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Abstract— Primary Productivity (PP) has been recently 

investigated using remote sensing based models over quite limited 

geographical areas of the Red Sea. This work sheds light on how 

phytoplankton and primary production would react to the effects 

of global warming in the extreme environment of the Red Sea and, 

hence, illuminates how similar regions may behave in the context 

of climate variability. Our study focuses on using satellite 

observations to conduct an intercomparison of three net primary 

production (NPP) models—the VGPM (Vertically Generalized 

Production Model), the Eppley-VGPM and the CbPM (Carbon-

based Production Model) – produced over the Red Sea domain for 

the 1998–2018 time period. A detailed investigation is conducted 

using multilinear regression analysis, multivariate visualization 

and moving averages correlative analysis to uncover the models’ 

responses to various climate factors. Here we use the models’ 8-

day composite and monthly averages compared with satellite-

based variables including chlorophyll-a (Chla), mixed layer depth 

(MLD) and sea surface temperature (SST). Seasonal anomalies of 

NPP are analyzed against different climate indices, namely, the 

North Pacific Gyre Oscillation (NPGO), the Multivariate ENSO 

Index (MEI), the Pacific Decadal Oscillation (PDO), the North 

Atlantic Oscillation (NAO) and the Dipole Mode Index (DMI). In 

our study, only the CbPM showed significant correlations with 

NPGO, MEI and PDO, with disagreements relative to the other 

two NPP models. This can be attributed to the models’ connection 

to oceanographic and atmospheric parameters, as well as the 
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I. INTRODUCTION 

arine primary productivity is the rate at which 

photosynthetic organisms (mainly phytoplankton) 

produce organic compounds in the marine ecosystem. The net 

primary productivity (NPP) is considered as the main indicator 

of the biogeochemical cycle since nearly half of the global 

photosynthetically fixed carbon is derived from ocean 

phytoplankton [1], [2]. Therefore, accurate estimation of NPP 

is of great interest in the assessment and studies of fisheries 

source management, marine ecology systems and climate 

processes [3]. However, traditional ship-based in situ 

measurements are limited in their ability to capture the large-

scale spatial and temporal dynamics of NPP, and are time 

consuming and expensive [4], [5]. Fortunately, satellite-borne 

sensors can address these shortcomings through their routine 

observations of the dynamics of the ocean surface, providing 

fundamental means for estimating oceanic NPP on large 

spatiotemporal scales [6]–[9]. Such observations help in 
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accurately assessing the PP, which quantifies the amount of 

fixed carbon from photosynthesis, processes [10]. Many 

satellite-based NPP models have been proposed in recent years 

and are categorized by type as i) chlorophyll-based, ii) carbon-

based and iii) phytoplankton absorption-based models [11] that 

will be further discussed in section II.B; or according to their 

complexities as i) wavelength resolved (WR), ii) depth resolved 

(DR), iii) wavelength integrated (WI), iv) time integrated (TI) 

and v) depth integrated (DI) [12]–[22]. These models have 

undergone extensive validation and accuracy assessment, 

through campaigns such as the Primary Productivity Algorithm 

Round Robin (PPARR), resulting in usage and conversion of 

remotely sensed environmental variables into PP [4], [15], 

[23]–[26]. Consequently it was found that the NPP data 

estimated from satellite based methods failed to show the 

seasonal variabilities and temporal trends in selected tropical 

regions (e.g., the tropical Pacific) [23], and underestimated the 

total PP [26]; moreover complex NPP models did not improve 

NPP estimates relative to simpler models [15].  

Compared to other tropical regions, fewer studies exist that 

estimate PP for the Red Sea, and those that exist cover limited 

areas [27]. This is partly due to scarcity of oceanographic data 

because of the few surveys conducted in the waters of the Red 

Sea, although its marine resources are shared by eight countries 

(Saudi Arabia, Egypt, Sudan, Eritrea, Yemen, Israel, Jordan and 

Djibouti, in order of area of territorial waters). The extreme 

paucity of in situ data highlights the need for better estimates of 

PP in the Red Sea environment. Previous work from the King 

Fahd University of Petroleum and Minerals (KFUPM) 

undertook several multidisciplinary cruises in the Red Sea 

measuring physical and chemical parameters that could impact 

the PP in Saudi Arabian waters [27]–[31]. 

The Red Sea is a narrow, marginal oceanic basin in the 

northwest Indian Ocean. This basin extends from the Straits of 

Bab al Mandeb at 12.5°N in the south and branches off to 30°N 

in the Gulf of Aqaba (Eilat) to the northeast and the Gulf of 

Suez to the northwest. The Red Sea is 2250 km in length and 

355 km in maximum width [32], [33]. Its seawater volume is 

approximately 233,000 km3, occupying an area of 4.51×105 

km2 with a maximum depth of 3040 m and an average depth of 

490 m [27]. The Red Sea has the highest salinity of any major 

tropical oceanic basin due to its lack of river inflow, low 

precipitation rate (<100 mm/year) [34], [35] and high 

evaporation rate (>210 cm/year) [36]. Because of its high 

salinity and temperature, the Red Sea becomes a natural 

laboratory to examine the responses of phytoplankton and coral 

reefs to the impacts of climate change [37]–[40]. The Red Sea 

can be conveniently divided into four major geographic regions 

[39], [41]. From north to south these are designated the 

Northern Red Sea (NRS) (28°N to 24°N), the North Central Red 

Sea (NCRS) (24°N to 20°N), the South Central Red Sea 

(SCRS) (20°N to 17°N), and the Southern Red Sea (SRS) (17°N 

to 13°N) (Fig. 1)  

The Red Sea is characterized by meridional circulation, 

which involves the southward flow of dense waters from the 

northern basin along the basin bottom to the Gulf of Aden (GA), 

as well as compensatory flow from GA into the Red Sea, which 

includes the movement of subsurface Gulf of Aden 

Intermediate Water (GAIW) for part of the year (summer-

autumn) and surface waters for the rest (winter-spring) [32]. 

Traditionally, the Red Sea is defined as an oligotrophic water 

body with surface chlorophyll-a (Chla) <2.6 mg/m3 with an 

increasing north-south gradient [36], [42]. However, recent 

studies showed the Red Sea’s biomass and PP are significantly 

influenced by eddy activities [43]. These eddies bring nutrient 

rich subsurface GAIW to the surface, stimulating notable 

phytoplankton blooms. In addition, the phytoplankton diversity 

in the Red Sea is quite high with at least 463 identified 

phytoplankton species [27]. Therefore, the notion of low levels 

of PP in the oligotrophic waters of the Red Sea needs to be 

reconsidered. 

For example, over six million tons of dust deposit into the 

Red Sea every year [27]. Summer dust storms are common 

along both coastlines, carrying phytoplankton-needed nutrients 

to the oligotrophic waters in the NRS and NCRS. However, 

frequent dust storms also block satellite observations of large 

areas of the SCRS and SRS [39], [41], resulting in limited 

availability of ocean color data for NPP modelling, especially 

from late boreal spring to early fall. Additionally, large and 

unevenly distributed dust has an effect on the energy balance of 

the Red Sea. This asymmetric effect may exert a significant 

influence on the regional atmospheric and oceanic circulations 

[44] and may impact the PP. 

