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Abstract: Primary cilia are sensory organelles that regulate cell cycle 

and signaling pathways.  In addition to its association with cancer, 

dysfunction of primary cilia is responsible for the pathogenesis of 

polycystic kidney disease (PKD) and other ciliopathies.  Because the 

association between cilia formation or length and cell cycle or division 

is poorly understood, we here evaluated their correlation in this study.  

Using Spectral Karyotyping (SKY) technique, we showed that PKD and the 

cancer/tumorigenic epithelial cells PC3, DU145, and NL20-TA were 

associated with abnormal ploidy.  We also showed that PKD and the cancer 

epithelia were highly proliferative.  Importantly, the cancer epithelial 

cells had a reduction in the presence and/or length of primary cilia 

relative to the normal kidney (NK) cells.  We then used rapamycin to 

restore the expression and length of primary cilia in these cells.  Our 

subsequent analyses indicated that both the presence and length of 

primary cilia were inversely correlated with cell proliferation.  

Collectively, our data suggest that restoring the presence and/or length 

of primary cilia may serve as a novel approach to inhibit cancer cell 

proliferation. 
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Abstract 

 

Primary cilia are sensory organelles that regulate cell cycle and signaling pathways.  In addition 

to its association with cancer, dysfunction of primary cilia is responsible for the pathogenesis of 

polycystic kidney disease (PKD) and other ciliopathies.  Because the association between cilia 

formation or length and cell cycle or division is poorly understood, we here evaluated their 

correlation in this study.  Using Spectral Karyotyping (SKY) technique, we showed that PKD 

and the cancer/tumorigenic epithelial cells PC3, DU145, and NL20-TA were associated with 

abnormal ploidy.  We also showed that PKD and the cancer epithelia were highly proliferative.  

Importantly, the cancer epithelial cells had a reduction in the presence and/or length of primary 

cilia relative to the normal kidney (NK) cells.  We then used rapamycin to restore the expression 

and length of primary cilia in these cells.  Our subsequent analyses indicated that both the 

presence and length of primary cilia were inversely correlated with cell proliferation.  

Collectively, our data suggest that restoring the presence and/or length of primary cilia may 

serve as a novel approach to inhibit cancer cell proliferation. 
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1.Introduction 

 

Most of the non-hematological cells in humans display sensory primary cilia, which are 

expressed on the cell surface [1].  Primary cilia act as antennae that transmit extracellular signals 

into intracellular biochemical responses. Primary cilia regulate cell signaling and key cellular 

processes, such as proliferation, differentiation, and migration [2-5].  Genetic mutations that 

disrupt the function of primary cilia can therefore result in a diverse set of diseases called 

ciliopathies.  These disorders involve not only rare congenital syndromes like Joubert syndrome, 

Bardet-Biedl syndrome, and Meckel syndrome, but also more common diseases such as 

polycystic kidney disease (PKD) [6-10].  Furthermore, cancer has been proposed as a ciliopathy 

[11].  The most essential role of cilia in cancer pathogenesis is presumably its regulation on cell 

cycle and malignancy-related signaling pathways [12-14]. 

 

The structure of the cilium can be divided into 3 parts: the basal body, the axoneme, and the 

transition zone.  The timing of cilium formation or ciliogenesis is controlled by the phases of cell 

cycle [15, 16].  Formation of primary cilia typically begins at the G1/G0 phase of the cell cycle 

when the mother centriole in the centrosome acts as a basal body to start cilia formation [17, 18].  

As cells re-enter the cell cycle, the cilium and the basal body disassembled releasing the 

centrioles to work as the organizing center for the mitotic spindles during cell division [19, 20].  

As the cells enter the quiescence or resting phase, the mother centriole forms the basal body and 

the primary cilium re-assembled.  According to this finding [18, 21], primary cilia develop only 

in quiescent or differentiated cells; therefore, as the proliferation index increases, the number of 

ciliated cells decrease [22].  Thus, cilium has been hypothesized to regulate the cell cycle and is 

thought to halt abnormal cell growth by restricting cell cycle [16]. 
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Previous studies report reduction or loss of primary cilia in a variety of cancer types, such as 

pancreatic cancer, renal cell carcinoma, breast cancer, and cholangiocarcinoma [7, 9, 23, 24].  

Loss of the primary cilia in cancer cells may induce cell proliferation and may also participate in 

abnormal cellular signaling associated with cancer or its formation.  Jenks et. al. recently report 

that enhanced ciliogenesis can facilitate resistance to a number of kinase inhibitors [25]. They 

show that both acquired and de novo resistant cancer cells show an increase in cilia number, and 

length.  Based on the collective evidence and observations, we thus hypothesize that cilia length 

is associated with cancer progression, and specific pathways in cilia associated with cancer cell 

cycle can be modulated. 

 

The major ciliary signaling pathways include the Hedgehog [14], Wnt [26] and Platelet-Derived 

Growth Factor [27].  In particular, Wnt signaling pathway modulates the balance between 

cellular differentiation, polarity controls and proliferation to regulate tissue homeostasis [1, 28].  

The presence of primary cilium controls the expression levels of Wnt target genes by regulating 

the degradation of Disheveled (Dvl), a protein that is recruited to the membrane and binds axin 

to prevent -catenin degradation.  Specifically, inversin and nephrolithiasis-3 localized in the 

primary cilium are involved in the regulation of Dvl level [26, 29].  In addition, sequestering 

ciliary protein AHI1 to the cilium has been shown to prevent β-catenin to translocate into the 

nucleus [30]. 

 

In this study, we characterized the presence and the length of primary cilia in human cancer cells.  

