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Extension of positive definite kernels

On the extension of positive definite kernels to topological algebras
Daniel Alpaya) and Ismael L. Paivab)

Schmid College of Science and Technology, Chapman University, One University Drive, Orange,

California 92866, USA

We define an extension of operator-valued positive definite functions from the real or complex
setting to topological algebras, and describe their associated reproducing kernel spaces. The
case of entire functions is of special interest, and we give a precise meaning to some power series
expansions of analytic functions that appears in many algebras.

I. INTRODUCTION

It is often of interest in some areas of mathematics to consider the extension of the domain (and, in
general, the range) of analytic functions from the field of complex or real numbers, here denoted by K, to
an algebra A over K. More precisely, if f is analytic in a neighborhood ΩK of z, with Taylor expansion

f(z + h) =

∞∑

n=0

hn f
(n)(z)

n!
, (1.1)

where h is a complex number in the open disk of convergence centered at z, one formally defines

f(z + A) =

∞∑

n=0

An f
(n)(z)

n!
, (1.2)

where A ∈ A \K. Note that the restriction of A ∈ A \K is made just to keep Eq. (1.2) familiar. In fact,
one could consider the change A 7→ A+ h, where h ∈ K is such that z + h ∈ ΩK.

This type of extension is used many areas, like in supermathematics, and even in the theory of linear
stochastic systems1,2 and in the associated theory of strong algebras3,4. Moreover, extensions given by
Eq. (1.2) contrasts with the one done, for instance, in the study of white noise space, where, with
exception of5, the complex coefficients of the power series (and not the variable) in Eq. (1.1) are replaced
by elements that take value in the space of stochastic distributions S−1.

In some cases, if the functions of interest in Eq. (1.1) form a reproducing kernel Hilbert space, the
extension of their kernel can be straightforward. Let, for instance, A be the Grassmann algebra with a
finite number, say N , of generators. In this case, a number z ∈ A can be written as

z = zB + zS ,

where zB ∈ C is called the body of z, and zS ∈ A \ C is such that zN+1
S = 0 and is called the soul of z.

Then, one has

KN (zB + zS , wB + wS) =
(
1 zS

z2
s

2! · · ·
zN
S

N !

)
KN (zB, wB)




1
wS
wS

2

2!
...

wS
N

N !




, (1.3)

where KN is the (N + 1)× (N + 1) matrix function with (n,m) entry equals to

1

n!m!

∂n+mKN (z, w)

∂n∂mznwm . (1.4)

a)Electronic mail: alpay@chapman.edu
b)Electronic mail: depaiva@chapman.edu
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Extension of positive definite kernels 2

Eq. (1.3) can be written in this simple form because of the nilpotence of the soul of z, i.e., because

zN+1
S = 0.

In general, for a Grassmann algebra with an infinite number of generators or for other arbitrary algebras,
an expression similar to Eq. (1.3) is desirable. However, this requires a more careful analysis — for
instance, with the study of convergence.

The present work focus on functions given by Eq. (1.2) whenever A is a topological algebra, i.e., A
is a locally convex topological vector space and the product ab is separately continuous in each of the
variables — see Ref.6 for more details. Because of that, the convergence of Eq. (1.2) is assumed to be in
the topology of A.

Our objective is, in case the original analytic functions f presented in Eq. (1.1) form a reproducing kernel
Hilbert space, to introduce the structure of the corresponding space of extended functions given by Eq.
(1.2) and the extension of the underlying operators in this scenario.

In a sense, our approach can be seeing as a reduction to the complex (or real) case. The reason is that,
even though they are desirable, expressions like Eq. (1.3) do not seem to always exist. In general, we do
not obtain a closed form for the kernel of functions f presented in Eq. (1.2). Then, we study objects of
the following type instead

F (a, z, A) = 〈a, f(z +A)〉 =
∞∑

n=0

〈a, (z +A)n〉
f (n)(z)

n!
, (1.5)

where a belongs to the topological dual A′. In other words, we replace the powers (z+A)n by 〈a, (z+A)n〉
for every n. The exchange of order between the sum and the duality operation is justified because
convergence in the topological algebra implies weak convergence.