In this study we evaluated the performance of three different 

global NPP models in the Red Sea region namely, the Vertically 

Generalized Production Model (VGPM), the Eppley-VGPM 

(abbr. as Eppley) and the Carbon-based Productivity Model 

(CbPM) [13], [22], [45], to understand the PP as well as PP 

regulating factors and trends. Although having in-situ 

measurements for quantifying the models’ skill is ultimately 

desired. However, model inter-comparison still allows us to 

identify either the environmental conditions or the different 

satellite derived parameters contributing to the models’ 

different results and divergence. 

II. BACKGROUND 

A. Study region  

In this study, we address the NPP estimation over different 

regions of the Red Sea. For each region, 16 sample points were 

used to collect different parameters, represented by identical 

colors (red: NRS, green: NCRS, blue: SCRS, olive: SRS) (Fig. 

1). The performance of ocean color NPP models in deeper 

waters (>250 m) was significantly better, because these models 

were more challenged in coastal Case-2 waters than open Case-

1 waters [20]. The influence of local-scale variability can be 

minimized by selecting data over the Red Sea and omitting 

coastal Case-2 waters where suspended inorganic particle loads 

can be particularly high [13]. Therefore, the samples were 

selected based on their location and water column depths (> 600 

m), assuming these areas represent Case-1 waters. 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK 

HERE TO EDIT) < 

 

 

3 

B. NPP Models  

As noted previously, there are three different types of NPP 

models that will be discussed here: i) chlorophyll-based, ii) 

carbon-based and iii) phytoplankton absorption-based.  

 

1) Chlorophyll-based Model 

The generalized chlorophyll-based NPP model can be 

written as:  

𝑁𝑃𝑃 = 𝜑 · 𝑐ℎ𝑙𝑎 · 𝐸 (1) 

𝜑 = 𝜙 · 𝑎𝑝ℎ
∗  (2) 

with  𝑁𝑃𝑃  and 𝜑  denoting PP and chlorophyll-normalized 

photosynthesis rate, which is in turn represented in equation (2) 

by the product of chlorophyll-specific absorption coefficients 

(𝑎𝑝ℎ
∗ ) and the efficiency factor for the energy conversion of each 

absorbed photon to the production of organic carbon (𝜙); 𝑐ℎ𝑙𝑎 

is the chlorophyll concentration and 𝐸 is the absorbed photon 

energy. Since light changes spectrally with depth after 

penetrating the sea surface, it is notable that these two factors, 

depth and wavelength, must be accounted for while 

estimating 𝐸. Therefore, a common wavelength resolved (WR) 

model addressing this issue is implemented in equation (1) and 

is represented here as:  

 

𝑁𝑃𝑃(𝑧) = ∫ 𝜑(𝑧) · 𝑐ℎ𝑙𝑎(𝑧) · 𝐸(𝜆, 𝑧) 𝑑𝜆 (3) 

𝐸(𝜆, 𝑧) = 𝐸(𝜆, 0)𝑒−𝐾(𝜆)·𝑧 (4) 

 

with 𝑁𝑃𝑃(𝑧), 𝜑(𝑧), 𝑐ℎ𝑙𝑎(𝑧) and 𝐸(𝜆, 𝑧) representing the PP, 

chlorophyll-normalized photosynthesis rate, chlorophyll 

concentration as a function of depth and absorbed photon 

energy at water depth 𝑧 and wavelength 𝜆. 𝐸(𝜆, 0) represents 

the surface spectral light energy with its spectral diffuse 

attenuation coefficient 𝐾(𝜆), which is also calculated from 𝑐ℎ𝑙 
for Case-1 waters. The photosynthesis of the whole water 

column (aka NPP) can then be derived from the integration of 

𝑁𝑃𝑃(𝑧) over depth.  

The VGPM [45] is a chlorophyll-based model whose 

photosynthesis rate is expressed as a function of water depth 

and photosynthetically active radiation (PAR). The VGPM 

estimates water column integrated productivity NPP as:  

 

𝑁𝑃𝑃 = 𝑐ℎ𝑙𝑎 · 𝑃𝑜𝑝𝑡
𝐵 · ℎ𝑃𝐴𝑅 · 𝑓(𝐸)  (5) 

𝑓(𝐸) =  
𝑐1·PAR

PAR+𝑐2
· 𝑧𝑒𝑢 =

0.66125·PAR

PAR+4.1
· 𝑧𝑒𝑢 (6) 

 

with the chlorophyll concentration (𝑐ℎ𝑙𝑎), the maximum daily 

net PP within a given water column (𝑃𝑜𝑝𝑡
𝐵 ) (in mg carbon fixed 

per mg chlorophyll per hour), daily hours of light (ℎ𝑃𝐴𝑅) and a 

volume function 𝑓(𝐸) that relies on the empirical parameters 

(𝑐1= 0.66125, 𝑐2= 4.1) to express the vertical decrease in PAR 

and the euphotic depth (𝑧𝑒𝑢) (practically defined as the depth 

where the solar radiation is 1% of its surface value).  

 

The 𝑃𝑜𝑝𝑡
𝐵  is also derived by an empirically parametrized sea 

surface temperature (SST)-dependent polynomial equation: 

 

𝑃𝑜𝑝𝑡
𝐵 = −3.27 · 10−8𝑆𝑆𝑇7 + 3.4132 · 10−6𝑆𝑆𝑇6 − 1.348 ·

10−4𝑆𝑆𝑇5 + 2.462 · 10−3𝑆𝑆𝑇4 − 0.0205SS𝑇3 +
0.0617SS𝑇2 + 0.2749SS𝑇 + 1.2956                                        (7) 

 

The Eppley-VGPM is a modified version of the VGPM, which 

only replaces the 7th degree polynomial expression of 𝑃𝑜𝑝𝑡
𝐵  with 

the exponential function presented in [16], [46] given as: 

 

𝑃𝑜𝑝𝑡
𝐵 = 1.54 · 100.0275·SST−0.07 (8) 

 

2) Carbon-based Model 

Historically, the chlorophyll-based model has been used as 

the only method to estimate the algal biomass. However, the 

Chla retrieval does not include the physiological adjustments of 

phytoplankton to the changing environments. The ratio between 

Chla and phytoplankton biomass is not stable but changing 

seasonally, through the variability of intracellular chlorophyll 

concentration in response to the environmental factors such as 

light acclimation and nutrient stress (aka. photoacclimation).  

The estimation of phytoplankton biomass recently became 

possible because phytoplankton carbon biomass could be 

estimated from the total particulate backscattering coefficient, 

owing to their covariance with light scattering properties [47]–

[53], as well as stable relationship between phytoplankton 

carbon biomass ( 𝐶 ) and total particulate organic carbon. 

