Relationships of Scores Achieved on a Crawl Stroke Rating Form and Selected Measures of Stroke Efficiency in Swimming

Bradley Laverne Erickson

Follow this and additional works at: https://openprairie.sdstate.edu/etd

Recommended Citation

Erickson, Bradley Laverne, "Relationships of Scores Achieved on a Crawl Stroke Rating Form and Selected Measures of Stroke Efficiency in Swimming" (1975). Electronic Theses and Dissertations. 4873.
https://openprairie.sdstate.edu/etd/4873

[^0]
STRCRE RATMTG FORH ATD SETECTE MEASURES

BY

BRADIEY LAVBRIE ERTOKGON

```
            A thests subnitted
```


1975

RELATIONSHIPS OF SCORES NGHIEVED ON A CRAWL

STRONE RATING FORM AND SETECTED MRASURES
OF STROKE EFFICIENGY IM SWIMMING

This thesis is approved as a creditable and independent investiGation by a candidate for the degree, Master of Science, and is acceptable for meeting the thesis requirements for this dsgree. Acceptance of this thesis does not imply that the conelusions reached by the candidate are necessarily the conclusions of the major departnent.

Head Health, Fhysical Pducation V Daje
and Recreation Department
CHAPTER PAGE
I. INTRCDUCTION 1
Significance of the Study 1
Statement of trie Problem 2
Hypotheses 2
Limitations ard Delimitations. 2
Defirition of 'rerms. 3
II. REVIEN OR PELATE LITERATURE 5
Literature Related to Maximal Oxygen Uptake and Effects of Training on Specific Pulmonary Parameters 5
Literature Related to Specific Tests of Btroke Rfficiencyo 12
Isiterature Related to the Construction of Rating Scales. 14
IIL. METHCDS AND PROCEDURES 16
Organization of the Study. 16
Source of the Data 16
Collection of the Data 17
Frocedure for Collecting Data. 29
IV. AHALIETS AND DISCUSSION OF RESULTS 31
Organization of the Data for Analysis. 31
Analysis of the Data 33
Discusstion of the Results 35
CMAPTER PAGE
V. SUMMARY, COMCLUSIONS AND RECOMIPNDATIONS 42
Summary of the study 42
Conclusions 4.3
Recommendations. 43
BIBITCORAPIY 45
APPENIGES 48

LIST OF TABIES

I. Subject Characteristios at the Time of Initial Test. 18 IT. Table of Means . 32
III. Correlation Matrix Table for All Variables 34

LIST OF FIGURES

FIGURE PAGE
I. Apparatus for Testing Maximal Oxygen Uptake in Tethered Swim Test. 21
II. Recondind Temperature of Expired Gases. 22
III. Reconding Derlection Readings to Determine Fercertage of Caroon Dioxide and. Cxyeen in Expired Air 24
IV. Pulse-Velocity Relationships for Each Individual in Test l. 38
V. Pulse-Velocity Relationships for Each Individual in Test 2. 39
VI. Pulse-Velcoity Relationships for Each Individual in Test 3. ... 40

The writer wishes to express his sincere appreciation to his advisors, Dr. Neil Hattlestad and Professor Glenn E. Robinson, for their valuable assistance and supervision in the completion of this study. Appreciation also is extended to Dr. Iee Tucker for his expert statistical advice.

The writer also wishes to express his gratitude to the subjects who gave their time and effort to make trins study possible, ard to his wife, Jennifer, for hex assistance, encuragenents and patience throughout the study.

CHAPTER I

INTRODUCTION

Significance of the Study

The continuous surpassing of records is arindication that performances in competitive swimming are steadily improving. Suecess in competition depends upon a swinmer's ability to "maintain a hjegh velocity over time."l Factors which determine the ability to maintain hiegh velocity include muscle endurance, efficiency, and total capacity for energy expenditure. ${ }^{2}$

Through various types of training metrods: the swin coach has Ween able to increase physiological changes in his athletes, including nuscular endurance. ${ }^{3}$ A valid measure for determining energy expenditure is throvgh analysis of data obtained by testing for oxygen consumption. There is also a linear relationship between oxygen consumption and heart rate. By observing heart rates, the energy expended could be determined by similar procedures. ${ }^{4}$ However, measures of determining stroke efficiency are either time consuming or confined to laboratory
$I_{\text {John A. Fanlkner, what Research Tells the Coach About Swimning, }}$ ed. John M. Cooper (Washington: American Association for Health, Physical Education, and Recreation, 1967), p. 38.
${ }^{2}$ Irid.
JJames E. Counsilnan, The Science of Swimming (Enclewood Cliffs: Prentice-Hall, Inc., 1968), p. 225.

4M. S. Malhorta, J. Sen Cupta, and R. M. Raj, "pulse Count as a Measure of Encrgy Expenditure," Journal of Applied Physiolosy, 18:994, September, 1963.
equipment. The swin coach shculd have a measuring tool that could be used to determine efficłency of the suimmer avajlable at poolside without beine time consuming or limited to laboratory equipment. Therefore a comparative analysis of selected measures of determining stroke efficiency to a crawl stroke form rating scale was deemed necessary by the investigator.

Statement of the Problem
The purpose of this study was to develop a form rating scale for the crawl stroke to determine stroke efficiency.

Hypotheses

The following hypotheses were investigated:
2. There is no significant reiationship between scores achieveu on the crawl stroke rating scale and selected measures of stroke efficiency.
2. A multiple regression equation to significantly predict scores achieved on the crawl stroke rating scale cannot be developed.

Limitations and Delimitations

1. The eight male subjects for this study were chosen from memters of the South Dakota State University men's intercollegiate varsity swimming tean un the basis of past pertormance and predicted success in future competition.
2. Assessment of stroke efficiency was limited to velocitypulse rate, velocity-stroke rate, and velocity-maximal oxygen uptake.
3. The oxygen consumed at the various work loads was determined by tethered swimming of the crawl stroke and may not be
representative of the oxygen consumption when free swimming of the crawl stroke is involved.
4. The degree of motivation involved in testing could not be objectively measured.
5. The cutside activities of the subjects were not controlled and may have affected the subjects data.

Definition of Termas
Maximal Oxygen Uptake. The definition as stated by Cook was adopted for this study:

Maxinal. oxygen uptake is the maximum amount of oxygen that can be supplied to the active tissues of the boly per minute. This measurement may be recorded in liters per minnte ($1 / \mathrm{min}$) or milliliters per kilogram of boà weight per minute (ml/ $\mathrm{kg} / \mathrm{min}$). This term is also known as aerobic capacity, maximum oxygen intake, or maximum oxygen consumption. ${ }^{\text {b }}$

Stroke. The movement of one arm through the motion of an entry, a pull, and a recovery in the crawl stroke. This term is also defined as each time a hand enters the water for a pull. 6

Tethered Swimning. In this study tethered swimming refers to swimming in a fixed or stationary position while attached to a pulleyweight system.?

5William G. Cook, "The Physiological Effects of a Season of Varsity Swimming Competition and Training on Selected Bodily Responses of Swimmers" (unpublished Master's thesis, South Dakota State University, l77l), p. 3.

GHarold M. Barrow and Rosemary McGee, A Practical Approach to Measurement in Physical Education (2nd ed., Philadelphia: Iee \& Febiger, 1971), p. 328.
? John R. Magel and John A. Faulkner, "Maximum Cxyçen Uptake of CoJlege Swimmers," Journal of Applied Physiology, 22:929, May, 1967.