To introduce the underlying reproducing kernel Hilbert space, more definitions are required. However,
we already remark that, for the Fock space, with reproducing kernel given by

ezw =

∞∑

n=0

znwn

n!
, (1.6)

the reproducing kernel of the space of extended functions is

∞∑

n=0

〈a, (z +A)n〉〈b, (w +B)n〉

n!
. (1.7)

In the case of K = C and A = Cn×n, the kernel in Eq. (1.7) becomes

K(a,A, z, b, B,w) = Tr
(
(a∗ ⊗ b)e(zIn+A)⊗(wIn+B∗)

)
, a, A, b, B ∈ C

n×n. (1.8)

For yet another example, we take A to be the quaternions H and K to be the real numbers. Then, Eq.
(1.7) becomes

∞∑

n=0

(Re a(t+ p)n) (Re (q + s)nb)

n!
. (1.9)

Even though the above expression is similar, it is not equivalent to the reproducing kernel of the Fock
space of slice hyperholomorphic functions7, which is

∞∑

n=0

(t+ p)n(q + s)n

n!
.

Although the real part is taken in Eq. (1.9), observe that non-real parts of the variables also play a role
in the kernel. This can be seeing by varying the parameters a and b.

Besides this introduction, this paper contains four sections. In Section II, we formalize our definition of
reproducing kernel Hilbert spaces associated to extensions of functions of the type given by Eq. (1.2).
After that, the case of entire functions is considered in Section 3. Then, the definitions and results are
generalized to arbitrary analytic functions in Section 4. Finally, extensions of operators are considered
in the last section.
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Extension of positive definite kernels 3

II. EXTENSION OF KERNELS TO TOPOLOGICAL ALGEBRAS

In this work, we assume that the algebra and its topological dual are endowed with involutions (for
simplicity denoted by the same symbol) A 7→ A∗ and a 7→ a∗, which extend the complex conjugation,
keep the algebraic structure, and satisfy

〈a,A〉 = 〈a∗, A∗〉, A ∈ A and a ∈ A′. (2.1)

In particular, choosing A = cI, where c ∈ K, we have

〈a,A∗〉 = c · 〈a, I〉. (2.2)

Before focusing on the case of entire functions, consider the case of a positive definite B(ℓ2(N0))-valued
kernel and ΩK ⊂ K. By definition of an operator-valued positive definite function, the K-valued function

K((z, f), (w, e)) = 〈K(z, w)e, f〉ℓ2(N0) (2.3)

is positive definite on ΩK × ℓ2(N0). Note that Eq. (2.3) can be rewritten as

K((z, f), (w, e)) =

∞∑

n,m=0

enknm(z, w)fm, (2.4)

where (knm(z, w))∞n,m=0 is the matrix representation of K(z, w) with respect to the standard basis of
ℓ2(N0), and where the elements of ℓ2(N0) are written as semi-infinite column vectors.

We, then, extend K — or, more precisely, Eq. (2.4) — to the domain Ω in the following way:

K((z, (An)
∞
n=0, a), (w, (Bm)∞n=0, b)) =

∞∑

n,m=0

〈a,A∗
n〉knm(z, w)〈b, B∗

m〉

=
∞∑

n,m=0

〈a∗, An〉knm(z, w)〈b∗, Bm〉.

(2.5)

In this expression, a and b belong to the topological dual A′ of the algebra A and the brackets denote
the duality between A and A′. Moreover, (An)

∞
n=0 and (Bm)∞m=0 are sequences of elements indexed by

N0. If the entries knm are matrix-valued, say in Cp×p, we take the An and the Bm to be in A1×p. The
duality expressions 〈a,A∗

n〉 and 〈b, B∗
m〉 are, then, in C1×p.

The function given by Eq. (2.5) is well-defined and positive definite on the set Ω ≡ ΩK × ΩA, with

ΩA = {(a, (A∗
n)

∞
n=0) such that (〈a,A∗

n〉)
∞
n=0 ∈ ℓ2(N0)}

and is the starting point of our study.

Remark 2.1. In principle, one can replace in Eq. (2.4) the K numbers en and fm by elements in this
algebra, and the complex conjugation by the conjugation in A to get the expression

M((z, (An)
∞
n=0), (w, (Bm)∞m=0)) =

∞∑

n,m=0

Anknm(z, w)B∗
m, (2.6)

where the sequences A = (An)
∞
n=0 and B = (Bm)∞m=0 are chosen such that Eq. (2.6) converges. When

A is an algebra of Hilbert operators, or a C∗-algebra, one can define positivity for Eq. (2.6), but, in
general, it is not so clear in which sense (2.6) defines a positive definite function, when convergent.

