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ABSTRACT 

EXPLORING HETEROGENEOUS PHENOTYPES IN RESPONSE TO STRESS  

HEATHER S. DETER 

2020 

     This work combines traditional microbiology with bioinformatic and synthetic 

biology approaches to study antibiotic tolerance. Antibiotic tolerance is a widespread 

phenomenon that facilitates antibiotic resistance and decreases the effectiveness of 

antibiotic treatment. Tolerance is distinct from antibiotic resistance, because tolerance is 

short term survival and typically results from phenotypic variations rather than genetic 

variation.  

The molecular mechanisms underlying tolerance are varied and debated in the literature. 

I have explored two intracellular processes related to tolerance, toxin-antitoxin (TA) 

systems (Chapter 2) and proteases (Chapter 4). Specifically, I focus on the ratio of 

antitoxin-to-toxin in type II TA systems, because type II TA systems must be regulated in 

such a way that antitoxins are more prevalent than their toxins. Our analysis of RNA-

sequencing and ribosome profiling data demonstrates that most type II TA systems in E. 

coli are regulated at the translational level, while others rely on various combinations of 

transcriptional and post-transcriptional regulation. Before publishing this article, 

researchers often cited transcriptional regulation as the primary method of regulating TA 

systems.  

Studying antibiotic tolerance and other subpopulations necessitates the ability to study 

single-cell dynamics in the context of the whole population. To facilitate single-cell 

analysis, we have developed single-cell tracking software that leverages machine learning 

to identify cells. The software then tracks the cell based on this classification and returns 
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data on cell size, location, division and fluorescence.  The software provides the means of 

quantifying cell behavior before and after antibiotic treatment.  

One such system we would like to apply this software to is our work on proteolytic 

queueing and antibiotic tolerance. Proteases are responsible for protein degradation and, as 

such, regulate many cellular functions. To better identify the role proteases play in 

persistence, we used proteolytic queueing to interfere with proteolytic activity. We found 

that interfering with degradation at the protease ClpXP increases antibiotic tolerance ~80 

and ~60 fold in an E. coli population treated with ampicillin and ciprofloxacin, 

respectively. I used stochastic modeling to support our results, and we have experimentally 

determined that altering the expression of the synthetic system affects the level of tolerance 

in the population. I am currently using next-generation sequencing to identify the systems 

being affected by the queue. 
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1. INTRODUCTION 

Microbial survival is a challenge in the face of constantly changing and stressful 

environments. As a result, microbes have developed countless, robust mechanisms to 

survive harsh environments, and these mechanisms can both benefit and challenge 

humanity. On one hand, areas of industry that rely on microbes take advantage of 

population robustness for bioproduction, bioremediation and other processes. On the other 

hand, industries that need to control pathogens and invasive microbes face a constant 

challenge of developing new antimicrobial drugs. As biotechnology develops, the 

application of synthetic biology to study these phenomena and solve the challenges 

microbes present has opened up opportunities for further exploration of microbial systems. 

In this work, we examine the regulation of genetic systems related to stress responses and 

develop new techniques to study these systems at the single-cell level.  

1.1. Toxin-antitoxin (TA) Systems 

Toxin-antitoxin systems are two-part systems consisting of a toxin and an antitoxin. 

Toxins in these systems slow growth by affecting metabolic processes (e.g. replication, 

transcription and translation) and can even lead to cell death (e.g. artificial overexpression 

of toxin can kill cells); antitoxins neutralize their cognate toxins through a variety of 

mechanisms. TA systems were first characterized as “addiction modules” located on 

plasmids. The genes for toxins and antitoxins often overlap, and the dependence on the 

antitoxin to prevent toxin activity is what led to their classification as addiction modules1,2. 

In the intervening decades, TA systems have been found in abundance throughout 

prokaryotic genomes and studied in the contexts of programmed cell death, phage 

infection, biofilm formation, virulence, stress response and persistence3. In Salmonella, TA 
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systems have been shown to play a role in intracellular survival4 and genomic analysis 

shows that TA systems are more prevalent in pathogens5. Currently, TA systems are 

thought to be present in many genomes because of horizontal gene transfer6, and most free-

living prokaryotes have multiple TA systems7 with approximately 93% of known TA 

systems are chromosomal3. 

Genomic analyses have found that pathogens have higher numbers of TA systems than 

closely related non-pathogenic strains5,8 and free-living prokaryotes (both bacteria and 

archaea) have TA systems. The ubiquity of TA systems in free-living prokaryotes strongly 

suggests that TA systems are related to survival, particularly cell survival in the face of 

stressful environments. Furthermore, TA systems are regulated in response to stress and 

are largely affected by proteases. Proteases are responsible for the degradation of the 

antitoxin proteins and affecting protease activity (which often occurs in response to stress) 

can increase toxin activity1,2,9-12. As an example, YoeB toxin activity is dependent on Lon 

degradation of its cognate antitoxin, YefM9, and YoeB activity increases in response to 

heat shock as a result of increased degradation by Lon13. TA systems also respond to 

oxidative and nitrosative stresses, nutrient deprivation, acid/alkaline pH and bile acids8. 

The effects of TA systems on cell physiology thus emerge from an intricate network 

triggered by toxin levels and other factors, and activation of this network leads to altered 

cell metabolism and increased odds of cell survival under stressful conditions8,14.  

1.2. Regulation of TA Systems 

It is well-established that TA systems are coordinated in a network, meaning that an 

individual TA system does not operate independently within a cell15-18. This is in part due 

to the regulatory activities of toxin-antitoxin proteins; TA systems commonly regulate their 
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own transcription (autoregulation). A particular type of autoregulation has been shown in 

several TA systems, referred to as conditional cooperativity, wherein the ratio of toxin-to-

antitoxin affects auto-repression resulting in decreased transcription when toxin levels are 

higher than antitoxin19-21. However, conditional cooperativity is not universal in TA 

systems22,23.  In addition to autoregulation, some TA systems have been shown to regulate 

other TA systems18 and even other genes, such as the stress response protein cspD24. In 

turn, TA systems are often upregulated in response to stress, including conditions that are 

commonly caused by the host response to infection (e.g. heat shock)8. Expression analysis 

of TA systems in Mycobacterium tuberculosis (contains 79 TA systems) showed that the 

systems responded to stress differently and that the level of toxin and antitoxin transcripts 

changed under certain conditions25. While it is clear that TA systems respond to stress, the 

role these systems play in response to antibiotic stress is heavily debated26-28. 

1.3. Antibiotic Tolerance, Persistence and Resistance 

The discovery of penicillin in 1941 was one of the most momentous medical advances 

of the 20th century, in my opinion. In the intervening decades, the race to develop new 

antibiotics is slowly being outpaced by the spread of resistance29. As this trend continues, 

antibiotic resistance is impacting both human healthcare30,31 and livestock production32. 

For example, Salmonella infections in the US alone lead to annual economic losses of about 

1.3 billion dollars, and in 2005 the poultry industry lost approximately 1,000,000 birds 

mainly due to bacterial infections32. The US Department of Agriculture Economic 

Research Service estimates that foodborne illnesses annually cost over $15 billion33. The 

economic impact of bacterial infections and the increasing cost of treatments as antibiotic 
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resistance lend to the importance of understanding this phenomenon. Antibiotic resistance 

results from genetic changes that enable a cell to grow in the presence of antibiotics.  

In 2019, the Center for Disease Control (CDC) estimated that over 2.8 million 

antibiotic-resistant infections occur in the United States each year, which resulted in over 

35,000 deaths34. Due to the wide impact of antibiotic resistance, the phenomenon is a 

growing concern worldwide, as antibiotic-resistant organisms continue to arise and 

propagate30. While antibiotic resistance in of itself is a concern, other methods of antibiotic 

survival (e.g. tolerance) that result from behavioral (phenotypic) changes also contribute 

to the steady increase in antibiotic-resistant organisms35. A major factor in the growing 

numbers of antibiotic-resistant organisms is the multidrug tolerant persister population36. 

In terms of human health, persisters play a key role in antibiotic survival and antibiotic 

treatment failure, particularly in chronic and reoccurring infections36-39. The contribution 

of persisters to antibiotic-resistant infections is likely a result of persister survival 

increasing the likelihood that a population develops antibiotic resistance40,41.  

The relationship between frequent antibiotic treatments, persistence and antibiotic 

resistance is a key aspect of why tolerance and persistence are so important to study and 

understand. One study examined the evolution of antibiotic resistance in E. coli populations 

undergoing frequent antibiotic treatments concluded that antibiotic tolerance increases 

over time and precedes antibiotic resistance40. Another study also found that repeated 

treatment of E. coli with antibiotics leads to the evolution of populations with higher (20-

100%) persister levels41, which is likely because persisters have high mutation rates and 

increased persister fractions correlates with increased antibiotic resistance42. These studies 

show that a high persister population provides a larger pool of cells present after subsequent 
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antibiotic treatment to either mutate or acquire resistance genes from their environment. 

The relationship between persistence and resistance illustrates the need for reducing the 

survival of persister cells during antibiotic treatments to decrease the propagation of 

antibiotic resistance effectively.  

1.4. Single-cell techniques 

Understanding the dynamics of bacterial subpopulations requires the advent of single-

cell technologies. In fact, there are many single-cell studies on tolerance and 

persistence43-46. Scaling up our ability to screen and track cells in microscopy images will 

improve our ability to quantify small subpopulations and even has the potential to 

identify cell behavior before a selection event (i.e. antibiotic treatment). Towards this end 

and for other work, we have developed a single-cell tracking software that incorporates 

machine learning to identify cells and mask them for tracking. As this software is 

designed to work with fluorescence imaging, cell tracking could be combined with 

molecular biology to design reporter strains and study cell behavior before and after 

antibiotic treatment. In the future, we intend to use this technique to study proteolytic 

activity in the antibiotic tolerant population. 

1.5. Proteases, Chaperones, and Tolerance 

Proteases and related chaperones are consistently identified as persister related genes 

in gene knockout experiments47,48 and transcriptome analysis49. Proteases, such as Lon 

and ClpP, are globally responsible for protein degradation and cell maintenance50,51. They 

provide an important level of protein regulation throughout the cell, including 

degradation of RpoS (a transcription factor that responds to stress)52 and polypeptides 

(incomplete proteins) synthesized by a stalled ribosome that has been rescued by the 
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trans-translation (ribosome recovery) system53. As many persister studies incidentally 

study antibiotic tolerance54,55, it follows that some of these mechanisms may also play a 

role in antibiotic tolerance. Indeed, one of the few drugs that target persisters directly, 

acyldepsipeptide (ADEP4), hyperactivates the protease ClpP and lowers persister 

levels56. However, studying and quantifying the role of proteases during cellular stress is 

made difficult by the fact that traditional techniques, e.g. knockouts and overexpression, 

cause stress and can lead to changes in growth rates. Herein, we use an alternative 

method of studying proteolytic activity in stress conditions called proteolytic queueing. 

1.6. Queueing theory 

Queueing theory has traditionally been applied to manufactured systems, such as 

computer networks and call centers, wherein one type of customer competes for 

processing by servers. Recently, queueing theory has been applied to biological systems, 

particularly intracellular processing pathways that contain bottlenecks due to limited 

resources. Mathematical modeling has demonstrated that traditional queueing regimes 

neatly organize the qualitative statistical properties of a system in which one or more 

proteins compete for an enzyme57. Theoretical predictions from these models have been 

explored in synthetic systems, particularly in the context of a synthetic oscillator with a 

particular focus on protein degradation tags for protein turnover58. Queueing theory can 

be applied to these systems at the proteolytic level due to the overproduction of proteins 

competing for a specific protease, thus forming a proteolytic queue. In E. coli, synthetic 

circuits often target protein degradation to the native ClpXP58; the Stricker oscillator (also 

called the dual-feedback oscillator or degrade-and-fire oscillator) is one such system59. 

Studies that co-expressed a seemingly unrelated fluorescent molecule (CFP) tagged for 
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ClpXP degradation with a synthetic oscillator demonstrated that the competition for 

ClpXP degradation between the oscillator and CFP was sufficient to propagate the 

oscillator signal to CFP, thus verifying that an intracellular signal can be propagated via 

queueing competition.  

1.7. Layman’s Summary 

Antibiotics save lives. Antibiotic resistance means the antibiotics are less effective, 

which presents a problem. One way bacteria gain resistance is by surviving antibiotic 

treatments for a relatively short period, also known as antibiotic tolerance, and these 

bacteria and their descendants later become resistant. What I have done is studied how 

bacteria regulate (control) systems related to surviving antibiotics. First, I cover type II 

toxin-antitoxin (TA) systems, which are particularly interesting because the toxin and 

antitoxin should be produced at the same rate in the cell to prevent the toxin from 

disaffecting the cell (i.e. making the cell “sick”). Our results show that the cell has 

different methods of balancing the production rates, which an important step towards 

understanding how such a balance might get disrupted and lead to increased survival of 

stresses like antibiotics. Next, I improved a method to study single cells for long periods 

under a microscope. By establishing a robust method to track single cells, future studies 

can use this technique to study cell behavior before and after antibiotic treatment. Lastly, 

I used a genetically engineered system to interfere with proteases, the protein recycling 

centers of the cell, and showed that antibiotic tolerance increases when the proteases are 

less able to function. Figuring out the specific protein(s) being affected will take us one 

step closer to identifying a mechanism by which cells can become tolerant to antibiotics.  
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2. MECHANISMS FOR DIFFERENTIAL PROTEIN PRODUCTION IN TOXIN–

ANTITOXIN SYSTEMS 

This chapter was modified from Deter et al. 2017 published in Toxins60.  

