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Abstract. We study “hypothetical reasoning” in games where the impact of risky prospects (chance 
moves with commonly-known conditional probabilities) is compounded by strategic uncertainty. We 
embed such games in an environment that permits us to verify if risk-taking behavior is affected by 
information that reduces the extent of strategic uncertainty. We then test some implications of expected 
utility theory, while making minimal assumptions about individuals’ (risk or ambiguity) attitudes. 
Results indicate an effect of the information on behavior: this effect is triggered in some cases by a 
belief-revision about others’ actions, and in other cases by a reversal in risk preferences. 
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I.  Introduction 

 The assumption that an agent is a (subjective) expected utility maximizer underlies most 

economic models.  In combination with expected utility theory, a standard assumption is that an 

agent processes new information by revising her beliefs according to some rule (e.g., Bayesian or 

otherwise).  We refer to a theory that incorporates these two broad assumptions as an updated 

expected utility (henceforth UEU) framework. Such a model is the most common paradigm for 

examining choice behavior in both non-strategic and strategic (i.e., interactive) domains.  

Common violations of UEU are typically attributed to two broad types of causes: agents fail to 

consistently update beliefs,1  or exhibit non-standard (risk or ambiguity) attitudes.2 

Here we investigate an additional source of deviations from UEU in strategic problems, 

namely, individuals’ difficulty with “hypothetical reasoning” (i.e., the act of considering 

alternative strategically-relevant contingencies).  We note that hypothetical reasoning may be 

especially challenging when contingencies depend on multiple unknowns: in particular, when 

outcomes depend both on risky prospects (i.e., chance moves with commonly-known conditional 

probabilities) and on strategic uncertainty (i.e., ambiguity arising from uncertainty about other 

players’ actions and beliefs).  Still, in everyday life we often need to engage in complex 

hypothetical reasoning: examples range from competing agents’ investment decisions in the face 

of random economic shocks, to public health decisions on the verge of a possible epidemic. 

In this paper, we study multi-player games where the impact of risky prospects is 

compounded by the presence of strategic uncertainty.  As shall be discussed, we embed such 

games in an experimental environment that allows for the revision of beliefs about other players: 

this has the goal of varying (the extent of) strategic uncertainty, while leaving risky prospects 

 
1 Agents may exhibit unresponsiveness to information “inconsistent” with their priors, either because they ignore a 
signal due to inattention, or because they are characterized by some sticky or otherwise biased belief-updating 
process.  For example, an agent may assess the probability of events by “availability” (i.e., the ease with which 
instances of events come to mind; Tversky and Kahneman, 1973). When processing signals drawn from a sample, 
one may misinterpret information as if it confirmed previous hypotheses (Rabin and Schrag, 1999), or 
misunderstand the relationship between sample proportions and the population from which they are drawn 
(Benjamin, Rabin, and Raymond, 2016). Another common heuristic involves some form of reinforcement, where 
one is more likely to choose acts associated with good outcomes one experienced in the past (Erev and Roth, 1998). 
Other belief-updating processes allowing for limited rationality are surveyed by Rabin (2013). 
2 For an instance of non-standard risk attitudes, see Kahneman and Tversky (1979) and Kőszegi and Rabin (2006), 
among others; for a survey, see O’Donoghue and Somerville (2018).  For a decision-theoretic account of non-neutral 
ambiguity attitudes, see Gilboa and Schmeidler (1989); recent models are reviewed by Machina and Siniscalchi 
(2013). For evidence of ambiguity aversion in lotteries, see Baillon, Huang, Selim, and Wakker (2018). For an early 
game-theoretic account of equilibrium play in games with ambiguity, see Eichberger and Kelsey (2000); for 
experimental evidence, see Eichberger, Kelsey, and Schipper (2008) and Heinemann, Nagel, and Ockenfels (2009). 
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unchanged.  We then investigate the relationship between (updated) beliefs and best-responses, 

and test some aggregate-level implications of expected utility theory.  Notably, our analysis 

identifies a violation of UEU – in the form of a reversal in risk preferences – which is 

attributable neither to failures in belief updating nor to non-standard (risk or ambiguity) 

attitudes.  We impute this violation to individuals’ difficulty with hypothetical reasoning. 

We stress that several types of interactions simultaneously present risky and uncertain 

prospects.3  For example, think of an individual’s choice of whether or not to get a vaccine: by 

vaccinating oneself one contributes at a cost to oneself to a particular public good, namely, herd 

immunity. Typically, in this type of problems, one’s payoff from “free riding” on others’ efforts 

depends not only on the population-level behavior (like in any threshold public-goods game), but 

also on a move by nature.  Generalizing, here a simple model could posit that if too many people 

free ride – and so herd immunity is not reached – then there may or may not be a random change 

in the ecology (such as a random shock with a commonly-known conditional probability). In 

other words, conditional on the population’s behavior, here a chance move ultimately determines 

if there is an epidemic outbreak or if instead the pathogen dies out. 

In order to study individuals’ difficulties with hypothetical reasoning, we propose an 

experimental game that embodies some of the key elements exhibited by the vaccination 

example (a “threshold game with risky prospects”).  Specifically, we consider a choice problem 

in which outcomes depend on the population’s behavior and on a move by nature, as follows.  If 

the population-level frequency of a socially-undesirable action exceeds a certain threshold (e.g., 

if too many individuals in the population free ride), then a random shock will occur with a 

commonly-known conditional probability (e.g., an epidemic may occur).  If instead the threshold 

is not met (e.g., enough individuals vaccinate), then outcomes will solely depend on players’ 

choices and a random shock will not occur.  As we shall discuss, the game presents players with 

two strategic options (vaccinate or free ride), in addition to an exit option with a sure payoff that 

is independent of others or nature (e.g., quarantine, the action any ambiguity- or risk-averse 

individual should strictly prefer).  In short, best-responses depend on individuals’ beliefs about 

the population’s behavior, as well as on their risk preferences. 

 
3 In the case of risky prospects, the objective probability of random events is available; whereas in the case of 
uncertain prospects, it is not.  For example – in the domain of strategic interaction – “strategic uncertainty” may 
occur in games with complete information and multiple equilibria: think of any coordination games, threshold 
public-goods games, etc. (Brandenburger, 1996). 
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Our “main treatment” embeds the above game in a network structure whereby each 

participant can observe the choices made by a randomly-generated sample of fellow participants: 

this has the purpose of somewhat lessening the extent of strategic uncertainty.  More precisely, 

each participant is provided with summary information (“feedback”) about some actions taken 

by participants that have been randomly selected to be her “neighbors” in a network.4  (In this 

regard, we stress that the network structure of our design is merely a device for generating noisy 

information; i.e., our experiment is not designed to analyze learning in relation to structural 

properties of a network, as subjects had no knowledge of their position in the network or of the 

network structure itself.)  That said, recalling that a random shock depends on the (entire) 

population’s behavior, a subject may use the information about her neighbors’ actions so as to 

revise the probability that the threshold has been passed at the population level.5  We note that 

the goal of such a manipulation is to check if, under minimal assumptions, we can rule out 

failures in belief updating as an explanation for violations of UEU in our game. 

Our between-subjects design also includes a “control treatment” which is the same as our 

main treatment, except that subjects receive no feedback.  (In addition to the choice task, both 

the main and control treatments directly elicit subjects’ beliefs about the population’s behavior.)  

Given this, our experimental design permits us to test whether an effect of the feedback on 

behavior is entirely due to a belief revision (about the others’ actions), or may be attributed to a 

reversal in risk preferences. 

Our data reveal an effect of the feedback on risk-taking behavior.  Furthermore, our 

econometric analysis determines exactly when such an effect is explained by one mechanism 

rather than the other (i.e., a belief revision or a reversal in risk preferences).  We begin by 

commenting on the first explanation.  In brief, the data show that the feedback does trigger a 

belief revision (which is compatible with Bayesian reasoning, on average).  To that end, our 

analysis isolates cases in which different feedback implies different posterior beliefs, and hence 

 
4 Subjects were informed that each participant in the room was connected to some others at random, such that 
everyone was either directly or indirectly connected to everyone else. Participants directly connected to one another 
are referred to as “neighbors”.  Note that subjects had no knowledge of the specific network structure. Also note that 
the network structure of our design only determines what feedback is passed on to subjects, and not their incentives 
(i.e., payoffs depend on the population’s behavior, not just on the neighbors’ behavior). 
5 The generic nature of the feedback implies that it may well be interpreted differently by different subjects: this 
means that the experimenter cannot verify if subjects perform (Bayesian) belief updating at the individual level. 
However, as we will show, our design can verify if subjects’ behavior is compatible with Bayesian updating at the 
aggregate level. 
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different best-responses.  In those cases, we find evidence of behavioral changes that are 

attributable to a rational belief revision. 

