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 Background and aims Leaf functional traits are strongly tied to growth strategies and

ecological processes across species, but few efforts have linked intraspecific trait

variation to performance across ontogenetic and environmental gradients.  Plants are

believed to shift towards more resource-conservative traits in stressful environments

and as they age.  However, uncertainty in how intraspecific trait variation aligns with

plant age and performance in the context of environmental variation may limit our

ability to use traits to infer ecological processes at larger scales.

 Methods We measured leaf physiological and morphological traits, canopy volume,

and flowering effort for Artemisia californica (California sagebrush), a dominant

shrub species in the coastal sage scrub community, under conditions of 50%, 100%,

and 150% ambient precipitation for three years.

 Key results Plant age was a stronger driver of variation in traits and performance than

water availability.  Older plants demonstrated trait values consistent with a more

conservative resource-use strategy and trait values were less sensitive to drought.

Several trait correlations were consistent across years and treatments; for example,

plants with high photosynthetic rates tended to have high stomatal conductance, leaf

nitrogen concentration, and light-use efficiency.  However, the trade-off between leaf

construction and leaf nitrogen evident in older plants was absent for first-year plants.

While few traits correlated with plant growth and flowering effort, we observed a

positive correlation with leaf mass per area and performance in some groups of older

plants.
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 Conclusions Overall, our results suggest that trait sensitivity to the environment is

most visible during earlier stages of development, after which intraspecific trait

variation and relationships may stabilize.  While plant age plays a major role in

intraspecific trait variation and sensitivity (and thus trait-based inferences), the direct

influence of environment on growth and fecundity is just as critical to predicting plant

performance in a changing environment.

Key words: Artemisia californica, intraspecific trait variation, drought, photosynthesis, 

water-use efficiency, plant age. 
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INTRODUCTION 

Trait differences across species have long been used to understand how species, populations, 

and communities function in different environments (Gleason, 1926, Harper, 1967).  

However, the use of species means can mask important intraspecific variation (Siefert et al., 

2015, Violle et al., 2012) arising from genetic, environmental, and ontogenetic sources 

(Albert et al., 2011).  By creating differential fitness responses to abiotic and biotic stressors, 

intraspecific trait variation can influence the response of populations and species to 

environmental change (Darwin, 1859), with cascading impacts on community and ecosystem 

functions (Bolnick et al., 2011, Miner et al., 2005).  While quantifying intraspecific trait 

variation for every species is implausible, characterizing the nature of intraspecific variation 

along critical axes of environmental and developmental variation is essential, particularly for 

studies of trait evolution and species-level patterns (Albert et al., 2011, Bolnick et al., 2011). 

Environmental variation can result in substantial trait variation as plant growth 

strategies shift from stress tolerance at low resource availability to rapid growth at high 

resource availability.  For example, interspecific trait variation in response to soil moisture 

gradients has been well characterized, with dominant plants in arid environments possessing 

tough tissues, high root mass fraction, and high water-use efficiency (Poorter and 

Markesteijn, 2008, Wright et al., 2001, Cornwell and Ackerly, 2009, Díaz et al., 1999, Reich 

et al., 2003, Chapin et al., 1993), although patterns may depend on the temporal and spatial 

scale examined (Sandel et al., 2010, Moles et al., 2014).  Similar intraspecific patterns have 

been documented along environmental gradients and when individuals are exposed to 

drought (Heschel et al., 2002, Winkler et al., 2018, Larson and Funk, 2016, Valladares and 

Sánchez-Gómez, 2006, Jung et al., 2014, Eziz et al., 2017), although the nature of 

environment-induced shifts clearly vary.  For example, while long-lived perennials may 

move further towards resource conservation, annual species with drought escape strategies 
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may be pushed towards rapid growth, high rates of resource acquisition, and early flowering 

under water limitation (Kooyers, 2015, Volaire, 2018).  Collectively, these studies suggest 

that environmental factors are a major driver of intraspecific trait variation for a range of 

species. 