Moreover, the phytoplankton growth rates are now estimated 

from Chla to carbon ratios because the particle backscattering 

coefficient (𝑏𝑏𝑝), the absorption of phytoplankton pigments, 

and the absorption of colored dissolved organic carbon can be 

 
Fig. 1.  The samples collected in the Red Sea, represented by colors (red: 

NRS, green: NCRS, blue: SCRS, olive: SRS), where the water depth > 100 

meters. 
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obtained by applying spectral matching algorithms 

simultaneously to satellite data [54]–[56]. After applying the 

algorithms, the CbPM model is developed [13], [22] in which 

the NPP is presented as: 

 

𝑁𝑃𝑃 = 𝐶 · 𝜇 · 𝑓(𝐸) (9) 

 

with phytoplankton carbon (𝐶 ) derived empirically from its 

relationship to the measured 𝑏𝑏𝑝: 

 

𝐶 = 13000 · (𝑏𝑏𝑝 − 0.00035) (10) 

 

where the value 13000 (in mgC/m2) is the scaling factor 

introduced for the satellite 𝑐ℎ𝑙𝑎:𝐶 ratios in consistent with the 

laboratory experiments, and the globally constant value 

0.00035 (in m-1) is the particle backscattering coefficient of 

non-algal particles (𝑏𝑏𝑝NAP) [13]. In practice, when 𝑏𝑏𝑝 <

0.00035, the 𝐶 is set to 0.13. The phytoplankton growth rate 

(𝜇) is calculated based on the 𝑐ℎ𝑙𝑎: 𝐶 ratios: 

 

𝜇 = 𝜇𝑚𝑎𝑥 · 𝑓(𝑁, 𝑇) · 𝑔(𝐼𝑔) (11) 

𝑔(𝐼𝑔) = 1 − 𝑒−5·𝑃𝐴𝑅𝑀𝐿  (12) 

 

where 𝜇𝑚𝑎𝑥  is the maximum growth rate; 𝑓(𝑁, 𝑇) refers to the 

nutrient and temperature stress and 𝑔(𝐼𝑔) describes reductions 

in growth rate with decreasing light at the mixed layer light 

level ( 𝑃𝐴𝑅𝑀𝐿 ). Furthermore, the 𝑓(𝑁, 𝑇)  is expressed 

empirically as parametrized 𝑐ℎ𝑙 : 𝐶  ratios for the satellite 

observation  ( 𝐶ℎ𝑙𝑎: 𝐶𝑠𝑎𝑡)  and nutrient replete conditions 

(𝐶ℎ𝑙𝑎: 𝐶𝑁,𝑇𝑚𝑎𝑥
), which can also be derived from 𝑃𝐴𝑅𝑀𝐿[8] as 

shown in (13) and later modified by introducing ε = 0.0003 as 

the 𝑐ℎ𝑙𝑎 :  𝐶  ratio when growth rate 𝜇 = 0  [22] as given in 

equation (14):  

 

𝑓(𝑁, 𝑇) =
𝐶ℎ𝑙𝑎:𝐶𝑠𝑎𝑡

𝐶ℎ𝑙𝑎:𝐶𝑁,𝑇𝑚𝑎𝑥

=  
𝐶ℎ𝑙𝑎:𝐶𝑠𝑎𝑡

0.022+0.023·𝑒−3·𝑃𝐴𝑅𝑀𝐿
 (13) 

𝑓(𝑁, 𝑇) =
𝐶ℎ𝑙𝑎:𝐶𝑠𝑎𝑡−ε

𝐶ℎ𝑙𝑎:𝐶𝑁,𝑇𝑚𝑎𝑥−ε
=  

𝐶ℎ𝑙𝑎:𝐶𝑠𝑎𝑡−0.0003

0.022+0.023·𝑒−3·𝑃𝐴𝑅𝑀𝐿−0.0003
 (14) 

 

Finally𝑓(𝐸), the volume function, describes the light change 

through the water column as: 

 

𝑓(𝐸) = 𝐼0 · 𝑒
−𝑘490·MLD

2  (15) 

 

where 𝐼0  is the cloud-corrected PAR just below the water 

surface, 𝑘490 is the light attenuation coefficient at 490 nm and 

MLD is the mixed layer depth. 

 

3) Phytoplankton absorption-based Model 

Estimation of chlorophyll concentration in this model is 

based on the remote sensing reflectance (𝑅𝑟𝑠) just above the 

surface. 𝑅𝑟𝑠 can be directly derived based on the ratio between 

water leaving radiance (Lw) and downwelling irradiance just 

above the surface (Ed+). Moreover, the 𝑅𝑟𝑠  is usually obtained 

from the total absorption coefficient (a) and the backscattering 

coefficient (𝑏𝑏). Two main things to be considered to accurately 

derive spatially and temporally varying Chla from 𝑅𝑟𝑠 : 1) 

Remove the influence of detritus/CDOM and particles and 2) 

Take into account the spatial/temporal variation of 𝑎𝑝ℎ
∗ .  

However, the change of 𝑏𝑏 is relatively weaker than a in the 

water [10], therefore the 𝑅𝑟𝑠 is largely dependent on a, hence, 

allowing chlorophyll concentration to be retrieved from 𝑎𝑝ℎ . 

Since from (2) 𝑎𝑝ℎ
∗ is the ratio of the phytoplankton absorption 

coefficient (𝑎𝑝ℎ ) and 𝑐ℎ𝑙𝑎, combining equations (2) and (3) 

results in a modified and more generalized model presented as: 

 

𝑁𝑃𝑃(𝑧) = ∫ 𝜙(𝑧) · 𝑎𝑝ℎ(𝜆, 𝑧) · 𝐸(𝜆, 𝑧) 𝑑𝜆 (16) 

 

The new model expressed by (16) eliminates the need for 𝑎𝑝ℎ
∗  

estimation, used previously in (3), hence avoiding a major 

source of uncertainty in the NPP calculation. On the other hand, 

the new model makes significant use of the 𝑎𝑝ℎ value that is 

directly derived from 𝑅𝑟𝑠 , a methodology that has been well 

developed and evaluated [57]–[65]. 

 Here we selected three, chlorophyll and carbon based, 

models and performed inter-comparisons to investigate the 

seasonal to decadal trends of the NPP in the Red Sea region. 

The used models are VGPM, Eppley, and CbPM that share the 

same temporal resolution of 8-day & monthly (averaged from 

daily products) and spatial resolutions of 1/12° (9 km). To 

account for the longest possible temporal variability over the 

Red Sea domain, data derived from SeaWiFS, MODIS and 

VIIRS sensors, spanning the periods 1998–2002, 2003-2018, 

and 2012–2018, respectively, were used. All three NPP model 

estimates are available via the website provided by Oregon 

State University (OSU: http://www.science.oregon-

state.edu/ocean.productivity/). The phytoplankton absorption-

based model is not used here as, to the best of our knowledge, 

there are no standard NPP products of 𝑎𝑝ℎ from satellite ocean-

color sensors yet.  