For general topological algebras, we define positivity using the K-valued function in Eq. (2.5). For
(a, (Au)) ∈ ΩA, we denote by X(a,A) the ℓ2(N0) element with u-component 〈a,A∗

u〉

X(a,A) =




〈a,A∗
0〉

〈a,A∗
1〉

〈a,A∗
2〉

...


 . (2.7)
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Extension of positive definite kernels 4

Moreover, we let

K(z, w) = Γ(z)Γ(w)∗ (2.8)

be a minimal factorization of the B(ℓ2(N0))-valued kernel K(z, w) via a Hilbert space G, meaning that
Γ(z) ∈ B(G, ℓ2(N0)) for every z ∈ ΩK and that the linear span of the range of the operators Γ(w)∗ is
dense in G, as w runs through ΩK. One can, for instance, choose for G the reproducing kernel Hilbert
space H(K) of ℓ2(N0)-valued functions with reproducing kernel K(z, w) and

(Γ(w))(f) = f(w), f ∈ H(K).

Then,

Γ∗(w)ξ = K(·, w)ξ, ξ ∈ ℓ2(N0)

and the next proposition is immediate:

Proposition 2.2. The factorization

〈K(z, w)X(b,B), X(a,A)〉ℓ2(N0) = 〈Γ(w)∗X(b,B),Γ(z)∗X(a,A)〉G ,

holds and the reproducing kernel Hilbert space associated to Eq. (2.5) consists of functions of the form

F (z,A, a) = 〈f,Γ(z)∗X(a,A)〉G , f ∈ G, (2.9)

with inner product and norm induced from the inner product and the norm of G.

We, now, introduce the matrix representation

Γ(z)f =



f0(z)
f1(z)
...


 (2.10)

of Γ(z), and we associate to Eq. (2.9) the A-valued function

F (z,A) =
∞∑

n=0

Anfn(z). (2.11)

Proposition 2.3. The series (2.11) is weakly convergent on the set of sequences A = (Au) such that
X(a,A) ∈ ℓ2(N0) for all a ∈ A′.

Proof. Starting from (2.9), we have:

〈f,Γ(z)∗X(a,A)〉G = 〈Γ(z)f,X(a,A)〉ℓ2(N0)

=

∞∑

n=0

〈a∗, An〉fn(z)

= lim
N→∞

〈a∗,

N∑

n=0

Anfn(z)〉.

We are interested in the special case fn(z) =
f (n)(z)

n!
and An = (A∗)n. We, then, have the condition

∞∑

n=0

∣∣∣〈a∗, An〉
∣∣∣
2

< ∞ (2.12)

to insure that X(a,A) ∈ ℓ2(N).

In the next section, after introducing our approach for a general topological algebra, we explore two cases
of special interest: strong algebras and Banach algebras.
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Extension of positive definite kernels 5

III. ANALYTIC KERNELS FOR ENTIRE FUNCTIONS

Let K(z, w) be a Kp×p-valued kernel, positive definite for z, w ∈ ΩK ⊂ K, and analytic in the variables z
and w. Also, let H(K) denote the associated reproducing kernel Hilbert space with reproducing kernel
K. Recall, see Ref.8, that the elements of H(K) are, then, analytic in ΩK and that, for every n ∈ N0,
w ∈ ΩK, and η ∈ Kp, the function

Dn,wη : z 7→
1

n!

∂nK(z, w)η

∂wn ∈ H(K). (3.1)

Furthermore,

〈f,Dn,wη〉H(K) =
η∗f (n)(w)

n!
, ∀f ∈ H(K). (3.2)

In particular,

〈Dm,wξ , Dn,zη〉H(K) =
1

m!n!
η∗

∂n+mK(z, w)

∂zn∂wm ξ = η∗Kn,m(z, w)ξ, (3.3)

where z, w ∈ ΩK and ξ, η ∈ Kp, and Kn,m(z, w) has been defined in Eq. (1.4).

We denote as vectors



ξ0
ξ1
ξ2
...


 (3.4)

the elements of ℓ2(N0,K
p), i.e., the sequences of elements of Kp such that

∑∞

n=0 ‖ξn‖
2 < ∞. Also, we let

f be a Cp-valued function analytic in ΩK ⊂ K. Then,

Jz(f)
def.
=




f(z)

f (1)(z)

f(2)(z)
2!

f(3)(z)
3!
...