Efficient Movement.

The coinbining of coordinated movement to produce the force required by the particular purpose and to apply it though [sic] the most advaritageous point, and the most advantageous direction with the least expenditure of energy.

Velocity, As used in this study, velocity is the rave or speed of motion: measured in seconds. 9
$8_{\text {Marion Broer, Efficiency of Human Movement, (}}$ (Ind ed., Philadelphia: W. B. Saunders Company, 1973), p. 39.

9
(Springfield: G. \& ${ }^{\prime}$ C. Merriam Company: 1971), p. 984.

CHAPTER II

REVIEW OF RELATED LITERATURE

The revicu of related literature was divided into three parts: (1) literature related to maximal oxygen uptake and effects of training on specific pulmonary parameters; (2) literature related to specific measures of siroke efficiency; and (3) literature related to the construction of rating scales.

Literature Related to Maximal Oxygen Uptake and Effects of Training on Specific Fulmonary Parameters

When the body is at rest, the muscles require only 200 to 300 cc . of oxygen per minut.e. During vigorous exercise this need may increase more than iwenty inines. I Aftex prolongea work the respi.. ratory and cardiovascular system car no longer adjust to the increassed woris load. At this point the maximum amount of orygen that can be supplied to the active tissues of the body is reached. ${ }^{2}$ This maximum anount of oxygen being supplied is called maximal oxygen uptake and, ". . . is usually expressed as an absolute value in liters per minute or a relative value in milliliters per kilogram per minute".3
$I_{\text {Peter V }}$. Karpovich and Wayne E. Sinning, Physiology of fiuscular Activity (7 th ed., Philadelphia: W. B. Saunders Company, 1971), p. 90.

2Hillian G. Cook, "The Physiological Effects of 2 Season of Varsity Swimming Competition and Training on Selected Badily Responses of Swimners" (unpublished Master's thesis, South Dakota State University,

3karpovich and Sinning, loc. cit.

Saltin and Astrand tested 95 male athletes of which 5 were swinmers belonging to Swedish National Teams. The swimmers were tested on a bicycle ergometer pedaling at a rate of 60 or 70 rpm . Workloails for each athlete were selected by Saltin and Astrand. Oxygen uptake was determined by collecting the expired air in a Douglas-bag and the volume was measured in a spirometer. Ges samples were analyred by the Haldane technique. The mean maximal oxygen uptrake was 5.0 liters per minute and $67 \mathrm{ml} / \mathrm{kg} / \mathrm{min} .^{4}$

Magel and Anderson stuaied cardiac output in 10 well trained Norwegian male swimmers and 9 healthy untrained Norwegian males. The subjects were tested on a bicycle ergometer for maxinal oxygen uptake. Eech subject began at a workload of $300 \mathrm{kgm} / \mathrm{min}$ with an increase of 300 kgm each minute until each subject reached exhaustion. All subjects pedaled at a rate of 50 rpm , with work periods lasting approximately 8 minutes. Maximal oxygen uptake was neasured by open-circuit spirometry using a Douglas-bag for collecting the expired gas. Maximal oxygen uptake was reached when samples plateaued or any two measurements agreed wj.thin 5 percent of each other. The mean maximal oxygen uptake in liters per minute was 4.33 and in $\mathrm{ml} / \mathrm{kg} / \mathrm{min}$ was $58.5,5$

[^1]McAndle and Magel compared results obtained using a treadmill and a bicycle ergometer to determine maximal oxygen uptake. Twentythree male students, \therefore of whon were athletes fron fueens College, were the subjects. The treadmill speed was set at 3.4 mph and the subject walksd for the first 2 minutes at 0 percent grade. The grade was increasẻ to 2 percent and increased 1 percent pex ninute until exhaustion was attained. The subjects pedaled on the bicycle ergometer at a rate of 60 rpm . The workload was increased $180 \mathrm{kgm} / \mathrm{min}$ every two minutes until the subjects could no longer continue. For both tests gas samples were collected for each minute after the heart rate reached 170 beats per minute. Gas samples were analyzed in a Fisher-Hamil.ton gas partitioner. On the bicycle ergometer the mear. maximal oxygen uptake was 2.95 liters per minute and $38.5 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$, while the mean maximal oxygen uptake on the treadmill was 3.27 liters per min. and $42.7 \mathrm{ml} / \mathrm{kg} / \mathrm{min} .{ }^{6}$

Astrand and Saltin studied seven subjects in workloads performed by the arris, legs, and arms and legs by employing bicycle ergometers, running on a treadmill, skiing, and swimming. Oxygen uptake and other functions were studied.?

Arm and leg work exercise testing involved the use of two ergometers which were modified so that the subject could pedal one

6William D. McArdle and John R. Magel, "Physical Work Capacity, and Maximum Oxygen Uptake in Treadmill and Bicycle Exercise," Medicine and Science in Sports, 2:118-123, Fall, 1970.

7P. O. Astrand and Bengt Saltin, "Maximal Oxygen Uptake and Heart Rate in Various Types of Muscular Activity," Journal of Applied Physiology, 16:977-981, November, 1951.
ergometer with the arms and the other ergoneter with the legs. Air samples were taken at specifjed intervals. The sane procedure was employed in testing separately the arms and the legs.

A motor driven treadmill was used in running. Kunning started at seven miles per hour on a grade selected from scores subjects obtained on a Harvard fitness test. Expired air was collected and fractionized in 20-60 second samples. The procedure was repeated on another day with a 2.5 percent grade increase. This procedure wa. continued until maximal running time was less than 2 minutes and 45 seconds. ${ }^{8}$

A Douglas-bag was carried by the subjects on a rucksack during skiing. The subject had a 10 minute warm-up periods then was to ski at a high speed which would exhaust him in $3-4$ minutes. Expired air was collected for the last 45-60 seconds. Skiing was done on the horizontal. For swimming a low resistance respiratory valve was used for testing purposes. The inspiratory side was lengthened to reach above the water, the expiratory side was connected to a Douglas air bag which was carried alongside the pool. "Warm-up period, (running and calisthenics), speed, work time, and so forth were balanced as described for skiing, and 2 to 4 determinations were made on each subject. " 9

The experiments were conducted over a period of 3-5 months. Results indicated that heart rate and maximal oxygen uptakes in the ergometer tests did not differ significantly. Maximal oxygen uptake values in running were 87 percent of that obtained during cycling.
${ }^{8}$ Ibid. $9_{\text {Astrand }}$ and Saltin, loc. cit.