We also examined the correlation between primary cilia expression and Wnt signaling pathway.  
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We showed that primary cilia presence and length are reduced in cancer.  Moreover, we 

demonstrated that this loss of primary cilia is associated with an increase in the baseline -

catenin level as a measure of Wnt signaling.  Because recent studies have shown that cilia length 

in vascular endothelia and renal epithelia of normal and cancer tissues can be regulated 

pharmacologically [31, 32], we further aimed to restore primary cilia expression in cancer cells 

using sirolimus (or rapamycin).  Our goal was to understand the relationship among Wnt 

signaling pathway, cell proliferation and primary cilia. 
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2. Materials and Methods 

 

2.1. Cell Lines and Culture Conditions 

Only human epithelial cells were used in our studies.  Both normal kidney (NK) and PKD2 cells 

with abnormal cilia function (PKD) have been previously characterized [33, 34].  NK has fully 

functional primary cilia, while PKD is a well-known model for dysfunctional cilia; thus, we used 

them as controls in our study.  Human prostate cancer cells PC3 (ATCC CRL-1435) [35], 

DU145 (ATCC HTB-81) [36] and bronchial tumorigenic epithelial cells NL20-TA or NL 

(ATCC CRL-2504) [37] were obtained from the American Type Culture Collection (ATCC, 

Manassas, VA).  We used these epithelial cells to obtain independent correlation between 

hyperproliferation and cilia length or cilia formation in the presence or absence of rapamycin 

(AK Scientific, Union City, CA) treatment.  Thus, the presence studies were to examine if there 

was a correlation in the changes between hyperproliferation and cilia length or cilia formation 

using these human epithelial cell lines.  Cells were supplied with epithelia growth medium 

(PromoCell, Heidelberg, Germany) supplemented with 15% fetal bovine serum (FBS; 

Seradignm, Radnor, PA), and were maintained in 5% CO2 at 37C under humidified culture 

conditions.  In the experiments that cell confluence was required to induce cilia formation, the 

cultured cells were incubated with media containing 2% FBS and 0, 1 or 10 M of rapamycin for 

1, 3, and 8 days [31, 32, 38].  For the 8-days treatment, the media and rapamycin were replaced 

with the fresh preparation on the fourth day. Both concentrations and durations of rapamycin 

treatment had also been used in previous studies [31, 32]. 

 

2.2. Spectral Karyotyping (HiSKY) 
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We have previously described this methodology in detail [39].  Briefly, after the cells were 

grown to 60-70% confluent, 0.05 μg/ml of colcemid solution (Adipogen, San Diego, CA) was 

added to the cells and incubated for 48 hours.  After harvesting the cells, they were incubated 

with a hypotonic solution (0.56% KCl) followed by a fixing solution (methanol/acetic acid). 

KCl, methanol and acetic were purchased from Fisher Scientific (Fair Lawn, NJ). The 

chromosomes were next spread on a slide and hybridized with a cocktail of human fluorescence-

labeled probes specific for individual chromosomes (Applied Spectral Imaging, Carlsbad, CA).  

Data were analyzed with the HiSKY Spectral Imaging system from Applied Spectral Imaging.   

 

2.3. Immunofluorescent Staining 

While cilia may lose some of their structural integrity upon fixation, certain fixation techniques 

can preserve the substructure of primary cilia and ciliary proteins [40, 41]. Selecting a proper 

fixation method depends on which ciliary proteins are of interest to the investigators. Generally, 

proteins that are localized along the axoneme are best preserved with paraformaldehyde fixation. 

Since axoneme is a microtubule-rich structure that forms the core of primary cilia, antibodies 

against acetylated--tubulin can be used to detect axoneme. Paraformaldehyde fixation (10-min 

incubation at room temperature) provides a replicable result, maintains an intact microtubule 

cytoskeleton, and preserves the cytoskeletal labeling. The same technique was therefore used in 

our study to maintain consistency with what was already established in the cilia field [40, 41]. 

 

Briefly, cells were seeded onto coverslips placed in six-well plates.  After the cells have reached 

the required confluency (60-70%), they were cultured for the various time points in maintenance 

medium with or without rapamycin.  The cells on the coverslips were then subjected to a 10 
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minute-fixation using 4% paraformaldehyde (EMS, Hartfield, PA) and 2% sucrose (Fischer 

Scientific, Fair Lawn, NJ) in phosphate-buffered saline (PBS; Corning, Manassas, VA).  After a 

PBS wash, the cells were permeabilized using 1% TritonX (Fischer Scientific, Fair Lawn, NJ) in 

PBS.  Acetylated--tubulin antibody (1:10,000 dilution, Sigma Aldrich, St. Louis, MO; catalog# 

T6793) was added to the primary cilia and incubated overnight at 4
o
C followed by a 1-hour 

incubation at room temperature with fluorescein isothiocyanate (FITC)-conjugated anti-mouse 

IgG secondary antibody (1:1000 dilution, Vector Labs Burlingame, CA; catalog# Fl-2000; lot# 

ZE0803).  Actin filaments were stained by incubating the cells for 1 hour at room temperature 

with Texas Red-conjugated phalloidin (1:400 dilution, Invitrogen, Carlsbad, CA; catalog# 

T7471, lot# 23749W).  Nuclei were stained with mounting media containing Dapi blue 

fluorescence (Vector Labs Burlingame, CA).  The images of the primary cilia were captured by a 

fluorescence microscope, and their presence and length were analyzed by NIS-Elements 

software. 

 

2.4. Cell Growth 

To quantify their growth rate of cells, cells were counted every day for 5 days.  On day 0, 3x10
5
 

cells were seeded and plated on 10 cm culture dishes supplied with growth medium.  The evenly 

distributed cells in each dish were then counted every 24 hours until they were 100% confluent.   

 

2.5. Cell Cycle and Proliferation Analyses 

After harvesting the cells using trypsin (Corning, Manassas, VA), the cells were fixed using 95% 

ethanol and incubated at -20
o
C overnight.  In some experiment, cells were first labeled with 10 

M bromodeoxyuridine/fluorodeoxyuridine (BrdU; Acros Organics, Pittsburg, PA; catalog# 
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AC228595000) for 1 hour at 37
o
C and 5% CO2.  For DNA denaturing, the cells were incubated 

with 2N HCl for 30 minutes at room temperature followed by neutralization with 0.1 M sodium 

borate for 30 minutes at room temperature.  Afterwards, the cells were incubated with Alexa 488 

conjugated BrdU antibody (Invitrogen, Carlsbad, CA; catalog# A21305, lot# 571730) for 1 hour 

at room temperature in the dark for BrdU experiments.  In other experiments, the cells were 

stained with propidium iodide (PI) for 1 hour at room temperature in the dark.  Cells were then 

analyzed with flow cytometry BDFacsverse. 

