

measures and the scientific method to create experiments that are valid and reproducible. More 

recently, with the invention of computers, we can access, produce, and reproduce research 

quicker than ever. Conventional statistical models used for psychological data are lacking in their 

thoroughness and predictability. Machine learning algorithms allow us to understand and 

interpret the data in a way that is unique.  

In recent years there has been an increased interest in applying machine learning to 

psychological data, particularly in the field of Autism Spectrum Disorder (ASD) [2] [3] [4] [5] 

[6] [7] [8] [9] [10] [11] [12] [13]. 

Because machine learning in this discipline is so new, there are endless opportunities for 

research. This dissertation presents examples of using machine learning techniques with data in 

three areas: eating disorders, body satisfaction, and ASD [14] [15] [16] [17].  
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1.1 Topics in Psychology 

1.1.1 Eating Disorders 

Eating disorders, particularly anorexia nervosa (AN), has the highest mortality rate when 

compared to all other mental disorders [18] [19]. Considering there are over 150 clinically 

diagnosable mental disorders in the Diagnostic and Statistical Manual 5th Edition (DSM-V), 

special attention must be given to understanding and treating this disorder. However, this proves 

to be a challenging subject because much is still unclear as to how one develops this disorder; as 

some researchers note, there is very little exploration on this topic [20].  

There are many factors that can influence someone to develop an eating disorder, and it is often a 

combination of biological, social, cultural, and psychological factors that develop into a disorder. 

According to the DSM-V, eating disorders can be categorized into six subtypes: pica, rumination 

disorder, avoidant/restrictive food intake disorder, AN, bulimia nervosa, and binge-eating 

disorder [21]. 

Interestingly, symptoms can fluctuate and evolve throughout the span of the disorder. The same 

factors can manifest as different subtypes for different people, or they can manifest as different 

subtypes in any one person over the course of a lifetime. As a result, the diagnosis and treatment 

of eating disorders are extremely involved and complicated. Additionally, of the studies showing 

favor towards one form of treatment, replication studies have not been successful [20]. This 

provides a perfect opportunity to use machine learning to study the data in a novel way.
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1.1.2 Body Satisfaction  

One factor that has been consistently linked to eating disorders is body satisfaction. In fact, there 

is an entire subgroup of assessment tools for eating disorders that focuses on body image and 

body satisfaction. Attractiveness has always been, and will probably always will be, part of our 

lives and of our society. Today is no different; we are influenced, now more than ever, by the 

media. News channels, social media platforms, video chats, streaming and live recordings are 

instantly accessible to everyone with a device. 

Scientific research of any kind on the connections between body image and life satisfaction was 

not considered until the mid-1900s, less than 100 years ago. It wasn’t until the 1950s that any 

sort of experiment was conducted to explore the relationship between body image and life 

satisfaction [22], and most of the research did not begin until the 1970s [23]. Even now, there is 

remarkably little research on body image and body satisfaction, despite its prevalence in our 

culture and society. Of the research available, simple statistical models were used to analyze the 

data [22] [23] [24]. 

1.1.3 ASD 

ASD is one area of psychology that has quite a bit of research. The definition of ASD has 

changed over the years; the DSM-IV defined autism as an umbrella term that encapsulated 

different subtypes of autism, ranging from low functioning to high functioning. The DSM-V 

does not have any subtypes, but rather combines all subtypes under ASD. Practitioners still take 

note of the severity of symptoms. Though there are some implications that arise due to the 

changing of terms and definitions, they do not apply to the research presented in this paper. 
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ASD is defined in the DSM-V as “persistent deficits in social communication and social 

interaction across multiple contexts.” [25] ASD is often accompanied by restrictive, repetitive 

behaviors and may also include intellectual or language impairment. While the mortality rate is 

low, its prevalence rate is extremely high; research now estimates that one in 54 children are 

diagnosed with ASD [26]. Because of the pervasiveness of the disorder, careful consideration 

must be made regarding the diagnosis and treatment. 

However, not all view ASD as a disorder. Neurodiversity is a term that encapsulates the diverse 

expression of human neurological development, resulting in a wide variety of sensory perceptual 

abilities. Many of these unique sensory traits are clustered by diagnostic labels, such as Autism 

Spectrum Disorder (ASD), Sensory Processing Disorder, Attention-Deficit/Hyperactivity 

Disorder (ADHD), Rett syndrome, dyslexia, and so on. 

The Neurodiversity Movement formed specifically to reshape how ASD is perceived [27] over 

the last 30 years because many support Sinclair’s belief that ASD is just another part of the 

human experience, a variation of brain functioning [28] [29]. Disorders are typically associated 

with deficits or abnormalities, but Sinclair and other advocates of the Neurodiversity Movement 

argue that ASD brings about differences rather than deficiencies [30]. As Sinclair [29] states, 

“Autism is a way of being. It is not possible to separate the autism from the person.” This leads 

to another level of difficulty when diagnosing and treating ASD because some do not see it as a 

problem that needs to be fixed [30]. 

This has important implications, not only for those living with ASD but for people with other 

neuro-divergent conditions that would benefit from technologists expanding the ways that 

information is transmitted through technology. In fact, many people in our society could benefit 
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from the translational work of applying what is known about the strengths and weaknesses of 

neuro-diverse populations to the design of assistive technologies. ASD is often accompanied by 

sensory sensitivities, and 1 in 20 children have been found to have a sensory processing disorder 

[31]. It is imperative, then, that we focus on making technologies and life experiences more 

accessible to people with sensory differences.  

Certain difficulties can arise with ASD and there are many avenues for help in the detection and 

management of such difficulties. Professionals use diagnostic in-person interviews to confirm 

that the individual meets the criteria as defined in the most current version of the DSM. 

However, since ASD can be detected as early as age two, diagnostic interviews and written tests 

are not always appropriate measures. Instead, practitioners can use observational studies to 

determine if the individual meets four criteria, as explained in the DSM-V: Deficits in verbal and 

nonverbal communication; repetitive and inflexible behaviors; symptoms present themselves 

during early development; symptoms cause significant impairment [25]. 

It may be no surprise that the treatment of ASD is also complicated and multi-faceted. There is 

no cure for ASD; researchers and practitioners concentrate more on the management and 

understanding of ASD with therapeutic tools, though medication is also widely used, and may be 

required in extreme cases, to subdue some of the symptoms. ASD effects all areas of a person’s 

life and is often comorbid with other disorders and challenges. As a result, the therapy used is 

unique to the individual and must be flexible with time. The most widely used therapies include 

Cognitive Behavior Therapy, Applied Behavior Analysis Therapy, and more recently virtual 

reality (VR). ASD therapy that works with one individual may not work with another, which 

provides another layer of complexity when creating a management plan. It would be extremely 



 

6 

beneficial to researchers and practitioners if there was data on the accuracy and predictability of 

these measures. 

1.2 Machine Learning 

Machine learning algorithms can be classified as either supervised or unsupervised learning. We 

used a semi-supervised machine learning algorithm in the first study of this dissertation and an 

unsupervised algorithm in the second study. 

Supervised learning occurs when the researchers have access to the truth data. The algorithm 

takes an input, classifies it, and is then provided with corrective feedback [32]. This immediate 

feedback contributes to improved learning and accuracy of the model over time. Supervised 

learning is especially useful in the prediction of future inputs [33]. Unsupervised learning is just 

the opposite; the data is unlabeled and the patterns are found heuristically [34]. It is very 

common with real-world data to not have access to the truth data, either because that data is 

unavailable or was never collected, and thus unsupervised models are more applicable. It is also 

possible to combine the two models in a semi-supervised technique, where the researcher allows 

the algorithm to find the patterns heuristically and then uses truth values to guide the model to 

better predictions.  

Regardless of if we are studying eating disorders, body satisfaction, or ASD, there are a 

multitude of different diagnostic tools, treatments, and therapies available today, and which tools 

are utilized is at the discretion of the professional. Machine learning can help us differentiate the 

tools that perform better. In this dissertation we employed hierarchical clustering models for the 

first two studies to examine the value of certain diagnostic tools, and in the last study we present 

and discuss VR as a therapeutic tool for those diagnosed with ASD. 
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1.2.1 Hierarchical Clustering 

The aim of hierarchical clustering is to determine if there is any natural structure or arrangement 

to the data [35]. Often, knowing the similarity (or dissimilarity) of objects assists researchers in 

making significant conclusions. However, the underlying structure may not be evident just by 

looking at the dataset [35]. Hierarchical clustering models give researchers the insight needed to 

see any relationships in the data that were not previously considered. Another key benefit to 

hierarchical clustering models is that little knowledge is needed by the researcher prior to 

running the analysis [36].  

Clustering models are flexible and improve in accuracy and predictability over time. The goal is 

to separate the dataset into clusters, where the points within the clusters are more similar than the 

points between clusters [37]. The algorithm assigns each data point to the most appropriate 

cluster using an iterative process, and re-evaluates the assignments until an optimal number of 

clusters is reached [36]. There are two approaches, depending on what algorithm is used. They 

are known as top-down processing, where all points begin as one cluster and more dissimilar 

points are separated into their own clusters, or bottom-up processing, where each point begins as 

its own cluster and more similar clusters are merged. In chapter 3 we discuss a hierarchical 

clustering algorithm that uses bottom-up processing.  

One model that uses top-down processing is the k-means clustering algorithm, which we present 

in chapter 2. The algorithm divides the data into k clusters, where k is a value that is determined 

prior to analysis. The cluster is represented by its mean value, the centroid [38]. The main goal of 

the k-means clustering algorithm is to minimize intra-cluster variation, meaning that the 

datapoints within each cluster are similar [38]. There are several ways to calculate the distances 
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between points and the researcher may choose which approach is the most appropriate. The most 

common, and what was used by MacQueen in his original paper, is the Euclidean distance [39]. 

1.2.2 Virtual Reality 

While VR is not a new concept, beginning as a theory found in science fiction books and movies, 

its prevalence in our day-to-day life has increased exponentially in the last 10 years. The cost for 

a VR device has become so inexpensive that anyone can purchase one for personal use. 