Heart rates were similar in experiments where oxygen intakes were close to the maximum ever reconded for that subject. 10

Macel and F'aulkner tested and retested seventeen male college swimmers for maxinal oxygen uptake during tethered swimming: free swimming and treadmill running. The study was designed to test the reliability and reproducibility of maximal oxygen uptake during t.ethered swimming, and to compare this value wi.th those obtained during treadmill running and free swimming. 11

In tethered swimming, the swimmers were attached to a pilleyweight system while maintaining a stationary position over an objecet fixed on the botton of the pool. Testing began with a workload of 4.55 kg and a 3 minute swimming period. After a rest of 3 to 5 mir utes, swimming began with an increased load of 1.14 kg . 'These three minute periods continued until the swimmers could no longer support the wej.ght during the three minute swim and remain above the rixed object. Testing on the treadmill consisted of a 5 minute run at 7 miles per hour, beginnjing at 0 percent grade, with a 10 minute rest between xuns. Each run had a 2.5 percent grade increase until the maximum voluntary capacity was reached. The free swimming test consisted of ten $50-y a r d$ sprints starting every 45 to 60 seconds. After a warm-up, the swimmers performed six 50 -yand sprints with a 10 -second rest between sprints. Gas samples for all 3 tests were analyzed by a
${ }^{20}$ Ibid.
${ }^{11}$ John R. Magel and John A. Faulkner, "Maximum Oxygen Uptakes of College Swimmers," Journal of Applied Physiology, 22:929-933, May, 1967.
model number 29 Fishermamilton gas partitioner for carbon dioxide, oxygen, and nitrogen. Results found no significant difference between maximal oxycen uptake obtained during tethered swimning and maximal oxygen uptake obtained during treadmill running. ${ }^{12}$

Costill investigated an apparatus which would reliably regulate energy requirements for exexcise in water. Thirteen members of the Cortland College varsity swimming teams were chosen for the investigation. Two trials were administered to determine reliability of volumes of oxygen consumed and heart rates obtained durine the thind ininute of a threeminute exercise bout. The swimmers were fitted with a belt attached to a pulley weight system. When the exercise period was initiated, the swimmer fluttex-kicked ham enough to maintain an elevated weight at, a height of from 10 to 15 inches. When more work was desired, a heavier weight was added, requiring the subject to exert more force with the legs. The mean weicht selected foc all subjects was $5.38 \mathrm{lb} .^{13}$

The open circuit method using a Douglas-bag was used to collect the expired gas during the third minute of exercise. A Haldane-Hender-son-Bailey gas analyzer was employed to determine carbon dioxide and oxygen content, and a Collins chain compensated spirometer measured the volume of expired gas. The mean maximal oxygen uptake for the tests

12 Ibida.
13pavid L. Costjll, "Use of a Swiming Erconeter in Physjological Research," Research Quarterly, $37: 564-567$. December, 2966.
were 2.4.71 liters per minute for test one and 2.492 liters per minute for test two. Reliability was 0.915. Similar results could be obtaine when the complete crawl. stroke waw used. 14

Faulkner, in his study on the physiology of swimming, found that maximum oxygen uptake values obtained during swimming are approximately 15 percent lower than those obtained on a bicycle ercometer, ar a treadmill, or in skiing. ${ }^{75}$ Karpovich stated that the average water pressure exerted on each square inch of the chest is . 182 lbs. s causing a vital capacity of about 300 cc 's, less than or the land. 16

Summary

A review of the available literature has revealed that there is disagreement amon f researchers with respect to values obtained during tests of maximal oxygen uptakes of swimmers. $17,18,19,20,21$ Tests of maximal oxygen uptake during swimming are limited because of the diffficullty experienced in obtaining results in the water. ${ }^{22}$ Values
${ }^{14}$ Ibid.
1.5. John A. Faulkner, "Physiology of Swimmines: Research Quarterly, 37:49-50, Maxes, 1966.

16 ${ }^{1}, V$. Farpovich, "Respiration in Swimming and Diving $"$ Research Quarterly, 10:8-9, (october, 1939.
${ }^{17}{ }_{\text {Salton }}$ and Astrand, loo. cit.
$18_{\text {Mage }}$ and Andersen, loco. cit.
19 Astrand and Salting, Ioc. cit.
$20_{\text {Mage }}$ and Faulkner, loco. cit.
${ }^{21}$ Costill, loco. cit. ${ }^{22}$ Karpovich and Sinning, op, cit. p. J.30.
measured in the water tend to be lower than those obtained on land. 23:24,25

Literature Pelated to Specific Tests of Stroke Efficiency
Chapman compared three methods of measuring efficiency in swimming:

1. Number of strokes constant, time and distance vary.
2. Time constant, number of strokes and distance vary. 26
3. Distance constant, time and rumber of strokes vary.

Result.s of the study indicated the thind method of measuring efficiency in swimming to be most satisfactory. 27

Burris studjed the speed-stroke test and its relationship to other tests of crawl stroking ability in sixty-mine college men and women. Ker scores wexe converted to T -scores, then added to get a measureable criterion. Her results, computed on a test-retest basis, indicated the tost to be valid (.836), reliable (.906), and sbigotive (.933). T-score noms were constmucted for the speed-stroke test for 20- and 25-yard distances for men and women, however local norms needed Io be developed. Since the speed-stroke scones represented two combiner I-scores, the average score was 100 instead of 50,28

Faulkner and Dawson studied pulse-rate velocity relationships

23 Magel and Paulfner, Ice, cit. ${ }^{2 / 4}$ Costill, loc. cit.
25 Fauliner, loc. cit.
$26_{\text {Harold }}$ M. Barrow and Rosemary McGee, Λ Practical Approach To Measurement in Physical Macation (2nd ca. IMi ladelphia: Lea \& Febiger, 1771): pp. 325-328.

$$
{ }^{2 ?} \text { Iviä. } \quad{ }^{28} \text { Ibid. }
$$

of nineteen sixlis rancing from $12-19$, years in ace, Sujms of firty metors at slow, noderate, Fast, and all out spechs from a preh-off were reconzal to the nearest tenth of a second then converted into velocity in meters per second. :hen each swim was completed, the swimers turned around and stom on the bottom wilile the experimentor measured the carolid pulse count. Iulse was taken fifteen seconds after the touch for fifteon seconde, then midiplied by four to obtain a rate in beats per minute. The four coordinates were plotted and a line of best fit was drawn. 29

Maxjnal oxycen uptake-velocity nas investigated by kamporich. The formula cor stroke efficiency which resulted from his invostigation incuudes the followins:

$$
\% \text { priciency }=\frac{\mathrm{ky}^{2} \mathrm{~s} x \cdot 0004686}{\text { oxygon uptare }(11 \operatorname{ters} / \mathrm{min})} \times 100
$$

$$
\text { Where } \mathrm{k}=3.27, \mathrm{v}=\text { velocity in } \mathrm{m} / \mathrm{sec} \text {. }
$$

$s=$ distance in m, and $1 \mathrm{~kg}-\mathrm{n}$ of work $=.0004636^{30}$
Karpovich ant Pestrecov reported that the rance of efficiency of suthming was between 0.5 to 2,2 percent, while karpovich and othexs reported a lange of ? 2.71 to 3.99 percent. Fujh and others reported that tie ranel in afficiency of channcl swimners was from 1.6 to $\% .2$ pexcent. 31

29Jon A. Paulkner and Rosemary Dawson, "Pulse Rates After 50.. Motox Swims," Rosearch Guartorly, 37:282-284, Mav, 1266.

ODeter V Werpovich and Wayme E. Sinning Prysiology of Mus-
 Pr. 32.05
37.bia.