Most studies of trait variation compare individuals or species at a single ontogenetic 

stage.  However, plants experience different abiotic and biotic stressors as they age and 

change in size, which should lead to different growth and allocation patterns (Lasky et al., 

2015, Grubb, 1977, Barton and Koricheva, 2010, Coleman et al., 1994).  Although many 

trait-based inferences rely on traits collected from adults, seedlings may have different 

attributes aligned with establishment and rapid growth, as greater plant size may decrease 

consequences of or exposure to stress.  For example, larger seedlings may better withstand 

damage from herbivores, and seedlings with deeper root systems with greater soil water 

access may avoid or delay drought.  The few studies that have examined how traits vary with 

age found that younger individuals have trait values aligned with resource acquisition, while 

older individuals have more conservative traits (Dayrell et al., 2018, Mason et al., 2013, 

Damián et al., 2018, Spasojevic et al., 2014).  The relationship between these traits and plant 

performance can also vary with plant age.  Traits such as leaf mass per area, water-use 

efficiency, and seed mass tend to be more strongly linked to growth and mortality in 

seedlings compared to adult plants (Harrison and LaForgia, 2019, Gibert et al., 2016, Casper 

et al., 2005).  Thus, while previous work suggests that plant age and size play a major role in 

intraspecific trait variation, more studies are needed to determine how specific traits can be 

used to predict plant performance across multiple developmental stages.  

Finally, environmental stress and plant age may interact in potentially important ways 

to influence intraspecific trait variation.  If seedlings and juveniles are more focused on 

establishment and growth, this can come at the expense of defense and stress tolerance (Lum 
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and Barton, 2019, Markesteijn and Poorter, 2009) resulting in variable trait-environment 

relationships across different demographics of the population (Lusk and Warton, 2007).  For 

example, Cavender-Bares and Bazzaz (2000) found that young oak seedlings were more 

sensitive to drought than mature individuals.  Furthermore, trait plasticity in response to 

environmental variation may depend on plant age, with additional implications for fitness.  

Specifically, higher trait plasticity in seedlings (e.g., Niinemets, 2004) may buffer them from 

fluctuating environmental conditions.  Linking intraspecific trait variation to plant 

performance across age groups and environmental variation will help establish how traits can 

be used to more accurately predict the response of species and communities to climate change 

(Kimball et al., 2016). 

In this study, we ask three questions.  First, how do leaf traits change with water 

availability and plant age?  We expect a shift towards more resource-conservative traits in 

low water environments and in older individuals; specifically, tough leaf construction, high 

water-use efficiency, and low leaf nitrogen concentration and rates of carbon assimilation.  

Second, are traits and performance less impacted by water availability in older individuals?  

A resource-conservation strategy employed by older individuals may lead to low variation in 

trait values and performance across water treatments when compared to young individuals.  

We also expect to see more drought sensitivity (low leaf water potential) in younger plants.  

Finally, do water availability and plant age impact how traits relate to each other and to 

performance?  Based on previous work, we expect that trait relationships will be stronger in 

young plants (Harrison and LaForgia, 2019, Gibert et al., 2016, Casper et al., 2005), but it is 

possible that trait correlations are consistent across years with trait means shifting towards 

resource conservation in older plants.  It is also possible that different traits drive 

performance under dry and wet conditions (Heschel et al., 2004). 
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METHODS 

Study species and site 

Artemisia californica (California sagebrush) is a dominant, facultatively drought-deciduous 

shrub in coastal sage scrub systems.  Coastal sage scrub is a Mediterranean-climate 

ecosystem found along the coast of California (USA) and is characterized by a diverse mix of 

shrubs and herbaceous plants (Cleland et al., 2016).  Coastal sage scrub, and A. californica in 

particular, is an excellent system for studying how traits drive plant responses to water 

availability for several reasons, including strong and variable abiotic stress in the region; A. 

californica ages quickly, moving to adulthood by year two; and documented plasticity in A. 

californica leaves through seasonal dimorphism associated with drought response (Westman, 

1981).  For the experiment, we obtained five-month old locally sourced seedlings of A. 

californica from Tree of Life Nursery (San Juan Capistrano, CA, USA).  