Notably, our design also allows us to identify cases in which changes in behavior may not 

be rationalized as the effect of a belief revision on a subject’s expected utility.6  We attribute 

such changes to a reversal in risk preferences, triggered by individuals’ difficulties with 

hypothetical reasoning.  To identify such a reversal, we isolate observations for which a rational 

belief update (resulting from the feedback) should not imply a best-response other than the action 

one would normally choose in the absence of feedback.  Comparing choice distributions across 

treatments – with and without feedback – our analysis reveals that subjects collectively take the 

riskless action more frequently than subjects would otherwise do in the absence of feedback, 

given the same stated beliefs.  This suggests that the experimental manipulation (i.e., merely 

providing feedback about others) causes a different appreciation of the risky prospects. We 

ascribe this effect to some subjects’ inability to deal with hypothetical reasoning in a complex 

environment. 

In this regard, we note that previous research has shown that the complexity of a choice 

problem influences risk-taking behavior, causing deviations from expected-value maximization 

in lottery choice tasks (e.g., Huck and Weizsacker, 1999). Some contributions have gone on to 

show that the complexity of a task affects belief updating in objective or ambiguous lotteries 

(Charness and Levin, 2005; Zizzo, Stolarz-Fantino, Wen, and Fantino, 2000).  Other research in 

the domain of non-strategic problems has recently provided some evidence that suboptimal 

behavior may be due to difficulties with hypothetical reasoning (Charness and Levin, 2009; 

Martínez-Marquina, Niederle, and Vespa, 2018). Similarly, Esponda and Vespa (2014) propose a 

voting problem where players have to make some inferences under the hypothetical case that 

their vote is pivotal. In this clever experiment, subjects play against opponents simulated by 

computers: by doing so, the problem preserves the structure of a (strategic) game in terms of 

hypothetical contingencies, while removing any strategic uncertainty. Esponda and Vespa find 

that subjects make mistakes, mostly because of an inability to make inferences from hypothetical 

events. Finally, Levin, Peck, and Ivanov (2016) have recently found evidence of overbidding in 

auctions with incomplete information about the distribution of bidders’ valuations, a fact that 

 
6 More precisely, we identify cases in which behavior changes may not be rationalized as the effect of a belief 
revision on an individual’s expected utility, given either standard-selfish or “conformist” preferences. 



 5 

they also ascribe to an inability to make inferences from hypothetical events (as well as to 

computational difficulties with Bayesian updating). 

Our results complement previous findings by investigating a distinctly-different 

environment, that is, complete-information games with chance moves and multiple equilibria 

(specifically, threshold games with risky prospects), played against actual participants.7  

Furthermore, by eliciting beliefs we can directly investigate the relationship between preferences 

and (updated) beliefs: this allows us to test some aggregate-level implications of expected utility 

theory in terms of risk-taking behavior.  In particular, for the first time we provide evidence as to 

how risk-taking behavior is affected by information that varies the extent of (yet does not 

remove) strategic uncertainty.  Overall, our data show that the difficulties with hypothetical 

reasoning are aggravated by the strategic uncertainty inherent to a game with multiple equilibria. 

As the experimenter’s feedback slightly attenuates one of the sources of complexity of the 

problem (i.e., strategic uncertainty), some subjects appear to focus on the other source of 

complexity, namely risk.  Indeed, the data show that information about the others’ behavior 

causes subjects to become more risk averse than they would be with no such information (on 

average), given the same beliefs.  So, this means that the feedback effectively causes some 

subjects to come to a different “understanding” of the problem’s risky contingencies. 

In summary, our paper shows evidence of feedback-induced changes in behavior, which 

in some cases are consistent with a belief revision while in other cases are due to an apparent 

preference reversal.  To the best of our knowledge, this paper is the first to systematically study 

threshold games with risky prospects, and isolate a reversal in risk preferences in such games.  

The remainder of the article is organized in this manner: section II presents the game, along with 

the experimental design and procedures; section III lays out theoretical predictions and 

experimental hypotheses; section IV discusses the experimental results, and section V concludes. 

 

 

 

 
7 In this regard, previous research has shown that individuals behave differently in a game played against actual 
participants, as opposed to a structurally-similar problem where co-players are replaced by computers (i.e., an effect 
that is attributed to particular risk and ambiguity attitudes; see Bohnet and Zeckhauser, 2004, and Ivanov, 2011). As 
we shall discuss, our design rules out non-standard (risk or ambiguity) attitudes as an explanation for deviations 
from expected utility theory in our data. 
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II.  Game, experimental design, and procedures 

1. Threshold games with risky prospects 

Consider an 𝑛𝑛-player simultaneous-move game such that, for each player 𝑖𝑖, payoffs 

depend on a chance move 𝜃𝜃, as well as on 𝑖𝑖’s action 𝑠𝑠𝑖𝑖 and her coplayers’ actions 𝑠𝑠−𝑖𝑖. Formally, 

𝑖𝑖’s payoff is defined by 𝑚𝑚𝑖𝑖(𝜃𝜃, 𝑠𝑠), where 𝜃𝜃 ∈ {𝐻𝐻,𝑇𝑇} denotes a move by nature while 𝑠𝑠 = (𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) 

compactly denotes an action profile (i.e., an 𝑛𝑛-tuple of actions), with 𝑠𝑠𝑖𝑖 ∈ {𝐴𝐴,𝐵𝐵,𝐶𝐶} for each 𝑖𝑖.  

The move by nature is interpreted as the toss of a fair coin, resulting in either of two outcomes 

(HEADS or TAILS), each with a 50 percent probability.  It is assumed that (without knowing the 

outcome of the coin toss) each player 𝑖𝑖 simultaneously chooses an action; relatedly, note that the 

outcome of the coin toss is the same for all players. 

In order to compactly define the outcomes of the game (after players have taken action), 

we now introduce two classes of action profiles, 𝝎𝝎𝟎𝟎 and 𝝎𝝎𝟏𝟏, based on whether a “threshold” 𝑝𝑝% 

has been met or not, as follows: we say that 𝑠𝑠 ∈ 𝝎𝝎𝟎𝟎 if less than 𝑝𝑝% of all players have chosen B; 

instead, we say that 𝑠𝑠 ∈ 𝝎𝝎𝟏𝟏 if 𝑝𝑝% or more of all players have chosen B.  Given this, we say that 

a game is a “threshold game with risky prospects” whenever payoffs vary with 𝜃𝜃, and 𝝎𝝎𝟎𝟎, 𝝎𝝎𝟏𝟏. 

Specifically, we assume that payoffs satisfy the following conditions: 

for any 𝑠𝑠 = (𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖′ )  s.t. 𝑠𝑠 ∈ 𝝎𝝎𝟎𝟎,    𝑚𝑚𝑖𝑖(𝐻𝐻, 𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖′ ) = 𝑚𝑚𝑖𝑖(𝑇𝑇, 𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖′ );           (1) 

for any 𝑠𝑠 = (𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖′ )  s.t. 𝑠𝑠 ∈ 𝝎𝝎𝟏𝟏,    𝑚𝑚𝑖𝑖(𝐻𝐻, 𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖′ ) ≠ 𝑚𝑚𝑖𝑖(𝑇𝑇, 𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖′ );          (2) 

for any 𝑠𝑠−𝑖𝑖, 𝑠𝑠−𝑖𝑖′ ,                                𝑚𝑚𝑖𝑖(𝐻𝐻,𝐶𝐶, 𝑠𝑠−𝑖𝑖) = 𝑚𝑚𝑖𝑖(𝑇𝑇,𝐶𝐶, 𝑠𝑠−𝑖𝑖′ ). (3) 

Condition 1 says that payoffs do not vary with the coin toss at 𝝎𝝎𝟎𝟎, whereas condition 2 says that 

they do vary with the coin toss at 𝝎𝝎𝟏𝟏; lastly, condition 3 says that payoffs from 𝐶𝐶 do not vary, 

regardless of the coin toss or the coplayers’ actions. 