Literature Related to the Construction of Rating Scales

Haskins stated performance dealing with the quality of execution must be evaluated through suibjective ratings. Through the use of a rating scale, subjective evaluation can be objectified. 32

Rating scales may serve several purposes. Before a scale can be constructed, the evaluator must have a clear understanding of ways in which the results will be used. The trait or activity being measured must then be determined, and its components must be subdivided and defined as carefully and objectively as possible. 33

The division of traits into sub-traits is the next step in the construction of rating scales. This operation adds to the validity of the scale. An example of the division of traits into sub-traits is that or the golf swing, which coulà be divided into adaress, takeaway, backswing, contact, and follow through. The rating device musit be diviled into points on the scale called categories. The usual number of categories is five, if two or more categories are required. These categories should be defined as concisely as possible and should describe the level of accomplishment at each point of the scale. When a number is assigned to each category the data obtained may be statistica.11y treated. 34,35
$32_{\text {Kary Jane Haskins, Evaluation in Physical Education (Dubuque: }}$ Wm, C. Brown Company Publishers, 1971), pp. 180-181.
$33_{\text {Harold }}$ M. Barrow and Rosemary McGee, A Practical Approach to Measurement in Physical Education (2nd ed., Philadelphia: Lea \& Febiger, 1971), pp. 558-559.

$$
\text { 34 Ibid. } 35 \text { Haskins, op. cit., pp. 188-189. }
$$

When the rating scale is prepared, several. principles must be followed. It must be accurate and easily administered. The instruc-. tions on the rating sheet must be clear and concise. When more raters use the scale, it adds to the validity of the instrument. Evaluators must be as fair and impartial as possible in order to maintain the validity of the instrument. $36.3^{\prime \prime}, 38$
${ }^{36}$ Helen M. Matthews, Measurement in Physical Education, (3rd ed., Philadelphia: W. B. Saunders Company, 1968), P. 306.
$37_{\text {Barrow }}$ and McGee, loco. cit.
$38_{\text {Hawkins, op. cit. ; pp. 188-189. }}$

CHAPTER III

METHODS AND PROCEDURES

Onganization of the Study

The purpose of this study was to develop a form rating scale for the crawl stroke to determine stroke efficiency. The study was conducted during the 1974-1975 men's intercollegiate swimming seasor. Maximal oxygen uptake, heart rate, and stroke rate were measured durine free and tethered swims. Each subject was tested three times for each selected measure of stroke efficiency. Test dates were scheduled so that a subject was not given the same test on consecuitive test days. Sequerce for the administration of the tests was determined by a coin toss procedure.

The entire test battery was administered in a period of fifteen days, beginning on February 10 and ending on February 25. Additional data was accumulated through the use of a rating scale. Four area swimming coaches observed each subject at the same time. Each time the subject was rated, the judge was located in the same okservation point. Data from the selected measures of stroke efficiency were compared with the scores achieved on the rating scale.

Sourse of Data

Eight members of the men's intercollegiate swimming team at South Dakota State University were selected as subjects for this investigation. These individuals were selected on the basis of past performance and predicted success in future competition. The subjects
ranged in age from 18-21, and the weight of the subjects ranged from 242-189 pourids. Five of the subjects were freestylers participating in sprint and distance events. The remaining three subjects were middle distance swimners whose primary events were backstroke and breaststroke. The characteristics of the subjects have been presented in Table I.

Collection of the Data
Three different measures for determining stroke efficiency jn swimming the crawl stroke were used. Velocity-pulse rate, velocitystroke rate, and velocity-maximal oxygen uptake were selected as measures because all are ". . . reasonably linear functions of swimming velocity between 20 and $70 \mathrm{~m} / \mathrm{min} .^{\prime 2}$ A rating scale was developed and used to determine whetner a relationship exists between performance and efficiency.

Measurement of Maximal Oxygen Uptake. As the workloaz increases, the amount of oxygen consumed also increases in a linear fashion. Cook states, "When the work rate reaches an exhaustive high for the subject, the oxygen consumption does not increase to any extent and the subject's maximal uptake has been reached". ${ }^{2}$
${ }^{1}$ John A. Faulkner, That Research Tells the Coach About Swimning, ed. Join M. Cooper (: $\mathrm{Fashineton:} \mathrm{American} \mathrm{Association} \mathrm{for} \mathrm{Health}$, Physical Education and Recreation, 1967), p. 21.

2 William G. Cook, "The Physiolozi.cal Effects of a Season of Varsity Swimning Competition and 'rraining on Selected Eodily Responses of Svinmers," (unpublished Master's thesis, South Dakota State Universit.y, 1971), p. 32.

TABLE I

SUBJECT CHARACTERISTICS AT
 THE TIME OF INITIAL TEST

Name	Age	Weight	Competitive Stroke
R.A.	19	162	Freestyle
S.A.	21	171	Freestyle
R.F.	19	147	Breaststroke
M.I.	19	189	Freestyle
T.K.	19	1156	Freestyle
M.K.	18	158	Freestyle
M.R.	20	142	Backstroke
T.W.			Backstroke

The technique employed in the present study to measure maxima? oxygen uptake was a modification of the tethered swimming test devel.open by Marcel and Faulkner. ${ }^{3}$ Coympic-type wets in a pulley-weight system were used to provide the resistance.

The subject began swimming for three minutes while maintaining a position over a fixer object (a racing line on the bottom of the pool 2. 73 meters from the dee) while pulling against a resistance of 4.55 F w, After a four-ninute rest the workload was increased by 1.14 IK and the swimmer beçan another 3 -minute swim. The subject was signaled by a whistle menever he did not maintain his position over the tares area,

The test was terminated once any of three conditions were observed:
(1) The subject could no longer support the weifint.
(2) Upon hearing the whistle, the subject could not return to a position over the tercet area,
(3) Oxygen porcontacios in the expired air no longer continued to rise.

The open circuit metro? was vised for the collection of the oxpred cases. Nasal breathing was restricted by the uso of a nose the fitter k with a strap. Che outlet of a Collins high velocity, low resisdance two-way breathing valve suspend above water level was connected by a tube 73.8 cm . in length to a Collins P- 357 rubber mouthpiece which the subject hold between his tooth and through which he breather.
 College Swimmers," Journal of Applied Physiology, 22:929, Hay, 1967.

A second out?et was connected by a tube 4.34 meters in length to a cir 4 Dry Gas Meter, which measured the volume of expired air. The remaining outlet of the two-way breathing valve was open to allow the subject to inhale atmospheric air while submerged in water. All connections were made wi.th low resistance plastic tube which had an inside dianeter of 38 cm . All of the equipment employed for the tethered swim test can be seen in Figure 1.

Connested to the inlet of the gas meter was a centigrade thermometer which reconded the temperature of the expired air. The expired air was then passed through a valve into the gas meter which measured the volume of expired air. This procedure was followed during the last minute of each three-minute bout and during each minute as the subject approached exhaustion. If the test was stopped prior to the completion of a full minute, data obtained in the previous minute was reconded. Expired air temperature was recorded a] ong with barometric pressure in order to comect the gas volume measurement to STPD (standard temperature and pressure: dry). Barometric pressure was obtained by contacting the Weather Enginecring department on the South Dakota state University Campus which provided readings uncorrected for sea level. Barometric pressure was corrected along with temperature by the use of a convcrision table. Figure 2 shows the recording of gas temperature.

Fron the dry gas meter the expired air passed through a mixing chamber. A small electric pump was used to draw a sample of the expjred air into a 5 liter Collins P-337-5 rubber breathing bas for a period of one minute. A Godart Pilmo-Analyzor was used to measire the percentade

of carbon dioxide and oxygen in the expirod air (see Figure 3), Tris was accomplished by connecting the hreathing bar to the Pulluo-Analyzer. Deflection readings representing the percentage of carbon dioxide and oxyyen were recorded at this time.

A male member of the South Dakota State Univorsity swinfich tean who did not participate in the actual experinont sexved as a subject for the pilot study, which was conkucted to determine reacment and modification of the equipment.