We investigated plant traits and performance in this system by establishing a rainfall 

manipulation experiment at the University of California South Coast Research and Extension 

Center in Irvine, CA (33º41'N, 117º43'W; 125 m elevation, 330 mm avg. annual 

precipitation).  Precipitation in Mediterranean-climate ecosystems can vary strongly inter- 

and intra-annually.  Over the last 20 years, annual precipitation in this region has ranged from 

60 to 700 mm.  In normal years, plants often receive over 50 mm of rain per month 

throughout the wet season.  However, in drought years, precipitation can be much more 

intermittent.  For example, in 2004, the bulk of precipitation was received in one month 

(February) with all other months receiving less than 20 mm (data from National Weather 

Service, Santa Ana, CA).  During our experiment, annual precipitation was below the 330 

mm historic average all three growing seasons: 110 mm, 301 mm, and 207 mm for the 2013-

14, 2014-15, and 2015-16 growing seasons, respectively.  Annual average temperature was 
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fairly consistent across years, ranging from a low of 17.6 C in 2013 to a high of 18.9 C in 

2014. 

Experimental design 

We established our study site in a fallow field which was irrigated and disked to 

reduce weed growth and fenced to discourage herbivory.  To manipulate rainfall, we 

constructed nine rain-out shelters (3 m (w) x 7.3 m (l) x 2.6 m (h)) with retractable clear 

plastic covers.  Covers were raised during major rainfall events (> 0.25 mm) to exclude 

precipitation.  To implement rainfall treatments, we added water with a sprinkler irrigation 

system installed in each structure (sprinkler height 1.5 m; flow rate 14 mm/hr; >75% 

distribution uniformity).  We installed soil moisture sensors at a depth of 15 cm (one EC-5 

sensor per structure; Decagon Devices, Inc., Pullman, WA, USA) to monitor soil moisture 

status.  To avoid interference with root systems when sensors were replaced over the three-

year experiment, soil moisture sensors were installed in the corner of each structure, 1.8 m 

away from one edge of the structure and 0.15 m away from the other.  

We analyzed soil texture, pH, and nutrient concentrations for three samples per 

shelter.  Soil pits were dug in each structure during May 2016 and one sample was collected 

from three depths (15-25 cm, 65-75 cm, and 115-125 cm) and pooled.  Prior to analysis, soils 

were put through a 2 mm sieve to remove rocks and organic matter.  Soil pH was determined 

on 20 mg of air-dried soil in DI water.  A second sample of soil was dried at 60°C for 48 

hours and analyzed for sediment grain size analysis using a hydrometer (H-B Instrument Co., 

ASTM Soil Hydrometer 152H) following a slightly modified protocol of Kalra and Maynard 

(1991).  A third sample of air-dried soil was sent to the UC Davis analytical lab for nitrogen 

(NO3), phosphorus (Olsen P), and potassium concentration.  Soil data are presented in 

Supplementary data Table S1. 



Acc
ep

ted
 M

an
us

cri
pt

9 

In each shelter, we established 8-1m
2
 plots containing one plant of A. californica and

one each of seven other species common to coastal sage scrub (each planted 30 cm apart and 

randomly located within plots).  Seedlings were transplanted in December 2013.  We 

immediately replaced any seedlings that died in the first month.  Plots were weeded biweekly 

throughout the first growing season and as needed to reduce external competition for the 

remainder of the experiment.   

After a one-month establishment period in which all plants received approximately 20 

mm of precipitation, we began watering treatments in January 2014.  Each structure was 

randomly assigned to one of three watering treatments (3 treatments x 3 shelters x 8 plots = 

72 total plots).  Treatments included ambient precipitation (100% of average January-April 

precipitation; 220 mm target), high precipitation (150% of January-April average; 330 mm 

target), and low precipitation (50% of January-April average; 110 mm target).  Water was 

applied from January to April each year to achieve these targets (typically 2-3 times/week).  