Furthermore, its adaptability to many domains has led researchers and professionals to consider 

VR as a potential therapeutic and educational tool for children and adults alike. VR can be fully 

immersive, augmented, 2D or 3D; regardless of the specifics of each system, researchers agree 

that VR must include hardware, such as computers, head-mounted displays, or gloves [40] [41].  

Research shows that better treatment leads to better outcomes [42]. Studies also indicate that 

VR-based treatments produce positive results for various mental health conditions [43].  

Unfortunately, quality treatment is not always accessible, especially for those with lower 

socioeconomic status. VR allows effective treatment to reach anyone, regardless of income or 

living situation; it will directly impact the inconsistency of treatment often found across time 

[44]. VR also provides opportunities to engage with others, even when not physically together, 

and creates a safe environment for therapist-client interactions [45]. This offers many potential 

avenues for VR to be utilized, specifically when treating and managing psychiatric disorders 

[43].  

Virtual reality (VR) has stepped to the forefront as a possible means of assistive therapy and 

accessibility. Since VR has become more affordable in the recent years, its use is now popular 

both in private industry and for entertainment purposes. What is even more appealing about VR 
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in regard to therapy is that the experience is dynamic, individualized, and personalized for the 

user’s preferences. Due to the sensory processing differences in ASD, VR provides new 

opportunities mediated by technology to explore the world. 

The possibility for VR technology to assist students with special needs is moving to the forefront 

of educational conversations as well. These VR spaces prove to be very useful to the user 

because there are no real-world risks, yet they are still able to navigate through the experience or 

lesson. For example, users can interact with avatars in a social situation without the pressure of 

making a mistake. One of the primary benefits of integrating VR technology into special 

education learning environments is that it provides interactive learning, enabling the learner to 

have control of his or her learning process [46] [47]. VR applications may allow students with 

ASD to participate more fully in general education classrooms and more so in society. 

The goal of VR interventions for neurologically diverse individuals is to promote an alternative 

way of learning that provides a sense of belonging from the perspective of someone with ASD in 

all settings; the aim of technology need not be focused on impairment but rather on building self-

esteem and supporting creativity [48]. Using technology allows the user to insert oneself into 

various situations, no matter where the user is physically. Additionally, technologies that support 

nonverbal skills can build a bridge between the normative and neuro-diverse experiences, what 

some researchers refer to as “neuro-shared spaces” [49]. 

Research states that users of this interactive therapy can experience “reduced stress from the lack 

of nonverbal signals, the ability to find people with similar interests, and pre-defined interaction 

mechanisms, like birthday greetings” [50]. In the current work, we describe two sensory-friendly 
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environments, Bob’s Fish Shop and VirtualBlox. Though we focus on ASD, these techniques 

provide an opportunity for generalization. 

Researchers of assistive technology are calling for more customization and systems capable of 

adapting to multiple use cases; achieving this requires multiple iterations with special attention to 

interface design [51]. Adoption may be improved by including users with neurodiversity, such as 

ASD, across all the stages of development in addition to their caregiver networks. Many 

researchers have found their technologies have limitations and suggest that iterating with users 

would be a step toward solutions—whether this iteration occurs at the beginning of the lifecycle, 

or during or after development [51]. The common themes across these works are usability, 

acceptance, and adoption. VR is now a commercial commodity that leverages infrastructure 

(e.g., the web) and provides a unique pathway to supporting neurodiversity. 

1.3 Dissertation Organization 

This dissertation presents four different studies and the structure is as follows. The first study is 

presented in chapter 2 and is an example of how machine learning can be helpful in the field of 

psychology. We use a k-means machine learning algorithm to explore eating disorder behaviors. 

The dataset is from the Department of Psychiatry and Behavioral Sciences at Duke University 

School of Medicine. We specifically looked at three variables in the dataset to build a clustering 

model that accurately assigns an individual to the appropriate group.   

Chapter 3 is a preliminary analysis on a dataset that was created by Dr. Dave Frederick, from 

Chapman’s Crean College, along with his colleagues. It is the largest dataset on body image and 

body satisfaction to date. This is another instance where traditional statistical methods were 
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restrictive and one-dimensional in their results, so we used a hierarchical clustering model to 

determine the hidden patterns. Our results found four distinctive clusters in this dataset. 

We switch subjects in chapter 4, focusing on using VR in educational settings. We particularly 

concentrate on children with ASD and how VR can enhance their learning experiences. In this 

chapter we introduce Bob’s Fish Shop, a virtual reality tool that was developed in the MLAT 

Lab. We also present a case study, which tested the program’s feasibility for children diagnosed 

with ASD and ADHD. We predict that this tool can be used to improve social interactions in 

educational as well as personal settings. 

Studying these topics through the lens of machine learning offers us a new perspective. Instead 

of using basic statistical models to explain the data, we utilize machine learning to dive deeper 

into the underlying patterns and relationships. In addition, machine learning algorithms allow us 

to predict future behavior and the models become more accurate over time. The results in this 

dissertation support the hypothesis that machine learning algorithms find hidden patterns in the 

data that traditional statistics cannot detect. Additionally, we see that VR environments facilitate 

a safe and controlled setting for social interactions, both casual and professional.
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 2 First Study: Exploring the Eating 

Disorder Examination Questionnaire, 

Clinical Impairment Assessment and 

Autism Quotient to Identify Eating 

Disorder Vulnerability 

2.1 Introduction 

According to the Diagnostic and Statistical Manual of Mental Disorders 5th Edition (DSM-V), 

an eating disorder is defined by a “persistent disturbance of eating or eating-related behavior that 

results in the altered consumption or absorption of food” [21]. Currently, an eating disorder can 

be categorized into one of six subtypes: pica, rumination disorder, avoidant/restrictive food 

intake disorder, anorexia nervosa (AN), bulimia nervosa, and binge-eating disorder [21]. The 

data used in this analysis specifically focused on individuals with a previous diagnosis of AN 

[52]. 

A study conducted in 2010 found that 2.7% of US adolescents aged 13-18 experience a lifetime 

prevalence of eating disorders [53]. Some researchers report that 1 to 2% of individuals will 

develop an eating disorder, specifically AN, at some point; among adults, 0.6% experience a 

lifetime prevalence of AN [54]. Furthermore, Hudson and colleagues observed that 56.2% of 

adult participants who were diagnosed with AN also met the criteria for at least one other 

disorder. These disorders include anxiety disorders, mood disorders, impulse control disorders, 

and substance disorders [54]. 
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Mortality rates have been reported at 5 to 8% [55]. There are also many other serious lifetime 

problems associated with eating disorders: heart failure, kidney damage, a compromised immune 

system, and other serious medical complications [56] [57]. Unfortunately, the rate of eating 

disorders has not decreased in recent years, even though effective treatments have become more 

available [58] [59]. 

2.1.1 Factors in Manifestation 

Eating disorders are very complicated and many factors play a role in their manifestation. There 

are biological, sociocultural, and psychological components that effect each person differently, 

and what may manifest as an eating disorder in one person may not manifest itself in another 

[21] [57]. 

2.1.1.1 Biological 

Certain biological traits are known to be associated with eating disorders. In fact, previous 

research has shown that as much as 84% could be due to genetic factors [60]. First-degree 

biological relatives of those diagnosed with an eating disorder are at an increased risk [21]. 

Historical research shows that females, Caucasian females in particular, are at a much greater 

risk for developing an eating disorder than any other group [54] [55] [57] [60]. Researchers have 

also been able to identify brain abnormalities in those diagnosed with AN using functional 

magnetic resonance imaging (fMRI) and other technologies [21] [52]. It has been concluded 

using fMRI scans that participants with a previous eating disorder diagnosis had reduced 

activation in the part of the brain responsible for social reward processing [52] [61]. 

Additionally, Sweitzer and colleagues [52] found that the longer the person had an eating 

disorder, the greater decrease in brain activation. Other researchers hypothesize that eating 
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disorders may be caused by neurochemical and hormonal imbalances, specifically in serotonin 

and dopamine levels, due to their relationship with reward experience [57] [62] [63] [64] [65] 

[66]. 

2.1.1.2 Sociocultural 

It is no surprise that cultural influences must be considered when examining eating disorders. 

Post-industrialized, high-income cultures see the highest rates, where there are more intense fears 

of gaining weight [21]. Researchers have been able to connect eating disorders with the changing 

standards of beauty over time, with icons for women getting thinner and thinner [57] [67] [68] 

[69] [70]. Occupations that value thinness, such as models and athletes, are also known to be at 

greater risk of developing an eating disorder [21] [57]. Sundgot-Borgen [71] concluded that 

eating disorder behavior varied depending on what type of sport was played. Athletes in aesthetic 

sports or weight-dependent sports, such as gymnastics, figure skating and wrestling, were more 

likely to have an eating disorder than athletes in endurance, technical, or ball game sports [71]. 

2.1.1.3 Psychological 

There are also psychological factors that influence an individual’s eating behavior. Some 

researchers hypothesize that eating disorders may serve as a way to deal with painful emotions; 

studies show that those who engaged in emotional eating were at a much greater risk for 

developing an eating disorder [57] [56] [68] [72] [73]. Furthermore, individuals who have 

anxiety disorders are also at greater risk [21]. Other researchers have suggested that an obsession 

on appearance is directly related to eating disorder behavior [73] [74]. It has been determined 

over time that those at greater risk for an eating disorder exhibit more perfectionist and rigid 
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thinking patterns [55] [57] [75] [76]. Moreover, children who exhibit obsessional behaviors are 

more at risk for developing an eating disorder, particularly AN [21]. 

2.1.2 Previous Research 

There have been many studies conducted in order to determine the effects of cultural and 

psychological influences on eating disorder behavior. For example, Stice and Shaw [77] 

concluded that young women who were exposed to images of fashion models reported more 

depression, insecurity, stress and body dissatisfaction than those who were not exposed to the 

images. Another group of researchers found that college-age women who were exposed to a 

cosmetic surgery makeover show were more likely to feel pressure to be thin than women who 

were exposed to a home improvement show [78]. Stice, Maxfield and Wells [79] demonstrated 

how social pressure can also influence behavior when exposed to others who are dissatisfied 

about their bodies. College women were more likely to feel dissatisfied with their bodies after 

they were exposed to someone complaining about weight, discussing extreme exercise routines 

and restrictive diet behavior [79]. 