 

Authors: Heather S. Deter1,2, Roderick V. Jensen3, William H. Mather4, and Nicholas 

C. Butzin 5,* 

 
1 Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, 

VA 24061-0435, USA 
2 Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State 

University, Blacksburg, VA 24061-0435, USA 
3 Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, 

VA 24061-0435, USA 
4 Quantitative Biosciences, Inc., Solana Beach, CA 92075, USA 
5 Department of Biology and Microbiology, South Dakota State University, Brookings, SD 

57006, USA 

 

2.1. Abstract 

Toxin–antitoxin (TA) systems are key regulators of bacterial persistence, a multidrug-

tolerant state found in bacterial species that is a major contributing factor to the growing 

human health crisis of antibiotic resistance. Type II TA systems consist of two proteins, a 

toxin and an antitoxin; the toxin is neutralized when they form a complex. The ratio of 

antitoxin to toxin is significantly greater than 1.0 in the susceptible population (non-

persister state), but this ratio is expected to become smaller during persistence. Analysis of 

multiple datasets (RNA-seq, ribosome profiling) and results from translation initiation rate 

calculators reveal multiple mechanisms that ensure a high antitoxin to toxin ratio in the 

non-persister state. The regulation mechanisms include both translational and 

transcriptional regulation. We classified E. coli type II TA systems into four distinct classes 

based on the mechanism of differential protein production between toxin and antitoxin. We 

find that the most common regulation mechanism is translational regulation. This 

classification scheme further refines our understanding of one of the fundamental 
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mechanisms underlying bacterial persistence, especially regarding maintenance of the 

antitoxin to toxin ratio. 

2.2. Introduction 

Persistence is a metabolically inactive state that enables many bacterial species to 

maintain a subpopulation of cells that can survive harsh changes in the environment 61,62. 

From a human health standpoint, persister cells are a growing problem since the metabolic 

dormancy that characterizes the persister state results in the persister population being 

multidrug-tolerant and a major contributing factor to ineffective antibiotic treatments. In 

addition, it has been suggested that persisters indirectly lead to antibiotic resistance; 

persister cells survive antibiotic treatment and are then able to acquire antibiotic resistant 

genes from their neighbors 38,39. Investigations have revealed that a central regulator of 

bacterial persistence is a network of multiple toxin–antitoxin (TA) systems 17,63,64. 

Evidence suggests that TA systems trigger persistence when rare events allow active toxins 

to accumulate and affect metabolic dormancy by slowing processes such as translation and 

transcription. A variety of bacterial species have TA systems, which are classified into 

types based on the mechanism the antitoxin uses to neutralize its cognate toxin 11,65-67. 

Types I and III have RNA antitoxins that inhibit toxin synthesis or sequester their toxin, 

while types II, IV and V have protein antitoxins. Type II TA systems are the only type 

where the antitoxin protein directly binds to the toxin to form a protein–protein complex 

which sequesters the toxin and effectively neutralizes it 67. In Escherichia coli alone, there 

at least 36 known TA systems, most of which are type two 17,68. In this work, we were able 

to classify 10 out of 16 type II TA systems (there was insufficient data to classify the 

remaining six) found in E. coli K12 str. MG1655. 
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Type II TA systems are operons that encode genes for two proteins, a stable toxin and 

an unstable antitoxin. Since the antitoxin protein is rapidly degraded by proteases, it must 

be continually produced to prevent a buildup of free toxin protein and to maintain the 

susceptible population (non-persister state) (Figure 1) 6,11,19. Thus, antitoxin is expected to 

be produced at a sufficiently higher rate than toxin in non-persister cells 65,69. However, 

there is disagreement in the literature as to how this ratio is ensured across type II TA 

systems. It is often cited that transcriptional regulation is responsible for the higher 

production rate of antitoxin 21,65,70-74. Research shows that the RnlAB system contains an 

internal promoter that is independently regulated and allows for the possibility of 

differential transcriptional regulation 75, but differential transcriptional regulation has not 

been confirmed to regulate the production ratio of antitoxin to toxin for most type II TA 

systems. 

A model of TA systems that includes transcriptional regulation, conditional 

cooperativity, proposes that the antitoxin when complexed with its cognate toxin 

autoregulates the whole operon and could lead to some control of the antitoxin-to-toxin 

ratio 19,21, but this theory depends on antitoxin translation rates being higher than toxin 74. 

Another model of TA systems also depends on the translation rate of antitoxin being higher 

than that of toxin, but does not require conditional cooperativity 15. Many other operons 

are known to use translational regulation (different translation rates) to maintain 

differential protein production within an operon, including the ATPase operon 76,77. As we 

will support, many type II TA systems use translational regulation, and transcriptional 
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regulation is not the only mechanism that can explain the higher production rate of the 

antitoxin protein. 

This study examines the possibilities of both transcriptional and translational 

regulation using bioinformatics approaches that combine diverse datasets and analyses. We 

analyzed type II TA systems in E. coli K12 str. MG1655 using RNA sequencing (RNA-

seq) data from multiple studies and growth conditions, data from ribosome profiling 

analysis (Ribo-Seq), identified promoters and terminators with experimental data and 

 

Figure 1. Schematic of a typical Type II toxin–antitoxin (TA) system. A TA system 

operon is transcribed to produce a corresponding mRNA, which is then translated to 

produce toxin and antitoxin proteins. With sufficient concentration of anti-toxin protein, 

toxin protein can be primarily neutralized in a complex, which allows the cell to 

maintain a non-persister state, or else the toxin can exist as a free and active protein in 

the cell, which may lead to persistence. The antitoxin-to-toxin protein ratio, which is 

expected to be sufficiently greater than 1.0 in the non-persister state, controls these 

scenarios. Antitoxin is actively degraded by proteases (at a greater rate than the toxin), 

which requires the excess production of antitoxin to ensure the non-persister state. T: 

toxin. A: antitoxin. Not to scale. 
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predictions annotated on EcoCyc 78, and calculated translation initiation rates with 

prediction algorithms (TIR calculators). By combining these analyses, we classified E. coli 

type II TA systems into four classes based on the mechanisms of differential protein 

production. This classification scheme further refines our understanding of how TA 

systems maintain differential antitoxin-to-toxin expression and one of the fundamental 

mechanisms underlying bacterial persistence. 

A major result of our investigation is that differential transcriptional regulation of 

antitoxin and toxin expression is unlikely in many type II TA systems. The key pieces of 

evidence are a less than two-fold difference of antitoxin-to-toxin mRNA for several 

systems, and a lack of obvious internal promoters or terminators within the operon 

sequence that could explain excess antitoxin mRNA. We predict that TA systems with less 

than a two-fold difference in mRNA expression leverage translational regulation to 

maintain higher production rates of antitoxin. Our results extend the pattern found for many 

operonic genes that use translational regulation to maintain differential protein production 

from a single transcript 76,77,79. 

2.3. RESULTS AND DISCUSSION 

We analyzed 10 different type II TA systems in E. coli (Table 1) using data informing 

their operon organization, mRNA concentration (RNA-seq), protein synthesis rates (Ribo-

Seq), and predicted translation initiation rates (TIR’s). Six type II TA systems lacking 

substantial RNA-Seq data were not included. Understanding of the operon organization 

and mRNA products for each TA system led to a compelling classification scheme that 

includes at least four major classes. We find that these classes of TA systems all have 

mechanisms in place to ensure sufficient production of antitoxin protein relative to toxin 
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protein, though the details vary from class to class. In this section, we present the major 

findings of our study. We first present the details concerning our TA system classification 

scheme; then we analyze trends in associated quantitative data. We finally discuss our 

interpretation of these results in terms of the four identified classes of TA systems. 

2.3.1. Classification Scheme for Type II Toxin–Antitoxin Systems Based on DNA 

Sequence and mRNA Products 

A survey of 10 TA systems (Table 1) using the online database EcoCyc 78, revealed 

consistent patterns based on operon organization, which refers to the order of the genes 

(whether the toxin is upstream at the 5’ end or downstream at the 3’ end of the operon), 

and whether there is an additional promoter or transcriptional termination mechanism that 

can produce multiple distinct mRNA products. 

Further analysis of our representative set of TA systems led to one major class and 

three other classes (Figure 2). The major class (Class 1: FicAT, MazEF, MqsAR, PrlF-

YhaV, RelBE, YefM-YoeB) found in our study includes TA systems that produce a single 

transcript, which results in the condition A ≈ T for mRNA (the concentration of antitoxin 

coding region is approximately equal to the concentration of toxin coding region). Because 

these systems are apparently not differentially regulated at the transcriptional level, we 

predict that different translation rates of the two proteins are responsible for higher 

antitoxin protein production than toxin. These predictions are confirmed later in this article. 
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Table 1. Type II TA systems examined in this study, ordered alphabetically. Ten out 

of sixteen type II TA systems (there was insufficient data to classify the remaining six) in 

E. coli were considered. The toxin is underlined. 

TA 

System 

Toxin Function 

Toxin 

Family 

DinJ-

YafQ 

Endoribonuclease that act 5’ to adenine between the codon 

second and third nucleotides 80 

RelE 6 

FicAT Mediates post-translational protein modification 81 Unknown 

HicAB mRNase 82 Unknown 83 

MazEF mRNA interferase that cleaves mRNA at ACA sites 84 

CcdB/MazF 

6 

MqsAR Ribosome-independent RNase 85 RelE 83 

PrlF-

YhaV 

Ribonuclease 86 RelE 83 

RelBE 

mRNA interferase that cleaves mRNA in the ribosome A 

site 87 

RelE 6 

RnlAB RNase 75 Unknown 83 

YafNO Ribosome-dependent mRNA interferase 88 YafO 6 

YefM-

YoeB 

Ribosome-dependent mRNase 89 RelE 6 

 

 The three other classes (Class 2: HicAB; Class 3: DinJ-YafQ, YafNO; and Class 4: 

RnlAB) are inspired by a few systems that have similar gene organization to Class 1, but 

other features deviate from Class 1 that allow for transcriptional or post-transcriptional 

regulation of the antitoxin to toxin protein production ratio. Interestingly, we find the 
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ribosome-binding site (RBS) of the downstream gene is embedded in the upstream gene 

for nine out of 10 TA systems (only HicAB in Class 2 does not). 

Many of these classes were identified by examining mRNA expression from RNA-seq 

data in combination with promoter identification (see methods, section 3.1). Class 2 is 

similar to Class 1, but an additional external promoter (located before the coding regions) 

is near the toxin RBS. Transcription from this promoter results in a truncated mRNA that 

has a weakened RBS for toxin translation. Thus, antitoxin is produced at a greater rate than 

toxin 23. Class 3 likely has a truncated mRNA according to our analysis of RNA-seq data, 

but due to the gene organization of this class, it probably has either an early transcriptional 

terminator or post-transcriptional mRNA degradation to truncate the toxin-coding region. 

Class 4 has an internal promoter that produces excess antitoxin mRNA. Classes 3 and 4 

rely on increased abundance of functional antitoxin-coding mRNA relative to toxin. Thus, 

a higher TIR for antitoxin relative to toxin is perhaps then not as necessary, in contrast to 

Class 1. 

2.3.2. Antitoxin and Toxin mRNA Coverage by RNA-seq 

Our classification scheme (Figure 2) was supported using a diverse-data analysis 

approach. As part of this analysis, we quantitatively estimated the mRNA abundance for 

antitoxin and toxin coding regions using publicly available RNA-seq data. A total of 13 

different whole transcriptome E. coli K12 str. MG1655 RNA-seq datasets were derived 

from two different studies with a total of six different experimental conditions that include 

different growth densities and media (Tables 

Table A1). 
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Figure 2. TA (toxin–antitoxin) systems were classified into four different classes based 

on DNA sequence and measured mRNA products. (A–D) Representative wire diagrams 

of the operon organization and mRNA products of each class (not to scale). (A) Class 1 

TA systems (FicAT, MazEF, MqsAR, PrlF-YhaV, RelBE, YefM-YoeB), the most 

abundant class in our study, have a single transcript for the operon and should rely on 

translational regulation to ensure higher antitoxin production relative to toxin production; 

(B) Class 2 is characterized by a second promoter that produces a slightly shorter 

transcript, which is predicted by our work to have a lower toxin translation rate than the 

transcript of the first promoter. The one example (HicAB) available has non-overlapping 

coding regions with the toxin upstream from the antitoxin; (C) Class 3 TA systems (DinJ-

YafQ, YafNO) have a truncated transcript in addition to the whole transcript for the 

operon, due to some unknown mechanism (perhaps a terminator or post-transcriptional 

degradation); (D) Class 4 TA systems (RnlAB) produce two transcripts: a transcript of 

the whole operon (both toxin and antitoxin mRNA), and a transcript that can only be 

translated to antitoxin; (E) A summary of the classification of TA systems in this study. 

For the promoter column, the number indicates the number of promoters that are located 

upstream the coding regions (external, Ex), or within the coding regions (internal, In). 

Each class has a different A to T RNA ratio (see Table 2) based on analysis of 13 

different RNA-seq datasets from a variety of conditions, such as growth in rich and 

minimal media, and cell densities (Table S1). *Some genes may have additional 

promoters, but they did not affect the ratio of mRNA expression. P: Promoter. RBS: 

Ribosome Binding Site. A: Antitoxin. T: Toxin. 
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RNA-seq analysis shows that the sequencing coverage (number of reads aligned to the 

gene normalized by dividing the length of the gene) for seven TA systems had less than a 

two-fold difference in expression at the mRNA level for a variety of conditions (Table 2, 

Figure 3), as anticipated for Class 1 and Class 2 TA systems. The two TA systems in Class 

3 (DinJ-YafQ, YafNO) consistently had more antitoxin mRNA than toxin, which is also as 

anticipated, though the two-fold difference is modest. Our one example of a Class 4 system 

(RnlAB) also had less than a two-fold difference between toxin and antitoxin mRNA 

expression, but the coverage of functional antitoxin mRNA is higher than functional toxin 

mRNA (Figure A1).  

Table 2. Median of the ratios for antitoxin to toxin coverage based on RNA-seq. The 

median (n = 13) of the antitoxin to toxin coverage ratios calculated for each of the 13 

datasets (see Methods). All TA systems exhibited nearly equal (less than a two-fold 

difference) or higher antitoxin mRNA abundance. TA systems are ordered by their class. 

* Although near the two-fold cut off, these systems are placed in Class 1 from additional 

analysis (  

Table 3). ** A truncated mRNA results in differing levels of functional mRNA (Figure 

A1). The toxin is underlined. 