Soil moisture was consistently different across water treatments in the three-year experiment 

(Supplementary data Figure S1).  Average soil moisture for the growing season (January-

May) was: 50% (Y1: 18.3%, Y2: 17.4%, Y3: 19.5%); 100% (Y1: 19.8%, Y2: 20.1%, Y3: 

20.9%), and 150% (Y1: 25.7%, Y2: 22.7%, Y3: 23.7%).  Covers were permanently retracted 

to allow natural rainfall from May to December of each year (i.e., the dry season).  Except for 

a large summer storm in September 2015 (53 mm of rainfall, Supplementary data Figure S1), 

rainfall into the uncovered plots was negligible during summer months.  At the end of the 

first growing season, we had 24, 21, and 22 individuals in the 50%, 100%, and 150% plots 

(i.e., 67 of 72 planted individuals).  We experienced some additional mortality during the 

third year, bringing the total number of plants in the 100% plots to 17. 
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Sampling 

We sampled carbon assimilation and water-use traits that are known to be affected by 

variation in water availability.  Traits and reproductive data were sampled each year for three 

years (2014, 2015, and 2016).  Photosynthetic data were collected on one recently mature leaf 

per plant.  Between 08:00 and 13:00 local time, we measured leaf photosynthetic capacity 

(Amass, nmol g
-1

 s
-1

), transpiration rate (E, mol m
-2

 s
-1

), stomatal conductance (g, mol m
-2

 s
-1

),

and quantum efficiency of photosystem II (ΦPSII) with a LI-6400 portable photosynthesis 

system (LI-COR, Lincoln, NE, USA).  Water-use efficiency (WUE) was calculated as A/E.  

Environmental conditions included saturating light levels at 2000 mol photon m
-2

 s
-1

, CO2

concentration at 400 µL L
-1

, block temperature at 25 C, and chamber flow rate between 300

and 500 mol s
-1

 to maintain a relative humidity between 40–60 %.  The quantum efficiency

of photosystem II (ΦPSII) was calculated as (Fm’ - Fs)/ Fm’, where Fs is the fluorescence yield 

of a light-adapted leaf and Fm’ is the maximal fluorescence during a saturating light flash.  

When necessary, photosynthetic rates were temperature-corrected using standard equations 

(von Caemmerer, 2000) and area-corrected to account for leaves that were too small to fill the 

chamber.  We destructively sampled one recently mature leaf per plant to measure mid-day 

(9:00 to 13:00 local time) leaf water potential (leaf, MPa) at least one day after any irrigation 

activity (Model 1000 pressure chamber, PMS instruments, Albany, OR, USA).  Additional 

leaves were collected and scanned for leaf area, dried at 60ºC for 3 days, weighed to calculate 

leaf mass per area (LMA; g m
-2

), and ground for leaf N analysis (% leaf N by mass; Nmass),

using a Costech 4010 Elemental Combustion System (Costech Analytical Technologies, 

Valencia, California, USA). 

At the end of each growing season (April-May), we assessed canopy volume (height x 

canopy area).  Given the difficulty of counting small, abundant inflorescences along A. 

californica flowering stalks, we measured total flowering stalk length as a metric of 
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flowering effort.  The number of seeds per flower and flower density per stalk did not vary 

greatly between A. californica plants in a similar experiment (G. Vose, unpublished data).  

All individuals flowered every year and flowering measures coincided with peak flowering, 

which varied from year to year (June-July 2014, August-September 2015, August-September 

2016).   

Statistical analysis 

All analyses were conducted in R (R version 3.3.1).  To evaluate our how leaf traits 

change with water availability and plant age, we performed two analyses.  We first used 

perMANOVA (permutation-based MANOVA) to examine the effect of water treatment and 

age on multivariate trait space (Amass, g, ΦPSII, WUE, leaf N, LMA).  We used the full set of 

scaled metrics as the response and water treatment, year, and their interaction as explanatory 

variables (999 permutations, Euclidean distances; vegan package).  We then conducted a 

repeated measures ANOVA for each trait or performance response metric with year, water 

treatment and their interaction as fixed effects and individual plant as a random effect (nlme 

package).  When traits were not normally distributed, any outliers greater than two standard 

deviations from the mean were tagged.  If their removal improved the distribution, they were 

removed.  Data were also log transformed as necessary to meet assumptions of normality.  