Measurement of Rating Sciale Score. A ratinct scale vas constructer based upon principles recommenảed by swimning coaches Janes Counsilnan of Indiana. University and Ceorge Haines of the Santa Clara Swim Club. These coaches were selected because they have been prowinent In the advancenent of the sport of swiming in the United Statos. The ratine somle can be found in Appendix A.

The croul stroke was divided into threa major divisions; the arm Stroke, breathine, and the kick. The arm stroke was subdivided into the pull, push and recovery phases. hore cmphasis was placed on the aras because, secording to Counsilman, ". . . at Fast speeds the Fiok contrinutes nothing to the propulcion created by the arms, $"^{4}$ The asoren of elbow flexion in the pull phase is enfhasized since research indicates that the best position from fingertips to elbow is between 45° and 90°. Counstinman states that the forco createl with the arms in tho above position cenoratos a torce of 49 pinds, compared with a force of
${ }^{4}$ James E. Counsilman, The Science of Swirming (Englewood Clifis: Prentice-llal1, Inc., 1968), P. $\overline{7}$.

Figure 3. Recording deflection readings to determine percentage of carbon dioxide and oxygen in expired air.
only 31 pounds with a straight arm pull. ${ }^{5}$ During the pull phase the elbow is kept higher than the hand or wrist to prevent, as Haines texned it, "leading with the elbow and slipping of the hand." 6 The hand should follow the midline of the body through the pull phase.

Counsilman studied forces in two types of crawl strokes. The clide stroke was defined as the extension of one arm in front of the body and then pausing until the other arm moves to a similar position, The continuous stroke was defined as that of initiating the arm pull as soon as the arm enters the water. Results have shown the continuous stroke to be faster than the glide stroke and capable of creating: according to Counsilman, "more propulsive force with less fluctuation in the application of force."? Following the pull phase there is a push phase in which the palm of the hand is pointed directly towerl the feet. This phase should end four to six inches below the water surface io aid in the elimination of bobbing. ${ }^{8}$

The recovery starts before the push phase is finished. The elbow should leave the water first, followed by the hand. When thie shoulder is shrugged forwand excessive movement in the hips and legs j.s decreased. By positioning the palm of the hand toward the feet,

[^2]only 31 pounds with a straight arm pull. 5 During the pull phase the elbow is kept higher than the hand or wrist to prevent, as Haines termed it, "leading with the elbow and slipping of the hand." ${ }^{6}$ The hand should follow the midline of the body through the pull phase.

Counsilman studied forces in two types of crawl strokes. The Elide stroke was defined as the extension of one arm in front of the body and then pausing until the other arm moves to a similar position, The continuous stroke was defined as that of initiating the arm pull as soon as the arm enters the water. Results have shown the continuous stroke to be faster than the glide stroke and capable of creating, according to Counsilman, "more propulsive force with less fluctuation in the application of force."7 Following the pull phase there is a push phase in which the palm of the hand is pointed directly towarl the feet. This phase should end four to six inches below the water surface io aid in the eliurination of bobbing. 8

The recovery starts before the push phase is finished. The Elbow should leave the water first, followed by the hand. When the shoulder is shrugged forwand excessive movement in the hips and legs i.s decreased. By positioning the paln of the hand towand the feet,
$5_{\text {Ibid. }}$
${ }^{6}$ George Haines, "Freeestyle Hints," Swimming World, 3.4:4, July, 1.973.

7James E. Counsilman, "Forces in Two Types of. Crawl Stroke," Research Quarterly, 26:127, May, 1955.

$$
8_{\text {Haines, }} \text { loc. cit. }
$$

the shoulder and elbow are further aided in the forward shrug allowing for a higher elbow recovery. ${ }^{9,3.0}$ The entry of the hard should be thumb first well out in front of the shoulder, and between the midline of the body and the shoulder. ${ }^{l l}$ This normal reach entry prevents the swimmer from digging his hands in too deeply, which is the result of an early marin entry. ${ }^{12}$

Swimmers are encouraged to develop their own breathing style depending on the rhythm of the kick and head roll. The head should be in a comfortable position in a point between the hairline and the eyebrows. ${ }^{13}$ Lifting the head to breathe causes a distortion in the body alignment. By turning, the swimmer's head is working with the arms and body. ${ }^{14}$

Councilman states that the kick is used as a streamlining and stabilizing force, rather than a propulsive force. The swimmer should employ the kicking method which allows him to swim the fastest. Discontinuing the kick causes the hips and legs to drop too low in the
${ }^{9}$ Councilman, The Science of Swimming, op. cit., p. 36. ${ }^{10}$ Gaines, hoc. cit. ${ }^{11}$ Ibid. ${ }^{12}$ Counsilman, The Science of Swimming, op. cit., pp. 40-4I. $13_{\text {Haines, }}$ los. cit. ${ }^{14}$ Councilman, The Science of Swimming, op. cit., p. 59.
water and results in an undesired drag. 15 Haines states, "The kick should not be too deep in the water but within the surface of the water. " ${ }^{16}$

The original rating scale was devised with the aid of the swimming coach, the thesis adviser, and a staff nember. A pilot study was conducted to aid in determining the final draft. using four swimming coaches as judges. Results of the pilot study revealed that the scale failed to adequately discriminate between performance levels. It was revised to include three categories instead of the original five. A second pilot investigation supported the use of three categories, since all functioned with greater frequency. Each pilot study for the rating scale was discussed with the four coaches for purposes of familiarizing them with terms on the scale and the scoring of the scale.

T'he rating scale was administered to each subject during four 50 -meter swims. The coaches observed each swimmer and scores were recorded at this time. If any coach desired to see the swimmer in onder to complete the scale, the swimmer was requested to swim an additional 50 meters. Each swimmer was rated three times by the four coaches. Location of observers remained constant throughout the evaluation process.

Measurement of Velocity. The watch was started on the signal, "go", and stopped when any part of the body of the swimmer touched

> 15 Counsilman, The Science of Swimming, op, cit., pp. 25-30. $16_{\text {Haines, }}$ loc. cit.
the side of the pool after competine the prescribed distance, mimes were recorded to the nearest tenth of a second.

Measurement of Ztroke. The technioue employed in the lresent study to measure the stroke-velocity of each subject was described by Burris. ${ }^{17}$ Strokes were counted and recorded for each subject durins a. 25-jard swin. Bach subject was instructed to swim the 25-yard distance as fost as possible using as tew strokes as possible, staxtine on the sicnal go. No swimmer was allowed to push off of the sirle with his feet at the start of the swin. Each time either hand entered the water for a. Pull, one stroke was counticd. Counting was begun when the first arm entering the water pulled and contiruce evesy arm pull until a hand touched the side. Immediately thereafter the number of strotes and the tine wos recunted for the subject.

Measurement of Fulse Rate. Faultner and Danson clescribed the nothod usce to obtajn the pulise rate-velocity relation used in this investicjation. ${ }^{78}$ Each subject was instructed to swim four Sometex swims at speds of $25,50,75$, and 700 percent of his maximum. After completinc each shim, the subject stood on the botton, turned around, and faced the far end of the pool. Fifteen seconds after the complation of each swim, a carotin pulse was measured for 15 seconds and multrifed by four to detcrmine the pulse rate for one minute.
${ }^{17}$ Tarold H , Damon and Roamary Mofoc, A Practical ADproach to Mcasurement in Physical Education (2nd ed., Fhiladelphia: Lea ib Febjeger, 1927), nn. 325-328.
${ }^{18}$ John A. Faulknex and Rosomary Dawson, "Pulse Rates After 50-Meter Swins," Fewearch Quarterly, $37: 282-284$, May, 1966.