 

2.6. Western Blot Analysis 

Cells were lysed using lysis buffer (Thermoscientific, Rockford, IL) supplemented with protease 

inhibitor cocktail (Complete, Mannheim, Germany).  The concentrations of protein were 

determined by using micro bicinchoninic acid assay (BCA) (Thermoscientific, Rockford, IL).  A 

30 g of protein was prepared using 2x Laemmli sample buffer (BioRad, Hercules, CA) and 

loaded on a 10% SDS-polyacrylamide gel.  The gel was run for 1-2 hours at 120V.  After 

transferring the protein from the gel to the membrane (BioRad, Hercules, CA), the membrane 

was blocked with 5% non-fat dry milk (Lab Scientific, Livingston, NJ) for 2 hours at room 

temperature.  The membrane was then incubated overnight at 4C with primary antibodies 

specific for Gli1 Anti-Gli1 antibody (Abcam, Burlingame, CA; catalog# ab49314) [42], smo 

(LSBio, Seattle, WA; catalog# LS-A2666-50) [43], -catenin (Abcam, Burlingame, CA; 

catalog# ab6302, lot# GR3314727-5) [44], phospho-mTOR (Ser2448) (Cell Signaling 

Technologies, Danver, MA; catalog #2976, clone# 49F9) [45], phospho-mTOR (Ser2481) (Cell 

Signaling Technologies, Danver, MA; catalog #2974) [45], phospho-p70 S6 Kinase (Thr389) 

(Cell Signaling Technologies, Danver, MA; catalog# 9234) [46] and -actin (Cell Biolabs, San 
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Diego, CA; catalog# AKR-002). Afterwards, the membrane was incubated with secondary anti-

rabbit (catalog# 7074) or anti-mouse (catalog# 7076) HRP-linked antibody (Cell Signaling 

Technologies, Danver, MA) for 1 hour at room temperature.  The signals were analyzed by an 

imager (BioRad, Hercules, CA) after the membrane was subjected to SuperSignal West Pico 

PLUS Chemiluminescence Substrate (Thermoscientific, Rockford, IL; catalog# 34580, lot# 

UH290793). 

 

2.7. β-catenin immunofluorescence 

To differentiate nucleus and cytoplasmic β-catenin, cells were plated onto coverslips placed in 

six-well plates and allowed to grow to 50-70% confluency before treatments.  After cells were 

treated for the different time points (0, 1, 3 and 8 days) in maintenance medium with or without 

rapamycin, cells were fixed using 4% paraformaldehyde and 2% sucrose in PBS for 10 minutes.  

For the 8-days treatment, the media and rapamycin were replaced with the fresh preparation on 

the fourth day.  Cells then were washed with PBS and permeabilized using 1% TritonX in PBS.  

Next, cells were incubated with anti--catenin primary antibody (1:2000) at 4
o
C overnight 

followed by a 1-hour incubation at room temperature with FITC-conjugated anti-rabbit IgG 

secondary antibody (1:1000 dilution, Vector Labs Burlingame, CA; catalog# Fl-1000, lot# 

ZC0202).  Nuclei were stained with mounting media containing Dapi blue fluorescence.  Images 

were acquired using NIS-Elements software.  For analysis, all images were viewed and randomly 

captured at 100× magnification.  For quantification, cells were counted from three different 

microscopic fields.  A region of interest (ROI) was randomly selected in the nucleus and 

cytoplasm.  The ratio of FITC fluorescence in nucleus versus cytoplasm was determined by 

measuring the FITC fluorescence of the ROI in the nucleus and cytoplasm.  
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2.8. Data and Statistical Analysis  

We used NIS-Elements software (version 4.3), Microsoft Excel (version 16.32), and GraphPad 

Prism (version 8.3) to analyze the presence and length of primary cilia.  Whenever feasible, the 

data was confirmed to be normally distributed prior to the subsequent analyses.  Otherwise, the 

data were transformed logarithmically.  The slope of the growth curve was measured by fitting 

the curve into the sigmoidal-fitted graph.  For Western blot analysis, band intensity was captured 

with Bio-Rad imager (Model no. Universal Hood III. Serial no. 731BR02716. version 5.1), 

quantified with the NIH Fiji ImageJ (version 2.0), and analyzed with GraphPad.  For all studies, 

a minimum of three independent experiments were performed.  The exact number of independent 

experiments for each study is indicated in the scattered bar graphs or in the figure legends. 

 

The correlation analyses were performed by using Pearson correlation coefficient test.  Multiple 

variable analyses were further performed by using multiple-linear regression test.  The Pearson 

correlation was studied before and after rapamycin treatment with 1-dimensional (before vs. after 

of one variable) or 2-dimensional (before vs. after of two variables) analysis.  To clarify the 

correlation analyses, scattered plots (before vs. after) were provided to show the strength and 

weakness of Pearson correlation coefficient.  For the 2-dimensional analysis, the correlation for 

the variables (slope) was first identified before (or after) treatment followed by the correlation 

before vs. after analysis in the corresponding scattered plot. 

 

All data were reported as mean±standard error of mean (SEM).  A p value of <0.05 was 

considered statistically significant.  Statistical analysis comparing multiple groups was 
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performed by using ANOVA test followed by Tukey’s post-test or Dunnet post-test.  Significant 

differences relative to the control baseline within each group are indicated in asterisk (*). 

Differences with normal kidney (NK) epithelia are indicated in a hash sign (#).  The level of 

significant difference (p value) is indicated in each graph and figure legends. 
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3. Results 

 

3.1. PKD and Cancer Cells were Characterized by Abnormal Ploidy.  

Because genomic instability has been associated with dysfunction of primary cilia [33, 47-49], 

we studied chromosome numbers in PKD and cancer cells using SKY technique to authenticate 

our cells.  Karyotyping analyses revealed that NK had a normal chromosomal composition (Fig. 

1A).  In contrast, PKD had abnormal ploidy (77,XX) (Fig. 1B). PC3 karyotyping analysis also 

showed abnormal ploidy (104,XY) (Fig. 1C).  The abnormal polyploidy was also apparent in 

DU145 (72,XY) (Fig. 1D). Karyotyping analysis of NL showed an abnormal increase in the 

number of chromosomes (109,XX) (Fig. 1E).  Overall, karyotype analysis of individual cells 

confirmed that the abnormal ploidy was associated with PKD and cancer cells (Fig. 1F).  The 

chromosomal spread for each representative image is shown (Fig. 2).  A more specific ploidity 

of each chromosome of each cell type is also presented (Table 1).  