TA System A/T St. Dev Class 

FicAT * 1.99 0.53 1 

YefM-YoeB * 1.89 0.42 1 

MazEF 1.42 0.25 1 

PrlF-YhaV 1.11 0.27 1 

MqsAR 0.69 0.16 1 

RelBE 0.95 0.10 1 

HicAB 0.93 0.20 2 

DinJ-YafQ 2.89 0.35 3 

YafNO 2.08 0.39 3 

RnlAB ** 1.01 0.25 4 
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Figure 3. RNA-seq coverage of antitoxin vs. toxin open reading frames. Left: dataset 

GSE48829 [26] triplicate biological replicates sampled during exponential growth in 

minimal media. Right: dataset GSE74809 [27] duplicate biological replicates sampled 

from five different stages of growth in M9 (glucose) media. Both plot the quantitative 

analysis of sequence coverage of antitoxin and toxin (see methods, section 3.1) on a 

common axis for a variety of TA systems. Most TA systems in the conditions considered 

have less than a two-fold difference in coverage (1:1 coverage is indicated by a dashed 

line) between antitoxin to toxin mRNA, suggesting expression of the mRNA as a single 

transcript. TA systems that fall within the dotted lines had a 1:2 to 2:1 ratio of antitoxin to 

toxin coverage. TA systems were not included if either toxin or antitoxin had an average of 

less than one read per base for more than half of the datasets (the minimum read count for a 

gene is 168 reads). The error was calculated in two different directions (ratio and 

magnitude, see methods, section 3.1), and error bars are aligned to these primary directions 

to illustrate the low error of the ratio. The individual replicates had similar groupings 

(Figure A2). Our results are also supported by a global error analysis (Figure A3), which 

shows a typically small error for the replicates. Units of coverage are Reads Per Kilobase 

Million (RPKM). 

2.3.3. Protein Synthesis Rates Determined by Ribo-Seq 

Sequencing coverage of mRNA was suggestive, in that most TA systems had less than 

a two-fold difference in coverage of antitoxin and toxin. To test our classification of type 

II TA systems into four classes based on gene organization and RNA-seq data, we analyzed 

protein synthesis rates from publicly available Ribo-Seq data. Indeed, the Ribo-Seq data 

supports our classification. Protein synthesis rates were determined using the Li et al. 

(2014) open source database that gives protein synthesis rates for E. coli based on Ribo-

Seq data 90 (See methods, section 3.1). Protein synthesis rates were calculated from Ribo-
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Seq based on the coverage (counts normalized by gene length) of the ribosomally protected 

mRNA present after the mRNA has been extracted and treated with RNase 91. From this 

analysis, seven out of eight of the TA systems with sufficient coverage (HicAB and FicAT 

had low confidence, less than 128 mapped reads) had a higher protein synthesis rate for the 

antitoxin than the toxin (Figure 4), as anticipated. We hypothesize that the systems with 

less than a two-fold difference in toxin and antitoxin mRNA expression likely use 

translational regulation to maintain the higher antitoxin production rate. The major 

exception we found was the synthesis ratio for the RnlAB TA system (Class 4), which we 

hypothesize may be due to third protein that interacts with this system (see comments in 

section 2.3.5). 

 

Figure 4. Protein synthesis rates plotted for each TA system based on Ribo-Seq 

data. A systematic bias towards higher antitoxin protein synthesis rate relative to toxin is 

evident in all but one case, and the one outlier (RnlAB), which we explain in Section 

2.3.5. The dashed line represents a 1:1 ratio of antitoxin to toxin, and the dotted lines 

mark a two-fold difference. TA systems with values of low confidence (less than 128 

reads) in protein synthesis data 90 were not included in the figure. Error bars assume a 

30% error, as estimated in Li et al. 2014 90. Arbitrary units: AU. 
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2.3.4. Analysis of Differential Protein Expression Using Translation Initiation 

Calculators (TIRs) 

An independent theoretical investigation of TIRs for the 10 TA systems was done to 

assess the robustness of our findings based on Ribo-Seq data. We predicted TIRs using 

three experimentally-conditioned TIR calculators, of which two are based on detailed 

thermodynamic models (the RBS Calculator 92,93 and the UTR Designer 94), and a third is 

based on a log-linear regression of E. coli gene expression (Barrick Calculator 95). The 

results from the TIR calculators vary greatly due to the inherent differences between the 

calculation methods, but for six of the seven systems that have less than a two-fold 

difference in mRNA expression, at least two out of three calculation methods qualitatively 

agree that for each system the antitoxin TIR is higher than toxin (  

Table 3 and Table A2). In all cases, the calculators support our classification of the 

TA systems and provide a method independent of Ribo-Seq. 

2.3.5. Summary and Discussion of Major Trends and Exceptions for TA System 

Classes 

Our picture from a diverse-data analysis of 10 TA systems has thus led to the following 

key interpretations of their behavior: Class 1 is the most abundant class with six TA 

systems that use translational regulation to maintain a high antitoxin-to-toxin protein 

synthesis rate, as seen in the Ribo-Seq analysis (Table 2, Figure 4). The TA systems in this 

class have less than a two-fold difference in mRNA expression (Table 2, Figure 3) and 

likely use translation regulation to maintain the antitoxin-to-toxin ratio. The RBS site of 

the downstream gene in these systems overlaps with the upstream gene’s coding region, 

and they are not dependent upon the order of those genes to maintain the antitoxin-to-toxin 
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production ratio (Figure 2A). Included in this class is RelBE, which previous researchers 

have shown to use translational regulation to maintain a high antitoxin-to-toxin ratio 70. 

The only TA system in this study to clearly use translational regulation that is not in Class 

1 is HicAB, which we have placed in Class 2.  

Table 3. Classification of each TA system. Based on the classification scheme outlined 

in Figure 2, we used qualitative conclusions from our analysis to classify 11 different TA 

systems in E. coli. Data from RNA-seq was used to determine mRNA ratio. The toxin is 

underlined. 

TA System Class 
mRNA 

Ratio 

RBS 

Calculator 

UTR 

Designer 

Barrick 

Calculator 

Synthesis 

Rates 

FicAT 1 <2 * + + + LC 

MazEF 1 <2 + + + + 

MqsAR 1 <2 − + + + 

PrlF-YhaV 1 <2 + + + + 

RelBE 1 <2 + + + + 

YefM-YoeB 1 <2 * + + + + 

HicAB P1 
2 <2 

− − + 
LC 

HicAB P2 + − + 

DinJ-YafQ 3 >2 + − − + 

YafNO 3 >2 + − − + 

RnlAB 4 <2 ** + + − − 

+ Antitoxin is higher than toxin. -: toxin is higher than antitoxin. LC: low confidence; * 

mRNA ratio ranges broadly (sometimes >2) but calculator results place these systems in 

Class 1; ** A truncated mRNA results in differing levels of functional mRNA (Figure S1). 

 

The protein synthesis rates of HicAB could not be determined by the Li et al. (2014) 

data due to low expression of this system, but our RNA-seq analysis shows that the HicAB 

system has less than a two-fold difference in mRNA expression, like Class 1. Unlike Class 

1, HicAB does not have overlapping genes and the antitoxin is located downstream of the 

toxin (Figure 2B). Our first analysis showed that translational regulation is unlikely 

because two out of three TIR calculators predict that the antitoxin TIR is lower than the 

toxin. Interestingly, a recent study showed that HicAB combines transcriptional and 

translational regulation by using two different promoters at the beginning of the operon to 
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produce two different transcripts with different toxin translation rates 23. When using the 

transcription start site of the second promoter, the results of the RBS Calculator change to 

predict the antitoxin TIR to be higher than the toxin. This entails in two of the three TIR 

calculators predicting antitoxin TIR is higher than toxin (Table A2), supporting that this 

system uses translational regulation and supporting the effectiveness of the TIR calculators 

when using a consensus of two out of three. 

Class 3 contains the remaining two systems that had higher antitoxin protein synthesis 

rates (Figure 4), but these systems also have two-fold higher antitoxin mRNA expression 

than toxin (Table 2, Figure 3). The organization of these systems has the antitoxin upstream 

of the toxin with the RBS of the toxin overlapping the end of the antitoxin-coding region 

(Figure 2C). While the difference in mRNA would indicate that these systems are 

transcriptionally regulated, the regulation mechanism apparently does not use a promoter; 

the antitoxin location upstream of the toxin would result in an additional promoter for the 

antitoxin reading through the toxin as well. We hypothesize that the lower toxin mRNA 

level is a result of a truncated mRNA due to an unidentified transcriptional terminator or 

RNA degradation specific to the toxin mRNA sequence. Several type II toxins are 

endoribonucleases (including those in Class 3) and they could possibly degrade their own 

message with a bias toward toxin mRNA degradation (Table 1). Regardless of the 

mechanism, Class 3 TA systems likely use differential mRNA expression to regulate 

antitoxin-to-toxin ratios either transcriptionally with terminators or post-transcriptionally 

through RNA degradation. 

Class 4 contains RnlAB, the only TA system that does not have a higher antitoxin 

protein synthesis rate than toxin (Figure 4). The gene organization of this system has the 
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antitoxin downstream of the toxin with the antitoxin RBS overlapping the end of the toxin-

coding region (Figure 2D). This organization means that the RnlAB system can use 

transcriptional regulation of an internal promoter to express antitoxin mRNA higher than 

toxin, and analysis of the RNA-seq data supports the presence of an internal promoter at 

approximately 280 nucleotides upstream from the antitoxin (Figure A1). The RNA-seq 

analysis is supported by a previous study on the regulation of RnlAB, which experimentally 

determined an internal promoter to be near this location. The same study establishes that 

the two promoters are independent and transcriptionally regulated, which would allow for 

upregulation of antitoxin expression 75. The internal promoter in this system provides a 

possible mechanism to upregulate antitoxin production, but the protein synthesis rates 

indicate that toxin production is higher than antitoxin production. 

The toxin homologs RnlA and LsoA (not found in the E. coli strain used in this study) 

are unlike other type II TA systems because the protein structure of these toxins is different 

from established structures of others. Additionally, a third protein interacts with the RnlAB 

system, RNase HI. Recent studies have shown that RNase HI acts as a corepressor of the 

toxin RnlA in the presence of its antitoxin RnlB 96. However, when antitoxin is not present 

in the system (in the absence of RnlB), RNase HI stimulates RnlA activity 97. This system 

also acts as an anti-phage response, because during infection RnlA degrades the infecting 

phage’s mRNA and RnlB concentration decreases allowing RNase HI to activate RnlA and 

strengthen its activity 96,97. The third component of the RnlAB system changes the 

dynamics and is likely the reason that the ratio of antitoxin protein synthesis rate to the 

toxin is lower than expected. 
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2.3.6. Incorporation of Our Results into Current Models 

Currently, many studies on regulation of TA systems focus on conditional 

cooperativity, which depends on transcriptional regulation by TA autoregulation 

complexes. Numerous studies on TA autoregulation complexes focus on RelBE, a Class 1 

system. The RelBE system is known to produce the antitoxin (RelB) approximately 10-

fold faster than the toxin (RelE) 70, which is further supported by the protein synthesis rate 

data, which predicts RelB to be produced 7.5 times greater than RelE 90. Studies on RelBE 

show that DNA binding of the RelB2E complex is stronger than the RelB2 alone 20,98, and 

studies suggest that the stronger autoregulation activity of the complex is important to the 

control of the antitoxin-to-toxin ratio 74,98. However, in these models the translation rate of 

antitoxin being higher than that of the toxin is critical to prevent a constant overabundance 

of free toxin, and therefore the system is still dependent on translational regulation 70,74. In 

contrast to the TA autoregulation complex of the RelBE system, the DinJ-YafQ complex 

does not have increased DNA binding affinity when compared to DNA binding affinity of 

the antitoxin (DinJ) alone 22. Interestingly, the DinJ-YafQ system was placed into Class 3, 

which our results suggest relies on increased abundance of antitoxin mRNA rather than 

translation rates. Further studies are needed to fully understand the variety of regulation 

mechanisms that play a role in the maintenance and control of the antitoxin-to-toxin ratio. 

3. CONCLUSIONS 

Both translational and transcriptional regulation play important roles in the 

maintenance of the production ratio of antitoxin to toxin in type II TA systems in the non-

persister state. Analysis of RNA-seq data reveals that most TA systems have less than a 

two-fold difference between antitoxin mRNA and toxin under the conditions studied in 
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these datasets (Table A2). The antitoxin-to-toxin production ratio in Class 1 TA systems, 

which represent the most abundant class in our study, is not differentially regulated 

transcriptionally or post-transcriptionally, but it is regulated at the translational level. Class 

2 uses a combination of both transcriptional and translational regulation to ensure a higher 

rate of antitoxin production. Class 3 is likely not regulated translationally but by some 

mechanism that results in a truncated mRNA and overall greater expression of antitoxin 

mRNA than toxin. Class 4 contains RnlAB, which is regulated by internal promoters, but 

the interaction of RNase HI with RnlAB lessens its dependency on a higher production rate 

of antitoxin. 

Our classification of TA systems emphasizes their diversity with respect to gene 

organization and regulation mechanisms, while other classification systems are based on 

protein structures and functions 6,67. The diversity of regulation mechanisms explains the 

disagreement in the literature as to whether TA systems use transcriptional regulation or 

some other form of regulation to maintain an antitoxin production rate higher than the 

cognate toxin. Various studies have focused on specific TA systems and their conclusions 

have been applied to type II TA systems as a group, but our results emphasize the diversity 

found within these systems. Further applications of the methods used in this study would be 

to classify and expand the knowledge of TA systems in other organisms and other 

differentially expressed operons in bacteria. Using bioinformatics methods alone, the 

methods in this study can be applied to classify other type II TA systems. Classification of 

different type II TA systems into these classes should allow future researchers to predict 

regulation (transcriptional, post-transcriptional, or translational) without the expense and 

time of RNA-seq and Ribo-Seq experiments. 
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3.1. Materials and Methods 

3.1.1. DNA Sequence and mRNA Sequence Analysis 

The annotated E. coli K12 str. MG1655 reference sequence NC_000913.3 was used 

for all gene sequences in this study. 

3.1.2. RNA-seq Analysis 

Selected RNA-seq datasets (Tables 

Table A1) from GEO NCBI (accession numbers GSE48829 and GSE74809) 99,100 were 

aligned to the E. coli K12 str. MG1655 reference sequence NC_000913.3 using Geneious 

v. 10.0.9 101. Gene expression was analyzed in Geneious using the calculate expression tool 

to generate a list of reads mapped to each gene. Coverage for any specific antitoxin or toxin 

was calculated in Reads Per Kilobase Million (RPKM). Defining 𝑛 as the raw number of 

reads mapped to the coding sequence (CDS) (with partial reads, reads mapping to more 

than one region of the genome, counted as 0.5 reads), 𝑇 as the total number of mapped 

reads for a particular RNA-seq dataset, and 𝐿 as the number of bases in the CDS, then 

RPKM = 109 𝑛 / 𝐿𝑇. Results were exported to a CSV file, which was then processed by 

custom Python scripts using the NumPy library 102. 