When pulse rates obtained were above 140 beats $/ \mathrm{min}$., sufficient time was allowed for the pulse rate to return below this level. Pul.se rate and time were recorded after each 50 -meter swim was completed.

Procedure for Collecting Data

A.ll testing was completed in the Natatorium located in. the South Dakota State University Health, Physical Educztion, and Recreation Center. After a general overview to acquaint the subjects with the tests, an explanation and demonstration of techniques of the various tests was given. 'The subjects were told that the tests not only served as a conditioning device, but that the results would be used to more accurately formulate training programs. The actual purpose oif this investigation was not explained to them.

Test dates and times were set for each subject before the tests were given. The procedure followed for each of the three testing periols was:

1. The subject reported to the Natatorium in his suit.
2. The subject was tested for stroke-velocity.
3. After a brief recovery period, the subject was tested for pulse rate-velocity. The rating scale was administered at this time.
4. On the next alternate day the subject's weight was rec orded.
5. Maximal oxygen uptake was determined through the use of tethered swimming.

The scores achieved in each measure of efficiency for all test periods were ranked for each swimmer and compared with the resulis of the rating of the swimmers form as evaluated by the four coaches.

CAMPTER IV

ATATYAIS AND DISCUSSION CT RTSULTS

Organization of the Data for Analysis

The purpose of this investication was to develop a forin rating scale for the crewl stroke to determine stroke eficiciency.

The data collected froin the eight subjects were maximal oxygen uptake obtajned durinc tethered swinning, velocity-pulse rate, velocitystroke rate, and periormance on the form rating scale. The subjects were tested on all variables three times during a firtaen-kay period. Raw data for all varianles are presented in fppendix 3. Table II indjeates the mean scores and standard deviatjons for all variables.

A coefticiont of correlation analysis was the primaxy statistical treatment applied to the data on the tests. ${ }^{l}$ The purpose of this treatment was to analyze the data to see whether a relationship existed between scores obtained in selected measures of stroke efficiency and scores achievet on a form rating scale for the crawl stroke.

Multiplo regreswion was a second statistical treatment which Was armped to each of the variables on the tests. ${ }^{2}$ The application of this procedure was angeested by the Experiment Station Statistician. at South Dokota Steate University and was used to determine whether a

[^3]
TABLTE II

TABLS GP MRATS

Variablo	Hean	S.D.
Ratinç Scale	48.27	2.25
Stroke	22.63	3.00
Fulse	142.83	6.67
Haximal Oxycen Uptare	41.01.	6.35
Yolocity	2.65	0.03
Efficiency	4.49	0.92

resreseion equation couls be developed for predietion purposes. in olectronic computer wes used for data analysis to facilitate speed and accuracy. In both statistical treatnents the 0.05 level of confidence was required before the mull hypothesis was rejected.

Anelysis of the Data

The results of the coofficient of corrolation analysis are shown in matrix form in Table III. A coefficient of 0.396 was required for corcelations to be significant at the 0.05 level. Sicnifjcant correlations at the 0.05 level of confidence were found for the variables of ratine scale score to pulse (-0.481), stroke to velocitur (-0.559), ePficiency to maximal oxycen uptate (-0.781), and efficiency to velocity $(0,590)$.
'iho rosults of the multiple regression analysis indicated a signifjeant, relationship at the 0.05 level for all variables, which accounter for rip. percont of the variance in the score obtaince on the ratine seale. The multiple regression equation developed for this study to dotemine score on the xating scale from the selected variables is:
$y=-0.261($ pulse $)+0.099($ stroise $)-3.379($ efriciency $)-0.354$ (naximal oxyen urtaires) +10.086 (velocity $)+67.649$.

Total vaciunce $=116.865$
IS variance $=4.26$
Sum of squares reduced in final stop $=17.257$
Minimum needed to contribute simnificantly to the equation $=6.46 ?$.

CORRELATION MATRIX TABLE
FOR ALI, VARIABLES

Discussion of the Results

The correlation coefficient indicated a significant relationship between score and pulse, stroke and velocity, efficiency and maxinal oxycen uptake, and efficiency and velocity. Throuch the use of multiple recression analysis, it was revealed that all variables indicated a significant relationship to the rating scale scoce. Maximal Oxygen Uptake. The correlation coefficient indicated no significant relationship between maximal oxygen uptake values and rating scale scores. The mean maximal oxygen uptake in this investigation for all tests was $48.27 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$, or 2.99 liters per minute. Costill investigated maximal oxygen uptake values of swimmers obtained by a tethered swim procedure and found mean values of 2.40 liters per minute. ${ }^{3}$ Magel and Andersen found maximal oxygen uptake values in Norwegian swimmers to be 4.33 liters per minute while being tested on a bicycle eremeter. ${ }^{4}$ Faulkner stated, however, that values obtained during swimming are approximately fifteen percent lower than those obtained on land. 5

Bavid I. Costill, "Use of a Swimnine Ercometer in Physiological Research," Research Quarterly, 37:564-567. December, 1966.
${ }^{4}$ John R. :iajel and Lanse Andersen, "Pulmonary Diffusing Capacity and Cariiac Cutput in Young Trained Norwegian Swimmers and Untrained Subjects," Medicine and Science in Sports, l:131-139. September, 1969.

5John 4 . Faulkner, "Physiology of Smimning," Research Quarterly, 37:4.9-50, Narch, 1966.

Nagel and Faulkner used a tethered swim procedure to obtain maximal oxygen uptake values of swimmers. Results indicated a mean value of 4.27 liters per minute. The higher value obtained here could have been due to the fact that several subjects used in the study were Olympic or All-American swimmers. ${ }^{6}$

Velocity and Strokes. Cuefficient of correlation analysis found no significant relationship between the number of strokes or the velocity to the rating scale. There was, however, a significant negative correlation between the number of strokes and the velocity. This correlation could be explained by noting that one subject participating in the present study had the fewest nuinbe:c of strokes and the greatest velocity, while another subject had the largest number of strokes and the least velocity. Burris developed norms for the speed-stroke relationship for swimners having intermediate or above skill level. The average T-score was found to be 100. ${ }^{7}$ In the present investigation the mean T-score was 130 , indicating the skill level to be well above the average score of 100.

Pulse Rate. Through the use of coefficient of correlation analysis, a significant relationship was observed between pulse rate and the form rating scale. Faulkner and Dawson observed a linear relationship between pulse rate and velocity reconded in four
$6_{\text {John R }}$. Macel and John A Faulkner, "Maximum Oxycen Uptakes of College Swimmers," Journal of Applied. Physiolocy, 22:929, May, 1967.

7 Harold in. Barrow and Rosemary McGee, A Practical Approach to Measurement in Physical. Education (2nd ed., Philadelphia: Lea a Febiger, 3.971), pp. 325-328.

50 -meter swims. 8 Linear relationships were also observed between pulse and velocity in this investigation. Figures L-G graphically illustrate the rejationship between pulse and velocity in each test. for cach subject.