 

3.2. Primary Cilia Expression was Decreased in Cancer Cells.  

To characterize the expression of primary cilia in different cell types, the presence of cilia was 

determined by immunofluorescence using antibody against acetylated--tubulin (Fig. 3A).  

Actin filaments was stained with phalloidin and nuclei were stained with DAPI to simply 

identify individual cells.  The representative images show that primary cilia were expressed in 

NK, PKD, and PC3, but they were absent in both DU145 and NL (Fig. 3B).  Even though cilia 

were present in PC3, the percentages of the primary cilia were significantly lower than those 

observed in NK.  However, there was no significant difference in cilia length among NK, PKD, 

and PC3.  The distribution of cilia lengths in each cell type was tabulated (Fig. 3C). 
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3.3. PKD and Cancer Epithelia were Highly Proliferative. 

Since primary cilia play an important role in cell cycle regulation [16], we assessed the 

proliferation profile of each cell type.  The growth rates of the five cell types over a period of 

five days were examined by counting the cell number every day (Fig. 4A).  The growth rates 

were significantly higher in PKD and cancer cells than NK cells.  We also assessed the 

proliferative index by examining the DNA contents because some of the cancer cells continued 

to divide even after they have become confluent.  The relative percentage of cells in each phase 

(G1 and G2/M) was quantified and analyzed with flow cytometry.  The post-analysis graphs (Fig. 

4B) and pre-analysis histogram (Fig. 5) from flow cytometry studies are presented.  In confluent 

condition, the percentage of the cells in the G2/M phase was significantly higher in PC3 and 

DU145 than NK.  This effect was associated with lower percentage of PC3 and DU145 cells in 

the G1 phase.  In non-confluent condition, there was a significant increase in the accumulation of 

the cells in the G2/M phase and a significant decrease in the accumulation of the cells in the G1 

phase in PKD, PC3, DU145, and NL cells compared to NK.  Our data indicated that compared to 

control normal NK cells, both PKD and cancer epithelia had higher proliferative rate. 

 

3.4. Rapamycin Partially Restored Primary Cilium Expression in Cancer Cells. 

Because primary cilium regulates cell cycle progression and can stop abnormal cell growth by 

restricting cell cycle [16, 22], restoration of the primary cilium in cancer cells may reduce cell 

proliferation.  Rapamycin has been previously shown to increase cilia formation and length [31, 

32].  Therefore, we treated the cells with different concentrations of rapamycin at different time 

points (1, 3, and 8 days).  Rapamycin did not induce ciliogenesis on day-1 and day-3 (data not 

shown), while 1 M and 10 M of rapamycin treatment on day-8 appeared to restore cilia 
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formation in PC3, DU145, and NL (Fig. 6A).  Treatment of the cells with 1 M and 10 M of 

rapamycin significantly increased the expression of primary cilia in PC3, DU145, and NL 

compared to the control cells (Fig. 6B).  The cilia length was significantly increased with 1 or 10 

M of rapamycin treatment compared to the control cells in NK, PKD, DU145, and NL but not 

in PC3.  Cilia lengths of each cell type were tabulated (Fig. 6C). 

 

3.5. Rapamycin Treatment Inhibited Cell Proliferation. 

Treatment with 10 M of rapamycin caused a significant increase in primary cilia expression in 

the cancer epithelial cells.  A concentration of 10 μM was therefore selected for the rest of our 

experiments.  Before and after the cells were treated with 10 M of rapamycin for 1, 3, and 8 

days, cell proliferation (defined as the percentage of cells with an increase DNA synthesis) was 

assessed and analyzed by flow cytometry (Fig. 7).  In all cell lines, rapamycin treatment at 

different time points significantly increased the percentages of the cells in G1 phase (Fig. 7A).  

Conversely, the percentages of the cells in G2/M phase were significantly decreased by 

rapamycin treatment (Fig. 7B).  We also validated the cell proliferation data using an 

independent BrdU staining method by determining the incorporation of the thymine analogs into 

newly synthesized DNA (Fig. 8).  We found that rapamycin treatment for 8 days significantly 

reduced the percentage of BrdU-positive cells compared to untreated control cells (Fig. 9). 

 

3.6. Effects of Rapamycin Treatment on Cell Proliferation, Cilia Expression, and Cilia 

Length. 

Pearson's correlation coefficient was used to measure the strength of the association between 

control and rapamycin treatment on the changes in cell proliferation, cilia expression or cilia 
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length (Fig. 10).  The summary graphs before and after rapamycin treatment (Fig. 10A) were 

analyzed and derived using Pearson's correlation, in which linear regression graphs were used to 

show the strength of the correlation (Fig. 10B).  The rapamycin treatment was inversely 

correlated with the percent of cells in G2/M phase (r=0.730, p=0.162) but was positively 

correlated with the percent of cells with cilia (r=0.986, p=0.002) and cilia length (r=0.869, 

p=0.056).   

 

We subsequently analyzed the associations among cell proliferation, cilia expression and cilia 

length (Fig. 11).  The summary graphs between each association (Fig. 11A) were analyzed and 

derived using Pearson's correlation, in which linear regression graphs were used to show the 

strength of the correlation (Fig. 11B).  The percent of cells with cilia was inversely correlated 

with the percent of cells in G2/M phase (r=0.843, p=0.028).  Cilia length was also inversely 

correlated with the percent of cells in G2/M phase (r=0.964, p=0.003).  As expected, cilia length 

was positively correlated with the percent of cells with cilia (r=0.515, p=0.172).  These results 

indicated that rapamycin treatment was associated with increased cilia expression/length and 

decreased cell proliferation. 