III. DATA AND METHODS 

A. Model and Satellite Data 

Different NPP related parameters are obtained from the 

European Space Agency's GlobColour merged products using 

SeaWiFS, MERIS, MODIS Aqua, VIIRS and OLCI-A sensors 

(http://hermes.acri.fr/index.php?class=archive) to explore 

relationships using multilinear regression analysis. 

These merged products are generated by different averaging 

techniques namely AV: simple averaging, AVW: weighted 

averaging, AN: analytical from other L3 products or by the 

Garver-Siegel-Maritorena (GSM) model method that uses the 

normalized reflectances at the original sensor wavelengths, 

without inter-calibration [66]. The performance of these 

weighting methods depends mainly on the surrounding 

environmental conditions representing water types, 

geographical region and glint/aerosol conditions. Hence, 

different parameters are investigated here for possible NPP 

http://www.science.oregon-state.edu/ocean.productivity/
http://www.science.oregon-state.edu/ocean.productivity/
http://hermes.acri.fr/index.php?class=archive
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interplay including: 1) Angström exponents at 550 nm (over 

land & water) (A550) from MODIS [67] and MERIS [68] 

datasets; 2) particulate inorganic carbon (PIC) (mol/m3) 

generated from the original National Aeronautics and Space 

Administration (NASA) algorithms (2-band look-up table and 

3-band algorithm at high concentrations) [69], [70]; 3) 

particulate organic carbon (POC) (mol/m3) generated from the 

original NASA algorithm (correlation of band ratios) [71]; 4) 

aerosol optical thicknesses at 550 nm (T550) (over land & 

water) calculated from A550 [72]; 5) PAR (einstein/m2/day) 

[73]  indicating the photon flux density from 400 to 700 nm for 

photosynthesis; 6) particulate backscattering coefficient (𝑏𝑏𝑝) 

(m-1) at 443 nm generated from the GSM merging algorithm 

[66]; 7) the diffuse attenuation coefficient (m-1) (KD490) of the 

downwelling irradiance at 490 nm as an indicator of the 

turbidity of the water column, which is computed from 

corresponding merged chlorophyll products [74]; 8) MLD (m) 

provided by Global HYbrid Coordinate Ocean Model 

(HYCOM) [75] and downloaded from OSU website. 

In order to assess the possible role and impact of dust on the 

NPP over the Red Sea, the monthly Modern-Era Retrospective 

Analysis for Research and Applications Version 2 (MERRA-2) 

atmospheric reanalysis data, including Dust Extinction AOT at 

550 nm, Wind speed, and Angström Exponent are used. SST 

and Chla (mg/m3) were obtained from NASA's Ocean Color 

Web site (https://oceancolor.gsfc.nasa.gov/). The MERRA-2 

data extend from January 1980 to present and are produced by 

NASA based on historical analysis using the Goddard Earth 

Observing System Model, Version 5 (GEOS-5) with its 

Atmospheric Data Assimilation System (ADAS), version 

5.12.4 [76], [77].  

The phytoplankton absorption coefficient 𝑎𝑝ℎ(λ) averaged 

at wavelengths λs, which determines the amount of radiant 

energy captured by the phytoplankton community has been 

suggested to be more related to PP than Chla [78]–[80]. In this 

study, we spectrally averaged the 𝑎𝑝ℎ (APH), over the available 

wavelengths ranging from 412 nm to 670 nm, derived from the 

Ocean Color CCI (OC-CCI) dataset (https://www.oceancolour 

.org/) [81] using the Quasi-Analytical Algorithm (QAA) [61], 

and then compared the results with the NPP derived from the 

three previously mentioned models. Table I lists all the datasets 

used in this work.  

B. Comparison with Climate Indices 

It has been noted that NPP can be influenced by varying 

climatic patterns [26], [82], [83] in different geographical areas 

other than the Red Sea. We analyzed different climate indices 

for their impact on the NPP products derived from the 

previously mentioned models. Table II summarizes and 

describes the used climate parameters including: the North 

Atlantic Oscillation (NAO), the North Pacific Gyre Oscillation 

(NPGO), the Multivariate ENSO Index (MEI), the Pacific 

Decadal Oscillation (PDO) and the Dipole Mode Index (DMI). 

To determine the possible impact of these climate indices and 

their relationship with NPP, we applied correlation analysis to 

the 12-month moving average of NPP anomalies in the four 

regions of the Red Sea domain against the different indices, as 

well as the 12-month moving average, as shown in Table II.  

The NPP monthly anomaly is denoted as (𝑎𝑚) [26]:  

𝑎𝑚 = 𝑁𝑃𝑃𝑚 − 𝑁𝑃𝑃𝑡                                                          (17) 

TABLE I 
SUMMARY OF DATA IN THE STUDY 

Name 
Temporal  

Resolution 

Spatial 

Resolution 

Data  

Source 

VGPM 

Eppley 

CbPM 

8-day 

Monthly 
9 km 

OSU  
 

A550 

PIC 

POC 

T550 

PAR 

𝒃𝒃𝒑  

KD490 

8-day 4 km GlobColour 

MLD 8-day 9 km OSU 

APH412 8-day 4 km OC-CCI 

Dust AOD 

AE 

Windspeed 

Monthly 0.5°x0.625° MERRA-2 

SST 

Chla 

8-day 

Monthly 
4 km NASA 

 

TABLE II 

SUMMARY OF CLIMATE INDICES  
Abbreviation Name Definition Data Source 

NAO 
North Atlantic 

Oscillation 

The NAO measures a climate pattern of North Atlantic Ocean 

fluctuations by the difference of atmospheric pressure at sea level 

(SLP) between the Icelandic Low and the Azores High. 

http://www.cpc.ncep.noaa.gov/prod
ucts/precip/CWlink/pna/nao.shtml  

NPGO 
North Pacific Gyre 

Oscillation 

NPGO is a climate pattern that presents as the 2nd dominant mode of 
Empirical Orthogonal Function of sea surface height variability (2nd 

EOF SSH) in the Northeast Pacific. 

http://www.o3d.org/npgo/  

MEI 

Multivariate El 

Niño/Southern 

Oscillation (ENSO)  

The MEI is the bi-monthly time series of the leading combined EOF of 

five different variables, namely, SLP, SST, surface wind of combined 

zonal and meridional components, and outgoing longwave radiation 
(OLR), over the tropical Pacific basin (30°S-30°N and 100°E-70°W). 

http://www.cdc.noaa.gov/people/kl

aus.wolter/MEI  

PDO 
Pacific Decadal 

Oscillation 

The PDO is the leading EOF of mean SST anomalies during November 

through March for the Pacific Ocean to the north of 20°N latitude. 
http://jisao.washington.edu/pdo  

DMI Dipole Mode Index 

DMI represents the intensity of the Indian Ocean Dipole by anomalous 

SST gradient between the western equatorial Indian Ocean (50°E-70°E 
and 10°S-10°N) and the south eastern equatorial Indian Ocean (90°E-

110°E and 10°S-0°N). 

https://stateoftheocean.osmc.noaa.g
ov/sur/ind/dmi.php  

 

https://en.wikipedia.org/wiki/Icelandic_Low
https://en.wikipedia.org/wiki/Azores_High
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
http://www.o3d.org/npgo/
http://www.cdc.noaa.gov/people/klaus.wolter/MEI
http://www.cdc.noaa.gov/people/klaus.wolter/MEI
http://jisao.washington.edu/pdo
https://stateoftheocean.osmc.noaa.gov/sur/ind/dmi.php
https://stateoftheocean.osmc.noaa.gov/sur/ind/dmi.php
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Fig. 2.  The flowchart of this study.  