In what follows we consider the same parameterization of the game we used in the 

experimental sessions, and provide some possible interpretations.  (In this regard, note that the 

descriptive labels below – e.g., “contribute”, “free ride”, etc. – are reported merely for ease of 

illustration, but are not part of the game or the experimental instructions.)  In short, assume 

𝑝𝑝% = 0.4.  Next, in order to specify payoffs, suppose the coin has been tossed and all players 

have simultaneously chosen an action.  Then, depending on the outcome of the coin toss 𝜃𝜃, and 

on whether the action profile is described by either 𝝎𝝎𝟎𝟎 or 𝝎𝝎𝟏𝟏, one of the following alternative 

contingencies (“scenarios”) occurs: in each case, payoffs to player 𝑖𝑖 are defined as follows. 
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• Scenario X.  If less than 40% of all players choose B (i.e., 𝑠𝑠 ∈ 𝝎𝝎𝟎𝟎), then regardless of the 

outcome of the coin toss 𝜃𝜃: a player receives 0.5 payoff units if she chose A, 3 if she chose B, 
and 0.75 if she chose C, as indicated in Table 1 below. 

• If 40% or more of all players choose B (i.e., 𝑠𝑠 ∈ 𝝎𝝎𝟏𝟏), then two scenarios are possible: 

o Scenario Y.  When the coin outcome 𝜃𝜃 is HEADS—a player’s payoff is 1 if she chose A, 
-1.5 if she chose B, and 0.75 if she chose C. 
 

o Scenario Z.  When the coin outcome 𝜃𝜃 is TAILS—a player’s payoff is 0.5 if she chose A, 
3 if she chose B, and 0.75 if she chose C. 

In plain words, players choose among three actions, ranging from a very risky option “B” 

(with both the highest and lowest possible payoffs), to a mildly risky option “A”, and finally to a 

riskless option “C”.  Note: for reasons that will be evident when we state the experimental 

predictions, we set this particular parameterization of the game in such a way that, at 𝝎𝝎𝟏𝟏, the 

expected values of the payoffs from the three actions are the same (recall that the coin results in 

either of two outcomes, HEADS or TAILS, with a 50 percent probability). 

As an application of such a game, for illustrative purposes we discuss the case of an 

individual’s decision of whether to get a costly vaccine, on the verge of a possible epidemic 

outbreak.  In that case, by choosing C (exit, e.g., self-isolation) one removes oneself from the set 

of susceptible individuals, which explains the scenario-invariant payoff associated with this 

option.  On the other hand, by choosing A (contribute, e.g., vaccination) one contributes – at a 

cost to oneself – to the public good, namely herd immunity; in this case, one’s utility depends on 

the others’ decisions (which determine whether the threshold is reached) as well as on the 

outcome of a move by nature.  By contrast, by choosing B (free ride, e.g., no vaccination) one 

negatively contributes to the threshold for herd immunity. So, one’s payoff from choosing B 

depends on the population-level behavior and on a move by nature, which results in a 50 percent 

chance of an epidemic outbreak if too many people free ride.  In summary, whenever less than 

40% of individuals free ride (that is, when more than 60% of the population either get a vaccine 

or self-isolate), then the state of herd immunity occurs, i.e., “scenario X”.  On the other hand, 

when 40% or more free ride, then with a 50 percent chance a negative shock in the form of an 

epidemic will occur (i.e., “scenario Y”).  When 40% or more free ride and a negative shock does 

not occur (i.e., “scenario Z”), individuals end up receiving the same payoffs as under herd 

immunity.  A compact representation of an individual’s payoffs is given below. 
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Before proceeding we note that, beside the vaccination problem, other risky interactions 

in everyday life present strategic features that to some extent are consistent with our toy game. 

For example, think of an individual’s decision of whether or not to use protection during sex 

with an occasional partner.  Alternatively, consider the case of a dissident deliberating on 

whether to engage in organized political activity. Let’s suppose it is common knowledge that 

historically – conditional on the government being left unchecked – the executive may or may 

not take an authoritarian turn with equal probability. From the viewpoint of a citizen, 

participation in political activity is obviously costly; so, one would rather have other people take 

action than do it oneself. On the other hand, if one expects much of the population to remain 

inactive, one might be inclined to eventually engage in political action so as to avoid the gloomy 

prospect of an authoritarian regime.  In all such cases, individuals’ best-responses and hence the 

equilibria of the game will vary with the distribution of individuals’ risk preferences (to be 

discussed in section III below). 

 
2. Experimental design and procedures 

Our experimental sessions were conducted at the University of Pennsylvania’s Wharton 

Behavioral Lab.  Upon arrival at the lab subjects were randomly allocated to computer terminals, 

where they expressed their consent to participate in an interactive decision-making experiment.  

On average, a session had about 17 subjects and lasted about 50 minutes.  Each session consisted 

of the following stages:  Introduction Stage;  Play Stage;  Payment Stage. 

 A 

contribute 
(e.g., vaccination) 

B 

free ride 
(e.g., no vaccination) 

C 

exit 
(e.g., self-isolation) 

 

scenario X  (i.e., 𝝎𝝎𝟎𝟎): 
herd immunity 
 

 

0.5 

 

3 

 

0.75 

scenario Y  (i.e., 𝝎𝝎𝟏𝟏,𝐻𝐻𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻): 
no herd immunity, epidemic outbreak 

1 
 

-1.5 0.75 

scenario Z  (i.e., 𝝎𝝎𝟏𝟏,𝑇𝑇𝐴𝐴𝑇𝑇𝑇𝑇𝐻𝐻): 
no herd immunity, no epidemic 

 

0.5 3 0.75 

 

Table 1 - A threshold game with risky prospects, illustrated in terms of a vaccination problem. 
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Below we describe the “main treatment”. 

Introduction Stage.  After granting consent, subjects were asked to read the on-screen 

instructions; they were informed that they would go through a set of decision tasks, where each 

participant would be prompted to choose one of the actions represented by options on the screen, 

labeled as “A”, “B”, and “C”. Each subject was instructed that any money she would earn (in 

addition to a flat participation fee) depended on her choice and on the choices made by all other 

participants in the lab session, as well as on the outcome of a fair coin tossed by the computer. In 

particular, each subject was informed that the choices made by all other participants – together 

with the outcome of a coin flip – would determine one of three scenarios.  After reading the 

instructions, subjects were prompted to answer a set of comprehension questions. 

Before moving on to the Play Stage, a few comments are due.  First, we stress that 

participants’ actions were simply denoted by “A”, “B”, “C” (i.e., in describing the scenarios, no 

reference was made to vaccination, free riding, etc.).  Second, letter-outcome pairs (e.g., whether 

B is associated with the socially-undesirable option rather than, say, the exit option) were 

randomized across participants. This was done in order to control for the fact that letters that 

come first in the alphabet may be perceived as more prominent.  For an instance of the 

experimental instructions featuring alternative letter-outcome pairs, please refer to the Appendix. 

Play Stage.  All plays were conducted using Behavery (https://behavery.com/): a software for 

laboratory, online, and field experiments. The order of subsequent tasks was as reported below. 

(i) Each subject was asked to choose one of the options “A”, “B”, or “C”. Subjects were 

instructed that, after all participants had made their choices, a fair coin would be tossed 

by the computer and the scenario for the current play would be determined (i.e., the 

same scenario for all participants). Note that subjects were not informed of the scenario 

they were in, either before or after making decisions. 

(ii) Each subject was prompted to guess how many participants in the same session chose 

the option corresponding to the socially-undesirable action. Thus, (in the case of the 

letter-outcome pairs of Table 1 above) the task read as follows: “... indicate the 

percentage of the participants in the entire room that you believe have chosen B...”.  

Subjects entered their guesses by positioning a slider to the desired percentage.  Upon 

doing so, they were informed that they would receive an additional payment of $0.25, if 



 10 

they provided an accurate estimate within ±1 percentage point of the realized value (and 

would receive nothing otherwise).8 

(iii) “Part 2” instructions: subjects were told that they would go through (an unspecified 

number of) additional rounds involving the same decision task; in each round, the 

scenario would be determined by the new round’s population-level behavior and new 

coin flip.  (Subjects were told that only at the end of the experiment they would learn 

about the money earned over the rounds.)  Further, at this point subjects were informed 

about the networked structure of the population, in the following way.  First, subjects 

were told that each participant in the room was connected to some others at random, 

such that everyone was either directly or indirectly connected to everyone else 

(participants directly connected to one another were referred to as neighbors).  Second, 

subjects were not informed about the specific number of connections they had, but they 

were just told that their neighbors were the same across rounds; additionally, subjects 

were informed that their neighbors might or might not have the same number of 

connections as they did.  (In fact, unbeknown to subjects, the experiment’s software was 

coded to randomly generate a network for each lab session, such that each node in a 

session had a degree centrality of either 2 or 3; this design feature guarantees sufficient 

variability in the feedback passed on to subjects, while ensuring that subjects are fully 

comparable across sessions or positions. See Figure 1 below for a sample network.)  The 

above exhaustively outlines what subjects knew about the network. 