 

3.7. Rapamycin Treatment in Wnt/β-catenin Signaling Pathway. 

The level of hedgehog as well as Wnt/β-catenin signaling molecules were compared among 

different cell types using Western blot analyses (data not shown).  The expression levels of β-

catenin, the hallmark indicator of the canonical Wnt signaling pathway, were higher in PKD, 

PC3, DU145, and NL compared to NK.  However, there seemed to be no difference in the 

expression levels of Gli1 and smoothened (smo) among the different cell types. 
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We subsequently evaluated the effects of 10 M of rapamycin treatment for 1, 3, and 8 days on 

β-catenin expression level (Fig. 12A).  On day 1 and 3 of rapamycin treatment, the expression 

level of -catenin significantly increased in NK, PKD, and DU145 compared to their untreated 

cells.  The expression level of -catenin significantly decreased in NK, PKD, and PC3 compared 

to their untreated cells on day 8.  Because rapamycin is a potent inhibitor of mTOR (mammalian 

target of rapamycin), the effects of rapamycin on the phosphorylation of mTOR at Ser2448 and 

its downstream target p70 S6-Kinase (S6K) were measured using Western blot. The 

phosphorylation of mTOR at Ser2448 was significantly reduced on day 1, 3, and 8 after 

rapamycin treatment compared to the corresponding non-treated NK, PKD, PC3 and DU145.  In 

NL, rapamycin did not change the phosphorylation of mTOR at Ser2448 on day 1 and 3; 

however, on day 8 rapamycin significantly increased mTOR phosphorylation.  The 

phosphorylation of S6K was significantly reduced at the following days: 8 days after rapamycin 

treatment in NK; 1, 3, and 8 days after rapamycin treatment in PKD and PC3 cells; 1 and 3 days 

after rapamycin treatment in DU145 cells; and 3 days after rapamycin treatment in NL.  On the 

other hand, the phosphorylation of S6K was significantly elevated on day 8 of rapamycin 

treatment compared to untreated NL.  Because rapamycin did not inhibit the phosphorylation of 

mTOR at Ser2448 in NL, the effect of rapamycin on the phosphorylation of mTOR at another 

major site (Ser2481) was examined (Fig. 12B).  The phosphorylation of mTOR Ser2481was 

significantly reduced on day 1, 3, and 8 after rapamycin treatment compared to the expression in 

the absence of rapamycin in NL.  
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Immunofluorescence analysis was performed to determine the translocation of β-catenin into the 

nucleus (Fig. 12C).  In NK and PKD, 10 M rapamycin treatment for 1 day significantly 

increased the translocation of -catenin into the nucleus while treatment for 8 days significantly 

decreased the -catenin nuclear translocation compared to untreated control.  In PC3 and 

DU145, treating the cells with rapamycin for 3 days significantly increased the -catenin nuclear 

translocation and significantly decreased nuclear -catenin after 8 days of treatment.  The 

nuclear -catenin was significantly reduced by rapamycin treatment in NL. 

 

Original Western blot images prior to cropping are presented to show the effects of rapamycin on 

-catenin, S6K, mTOR phosphorylation at S2448 (Fig. 13A) and S2481 (Fig. 13B).  

Representative images are also shown to determine cytosolic and nuclear -catenin (Fig. 14). 

 

  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 19 

 

4. Discussion 

 

Based on the emerging concept that cancer is associated with loss of primary cilia [7, 9, 23, 24], 

we postulate that restoration of primary cilia formation may attenuate cancer proliferation.  In 

order to restore ciliogenesis in cancer cells, we treated the cells with rapamycin because 

rapamycin has been previously shown to increase cilia formation and length [31, 32]. We indeed 

found that rapamycin restored cilia formation and attenuated cell proliferation.  Furthermore, our 

analyses suggest that ciliogenesis and antiproliferative effects by rapamycin treatment are highly 

correlated with one another.   

 

Dysfunction of primary cilia has been associated with genomic instability [33, 47-49].  Cancer 

cells are also known to have genomic instability [50, 51]. Thus, we speculate that primary cilia 

may be involved in cancer pathogenesis.  Abnormal ploidy formation was indeed observed in 

PKD and cancer cells. Moreover, we found that dysfunction or loss of primary cilia is associated 

with increased proliferation rate.   

 

DU145 prostate cancer and NL bronchial tumorigenic cells did not express primary cilia while 

PC3 prostate cancer cells expressed low level of primary cilia.  Our results are consistent with 

the previous studies that show the absence of primary cilia in PC3 and DU145 prostate cancer 

[52].  Our studies also agree with the previous report showing that prostate cancer tissues have a 

reduction in the percentage of ciliated cells [53].  After excluding cilia length of 1 m or less, we 

did not find any significant difference in cilia length among PC3, PKD, and NK.  In contrast, a 

previous study show that there are more primary cilia in lung adenocarcinoma as well as in other 

cancers, such as adenocarcinoma of the colon, follicular lymphoma, and pancreatic 
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adenocarcinoma [54].  Another study shows that ciliogenesis has a role in promoting cancer drug 

resistance [25].  Even in the same cancer type, primary cilia can have an opposing role in 

tumorigenesis depending on the oncogenic initiating event [14, 55], suggesting the complexity of 

the roles of cilia in cancer. 

 

We found that PKD, PC3, DU145, and NL are more proliferative than NK.  We observed that 

even after becoming confluent, a condition of growth arrest, PC3 and DU145 cells are still 

significantly more proliferative than NK cells.  The main physiological difference between 

immortalized cells and cancer cells is the loss of cell-cell contact inhibition in cancer cells (Fig. 

4B).  Cancer cells continue to proliferate even after they have become confluent.  E-cadherin 

adhesive junctions are thought to play an important role in mediating contact inhibition through 

homophilic interactions of E-cadherin molecules between the two neighboring cells [56-58]. 

Previous studies have shown that over-expression of cadherins can antagonize β-catenin 

signaling by binding and sequestering it from the nuclear signaling [59, 60]. In cancer cells, loss 

of E-cadherin expression can contribute to upregulation of β-catenin signaling pathway [61]. It 

has been reported that overexpression of β-catenin in epithelial cells promotes cell proliferation 

[62]. Compared to immortalized non-tumorigenic cells, the genes involved in cell proliferation 

and cell cycle are significantly deregulated in tumorigenic cells [63]. Cyclin inhibitors and 

negative regulators of cell proliferation are progressively downregulated during tumorigenesis. 