2.1.3 Current Assessment Tools 

In order to assess an individual for an eating disorder, he or she first needs a medical 

examination [80]. After the initial examination, there are many ways of assessing the magnitude 

of the eating disorder. As a result, it is up to the professional to decide which tools to use. The 

most accurate and popular form of assessment for eating disorders is a structured interview with 

a professional, using the most current edition of the DSM [80] [81] [82]. However, interviews 

are costly and time-consuming [82]. There are also many other problems that may arise when 
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diagnosing an eating disorder, including manipulative behavior, the reluctance to cooperate, and 

even denial of the disorder altogether [82] [83]. 

Eating disorders effect all areas of a person’s life; some diagnostic tools focus on one specific 

facet of life, while other tools focus on a range of dimensions [82]. The assessment tools that are 

currently available can be categorized into five main groups: General measures, DSM 

questionnaires, screening questionnaires, body image assessments, and quality of life measures 

[82]. 

2.1.3.1 General Measures 

General measures, including the Eating Disorders Inventory and the Eating Disorder 

Examination Questionnaire (EDE-Q), are used as early diagnostic tools and assess the core 

pathology symptoms related to the disorder, such as interpersonal insecurity, emotional 

dysregulation, low self-esteem and perfectionism [82]. These measures may also be used as a 

predictive tool, as they have been shown to perform well in clinical studies [82] [84] [85]. 

2.1.3.2 DSM Questionnaires 

There are also diagnostic tools that are based on the current DSM criteria. These self-report 

questionnaires produce categorical results that are parallel to those in the DSM. In the 

Questionnaire for Eating Disorder Diagnoses, for example, it determines whether the participant 

has disordered eating patterns consistent with the DSM criteria or not; non-disordered eating 

individuals can then be labeled as asymptomatic, no symptoms, or symptomatic, showing 

symptoms but not enough to be diagnosed [82] [86]. Those who are in the disordered eating 
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category are then labeled based on the DSM criteria. These measures perform well, particularly 

when differentiating between symptomatic and asymptomatic diagnoses [82]. 

2.1.3.3 Screening Questionnaires 

Screening questionnaires are much shorter than other self-report measures, sometimes including 

as little as five questions. The aim of these tests is to determine if an eating disorder is likely to 

exist [82]. Though these measures are short, studies have shown that they perform well with high 

validity [82] [87] [88] [89]. These questionnaires tend to focus on broad symptoms, such as fear 

of gaining weight and body perception; they are not intended to diagnose, but rather to raise 

awareness of a potential issue [82] [90]. Assessments include the Eating Attitudes Test [91], 

Bulimia Test [87] and the Clinical Impairment Assessment (CIA) [92]. 

2.1.3.4 Body Image Assessments 

Body image has become increasingly important in the understanding of eating disorders, 

particularly because body image disorder is often seen occurring with AN [82]. Measures have 

been developed to evaluate concerns with body shape and size, such as the Body Shape 

Questionnaire [93] and Body Attitude Test [94]. These tools commonly focus on an individual’s 

self-evaluation of body size and attitudes about gaining weight [95]. They may also include 

questions regarding social influences [96]. Body image assessments can be used as a 

preventative and predictive tool to indicate basic risk factors of eating disorders [82] [96]. 
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2.1.3.5 Quality of Life Measures 

Other measures have been developed to determine the impact of an eating disorder on a person’s 

overall quality of life. These tools aim to assess specific domains of daily life: Cognitive 

functioning, family and personal relationships, psychological and emotional health, physical 

health, and work or school life [82] [97] [98]. The Eating Disorders Quality of Life Instrument 

[97] and the Eating Disorders Quality of Life Scale [98] are the main tools used by professionals 

[82]. 

2.1.4 Treatment 

Due to the variability in diagnosis and symptoms, treatment for an eating disorder is unique to 

the individual. This makes it difficult for professionals because there is no standard treatment 

plan. Some individuals recover after one episode, some experience fluctuating weight patterns 

and relapses over many years, while others may need hospitalization to fully recover [21]. 

Furthermore, studies show that about one third of patients with an eating disorder “continue to 

meet diagnostic criteria five years and longer after initial treatment” [99] [100], and as many as 

40% of those diagnosed with an eating disorder will experience crossover between the various 

subtypes [21] [101]. This presents another difficulty when treating and diagnosing eating 

disorders because professionals can only diagnose current symptoms with the DSM [21]. 

It is still unclear if the abnormalities seen in those diagnosed with an eating disorder are the 

consequences or the causes of eating disorders [57]. In addition, most of us experience the same 

cultural pressures of being thin, though many individuals never struggle with an eating disorder 

[57]. Some researchers have concluded that those who internalize the thin ideal presented in our 
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culture are more likely to develop eating disorder behavior [79], though there is still much we do 

not comprehend about why someone does or does not internalize this cultural stigma. 

2.1.5 Machine Learning 

2.1.5.1 Clustering 

Clustering is a technique used to find hidden patterns in data [102] [103]. These models allow us 

to visualize multi-dimensional data by organizing and grouping observations, where the 

groupings make some natural sense [103]. Clustering models most often use bottom-up 

processing, where each observation starts as its own group and they are iteratively grouped 

together until an optimal and natural number of clusters has been reached. Clustering has been 

known to improve performance in many applications [103] [104]. There are three main types of 

clustering techniques: hierarchical clustering, Bayesian clustering, and partitional clustering 

[103] [105]. The results in this paper are a result of using a hierarchical clustering model. 

2.1.5.2 Semi-Supervised Learning 

One of the many benefits to using machine learning is that it offers new insight into datasets that 

researchers may not previously have. Oftentimes, some knowledge is known or available to the 

researchers prior to analysis and may be used to guide the model [102]. Semi-supervised 

machine learning is beneficial because of its unique ability to use labeled and unlabeled data, 

which improves the model’s ability to predict on future unlabeled data [103] [106]. 



 

20 

2.2 Method 

2.2.1 Dataset 

The dataset used in this analysis was originally produced in 2018 by Dr. Maggie Sweitzer, Dr. 

Nancy Zucker, and Savannah Erwin from the Department of Psychiatry and Behavioral Sciences 

at Duke University School of Medicine. They used a Qualtrics survey to collect the data, Excel 

to clean the data, and SPSS for their analysis [52]. Researchers also calculated the total scores 

and subscale scores for the following, which will be discussed later in more depth: EDE-Q global 

score, CIA global score, and AQ total score. 

The dataset originally included 54 participants, ages 19-32. Participants were split into two 

groups, clinical and control, and were matched on age, race, education, and medication status 

[52]. See Figure 2-1 for the summary statistic. Some observations were removed due to missing 

data, errors and other issues [52]. The final dataset used in the analysis included a total of 44 

participants, 20 participants in the clinical group and 24 participants in the control group. 
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Figure 2-1 Demographic data of participants. Numbers reflect 24 members in the control 

group (HC) and 20 members in the clinical group (AN-WR). 

Participants in the clinical group were required to have a previous diagnosis of AN as defined by 

the DSM-V, while also having maintained a healthy weight for at least six months [52]. 

Researchers used portions of the Structured Interview for Anorexia and Bulimia [107] as well as 

the EDE-Q [108] in order to measure onset, course and duration [52]. The control group 

participants were required to have no previous history with any form of eating disorder. They 

were also required to be free of psychiatric disorders, psychosis, substance use, and neurological 

disorders [52]. 

2.2.2 Survey Measures 

Much of the dataset consists of personal information, such as race, age, years of education, 

height, and BMI. Additionally, the researchers asked the clinical group about details regarding 

their eating disorders, including age of onset, lowest weight, duration, and recovery time. They 

focused on these attributes, as well as fMRI scans, to explore social reward processing [52]. We 

chose to focus on the EDE-Q, CIA, and AQ scores so that our analysis offered novel results. 
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2.2.2.1 EDE-Q 

The EDE-Q was developed in 1994 by Fairburn and Beglin and is based on the Eating Disorder 

Examination (EDE) that was previously created by Fairburn and Cooper in 1993. The EDE is a 

structured clinical interview, known for its excellent ability to assess eating disorders [80] [81]. 

However, the EDE is very time consuming, costly, and requires a trained professional to 

administer since it is an interview [109] [110]. Therefore, the EDE-Q was developed in order to 

allow individuals to self-report on their eating disorder [111]. The original version had 36 items, 

though newer versions have been developed with 28 items [108]. The EDE-Q includes a global 

score as well as scores for four subscales: restraint, shape concern, weight concern, and eating 

concern. It is scored using a 7-point Likert scale; each subscale item is converted to a number 

and then added and averaged to create one score per subscale [110] [111]. Higher scores indicate 

greater eating disorder expression. Researchers have determined that the EDE-Q is a reliable and 

accurate self-report measure, specifically on these four subscales [81] [112]. 

2.2.2.2 CIA 

The CIA is a supplemental questionnaire, created by researchers Kristin Bohn and Christopher 

Fairburn in 2008. This measure was to be used alongside the EDE-Q to determine the overall 

severity of psychosocial impairment in areas that are typically affected by an eating disorder, 

including mood, self-perception, and work performance [109] [113]. The questionnaire is 

comprised of 16 items and scored with a 4-point Likert scale: “Not at all”; “A little”; “Quite a 

bit”; and “A lot”. These answers were scored as 0,1,2, or 3, respectively. Each participant’s 

answer was added together to produce the global CIA score as well as three subscale impairment 
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scores: personal, social and cognitive [109] [110] [113]. A higher score indicates more 

psychosocial impairment. Researchers have determined the CIA to be valid [113]. 