The ratio of antitoxin to toxin was calculated for each TA system for all 13 datasets, 

and the median of those 13 ratios was used to determine the A/T ratio. The standard 

deviations were calculated using the 13 ratios from the datasets (Table 1). 

Error estimates for gene coverage were computed as follows. Each RNA-seq dataset 

contained biological replicates, and we analyzed error by comparing gene expression 

between replicates (see Figure A2 for an illustration of replicates). Dataset GSE48829 

contained triplicate data for one experimental condition, while dataset GSE74809 
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contained duplicate data for five experimental conditions. For each dataset separately, we 

ran an error analysis of the log-error (standard error of logarithmic quantities) in two major 

directions, ratio and magnitude. We choose log-error since this is the most natural 

representation of the error for features plotted in log-space, as with Figure 3. If 𝑐𝐴 and 𝑐𝑇 

are gene coverages for antitoxin and toxin, respectively, then the error of the log-ratio is 

the standard error for the quantity  ln 𝑐𝐴 − ln 𝑐𝑇 , = ln(𝑐𝐴/𝑐𝑇) . Since ln(𝑐𝐴/𝑐𝑇) ≈

(𝑐𝐴/𝑐𝑇) − 1 when 𝑐𝐴 and 𝑐𝑇 are close in value, this error also approximates the error of the 

ratio (the constant -1 does not contribute to the standard error). This error is plotted as error 

bars along the ratio direction in Figure 3 after scaling by the factor ln(10) to plot in 

logarithm base 10 space. A complementary error estimate is that of the log-magnitude, 

which we define as the standard error of the quantity  ln 𝑐𝐴 + ln 𝑐𝑇 , = ln(𝑐𝐴 ⋅ 𝑐𝑇), and 

which we plot as error bars along the magnitude direction in Figure 3 after scaling by 

ln(10). Notice that the log-ratio error is zero for quantities with zero uncertainty in the 

ratio (𝑐𝐴/𝑐𝑇), even though the log-magnitude error may be significant. 

3.1.3. Protein Synthesis Rates Based on Ribosome Profiling (Ribo-Seq) 

We used protein synthesis rates for E. coli calculated by Li et al. 2014 90 from their 

Ribo-Seq data according to their open source database: 

http://ecoliwiki.net/tools/proteome/. Genes with less than 128 mapped reads were given 

values of low confidence in this database. 

3.1.4. Translation Initation Rate (TIR) Calculators 

TIRs were predicted using three different translation rate initiation (TIR) calculators 

with the reference sequence, NC_000913.3. The reverse engineering feature of the 

Ribosome Binding Site Calculator v2.0 was used 92,93. Any difference in sequence length 
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using the RBS Calculator v2.0 changed the translation initiation rates because this software 

accounts for secondary structure. Therefore, the input sequence we used included the entire 

5’ UTR region as determined by the transcription start site annotated in the EcoCyc 

database 78 to the end of the TA system. The reverse engineering feature of the UTR 

Designer was used with the required input of −25 to +35 from the start codon for each gene 

94. The third method analyzed the sequence −11 to +1 from the start codon using an 

equation based on empirical data developed by Barrick et al. in their study of E. coli 

ribosome binding sites (Barrick Calculator) 95. We used the agreement of two out of three 

calculators to determine whether antitoxin TIR is predicted to be higher than toxin. 

3.2. Author Contributions 

H.S.D performed RNA-seq data and translation initiation calculator analysis to classify the 

TA systems and wrote the manuscript. N.C.B. initiated and directed the project. R.V.J. was 

essential to understanding the methods of RNA-seq data analysis. W.H.M. directed the 

project and performed statistical analyses for the RNA-seq data. All the authors took an 

active part in writing and editing the manuscript. 
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4. A CELL SEGMENTATION/TRACKING TOOL BASED ON MACHINE 

LEARNING 

This chapter contains material from: Deter et al., “A Cell Segmentation/Tracking 

Tool Based on Machine Learning”. Methods Mol Biol103.  

4.1. Introduction 

During the last decade, there has been a transition in the analysis of cellular physiology 

from the batch level (population-scale) to the single cell level. This transition has been 

stimulated by the development of quantitative and high-throughput techniques that require 

computer-aided methods to extract information at the single cell level. Using these 

approaches researchers have been able to show, for example, the relevance of stochastic 

sources in gene expression104 or the logic underlying cell size homeostasis105. Thus, single-

cell analysis is less subject to averaging effects (Figure 5) and offers a level of discrete 

detection that is unobtainable with traditional techniques58,106-108. In this context, the 

adoption of single-cell microscopy techniques has been limited because identifying, 

tracking, and quantifying single cells within a population of cells is usually difficult, time-

consuming, and prone to errors that require manual corrections. Indeed, the identification 

stage implies a methodology able to recognize and outline the domain of individual entities 

(segmentation) and is particularly critical since tracking and quantification depend on it.  
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Figure 5. A) The final frame of the image dataset. The region of interest (ROI) is 

outlined in red. B) Median fluorescence for given selections over time (below). Global: 

the median fluorescence over time for the whole image. ROI: the median fluorescence 

over time for the ROI is outlined in red in A). Trajectories: the fluorescence over time for 

each trajectory (black) and the median fluorescence for all cells (red). 

Traditional cell segmentation algorithms are based on image processing techniques 

that ultimately compute gradients and use thresholding to measure the intensity and spatial 

relationships of pixels in order to detect cell boundaries. The latter is especially challenging 

in dense cell populations, e.g. bacterial colonies, and, while some edge detectors have been 

proven to be more effective than others, e.g. Marr-Hildreth vs. Canny109, small changes in 

the microscopy illumination conditions require, more often than not, non-trivial 

adjustments of the segmentation parameters. In that regard, during the last years, a number 

of segmentation/tracking software suites have been publicly released110-112. Here we 

highlight three examples that, while essentially based on, and consequently constrained by, 

the aforementioned methodology, stand out because of their additional features and 

reliability. MicrobeJ113,114 is a plugin available through Fiji ImageJ115 that has a wide 

variety of tools available to analyze cell morphology and track cells in their user-friendly 

interface. Oufti116 offers a friendly user interface and a number of functionalities for 

quantitative analysis that include subpixel resolution for “reading” fluorescent signals 
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within single cells. On the other hand, CellX117 uses a novel approach for cell segmentation 

based on membrane patterning that is versatile in terms of cell shapes and robust to image 

noise. 

More recently, the advent of artificial intelligence and machine learning techniques into 

the field has made possible the development of segmentation/tracking tools able to learn 

from training datasets and improve from experience without the need of explicit 

programming or parameter tweaking, e.g. CellProfiler118 or more recently SuperSegger119. 

Here, following these ideas, we present a detailed protocol that utilizes an open-source 

ImageJ (Fiji) plugin115, the Trainable Weka Segmentation Tool120, complemented by 

custom-made open-source Python scripts. The computational methods herein can be used 

to count and track objects in any series of 16-bit tiff images. We have used these methods 

to count colonies on agar plates121 and track cells in microscope images. Here we detail 

one method of obtaining microscope images, which aims to reduce the training queue and 

improve the segmentation/tracking process. To give a hands-on experience, we provide a 

dataset in the context of bacterial growth that was obtained using this method 

https://osf.io/75avy (DOI: 10.17605/OSF.IO/75AVY).  

4.2. Operating System, Software, and Data Repository 

All of the following are open-source, and downloads are available online (see Table 4 and 

Table 5). 

1. Ubuntu 16.04 LTS, a Linux operating system. Alternatively, Mac OS X can also be 

used to run the pipeline. To run the pipeline on other operating systems a virtual 

machine122 can be installed to use Ubuntu. 

2. Fiji ImageJ, an open source Java image-processing program115. 

https://osf.io/75avy
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3. Anaconda 2.7 is an open source distribution of Python, a programming language 

that has a wide range of tools and libraries for image analysis, including SciPy and 

NumPy (see Note 1). Our scripts have exclusively been tested with Python 2.7.  

Table 4. List of all software and operating systems. 

Software Function Website  

Ubuntu 16.04 LTS Linux operating system 
https://www.ubuntu.com/do

wnload 123 

VirtualBox 

(optional) 

Virtual machine to run Linux 

environment 

https://www.virtualbox.org/

wiki/Downloads 122 

Fiji ImageJ (includes 

Weka segmentation 

tool) 

Classification of images using 

machine learning 

https://imagej.net/Fiji/Downl

oads 115,124 

Anaconda (Python 

2.7) 

Open source distribution of 

Python and related packages 

(including NumPy and SciPy) 

https://www.anaconda.com/d

ownload/ 125 

OpenCV 

A Python package with tools for 

image analysis (not included in 

Anaconda). On a Linux machine, 

install through Anaconda using 

the command “conda install 

opencv” in the terminal. 

https://pypi.python.org/pypi/

opencv-python 126 

avconv 
Software package for handling 

videos 

https://libav.org/avconv.html

#Description 127 

 

4. OpenCV is a Python package required for the pipeline that is not included in the 

initial Anaconda download (Table 5). Only OpenCV downloaded through 

Anaconda using the command “conda install opencv” in the terminal has been 

tested to work with our scripts (see Note 2). 

5. Avconv, a library for video and audio conversion. This library can be installed in 

Ubuntu using the following command in the terminal: sudo apt install libav-tools. 

To install Avconv for Mac OS X the command is "brew install libav" (Homebrew 

must be installed prior to installing Avconv). 

https://www.ubuntu.com/download
https://www.ubuntu.com/download
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://imagej.net/Fiji/Downloads
https://imagej.net/Fiji/Downloads
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://pypi.python.org/pypi/opencv-python
https://pypi.python.org/pypi/opencv-python
https://libav.org/avconv.html#Description
https://libav.org/avconv.html#Description
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6. Scripts (Table 5) and 16-bit tiff images. All scripts and sample imaging datasets are 

available at: https://osf.io/75avy (DOI: 10.17605/OSF.IO/75AVY).   

Table 5. List of custom scripts. All scripts include comments to facilitate modification. 

Scripts can be downloaded at GitHub: https://github.com/hdeter/CellTracking  128 or at 

the public repository http://osf.io/gdxen/ 129. 

Script Section Language Brief Description 

SegmentandTrack.py 4.3 Python 
The master script to run the 

pipeline based on user input 

Image_alignment.py 4.3.2 Python 

Aligns images based on 

differences calculated 

through FFT  

Segmentation.ijm 4.3.3 
Fiji macro 

(ijm) 

Calls Trainable Weka 

Segmentation tool and can be 

used to train or apply 

classifiers 

Batch_segment.bsh 4.3.3 BeanShell 
Called by RunWeka.py to 

segment a batch of images 

RunWeka.py 4.3.3 Python 
Calls Segmentation.ijm and 

Batch_segment.bsh 

TrackCellLineages.py  4.3.4 Python 

Labels a binary mask and 

calculates the differences 

between a given cell to cells 

within a given area in the 

previous image. Saves single-

cell data, finds cell 

trajectories and identifies cell 

lineages. Labels lineages 

from the first frame and 

outputs lineage data. 

Lineage_analysis.py 4.3.4 Python 

Outputs csv files with frame-

by-frame data for lineages 

tracked in 

TrackCellLineages.py 

Image_analysis_stack.py 
4.3.5 & 

4.3.6 
Python Analyzes global or ROI data 

*CSV files output by other scripts will also be output when running SegmentandTrack.py 

4.3. Methods 

The processing pipeline consists of a series of scripts that were designed to analyze a 

swath of single-cell datasets (Table 5).  These scripts are designed to work on 16-bit tiff 

images with filenames in the following format: name, 6 digit number, xy, 1 digit number, 

https://osf.io/75avy
https://github.com/hdeter/CellTracking
http://osf.io/gdxen/
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c, 1 digit number; e.g. name000001xy1c1.tif. Phase and fluorescence images must be 

separate (not stacked), and are differentiated by the number following ‘c’ (e.g. 

name000001xy1c1.tif). Modification of the scripts is required to use alternative naming 

systems. 

 
Figure 6. An example of cell segmentation using our method. Left: phase image. Center: 

Mask 1, a probability mask based on the classification of the phase image. Right: Mask 2, 

a binary mask based on the classification of Mask 1. 

 

We have developed specific custom scripts that utilize open-source software for cell 

segmentation ( Figure 6) and lineage tracking (Figure 7). To facilitate use, we provide 

SegmentandTrack.py, a Master Script to run the entire pipeline based on user input 

(Table 5). The pipeline (see Table 5) has been tested using an Ubuntu 16.04 LTS 

operating system (recommended) and Mac OSX. For convenience, place the scripts in a 

folder that contains the images to be analyzed in a subfolder. It is essential to read the 

entire protocol before running the analysis pipeline for optimal operation.  
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To run SegmentandTrack.py (see Video A1 for a 

video tutorial):  

1. Open a terminal. Keep in mind that the 

terminal is case-sensitive. 

2. Change directories to the folder that contains 

the scripts and the images that are to be analyzed 

(Figure 8A). Note that directories will differ 

based on individual machine and file locations 

(see Note 4). 

3. Type “python SegmentandTrack.py” (Figure 

8A).  

4. Answer user prompts. For yes or no (Y/N) 

questions, answer “y” for yes or “n” for no. As an 

alternative to using the terminal for user prompts, 

see section 4.3.7 Option to use comma separated 

values (csv) file instead of terminal prompts. 

However, we recommend that first time users do 

not use a csv file. 

 

Figure 7. Cell lineages are kept track 

of by renaming trajectories that 

overlap with another trajectory and 

therefore have a common ancestor 

(see Video 2). Cells in the top images 

were tracked, labeled, and the output 

quantified as the cells divide (bottom 

images) using this method. 
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Figure 8. The Weka settings 

for our classifiers. Here we 

highlight default settings that 

have worked well in the past, 

but these parameters can be 

altered depending on the user 

requirements. (A) An example 

of commands to run a python 

script in the terminal. Note that 

the directory the script is 

running from can be different. 

(B) The freehand selection tool 

(Purple) is useful for selecting 

cells for cell segmentation. 