Following Moran (2003), instead of conducting sequential Bonferroni corrections for 

multiple statistical tests, all P-values are reported.   

To assess differences in intraspecific trait variation across years, we used a plasticity 

index (PIV) described by Valladares et al. (2006).  The index ranges from zero (no plasticity) 

to one (maximum plasticity) and is the difference between the minimum and maximum value 

of the treatment means of a trait divided by the maximum value.  Plasticity indices were 

evaluated across years with a one-way ANOVA.  To assess how water availability and plant 
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age impact relationships among traits and performance, we performed two analyses.  First, a 

principal component analysis (PCA) was used to identify trade-offs among traits 

(performance metrics were excluded) using the psych package in R.  Analyses were 

conducted on standardized trait means and repeated for each year to understand broad 

changes in trait tradeoffs over time.  Axes were varimax-rotated and constrained to the first 

four components to improve axis interpretability.  To further interpret which traits were 

correlated with each other and with performance metrics across treatments and within years, 

we calculated Pearson's correlation coefficients. 

RESULTS 

Multivariate trait space responded significantly to year and the interaction between water 

treatment and year (water p = 0.38, R
2 

= 0.02; year p < 0.001, R
2
 = 0.26; water x year p <

0.001, R
2
 = 0.05).  These patterns aligned with those observed for individual metrics.

Although performance variables (canopy volume and flowering effort) showed significant 

rainfall responses, only water potential (trended lower in dry conditions) was significantly 

impacted by rainfall across years (Figure 1, Supplementary data Table S2).  In contrast, 

several traits and performance variables were generally affected by plant age.  Older plants 

had higher LMA, lower leaf N concentration, and lower photosynthetic function (Amass, g, 

ΦPSII) – consistent with a more conservative resource use strategy (Figure 1, Supplementary 

data Table S2).  Only water-use efficiency was fully independent of plant age.  As expected, 

older plants were larger and allocated more to reproduction than younger plants. 

For several traits, the effect of rainfall depended on year (significant treatment by year 

interactions).  In most cases, these results were consistent with the idea that older plants are 

less impacted by variation in water treatment.  Water potential, a measure of plant stress, 

varied across water treatments in year one, but not in later years (Figure 1).  Plants growing 



Acc
ep

ted
 M

an
us

cri
pt

13 

in high water treatments had greater leaf N concentration, stomatal conductance, and canopy 

volume in years one and two, but these differences disappeared in third-year plants.  

Plasticity indices for photosynthetic rate and water-use traits (stomatal conductance, leaf 

water potential, water-use efficiency) were higher in younger plants but these patterns did not 

hold when analyzed across all traits.  PIV ranged from 0.04 to 0.63 depending on the trait and 

year (Supplementary data Table S3), but there was no difference in PIV across years (F = 

2.15, p = 0.138), even when canopy volume and reproductive allocation were excluded from 

the analysis (F = 2.88, p = 0.082).   

Functional trade-offs captured by our principal component analysis were consistent 

across the three years (Supplementary data Figure S2).  The first two PCA axes described 

relationships among carbon assimilation and leaf economic traits (Amass, g, N, LMA), and 

explained roughly 50% of the variation among individuals each year (Supplementary data 

Figure S2, Table S4).  In each year, another 40% of the variation was explained by water- and 

light-use efficiency (third and fourth axes).   

Several bivariate trait correlations were consistent across years and water treatments 

(Figures 2, 3).  Plants with high photosynthetic rates tended to have high stomatal 

conductance, leaf N concentration, and light-use efficiency, and there were consistent 

negative correlations between stomatal conductance and WUE, and between leaf N 

concentration and LMA.  In many of the cases, relationships among traits were similar across 

treatments and years, even while the absolute values of traits shifted with age (e.g., Figure 

2A).  In other cases, trait correlations differed between young (year one) and older (years two 

and three) individuals.  For example, the economic trade-off between leaf construction and 

leaf nitrogen concentration observed across all individuals was strongest in older plants but 

non-significant in first-year plants (Figure 2B, 3).  In contrast, plants with high LMA were 
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more stressed (lower water potential) in the low water treatment when young, but this pattern 

reversed (year 2) or was not present (year 3) in older plants (Figures 2C, 3).   