, z ∈ ΩK, (3.5)

is called the jet function generated by f — see Ref.9 (p. 222). We denote by J(f) the function

z 7→ Jz(f). (3.6)

Now, we focus on the case of entire functions, i.e., ΩK = K.

Lemma 3.1. Let K(z, w) be a K
p×p-valued positive definite kernel, entire in z and w, with associated

reproducing kernel Hilbert space H(K). Also, let f ∈ H(K). Then, for all z ∈ K, the operator Jz ∈
B(H(K), ℓ2(N0,K

p)), and its adjoint is given by

J∗
z (u) =

∞∑

n=0

(
1

n!

∂nK(·, w)

∂wn

∣∣∣
w=z

)
un. (3.7)

Proof. The elements of H(K) are entire, and so for every z ∈ K, the series

f(z + 1) =

∞∑

n=0

1n
f (n)(z)

n!
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Extension of positive definite kernels 6

converges in norm, which implies that

∞∑

n=0

‖
f (n)(z)

n!
‖2 < ∞.

The computation of J∗
z goes as follows: with u = (un)

∞
n=0 ∈ ℓ2(N0,K

p) and f ∈ H(K),

〈Jz(f), u〉ℓ2(N0) =

∞∑

n=0

u∗
n

f (n)(z)

n!

=

∞∑

n=0

〈f,Dn,zun〉H(K)

= 〈f, J∗
z (u)〉ℓ2(N0).

Theorem 3.2. Let K(z, w) be a K
p×p-valued function, entire in z and w. Then:(1) For every pair

(z, w) ∈ K2, the semi-infinite block matrix

Kn,m(z, w) =
1

m!n!

∂n+mK(z, w)

∂zn∂wm , n,m = 0, 1, . . . (3.8)

defines a bounded operator, which is denoted by K (z, w), from ℓ2(N0,K
p) into itself.

(2) The operator K (w,w) is Hermitian if the kernel K(z, w) is Hermitian.

(3) The B(ℓ2, ℓ2)-valued function K (z, w) is positive definite in K if the kernel K(z, w) is positive definite
in K.
(4) Assume the kernel K(z, w) is positive definite in K. Then,

K (z, w) = JzJ
∗
w. (3.9)

Proof. Let (z, w) ∈ K2. The power series expansion

K(z +M,w +M) =

∞∑

n,m=0

Kn,m(z, w)Mn+m (3.10)

converges for every M > 0, and, in particular, there is a positive number C = C(z, w,M) such that

|Kn,m(z, w)Mn+m| ≤ C < ∞, ∀n,m = 0, 1, . . . (3.11)

Now, let u = (un)
∞
n=0 and v = (vn)

∞
n=0 be two sequences in ℓ2(N0,K

p). Then, for M > 1, and using the
Cauchy-Schwartz inequality,

‖

∞∑

n=0

un

Mn
‖ ≤

(
∞∑

n=0

‖un‖
2

)1/2( ∞∑

n=0

M−2n

)1/2

=
‖u‖√
1− 1

M2

.

Also, a similar result holds for v. Then, we have

|u∗
nKn,m(z, w)vm| ≤

‖un‖

Mn
C(z, w,M)

‖vm‖

Mm
.

Finally,

|

∞∑

n,m=0

u∗
nKn,m(z, w)vm| ≤

C

1− 1
M2

‖u‖ · ‖v‖.
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Extension of positive definite kernels 7

As a consequence of the previous theorem, we can write:

Corollary 3.3. Let η = (ηm)∞m=0 ∈ ℓ2(N0,K
p) and w ∈ K. Then,

∞∑

m=0

Dm,wηm ∈ H(K) (3.12)

and

K (z, w)η =




(
∑∞

m=0 Dm,wηm)(z)
(
∑∞

m=0 Dm,wηm)(1)(z)
1
2! (
∑∞

m=0 Dm,wηm)(2)(z)
...


 . (3.13)

Proof. The first claim comes from

〈η,K (w,w)η〉ℓ2(N0) = ‖

∞∑

m=0

Dm,wηm‖2H(K).

By Eq. (3.2),

1

n!

(
∞∑

m=0

Dm,wηm

)(n)

= 〈

∞∑

m=0

Dm,wηm , Dn,z〉H(K).

However, this is the n-th entry of K (z, w)η, as can be seen from Eq. (3.3).