The line tool (Red) is useful 

for outlining cells and dividing 

cells to add to the “Not cell” 

label (Note 13). (C) An 

example image loaded in Fiji 

for training in Weka by going 

to “Plugins” tab, then to 

“Segmentation” and then to 

“Trainable Weka 

Segmentation.” To adjust the 

parameter and to make labels 

click on “Settings” (Red). The 

image loaded into Weka has 

magnified to demonstrate cell 

selection (see Note 13) (D) 

Left: The settings used to 

classify the phase images to a 

probability mask. Right: The 

settings used to classify the 

phase images to a binary mask 

(see Note 9). To follow our 

example, we change the Weka 

default names from “Class 1” 

and “Class 2” to “Cell” and 

“Not cell” (see Note 13). 
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4.3.1. Selecting a Region of Interest (ROI) (optional) 

Regions of interest (ROIs) can be used to crop images or select a specific region for a 

particular type of analysis. SegmentandTrack.py offers two options that use an ROI (see 

sections 3.5 and 3.9), which relies on a csv (comma-separated values) file created using the 

Fiji Measure tool as follows (see Video 1 for a video tutorial): 

1. Open the desired image in Fiji. To observe the same region throughout multiple 

images import an image sequence using “File” ➔ “Import” ➔ “Image Sequence.” 

2. Remove any scale associated with the images using the “Set Scale” feature under 

the Analyze tab (see Note 5. It is essential that the scale of the bounding rectangle 

be in pixels because the scripts imports the values as pixel values and therefore any 

other scale would lead to the ROI being different from intended. In the case of 

image alignment (see section 0), this could unintentionally result in a region that 

includes moving objects, which will hinder the alignment (see Note). 

3. Set measurements (under the Analyze tab) to only measure the bounding rectangle 

(“Bounding rectangle” should be the only checked box) with 0 decimal places (the 

results need to be whole, even numbers; see Note 6).  

4. Select the desired region with the rectangular selection tool and use the Measure 

tool, located in the Analyze tab (Figure 8B). Save the results as a csv file (e.g. 

filename.csv) in the same directory as the scripts.  

4.3.2. Image Alignment (optional)  

Image alignment is an optional image pre-processing step, yet it is essential if there are 

significant shifts between phase images, because cell tracking is accomplished by 

comparing cell locations between consecutive frames. Alignment is not required if the 
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image registration does not shift significantly. If running the alignment on an image with a 

large number of moving objects we suggest using an ROI during the alignment (see Note 

7). Align the images as follows (see Video A1 for a video tutorial): 

1. Answer “y” when asked, “Do you wish to align images?”   

2. If using an ROI to base the alignment upon (optional), make an ROI file (see section 

0) that indicates a stationary area of the image, (the largest possible background 

region that contains a minimal number of moving objects throughout the images of 

the image set; see Note 7). 

3. If using an ROI, Answer “y” when asked, “Do you have a ROI file for a stationary 

area?” If aligning based on the whole image answer “n” for the same prompt. 

4. If using an ROI, Enter the path to the csv file, relative to the working directory. 

5. Enter the name of the directory into which images will be saved.  

4.3.3. Cell Segmentation 

Single cell analysis is primarily dependent upon cell segmentation; we use the Trainable 

Weka Segmentation tool in Fiji. Weka uses machine learning to train a classifier based on 

training data selected by the user130. Section 4.3.3 covers how to use Weka to classify 

images, and we have had success in the past using two rounds of classification because this 

method improves segmentation of neighboring cells (see Note 9). Our custom script make 

the process of training and applying a classifier faster and more direct (see Note 8; see 

Video A1 for a video tutorial).  

1. To use Trainable Weka Segmentation to classify images through 

SegmentandTrack.py. Answer “y” when asked, “Do you wish to train and/or apply 

a classifier?”  
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2. Input the full path to the Fiji executable file located in the Fiji.app directory when 

prompted (see Note 4). 

3. Enter how many rounds of classification you are running (1 or 2); we recommend 

two rounds (see Note 9). 

4. If using a Linux machine, answer “y” if you would like to classify the images in 

the background (it is faster). Then enter how many processes are available for 

multiprocessing. The number of threads available for these processes will depend 

on the number of processors available to the individual machine (less if using a 

virtual machine). Do not use more than half of the available threads for 

multiprocessing. 

5. To train a classifier on a subset of phase images answer “y” when asked by 

SegmentandTrack.py, “Do you have a trained classifier? (Y/N)”. Fiji will then open 

and run user prompts in the GUI. 

6. Answer the Fiji prompts. If you click “Yes” in response to “Are you classifying a 

phase image?” the script uses a Bandpass filter to subtract background and outputs 

a probability mask (first round of classification; see Note 10). When you click “No” 

(i.e. when classifying the probability mask for the second round of classification), 

the script does not run a Bandpass filter on the image and outputs a binary mask 

(which the pipeline uses for cell tracking). 

7. In the “Trainable Weka Segmentation” window (also located under “Plugins” ➔ 

“Segmentation”), change the settings as desired (Figure 8C). Although there are a 

few different classifiers available, we have had success in the past using the Fast 

Random Forest classifier, which is the Weka default setting. The training features 
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in Weka should be adjusted based on the image dataset to improve classification 

(see Note 11). Figure 8D shows the settings we used with this dataset (see Note 12). 

8. Select regions of your image and add them to the appropriate label (e.g. “Cell” or 

“Not cell”) then train the classifier (see Note 13). For cell segmentation, the 

freehand selection tool (Figure 8B) is useful for selecting cells. To indicate the 

separation of cells that are recently divided, draw a line using the freehand line tool 

and add the line to the “Not cell” label (Figure 8C; see Note 14).  

9. Repeat step 8, selecting data based on the results of the classifier (see Note 14). 

10. Save the data and classifier (see Note 14). 

11. Press OK in the dialog box. This causes the script to prompt the user for filenames 

and then open another image in Trainable Weka Segmentation and load the 

previously saved classifier and data. 

12. Continue to train the classifier on multiple images by repeating steps 8 through 12 

(see Note 14). Be sure to save (step 10) both the classifier and data after every round 

of training.  

13. To finish training the classifier select “No” when asked, “Do you wish to continue 

training the classifier?” This will trigger the script to close the open windows in 

ImageJ and continue in the terminal. 

14. In the terminal, enter the path to the classifier, relative to the working directory.  

15. Enter the name of the directory within your image directory into which the masks 

will be saved. 

16. Based on this input the script segments the images. If using two rounds of 

classification, you will need to repeat steps 5-13 using the probability masks. The 
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first round of classification will produce a probability mask and the second will 

produce the binary mask ( Figure 6, see Note 9). 

4.3.4. Obtaining Single Cell Data and Cell Lineages 

Once images have been segmented cells can be tracked based on overlapping regions 

across images. Tracking is primarily limited by cell segmentation, so improving cell 

tracking typically requires further training of the classifier (see section 4.3.3). Cell division 

events are also tracked, enabling both individual cell movements and cell movement to be 

tracked throughout the image dataset (Figure 7).  

1. Answer “y” when asked, “Do you wish to track cells?”  

2. Enter the minimum and maximum cell areas (in pixels) for tracking. If you would 

like to determine values that work well for your data set, you can measure the area 

of the cells, background artifacts or features with the measure tool in Fiji (see Note 

15).  

3. Enter the minimum number of frames through which a trajectory must be tracked 

to be included in the analysis (see Note 16).  

4. SegmentandTrack.py will then run the analysis. This analysis uses the binary masks 

created during cell segmentation (see section 4.3.3; Note 9) and outputs csv and 

pickle files containing single cell and lineage data (Table 5; see Note 18). The 

lineage data includes the mean cell doubling time for a given lineage (see Note 19). 

Each lineage is numbered, with dashes to indicate a branch (e.g. Lineage 0001-1 

divided from lineage 0001, see Video A2 and Video A3).  

5. If desired, our script can also output csv files with individual lineage information. 

Enter “y” when asked, “Do you wish to output csv files detailing data for individual 
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lineages?” to obtain frame-by-frame data. Then either answer “y” when asked, “Do 

you wish to get data for all of the lineages?” or answer “n” and you will be prompted 

to input the number of lineages you wish to analyze and then input each lineage 

name separately (see Note 20). 

6. Advanced users can further analyze the data using the pickle files (see Note 20). 

4.3.5. Measuring fluorescence 

Fluorescence is reported in arbitrary units (AU) and based on the mean or the median pixel 

intensity of the fluorescence image over the area. Pixel intensity of 16-bit images can be 

measured using Fiji (the Measure tool located under the Analyze tab; shortcut key: 

Ctrl/Cmd+M), or by converting the image to a NumPy array and getting the value of the 

desired pixels. Our custom scripts utilize the latter and report raw fluorescence data (no 

background subtraction; see Note 21. There are a few options for filtering the data and 

subtracting background available within the script (see ). Single cell fluorescence is 

analyzed when tracking cells (see section 4.3.4). 

To analyze the whole image and ROI fluorescence: 

1. Answer “y” when asked, “Do you wish to analyze images?”  

2. If you wish to analyze an ROI, answer “y” when asked, “Do you wish to analyze a 

region of interest?”  

3. Enter the path to the ROI file to analyze (see section 0), relative to the working 

directory. A different ROI than the one used for image alignment is required.  

4. Fluorescence data will be output as a csv file into the working directory. 
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4.3.6. Video Rendering 

The pipeline run by SegmentandTrack.py uses avconv to render videos from an image 

directory (see Note 30).  

1. Answer “y” when asked, “Do you wish and analyze images?” and “Do you wish to 

render videos?” to combine the phase contrast and fluorescent channels (see Note 

22. Any processing of the images (e.g. background subtraction) must be done 

before rendering the videos when using these methods. Background subtraction is 

included in the “filtered” results when analyzing whole image fluorescence (see 

Note).  

2. To crop the video to an ROI answer “y” when asked, “Do you want to crop the 

images based on an ROI?” Enter the path to the ROI file to analyze (see section 0), 

relative to the working. A different ROI than the one used for image alignment is 

required, but the same ROI must be used for analyzing fluorescence of an ROI (see 

section 4.3.5).  

3. Cells can be numbered based on lineage (see Video A2) if you answer “y” when 

asked, “Do you want to number the cells in the images based on lineage tracking?”  

4. Binary masks can also be utilized to contour (outline) the cells (Video A4) if you 

answer “y” when asked, “Do you want to outline cells based on masks?”  

4.3.7. Option to use comma separated values (csv) file instead of terminal prompts 

 To facilitate frequent and rapid use of the software, we have included an option to 

use a comma separated values (csv) file to answer user prompts. The csv file is included 

with the files available in the repository https://osf.io/75avy (DOI: 

10.17605/OSF.IO/75AVY).  

https://osf.io/75avy
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4.4. Notes 

1. To install the Anaconda shell file in Linux (see Table 4) type the following commands 

in the terminal and replace “path/to/script.sh” with the path to your shell file: 1) sudo 

chmod +x path/to/script.sh, 2) /path/to/script.sh. Then you must add Anaconda to the path 

in Linux (so that conda commands can be run through the terminal) enter the command 

“export PATH=~/anaconda2/bin:$PATH” into the terminal.   

2. The scripts have only been tested to work using OpenCV (version 3.1.0) downloaded 

through Anaconda. Using a different version of OpenCV may result in an error reading 

“ImportError: No module named cv2.”  

3. The scripts are hardcoded to be specific to the file naming system herein described (see 

section 4.3) and to analyze data without fluorescence or containing a single fluorescence 

channel. The code is capable of analyzing more than one fluorescence channels, but 

requires some editing to output data. 

4. To find the directory in which a file is located in Ubuntu, right click on the file and 

select “Properties.” The directory the file can be found in “Location” under the “Basic” 

tab (e.g. /home/user/Downloads). You can copy and paste this path into the terminal 

using the mouse.  

5. It is essential that the scale of the bounding rectangle be in pixels because the scripts 

imports the values as pixel values and therefore any other scale would lead to the ROI 

being different from intended. In the case of image alignment (see section 0), this could 

unintentionally result in a region that includes moving objects, which will hinder the 

alignment (see Note 7). 
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6. The python scripts Image_alignment.py and Image_analysis_stack.py require 

bounding box input to be whole number integers. Additionally, avconv cannot render a 

video using images with an odd length or width, and therefore any ROI that is used to 

crop the images in Image_analysis_stack.py must have an even length and width in pixels 

to output videos. 

7. Fast Fourier transform (FFT) alignment works best on regions that have limited change 

between images, and therefore moving objects (such as cells) should be minimally 

included in the region to be aligned. When selecting an ROI in Fiji (see section 0), use an 

image stack to scroll through multiple images and ensure that there is minimal movement 

within the selected area.  

8. SegmentandTrack.py provides the option to run classification without training a new 

classifier, which allows a classifier to be used across multiple experiments. Furthermore, 

Segmentation.ijm can be run in Fiji, independently of the python scripts, to call Weka 

and load images and classifiers for training.  

9. The purpose of the segmentation is to create a binary mask that can then be used to 

label and identify single cells. However, an initial probability mask gives a more nuanced 

picture of the classification results than a binary mask and allows for a second round of 

classification ( Figure 6). We have empirically determined that two rounds of 

classification can result in a final segmentation that is more accurate and sometimes 

faster than when classifying with a single, larger classifier. However, one round of 

classification may be sufficient for certain datasets. 

10. Subtracting Background: In Fiji, we use the Bandpass filter plugin, which removes 

high and low spatial frequencies, to regularize the image and subtracts the background. 
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The plugin is located under “Process” ➔ “FFT”. We have had previous success with 

large structures filtered to 100 pixels, small structures filtered up to 0 pixels, no 

suppression and a 5% tolerance. The Bandpass filter is included in the custom Fiji scripts 

Segmentation.ijm and Batch_segment.bsh for the first round of classification.  

11. Weka settings are saved with the data and therefore can only be set when training the 

classifier on the first image. Further information on Weka settings is on the Fiji ImageJ 

website: https://imagej.net/Trainable_Weka_Segmentation 124,130. Additionally, the Weka 

Explorer is a tool provided by Weka to aid in determining which classifiers or training 

features should be used for a given dataset. It can be accessed by clicking on the Weka 

logo in Trainable Weka Segmentation.  

12. The training features we used for our classification were different for each round of 

classification due to the differences between the images being classified. For the first 

classifier (phase to probability mask) we used Gaussian blur, Sobel filter, Membrane 

projections and Neighbors. For the second classifier (probability mask to binary mask) 

we used Hessian, Difference of Gaussians, Variance, and Mean (Figure 8D).  