Despite the relatively large number of individual plants examined each year (n=62-

67), few traits were significantly correlated with canopy volume or flowering effort, our two 

performance metrics (Figure 3).  We observed an increasing positive correlation with LMA 

and performance as plants aged, although this was only statistically significant in some age 

by treatment combinations.  Light-use efficiency was positively correlated with canopy 

volume and flowering effort in year two, and photosynthetic rate was positively correlated 

with canopy volume in year three.  Plants under greater water stress (more negative water 

potentials in the low water treatment) had lower flowering effort, but this was only 

statistically significant in year one.  Canopy volume and flowering effort were positively 

correlated in only four of the nine age by treatment combinations. 

DISCUSSION 

Intraspecific trait variation strongly impacts ecological and evolutionary processes (Violle et 

al., 2012, Bolnick et al., 2011, Hausch et al., 2018) but it is not well characterized along 

important environmental and ontogenetic axes for many plant species.  Our first objective 

was to understand how key functional traits pertaining to resource use and acquisition change 

with water availability and plant age.  As expected, we found a shift towards more resource-

conservative traits with drought and in older plants, but the effect was more consistent for 

age.  Older individuals had higher LMA, lower leaf N concentration, and reduced 

photosynthetic function compared to younger plants.  For many of these traits, the largest 

difference in function occurred between years one and two, suggesting that trait values 

change most as species move out of the establishment phase.  Thus, our results support 

previous work that older individuals have more conservative traits (Dayrell et al., 2018, 
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Mason et al., 2013, Damián et al., 2018, Spasojevic et al., 2014) and reinforce the idea that 

abiotic and biotic stressors differentially impact growth and allocation patterns as plants age.  

Our results also demonstrate that plant age is an important source of intraspecific trait 

variation that should be considered when making trait-based inferences. 

Our prediction of higher resource conservation in water-stressed plants was partially 

supported.  Drought resulted primarily in higher stress (lower leaf water potential) across 

years and increased water-use efficiency for first-year plants.  Remarkably, photosynthetic 

function was not consistently affected by water treatment.  Significant treatment by year 

interactions suggest that leaf physiology was more sensitive to variation in water availability 

in the first year (e.g., Amass, stomatal conductance) than in older plants.  This may indicate 

that our low water treatment (50% ambient precipitation) was not low enough to trigger trait 

plasticity in drought-deciduous species once established.  Older plants may be more drought 

tolerant due to a shift towards tougher tissues and lower rates of water loss (low stomatal 

conductance); however, older plants with established root systems may also have greater 

access to soil water.  California is characterized by strong inter-annual variation in 

precipitation, and a year with 50% ambient precipitation is not uncommon (California 

Irrigation Management Information System, Irvine, CA, USA).  Thus, it is likely that the 

general resource-conservative strategy observed in A. californica adults is well-adapted to 

deal with rainfall deficits, and may show weak or moderate trait variation in response to 

normal (~50-150% ambient) inter-annual variation in precipitation or under drier, future 

climate scenarios (Cook et al., 2015).  Because we measured traits on the same individuals 

over time, differences between young and old plants may have been influenced by variable 

environmental conditions across years.  For example, the range of soil moisture between low- 

and high-water treatments varied across the three years, although this was mainly driven by 

very high soil moisture in 150% treatment during the first year.  Planting a new cohort of 



Acc
ep

ted
 M

an
us

cri
pt

16 

individuals each year would have removed this influence of year; but this approach limits our 

understanding of how the same individuals change over time. 