 

 
Fig. 3.  The P-values of the variables (A550, MLD, T550, PAR, 𝑏𝑏𝑝, KD490, SST and Chla) and the responding NPP model values, calculated from the 

multilinear regression model in each subregion (NRS, NCRS, SCRS and SRS) from both MODIS-Aqua (MODISA) and VIIRS sensors. 
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with 𝑁𝑃𝑃𝑚  representing the NPP data during month m and 

𝑁𝑃𝑃𝑡 the monthly average over the entire time series. The 12‐

month moving average for each 𝑎𝑚 was calculated by taking 

the average value from 𝑎𝑚  to 𝑎𝑚+11 , then the monthly 

anomalies were scaled by the standard deviation of the values 

for that month (𝜎𝑚) to obtain the 𝑍𝑠𝑐𝑜𝑟𝑒: 

 

𝑍𝑠𝑐𝑜𝑟𝑒 =
𝑎𝑚

𝜎𝑚
 = 

𝑁𝑃𝑃𝑚− 𝑁𝑃𝑃𝑡  

𝜎𝑚
 (18) 

C. Correlative maps between Chla and NPP products 

For finding the relationship between Chla and NPP for each 

model, we developed correlation maps that show the standard 

correlation using the Pearson correlation coefficient (𝑟) in the 

range from −1 (anti-correlation) to +1 (perfect correlation), 

between these two monthly time series x and y, with N elements 

as: 

𝑟 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑁

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑁
𝑖=1 √∑ (𝑦𝑖−𝑦̅)2𝑁

𝑖=1

=
Cov(𝑥,𝑦)

𝜎𝑥𝜎𝑦
 (19) 

with Cov being the covariance function, 𝑥̅ and 𝑦̅ the average 

and 𝜎𝑥  and 𝜎𝑦  the standard deviations for x and y, respectively. 

The workflow of this study, with the table and figures presented 

in the following section is illustrated in the Fig. 2. 

IV.  RESULTS 

A. Relationship between NPP and multiple parameters 

Statistical multilinear regression is applied to investigate the 

relationships between a set of variables (A550, MLD, T550, 

PAR, 𝑏𝑏𝑝 , KD490, SST and Chla) and the responding NPP 

model values in each region for both MODIS-Aqua (MODISA)   

and VIIRS sensors. These relationships are presented by P-

values of each variable in the four subregions of Red Sea (Fig.3). 

Figure 3 only shows the statistically insignificant variables 

P-values bigger than 0.05) for each dataset. The larger 

(insignificant) P-value suggests that changes in the variables are 

not associated with changes in the NPP values. Both A550 and 

T550 are the mostly appeared variables while SST does not 

appear in any of the subregions. However, there are also some 

insignificant variables such as Chla and PAR (CbPM NPP), 𝑏𝑏𝑝  

and MLD (Eppley and VGPM NPP), as well as KD490 (CbPM, 

Eppley and VGPM NPP) particularly in the SCRS and SRS. 

Additionally, the Fig. 4 presents the adjusted coefficient of 

determination (R2) for the multilinear regression model to show 

the proportion of the variance in the NPP dataset that is 

predictable from the variables. This figure shows that: 1) both 

VGPM and Eppley NPP products are notably related to the 

variables than that of CbPM, where the variables can explain 

most of the variance in the VGPM-VIIRS dataset (R2 > 0.8) but 

fail to demonstrate that of CbPM-MODISA dataset (R2 < 0.2); 

and 2) the NPP values in SCRS are generally less related to the 

variables compared to other regions of the Red Sea.   

According the equations in section III and results from Figs. 

3&4, the scatterplots to show the relationships between NPP 

products and selected variables ( 𝑏𝑏𝑝 , PAR, SST, MLD), 

including the spectral averaged 𝑎𝑝ℎ  (APH), are illustrated in 

Fig.5. The concentration of Chla is set by color levels. The 

increasing gradient in NPP from north to the south of Red Sea 

is generally consistent in all the three NPP models. However, 

the CbPM NPP has a lower median value in the SCRS than in 

the NCRS and NRS. Unreasonable low values (<100) also 

appear in the CbPM NPP products. In Fig. 5a, a wider 𝑏𝑏𝑝  

value range (0-0.004 m-1) exists in SRS than the other regions 

(0-0.002) for both VGPM and Eppley products and the high 

values (𝑏𝑏𝑝  > 0.003 m-1) correspond to greater Chla and NPP 

values, while such a relationship does not exist in CbPM 

products. In general, the NRS has greater PAR values than the 

southern Red Sea (Fig. 5b). In the SCRS and SRS, high VGPM 

and Eppley NPP values are usually observed at the PAR range 

40-45 einstein/m2/day, as well as 55-60 einstein/m2/day but 

with many missing Chla values. Similar to 𝑏𝑏𝑝, PAR has no 

linear relationship with CbPM products in all regions. In Fig. 

5c, median values of SST are higher in the NRS than the SRS. 

 The VGPM product shows an apparent negative relationship 

with SST in the NRS, NCRS, and SCRS. The Eppley product 

shows a positive relationship in the SRS due to the settings of 

equation (7). Certain high NPP values are observed in the SCRS 

within SST ranging from 25 to 28 degrees, implying the impact 

of eddy activities. A positive relationship is found between 

MLD and VGPM NPP, particularly in regions with low Chla 

values (purple and blue dots in Fig. 5d). However, some high 

Chla and NPP values co-occur with the lowest MLD (< 20 m) 

for both VGPM and Eppley products in the SCRS. The median 

value of MLD in the SRS is much lower (~25 m) than the three 

other regions (~35 m). There is an increasing gradient of APH 

median value along NRS (< 0.01 m-1) to SRS (> 0.03 m-1) (Fig. 

5e). The positive relationship with APH and VGPM and Eppley 

NPP is also noted, especially in the SCRS and SRS, but not in 

the CbPM product.  

B. Comparison between NPP products between sensors 

The Red Sea was observed by both MODIS Aqua and VIIRS 

sensors during the year 2012 till 2018, which made it plausible 

 
Fig. 4.  The relationship between the combination of the values of variables 

(A550, MLD, T550, PAR, 𝑏𝑏𝑝, KD490, SST and Chla) and the responding 

NPP model values, which is represented by the R2 values of multilinear 

regression model in each subregion (NRS, NCRS, SCRS and SRS)  from 

both MODIS-Aqua (MODISA) and VIIRS sensors. 
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for their 8-days Chla and the NPP products to be near identical. 
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Correlation maps between multiple MODIS and VIIRS 
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products, including Chla and NPP models (CbPM, Eppley and 

VGPM) during the same period are presented in Fig. 6.  