13. In the “Settings” of Trainable Weka Segmentation, the labels can be named to help 

guide the user. We call label 1 “Cell” and label 2 “Not cell” wherein “Not cell” includes 

anything that is not a cell, including background, features, etc. (Figure 8CD). The same 

method can be used for identifying other objects in an image; for example, labeled 

organelles could be identified and tracked in eukaryotes.  

14. For good-quality segmentation results, it helps to outline just outside the edges of a 

cell and add it to the “Not cell” label (Figure 8C). When training the classifier, it is 

important not to overfit the data (i.e. when the classifier matches a training set closely but 

https://imagej.net/Trainable_Weka_Segmentation


47 

is no longer applicable to the more extensive dataset). Furthermore, extensively training 

the classifier can slow the classification process with minimal returns on efficacy. To 

prevent this, it is important to save classifiers and data intermittently (with sequential 

names); in case a later classifier results in a decrease in efficacy. Our classifiers were 

trained on 5-15 cells in every 20-30 images. 

15. To measure an area in Fiji, first set measurements (“Analyze” ➔ “Set 

Measurements”) then make a selection and measure it (“Analyze” ➔ “Measure”; 

Ctrl+”M”). Our results were generated using a minimum value of 100 and a maximum 

value of 2500 (Video A1 and Video A2). 

16. The maximum number of frames is two less than the total number of frames (the first 

and last frames are not included in the analysis). Currently, the script is hardcoded so that 

the overlap requirement to track cells between frames is at least half and to end a 

trajectory if the cell decreases in area by more than 40%. Changing these values (see 

comments in TrackCellLineages.py) can increase or decrease the fidelity of the tracking. 

17. We track cells from the last frame to the first frame, because the process of cells 

merging are more apparent than cells dividing. Currently, the distance radius to test for 

cell overlap (THRESHOLD in TrackCellLineages.py) is set to 150, but this can be 

adjusted based on the dataset by editing the script. A smaller radius can speed up the 

process, while a larger one may be necessary for larger or faster moving cells. 

18. The csv files can be opened using Microsoft Excel, LibreOffice Calc, and most other 

spreadsheet software. Pickle files are used to pack and unpack Python objects. The pickle 

files produced by TrackCellLineages.py (lineagetracking.pkl and 
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lineagetrackingsummary.pkl) can be unpacked and used for further analysis by advanced 

users; see Lineage_analysis.py for an example.  

19. Our method determines doubling time based on two observed divisions, and therefore 

a lineage must divide at least twice in the course of the experiment to determine doubling 

time. The doubling time output by Track-cell-lineage.py is the mean of the amount of 

time between each division over the entire lineage.  

20. Lineage names are output in lineagedata.csv, and visual output (masks with cells 

colored and labeled according to their lineage) is available in the Lineages subfolder, 

created within the folder containing the analyzed images (Video A2). Outputting all of 

the files at once (answering “y” when asked, “Do you wish to get data for all of the 

lineages?”) is often faster than typing in multiple individual names. 

21. There are a few options for filtering the data and subtracting background available 

within the script (see Note 22. Any processing of the images (e.g. background 

subtraction) must be done before rendering the videos when using these methods. 

Background subtraction is included in the “filtered” results when analyzing whole image 

fluorescence (see Note 22. Any processing of the images (e.g. background subtraction) 

must be done before rendering the videos when using these methods. Background 

subtraction is included in the “filtered” results when analyzing whole image fluorescence 

(see Note), but modifications are required to use them for single cell tracking. Global 

fluorescence data reports unfiltered and filtered data, wherein filtered refers to data that 

has been normalized so that the maximum fluorescence measurement within the frame is 

1 and the minimum is 0.   
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22. Any processing of the images (e.g. background subtraction) must be done before 

rendering the videos when using these methods. Background subtraction is included in 

the “filtered” results when analyzing whole image fluorescence (see Note 23). There are a 

few different filters to choose from in Image_analysis_stack.py to subtract the 

background. These can be changed by adjusting plot_filterIndex with 

Image_analysis_stack.py.  

23. Image_analysis_stack.py includes functions for adjusting image brightness, scaling 

the image values and adjusting color. The parameters for these adjustments can be 

modified based on the dataset as described by the script comments. 
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5. PROTEOLYTIC QUEUES AT CLPXP INCREASE ANTIBIOTIC TOLERANCE 

Reproduced with permission from Deter et al. 2020 published in ACS Synthetic 

Biology121. Copyright 2020 American Chemical Society.  

 

Authors: Heather S. Deter1, Alawiah H. Abualrah1, Prajakta Jadhav1, Elise K. 

Schweer1, Curtis T. Ogle2, and Nicholas C. Butzin1 
1 Department of Biology and Microbiology. South Dakota State University. Brookings, 

SD. 57006. USA.  
2 Independent researcher. Prosser, WA, 99350. USA. 
 

5.1. Abstract 

Antibiotic tolerance is a widespread phenomenon that renders antibiotic treatments 

less effective and facilitates antibiotic resistance. Here we explore the role of proteases in 

antibiotic tolerance, short-term population survival of antibiotics, using queueing theory 

(i.e. the study of waiting lines), computational models, and a synthetic biology approach. 

Proteases are key cellular components that degrade proteins and play an important role in 

a multi-drug tolerant subpopulation of cells, called persisters. We found that queueing at 

the protease ClpXP increases antibiotic tolerance ~80 and ~60 fold in an E. coli 

population treated with ampicillin and ciprofloxacin, respectively. There does not appear 

to be an effect on antibiotic persistence, which we distinguish from tolerance based on 

population decay. These results demonstrate that proteolytic queueing is a practical 

method to probe proteolytic activity in bacterial tolerance and related genes, while 

limiting the unintended consequences frequently caused by gene knockout and 

overexpression. 

5.2. Introduction 

The discovery of penicillin in the 1920s led to a new age of human and animal 

medicine as many antibiotics were quickly identified and developed, but the subsequent 

explosion of antibiotic treatments and applications has simultaneously driven microbial 
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evolution and the development of widespread resistance131,132. A significant contributing 

factor to the abundance of antibiotic-resistant microorganisms are subpopulations of cells 

that survive of antibiotic treatment without a genetic mutation, antibiotic tolerant and 

persistent cells36,38 . Persistence is a physiological state that enables cells to survive 

antibiotic treatment via temporary changes in phenotype, such as slowed growth and 

biosynthesis, rather than genotype (e.g. antibiotic resistance)55. Although persistence has 

been studied for over 70 years, there 

has been a lack of specificity in the 

literature between antibiotic tolerance 

and persistence54,55. Recently, a 

consensus statement that was released 

after a discussion panel with 121 

researchers defined antibiotic 

persistence as a tolerant subpopulation 

of cells that result in a distinct phase of 

population decay55. We use population 

decay to differentiate between 

tolerance and persistence in this work 

(Figure 9A).  

The widespread nature of 

persistence suggests that similar 

mechanisms exist to trigger the 

persistent state in prokaryotes. These 

 
 

 Figure 9 A) Examples of population decay 

in typical (black), high persistence (blue) 

and high tolerance (red) populations. A shift 

in tolerance can be distinguished from a 

change in the number of persisters. For 

example, a high persistence population can 

initially have the same decay rate as a 

typical population but have higher survival 

because of more persisters (dotted blue line). 

A high tolerance population can have the 

same persister level as a typical population 

but have a shift in the initial decay rate 

(dotted red line). B) A simple model of 

proteolytic queueing. When native proteins 

have low competition for the protease, there 

is no queue. Induction of synthetic tagged 

proteins competes with the native proteins 

for the protease and overloads the protease, 

which results in a proteolytic queue 

(bottleneck). 
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mechanisms include many common systems, e.g. toxin-antitoxin (TA) systems and 

proteases. Although the precise role of TA systems in persistence is unclear due to the 

complications of knocking out all TA systems (E. coli has >45 known and predicted TA 

systems78,133,134) and their interrelated role in cellular responses to stress28, toxins in TA 

systems can trigger persistence when at a higher level than their cognate antitoxin28,135,136. 

Within the cell, the ratio of toxin to antitoxin is regulated during protein production18,20,60 

and through degradation by proteases10,13. Proteases, such as Lon and ClpP, are largely 

responsible for protein degradation and cell maintenance50,51. They provide an essential 

level of protein regulation throughout the cell, including degradation of RpoS (a 

transcription factor that responds to stress)52 and tagged polypeptides (incomplete 

proteins) synthesized by stalled ribosomes that have been rescued by the trans-translation 

system53. In E. coli, ssrA (tmRNA) and smpB are the primary genes responsible for trans-

translation, a cellular mechanism for recovering stalled ribosomes. A tmRNA molecule 

acts as a tRNA by binding to the A-site of a stalled ribosome. The ribosome then 

translates the protein-coding region of the tmRNA, which adds an amino acid tag to 

target the polypeptide for degradation by ClpXP53. While ssrA is not essential in E. coli, 

ssrA knockouts cause growth defects, increase susceptibility to certain antibiotics137, and 

affect persistence28,138-140. Proteases and related chaperones are also consistently 

identified as persister-related genes in gene knockout experiments47,48 and transcriptome 

analysis49. Indeed, a drug that targets persisters, acyldepsipeptide (ADEP4), activates the 

protease ClpP and lowers persister levels56. While most published articles focus on 

methods that reduce persister levels, conditions that increase their levels are integral to 

understanding the causative mechanisms of action and developing new drugs. As many 
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persister studies incidentally examine antibiotic tolerance54,55, it follows that some of the 

above mechanisms may play a role in antibiotic tolerance. 

Synthetic biology takes advantage of these mechanisms to develop new cellular 

circuits. For example, synthetic oscillators require rapid degradation of proteins, which is 

accomplished using the ssrA degradation tag59,141,142; the ssrA degradation tag is the 

amino acid sequence AANDENYALAA53, which we abbreviate to LAA throughout. 

Previous work establishes that multiple circuits can be coordinated by overproduction of 

a common degradation tag to target proteins to a protease143,144. When a protease is 

overloaded, protein species compete for degradation; the enzyme is unable to keep up 

with the influx of new proteins57. This phenomenon can be explained by queueing theory, 

in which one type of customer competes for processing by servers, which has 

traditionally been applied to systems such as computer networks and call centers. Limited 

processing resources in a cell (e.g. proteases) cause biological queues141,145 (Figure 9B). 

The queueing effect at the protease ClpXP is essential in allowing for oscillation of the 

highly used synthetic oscillator (often called Stricker oscillator or dual-feedback 

oscillator)59,142. Variations of this oscillator have been used in different strains of E. 

coli59,143,144,146, and in  Salmonella ser. Typhimurium147, indicating that queueing at 

ClpXP is not specific to one strain or species. The coupling of otherwise independent 

synthetic systems via proteolytic queueing demonstrates that queueing affects protein 

degradation and thus provides a tunable method of studying proteolytic degradation with 

little effect on cell growth141,143-145 compared to gene knockouts and overexpression of 

proteases50,148,149.  
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We set out to test the hypothesis that proteolytic queueing at the ClpXP complex 

affects survival of E. coli during antibiotic treatment. Previous studies have used 

knockout mutants to disrupt activity of specific proteases in E. coli, but these studies 

yielded mixed results48,139,150,151. The variability between results of knockout mutations 

could be due to differences in growth rates and metabolism, which would modulate 

antibiotic efficacy152,153. Proteases are essential to regulating many biological networks 

and simply removing them likely has downstream effects. For example, ClpXP is known 

to degrade at least 50 proteins in E. coli154, and many of them are transcription factors 

like RpoS, the global regulator of stationary phase155,156. Many proteins are regulated at 

the proteolytic level by ClpXP51, including RpoS157, and simply removing ClpXP 

disrupts this regulation and any quantification of persistence or tolerance is indirectly 

measuring an alteration in the levels of proteins regulated by ClpXP degradation. 

Proteolytic queueing is preferred over protease knockouts when probing antibiotic 

efficacy because while protease knockouts often result in growth defects50,148, proteolytic 

queueing does not noticeably affect cell growth or death141,143-145 (Figure A4). Our results 

show that during antibiotic treatment, degradation plays a role in cell survival and the 

effect is tunable using queue formation. Proteolytic queueing at ClpXP increases 

antibiotic survival and analysis of population decay with and without a queue 

demonstrates that queueing specifically increases antibiotic tolerance. We hypothesize 

that the queue is affecting the degradation of one or many regulatory molecules within 

the cell that cause downstream effects and enhance antibiotic tolerance. These results 

demonstrate that proteolytic queueing provides a new method to probe proteolytic 

activity in antibiotic tolerance and persistence.  
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5.3. Results 

5.3.1.  Proteolytic queueing affects tolerance 

Cultures were grown to stationary phase and incubated for 24 hours prior to dilution 

into fresh media containing ampicillin to quantify persistence (see Methods). A 

proteolytic queue was induced via the production of a ssrA tagged fluorescent protein, 

CFP-LAA, expressed under an IPTG inducible promoter, Plac/ara-1. No apparent change in 

growth was observed by induction (Figure A4) as reported previously143,144. The effects 

of queue formation on antibiotic survival are shown as the percentage of the population 

that survived ampicillin treatment (Figure 10). When CFP alone (no degradation tag 

control) was overexpressed during ampicillin treatment, there was no significant effect on 

persister levels (p > 0.2, Figure 10A). Queue formation (overexpression of CFP-LAA) 

during ampicillin treatment led to a 25-fold increase in survival after three hours in a 

concentration-dependent manner (Figure 10B; p<0.0001, n ≥12).  

When a queue was induced for 24 hours prior to ampicillin treatment the surviving 

population at three hours was over 80-fold higher than the uninduced population, only if 

induction was maintained during ampicillin treatment. However, if the inducer was 

removed during ampicillin treatment, the initial 24 hours of queueing had a minimal 

effect on survival at three hours (p>0.01, Figure 10C). These results indicate that survival 

was affected by queue formation rather than CFP itself, and that the size of the queue 

(level and length of induction) determines the effect.  
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Figure 10. Proteolytic queueing affects survival of cells treated with the antibiotic 

ampicillin. a. Induction of untagged CFP during antibiotic treatment has no significant 

effect on survival (p>0.2). b. Induction of CFP-LAA during antibiotic treatment 

causes an increase in survival. c. CFP-LAA was induced (+) with 100 µM of IPTG or 

not induced (-). Induction before ampicillin lasted 24 h in stationary phase prior to 

antibiotic treatment. Queueing affects survival if the queue is maintained during 

ampicillin treatment. d-e. Expression of CFP or CFP-LAA was induced with IPTG 

one hour into the three-hour antibiotic treatment. Induction of CFP alone (no queue) 

had no significant effects on survival. Induction of CFP-LAA increased survival (d). 