 

The mammalian target of rapamycin (mTOR) signaling pathway is an essential regulator of cell 

proliferation and metabolism processes, which are directly controlled by the mTORC1 pathway, 

such as protein, lipid and nucleotide synthesis, energy metabolism, and autophagy.  
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Dysregulation of the mTOR pathway is involved in several diseases including cancer, diabetes, 

obesity, neurological diseases, and genetic disorders [64, 65].  Activation of mTORC1 stimulates 

glycolysis and lipid biosynthesis [66] and positively regulates glutamine metabolism [67].  

Recently it is found that mTORC1 is also has an important role in aging and age-related diseases 

[68].  Rapamycin is a selective inhibitor of mTORC1and a potent inhibitor of S6K1 activation 

(the downstream target of mTOR) [69].  It is found that rapamycin treatment improves insulin 

sensitivity by preventing a S6K-mediated feedback loop [70]. Moreover, rapamycin treatment 

prevents the differentiation of human adipocyte [71] and protects against high-fat-diet-induced 

obesity [72].  Rapamycin also has a role in extending the lifespan and preventing the onset of 

many age-related diseases [73, 74].  This information signifies a broad spectrum of rapamycin in 

cellular signaling and cell processes.  Within the context of our work on cilia and cell 

proliferation, our studies do not differentiate cause-and-effect between cilia and cell 

proliferation.  We thus use rapamycin only as a pharmacological tool to examine the correlation 

between the changes in the cilia and cell proliferation. 

 

Rapamycin is an mTOR inhibitor and one of the most potent inducers of cilia formation.  

Rapamycin shows a statistically significant increase (up to 6-fold) in the percentage of cells with 

cilia compared to vehicle-treated cells [32].  Moreover, it has been shown that rapamycin 

increases primary cilia length and function in renal epithelia and vascular endothelia [31].  

Consistent with these previous studies, our work demonstrates that rapamycin treatment for 8 

days partially restores primary cilium expression in DU145 and NL cancer cells and significantly 

increases cilia length in NK, PKD, DU145, and NL.  We found that 10 M of rapamycin 

increased the cilia length more than 1 M of rapamycin treatment.  Cell cycle before and after 1, 
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3, and 8 days of rapamycin treatment was evaluated to determine if restoration of primary cilia 

was associated with attenuation of cell proliferation.  Our results show that rapamycin inhibited 

cell proliferation significantly after 1, 3, and 8 days of treatment compared to the untreated cells.  

Our analyses also indicated that there was a significant correlation between the percent of cells 

with cilia and cell proliferation.  Consistent with our finding, Khan et al. have previously shown 

that rapamycin exerts its antiproliferative effect in cancer cells at least in part through its ability 

to restore primary cilium formation [32].  

 

In unstimulated cells, β-catenin protein exists very little in cytoplasmic or nuclear fractions due 

to rapid degradation of β-catenin in the cytoplasm by the destruction complex that composed of 

the adenomatous polyposis coli protein, GSK-3β, and Axin/Conductin.  However, in the 

presence of a Wnt signal, a Frizzled family receptor and the downstream component Dvl are 

activated.  Dvl in turn leads to the inactivation of GSK-3β, resulting in the accumulation of 

cytoplasmic β-catenin.  High levels of β-catenin in the cytosol result in its translocation into the 

nucleus and activation of expression of Wnt-responsive genes.  The presence of primary cilium 

controls the levels of expression of Wnt target genes by regulating the degradation of Disheveled 

(Dvl) [30].  Wnt signaling activation was observed in many cancers and may contribute to the 

cancer progression [75-78].  

 

We showed a higher level of -catenin expression, which suggests the utilization of canonical 

Wnt signaling pathway in PKD, PC3, DU145, and NL.  Similar to the previous studies [79-81], 

our data indicated that dysfunction or loss of primary cilia was associated with the activation of 

Wnt signaling pathways.  However, other studies show a low activation of Wnt signaling 
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pathway in prostate cancer [53, 82].  Due to the concept that the presence of primary cilium 

controls the levels of expression of Wnt target genes [26, 29], we evaluated the effect of primary 

cilia restoration on Wnt/β-catenin signaling pathway by measuring the total protein expression of 

-catenin as well as -catenin nuclear translocation.  We found that on day 1 and 3 of rapamycin 

treatment, the expression level of -catenin was significantly increased in NK, PKD, and DU145 

compared to the untreated cells and the nuclear translocation of -catenin increased significantly 

in NK, PKD, PC3 and DU145 compared to the untreated cells.  This effect is consistent with the 

previous study that shows that mTORC1 activation suppressed Wnt/β-catenin signaling and that 

rapamycin could activate Wnt/β-catenin signaling pathway [83, 84].  However, the expression 

level of -catenin significantly decreased in NK, PKD, and PC3 compared to untreated cells after 

8 days of rapamycin treatment.  Likewise, the -catenin nuclear translocation significantly 

decreased in NK, PKD, PC3, and DU145 compared to untreated cells after 8 days of rapamycin 

treatment.  This reduction in -catenin level is presumably due to the presence or increase length 

of primary cilia.  Generally, there is a trend of an initial increase followed by a decrease of -

catenin level as well as the translocation of -catenin into the nucleus with rapamycin treatment.  

Moreover, we confirm the effect of rapamycin on inhibiting the phosphorylation of mTOR and 

its downstream target p70 S6 Kinase (S6K).  In NL, rapamycin neither changes the level of -

catenin expression nor reduces the phosphorylation of both mTOR at Ser2448 and S6K. 

However, rapamycin significantly inhibits the phosphorylation of mTOR at Ser2481in NL.  The 

inhibition of mTOR phosphorylation at a different site (Ser2481) may trigger the compensatory 

increase in the phosphorylation of mTOR at Ser2448 and S6K on day 8 treatment.  In addition to 

the different phosphorylation site of mTOR, the accumulation of -catenin in the cytosol instead 

of nucleus in NL may be the reason that NL behaves differently from other cells. 
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In summary, we showed that rapamycin increased the expression and/or length of primary cilia.  

Both the presence and length of primary cilia were correlated significantly with cell proliferation.  