2.2.2.3 AQ 

The AQ, developed by Simon Baron-Cohen and his fellow researchers in 2001, is a self-reported 

questionnaire designed to characterize participants who may have ASD. The questionnaire 

consists of 50 questions which assess five different areas: social skill, attention switching, 

attention to detail, communication, and imagination [114]. The possible responses are: 

“Definitely agree”; “Slightly agree”; “Slightly disagree”; “Definitely disagree”. There is a rubric 

to follow for scoring; each item can receive up to one point and the total number of points is the 

total AQ score [114]. Researchers determined that a score of 32 and above qualifies an individual 

as having “clinically significant levels of autistic traits” [114] [115]. Based on the results of 

Baron-Cohen’s research, the AQ is a valid assessment tool, both for adolescents as well as 

adults. Though the AQ is not directly related to eating disorder behavior, the original researchers 

included this score [52] and therefore we also included it in our analysis. 

2.2.3 Clustering Model 

Each participant was labeled in a Group column with clinical or control, however this column 

was removed prior to analysis so that our results were not influenced by this attribute. All data 

pre-processing steps, as well as the final analysis, were conducted using the R statistical 

computing software RStudio. Once the data was cleaned, scaled and ready to be analyzed, there 

were 32 remaining observations that were run through a k-means clustering model. 
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K-means uses an algorithm that aims to partition the data into k sets or groups [39]. It uses an 

iterative technique with two essential steps: Assignment and Recalculation. Consider a 

multidimensional data matrix E. Each data point can be thought of as a vector, xi where i = 1, 2, 

..., k, that contains multiple attributes per observation. 

The number of clusters must be chosen prior to analysis for k-means, so we chose to run the 

model for k=2-5. To begin, E is split into k groups. The mean value is calculated for each group 

and this value becomes the centroid. 

1. Assignment 

a. For each new point m ϵ E, determine the closest centroid and assign m to this 

group. The distance is calculated using some distance measure. In this paper, we 

emulated MacQueen’s original application of this algorithm [39] and used 

Euclidean distance: 

𝑇𝑖(𝑥) = {𝑚:𝑚 ∈ 𝐸, |𝑚 − 𝑥𝑖| ≤ |𝑚 − 𝑥𝑗|, 𝑗 = 1,2, … , 𝑘} 

2. Recalculation 

a. Recalculate the centroid value. 

These two steps are repeated until the centroids no longer change. 

2.2.4 Validation Measures 

In this particular situation we had access to the truth data, so we know which participants were in 

the control and clinical groups. We used this information to validate our model by comparing the 

cluster results with the pre-labeled groups. We formed a confusion matrix and calculated our 

model’s accuracy by adding the correctly labeled data points for each group and dividing by the 

total number of participants. 
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We also used an internal validation measure, the Silhouette Method, to further confirm that our 

results were accurate. The Silhouette Method was developed to validate partitioning techniques 

[116], using proximities between datapoints to create an easy-to-interpret graphical 

representation of the data. It utilizes a simple equation to determine a value between -1 and 1, 

which measures how well each datapoint has been classified [116]. However, unlike other 

validation measures, the Silhouette Method uses mean score and subtraction to relate 

compactness and separation, rather than division [117]. The final output is a plot of these values. 

To determine the optimal number of clusters, one simply looks for the value that corresponds to 

the highest peak in the graph. Roousseeuw [116] believed that the true benefit of this method 

was its interpretability and validity, specifically with clustering results. Research has shown that 

the Silhouette Method performs well compared to other validation measures [117]. 

2.3 Results 

2.3.1 Clusters 

See Figure 2-2 for the results from our k-means clustering model for our first model k=2. This 

model clustered the data as follows: 

▪  Cluster 1: 13 participants 

▪  Cluster 2: 19 participants 
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Figure 2-2 K-means clustering model results for k=2. 

For k=3, the data was clustered as follows: cluster 1, 14 participants; cluster 2, 14 participants; 

cluster 3, 4 participants. The k=4 model clustered the data into 16, 6, 8 and 2 participants, 

respectively. Lastly, the k=5 model was an overfitting as well, with the clusters having 3, 12, 9, 2 

and 6 participants, respectively. Our model k=2 clustered the dataset in the most appropriate 

way. 

Figure 2-3 shows the final table that includes group assignment, cluster assignment, and CIA, 

AQ and EDE-Q scores. We converted the group values to number variables and then compared 

these values to the cluster assignment values. We created a confusion matrix, presented in Figure 

2-4. We used this table to calculate our model’s accuracy at 78.125% so we know our model is 

working well. Additionally, the Silhouette plot used to validate our model is shown in Figure 

2-5. The dotted line represents the optimal number of clusters for this dataset, and we see that 

two clusters is the optimal solution. 
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Figure 2-3 The final output of our analysis. Table displays participant number, group 

assignment, cluster assignment, and CIA, AQ and EDE-Q scores. 

 

 

Figure 2-4 Confusion matrix for the k-means clustering model. 
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Figure 2-5 Plot of Silhouette Method showing the optimal number of clusters is 2. 

2.3.2 Radar Plots 

Once we determined that two clusters produced the optimal solution, we used the results and 

Excel to generate a radar plot representing the two clusters. This radar plot is shown in Figure 

2-6. Because the EDE-Q, CIA, and AQ scores are calculated in different ways, the data needed 

to be scaled. A common practice is to scale between 0 and 1. However, we see in Figure 2-6 that 

the AQ score extremely skews the results. Therefore, we rescaled the data using z-scores and re-

ran our analysis to have more interpretable results. The new radar plot is shown in Figure 2-7. 

Now that the scores are scaled more appropriately, we see that the EDE-Q and CIA scores are, in 

fact, important discriminators of eating disorder behavior. 
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Figure 2-6 Radar plot of results when the data is scaled from 0 to 1. 

 

 

Figure 2-7 Radar plot of results when using z-score to scale the data. 
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Based on our truth data, we can determine that cluster 1 represents the control group and cluster 

2 represents the clinical group. See Figure 2-3 to compare group assignment and cluster 

assignment. These groups are also shown in the radar plots by the blue and orange lines, 

respectively. We see that the clinical group is more driven by EDE-Q and CIA scores than the 

control group, which is to be expected due to the nature of the dataset. 

2.4 Discussion 

Our results prove that the EDE-Q and CIA are valid measures when determining eating disorder 

behavior, even though they are different types of diagnostic tools. Although each psychological 

test and measure has been tested for basic validity and accuracy before being adopted by 

professionals, there is not much research to date on whether these tests perform well with real-

world datasets. Moreover, the medical field is quite subjective in the sense that each professional 

decides what resources to use when diagnosing patients. A professional may simply choose not 

to use certain diagnostic tools, even when they may give the best results. Alternatively, a 

professional may simply not know there is a better diagnostic tool than the one used. Therefore, 

it is imperative that researchers begin testing the efficacy of these tools in real-world settings. 

The analysis in this paper focuses on three of these tools, the EDE-Q, the CIA and the AQ. 

We see a very strong association between the EDE-Q and CIA scores and cluster assignment. So, 

if we know a participant’s EDE-Q or CIA score, we have a very good chance of assigning them 

to the correct group. What is interesting, and slightly unexpected, is that the EDE-Q and CIA 

scores influence the clusters in a very similar way. In fact, based on the radar plot in Figure 2-7, 

it would appear as though the two scores effect the clusters to the same degree. Certain 

implications may be drawn from this conclusion. For example, the CIA is not as costly as the 
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EDE-Q, the CIA is not a formal interview but rather a self-reported questionnaire, and the CIA is 

able to be completed in a shorter amount of time. For these reasons, the CIA may be a more 

viable option for teenage patients. Furthermore, if a professional only has access to the CIA and 

not the EDE-Q, he or she can be confident that the results are accurate and valid. 

The dataset had some discrepancies that may have led to mixed results. For example, there were 

some participants in the control group who reported using disordered driven exercise to control 

their weight. Similarly, there were participants who reported binge eating, maintaining an 

unhealthy low weight, and even abusing diuretics to control weight. These are clearly eating 

disorder behaviors, yet the participants were part of the control group. This is likely because the 

disordered behavior was at a subclinical level, and therefore did not get diagnosed. Professionals 

must identify these outlying cases and determine if subclinical, yet still reportable, levels need to 

be considered. 

We also scaled the data so that the AQ score would not skew the results, but supplementary 

research into the relationship between AQ score and eating disorder behavior is a necessary next 

step. It may be hypothesized that someone who scores higher on the AQ will also score higher on 

the EDE-Q and CIA, since these measures are indications of mental disorders and mental 

disorders often occur together. It is unfortunate that the original researchers did not offer any 

insight as to why they included the AQ score in their analysis [52], so at this point we cannot 

conclude if there is a connection between this dataset and the AQ measure. Regardless, the link 

between autism and eating disorder behavior is an interesting topic for additional research. 
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2.5 Conclusion 

Eating disorders have become prevalent in our society, yet the research is still very mixed 

regarding why or how one develops this type of disorder. There are many factors that could play 

a role in manifestation, which means there is no one perfect treatment plan for all cases. In 

addition, eating disorders are often co-occurring with other disorders, which makes them more 

complex and not easily recognized or treated. Although more research has been conducted 

recently, deaths from eating disorders have continued and the rate of eating disorders does not 

seem to decrease despite better available therapies. It is critical that we begin to dissect this 

interesting cultural phenomenon, especially here in the United States. 

This paper presented a novel approach to understanding eating disorder behavior by 

incorporating machine learning to an otherwise purely statistical field. With a final dataset of 32 

participants, we employed a k-means clustering model to predict the optimal number of clusters 

to be two. Our results are easily confirmed by the truth data given in the dataset. We also 

employed the Silhouette method as a validation measure to justify our results. The EDE-Q and 

CIA scores seem to influence the results to the same degree, so the correlation of these two 

scores is a topic for future research. It is unclear after our analysis how AQ is related to eating 

disorder behavior, so additional research is certainly needed. This paper is but a small 

introduction into how machine learning can help detect and predict patterns in many types of 

psychological data.
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 3 Second Study: Analyzing Body 

Satisfaction via Clusters 

3.1 Introduction 

In recent years, the availability of robust machine learning-based computer vision and analysis 

techniques have provided new avenues for research in disciplines that have typically relied on 

classic statistics. In most cases, these machine learning approaches focus on building predictive 

classification (supervised) models, and not the cluster (unsupervised) models discussed here. 