Population fluorescence was measured for untagged CFP after antibiotic treatment, 

demonstrating that CFP is being produced via induction (e). f. Induction of CFP-LAA 

during antibiotic treatment causes an increase in survival with glucose as a carbon 

source rather than glycerol, demonstrating that it is not a solely a carbon-specific 

phenomenon. Cultures were treated with ampicillin (100 µg/ml). Error bars represent 

SEM. n ≥ 3. *p<0.05. **p<0.01. ***p<0.001. ****p<0.0001. 
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To confirm that these results are due to induction during antibiotic treatment, we 

waited one hour into ampicillin treatment before inducing expression of the fluorescent 

protein. As we previously observed, induction of untagged CFP had no apparent effect on 

persister levels (Figure 10D), while quantification of fluorescence after ampicillin 

treatment confirmed that CFP was produced (Figure 10E). Overexpression of CFP-LAA 

for two hours of ampicillin treatment still increased cell survival compared to the 

uninduced and untagged CFP populations (Figure 10D).  

We did further testing to confirm this effect is not specific to glycerol as a carbon 

source or ampicillin as the antibiotic. When glucose was the carbon source rather than 

glycerol, survival still increased due to CFP-LAA induction (Figure 10F), which 

demonstrates that the effect is not directly related to the carbon source. We then tested the 

effects of queueing against the antibiotic ciprofloxacin, because ciprofloxacin targets 

DNA gyrase158 while ampicillin targets the cell wall159. CFP alone caused a slight 

increase in survival (Figure 11A), however the CFP-LAA tag led to a 60-fold increase in 

survival (Figure 11B).  

5.3.2. Chloramphenicol inhibits the synthetic queue 

Neither ampicillin nor ciprofloxacin directly affect production of the fluorescent 

protein (i.e. target transcription or translation) and thus should not prevent queue 

formation. On the other hand, an antibiotic that affects protein production should prevent 

queue formation, and therefore CFP-LAA induction would not affect survival in the 

presence of such an antibiotic. We found this to be the case when testing the effects of 

queueing on the survival of cells treated with chloramphenicol. Chloramphenicol is an 

antibiotic that inhibits protein translation by binding to bacterial ribosomes and inhibiting 
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protein synthesis, thereby inhibiting bacterial growth160. Induction of CFP-LAA does not 

increase survival of antibiotic treatment when treated with chloramphenicol alone (Figure 

A5), but chloramphenicol is not bactericidal, so we co-treated cultures with both 

ampicillin and chloramphenicol. The overall percent survival with chloramphenicol is 

much higher than with ampicillin alone, which is consistent with the literature161. As 

expected, co-treatment with ampicillin and chloramphenicol had no apparent effect on 

cell survival, supporting that even when CFP-LAA was induced the queue could not form 

if translation was blocked (Figure 11C).  

5.3.3. Proteolytic queueing affects population decay 

To gain further insight into the relationship between proteolytic queueing, tolerance 

and persistence, we measured how a proteolytic queue affects population decay by 

 

Figure 11. Proteolytic queueing effects in the presence of ciprofloxacin and 

chloramphenicol. a. Induction of untagged CFP during ciprofloxacin treatment 

increases survival less than 4-fold. b. Induction of CFP-LAA during ciprofloxacin 

treatment increases survival ~60-fold. c. Induction of CFP-LAA during ampicillin and 

chloramphenicol treatment has no apparent effect on survival (p>0.7). X-axis labels 

correspond to Fig. 2. Cultures were treated with ciprofloxacin (1 µg/ml) or 

chloramphenicol (5 µg/ml) respectively. Error bars represent SEM. n≥3. *p<0.05. 

**p<0.01. 
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measuring survival for up to 8 hours of ampicillin treatment. Our results show a typical 

biphasic curve indicative of persister cells in the uninduced population. When the 

population is induced 24 hours prior to and during antibiotic treatment this curve shifts as 

the rate of population decay slows compared to uninduced cultures. The addition of the 

inducer exclusively during antibiotic treatment takes a similar effect between two and 

three hours into treatment. If the queue is induced 24 hours prior to antibiotic treatment, 

but the queue is not maintained (i.e. the inducer is removed during antibiotic treatment) 

the effect of the queue dissipates between one to two hours. There is no apparent 

difference between induced and uninduced cultures after 8 hours, which suggests there is 

little to no effect on persistence (Figure 12A).  

5.3.4.  Computational modeling supports queueing-tolerance  

 Based on the in vivo results, we considered a simple computational model of 

population decay during antibiotic treatment modified from Kussel et al.162. In our model, 

the persister population (P) has a lower death rate than the susceptible population (N), 

where the death rates are represented by µp and µn respectively. We estimated µp and µn 

based on the experimentally determined decay rate of the uninduced population before 

and after two hours, and set the initial persister population to 0.2% of the total population 

(Figure 12B). Normal (susceptible) cells enter persistence at rate α, and persister cells 

return to the normal state at rate β. The rates α and β were set relative to µn based on the 

relationship between these values in Kussel et al162. Our base model resembles 

population decay as measured in experimental tests. We use the model to determine 

whether the increase in overall population survival due to queue formation can be 

attributed to an increased rate of entering persistence (α) or increased tolerance (i.e. 



60 

Figure 12. Time of queue 

formation influences survival. 

a. Stationary phase cells were 

diluted 1/100 into fresh media 

containing ampicillin (100 

µg/ml) and sampled every hour 

for 8 h (n ≥ 3). Symbols (-/+) 

correspond to Fig. 2c. Error bars 

represent SEM. Asterisks 

indicate p-value (compared to no 

induction (black)) *p<0.05, 

**p<0.01, ***p<0.001, 

****p<0.0001. There is 100% 

survival at time zero, because 

percent survival is determined 

based on the surviving CFU/ml 

compared to the CFU/ml at time 

zero. b-d. Stochastic model of 

population decay with antibiotic 

treatment. b. Reactions for the 

model (left) and baseline rates 

used for the simulations (right) 

unless stated otherwise (red lines 

below). Normal cell division (ω) 

was set to zero as dividing cells 

die during ampicillin treatment. 

c. Increasing the rate of entering 

persistence (α) increases cell 

number during the second phase 

of population decay. d. 

Decreasing the rate of normal 

cell death (µn) causes the first 

phase of population decay to 

lengthen. Y-axes are in 

logarithmic scale for a., c., and 

d.   
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decreased µn). Exploration of these parameters using 

stochastic simulations shows that increasing the rate at 

which normal cells become persisters (α) shortens the 

first phase of population decay and increases the 

number of persisters (Figure 12C). Decreasing the rate 

of normal cell death (µn) lengthens the first phase of 

population decay but has little to no effect on the 

number of persisters (Figure 12D).  

5.3.5. Overexpression of RpoS does not reproduce 

queueing-tolerance 

 An increase in tolerance in response to proteolytic 

queueing at ClpXP is likely due to an increase in the 

number of one or many proteins. A good candidate is the transcription factor RpoS, a 

persister related gene48 that is responsible for regulation of stationary phase, affected by 

the level of ssrA, and regulated by proteolytic degradation52. As such, we tested the 

effects of increasing RpoS levels by gene overexpression using the same vector, promoter 

and ribosome binding sites as used to overexpress CFP and CFP-LAA. We found that 

overexpression of RpoS does not cause a significant increase in tolerance, especially 

when compared to proteolytic queueing (Figure 13).  

6. DISCUSSION 

Proteolytic queueing is an integral component of native systems, and synthetic queues 

have great potential for studying systems at the proteolytic level. Here we show that 

queueing provides a tunable method to interfere with protease degradation and affect 

 

Figure 13. Induction of 

RpoS during antibiotic 

treatment has no significant 

effect on survival after 3 

hours of ampicillin treatment 

(p>0.4). The same CFP-

LAA data was used in 

Figure 10F. 
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antibiotic tolerance. Increased antibiotic tolerance in response to queueing was 

independent of the carbon source (glycerol or glucose) and antibiotic class (β-lactam or 

fluoroquinolone). When we prevented queue formation using chloramphenicol, adding 

the inducer did not affect cell survival under the treatment of ampicillin. While CFP 

production alone slightly increased survival for ciprofloxacin, we suspect that high 

production of CFP with no apparent method of removal (besides cell division; minimal 

degradation) causes cell stress  and affects survival, especially since high levels of 

fluorescent proteins can cause oxidative stress163,164, which is known to increase 

persistence165-167. However, because CFP-LAA is removed via degradation (indicated by 

lower fluorescence than CFP-untagged), the effects seen via overexpression of CFP 

should be less prominent during CFP-LAA overexpression. The results we describe here 

would not have been identified in a clpP knockout, because clpP knockouts break cellular 

systems and detrimentally affect cellular processes168, as evidence by growth defects149. 

Similarly, studies of TA systems and their role in antibiotic survival are confounded by 

the fact that TA systems make up highly interconnected networks with built in 

redundancy so that removal of several TA systems does not fully disclude activities by 

the others25,28,169 and can even affect growth170. As such, changes in tolerance are difficult 

to differentiate from affects caused by permanent alterations in system dynamics 

resulting from genetic mutations. Here we demonstrate the utility of proteolytic queueing 

to study antibiotic survival, while minimizing negative effects of protease knockouts that 

could obfuscate the phenomenon of interest.  

In some cases, the change in survival at three hours might be interpreted as a change in 

persistence; however, the shift in decay rates (as described in Figure 12A) clearly 
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demonstrates that queueing increases antibiotic tolerance rather than persistence. 

Furthermore, the effects caused by adding or removing the inducer during antibiotic 

treatment suggest that the change in antibiotic tolerance is due to an active response to 

the queue, which must be maintained to affect survival. Although persistence does not 

appear to be affected by the proteolytic queue at ClpXP, further overloading ClpXP is 

possible and we simply may not be able to measure an affect at this level. However, 

persisters are considered metabolically dormant and an active response to the queue could 

explain why tolerance is affected but not persistence. Alternatively, the synthetic queue 

may not actually form in persister cells due to slowed translation and transcription. Our 

model supports that antibiotic tolerance is being affected by queueing rather than 

persistence, as altering survival of the ‘normal’ population (i.e. tolerance) more closely 

resembles the effects of proteolytic queueing than altering the rate of switching into 

persistence. While these results are specific to queueing at ClpXP,  tags are available to 

test the effects of queueing at other proteases (e.g. Lon and ClpAP)145. 

Queueing at ClpXP is likely affecting the proteome of the cell, either directly or 

indirectly, and pleiotropic effects on protein content and gene regulation could be 

limiting antibiotic efficacy. We suspect that queue formation increases the intracellular 

concentration of one or multiple protein species causing a regulatory cascade. When 

considering proteins both degraded by ClpXP and related to persistence, TA systems are 

unlikely to be the causative factor, because decreasing degradation should increase 

antitoxin levels and decrease survival rather than increase survival as we observe. 

Instead, we consider regulatory proteins as candidates for the causative factor in queueing 

effects on tolerance. Several regulatory proteins are degraded by ClpXP154 including 
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RpoS and DksA, proteins that have been implicated in persistence139,167,171 and may be 

involved in tolerance.  

We have tested the effect of overexpressing RpoS under the same conditions as 

proteolytic queueing to see if we could replicate the queueing-tolerance phenotype. Our 

results show that overexpression of RpoS does not significantly affect antibiotic 

tolerance. These results do not confirm that RpoS alone is responsible for changes in 

tolerance, especially considering that RpoS levels range broadly under different stress 

conditions and that over 23% of the E. coli genome is regulated by RpoS156. However, 

several other regulatory and stress response proteins are degraded by ClpXP154, and 

increased concentrations of one or several of these proteins due to slowed degradation 

could be causing the downstream effects that lead to increased tolerance. In a similar 

vein, computational modeling has shown that altering degradation of MarA (a regulatory 

protein degraded by Lon that is related to antibiotic tolerance) leads to increased 

coordination of downstream genes172.  

The increase in antibiotic tolerance due to queue formation at ClpXP may be specific 

to overexpression of the LAA-tag, especially when considering that the number of LAA 

tagged proteins naturally increases during stress. The number of proteins with LAA tags 

increase during heat shock173, and queue formation at the proteases is likely a 

consequence of the increasing cellular traffic. If the native LAA tag is removed from 

SsrA while maintaining the ribosome rescue function, the survival of ampicillin treatment 

decreases in E. coli139. As the LAA tag could be a measurement of environmental stress, 

cells may have evolved to increase tolerance in response to increased queueing via LAA. 

Since ribosome rescue and proteolytic queueing are common across species, stress 
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signaling via proteolytic queueing could be a general mechanism to regulate survival 

related genes. Considering that proteolytic queueing is a natural phenomenon and 

synthetic queues have fewer negative effects compared to protease knockouts, our work 

demonstrates that proteolytic queueing is a viable alternative method to study proteolytic 

degradation by specific proteases. In the case of antibiotic tolerance, identifying the key 

proteins affected by the queue during bacterial tolerance and then understanding how 

these proteins interact has the potential to determine new drug targets for killing bacterial 

pathogens.  

6.1. Materials and Methods 

6.1.1. Strains and Plasmids 

All strains are derived from E. coli DH5αZ1, and contain plasmids with the synthetic 

circuits, p24KmNB82 (CFP-LAA) and p24KmNB83 (untagged CFP) as described in 

REF145 and p24KmAA01, which contains RpoS cloned downstream of Plac/ara promoter of 

p24Km (kanamycin 25 μg/mL) as in REF145. As such, CFP, CFP-LAA and RpoS are all 

expressed under identical promoters and ribosome binding sites. DH5αZ1 was derived 

from E. coli K12 (arguably the most studied bacteria strain174), it is used by many in 

synthetic biology and outside the field175-178, this strain has previously been used to study 

persistence/tolerance or mechanisms related to them (e.g. toxin-antitoxin systems)179-181, 

and our previous queueing experiments used these derivitives145.  

The cultures were grown in modified MMA media182, which we will refer to as MMB. 