Our study supports the idea that the antiproliferative effects of rapamycin are correlated with 

ciliogenesis. 
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Contribution to the Field Statement 

Primary cilia are small hair-like projections found on the surface of cells, and they play 

important roles in cellular development and physiological functions.  Formation of primary cilia 

is controlled by the stages of cell cycles.  Defects in primary cilia cause a wide range of human 

diseases.  Although abnormal regulation of cilia formation has been seen in many types of 

cancer, the accurate correlation between cilia formation and cell division has not been studied in 
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cancer cells. We find that primary cilia are absent or reduced in prostate cancer and bronchial 

tumorigenic epithelia.  The use of rapamycin significantly increases cilia length or formation.  

Increasing cilia formation or length correlates to the reduction of cellular proliferation.  Our 

studies suggest that primary cilia are a promising target to control the cell growth. 
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Figure Legends 

 

Figure 1.  Karyotyping analyses of human epithelial cells.  Spectral karyotyping shows 

somatic chromosomes (1 to 22) with a pair of sex chromosomes (XY).  Representative images 

show epithelium from (A) normal kidney (NK) with normal chromosome number (46, XY), (B) 

PKD (77,XX), (C) PC3 prostate cancer (104,XY), (D) DU145 (72,XY), and (E) NL (109,XX).  

(F) Summary of overall karyotype analysis of individual cells confirmed the abnormal ploidy 

associated with PKD and cancer cells. N=10-12 for each cell type. 

 

Figure 2.  Representative images of metaphase spread.  Shown here are images in brightfield 

(on the left) and pseudocolored (on the right) of NK, PKD, PC3, DU145, and NL.  

 

Figure 3.  Evaluation of primary cilia expression and length in epithelial cells. (A) 

Representative images of primary cilia in human epithelial cells. Primary cilia were identified by 

immunofluorescence using antibody against acetylated -tubulin (green); actin filaments using 

texas red-conjugated phalloidin (red); and nuclei using DAPI (blue). (B) The percent of cells 

with cilia and the average cilia length of each cell type. (C) Histograms depict the distribution of 

cilia lengths in each cell type.  Values are represented as mean±SEM. ****, p<0.0001 compared 

with the control (NK) cells.  N=4 independent experiments.  

 

Figure 4.  PKD and Cancer Epithelia were Highly Proliferative. (A) The growth rates of the 

five cell types over a period of five days were examined by counting the cell number in each of 

the five days. (B) Quantitation of cell cycle phases in selected cells using propidium iodide.  The 

relative percentages of cells in G1 and G2/M under confluent condition or non-confluent condition 

are shown on this graph. Values are represented as mean±SEM. *, p<0.05; **, p<0.01; ***, 

p<0.001; and ****, p<0.0001 compared with the control NK.  N=3 for cell growth; N=8 for cell 

cycle analysis. 

 

Figure 5.  Quantitation of G1 and G2/M phases.  Representative graphs show the percentages 

of cells with varying intensity of PI (propidium iodide) staining of NK, PKD, PC3, DU145, and 

NL under confluent and non-confluent conditions. 

 

Figure 6.  The effect of rapamycin treatment on ciliogenesis. (A) The representative images 

that show primary cilia expression after treatment with 0, 1 or 10 M of rapamycin for 8 days in 

NK, PKD, PC3, DU145, and NL.  Primary cilia were identified by immunofluorescence using 

antibody against acetylated -tubulin (green); actin filaments using texas red-conjugated 

phalloidin (red); and nuclei using DAPI (blue).  (B) The percentages of cells with cilia and the 

average cilia length after treatment with 0, 1, or 10 M of rapamycin for 8 days in NK, PKD, 

PC3, DU145, and NL. (C) Histograms show the distribution of cilia length after rapamycin 

treatment (0, 1, or 10 M).  Values are represented as mean±SEM. *, p< .05; **, p<0.01; ***, 

p<0.001; and ****, p<0.0001compared to control baseline of corresponding group . #, p<0.05; 

##, p<0.01; ###, p<0.001; and ####, p<0.0001compared to normal kidney (NK) epithelia.  N=3 

independent experiments with a total of at least 150 cilia measurements.  (NOTE: technically the 

ANOVA test results should be reported first, i.e., their p values. Only if their p values are 
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significant, then the post-test analysis need to be performed. As of now, the ANOVA p values 

are not reported.) 

 

Figure 7.  Inhibition of cell proliferation by rapamycin using propodium iodide.  

Quantitation of cell cycle phases using propidium iodide.  The relative percentages of cells in (A) 

G1 and (B) G2/M before and after treatment with 10 M of rapamycin for 1, 3, and 8 days in NK, 

PKD, PC3, DU145, and NL.  Values are represented as mean±SEM. *, p<0.05; **, p<0.01; ***, 

p<0.001; and ****, p<0.0001compared to control baseline of corresponding group. #, p<0.05; 

##, p<0.01; ###, p<0.001; and ####, p<0.0001compared to control NK.  N=3 independent 

experiments.  

 

Figure 8.  Analysis of BrdU incorporation.  Representative graphs show the numbers of cells 

(count) with varying incorporation (intensity) of BrdU staining in NK, PKD, PC3, DU145, and 

NL before and after treatment with 10 M rapamycin for 8 days. 

 

Figure 9.  Inhibition of cell proliferation by rapamycin using BrdU.  The relative percentages 

of cells with BrdU before and after treatment with 10 M rapamycin for 8 days in NK, PKD, 

PC3, DU145, and NL.  Values are represented as mean±SEM. *, p<0.05; **, p<0.01; ***, 

p<0.001; and ****, p<0.0001compared to control baseline of corresponding group. #, p<0.05; 

##, p<0.01; ###, p<0.001; and ####, p<0.0001compared to control NK.  N=3 independent 

experiments.  

 

Figure 10.  One-Dimensional Correlation Analysis. (A) Pearson correlation was used to 

evaluate the association before and after rapamycin treatment on the changes in the percentage of 

cells in G2/M phase, percentage of cells with cilia, and cilia length.  The p-value (p) represents 

the significance of the correlation coefficient.  (B) The results of Pearson linear regression 

analysis are shown in scattered plots.  The scattered plots show changes in each variable before 

and after rapamycin treatment.  Pearson correlation coefficient (r) shows the regression line and 

the upper and lower 95% confidence limits.  