However, we chose to explore an unsupervised model based on previous work that has 

established the utility of machine learning for tasks such as automated body analysis that takes 

imagery as input. 

Kocabey and colleagues leveraged a computer vision system to understand the relationship 

between body mass index (BMI) as inferred from pictures uploaded on social media [118]. 

Results indicated not only that posters with lower BMI receive more “likes” on their profiles, but 

also that users with similar BMI tend to cluster together in social networks. Computer vision 

models were demonstrated to produce accurate predictions on BMI using basic face geometry in 

earlier work by Wen and colleagues, using simple machine learning techniques such as 

AdaBoost [119]. Later, it was further shown that textual data accompanying profile pictures can 

be used in addition with imagery data itself to accurately predict body weight and differentiate 

between individuals with healthy and non-healthy weights [120]. 
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Most recently, state-of-the-art computer vision techniques have turned to deep learning to learn 

patterns from imagery data. This includes the application of deep convolutional neural networks 

(CNNs) to predict BMI with high accuracy from images [121]. To account for applications 

where the amount of data is small, the authors relied only on silhouettes extracted automatically 

from the raw images. 

Our work here is not tied to algorithms that require body imagery as input data. Instead, we 

concentrate on numeric data as captured from user surveys. Rather than build a predictive model 

of any one concept, we instead emphasize the natural groupings of survey respondents using 

unsupervised cluster models. This presents yet another novel application of machine learning in 

addition to the vision-based approaches that have been explored previously. 

3.2 Method 

3.2.1 Unsupervised Learning 

We completed this analysis using unsupervised learning as opposed to supervised learning. We 

focused on a technique known as hierarchical clustering, where data points are clustered together 

based on their similarity [102]. An unsupervised approach is particularly beneficial because 

researchers are not required to possess any prior knowledge of the dataset or even know of any 

patterns in the data [103]. Instead, the computer simply uses its own algorithm to deduce the 

optimal number of clusters for the dataset. Furthermore, unsupervised learning is often chosen 

for real-world data because researchers rarely, if ever, have access to correctly labeled data that 

can confirm the analysis results [103] [122]. Finally, hierarchical clustering provides more 

flexibility with real-world data [102]. For these reasons, we chose to use this type of clustering 
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model. We hypothesized that certain phenotypes would emerge from our analysis that would 

give us insight into who may show signs of body dissatisfaction. 

3.2.2 Hierarchical Clustering 

Initially, we hypothesized that using k-means clustering may have been sufficient. K-means is a 

top-down approach where the number of clusters desired (k) has to be decided on before running 

the algorithm [123]. It then selects random points in the data to be used as the centroid to each of 

those clusters. Once the centroid is selected, the algorithm splits the data into k clusters and re-

calculates the centroid points. It does this until the centroids do not change. For our purposes this 

approach is not very efficient because we do not know the optimal number of clusters prior to 

our analysis, nor do we want to decide the number of clusters prior to the analysis; rather, we 

want our algorithm to determine the number of clusters for us. Additionally, k-means splits the 

data evenly among the pre-selected number of clusters. This is another disadvantage in our case 

because we do not want to assume that all clusters are the same size. Hence, we opted to use 

hierarchical clustering.  

In contrast to k-means clustering, hierarchical clustering is a bottom-up approach; every data 

point starts out as its own cluster [124]. The proximity score, or similarity score, between the 

vectors is calculated and the algorithm takes the two points with the minimum distance between 

them and combines those points to create a new cluster. This process is repeated until there is 

one cluster. The final clusters are determined by analyzing the dendrogram. A dendrogram is a 

tree representation formed while the program runs and it is used to interpret how the clusters 

were formed [125]. Whenever two points or clusters are combined, the dendrogram will join 

them with lines. The vertical lines represent the distance between the two clusters. The 



 

36 

dendrogram for our data can be seen in Figure 3-1. Usually, the threshold is set to cut through the 

tallest vertical line; in our case, we placed the threshold at 75. The final clusters are the number 

of vertical lines that are intersected by the threshold line. Therefore, we have four final clusters. 

 

Figure 3-1 Dendrogram produced by our hierarchical clustering algorithm. The dotted 

line indicates the final four clusters. 

3.2.3 Feature Selection 

The original dataset consisted of six aggregate scores for each participant, however we see that 

there are only four aggregate scores used in our radar plots (Figure 3-2 and Figure 3-3). 

Clustering was used to determine the features that are most differentiating across observations in 

the data, in particular the features that most clearly explain the latent structure in the underlying 

groups identified by the algorithm. The number of groups itself is determined quantitatively 

through the unsupervised learning process, typically through statistical measures. Here we 
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determined the number of clusters by examining the residuals of members in each cluster from 

their cluster mean and minimizing the sum of those residuals. 
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Figure 3-2 Radar plot for males with four final clusters. 

 

 

Figure 3-3 Radar plot for females with four final clusters. 
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3.2.4 Radar Plots 

Once the hierarchical clustering model has determined the features that are most important and 

assigned a cluster to each participant, we used RStudio software and Excel to complete our 

analysis. The file that was created from our hierarchical clustering model included the following 

BIQLI aggregate scores, Surveillance aggregate scores, and Cluster. See Table 3-1 for reference. 

We normalized the aggregate scores from 0 to 1 so the results are easier to interpret, as well as 

merged the Sex column from our original dataset in order to separate these clusters based on this 

variable. See Table 3-2 for a snapshot of the final output file used. The averages were calculated 

for each cluster (Table 3-3 and Table 3-4) and presented as radar plots, seen in Figure 3-2 and 

Figure 3-3. 

Table 3-1 This is a snapshot from the final output of our hierarchical clustering model 

algorithm. It is important to note that there are only four scores that remain in our output: 

Face Satisfaction, Overweight Preoccupation, BIQLI and Surveillance. 

Participant 
FaceSatisfaction

Total 

OverweightPre-

occupationTotal BIQLITotal 
SURVEILLANCE

Total Cluster 

0 5.00 1.00 5.95 2.50 2 

1 4.00 3.00 4.21 4.38 3 

2 4.75 3.00 4.16 3.00 3 

3 3.00 1.75 3.89 2.50 3 

4 4.00 2.00 5.00 5.00 1 

5 4.25 1.00 3.68 1.38 2 

6 4.00 1.00 3.84 2.25 2 

7 3.75 3.50 5.05 2.88 2 

8 5.00 5.00 7.00 4.13 1 

9 5.00 3.00 7.00 2.50 2 

10 2.00 2.50 3.21 4.13 0 
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Table 3-2 This is a snapshot from the final dataset. We merged the sex column from the 

original data file so that we can separate the dataset into males and females. 

Sex Cluster 
FaceSatisfaction

Total 

OverweightPre-

occupationTotal BIQLITotal 
SURVEILLANCE

Total 

0 2 0.67 0.00 0.83 0.25 

0 3 0.50 0.33 0.54 0.56 

0 3 0.63 0.33 0.53 0.33 

0 3 0.33 0.13 0.48 0.25 

0 1 0.50 0.17 0.67 0.67 

0 2 0.54 0.00 0.45 0.06 

0 2 0.50 0.00 0.47 0.21 

0 2 0.46 0.42 0.68 0.31 

0 1 0.67 0.67 1.00 0.52 

0 2 0.67 0.33 1.00 0.25 

0 0 0.17 0.25 0.37 0.52 

 

Table 3-3 Table of scaled male average scores for each feature, used to produce the radar 

plot. 

Feature Cluster 1  Cluster 2  Cluster 3 Cluster 4 

FaceSatisfactionTotal 0.36 0.50 0.56 0.43 

OverweightPreoccupationTotal 0.35 0.22 0.11 0.17 

BIQLITotal 0.43 0.74 0.71 0..48 

SURVEILLANCETotal 0.64 0.53 0.21 0.42 

 

Table 3-4 Table of scaled female average scores for each feature, used to produce the 

radar plot. 

Feature Cluster 1  Cluster 2  Cluster 3 Cluster 4 

FaceSatisfactionTotal 0.38 0.51 0.56 0.45 

OverweightPreoccupationTotal 0.41 0.26 0.14 0.20 

BIQLITotal 0.42 0.73 0.72 0..47 

SURVEILLANCETotal 0.70 0.55 0.22 0.43t 
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3.3 Results 

Using RStudio software, we separated the dataset into males and females. First, we explored the 

summary statistics of each cluster with respect to BMI and age (Table 3-5 and Table 3-6) and 

used these results to compare clusters. As we have seen in previous research [126], though 

women had lower body satisfaction than men, the effect size was negligible (Table 3-5 and Table 

3-6). Though there are no statistical differences between male and female groups, the shapes of 

the four clusters do provide interesting results and we will be concentrating on these clusters for 

the remainder of the paper. We present the clusters that were determined by our analysis (Figure 

3-2 and Figure 3-3) and an explanation of the phenotypes that appear. 

Table 3-5 Table of summary statistics for BMI and Age of male participants. 

 BMI Age 

Cluster 1 Mean 29.48 31.69 

Cluster 1 SD 6.27 8.99 

Cluster 1 Median 28.48 30.00 

Cluster 2 Mean 26.22 31.58 

Cluster 2 SD 4.40 8.97 

Cluster 2 Median 25.54 29.00 

Cluster 3 Mean 26.60 35.68 

Cluster 3 SD 5.05 11.19 

Cluster 3 Median 25.54 33.00 

Cluster 4 Mean 28.10 34.15 

Cluster 4 SD 6.58 10.50 

Cluster 4 Median 26.58 31.00 
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Table 3-6  Table of summary statistics for BMI and Age of female participants. 