As shown in Fig. 6a, the Chla products from both MODIS 

and VIIRS sensors have strong correlation values (r > 0.6) for 

most regions of the Red Sea in the periods, with a decreasing 

gradient from north to south. The highest correlation (r > 0.8) 

observed in the SCRS are related to strong eddy activities [31], 

[41]. However, this relationship is not pronounced in the SRS 

(r < 0.6). The correlation map of CbPM NPP products in Fig. 

6b demonstrates a mismatch between MODIS and VIIRS 

sensors. Only moderate correlation (r~ 0.5) was observed in the 

NRS, while other regions show low correlation (r < 0.3) or even 

negative correlation in the SRS. This result goes against the 

hypothesis that coherency should remain within CbPM 

products. On the contrary, Eppley products show great 

consistency between MODIS and VIIRS sensors (r > 0.9) in all 

 
Fig. 5. The scatter plot (with colored Chla values) between NPP products (in log2 scale) and a) 𝑏𝑏𝑝, b) PAR, c) SST, d) MLD and e) APH (in log10 scale). 

Grey points refer to missing Chla values and red delta values refer to Chla > 2 mg/m3. Boxplots are to show ranges and median value for NPP and variables. 

 
Fig. 6. Correlation map between MODIS and VIIRS products, including 8days Chla, CbPM NPP, Eppley NPP and VGPM NPP. 
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regions (Fig. 6c). The maps presented in the Fig. 6d exhibit a 

similar gradient pattern as shown in Fig. 6a, indicating the 

deciding role of Chla for VGPM products, yet the eddy-induced 

strong correlation in SCRS disappears. 

The variations of each NPP product are shown in the time 

series for all the regions from 1997 to 2018 (Fig. 7). This figure 

suggests that the difference between SeaWiFS and MODIS 

remotely sensed data were not related to the NPP values. The 

NPP values before 2002 (SeaWiFS-based) are systematically 

lower than those after 2002 (MODIS-based), as presented in the 

CbPM time series. The intercepts of linear equations in the new 

Fig. 7 show the base levels of NPP for each region as a clear 

increasing gradient from north to south Red Sea. The southern 

Red Sea has more volatile NPP values than the north 

(significant gaps between maximum and minimum values).  For 

VGPM and Eppley, the highest values commonly exist in the 

SRS (e.g., high values during May-1998 can be due to the 

strong ENSO event), with some exceptions such as high NPP 

events in the SCRS during the summer of 2015, which resulted 

from an eddy-driven phytoplankton event in the SCRS [70]. 

However, the CbPM derived NPP is more variable than VGPM 

and Eppley, with many extremely low values in the SCRS and 

SRS. In general, NPP values are estimated as highest in Eppley 

and lowest in VGPM, yet CbPM tends to overestimate NPP 

values in NRS and NCRS, even higher than those in SCRS. 

CbPM and other two NPP models indicate different trends: 

CbPM shows a rapid increase of NPP in SRS (2.25 mg C m-2 

day-1 month-1) but VGPM and Eppley exhibit a decreasing trend 

(1.37 and 1.91 mg C m-2 day-1 month-1, respectively). 

 

C. Environmental Forcing for the NPP trend 

The variation of environmental forcing including SST, wind 

speed, Dust AOD and Angström Exponent (AE) are presented 

in the Fig. 8. This figure shows that SST has increased for all 

four regions since 2003. For instance, the NRS has an annual 

increase of 0.0041 °C per month, meaning a ~0.78 °C increase 

from 2003 to 2018. In addition, seasonal patterns of wind speed 

in the NRS, NCRS and SCRS are not as apparent as in the SRS, 

which has the highest wind speeds in boreal winter and lowest 

wind speeds in summer (May or June) but having a lower peak 

usually in July. The wind speed in SRS is negatively correlated 

(r = -0.47) with dust AOD and positively with AE (r = 0.16). 

Decreasing trends of windspeed are observed in the NRS and 

NCRS, whereas increasing trends are found in the SCRS and 

SRS. Moreover, AOD values show an increasing trend since 

2014 for the NRS, SCRS, and SRS, especially during the 

summer seasons. This may be due to increase in the summer 

dust events and also the highest temperature ever recorded 

occurring from 2015 to 2018, which were the top four warmest 

years in the global temperature record [84], [85]. Unlike wind 

speed, the AE in all the regions shows strong seasonality, as 

well as an increasing trend. 

 
Fig. 7.  Time series (values including SeaWiFS during the year 1997-2001 and MODIS: 2002-2018) to show trends for EPPLEY, VGPM and CbPM NPP for 

each region. The solid lines refer the mean value among the observations, whereas the shaded area shows the maximum and minimum value. 
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D. Teleconnections between NPP and climate indices 

Correlation analysis between NPP (on average, max, and 

min) anomalies values (𝑎𝑚 ) of CbPM, VGPM and Eppley 

models and the moving average values of multiple climate 

indices are shown in Table III. The highlighted values have 

been validated by the Pearson significance test (P-value < 0.05). 

Here, positive correlation exists between MEI/PDO indices and 

CbPM values in the NRS, NCRS, and SCRS. However, such 

strong connections are not observed in the VGPM and Eppley 

models. All the NPP products are generally not responsive to 

the DMI and NAO indices, but seem more reactive to NPGO, 

while showing opposite relationships: CbPM is negatively 

correlated to NPGO, yet VGPM and Eppley are positively 

correlated to NPGO. 

V. DISCUSSION AND CONCLUSION 

Similar approaches to compare the performance of VGPM, 

Eppley and CbPM NPP models for regional applications have 

been reported in recent studies [83], [86]. An assessment of 36 

NPP models, including VGPM, Eppley and CbPM, was 

undertaken to examine their ability to estimate the NPP trend, 

variability and mean value in the Bermuda Atlantic Time series 

Study (BATS) and the Hawaii Ocean Time series (HOT) 

datasets [26].  The study validated the argument that the model 

skill is not always improved by increased model complexity 

[23], [25]. Nevertheless, the mean NPP values at both sites were 

underestimated by most of the 36 models. For HOT, all three 

models have similar skills. However, at BATS, the CbPM 

model had the lowest skill among all the models, while VGPM 

and Eppley achieved much lower biases. It was also found in 

the Fig. 6 that CbPM model showed the strongest inconsistency 

between MODIS and VIIRS products. Since VGPM and Eppley 

only use PAR, SST and Chla as model inputs while CbPM uses 

additional optical parameters (i.e., 𝑏𝑏𝑝   and KD490), such 

increased complexity of CbPM does not improve yet worsen its 

reliability. The poor performance of CbPM may also be 

explained by its close relationship to MLD, which was affected 

by season and latitude [87]. In addition, the NPP is significantly 

enhanced by the presence of mesoscale  eddies [88]. Both the 

variability of MLD and eddy activities result in interannual 

changes of nutrients necessary for phytoplankton growth [89]. 