Efficiency. No significant relationship was found between caiculated efficiency and the rating scale when coefficient of correla,tion analysis was used. However, there was a significant relationship between efficiency and maximal oxygen uptake as well as for efficiency and velocity. This finding was further supported by the fact that both velocity and maximal oxygen uptake were part of the formula used in determining efficiency. The range in efficiency in this investigation was found to be from 3.18 to 6.47 percent.

Karpovich and Pestrecov reported the range in the efficiency of swimming to be from 0.5 to 2.2 percent, while Karpovich and others reported a range of 1.71 to 3.99 percent. In an investigation involving channel swimmers, Pugh and others reported a range of efficiency in swimming from 1.6 to 7.2 percent. ${ }^{9}$ The present researcher was unable to obtain the procedures of data collection, and methods of computation for the efficiency rating in any of these studies.
${ }^{8}$ John A. Faulkner and Rosemary Dawson, "Pulse Rates After 50-meter Swims," Research Quarterly, 37:282-284, May, 1966.
9^{J} ohn A. Faulkner, What Research Tells the Coach About Swimming, ed. John H. Cooper (Vashington: American Association for Hoalth, Physical Education, and Recreation, 1967), pp. 22-23.

Figure 4. Pulse-Velocity Relationships for Each Individual in Test 1.

Figure 5. Pulse-Velocity Relationships for Each Individual in Test 2.

Figure 6. Pulse-Velocity Relationships for Each Individual in Test 3.

5

The firat hyrothesis, which stated that there is no sicnificant relationship between scores achiever on the crawl stroke ratine scale and selccted measures of stroke efficiency, was rejected, since the correlation coeficient for the variakle of pulse rate (-. lol) was sionificant at the 0.05 level of confidence. A second hypothesis, which stated thet a mutiple regression equation to sienjficantly predict scores achieved on the crawl strofe rating scale was also rejected. The computed F-ratio for vaxiance accounted for (77.4) was sicujficant at the 0.05 level of confidence.

SUMARY, CONCLUSIONS, AND RECOMENDATIOHS

Summary of the study

The purpose of this investigation was to develop a. form rating scale for the crawl stroke to determine stroke efficiency.

The subjects were eight members of the South Dakota. State University men's intercollegiate varsity swimming team. all shin jots were tested three times for each variable during a, 15-day testing period. Testing bean on February 10, 1975 aid. was complated on February 25, 19\%5. The measures of stroke efficiency selected for uso in this study were stroke-velocity, pulse-volocity, and maximal oxygen uptake-velocity. The form rating scale was constructed from principles reported by councilman and Hajes. ${ }^{1,2}$

Data were collecicd and recorded in such a manner that relationships between the selscted'measures of stroke efficiency and the for rating scale could be analyzed. multiple regression analysis was applied to the data to determine wether a relationship existed. Coefficient of correlation analysis was also applied to the data to determine relationships between ail variables. The 0.05 level of confidence was accepted as the minimal level require in omer to reject the mull hypotheses.

[^4]The results of the cocfficient of correlation antalysis indicated that only the variable of pulse had a sienificant relation ship to the form ratine scale.

The results of the multiple rogression analysis indicated that a recression equation using the variables selected for this study conld be used to predict achievenent of scores on the form rating scale. These variables accounted for 77.4 percent of the variability in the form rating scale.

Conc?usjons
Within the limitations of this investigation the followine conclusions seened warranted:

1. Subjects having lower maximal oxycen uptake values obtained on a graded tethored swim test will achieve a higher levol of elficiency: as detemjned by the Karpovich fomula.
2. As summine speed increases, efficiency as computer with the ain of the rarpovich fommia is profortionately higher.
3. As pulse rate increases, the score obtained through the use of the form rating scale wili decrease.

Recommendations

The folloring recommendations are male for further study:

1. That a similar study be undertaken using a greater number of subjects.
2. That a similar study be conaucted over a loncor poriod of time to dotermine chances wich may occur in efficiency throushout the competitive suimine scason.
3. That a bimilar study be completed where other measures of maximal oxycen uptake in addition to the method used in this study be investigated and analyed to find a most valin neasure of determining the thue maximal oxven uptake value of a swimner,
4. Replicate the stiny using a greater nunber of judees in order to detoraine objectivity, reliability, and to improve the accuracy of the crawl stroke rating form.

BIBLIOGRAFHY

A. BOOKS

Barrow, Harold M., and Rosemary McGee. A Practical Approach to Measurement in Physical Education. 2nd ed. Philacelphia: Lea $ふ$ Febifer, 1971.

Broer, Marion. Efficiency of Muman Movement. 3rd ed. Fhiladelphia: U. B. Saunders Company, 1973.

Counsilman, James E. The Science of Swimming. Englewood Cliffs: Prentice--Hall, Inc., 1968.

Faulkner, John A. What Research Tells the Coach About Swimming, ed. John M. Cooper. Nashington: American Association for Health, Physical Education, and Recreation, 1967.

Haskins, Mary Jane. Evaluation in Physical Education. Duruque: Wm. C. Brown Company Publishers, 197l.

Karpovich, Petor V., and Wayne E. Sinning. Physiolncy of Muscular Activity. 7th ed. Philadelphia: W. B. Saunders Ciompanys J.971.

Matthews, Helen M. Measurement in Physical Education. 3rd ed. Philadelphia: W. B. Saunders Company, 1968.

Weber, Jerome C., and David R. Lamb. Statistics and Research in Physjcal Education. St. Louis: The C. V. Mosby Company, 1970.
_ Webster's Seventh New Collegiate Dictionary. Springfield: G. \& C. Merriam Companys 1971.

B. PERIODICALS

Astrand, P.O., and Bengt Saltin. "Haximal Oxygen Uptake and Heart Rate in Various Types of.Muscular Activity," Journal of Applied Physiology, 16:977-981, November, 1961.

Counsilman, James E, "Porces in Two Types of Crawl Stroke," Research Quarterly, 26:127, May, 1955.

Costill, David L. "Use of a Swimming Ergometer in Physiolorical Research," Research Quarterly, 37:564-567. Deccmber, 1966.

Paulkner, John A. "Physiology of Swimming," Research Quarterly, 37:41-53, March, 1966.

Faulkner, John A., and Rosemary Dawson. "Pulse Rates After 50-iheter Swims," Research Quarterly, 37:282-234, Hay, 1966.

Haines, George. "Freestyle Hints," Swimming Morld, 14:4, Julys 1973,
Karpovich, P. V. "Respiration in Swimming and Diving," Research Quarterly, 10:8-9, October, 1939.

Magel, John R., and John A. Faulkner. "Faximum Oxycen Uptake of College Swimmers," Journal of Applied Physiology, 22:929-933, May, 1967.

Magel, John R., and Lange Andersen. "Pulmonary Diffusing Capacity and Cardiac Output in Young Trained Norwegian Swimmers and Untrained Subjects," Medicine ard Science in Sports, 1:131-139, September, 1969.

Malhorta, M. S., J. Sen Gupta, and R. M. Rai. "Pulse Count as a Measure of Energy Expenditure," Journal of Applied Physiology, 18:994, September, 1963.

McArdle, William D., and John R. Masel. "Physical Work Capacity and Maximum Oxyeen Uptake in Treadmill and Bicycle Exercise," Medicine and Science in Sports, 2:118-123, Fall, 1970.