 BMI Age 

Cluster 1 Mean 29.66 33.85 

Cluster 1 SD 7.17 10.57 

Cluster 1 Median 28.34 
31.00 

  

Cluster 2 Mean 25.45 34.27 

Cluster 2 SD 5.59 10.77 

Cluster 2 Median 24.03 31.00 

Cluster 3 Mean 26.58 38.25 

Cluster 3 SD 6.36 11.92 

Cluster 3 Median 25.01 35.00 

Cluster 4 Mean 27.95 36.48 

Cluster 4 SD 7.25 12.24 

Cluster 4 Median 26.57 34.00 

3.3.1 Clusters 

Cluster 1 is Surveillance dominant. Surveillance refers to the participant’s self-monitoring of 

how he or she looks to others. Participants in this cluster agreed with statements such as, “During 

the day, I think about how I look many times,” and “I often worry about whether the clothes I am 

wearing make me look good.” Furthermore, participants in this cluster disagreed with statements 

like, “I rarely think about how I look,” and “I am more concerned about what my body can do 

than how it looks.”  

Clusters 2 and 4 are BIQLI dominant, which specifically measures the relationship between body 

image to quality of life. Participants in these clusters felt that their appearance positively affected 

various areas of life. Additionally, participants in this cluster reported that their feelings of 

personal self-worth and adequacy positively affected their lives. Participants were asked about 

interactions with others, relationships with friends and family, and their overall satisfaction in 
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everyday life. We can see the hierarchical relationship between these two clusters in the radar 

plots, and we will explore this relationship further in the Discussion section of this paper. 

Cluster 3 is Face Satisfaction and BIQLI dominant. Participants in this cluster are similar to 

Cluster 2 participants in that they felt appearance positively affected various areas of life. These 

participants also scored high in Face Satisfaction. For example, participants were asked to rate 

their happiness with the appearance of their face generally: “I am happy with the appearance of 

my face overall;” “I am happy with the shape of my face.” They were also asked to rate their 

level of happiness with specific parts of their face: “I am happy with the appearance of my 

nose;” “I am happy with the appearance of my eyes.” Participants in this group generally agreed 

with all of these statements. We expected to see this relationship in the data due to the positive 

nature of these variables; it makes sense that participants with a higher BIQLI score would also 

score high on the Face Satisfaction scale. 

3.4 Discussion 

The aim of this paper was to determine if there were any underlying patterns in the dataset using 

an unsupervised hierarchical clustering algorithm. We were not able to find any significant 

differences in survey responses when looking at males versus females, which seems to be in line 

with what other researchers have found [127]. However, our analysis was successful in showing 

clear differences in the four clusters we presented, and through these clusters we gained insight 

we previously have not had.  

First, we now know that Surveillance, Face Satisfaction, BIQLI, and Overweight Preoccupation 

are critical features in the dataset. These features are used to group the participants in the most 

appropriate way, since these features are what determine the clusters. Next, we clearly see a 
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hierarchical relationship between the clusters, particularly clusters 2 and 4 (Figure 3-2 and Figure 

3-3). Additionally, we saw in cluster 3 that the Face Satisfaction and BIQLI scores were 

positively associated with one another. This makes sense because higher scores on the Face 

Satisfaction and BIQLI scales indicate the participant has a positive body image.  Finally, cluster 

1 participants scored highest on the Surveillance scale, which may indicate that these participants 

experience body dissatisfaction. 

In further research, it would be interesting to dissect the relationship between clusters 2 and 4 

because there seems to be something going on that we cannot yet determine. Furthermore, it 

would be very beneficial to understand the characteristics of participants in clusters 2, 3 and 4 

because they seem to be content with their body image. What is particularly thought-provoking, 

and potentially the biggest implication for future research, is in regard to cluster 1 participants. 

We know from previous research that people who experience body dissatisfaction also report 

greater dissatisfaction with life [127], among many other unfortunate circumstances. Thus, the 

link between Surveillance score and body dissatisfaction would be extremely noteworthy. We 

are not yet able to say that these two outcomes are correlated, but our results provide the 

necessary beginning for future researchers in this field. 
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 4 Third Study: A Virtual Reality 

System for Practicing Conversation 

Skills for Children with Autism   

4.1 Introduction 

One in 59 American children is diagnosed with Autism Spectrum Disorder (ASD) [128]. While 

therapeutic supports exist (e.g., applied behavior analysis and cognitive-based therapy), they are 

costly and not always accessible due to geographic gaps in coverage or lack of available 

insurance funding. Assistive technology offers an alternative or supplementary approach to skill 

acquisition. 

Children with ASD may experience difficulty with communication and behavior and often have 

social impairments [129] [130]. Many researchers have focused their studies on communication 

training to address such challenges [131] [132]. Some studies suggest that improved 

communication skills may lead to “improvements in daily living and social skills, and a 

reduction in behavior problems relating to social interactions for children with ASD” [129]. 

In the United States alone, researchers estimate that the total cost per year for a child with ASD 

is approximately $17,000 more than for a child without ASD [133]. These costs include medical 

care for the children and special education programs and therapies, as well as accounting for loss 

in parent work productivity. Medical expenses for children with ASD are estimated to be 4.1–6.2 

times greater than the expenses for those who do not have a diagnosis [134]. The current 

intervention paths, although effective, are often unattainable for families. 
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Assistive technology can offer a means to practice skills through an inexpensive, less time-

consuming, and more scalable option. Not only can assistive technology help children by 

allowing them to practice lessons outside of therapy, but they may also help professionals by 

providing data regarding behavioral and communication skills. Therefore, we designed and 

implemented Bob’s Fish Shop, a virtual reality (VR) environment to help children develop social 

and conversational skills while also providing the script output for professionals to study. 

This paper presents the architecture of our system, which integrates gaze tracking and voice 

processing, in order to demonstrate the feasibility of building and using a VR-based assistive 

technology to help users with neurodiverse backgrounds to practice conversation skills. In 

addition to the design and development process, which sought input from both clinicians and 

caregivers, we also present the results of a technology probe in which we observed two children 

interact with our virtual environment. This process allowed us to gain additional insight into our 

system’s affordances and usability, while at the same time underscoring the importance of a 

large-scale user study in the future to analyze efficacy. 

4.2 Related Work 

Previous work has addressed conversation skills by focusing on different aspects, such as: Joint 

attention that requires the user to attend to his or her virtual nonverbal behavior to complete an 

interaction [135]; turn-taking or reciprocity in the conversation that occurs through collaborative 

virtual reality systems and with robots [136] [137]; and etiquette practice through a single-user 

virtual environment [138]. 

One project that shares many of our same goals is MACH, My Automated Conversation Coach 

[139]. MACH is a system that provides social skills training through a virtual agent that 
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interviews the user. The virtual agent can read facial expressions and understand speech provided 

by the user through video and voice recognition. It is also able to respond in verbal and 

nonverbal manners. The recorded parameters for MACH include speaking rate, pitch variation, 

head movements, spoken words, loudness, and emphasis and pauses [139]. 

The sequence of events that takes place is simple. The virtual agent asks the user a question, the 

user responds, and then the virtual agent responds in an appropriate way based on the user’s 

response. After the interview has finished, the system provides visual feedback of the scored 

parameters to allow the user to adjust his or her way of communicating. 

It has been demonstrated by MACH [139] that practicing social skills in a safe and controlled 

environment helps users to better understand their social skill level, and they are more aware of 

areas requiring additional improvement. As mentioned earlier, ASD is often associated with 

social skill impairments as well as repetitive behaviors and restricted interests [25] [140]. 

Consequently, users with ASD may have trouble understanding appropriate speaking rate and 

volume [141] [142]. Furthermore, the issues in ASD go well beyond the targeted behaviors in 

MACH to include turn taking, greetings, and other social etiquette. Therefore, in this paper, we 

aim to expand on MACH’s functionalities and hypothesize that users with ASD who engage in 

our unique virtual reality gaming experience can practice and improve their conversational 

understanding. 

We chose a fish store game because the current research suggests that people diagnosed with 

ASD show significantly fewer challenges in social skills and behaviors when accompanied by 

pets, including dogs, hamsters, and cats [143] [144]. Furthermore, researchers have found that 

individuals with ASD show a strong interest in video games [145] and that video games can 
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successfully teach social skills [146] [147]. The assistive technology presented here, Bob’s Fish 

Shop, combines the concept of developing a virtual gaming agent with animals to support social 

interactions. 

4.3 Theory to Practice 

With the abundance of ubiquitous computing systems available comes new opportunities to 

augment social information through sensor data as well as work around sensory experiences that 

are uncomfortable. Sensory processing differences in ASD may impact virtually every sensory 

system such as visual (sight), auditory (sound), vestibular (movement/orientation in space), 

olfactory (smell), proprioceptive (body awareness/pain) or tactile (pressure/touch). These 

differences have been characterized in ASD as an under- or over-sensitivity, also referred to 

hypersensitivity or hyposensitivity [148] [149]. For example, if an individual is hypersensitive to 

the smell of perfume, even the littlest amount may cause the individual to become ill. On the 

other hand, a person who may be hyposensitive to touch needs a tremendous amount of pressure 

or tactile reinforcement as compared to a typical individual. This is the premise we take with 

design and development of our technologies.  

In recent years the availability of affordable, commercial-off-the-shelf VR hardware has also 

provided a catalyst for scalable, VR-based assistive technologies. This hardware includes self-

contained headsets such at the Oculus Rift, HTC Vive, Samsung Gear, and Google Daydream 

Standalone. These headsets can interface with a variety of computing platforms and range in 

price, at the time of writing, from $400-$600 USD. More affordable options such as Google 

Cardboard, Google Daydream Smartphone, and Emerge Utopia range from $15-$99 USD but 

depend on a smartphone to provide the computational processing. Applications for these 
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platforms can be developed using standardized programming technologies such as Unity3D, 

Android SDK, and Swift, which further reduces barrier to entry when adopting these systems for 

assistive purposes. 

Immersive VR offers new opportunities and challenges to directly modify sensory inputs. In 

immersive VR, the input for each of these systems can be removed, reduced, or manipulated to 

support the tolerance of sensory sensations in a therapeutic environment. Here we describe two 

immersive VR systems we built with emerging technologies and how we attuned them to the 

unique needs of people with ASD. 