(iv) Before carrying out the choice task in round 2, each subject was given feedback about 

the percentage of her neighbors that chose the socially-undesirable action in round 1; 

e.g., “0.0% of your neighbors chose B in the previous round”. 

… 

(v) Round t (choice task): each subject was asked to choose an option (“A”, “B”, or “C”). 

 
8 The slider was initially positioned at a value of 50%.  Subjects could not leave the slider in the initial position; so, 
they had to take a stance and express their beliefs about the frequency of the one action in relation to which the 
threshold is defined (i.e., the socially-undesirable action).  For discussion on the merits of incentivizing the 
elicitation of beliefs, see Trautmann and van de Kuilen (2015): in particular, we stress that it has been shown that 
relatively small incentives for beliefs do not typically create a meaningful hedging opportunity (note that in our case 
the bracket for an accurate guess is 1 percentage point in either direction of the realized value). 
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(vi) Round t (belief elicitation): each subject was prompted to guess the percentage of 

participants in the entire room that she believed chose the socially-undesirable action in 

the current round t. 

(vii) Round t+1 (feedback re. round t): each subject was given feedback about the percentage 

of her neighbors that chose the socially-undesirable action. 

(viii) Round t+1 (choice task): each subject was asked to choose an option (“A”, “B”, or “C”). 

(ix) Steps vi. to viii. were repeated a number of times; i.e., subjects played 10 rounds in total. 

(x) Subjects were given a brief demographic questionnaire.  (For a copy of the experimental 

instructions, please see the Appendix.) 

 
Payment Stage.  The payment mechanism consisted of two parts: each subject received a flat 

$10 participation fee, in addition to any payoffs earned over the ten rounds (if positive). Each 

subject was informed that if the sum of her payoffs earned across rounds was negative, then she 

would only receive her $10 participation fee. (Whereas this payment system might in principle 

encourage risky choices, as will be clear it does not at all affect our analysis, which revolves 

around treatment effects.) 

 

Figure 1 - A random network generated by Behavery (https://behavery.com/) as a simulation of the 
lab environment. Note: experimental subjects were not informed about their position in the network 
or about the specific network structure.  Subjects were simply told that their neighbors were the 
same across rounds, and that their neighbors might or might not have the same number of 
connections as they did. 

 

https://behavery.com/
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Finally, a “control treatment” was designed to further delve into individuals’ risk-taking 

behavior in the domain of strategic interaction.  The control treatment is the same as our main 

treatment, except that participants receive no feedback about their neighbors’ choices; note that 

this is a between-subjects design.  (We ran 6 sessions of the main treatment, and 5 sessions of the 

control treatment; no subject was allowed to participate in more than one session.)  

 
 

III.  Theoretical predictions and experimental hypotheses 

We begin by considering equilibrium behavior in our control treatment.  Since at the end 

of each round subjects received no information (in regards to their payoffs or otherwise), a 

session may be viewed as a series of one-shot games.  For ease of reference, in what follows we 

refer to the actions in accordance with the letter-outcome pairs of Table 1 above.  In particular, 

actions B and C respectively denote the socially-undesirable (“free ride”) and riskless (“exit”) 

options.9 

Now, in order to formulate predictions in the context of our control treatment, one has to 

make some assumptions about the distribution of risk preferences in the population of 

participants.  So, we shall first assume that all subjects are risk-averse, with an individual being 

said to be averse to risk “if she prefers the sure prospect with value m over any risky prospect 

with expected value m”.  (We later examine cases in which subjects are not necessarily averse to 

risk.)  For simplicity, we assume preferences to be common knowledge.  These assumptions 

imply the following claim. 

Observation 1.  If all individuals are risk-averse, then all Nash equilibria in pure actions consist 

of the following profile:  𝑛𝑛� players choose B (“free ride”), whereas 𝑛𝑛 − 𝑛𝑛� choose C (“exit”), with 

𝑛𝑛 denoting the total number of players in the population and 𝑛𝑛� being equal to the largest number 

of players that corresponds to a fraction of the population < 40%. 

Proof.  Let’s consider two cases.  [Case I] Suppose that current population-level behavior is 
described by a profile of actions whereby less than 40% of the population plays B. In that case, a 
risk-averse individual who currently plays C would rather deviate to B, as long as her deviation 
does not contribute to the population reaching the 40% threshold. By contrast, a risk-averse 

 
9 Action B of Table 1 is socially-undesirable to the extent that playing B induces a Pareto-dominated outcome (i.e., 
when 40% or more of the population plays B, as in the third class of equilibria we present below). Still, for ease of 
reference, we generically refer to that option as the “socially-undesirable action”. 
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individual who currently plays B would have no incentive to deviate.  [Case II] Alternatively, 
suppose that current population-level behavior is described by a profile of actions whereby 40% 
or more of the population plays B. In this case, a risk-averse individual would rather deviate to C 
(in fact, conditional on the others’ choices, B and C have the same expected value, but C is the 
sure prospect).  As a result of this deviation, either Case I or II will follow. So, ultimately in 
equilibrium 𝑛𝑛 − 𝑛𝑛� players choose C while 𝑛𝑛� players choose B. 

Next, if one assumes that some (or all) individuals may not be risk-averse, then several 

classes of equilibria exist. Thus, each of the following observations differs from the others in the 

fraction of the population that is risk-averse; moreover, observation 3 qualifies risk attitudes in 

terms of loss aversion.10  (Note: since at 𝝎𝝎𝟏𝟏 risk-neutral individuals are perfectly indifferent 

between the three actions – see p. 7 above – without loss of generality below we shall focus on 

cases in which individuals behave as either risk-averse or risk-seeking players.) 

Observation 2.  If less than 40% of the population is risk-seeking and the rest is risk-averse, 

then 𝑛𝑛� players choose B (“free ride”), whereas 𝑛𝑛 − 𝑛𝑛� choose C (“exit”); in particular, all the 

risk-seeking individuals play B, and the rest of the population plays B or C. (Note that, like 

before, 𝑛𝑛 denotes the total number of players in the population and 𝑛𝑛� is equal to the largest 

number of players that corresponds to a fraction of the population < 40%.) 

Proof.  Let’s consider two cases.  [Case I] Suppose that current population-level behavior is 
described by a profile of actions whereby less than 40% of the population plays B. In that case, a 
risk-averse individual who currently plays C would rather deviate to B, as long as her deviation 
does not contribute to the population reaching the 40% threshold. By contrast, a risk-seeking 
individual would deviate to B regardless.  [Case II] Alternatively, suppose that current 
population-level behavior is described by a profile of actions whereby 40% or more of the 
population plays B. In this case, a risk-averse individual would rather deviate from B to C.  As a 
result of this deviation, either Case I or II will follow. So, ultimately in equilibrium 𝑛𝑛 − 𝑛𝑛� players 
choose C while 𝑛𝑛� players choose B, with all the risk-seeking individuals playing B. 

Observation 3.  If 40% or more of the population is risk-seeking, then any action profile 

whereby more than 𝑛𝑛� players choose B (“free ride”) and the rest A (“contribute”) or C (“exit”) 

may be an equilibrium, depending on the individuals’ specific attitudes toward risk and loss. 

 
10 For accounts of loss aversion, see among others: Kahneman and Tversky (1979), Köbberling and Wakker (2005), 
Kőszegi and Rabin (2006). 
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(Like before, 𝑛𝑛 denotes the total number of players in the population and 𝑛𝑛� is equal to the largest 

number of players that corresponds to a fraction of the population < 40%.) 

Proof.  The proof is similar to the previous ones, and therefore is only sketched.  We simply note 
that if 40% or more of the population plays B, then a loss-averse individual with reference point 
$0.75 (i.e., the payoff from the sure prospect C) will prefer C to A, and B to C, and hence choose 
action B.  On the other hand, a loss-averse individual with reference point $0 (i.e., the payoff 
prior to playing the game) may well prefer A to C, and C to B, and hence choose action A. 

Having analyzed equilibrium behavior in the control treatment, we turn to discuss the 

predicted impact of our main treatment on subjects’ choice behavior.  (This treatment 

manipulation will allow us to check if, under minimal assumptions, we can rule out failures in 

belief updating as an explanation for violations of expected utility theory in our games.11)  To 

that end, we define the “low-feedback sample” as the group of subjects who – in a given round – 

receive feedback (about the frequency of B choices in their neighborhood) below the threshold, 

i.e., < 40%. Similarly, we define the “high-feedback sample” as the group of subjects who, in a 

given round, receive feedback above the threshold.12  Given this, we make the assumption that 

participants update their beliefs about the population-level frequency of B choices, on the basis 

of the feedback (about the neighborhood-level frequency of B choices).  Regardless of the 

specific distribution of individual-level (risk or ambiguity) attitudes in the population, but 

provided it is the same across samples, Bayesian rationality implies the following prediction. 