Fig.8. Trends of environmental forcing, including SST, AOD, 

windspeed and Angström exponent for the subregions of Red Sea. 

TABLE III 

CORRELATION BETWEEN NPP (AVERAGE, MAX AND MIN) ANOMALIES 

VALUES AND THE MOVING AVERAGE VALUES OF MULTIPLE CLIMATE INDICES 

Average  DMI MEI NAO NPGO PDO 

NRS VGPM 0.02 -0.10 0.04 0.30 -0.11 
 Eppley 0.07 0.13 0.03 0.12 0.19 

 CbPM 0.04 0.37 -0.14 -0.42 0.44 

NCRS VGPM -0.20 -0.04 -0.08 0.42 -0.13 
 Eppley -0.30 0.09 -0.11 0.23 0.01 

 CbPM 0.03 0.40 -0.22 -0.45 0.46 

SCRS VGPM -0.20 0.17 0.12 0.38 0.06 

 Eppley -0.26 0.20 0.12 0.35 0.12 

 CbPM -0.05 0.37 -0.12 -0.36 0.35 
SRS VGPM -0.17 0.20 -0.01 -0.09 0.11 

 Eppley -0.20 0.23 0.05 -0.08 0.16 

 CbPM 0.26 0.24 -0.10 -0.47 0.37 
 

Max  DMI MEI NAO NPGO PDO 

NRS VGPM 0.08 -0.20 -0.11 0.41 -0.27 
 Eppley 0.06 -0.02 -0.14 0.28 -0.04 

 CbPM 0.05 0.38 -0.16 -0.39 0.42 

NCRS VGPM -0.29 -0.03 -0.24 0.41 -0.17 

 Eppley -0.35 0.05 -0.25 0.33 -0.10 

 CbPM 0.07 0.34 -0.24 -0.46 0.41 
SCRS VGPM -0.17 0.18 0.09 0.15 0.08 

 Eppley -0.21 0.18 0.12 0.16 0.09 

 CbPM 0.08 0.32 -0.19 -0.44 0.34 

SRS VGPM -0.12 0.22 -0.02 -0.27 0.17 

 Eppley -0.11 0.26 0.03 -0.29 0.21 
 CbPM 0.30 0.11 -0.06 -0.51 0.21 

 

Min  DMI MEI NAO NPGO PDO 

NRS VGPM -0.11 -0.02 0.13 0.25 0.02 
 Eppley 0.03 0.23 0.15 -0.09 0.36 
 CbPM 0.00 0.37 -0.15 -0.40 0.44 

NCRS VGPM -0.14 0.05 -0.04 0.39 -0.06 

 Eppley -0.11 0.29 -0.01 -0.04 0.22 

 CbPM -0.14 0.38 -0.24 -0.29 0.34 

SCRS VGPM -0.25 0.12 0.10 0.41 -0.04 
 Eppley -0.29 0.08 0.08 0.40 -0.05 

 CbPM -0.36 0.14 0.04 -0.12 0.13 

SRS VGPM -0.32 0.11 0.05 0.16 0.02 

 Eppley -0.36 0.15 0.10 0.16 0.08 

 CbPM -0.23 -0.06 -0.25 0.07 0.07 
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This result can help to explain the extreme low NPP of CbPM 

in Fig. 7. These abnormal NPP values may result from the 

increased MLD-caused substantially lowered 𝑓(𝐸) in (15) and 

altered value of 𝑃𝐴𝑅𝑀𝐿 in (12) and (13). Besides, the low NPP 

values may also be calculated from inputs of  𝑏𝑏𝑝 lower than 

the particle backscattering coefficient of non-algal particles 

(𝑏𝑏𝑝NAP) of 0.00035 m-1 in (10), where 𝑏𝑏𝑝 was modified to 

0.00036 m-1. This implies that the 𝑏𝑏𝑝NAP in the Red Sea is not 

constant but occasionally lower than 0.00035 m-1. The CbPM 

model assumes the 𝑏𝑏𝑝NAP  as the stable heterotrophic and 

detrital components of the surface particles that does not covary 

with Chla and it is constant in both space and time [13]. 

However, recent studies suggested 𝑏𝑏𝑝NAP  to be highly 

dynamic and dependent on the season and biogeochemistry of 

the area [90]–[93]. Bellacicco et al. [93] estimated the median 

𝑏𝑏𝑝NAP value of global ocean as 0.00095 m-1, thus highlighting 

that the difference (of around a factor of 2) by using spatial 

𝑏𝑏𝑝NAP  variable rather than a constant value in the 

phytoplankton carbon biomass estimation. In their Figure 2.c, 

the central Red Sea was marked with high percentage of 

𝑏𝑏𝑝NAP  (> 60%) of the total 𝑏𝑏𝑝 . The estimation of 

phytoplankton carbon biomass from constant 𝑏𝑏𝑝NAP  value 

(0.00035 m-1) is over twice as much as the biomass estimated 

using spatially resolved 𝑏𝑏𝑝NAP (their Figure 3.b). This could 

be explained that the nutrient limitation results in rapid 

recycling of low phytoplankton biomass in the surface layer, 

which supports higher bacterial, small heterotrophic, and 

detrital biomass [94]. In the later research, the in situ datasets 

from Biogeochemical-Argo (aka BGC-Argo) floats were used 

to observe the 𝑏𝑏𝑝NAP  in global overview [95]. The study 

revealed two distinct oceanic conditions in terms of Chla 

signals: “photoacclimation-dominance” and “biomass-

dominance”. The former is typical of  oligotrophic areas (e.g. 

Red Sea) shows the variability of Chla is uncoupled with 

biomass but driven by the process of  photoacclimation [94], 

[96], [97]. The latter case is typical of most productive regions 

with high 𝑏𝑏𝑝 and  Chla co-variability. It further confirmed the 

high surface 𝑏𝑏𝑝NAP percentage (>80%) in the less productive 

areas that pico- and nano-phytoplankton dominated 

communities [98], which can be rapidly recycled. 

Consequently, the optimization of phytoplankton carbon 

models (e.g. CbPM) using the spatial-temporal and depth  

𝑏𝑏𝑝NAP  variables is suggested to improve their modeling 

performance from remote sensing observations [99].  