Saltin, Benst, and P.O. Astrand. "Maxinal Cxysen Uptake in Athletes," Journal of Applied Physiology, 23:353-358, September, 1967.
C. UNPUBLISHED WCRKS

Cook, William G. "The Physiological Effects of a Season of Varsity Swimming Competition and Training on Selected Bodily Responses of Swimmers." Unpublished Master's thesis, South Dakota State University, Brookings, 1971.

APPENDICES

APPENDIX A

CRANL STHOKE RATING SCALE

SWIHMER: TEST 落 123
Fregueney of the observance of 1 . Never--does not occur these traits: 2. Sonetimes--half of the time 3. Always--is constantly occurring

Please check the appropriate square:
ARM STROKE $\quad 123$

Pull-bent elbow of 115 to 90 degrees from fingertips to elbow -elbow higher in the water than hand or wrist
-hand foll.ows midline through pull phase
-constant turnover so pressure is maintained by a hand et all tines

Push-at the ond of the pull phase there is a distinct push of the water

- end of push phase hand is $4-6$ inches below hater surface

Recoverwhich or bont elbow with elbow comine out first and hard coming out last
-rotato shoulder forward by reaching with the elbow and shyuging the shoulder forwand

- Dalm of han faces torand feet at a 111 times
-hand enters well out in front, of the shoulders betricen nidiline of body and shoulders
-hart enters thumb side down

BPEATHING

--turn the head to breathe as the orposite hand of natural bxeathing side entors the water
-watex Jovel between hairline and eyebrows
-tum the head to bweathe ararer than lifting head to breathe
-hear returns to original position
KICK
--continuous kick (no break in rhythm)
-kicks from hip with legs and feet extended (no excessive Knee flexion)
-not too doap in the water (foet noxt to the surface but not out of the water)

APPENDIX B

INDIVIDUAL MAXIMAL OXYGEN UPTAKE AND EFFICIENCY RATINGS IN EACH OF THREE TRIALS
(liters per minute/milliliters per kilogram per minute/percent)

Subject	T_{1}	T_{2}	T_{3}
R.A.	2.17/29.47/5.59	3.81/52.33/3.18	2.76/37.68/4.39
S.A.	2.85/36.69/5. 18	2.61/33.40/5.66	2.64/34.72/5.59
R.F.	$3.17 / 47.47 / 3.71$	$3.24 / 48.23 / 3.63$	$3.06 / 45.75 / 3.84$
M.I.	3.26/37.97/4.53	$3.41 / 40.36 / 4.33$	$3.41 / 40.52 / 4.33$
T.K.	2.73,147, 72/5.4]	2.37/34.82/6. 33	$2.28 / 34.66 / 6.47$
M.R.	3.52/4.3.73/3.34	2.96/36.60/3.97	2.56/31.6/4.59
M.R.	3.65/50.87/3.79	3.46/48.23/3.99	$3.27 / 45.56 / 4.23$
T.W.	$3.10 / 48.04 / 3.57$	2.75/42.32/4.04	2.68/42.14/4.15

INDIVIDUAL SCORES FOR RATING SCALE IN EACH OF THREE TRIAIS
(Average of Four Coaches Ratings)

Subject	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
R.A.	50.00	49.50	49.75
S.A.	49.25	48.00	49.00
R.F.	43.25	45.25	45.25
M.I.	49.25	49.25	50.25
T.K.	46.50	47.25	46.50
M.R.	50.50	51.25	51.50
M.R.	49.00	49.25	49.00
T.W.	43.25	48.75	47.75

INDIVIDUAL SCORES FOR PULSE-VELOCITY ON 50-METER SWIM

(beats per minute/velocity in meters per minute)

Subject	T_{1}	T_{2}	T3
R.A.		128/1. 19	112/1. 33
	$122 / 1.42$	$140 / 1.43$	$126 / 1.48$
	132/1.53	144/1.56	142/1.62
	142/1.74	152/1.74	150/1.76
S.A.	106/1.28	100/1.20	96/1.27
	106/1.37	102/1. 32	$106 / 1.36$
	114/1.45	112/1.43	114.11 .46
	140/1.75	140/1.75	144/1.75
R.F.	142/1. 32	104/1.28	108/1. 31
	142/1.42	120/1. 38	120/1.38
	152/1.48	140/1.52	$134 / 1.48$
	156/1.57	$148 / 1.56$	$156 / 1.57$
M.I.			
	$98 / 1.39$	$98 / 1.40$	$100 / 1.41$
	$106 / 1.52$	118/1. 52	$122 / 1.56$
	$138 / 1.71$	$160 / 1.69$	136/1.68
T.K.			
	$114 / 1.35$	112/1.35	108/1.37
	$124 / 1.44$	11.2/1.48	$128 / 1.48$
	146/1.69	144/1.69	132/1.72
M.R.			
	$96 / 1.37$	118/1.39	$110 / 1.41$
	$104 / 1.48$	$126 / 1.52$	$120 / 1.43$
	144/1.53	140/1.55	134/1.56
M.R.			
	$116 / 1.34$	$98 / 1.28$	$108 / 1.36$
	$120 / 1.49$	$104 / 1.45$	$124 / 1.51$
	134/1.63	136/1.69	140/1.68
T.W.			
	$110 / 1.37$	$114 / 1.37$	$110 / 1.39$
	120/1.47	122/1.49	$125 / 1.50$
	143/1.64	145/1.65	142/1.65

INDIVIDUAL SCORES FOR STROKE-VELOCITY IN EACH OF THRQE TRIALS
(number of strokes/time in seconds)

Subject	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
R.A.	$19 / 13.0$	$18 / 13.1$	$19 / 13.5$
S.A.	$20 / 13.0$	$20 / 13.0$	$19 / 14.2$
R.F.	$20 / 14.8$	$21 / 15.5$	$22 / 14.7$
M.I.	$22 / 13.1$	$22 / 12.5$	$23 / 13.0$
T.K.	$24 / 14.5$	$26 / 13.6$	$25 / 14.5$
M.R.	$22 / 14.7$	$23 / 14.7$	$22 / 14.7$
M.R.	$24 / 13.6$	$23 / 14.0$	$24 / 13.3$
T.W.	$28 / 14.6$	$28 / 14.6$	29.1

[^0]: This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

[^1]: ${ }^{4}$ Bengt Saltin and P. O. Astrand, "Maximal Oxygen Uptake in Atriletes," Journal of Applied Physiology, 23:353-358, September, 1967.

 5John R. Magel and Lange Andersen, "Pulmonary Diffusing Capacity and Cardiac Output in Young Trained Norwegian Swimners and Untrained Subjects," Medicine and Science in Sports, 1:131-139, September: 1969.

[^2]: ${ }^{5}$ Ibid.
 ${ }^{6}$ George Haines, "Freestyle Hints," Swimming horld, $3.4: 4$, July, 1.973.

 7 James E. Counsilman, "Forces in Two Types of Crawl Stroke," Research Quarterly, 26:127, May, 1955.
 $8_{\text {Haines, }}$ loc. cit.

[^3]: ${ }^{3}$ Jexpme C. Veber and David R, Lamb, Statistice and Rosearch in Physical Whataion (St. Louis: The C. V. Hosby Comany, 1970), Re. 59-66.

[^4]: ${ }^{l_{\text {James }} \text {. Councilman, The Science of Swimming (Inglewood }}$ Cliffs: Prenticc-1:all, Inc., TO68), FP. 7-5C.
 $2_{\text {George Hance, "Freestyle litints", Swimming Fora }}$, 14:4, July, 1973.