H1:  participants in the high-feedback sample choose the riskless action (C) weakly more 
frequently than participants in the low-feedback sample. 

To grasp the basic intuition behind H1, we begin by making an informal argument (which we 

formalize below). For the time being, consider a participant in the main treatment who – before 

 
11 We stress that our experiment is not designed to analyze learning in relation to structural properties of a network; 
as such, our design does not aim to disentangle Bayesian and “naïve” belief-updating processes (DeGroot, 1974).  
For recent network-theoretic accounts of learning, we refer the reader to: Gale and Kariv (2003); Golub and Jackson 
(2010); Acemoglu, Dahleh, Lobel, and Ozdaglar (2011); for a survey, see Jackson and Yariv (2011).  We further 
note that models of social learning typically focus on equilibria with risk-neutral players.  Thus, our exercise rests on 
broadly different assumptions than those made by experimental tests of social learning (see among others 
Chandrasekhar, Larreguy, and Xandri, 2020, and Grimm and Mengel, 2020). 
12 We take the opportunity to stress that “feedback” refers to the information about neighbors, not the entire 
population of players (participants in the room).  On the other hand, payoffs depend on whether the frequency of the 
socially-undesirable action exceeds the threshold at the population level, not simply at the neighborhood level. 
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receiving feedback – states a belief indicating that the proportion of B choices was below the 

40% threshold.  We note that such a subjective probability entails that the subject believes that 

no risky scenario will likely occur: this is because risky scenarios (Y or Z) occur if and only if 

40% or more of all participants choose action B.  Now, suppose that the subject subsequently 

receives high feedback. Naturally, her posterior beliefs will go up; in fact, depending on the 

priors, posteriors might even rise above the threshold, which would entail a risky scenario (𝝎𝝎𝟏𝟏).  

In that case, unless one is a risk-seeker, following the high feedback one would rather choose the 

riskless action (C). Hence, on average we expect participants in the high-feedback sample to 

collectively choose the riskless action weakly more frequently than would participants in the 

low-feedback sample. 

More formally, note that from a subject’s viewpoint the feedback follows a binomial 

distribution 𝐵𝐵𝑖𝑖𝑛𝑛(𝜂𝜂,𝜗𝜗), where 𝜂𝜂 denotes the sample size (corresponding to the subject’s degree 

centrality, i.e., the number of randomly-assigned neighbors) and 𝜗𝜗 denotes the rate of B choices 

in the entire population.  Bayesian inference involves modeling unknown parameters as random 

variables.  So, one can model 𝜗𝜗 as a random variable, where a prior distribution represents the 

subject’s initial beliefs about the possible values of the parameter 𝜗𝜗.13  One can then use the 

Bernoulli distribution to obtain the likelihood of the feedback received, for all possible values of 

𝜗𝜗 (i.e., use a “Bernoulli likelihood function”).  Finally, Bayes’ theorem implies that 

𝑝𝑝(𝜗𝜗 | 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)  ∝  𝑝𝑝(𝜗𝜗) ⋅ 𝑝𝑝(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 | 𝜗𝜗):  that is, the posterior 𝑝𝑝(𝜗𝜗 | 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) is proportional 

to the prior 𝑝𝑝(𝜗𝜗) times the likelihood 𝑝𝑝(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 | 𝜗𝜗);  DeGroot and Schervish (2012, pp. 390-

391).14  Intuitively, this implies that the higher is the feedback, the higher is the posterior. 

Given the above, and assuming that the average distribution of priors is the same across 

low/high feedback samples, it follows that participants in the high-feedback sample should hold 

higher posterior beliefs (about the rate of B choices) than those in the low-feedback sample. This 

means that participants in the high-feedback sample are more likely to hold posteriors exceeding 

the threshold, thereby entailing a risky scenario. Hence, under the assumption that the number of 

 
13 Note that the experimental design elicits a simple guess, that is, the percentage of participants that the subject 
believes have chosen the socially-undesirable action (“... indicate the percentage of the participants in the entire 
room that you believe have chosen B…”).  Now, suppose that in response to that a subject enters a value of, say, 
33%.  That may be interpreted in two different ways: (i) as a statement that the subject believes with certainty that 
one third of the participants chose B; (ii) as a statement that the subject believes it most likely that one third of the 
participants chose B.  The latter interpretation appears to be more realistic, and justifies modeling the prior as a 
distribution rather than a point estimate. 
14 See also Gilboa and Schmeidler (1993) for an axiomatization of Bayesian updating, given ambiguous beliefs. 
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risk-averse subjects is similar across samples, it follows that participants in the high-feedback 

sample should choose the riskless action (C) weakly more frequently than participants in the 

low-feedback sample.  As we shall see, this prediction is supported by our behavioral data. 

Our next hypothesis delves into subjects’ beliefs. As we discussed, Bayesian rationality 

implies that the higher is the feedback, the higher is the posterior. This prediction may be tested 

directly, by examining our stated beliefs data. 

H2:  participants’ stated beliefs are positively related to the magnitude of the feedback received. 

As will be shown, the above hypothesis is supported by the data, in that our results indicate an 

impact of the preceding round’s feedback type (i.e., low/high sample) on the belief-formation 

process, on average. 

Our final hypothesis below focuses on participants stating a belief that indicates that the 

proportion of B choices was above the 40% threshold: below we shall refer to such subjects as 

high-belief (“HB”) participants.  Note that stating an above-threshold subjective probability 

entails that one believes that a risky scenario (Y or Z) will likely occur.  Now, suppose that an 

HB-participant subsequently receives high feedback. As a result of the high feedback, that 

subject might update her beliefs upwards. However, such a belief update should not entail a 

different scenario relative to the previously-stated belief. This is because risky scenarios (Y or Z) 

occur if and only if 40% or more of the population chooses action B. Since – in this case – both 

priors and posteriors exceed the threshold, they ultimately imply the same scenarios.  This leads 

to the following prediction. 

H3:  HB-participants in the high-feedback sample choose the riskless action (C) with the same 
frequency as HB-participants in the control (i.e., no feedback treatment). 

As we shall see, this prediction is falsified by the data, as HB-participants in the high-feedback 

sample happen to choose the riskless action significantly more frequently than HB-participants in 

the control.  We attribute this apparent preference reversal to people’s limitations in performing 

hypothetical reasoning.  (As the feedback slightly attenuates one of the sources of complexity of 

the problem – i.e., strategic uncertainty – some subjects appear to focus on the other source of 

complexity, namely, risky prospects.)  



 17 

 
IV.  Experimental results 

1. Main treatment: summary statistics, preliminary tests 

We begin by addressing our main treatment (comprising the low- and high-feedback 

samples). A total of 101 subjects from several academic departments took part in our sessions at 

the University of Pennsylvania’s Wharton Behavioral Lab; the mean age was 24.7 years. 

Subjects on average earned a total payoff of $11.31 (over ten rounds), in addition to the $10 

participation fee.  On average subjects chose the option associated with actions A, B, and C of 

Table 1 above 10.59%, 56.83%, and 32.58% of the time, respectively.  Further, a minority of 

subjects chose the same action in every round; i.e., out of a total of 101 participants in the main 

treatment, about 1%, 27%, and 10% of the subjects respectively chose A, B, and C in each and 

every round. 

The first two columns of Table 2 report average beliefs (about the population-level 

frequency of B choices) held by the subjects who in a given round chose the option indicated on 

the left-hand side of the table.  The last column of Table 2 reports the mean feedback (about the 

neighborhood-level frequency of B choices) provided to subjects who chose each of the options 

on the left-hand side.  Notably, in all cases, beliefs and feedback are above the 40% threshold on 

average. 

  
 Beliefs about population: 

Round 1 
Beliefs about population: 

Other rounds 
Feedback about neighbors: 

Other rounds 
    

A 
 

54.36 
(27.51) 

59.04 
(23.26) 

60.95 
(33.37) 

B 
 

59.47 
(21.641) 

60.62 
(23.16) 

54.62 
(30.66) 

C 
 

56.20 
(20.40) 

60.23 
(21.24) 

62.70 
(28.39) 

    

Table 2 - Main treatment. Mean beliefs and feedback (about B choices) held by the subjects who in 
a given round chose the option indicated on the left-hand side of the table; in parentheses is the 
standard deviation. Note: 101 subjects took part in the main treatment. We report the beliefs held in 
round 1 in a separate column, as subjects stated such beliefs before receiving any feedback; 
naturally, no feedback about previous play was provided in round 1. 
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For the purpose of providing a more granular depiction of the data, Figure 2 below breaks 

down the (mean) values of each of the following variables, by round:  (i) frequency of B choices;  

(ii) beliefs about population-level B choices;  (iii) feedback about neighborhood-level B choices.  