As demonstrated in Table II, VGPM and Eppley NPP at 

BATS are correlated to the NPGO but not correlated to MEI 

and PDO. By contrast, the CbPM NPP is negatively correlated 

to the NPGO but positively correlated to MEI and PDO. At 

HOT, the ENSO or PDO-related events affect the stratification 

and nutrient supply to alter the NPP. This may shed some light 

on the VGPM and Eppley NPP blooms in the NCRS during the 

strong El Niño 1997-1998 season. This indicates that VGPM 

and Eppley are more reliable than CbPM for the Red Sea NPP 

investigation. However, SST as a surface physical field fails to 

show a clear relationship with depth‐integrated NPP comparing 

to deeper physical fields, while both models substantially rely 

on the 𝑃𝑜𝑝𝑡
𝐵  estimated with SST function. The ocean color 

models usually pay little attention to the contribution from the 

deep-layer related NPP, which explains the underestimation of 

the NPP in both HOT and BATS. Further research has 

examined the performance of satellite NPP models in coastal 

and pelagic regions across the globe, including the 

Mediterranean Sea and the Arabian Sea adjacent to the Red Sea 

[25]. Interestingly, this study concluded that the model skill 

evaluated by the root-mean square difference (RSMD) was 

lowest in the Mediterranean Sea (0.42 ± 0.06) and intermediate 

in the Arabian Sea (0.22 ± 0.09). The Eppley model achieved 

the best estimate (RSMD < 0.15) in the Arabian Sea. However, 

the different NPP trends between VGPM/Eppley and CbPM in 

SRS (Fig. 7) casts doubt on the ability of models using satellite-

derived data to estimate the magnitude and the trends of NPP 

over multi-decadal or shorter time periods, which was also 

demonstrated at HOT and BATS [25], [26]. The NPP values 

estimated and agreed upon by all three models in the SCRS and 

SRS are exponentially higher than those in the NCRS and NRS. 

There are several possibilities for such differences: 1) The 

phytoplankton growth is promoted from the nutrient water 

obtained from GA exchange or eddies’ upwelling near SCRS 

and SRS [32]; 2) dust deposition in this region could supply 

nutrients and prompt the phytoplankton growth, yet the 

presence of high atmospheric content of aerosol particles 

complicates atmospheric correction and limits the data 

availability [39]; in addition, the dust particles in the water 

surface can also alter the inherent optical properties (IOPs) such 

as 𝑏𝑏𝑝; 3) the sample points collected towards the south of the 

Red Sea, especially in the SRS, are closer to the coastal areas. 

This may result in the uncertainty of remotely sensed ocean 

color data such as Chla and 𝐶ℎ𝑙𝑎: 𝐶𝑠𝑎𝑡 , because their ocean 

color signatures may possibly be influenced by different coastal 

gradients.   

It is also important to note that the performance of these three 

models is primarily dependent on the validity of input variables, 

derived from ocean color remote sensors (e.g. Chla, 𝑏𝑏𝑝, SST 

and PAR), or even model simulations (MLD) (equation (15)).  

Additionally, it is also challenging to decide the parameters 

used in the NPP models, which require more regional in situ 

measurements. For example, the empirical parameters (𝑐1 and 

𝑐2 ) in (6) were calculated from thousands of field 

measurements, but not specifically for the Red Sea. It is worth 

mentioning that the inherent optical properties (absorption and 

scattering) and apparent optical properties (Rrs and KD) of the 

Red Sea is not well documented. Also the development and 

validation of regional optical algorithms are lacking for the Red 

Sea. 

Beside carbon-based and chlorophyll-based production 

models, the phytoplankton absorption-based model or IOP-

based production model, recently resulted in more PP studies 

on a global scale [7], [79], [80], [100]. It was noted that the 

absorption by phytoplankton pigments was a preferred 
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parameter than pigment biomass for NPP retrievals [101]. This 

parameter was also regarded as better than SST to represent the 

photosynthetic rate of VGPM model in the Southern Sea [100]. 

As a good indicator of phytoplankton growth, KD490 can show 

short-term phytoplankton blooms and physical processes (anti-

cyclonic and cyclonic eddies) in the Red Sea [102]. The 

absorption-based models using remotely sensed data could 

minimize the impacts of pigment packaging, colored dissolved 

organic matter (CDOM), and non-algal matter, in order to reach 

both lower bias and higher standard deviation evaluated by in 

situ datasets in the Arctic Ocean [103].  

The rapid increase of SST was observed in all the regions of 

the Red Sea (Fig. 8), while its impact on NPP should be 

considered as one of the most crucial factors. As it is illustrated 

in Fig. 5c, the most apparent disagreement between VGPM and 

Eppley lies in the response of the photosynthetic rate to the 

temperature, expressed by 𝑃𝑜𝑝𝑡
𝐵 . The VGPM NPP shows a 

growth with increasing temperature until reaching a maximum 

at 20 °C, followed by a decrease at higher temperatures. This 

mechanism is based on the connection between nutrient 

limitation and warmer waters in the ocean [14], [45]. The NPP 

at BATS demonstrated an annual increase of 10.08 mg C m-2 

day-1 year-1, with no significant increase of SST during 1988 to 

2006, yet the HOT region had a similar increase of 10.23 mg C 

m-2 day-1 year-1 but with noted SST increase of 0.06 °C year -1. 

The decreased wind-forcing in the SCRS and SRS may lessen 

the MLD, which in turn limit the availability of nutrients in the 

euphotic zone [26]. The frequent dust events covering the water 

surface also help lower the SST while blocking observations 

from ocean color satellites. Even though natural variations, 

such as a swing back to wetter phases of the Pacific Decadal 

Oscillation (PDO) and the El Niño/Southern Oscillation 

(ENSO) patterns, may temporarily relieve drought conditions 

and reduce the frequency of dust storms currently plaguing the 

Arabian Peninsula, long-term climate models indicate 

temperatures in the region will continue to rise and the observed 

drying trend will continue, leading to an overall increase in the 

number of significant regional dust events [104]. 

In conclusion, the three global NPP models used for deriving 

the satellite NPP products were evaluated in the Red Sea region. 

Models’ intercomparison were performed using 8-day 

composite and monthly averages during the 1998–2018 period 

using different statistical methodologies. The estimated NPP 

using VGPM and Eppley significantly correlated well with the 

environmental and atmospheric variables allowing for accurate 

estimation of NPP as compared to CbPM, which performed 

poorly. This poor performance of the CbPM originates from the 

input variables (i.e., 𝑏𝑏𝑝 , 𝑏𝑏𝑝NAP and KD490)) that are not 

well parameterized for this region and require further 

refinement using comprehensive local optical measurements.  

The models’ intercomparison are further performed by the 

correlation maps presented in the Fig. 6 concerning the 

coherency between the same NPP products calculated from 

different sensors.   

Findings of this study could help the ocean color community 

and modelers to make a better choice among different PP 

models and associated satellite products for the Red Sea region, 

where chlorophyll concentrations are typically low. Moreover, 

this work elaborates on our previous findings in [39], [41] of 

possible dust impact on the marine PP and nutrient’s supply 

affecting NPP.  

Since the Red Sea is one of the warmest and saltiest 

ecosystems, it qualifies to be an ideal natural laboratory to study 

the physiological responses of phytoplankton community in 

such harsh conditions. The Red Sea could be a precursor to 

predict the behavior of the phytoplankton groups to nutrient 

variations, as well as to manifest the effects of global warming 

in other regions. Consequently, it requires further data at wider 

spatial and temporal scales and development of region specific 

NPP algorithms for future advances. 
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