4.3.1 Bob’s Fish Shop 

Bob’s Fish Shop is an immersive VR experience designed to help children with ASD practice 

typical social interactions and conversational skills. Implemented in Unity3D and designed for 

the Oculus Rift VR headset, the goal of Bob’s Fish Shop is to build daily living skills while 

having children engage in a safe and supportive environment. In addition to conversational skills, 

the game exercises nonverbal communication and joint attention skills as well. 

The premise of the game is simple. When players enter the virtual world, they are presented with 

an empty aquarium in their home. The goal is to incrementally add to the aquarium by adding 

fish, plants, and other accessories. Additionally, the player must tend to their fish, ensuring they 

are fed and well-cared for. Fish and supplies are acquired by visiting Bob’s Fish Shop and 

interacting with Bob, the friendly animated shopkeeper (see Figure 4-1). Starting with a simple 

“Hello,” Bob assists the user by asking them what they need and guiding them throughout the 

entirety of the interaction, giving both verbal and nonverbal cues as needed. The player’s first-

person perspective is used to gain insight into the presence of joint attention.  
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Throughout the game, tasks are laid in a left-to-right orientation to support sequencing of motor 

movements. This strategy promotes spatial awareness and motor planning. The narrator uses a 

wide range in pitch and emphasis when giving instructions to maintain attention and improve 

comprehension. Upon completion of their interaction with Bob, the user is returned to their home 

and rewarded with the items they explored at the fish shop. 

Though the game play of Bob’s Fish Shop is simple, based largely on short interactions 

supported by visual scripts, the underlying architecture of the game requires integration of 

several technologies. In addition to the VR itself, the game utilizes voice recognition, estimates 

joint attention based on the player’s center of focus in the virtual world, and incorporates rule-

based artificial intelligence to guide transitions throughout the game. 

 

Figure 4-1  Bob’s Fish Shop: Screenshot of shop owner greeting the VR user. 

4.3.2 VirtualBlox 

In addition to the availability of consumer-grade and moderately priced VR headsets, the 

development of sensors that allow gesture recognition and visual feedback to be integrated into 
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immersive experiences have expanded the types of interactions users can have within a virtual 

world. VirtualBlox is an immersive VR game built for the Oculus Rift. VirtualBlox is designed 

to exercise fine and gross motor skills, which often children diagnosed with ASD experience. 

The game makes use of the LeapMotion hand-tracking sensor and API to allow the user to 

manipulate objects in the virtual world. In the case of VirtualBlox, the user may select from 

several sorting exercises which prompts them to place or stack blocks in predetermined 

locations. This not only requires gross motor planning on behalf of the user, but also fine motor 

skills to grasp individual blocks and release them in the correct positions, as depicted in Figure 

4-2. 

Visual feedback provides the user with indications of whether they have correctly sorted 

individual blocks, and the user may choose between a variety of timed and untimed exercises. 

Additionally, the appearance of the blocks may be customized through texture-mapping files, 

making it possible to alter the experience to align with the interests of the user. For example, a 

child interested in Pokémon can easily be presented with blocks representing their favorite 

characters.  
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Figure 4-2 Screenshot of VirtualBlox block sorting game. 

4.4 Technology: Bob’s Fish Shop System 

Bob’s Fish Shop is an immersive virtual reality experience designed to help children with ASD 

practice typical social interactions and conversational skills. Implemented in Unity 3D and 

designed for the Oculus Rift VR headset (Figure 4-3), the goal of Bob’s Fish Shop is to develop 

social and conversational etiquette while having children engage in a safe and supportive 

environment. In addition to verbal conversation, the game provides opportunities to practice 

nonverbal communication, such as responding to waving (Figure 4-4), and joint attention skills, 

such as referencing a person or an object of shared interest with the eyes. Video demonstrations 

of the system are available on the web here: https://github.com/mlat/vrpaper. 

https://github.com/mlat/vrpaper
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Figure 4-3 The Oculus Rift headset and microphone used for voice input. 

 

Figure 4-4 Image of Bob making eye contact with user. 
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Though the game play of Bob’s Fish Shop is simple, based largely on short interactions 

supported by text scripts, the underlying architecture of the game requires integration of several 

technologies. In addition to the VR itself, the game utilizes voice recognition to engage the user 

and the virtual shopkeeper, estimates joint attention based on the player’s center of focus in the 

virtual reality environment (VRE), and incorporates rule-based artificial intelligence to guide 

transitions throughout the game. 

4.5 System Development 

We conceptualized the system based on the experiences of the research team, which includes a 

Board-Certified Behavior Analyst (BCBA) with 20 years of clinical experience. Additionally, 

behavior interventionists from a local ASD treatment clinic were consulted in order to design a 

virtual reality scenario that would be appealing to our target audience. This resulted in a simple 

scenario based on the interaction required for a person to successfully interact with the proprietor 

of a pet shop. We then devised system requirements from previous empirical work and from our 

concept in order to build the system. As currently built, the game leverages Maya (drawing 

software), Unity, C# scripting, and an external voice recognition software. 

4.5.1 Scenario 

The user begins in their virtual home and then leaves their virtual home to enter the virtual fish 

shop. Once the user has entered the shop, they examine the contents of the shelves and gain an 

idea of items they would like to purchase. They then engage the shopkeeper, Bob, with their 

gaze, signaling they are ready for a social interaction. Bob waves, then introduces himself, and 

offers his assistance to the customer in the shop, the user. Bob and the user then have a 

conversation regarding which items they would like to purchase in the shop. 
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We chose this use case because this type of conversation happens every day. For example, 

whether one is at a store purchasing items, at a restaurant ordering dinner, or at home telling a 

parent or caretaker what they would like to do the upcoming weekend, the applications of this 

particular social interaction are endless. Having the ability to express one’s needs and desires is a 

skill used every day. 

4.5.2 Implementation 

The VRE comprises five primary software modules: Staging script, vision processing script, 

voice processing script, data archive script, and character animations. A diagram of the software 

is shown in Figure 4-5. 

 

Figure 4-5 Diagram of the software components for Bob’s Fish Shop. 

The staging script component handles each of the possible stages that could be in the current 

social interaction. It is also able to call the visual processing script component and the voice 
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processing script component to receive information from the user based on their vision and voice 

inputs. 

The vision processing script component tracks where the user is looking. This is then 

documented in the form of a text file, so professionals can observe where the user was looking 

(i.e., in the expected place for a given exchange). An example of the output is presented in 

Figure 4-6. 

Within the voice processing script component, the system calls an external application that 

processes the user ’s voice and sends the translated text back to the voice processing script 

component. The external voice-to-text application runs locally as a web service on the same 

physical machine as the other system components and is easily invoked using standard C# 

capabilities. Because the responsiveness of the system is critical for the user experience, no 

additional pre-processing is carried out on the audio received by the user. Instead, we make use 

of an industry-grade microphone to capture audio, which we have found to produce good enough 

results in practice that further audio cleanup is not necessary. Once the process is complete, the 

voice processing component can then parse the text and communicate which stage to transition to 

back to the staging script component. 

The data archive script component documents data that are valuable from the interaction between 

the user and Bob. The information is transferred to this component from the vision processing 

script and the voice processing script. 
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The character animations component, which controls the shopkeeper’s movements and actions 

throughout the scene, uses the trigger from the voice processing script and performs the 

appropriate animations based on the user’s response. 

 

Figure 4-6 Sample of system output. 

4.6 Functionality 

The basic functionalities that the user can do are: Walk into the room, look around the room, and 

communicate through voice to converse with Bob. With the use of the Oculus Rift SDK, we 

integrated Unity with Oculus functionalities. By replacing the main camera in the scene with a 

camera provided by the Oculus SDK, the user can move around the scene as if they were inside 

the virtual reality world. 
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Being able to track eye contact was a priority for this project. Tracking the location of the user’s 

eyes in the scene allows the software to record where the user’s visual attention is during the 

span of the conversation. 

Since a conversation with Bob is the main functionality of this software, we recorded many 

variations of this interaction. In consultation with a BCBA, we created a baseline script, which 

mapped out an example conversation that the user and Bob could have at his store. Then, a few 

other variations of those phrases were made to prevent unnatural repetition during the 

conversation. When all of Bob’s possible lines were created for the baseline example, a 

professional voice artist recorded all of the lines in a studio and a voice engineer cleaned up the 

recordings so we could use each individual line in our Unity project. 

Once the voice recording files were clean and ready to be used in the scene, the digital artist 

animated Bob’s mouth and body expressions to make it seem like he was speaking the words on 

the voice recordings. The eye contact scripts were also applied to Bob. The figures and 

animations were then added into the Unity project so the items in the shop were actual objects in 

the scene. 

After the animations and 3D digital figures were added to the scene and the appropriate scripts 

were attached to trigger those animations, the different conversation stages were added. The 

staging script component in Unity handled the transitions from one part of the conversation to 

another. Based on the user’s responses to Bob’s interactions, the script either transitions out of 

the stage it is in, or it repeats the current stage. 
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During each of these stages, the voice processing script component collects speech from the user 

and processes it to determine what sequence of events should happen throughout the game. 

Within each stage class, an external application is called to pick up the voice of the user as an 

input. Then, using a voice recognition library, the user’s voice is translated into text and sent 

back to the Unity software to be processed. The full statements said by the user are then recorded 

to a text file to be analyzed by parents and professionals using the data archive script component. 

After that text is printed to the file, it is parsed for specific hot words that lead to the transitioning 

of the conversation. Some of these hot words include “food”, “castle”, “red fish”, “blue fish”, 

“yes”, and “no”. Over time, as the user continues to interact with the virtual world, their use of 

specific words is used to probabilistically determine the response received from Bob. This 

provides a simple mechanism for adding variety to the interactions in the system as well as 

encouraging the user to try different approaches in their conversation with Bob. 

While this process is occurring, a timer is keeping track of how long it takes the user to respond 

to Bob. The time is also recorded to the text file. An example of the final format of the output 

looks like Figure 4-6. 