 

 

Figure 2 - Main treatment. The upper panel shows line graphs depicting mean values (by round) of: 
the frequency of B choices (i.e., free riding), beliefs about population-level B choices, feedback 
about neighborhood-level B choices.  The lower panel breaks down low- vs high-feedback samples. 
Note: no feedback about previous play was provided in round 1; no beliefs were elicited after the 
last choice task was carried out (in round 10).  For the sequence of experimental tasks, see p. 11. 

Aggregate (low- and high-feedback) samples 
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Now, in order to give a rough overview of some suggestive data patterns, we first report 

non-parametric tests and later assess our hypotheses formally (by means of a regression 

analysis).  For the time being, as a very preliminary test of the equality of choice distributions 

across low- versus high-feedback samples, we verify some hypotheses via pairwise comparisons.  

In short, a test of proportions (adjusted for clustering on 101 subjects, using data from all the 

rounds in which feedback was provided; i.e., rounds 2-10) indicates that the socially-undesirable 

action B was chosen more often in the low- than in the high-feedback sample; that is, 

respectively 67.73% and 52.13% of the time (z = 2.25, p = 0.024, two-tailed). In other words, 

subjects were less likely to choose B after learning that the neighbors chose B in proportions 

larger than the threshold. 

Furthermore, the same test shows no meaningful differences in the proportions of choice 

of action A across samples, which were respectively 10.36% and 10.64%.  By contrast, 

performing the same test with respect to action C reveals that the riskless option was chosen less 

often in the low- than in the high-feedback sample; that is, respectively 21.91% and 37.23% of 

the time (z = -2.25, p = 0.024, two-tailed).  Taken together, these data patterns provide some 

preliminary evidence that exposing subjects to high feedback might cause them to shift from a 

risky action (B) to a riskless action (C). 

  
2. Main treatment: regression analysis—effect of feedback on risk-taking behavior 

The tests above capture across-rounds average trends, but do not account for differences 

in the beliefs held by subjects or other differences across rounds (such as differences in the 

values of the feedback itself).  For those reasons, we now turn to the regression analysis. 

We start by examining one’s choice of the riskless action C (against its negation, i.e., 

“not C”).  Specifically, the models in Table 3 below present the results of logit regressions 

consisting of one’s choice of the riskless action as the binary dependent variable, and some or all 

of the following predictors:  a low/high feedback indicator;  dummy variables indicating whether 

one’s stated belief is below/above the threshold at round 1, or at round t;  and finally a time (i.e., 

round t) variable.  We note that the standard errors are adjusted for clustering on 101 subjects. 

Model 1 in Table 3 below confirms that the low/high feedback indicator significantly 

affects one’s choice of the riskless action C.  This formally provides evidence in support of H1, 
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which states that participants in the high-feedback sample should choose the riskless option 

weakly more frequently than participants in the low-feedback sample. 

    

choice of action C at t  [1] [2] 

low/high feedback indicator (t-1)  .748*** 
(.269) 

.537** 
(.267) 

belief dummy (t)   .226 
(.270) 

belief dummy (at round 1)   .196 
(.414) 

round (t)   .057** 
(.025) 

constant  -1.270*** 
(.263) 

-1.776*** 
(.402) 

Pseudo R2  0.017 0.017 

AIC  1136.759 1017.101 

Obs.  909 808 

Table 3 - Logit coefficients of two models estimating one’s choice of the riskless action (C) at 
round t of the main treatment. In parentheses are robust standard errors clustered on 101 subjects 
(*, **, and *** respectively indicate 𝑝𝑝 < 0.10, 𝑝𝑝 < 0.05 and 𝑝𝑝 < 0.01, for the relevant Z-statistic, 
two-tailed tests).  Model 1 uses all choice tasks except for round 1, for which there was no t-1 
feedback.  Model 2 uses the same data as model 1 except for round 10, as no beliefs were elicited 
after the last choice task; also note that this model includes the belief held in round 1 as a separate 
predictor, since subjects stated such beliefs before any feedback (hence, may be viewed as priors). 

  

As a robustness check, model 2 in Table 3 includes both beliefs and time variables, as 

predictors. (Note that model 2 includes the belief held in round 1 as a separate predictor, since 

subjects stated such beliefs before receiving any feedback and so they may be viewed as priors.) 

Model 2 confirms the significant impact of the low/high feedback indicator; moreover, it shows 

no significant effects for the other predictors, except for the round variable, which may reflect 

differences in the feedback passed on to subjects across rounds.  In summary, the regressions 

fully support H1: when subjects learn that neighbors chose B in proportions larger (smaller) than 

the threshold, subjects are more (less) likely to choose the riskless action C in the next round. 
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Figure 3 - Histograms for the feedback that was passed on to subjects. As an example, note that the 
first bar indicates that about 10 percent of the time subjects were informed that none (0%) of their 
neighbors chose the socially-undesirable action B in the preceding round. The relative frequency of 
each feedback value is calculated with respect to all the rounds in which feedback was provided, 
namely, rounds 2-10. Note: by design the feedback could take on five possible values, since the 
experiment’s software was coded to randomly generate a network per session, such that each node 
had a degree centrality of either 2 or 3. (Subjects were not informed about the specific network 
structure; however, they were informed that their neighbors were the same across rounds; for 
details, see pp. 10-11 above.) 

 
We move on to an additional robustness check. We note that the estimates above may be 

biased by individual-specific characteristics, such as one’s risk and ambiguity attitudes; also, the 

estimates might vary with the actual feedback values one receives across rounds. Hence, for 

robustness purposes here we consider a conditional (fixed-effects) logit model. 

Before presenting the model, we note that – by design – conditional logit models cannot 

use observations that have no variation, such as panel units (i.e., subjects) making the same 

choice in each and every round; such observations are therefore automatically dropped from the 

regression, thereby resulting in a smaller sample.15  This explains why this model is presented as 

a robustness check, rather than the main analysis. 

 

 
15 Specifically, (since the dependent variable is dichotomous) subjects who chose the riskless action in every round 
are dropped, as are subjects who chose the riskless action in no round at all. 
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choice of action C at t   

low/high feedback indicator (t-1)  1.706** 
(.680) 

feedback value (t-1)  .007 
(.016) 

high feedback indicator * feedback value  -.020 
(.017) 

Pseudo R2  0.022 

Obs.  441 

Table 4 - Conditional (fixed-effects) logit coefficients of a model estimating one’s choice of the 
riskless action (C) at round t of the main treatment. In parentheses are standard errors (*, **, and 
*** respectively indicate 𝑝𝑝 < 0.10, 𝑝𝑝 < 0.05 and 𝑝𝑝 < 0.01, for the relevant Z-statistic, two-tailed 
tests).  For a given subject, the model uses all choice tasks except for round t = 1 (for which there 
was no feedback).  By design, panel units (i.e., subjects) making the same choice in each and every 
round are automatically dropped.  Also note that conditional logit models have no constant term. 

  
That said, Table 4 presents a fixed-effects logit model consisting of one’s choice of the 

riskless action as the binary dependent variable, and of the following predictors:  (i.) a low/high 

feedback indicator;  (ii.) the numerical feedback variable (i.e., the actual feedback values passed 

on to subjects, as opposed to the low/high feedback indicator);  (iii.) the interaction of i. and ii. 

In short, Table 4 corroborates our previous evidence, showing that the low/high feedback 

indicator significantly affects one’s choice of the riskless action C.  On the other hand, the actual 

feedback value one is exposed to does not appear to significantly affect one’s choice, nor does 

the interaction variable.16  This provides the ultimate evidence in support of H1: when subjects 

learn that neighbors chose B in proportions larger (smaller) than the threshold, subjects are more 

(less) likely to choose the riskless action C in the next round.  In concluding, we stress that the 

estimated coefficients of fixed-effects models cannot be biased because of omitted time-invariant 

characteristics, such as individual-level risk or ambiguity attitudes. 

 

 
16 Incidentally, note that adding a time (i.e., round t) variable as a predictor does not qualitatively affect the results; 
in fact, the time variable turns out to be non-significant when added to the predictors in Table 4. 
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3. Main treatment: effect of feedback on stated beliefs 

Bayesian rationality entails that high feedback is more likely to induce a higher posterior 

than low feedback, all else equal.  This prediction was indirectly confirmed by the results above.  