Our second objective was to determine if traits and performance are differentially 

impacted by drought as plants age.  Our expectation that young plants demonstrate more trait 

variation across the water gradient was largely supported.  First- and second-year plants 

exhibited greater sensitivity to variation in water availability (as indicated by leaf water 

potential) and conditions of high water availability led to decreases in WUE and increases in 

stomatal conductance and canopy volume in these age groups.  Despite having the lowest leaf 

water potentials, first-year plants in the low water treatment nevertheless displayed higher 

photosynthetic function than second- and third-year plants in most water treatments.  This 

supports the notion that young plants may have more plastic, growth-oriented strategies 

which benefit from greater resource availability.  While greater plasticity may benefit young 

seedlings in a variable environment (Niinemets, 2004), high intraspecific trait variation in this 

age group could also arise from bigger differences in size among plants.  Traits and biomass 

allocation can be more strongly affected by plant size than plant age (Coleman et al., 1994, 

Lusk and Warton, 2007, Wright and McConnaughay, 2002), but our data suggest that 

variation in size was consistent across age groups (coefficient of variation for canopy volume 

was 55.4, 63.2, and 77.6 % for years one, two, and three respectively).  More studies that 

follow individual plants over time and in different environments, such as ours, can help 

determine which traits drive responses to environmental variation over a plant’s lifetime. 

Finally, we explored how traits were linked to each other and to performance across 

age groups and water treatments.  We expected to see strong correlations between traits and 

our performance metrics (canopy volume, flowering effort), particularly for first-year plants 

(Harrison and LaForgia, 2019, Gibert et al., 2016, Casper et al., 2005).  In many systems, 

seedlings are vulnerable to a range of abiotic and biotic stresses, and seed and seedling traits 
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are critical to establishment, growth, and survival (Larson et al., 2015).  As woody plants age 

and increase in size, a larger percentage of biomass is allocated to support tissues (Poorter et 

al., 2012), so it is possible that we wouldn’t expect to see strong relationships between leaf 

traits and performance in older plants.  In contrast to our predictions, we found few 

correlations between traits and performance in any year or water treatment.  Notably, first-

year plants with high LMA were more stressed in our low water treatment, leading to lower 

flowering effort.  However, this pattern reversed in year two; plants with high LMA had 

higher canopy volume and flowering effort in the low water treatment.  With this one 

exception, our results do not suggest that different traits drive performance under dry and wet 

conditions, or across age groups.  This contrasts with some studies that find context 

dependent trait-performance relationships (e.g., Donovan et al., 2009, Sandquist and 

Ehleringer, 1997).  For example, Heschel et al. (2004) found that water-use efficiency was 

adaptive during drought while decreased root biomass allocation was beneficial under wet 

conditions. 

Multivariate axes of trait variation and correlations among traits (where they existed) 

were similar across years and water treatments, and were largely consistent with the trade-off 

between resource acquisition and conservation reflected in the leaf economic spectrum 

(Wright et al., 2004).  These data support the idea that, while trait values may change with 

age, trade-offs among resource acquisition, resource allocation, and maintenance costs exist 

across an individual’s lifetime.  In fact, these tradeoffs may be determined at a very early age.  

Larson et al. (2020) found that trait variation associated with growth/economic strategies 

existed in seedlings that were just four days old.  Consistent trait relationships will simplify 

efforts to use traits to model large scale processes; however, some studies find limited 

agreement between seedling and adult traits (Harrison and LaForgia, 2019).  
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The influence of physiological and morphological traits on fitness is complex because 

traits influence reproductive fitness through performance measures like growth rate and plant 

size (Geber and Griffen, 2003, Farris and Lechowicz, 1990).  Here, we found consistent 

positive correlations between canopy volume and reproductive allocation, although these 

were only statistically significant for some year and treatment combinations, suggesting that 

larger plants have more resources available for reproduction.  Morphological and 

physiological traits may influence growth through several functional pathways; thus, the 

contribution of any one trait to plant performance cannot be examined in isolation from other 

traits.  As we gain a better understanding of how traits interact to influence growth, 

partitioning the effects of individual traits on plant performance via tools like structural 

equation modeling will be possible; however, few experimental designs include the large 

sample sizes needed for structural equation models. 