 

Figure 11. Two-Dimension Correlation analysis data.  (A) Pearson correlation was used to 

evaluate the correlations of the changes in cilia expression vs. cell proliferation, cilia length vs. 

cell proliferation, and cilia expression vs. cilia length.  The p-value (p) represents the 

significance of the correlation coefficient.  (B) The results of Pearson linear regression analysis 

are shown in scattered plots. The scattered plots show changes in two variables before and after 

rapamycin treatment.  Pearson correlation coefficient (r) shows the regression line and the upper 

and lower 95% confidence limits. 

 

Figure 12.  Effects of Rapamycin on Signaling Molecules.  (A) The protein expressions of -

catenin, p-mTOR (Ser2448), p-S6k, and  -actin were analyzed before and after treatment with 

10 M of rapamycin for 1, 3, and 8 days in NK, PKD, PC3, DU145, and NL. (B) The protein 

expressions of p-mTOR (Ser2481) was separately analyzed in NL.  Relative expression levels 

are expressed as the density ratio relative to β-actin.  (C) Quantifications of nuclear and cytosolic 

accumulation of -catenin were measured before and after treatment with 10 M of rapamycin 

for 1, 3, and 8 days in NK, PKD, PC3, DU145, and NL. Values are represented as mean±SEM.  

*, p<0.05; **, p<0.01; ***, p<0.001; and ****, p<0.0001compared to control baseline of 
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corresponding group. #, p<0.05; ##, p<0.01; ###, p<0.001; and ####, p<0.0001compared to 

control NK.  N=3 independent experiments.  

 

Figure 13.  Representative Western blot images. (A) Original, uncropped immunoblots of -

catenin, p-mTOR (Ser2448), p-S6k, and -actin are shown before and after treatment with 10 

M of rapamycin for 1, 3, and 8 days in NK, PKD, PC3, DU145, and NL.  (B) Original blots of 

p-mTOR (Ser2481) and -actin are shown before and after treatment with 10 M of rapamycin 

for 1, 3, and 8 days in NL.  The molecular weight (MWs) of the proteins are shown on the left of 

each corresponding blot. 

 

Figure 14. Representative immunofluorescent images of β-catenin.  β-catenin translocation 

was assessed before and after treatment with 10 M of rapamycin for 1, 3, and 8 days in NK, 

PKD, PC3, DU145, and NL.  

 

 

 

 

 



Supplementary Table 1.  Chromosomal abnormality (frequency) in epithelia 

 

Note: NK, normal kidney epithelia; PKD, polycystic kidney epithelia; PC3, prostate cancer epithelia; DU145, prostate 

cancer epithelia; NL, cancer lung epithelia 

 

Chromosome 

number 
NK PKD PC3 DU145 NL 

1 Normal 
Polyploidy / 

Aneuploidy (9/11) 
Normal Normal Polyploidy (10/10) 

2 Normal 
Polyploidy / 

Aneuploidy (9/11) 

Polyploidy / 

Aneuploidy (10/12) 

Polyploidy 

(10/10) 

Polyploidy / 

Aneuploidy (10/10) 

3 Normal Normal 
Polyploidy / 

Aneuploidy (10/12) 
Normal 

Polyploidy 

(10/10) 

4 Normal 
Polyploidy / 

Aneuploidy (9/11) 

Polyploidy / 

Aneuploidy (10/12) 
Normal 

Polyploidy 

(10/10) 

5 Normal Polyploidy (9/11) 
Polyploidy / 

Aneuploidy (10/12) 
Normal Normal 

6 Normal Normal 
Polyploidy / 

Aneuploidy (10/12) 
Normal Normal 

7 
Aneuploidy 

(1/10) 

Polyploidy / 

Aneuploidy (9/11) 

Polyploidy / 

Aneuploidy (10/12) 
Normal 

Polyploidy 

(10/10) 

8 Normal Polyploidy (9/11) 
Polyploidy / 

Aneuploidy (10/12) 

Polyploidy 

(10/10) 

Polyploidy 

(10/10) 

9 
Aneuploidy 

(1/10) 

Polyploidy / 

Aneuploidy (9/11) 
Normal Normal Normal 

10 
Polyploidy 

(1/10) 
Normal 

Polyploidy / 

Aneuploidy (10/12) 
Normal 

Polyploidy 

(10/10) 

11 Normal Normal 
Polyploidy / 

Aneuploidy (10/12) 
Normal 

Polyploidy 

(10/10) 

12 Normal 
Polyploidy / 

Aneuploidy (9/11) 

Polyploidy / 

Aneuploidy (10/12) 
Normal 

Polyploidy 

(10/10) 

13 Normal Normal 
Polyploidy / 

Aneuploidy (10/12) 

Polyploidy 

(10/10) 

Polyploidy / 

Aneuploidy (10/10) 

14 Normal 
Polyploidy / 

Aneuploidy (9/11) 
Normal Normal 

Polyploidy 

(10/10) 

15 Normal 
Polyploidy / 

Aneuploidy (9/11) 
Normal Normal 

Polyploidy 

(10/10) 

16 Normal Normal Polyploidy (10/12) 
Polyploidy 

(10/10) 

Polyploidy 

(10/10) 

17 
Polyploidy 

(1/10) 
Normal 

Polyploidy / 

Aneuploidy (10/12) 
Normal 

Polyploidy 

(10/10) 

18 Normal 
Polyploidy / 

Aneuploidy (9/11) 
Normal Normal Normal 

19 Normal Normal Normal Normal 
Polyploidy / 

Aneuploidy (10/10) 

20 Normal 
Polyploidy / 

Aneuploidy (9/11) 

Polyploidy / 

Aneuploidy (10/12) 

Polyploidy 

(10/10) 

Polyploidy / 

Aneuploidy (10/10) 

21 
Aneuploidy 

(1/10) 
Normal 

Polyploidy / 

Aneuploidy (10/12) 
Normal 

Polyploidy 

(10/10) 

22 Normal Normal 
Polyploidy / 

Aneuploidy (10/12) 

Polyploidy 

(10/10) 

Polyploidy / 

Aneuploidy (10/10) 

X Normal Normal Normal Normal Normal 

Y Normal  Normal Normal  

Table
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