Yet, it may be tested directly by examining our stated beliefs data.  So, we now turn to analyze 

subjects’ beliefs at round t.  To that end, we present a fixed-effects regression consisting of one’s 

stated belief as the continuous dependent variable, and some or all of the predictors as the model 

above, that is:  (i.) a low/high feedback indicator;  (ii.) the numerical feedback variable (i.e., the 

actual feedback values passed on to subjects);  (iii.) the interaction of i. and ii. 

    

stated belief at t  [1] [2] 

low/high feedback indicator (t-1)  6.278*** 
(1.709) 

6.317* 
(3.493) 

feedback value (t-1)   .139 
(.086) 

high feedback indicator * feedback value   -.099 
(.092) 

constant  55.732*** 
(1.373) 

52.856*** 
(2.191) 

R-squared  0.103 0.146 

AIC  6688.83 6688.933 

Obs.  808 808 

Table 5 - Fixed-effects regression coefficients of models estimating one’s stated belief at round t of 
the main treatment; standard errors are shown in parentheses (*, **, and *** respectively indicate 
𝑝𝑝 < 0.10, 𝑝𝑝 < 0.05 and 𝑝𝑝 < 0.01, for the relevant Z-statistic, two-tailed tests). The regressions are 
performed on the dataset containing all observations except for round t = 1 (as there was no t-1 
feedback) and round t = 10 (since no beliefs were elicited after the last choice task). 

 
Model 1 in Table 5 reveals that the low/high feedback indicator positively and 

significantly affects one’s belief-formation process at t.  Put differently, when subjects learned 

that neighbors chose B in proportions larger than the threshold, subjects were likely to state 

higher beliefs about the (population-level) frequency of B choices.  This provides evidence in 

support of H2, which says that participants’ stated beliefs are positively related to the magnitude 

of the feedback received. 
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As a robustness check, model 2 includes the numerical feedback variable and the 

(feedback indicator*value) interaction variable.  In brief, model 2 confirms a (mildly) significant 

impact of the preceding round’s feedback type (i.e., low/high) on the belief-formation process, 

corroborating the previous evidence.  Incidentally, we note that when controlling for the 

feedback type, the actual feedback values passed on to subjects do not appear to significantly 

affect beliefs (this might indicate that different feedback values are generally interpreted 

differently by different subjects).  Overall, the models show that subjects do use the feedback to 

inform beliefs; later we shall further delve into our subjects’ beliefs and their impact on behavior. 

 
4. Control treatment: summary statistics and non-parametric tests 

 We proceed to discuss results from our control treatment. This was identical to the main 

treatment above, except that participants received no feedback about their neighbors’ choices.  A 

total of 84 subjects took part in the control treatment; the mean age was 23.7 years, and other 

demographics were similar across treatments.  Participants in the control on average earned a 

total of $6.61 (over ten rounds), in addition to the $10 participation fee. 

Note that the payoff data signal some sharp differences across treatments: as the reader 

might recall, participants in the main treatment made about twice the money as in the control 

(i.e., $11.31, plus the participation fee).  A two-tailed Wilcoxon-Mann-Whitney test conducted 

on the entire subjects sample confirms that payoffs were significantly lower in the control than in 

the main treatment (N = 185 subjects, Z = -5.275, p = 0.000). In what follows we investigate 

what drove such a difference in earnings. 

We begin by reporting summary statistics relating to the choice data. On average, 

participants in the control chose the option associated with actions A, B, and C of Table 1 above 

9.64%, 64.29%, and 26.07% of the time, respectively.  (In the main treatment, the same actions 

were chosen respectively 10.59%, 56.83%, and 32.58% of the time.)  Also, a non-trivial fraction 

of subjects chose the same action in each and every round: that is, out of a total of 84 participants 

in the control treatment, about 0%, 36%, and 7% of the subjects respectively chose A, B, and C 

in every round; these figures appear somewhat different than the corresponding figures from the 

main treatment (1%, 27%, and 10%, respectively). Below we shall formally contrast data from 

our two treatments. 
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 Beliefs about population: 

Round 1 
Beliefs about population: 

Other rounds 
   

A 
 

56.33 
(18.40) 

52.03 
(21.50) 

B 
 

65.51 
(20.49) 

64.66 
(22.32) 

C 
 

55.04 
(20.83) 

49.12 
(18.15) 

   

Table 6 - Control treatment. Mean beliefs (about B choices) held by the subjects who in a given 
round chose the option indicated on the left-hand side of the table; in parentheses is the standard 
deviation. Note: 84 subjects took part in the control treatment. To be consistent with the style of 
Table 2 above, we report the beliefs for round 1 in a separate column. 

  
Table 6 reports average beliefs (about the population-level frequency of B choices) held 

by the subjects who chose the option indicated on the left-hand side of the table.  See also Figure 

4 below, which shows line graphs of choices and beliefs (versus round). In short, average beliefs 

held by participants in the control treatment are well above the 40% threshold, as was in fact the 

case in the main treatment. 
 

 

Figure 4 - Control treatment. Line graphs depicting mean values (by round) of: the frequency of          
B choices (i.e., free riding) and beliefs about population-level B choices. 
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Yet, comparing Figure 4 with (the upper panel of) Figure 3 reveals that even though 

average beliefs appear similar between treatments, participants in the control treatment chose B 

in proportions greater than in the main treatment.  In fact, the upper panel of Figure 3 suggests 

that exposing subjects to feedback in aggregate causes them to shift away from a risky action. 

Thus, moving from the main treatment to the control, we might expect an increase in risky (B) 

choices along with a fall in riskless (C) choices: this informs the next directional hypotheses. 

A one-tailed test of proportions clustered on (185) subjects indicates that the risky action 

B was chosen mildly-significantly more often in the control than in the main treatment (z = 

1.463, p = 0.071; the test is conducted on the entire sample of observations except round 1, for 

which there was no feedback in the main treatment).  The same test shows that the riskless action 

C was chosen mildly-significantly less often in the control than in the main treatment (z = -1.339, 

p = 0.090).  In summary, these data patterns provide some rough, preliminary evidence that 

participants in the control treatment behaved as if they were more risk-seeking than participants 

in the main treatment. The analysis below will shed light on these findings. 

  
5. What is rational and what isn’t 

In what follows, we shall formally verify if differences in risk-taking behavior between 

treatments may or may not be ascribed to differences in beliefs across treatments (with and 

without feedback).  In other words, we investigate whether any differences in behavior may be 

rationalized as the effect of a belief revision on an individual’s expected utility.  To that end, the 

model in Table 7 below presents the results of a logit regression consisting of one’s choice of the 

riskless action as the binary dependent variable, and of the following predictors: 

(i.) a control/main treatment indicator;  (ii.) a dummy variable indicating whether one’s stated 

belief is below/above the threshold;  (iii.) the interaction of i. and ii.  As in our non-parametric 

tests above, the standard errors are adjusted for clustering on 185 participants (i.e., 101 in the 

main treatment, plus 84 in the control treatment). 

In brief, the model in Table 7 reveals no significant differences between treatments; by 

contrast, it reveals a significant impact of both the belief dummy and the (treatment*belief ) 

interaction variable.  Note that the significance of the belief dummy means that – regardless of 

the treatment – one’s choice of the riskless action C depends on whether one believes that the 

proportion of B choices is above the 40% threshold.  Moreover, conditionally on stating such a 
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belief, one’s choice of the riskless action is more likely if one is assigned to the main treatment 

(the significance of the interaction variable deserves further investigation, to which we shall 

attend later). 

It is worth noting one more point about the belief dummy (Table 7): importantly, its 

significance confirms the presence of subjects with (standard-selfish) rational preferences in our 

dataset.  To see why, note that such preferences rule out the so-called “risk contagion” effect, 

whereby subjects are more prone to choose a risky option if they believe others are making risky 

choices (for evidence of this effect, see among others Reiter, Suzuki, O’Doherty, Li, and 

Eppinger, 2019).17  In our game, rational preferences imply that action C is a best-response to a 

belief above the 40% threshold, unless one is a risk-seeker.  So, the significance of the belief 

dummy (Table 7) confirms the presence of rational participants with risk-averse preferences in 

our data. 

   

choice of action C at t   

control/main treatment indicator  -.551 
(.369) 

belief dummy  -.674** 
(.289) 

main treatment indicator * high belief  1.101*** 
(.382) 

constant  -.530* 
(.282) 

Pseudo R2  0.012 

Obs.  1,665 

Table 7 - Logit coefficients of a model estimating one’s choice of the riskless action (C) at round t.  
In parentheses are robust standard errors clustered on 185 subjects (*, **, and *** respectively 
indicate 𝑝𝑝 < 0.10, 𝑝𝑝 < 0.05 and 𝑝𝑝 < 0.01, for the relevant Z-statistic, two-tailed tests). The 
regression is performed on the dataset containing all observations from the main and control 
treatments except for round t = 10 (since no beliefs were elicited after the last choice task). 