Theorem 3.4. Assume K(z, w) is a Kp×p-valued positive definite function in K and entire in the vari-
ables z and w. The reproducing kernel Hilbert space associated to K (z, w) is the space of jet functions
generated by the elements of H(K), with inner product

〈J(f), J(g)〉H(K ) = 〈f, g〉H(K). (3.14)

Proof. Using Eq. (3.13), we have

〈J(f)(·),K (·, w)η〉H(K ) = 〈f,

∞∑

m=0

Dm,wηm〉H(K)

=
∞∑

m=0

η∗m
f (m)(w)

m!

= 〈J(f)(w), η〉ℓ2(N0,Cp).

(3.15)

We, now, present two special cases.

Strong algebras

The notion of strong algebra was introduced in Refs.3,4. It originated from a space of stochastic distri-
butions defined by Y. Kondratiev10,11 and a related inequality proved by V̊age12,13.

Definition 3.5. An algebra A which is an inductive limit of a family of Banach spaces {Bt : t ∈ T }
directed under inclusion is called a strong algebra if, for every t ∈ T , there exists h(t) ∈ T such that, for
every s ≥ h(t), there exists a positive constant cs,t such that, for every A ∈ Bt and B ∈ Bs, the products
AB and BA belong to Bs and

‖AB‖s ≤ cs,t‖A‖t · ‖B‖s and ‖BA‖s ≤ cs,t‖A‖t · ‖B‖s. (3.16)
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Extension of positive definite kernels 8

Let A ∈ Bt ⊂ A, where A is a strong algebra. Also, let s = h(t) and dt = ch(t),t. An easy induction
shows that

‖An‖h(t) ≤ dn−1
t ‖A‖nt , n = 1, 2, . . . (3.17)

Thus, for a ∈ A′, we have

|〈a,An〉| ≤ ‖a‖′ · dn−1
t ‖A‖nt , n = 1, 2, . . . (3.18)

Hence, for a ∈ A′,

|〈a,An〉| ≤
‖a‖′

dt
(ct‖A‖t)

n
, n = 1, 2, . . . (3.19)

Therefore, the following theorem holds:

Theorem 3.6. In a strong algebra A, the power series given by Eq. (1.2)

f(z +A) =

∞∑

n=0

An f
(n)(z)

n!

converges for every A ∈ A. In particular, Eq. (2.12) holds for all a ∈ A′ and all A ∈ A.

Proof. This follows from Eq. (3.18).

Banach algebras

The case of Banach algebras is much simpler than that of strong algebras. Indeed, when A is a Banach
algebra, it and its dual are endowed with a norm, denoted by ‖ · ‖ and ‖ · ‖′, respectively, and we have

|〈a,An〉| ≤ ‖a‖′ · ‖A‖n.

Then, a version of Theorem 3.6 also holds in this case.

IV. GENERAL ANALYTIC KERNELS

We, now, consider the case of kernels whose domain of analyticity in z and w is not necessarily the entire
set K.

Theorem 4.1. Let K(z, w) be a K
p×p-valued kernel analytic in z and w in the open set ΩK. Then,

for every (z, w) ∈ Ω2
K
, there exists M0 (which depends on (z, w)) such that, for every M ∈ (0,M0), the

infinite matrix

1

m!n!

∂n+mK(z, w)

∂zn∂wm Mn+m (4.1)

defines a bounded operator from ℓ2(N0) into itself.

Proof. Let z, w ∈ ΩK. Then, there exists M0 > 0 (which depends on z and w) for which the power
expansion

K(z +M0, w +M0) =

∞∑

n,m=0

Kn,m(z, w)Mn+m
0

converges. Let C be such that

|Kn,m(z, w)Mn+m
0 | ≤ C.
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Extension of positive definite kernels 9

For M ∈ (0,M0) we have

|η∗nKn,m(z, w)Mn+mξm| = |η∗n
Mn

0

Mn
Kn,m(z, w)Mn+m

0 ξm
ρm

ρm0
|

≤ C

(
‖an‖

Mn

Mn
0

)(
‖ξm‖

Mm

Mm
0

|

)
.

Hence,

|

∞∑

n,m=0

η∗nKn,m(z, w)Mn+mξm| ≤ C‖η‖ · ‖ξ‖
1

1− M
M0

.

As a consequence, we have the following proposition, where

e(z)




I
zI

z2I

z3I
...