4.7 System Validation 

In order to provide basic validation of our system, we carried out a small technology probe with 

potential users. Our technology probe was inspired by the method founded by Hutchinson and 

colleagues [150], in which we tested our design and received feedback from our users. The user 

study consisted of one exploratory session, conducted in a university research lab. Two children 

participated in the user study, a six-year-old female diagnosed with ASD and a seven-year-old 
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male diagnosed with Attention Deficit Hyperactivity Disorder (ADHD). The children were 

accompanied by their mothers, for supervision as well as to assist in the data collection process. 

4.7.1 Data Collection 

The children were immersed in the VRE for approximately 15 nonconsecutive minutes. During 

the study, each user wore the headset to navigate through Bob’s Fish Shop, and they were able to 

communicate to one another as well as to their mothers during their experience. Throughout the 

duration of the study, data were collected through observation and interview questions. Interview 

questions included: “What do you see?” and “What are you looking at?” 

4.7.2 Analysis 

Once the user study was completed, researchers collected and examined all field notes and 

interview questions using a qualitative approach. Open coding [151] and discussions among the 

researchers were used to discover the emergent themes specific to the system. The main focus 

was to determine the feasibility and acceptability of our system in the ASD community. 

4.8 Results 

The study was a positive experience for the users, and minimal training was required to use the 

VR headset. The users quickly discovered the immersive nature and malleability of the system, 

while also interacting socially in the physical world. 

4.8.1 Immersive 

We specifically designed the VRE to be similar to cartoon animations because we wanted the 

characters and gestures to be familiar to the users. 
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 “Wow, it’s like being in a cartoon!” (s1, child with ASD) 

The primary use of a VR headset is to immerse the user completely in a new virtual world 

separate from our physical world, and it was evident that the user easily remained engaged 

because of this design. The users also expressed their surprise at how interesting and fun Bob’s 

Fish Shop was, and they wanted to continue the session beyond the 15 minutes. Furthermore, our 

results were congruent with other recent studies in that cybersickness was not a concern with the 

Oculus Rift VR headset, and the users reported a pleasant experience [152] [153]. 

4.8.2 Malleable 

An important aspect to VREs is the ability to create whatever type of environment you want. 

Interestingly, the children recognized this feature early into the study. For example, while the 

female child enjoyed the idea of picking out fish, the male child wanted to change the scenario to 

something else. 

 “Could it be a pet store with cats?” (s2, child with ADHD) 

 “Can I draw a dragon in Bob’s Fish Shop?” (s2, child with ADHD) 

This understanding demonstrates how the details of the VRE are trivial. The social interaction is 

the key to this technology supporting social skill development. The details are simply a way to 

engage the user for the entire session. 

4.8.3 Social Reciprocation 

An emergent theme that was not anticipated prior to this study was the social exchange between 

the users outside of the VRE. One key objective to our technology is social skill acquisition 
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through the user’s engagement in Bob’s Fish Shop.  However, we were excited to see that social 

skills were immediately exercised through turn-taking in the physical world as well. 

 “Tell me what you see.” (s2, child with ADHD) 

 “When is it my turn again?” (s1, child with ASD) 

Because the VR headset can be easily taken on and off, the users were able to switch off after 

every few minutes during the session. This also allowed them to communicate their experience 

to each other as well as to their mothers. 

4.9 Implications for Future Practice 

As shown above in Figure 4-6, the three behaviors that are being recorded are: Where the user is 

looking throughout the span of the conversation, how long it takes for the user to respond to Bob, 

and the verbal exchanges between the two. 

More specifically, we designed the system to detect where the child is looking throughout the 

conversation in order to measure attentiveness as well as how easily distracted the child is while 

the interaction is taking place. The system records the length of time (in seconds) it takes for the 

child to respond to Bob during the conversation in order to measure how long the child is paying 

attention. We captured the transcript to determine if the child understood what took place during 

the conversation and how decisive the child was during this spontaneous interaction. 

This information can be reviewed and analyzed by the user, family, and professionals. The 

transcript guides therapists and parents to which areas that child needs more focus. For example, 

if it takes a child six seconds to respond to a question from Bob, then the child needs to work on 
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delivering a quicker response. Similarly, if a child is looking at a red fish but wants to purchase 

fish food, then the child needs help with focused attention. 

Children may also be able to see their own successes and mistakes through the text conversation. 

The user’s progress can be tracked over time to see which areas have improved and which areas 

still need focus. Parents and therapists can review the text with the child and point out more 

appropriate behaviors and/or responses, promoting a positive and informative learning 

environment. 

While our technology probe proved to be incredibly useful as a basic validation of our system’s 

architecture, it is important to emphasize that this is not sufficient to draw any conclusions 

regarding the efficacy of the system in improving conversational skills. This requires a more 

formal user study with a much larger sample size, including users with both neurotypical and 

neurodiverse backgrounds. As such, the primary contribution of this paper is the technical 

development of the system, with the goal of providing a rigorous analysis of outcomes in our 

future work. 

4.10 Conclusions 

VR enables the creation of information-rich environments that are tolerable for people with 

sensory sensitivities. However, the richness of the information must be balanced between the 

attention and energy required to manage it. VR, particularly fully immersive VR, offers an 

intense sensory experience, far beyond that of a traditional screen-based interaction. Neuro-

diverse individuals often struggle with sensory input [154]. Thus, a primary advantage to hosting 

an intervention in VR is the ability to control the sensory load in the system, adapting it to meet 

the sensory needs of the individual.  
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Immersive VR allows for customized interactions, such that individuals can attend classrooms 

with their own individualized input settings or other kinds of experiences without sharing a 

sensory space. The flexibility of controlling the sensory environment opens opportunities to be 

more inclusive. By designing a space that is tailored to individual needs (e.g., ADHD, ASD, 

Sensory Processing Disorder, Post-Traumatic Stress Disorder, etc.), more people can participate 

in virtual face-to-face interactions and other cultural experiences. 

This paper presents a virtual reality environment, Bob’s Fish Shop, which provides opportunities 

for users with neurodiverse backgrounds to develop necessary conversation skills in a safe and 

controlled environment. We effectively demonstrated that our VRE is an acceptable, feasible 

system that engaged our users and promoted social conversation by carrying out a technology 

probe with a small sample of two users. Future studies will explore whether the VR technology 

presented in this paper supports social skill development through a large user study. It would also 

be interesting to expand this VRE to a collaborative multiuser virtual environment, similar to 

those found in recent studies [155] [156].  Finally, we would like to test our hypothesis that users 

with ASD who study their script outputs from this virtual reality gaming experience will notice 

mistakes and improve their conversational understanding. It is clear, now more than ever, that 

the human species is diverse and our needs are different, including our sensory needs. 

Traditionally, our system (professionally, educationally, therapeutically) has been a one size fits 

all model. However, VR allows us to customize a unique experience, considering each 

individual’s needs, abilities, and preferences. 
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 5 Conclusion 

In this dissertation, we explored three areas of psychology: eating disorders, body satisfaction, 

and ASD. To date, there is relatively little, or even no, research on these topics using machine 

learning. I, along with my colleagues, saw a unique opportunity to conduct research on these 

topics using various machine learning algorithms. This dissertation was separated into two 

sections. The first section is comprised of chapters 2 and 3, which focus on using hierarchical 

clustering algorithms for eating disorder and body image datasets. The second part is dedicated 

solely to ASD and assistance through VR. 

Chapter 2 presents a dataset on eating disorder behaviors, specifically individuals with a history 

of AN, which is a very complicated disorder. Due to the variability in diagnosis and symptoms, 

treatment is unique and there are numerous assessment tools available. We used a semi-

supervised k-means clustering technique to explore the EDE-Q, CIA, and AQ scores. We can 

conclude, based on our k=2 model, that the EDE-Q and CIA scores are important discriminators 

of eating disorder behavior. This is particularly useful for practitioners because our results show 

that two different types of assessment tools perform equally well. 

Chapter 3 is an extension of our first study in that body image and satisfaction is directly 

correlated with eating disorder behavior. In other words, if you have lower body satisfaction then 

you will be more likely to develop an eating disorder. We employed a hierarchical clustering 

algorithm to determine four unique clusters in our dataset. Cluster 1 was Surveillance dominant, 

Clusters 2 and 4 were BIQLI dominant, and Cluster 3 was Face Satisfaction and BIQLI 
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dominant. Participants in Cluster 3 had very positive body image. Furthermore, it is possible that 

the individuals in Cluster 1 are the individuals more likely to develop an eating disorder, but 

more research is needed before this conclusion can be made.  

Chapter 4 explores ASD and VR. Specifically, we describe the ways to address sensory 

differences to support neurologically diverse individuals by leveraging advances in VR. ASD 

can impact social, cognitive, and communication skills; VR provides assistance for these diverse 

sensory perceptual abilities. Additionally, we can create an opportunity to improve the 

interactions people have with technology and the world. We introduce virtual environments that 

support variations in sensory processing. 

Chapter 4 also describes a virtual reality environment, Bob's Fish Shop, which provides a VR 

system particularly for users diagnosed with ASD. Users can practice social interactions in a safe 

and controlled environment. We present a case study which suggests such an environment can 

provide the opportunity for users to build the skills necessary to carry out a conversation without 

the fear of negative social consequences present in the physical world. Through the repetition 

and analysis of these virtual interactions, users can improve social and conversational 

understanding. 

Psychology is a new field and it is only becoming more expansive as time goes on. With the 

assistance of machine learning algorithms, we will be able to understand the human experience 

like never before. The more we understand the human experience and brain functionalities, the 

better we can build and develop computers. Computers and machine learning algorithms are, 

after all, modeled after human intelligence.  
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Assistive technology allows people with disabilities to become more able to complete tasks that 

would be difficult to do without the assistive technology. Individuals with ASD exhibit deficits 

in many areas of life. VR allows people with ASD to accomplish a lifestyle that would be 

challenging without the assistive technology, both as a child in a classroom and as an adult in 

society. 

In conclusion, the study of psychological topics with machine learning is imperative for all 

disciplines to advance in the future. Studying these topics through the lens of machine learning 

offers us a new perspective. Instead of using basic statistical models to explain the data, we 

utilize machine learning to dive deeper into the underlying patterns and relationships. In 

addition, machine learning algorithms allow researchers to predict future behavior and the 

models become more accurate over time. 
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