  

 
17 Specifically, contrary to our data, Reiter et al. (2019) show evidence of a “risk contagion” effect where subjects 
are more likely to choose a risky option (in the form of a lottery) over a sure option, if they observe others’ risky 
choices. Similar results are reported by Gioia (2017) and by Fatas, Hargreaves Heap, and Rojo Arjona (2018), 
among others. A possible explanation for the risk contagion effect might be “conformist preferences”, whereby one 
likes to do what one believes others will do (Charness, Naef, and Sontuoso, 2019; Goeree and Yariv, 2015). 
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We turn to discuss our final, key result.  In order to verify whether differences in 

behavior may be – entirely – rationalized as the effect of a belief revision on an individual’s 

expected utility, we move on to isolate observations for which a rational belief update should not 

imply a change in behavior.  To do so, we consider participants (in either treatment) stating a 

belief that indicates that the proportion of B choices is above the 40% threshold: we refer to such 

subjects as high-belief (“HB”) participants. 

Recall that stating an above-threshold probability entails that one believes that a risky 

scenario (Y or Z) will likely occur.  Thus, suppose that after stating her belief for the round, an 

HB-participant receives high feedback (in the main treatment). As a result of the high feedback, 

that subject might update her beliefs upwards. Yet, such a belief update should not entail a 

different scenario, relative to the previously-stated belief: since both priors and posteriors exceed 

the threshold, they ultimately imply the same scenarios!18  Under the assumption that 

individuals’ characteristics – such as risk and ambiguity attitudes – are similar across treatments, 

our final prediction follows. Conditional on stating high beliefs, subjects who were provided 

high feedback (in the main treatment) should be as likely to choose C as subjects who were not 

provided any feedback at all (in the control treatment). 

In order to test this prediction, the logit regression in Table 8 below is performed on the 

dataset containing observations relating to any round in which participants – in either treatment – 

stated a belief above the threshold (i.e., HB-participants).  The logit model consists of the choice 

of the riskless action (C) as the binary dependent variable, and of the control/main treatment 

indicator as the sole predictor. Like before, the standard errors are adjusted for clustering on 

subjects. 

Table 8 shows that participants in the main treatment take the riskless action more 

frequently than one would otherwise do in the absence of feedback, given high beliefs.  This 

result provides evidence against H3, which states that HB-participants in the high-feedback 

sample choose the riskless option with the same frequency as HB-participants in the control (i.e., 

no feedback treatment). 

 

 

 
18 Recall that risky scenarios (Y or Z) occur if and only if 40% or more of the population chooses action B; see p. 7. 
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choice of action C at t   

control/main treatment indicator  .625** 
(.268) 

constant  -1.204*** 
(.194) 

Pseudo R2  0.016 

Obs.  1,212 

Table 8 - Logit coefficients of a model estimating one’s choice of the riskless action (C) at round t.  
The treatment indicator takes on value 1 when a subject belongs to the main treatment. In 
parentheses are robust standard errors clustered on 179 subjects (*, **, and *** respectively 
indicate 𝑝𝑝 < 0.10, 𝑝𝑝 < 0.05 and 𝑝𝑝 < 0.01, for the relevant Z-statistic, two-tailed tests). Note: the 
regression is performed on the dataset containing all the observations relating to any round in 
which a subject – in either treatment – stated a belief above the threshold (“HB-participants”). 6 
subjects do not meet this condition in any round. 

 
Given the large sample size and the homogeneity of the demographic characteristics 

across treatments, we have no reason to assume any fundamental (prior) differences in 

individuals’ characteristics – including risk and ambiguity attitudes – across treatments, on 

average.  This suggests that our main treatment’s manipulation (i.e., merely providing feedback 

about neighbors) seemingly causes a different appreciation of the available risky prospects. 

We believe that some subjects’ difficulty in processing risky prospects may be 

exacerbated by the strategic uncertainty that is intrinsic to a game with multiple equilibria. As the 

feedback lessens one of the sources of complexity of the problem (i.e., strategic uncertainty), 

some subjects seem to focus on the other source of complexity – namely risk – thereby 

exhibiting a different appreciation of the risky prospects.  To sum up, we believe that the 

apparent “reversal” in risk preferences signals people’s limitations in performing hypothetical 

reasoning in complex problems. 

  
V.  Concluding remarks 

This paper has investigated “hypothetical reasoning” in problems where the impact of 

risky prospects (chance moves with commonly-known conditional probabilities) is compounded 

by strategic uncertainty (arising from the multiplicity of equilibria). Specifically, we consider 
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“threshold games with risky prospects”. Given these games, our design verifies if risk-taking 

behavior is affected by information that varies the extent of strategic uncertainty; to do so, our 

design exploits the fact that best-responses depend on individuals’ beliefs, as well as on their risk 

preferences. This has permitted us to test some aggregate-level implications of expected utility 

theory. 

Our results indicate a significant effect of the transmitted information on behavior: this 

effect is attributable in some cases to a belief revision about others’ actions, and in other cases to 

a reversal in risk preferences.  In order to isolate the latter, our analysis has identified 

observations for which a rational belief update (resulting from the feedback) should not imply a 

best-response other than the action one would choose in the absence of feedback.  Comparing 

choice distributions across treatments, we have shown that participants in the main treatment 

take the riskless action more frequently than participants would do in the absence of feedback, 

given the same beliefs. 

The above suggests that the experimental manipulation causes a different 

“understanding” of the problem’s risky prospects. Unlike other violations of expected utility 

theory, this pattern is not rationalizable by models with non-standard (risk or ambiguity) 

attitudes. Thus, we impute this preference reversal to people’s limited ability to perform 

hypothetical reasoning in complex tasks. As the experimenter’s feedback slightly lessens one of 

the sources of complexity of the problem (i.e., strategic uncertainty), some subjects seem to 

focus on the other source of complexity (i.e., risky prospects). 

Interestingly, recent research has documented suboptimal choices in non-strategic 

problems, as evidence of subjects’ difficulties with hypothetical reasoning (Charness and Levin, 

2009; Esponda and Vespa, 2014; Martínez-Marquina, Niederle, and Vespa, 2018)  Similarly, in 

the context of experimental auctions, Levin, Peck, and Ivanov (2016) have shown that bidders 

often make mistakes, “due to a failure of insight or recognition, which would involve logical 

reasoning without requiring any explicit updating of probabilities” (Levin et al., 2016, p. 40).  

Our results complement previous findings by investigating a broadly different environment; in 

particular, our experiment suggests that difficulties with hypothetical reasoning may generally 

affect subjects’ assessment of risk. 

To conclude, this paper has studied a novel class of games (threshold games with risky 

prospects), and isolated a reversal in risk preferences in these games. In this connection, we note 
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that several risky interactions in everyday life present strategic features that – to some extent – 

are consistent with our experimental environment.  An application of particular interest to current 

policy-makers may be the case of an individual’s choice of whether to get a vaccine on the verge 

of a possible epidemic. In that case, our study suggests that information campaigns alerting 

people of their neighbors’ free-riding choices might discourage further risk-taking behavior.  

Although our toy game does not aim to capture the rich complexity of an actual vaccination 

decision, our study does provide intriguing insights in relation to a class of risky interactions, 

which may be worth investigating in the field. 
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APPENDIX 

Experimental instructions and screen shots 

 

 

 

 

 

 

NOTE: as we discuss in section II.2 above, letter-outcome pairs (e.g., whether B is associated with 
the socially-undesirable option rather than, say, the exit option) were randomized across participants. 
This was done in order to control for the fact that letters that come first in the alphabet may be 
perceived as more prominent.  Below is an instance of the experimental instructions (for the main 
treatment) where the socially-undesirable option is associated with action A: accordingly, in the 
below screen shots, the threshold is defined in relation to action A; hence, the belief elicitation task 
and the feedback refer to action A.  Finally, note that experimental instructions for the control 
treatment are the same as the main treatment, except that there is no feedback. 
 
 
 
 

[Welcome screen] 

At the beginning of this study, you will receive instructions on what to do and how your 
decisions can affect your earnings. Your participation in the study is voluntary. You may end 
your participation at any point, without loss of any benefits to which you are entitled. 
 
The main purpose of the study is to explore people’s decision making in different contexts. The 
study involves monetary decisions, that can only add to the $10 (show up fee) you receive for 
your participation. The duration of the study will be about 50 minutes. 
 
Your final earnings depend on the decisions you and other participants make. 
 
Please click the box if you agree to participate in the study. 
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