Why were there so few correlations among traits and performance?  Trait variation is 

sensitive to where a population is positioned on an environmental gradient (Albert et al., 

2010); thus, if our precipitation treatments (50-150% ambient) fell within the optimal range 

for A. californica, it is possible that we sampled a limited range of trait values resulting in 

weak or insignificant correlations.  Additionally, different combinations of traits may 

promote equal fitness (Marks and Lechowicz, 2006), resulting in weak correlations between 

individual traits and performance.  For example, populations of Encelia farinosa, a desert 

shrub, from a dry and wet site displayed different trait values for photosynthetic rate, leaf 

area, and growth but these different trait combinations resulted in similar flowering effort 

(Sandquist and Ehleringer, 1997).  Finally, a more complete picture may emerge when 

additional traits are considered, especially roots which may be important in this semi-arid 

system (Nguyen et al., 2017).   



Acc
ep

ted
 M

an
us

cri
pt

19 

Our study demonstrates that plant age and environmental gradients create a sizable 

amount of intraspecific trait variation, which complicates the use of species means to model 

ecological processes (e.g., Laughlin et al., 2018).  Previous studies have found that 

intraspecific trait variation can be nearly as large as interspecific variation in communities 

and across taxa (Mason et al., 2013, Siefert et al., 2015).  However, our study suggests that 

variation may be constrained to certain ontogenetic stages and environments.  In particular, 

our data suggest that much of the trait variation across different age cohorts is captured 

during the establishment phase and that age is a stronger driver of intraspecific trait variation 

than water availability.  In the absence of such data, ecologists should randomly or select in a 

standardized way individual organs, plants, and populations that best suit the questions being 

addressed (Pérez-Harguindeguy et al., 2013).  
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Figure legends 

Figure 1.  Trait means and standard errors for A. californica grown in three watering 

treatments (50%, 100%, and 150% ambient precipitation) across three years.  Significant 

effects of treatment (T), year (Y), and their interaction (TxY) at p < 0.05 are shown, based on 

repeated measures ANOVA.  Group means with the same lowercase letter are not 

significantly different from each other at p < 0.05.  Trait abbreviations are provided in Table 

1. 

Figure 2.  Bivariate plots for (A) leaf N concentration and photosynthetic rate, (B) leaf N 

concentration and leaf mass per area, and (C) leaf mass per area and leaf water potential.  

Colors denote different ages: one (blue), two (green), and three (orange) years.  Water 

treatments are represented by different shades: 50% (light), 100% (medium), 150% (dark).  

We observed consistent relationships among several traits (such as Amass, leaf N and LMA) 

across individuals, but young and older plants occupied different points along these axes 

(panels A, B).  The relationship between LMA and leaf water potential varied across groups, 

but plants in the 50% water treatment generally displayed higher water potential at low LMA 

(panel C).  Colored lines indicate significant relationships for 100 and 150% treatments.  For 

clarity, significant relationships for 50% treatments are represented by black lines (short dash, 

year 1; long dash, year 2; solid, year 3). 

Figure 3.  Pearson correlation coefficients for A. californica leaf traits across water 

treatments in each of the three years.  Blue and orange squares indicate positive and negative 

correlations, respectively.  Significant correlations at p < 0.05 are shown with a dot in the 

square.  Trait abbreviations are provided in Table 1. 
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Table 1 – Traits measured in the study along with their abbreviation, function, and observed 

relationships with increasing age and water availability.  Effects of water availability were only 

statistically significant in certain years; these are denoted with Y1-3.  For a more detailed 

treatment of observed effects, see Figure 1. 

Trait Abbreviation Function Age Water 

Mass-based photosynthetic rate Amass Carbon assimilation 

Leaf construction 

- 

Stomatal conductance g Carbon assimilation - + (Y1)

Efficiency of photosystem II ΦPSII Light-use efficiency - + (Y3)

Mid-day water potential leaf Stress - (Y1,2)

Water-use efficiency WUE Water-use efficiency - (Y1)

Leaf nitrogen concentration Leaf N Carbon assimilation 

Water-use efficiency 

- 

Leaf mass per area LMA Leaf construction + 

Canopy volume Growth + + (Y1,2) 

Flowering effort Fitness + +
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Figure 1 
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Figure 2 
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Figure 3 
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