MMB media consists of the following: K2HPO4 (10.5 mg/ml), KH2PO4 (4.5 mg/ml), 

(NH4)2SO4 (2.0 mg/ml), C6H5Na3O7 (0.5 mg/ml) and NaCl (1.0 mg/ml). Additionally, 

MMB+ consists of MMB and the following: 2 mM MgSO4 x 7H2O, 100 µM CaCl2, 
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thiamine (10 µg/ml), 0.5% glycerol and amino acids (40 µg/ml). Cultures grown on 

glucose as the carbon source included 0.5% glucose instead of glycerol. Strains 

containing the plasmid p24Km and derivatives were grown in MMB+ kanamycin (Km, 

25 µg/ml) or on Miller’s Lysogeny broth (LB) agar plates + Km (25 µg/ml). All cultures 

were incubated at 37° C and broth cultures were shaken at 250 rpm. 

6.1.2. Quantification of persistence 

Persisters were quantified by comparing colony-forming units per milliliter (CFU/ml) 

before antibiotic treatment to CFU/ml after antibiotic treatment. The procedure for 

quantifying persister levels is based on previous research39,179,183 (Figure A6). Briefly, 

overnight cultures were diluted 1/100 into fresh media and grown until they reach 

between OD600 0.2-0.3. A reduced volume of culture (20 ml) was aliquoted into a 125 ml 

flask, and grown for 16 hours to enter stationary phase. Once in stationary phase, cultures 

were divided into two flasks with 0.2% arabinose, one flask of each replicate was also 

treated with 100 µM IPTG to induce expression under Plac/ara-1.  

Arabinose was added to both induced and uninduced cultures to maintain consistency 

(Figure A7). All flasks were incubated for 24 hours before taking samples for plating and 

antibiotic treatment; cells were diluted 1/100179,183 into glass tubes, treated with 10X the 

MIC of ampicillin (100 µg/ml; Figure A8) or 100X MIC of ciprofloxacin (1 µg/ml) at 

37° C and shaken at 250 rpm for select time periods, 3 hours unless otherwise stated. 

Ampicillin solutions were stored at -80°C and only thawed once to reduce 

variability137,184. When indicated, samples were treated with chloramphenicol (5 µg/ml); 

cultures treated with chloramphenicol alone were diluted 1/10. Samples for quantification 

of CFU/ml were kept on ice and diluted using cold MMB before plating on LB/Km (25 
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µg/ml) agar plates. Cultures treated with ciprofloxacin were centrifuged at 16,000 x g for 

3 minutes then washed with cold MMB to dilute ciprofloxacin before taking samples for 

quantification. LB agar plates were incubated at 37ºC for 40-48 hours, then scanned using 

a flatbed scanner40,185. Custom scripts were used to identify and count bacterial 

colonies103 then used to calculate CFU/ml and persister frequency. Colonies were tested 

periodically for resistance, and we found no resistance in >350 colonies tested. 

6.1.3. Quantification of CFP  

 Cells were grown and treated with ampicillin as described in quantification of 

persistence above. After antibiotic treatment, 300 µl of cell culture was added to 

individual wells in a 96-Well Optical-Bottom Plate with Polymer Base (ThermoFisher) 

for fluorescence measurement using FLUOstar Omega microplate reader. The excitation 

and emission (Ex/Em) used for CFP measurement was 440/480. Readings were measured 

after four minutes of shaking to decrease variability between wells. Background 

fluorescence (mean fluorescence of MMB media) was subtracted from the raw reads. 

Fluorescence values were normalized by CFUs as determined by quantification of 

persistence, which was carried out simultaneously. Mean and SEM for fluorescence was 

determined across four biological replicates and three technical replicates.  

Computational modeling 

Our model is modified from Kussel et al.162 where P is the persister population and N 

is the susceptible population (Figure 12B). Initial species counts P and N were set to 

99800 and 200 respectively for all simulations, which we based on the percent survival of 

uninduced cultures. The death rate of N (µn) and P (µp) and the rate of entering (α) and 

exiting (β) persistence were set as shown in Fig. 4b unless otherwise stated. The rate of 
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susceptible cell division (ω) was set to zero, as normal cells cannot divide without lysis 

during ampicillin treatment46. All simulations were performed using a custom 

implementation of the Gillespie algorithm186 in Python leveraging optimizations made 

possible by the Cython library187. Libraries from the SciPy stack188 were used for 

analysis. 

6.1.4. Statistics 

All data is presented as mean ± SD or SEM of at least 3 biological replicates as 

appropriate189. Statistical significance for populations with the same number of replicates 

(n) was determined using one-way f-test to determine variance (p<0.001 was considered 

to have significant variance) followed by a Student’s t-test (no variance) or a Welch’s t-

test (significant variance). Populations with different n values were compared using a 

Welch’s t-test. All statistical tests were run in Python using libraries from SciPy on 

groups with at least three biological replicates.  

6.1.5. Calculation of doubling times 

 Optical density (OD) was measured at 600 nm in a microplate reader (see 

Quantification of CFP). Doubling time (td) was determined as described in REF190. 

Briefly, we calculated the linear regression of the natural logarithm (ln) of the OD over 

time (t). The equation of the line can thus be derived from a logarithmic growth curve 

and solved for td (Eq. 1-2). 

𝑂𝐷 = 𝑂𝐷0𝑒
ln (2)

𝑡𝑑
𝑡
 Eq. 1  

ln(𝑂𝐷) =  
ln (2)

𝑡𝑑
𝑡 + ln (𝑂𝐷0) Eq. 2 
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7. CONCLUSIONS 

One of the reasons synthetic biology has developed rapidly over the past two decades 

is because the field is, by definition, interdisciplinary. In this work, I show how 

bioinformatics, molecular biology, computer science and traditional microbiology can 

work in combination to inform our understanding of how biological cells function, with a 

particular focus on how microbes respond to stress. Research to understand how cells 

respond to stress and survive is critical to improving antimicrobial treatments, but also for 

maximizing bioproduction and optimizing other processes dependent on living microbes. 

Herein we show that toxin-antitoxin systems, which are associated with stress responses, 

have diverse mechanisms of regulation (Chapter 2). I believe that further understanding the 

role TA systems play in cellular stress responses will require a network-based approach.  

Another area that will benefit from a network-based analysis is quantifying the 

molecular mechanisms responsible for the Queueing-Tolerance phenomenon (Chapter 5). 

While we have clearly demonstrated using queueing theory that proteases are a key aspect 

of tolerance, we do not yet know whether multiple genes/proteins are responsible for the 

effects. Holistic approaches to study this phenomenon could include RNA-sequencing or 

mass spectroscopy. These types of holistic approaches will also benefit from 

complementary targeted approaches. In the case of antibiotic tolerance, the challenges of 

studying the dynamics of individual systems are compounded by the fact that the tolerant 

population is rather small compared to the general population. Single-cell tracking provides 

the means to study small populations, and thus cell tracking is a necessary step in 

understanding the dynamics of tolerant cells. The single-cell tracking software we have 

developed (Chapter 4) is designed to be implemented in future studies towards this end.  
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8. APPENDIX 

8.1. Figures 

 

Figure A1. RNA-seq reads from experiment SRX1424838 (GSE74809, 100) mapped to 

rnlAB (Class 4). An increase of transcription occurs at the transcriptional start site for the 

internal promoter 75 (indicated as a dashed line) approximately 280 nt upstream from the 

antitoxin start codon. Comparison of the coverage between toxin (coding region red and 

orange) and antitoxin (coding region yellow and orange) using number of reads mapped 

to each gene would misrepresent the ratio of mRNA due to the transcriptional start site 

location within the rnlB gene. The coverage between the non-overlapping transcribed 

regions of rnlB to rnlA to show that antitoxin coverage is over two-fold greater than 

toxin. 
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Figure A2. Biological replicate values for antitoxin and toxin coverage across RNA-

seq datasets.  Shown is a comparison of coverage for biological replicates from the 

datasets GSE48829 99 (left) and GSE74809 100 (right), the former of which contains 

triplicate data in one growth condition, and the latter of which contains duplicate data 

across five growth conditions.  Replicates are shown as small symbols, while the mean of 

their log10 coverage is shown as a corresponding larger transparent symbol. The dashed 

line represents antitoxin to toxin coverage ratio 1:1 (equal coverage), while the dotted 

lines represent antitoxin to toxin coverage ratios equal to 1:2 and 2:1.  Units of coverage 

are RPKM, and the major directions of ratio and magnitude are also included (see 

Methods). 
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Figure A3.  Representative error estimates for RNA-seq datasets.  (A) Biological 

replicates in the datasets GSE48829 99 (left) and GSE74809 100 (right) were used to 

estimate the standard error of the log-coverage (natural logarithm of the coverage) for 

each gene in the dataset (red dots).  This logarithmic error measurement is natural for 

data represented in log-log coordinates.  Antitoxin and toxin genes belonging to the TA 

systems listed in the legend are represented using their own symbols.  A smooth global 

error estimate is plotted as a blue line.  This global error estimate 〈𝜎〉𝑖 for a gene with 

index 𝑖 is derived from the formula 〈𝜎〉𝑖 = ∑ 𝜎𝑗 𝑗
𝜌𝑗𝑖  (summation over all indices 𝑗), 

where 𝜌𝑗𝑖 is a normalized weighting factor proportional to exp (−2(𝑥𝑖 − 𝑥𝑗)
2

), with 𝑥𝑖 

the log-coverage for a gene with index 𝑖.  (B)  The mean log-coverage for each condition 

from panel A are plotted, with error bars corresponding to their global error estimates. 
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Figure A4. Induction of untagged CFP and CFP-LAA tag has no apparent effect on 

growth in MMB+ media. a. Cultures were induced during exponential phase. Induction of 

CFP-untagged or CFP-LAA had no apparent effect on growth when glucose or glycerol 

were the sole carbon source. b. Cultures were induced after 1/100 dilution into fresh 

media (the same dilution used during persister quantification, see Methods). Induction of 

CFP-untagged or CFP-LAA had no apparent effect on growth when glucose was the sole 

carbon source. Induction of CFP-untagged or CFP-LAA had no apparent effect on 

growth when glycerol was the sole carbon source. CFP-untagged grew slightly faster 

when induced by IPTG in glycerol media. However, if this difference in growth were to 

affect antibiotic survival, we would expect a decrease rather than no significant change in 

survival (see Results). Doubling time was calculated based on OD600 readings over time 

in a microplate reader (see Methods). n = 4. Error bars represent SEM. 
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Figure A5. Induction of CFP-LAA does not increase survival of cells treated with 

chloramphenicol. Cultures were treated with chloramphenicol, an antibiotic that inhibits 

translation, after a 1/10 dilution into fresh media from stationary phase. Induction of 

CFP-LAA via IPTG had no significant change in persistence compared to the uninduced 

cultures (p >0.7; n ≥ 3). Error bars represent SEM. 
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Figure A6. Persister assay flow chart of a typical assay. See Methods for details. 
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Figure A7. The addition of arabinose had no apparent effect on the tolerance/persister 

level during ampicillin treatment. Both IPTG and arabinose are inducers for CFP 

untagged and CFP-LAA tagged proteins. IPTG induces expression, arabinose alone does 

not induce expression, but arabinose can enhance expression when used in combination 

with IPTG. The effect of adding arabinose (0.2%) on tolerance/persistence to ampicillin 

was tested with CFP-LAA. Adding arabinose does not have a significant effect on 

survival of cells after 3 hours of ampicillin treatment (p >0.3). Error bars represent SEM. 

N ≥ 3. 

 

 

 

 

 
 

Figure A8. Determination of Minimal Inhibitory Concentration (MIC) for ampicillin. 

Exponential phase cultures were treated with different concentrations of ampicillin. The 

MIC was determined to be 10 µg/ml (p <0.03 compared to zero). Error bars represent the 

standard deviation. The ciprofloxacin MIC was determined in a similar manner. 
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Tables 

Table A1. Selected RNA-seq experiment numbers and conditions for GSE48829 (grey 

background) and GSE74809 

 

Experiment Media Growth phase 

SRX322083 Minimal media Exponential 

SRX322084 Minimal media Exponential 

SRX322085 Minimal media Exponential 

SRX1424798 M9 (glucose) Early Exponential 

SRX1424799 M9 (glucose) Early Exponential 

SRX1424808 M9 (glucose) Mid-Exponential 

SRX1424809 M9 (glucose) Mid-Exponential 

SRX1424818 M9 (glucose) Transition to Stationary 

SRX1424819 M9 (glucose) Transition to Stationary 

SRX1424828 M9 (glucose) Stationary 

SRX1424829 M9 (glucose) Stationary 

SRX1424838 M9 (glucose) Late Stationary 

SRX1424839 M9 (glucose) Late Stationary 
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Table A2. Ratios of the calculated antitoxin to toxin translation initiation rates. All 

translation initiation rates (TIR) were calculated using translation rate calculators, as 

outlined in the main text (see Methods).  TIR is in arbitrary units (AU). 

TA System RBS Calculator UTR Designer Barrick Calculator 

MazEF 8.93 1.94 6.05 

PrlF-YhaV 262 4.97 1.39 

RelBE 17.8 2.84 1.45 

MqsAR 0.01 1.34 15.1 

YefM-YoeB 1.48 3.83 72.9 

DinJ-YafQ 1.36 0.46 0.23 

YafNO 10.4 0.97 0.32 

RnlAB 119 NA 0.15 

FicAT 31.4 18.9 1.20 

HicAB P1 0.10 0.18 7.61 

HicAB P2 8.93 1.94 6.05 

N/A: Not available because the UTR Designer calculator cannot calculate with a TTG 

start codons. 

 

8.2. Videos 

All videos are available in the public repository https://osf.io/75avy (DOI: 

10.17605/OSF.IO/75AVY). 

Video A1. A tutorial video following sections 3.3 through 3.9 on a Linux computer. 

Filename: Tutorial_full.mp4 (https://osf.io/5d3sm/). Also available on Youtube: . 

Video A2. E. coli cells (of the data repository) after being labeled according to cell 

lineage. Filename: Video1.mp4 (https://osf.io/hbe34/). 

Video A3. Image masks with cells colors corresponding to cell lineage. Filename: 

Video2.mp4 (https://osf.io/pkxje/). 

Video A4. E. coli cells (of the data repository) outlined in red based on segmentation. 

Filename Video3.mp4 (https://osf.io/ytbrx/). 

 

 

 

 

 

 

https://osf.io/75avy
https://osf.io/5d3sm/
https://osf.io/hbe34/
https://osf.io/pkxje/
https://osf.io/ytbrx/
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