, z ∈ K. (4.2)

Proposition 4.2. Let D(M) denotes the diagonal operator with diagonal equals to (I,M,M2,M3, · · · ).
Thus,

〈D(M)K (z + h,w + k)D(M)ξ, η〉 = 〈K (z, w)e(k)ξ, e(h)η〉. (4.3)

The new positive definite kernel is, then,

〈D(M)K (z, w)D(M)X(b, B), X(a,A)〉ℓ2(N0). (4.4)

V. OPERATORS

Let K be an analytic kernel, and T in B(H(K)). Then, T has a natural extension to an operator from

H(K̃) into itself via the formula

T̃ (J(f)) = J(Tf) (5.1)

By definition of the norm inB(H(K)), the operator T̃ is bounded if and only if T is bounded. Furthermore
we have the following result, the proof of which we omit.

Proposition 5.1. Let T and S be possibly unbounded operators in H(K). Then,

(T̃ S)(J(f)) = T̃ (S̃J(f)), f ∈ DomS such that, Sf ∈ DomT, (5.2)

T̃ ∗(J(f)) = T̃ ∗J(f), f ∈ DomT. (5.3)

In general, the case of unbounded operators is of interest, as the Fock space example shows. Then, if

Z ≡




0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
...

...
...

...
. . .


 (5.4)

and

S ≡




0 1 0 0 0 · · ·
0 0 2 0 0 · · ·
0 0 0 3 0 · · ·
...

...
...

...
...

. . .


 , (5.5)
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Extension of positive definite kernels 10

we have

M̃z(J(f)) = (zI + Z)J(f) (5.6)

and

∂̃z(J(f)) = SJ(f). (5.7)

Next, letting h ∈ G as in Eq. (2.8) and Γn(z)h = f(n)(z)
n! , we extend the operators to the space of K-valued

functions with reproducing kernel given by Eq. (2.5) as

TA

(
∞∑

n=0

〈a∗, An〉Γn(z)h

)
=

∞∑

n=0

〈a∗, An〉Γn(z)Th. (5.8)

When G = H(K) in the factorization given by Eq. (2.8), we have

TA

(
∞∑

n=0

〈a∗, An〉Γn(z)h

)
=

∞∑

n=0

〈a∗, An〉
(Th)(n)(z)

n!
(5.9)

or, equivalently,

〈a∗, (Tf)(z +A)〉 =

∞∑

n=0

〈a∗, An〉
(Th)(n)(z)

n!
. (5.10)

Proposition 5.2. Let T, S be two possibly unbounded linear operators from H(K) into itself. Then,

(TS)A = (T )A(S)A, (5.11)

(TA)
∗ = (T ∗)A. (5.12)

Finally, we note that the operators T, T̃ and TA are related by

TA

(
∞∑

n=0

〈a∗, An〉Γnh

)
= 〈T̃ J(f), X(a, (An)∞n=0)〉ℓ2(N0). (5.13)

Indeed, we have

TA

(
∞∑

n=0

〈a∗, An〉Γnh

)
= 〈J(Tf), X(a, (An)∞n=0)〉ℓ2(N0)

= 〈T̃ (f), X(a, (An)∞n=0)〉ℓ2(N0).

ACKNOWLEDGMENT

Alpay thanks the Foster G. and Mary McGraw Professorship in Mathematical Sciences, which supported
this research. Ismael L. Paiva acknowledges financial support from the Science without Borders Program
(CNPq/Brazil, Fund No. 234347/2014-7).

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are available within the article.

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
07

30
1



Extension of positive definite kernels 11

REFERENCES

1D. Alpay and D. Levanony, Linear stochastic systems: a white noise approach, Acta Appl. Math. 110, 545 (2010).
2D. Alpay, D. Levanony, and A. Pinhas, Linear stochastic state space theory in the white noise space setting,
SIAM J. Control Optim. 48, 5009 (2010).

3D. Alpay and G. Salomon, Topological convolution algebras, J. Funct. Anal. 264, 2224 (2013).
4D. Alpay and G. Salomon, On algebras which are inductive limits of Banach spaces, Integr. Equ. Op. Th. 83, 211 (2015).
5D. Alpay and H. Attia, An interpolation problem for functions with values in a commutative ring, in A Panorama of

Modern Operator Theory and Related Topics, Operator Theory: Advances and Applications, Vol. 218 (Birkhäuser, 2012)
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