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CHAPTER 1
INTRODUCTION AND LITERATURE REVIEW

The problem of the control and maintenance of inventories of
physical goods is common to most enterprises. In the past, inven-
tories were considered as the 'grave yard' of American business,
because surplus stock was a principal cause for business failures.!
When companies are small and the competition is lax, a reasonably
good inventory policy can be established through an intuitive under-
standing of the needs of tﬁe business. However, in large scale enter-
prises the inventory system may become too large and complex to be
analysed intuitively and any deviation from the optimum inventory
policy would mean substantial losses. As a result of the current
small profit margins, proper inventory control has become even more
important.

The basic concept in inventory control consists of striking a
balance between the cost factors which increase as inventories
increase and those which decrease as inventories increase. Among

.

the costs which increase are:
1. Interest: (cost of money) Some companies use the interest
paid for the capital and others use the return that could have
been obtained by investing the capital elsewhere. 1In either

case, the cost of the goods in inventory must be considered.

Lthomas M. Whitin, The Theory of Inventory Management (2d ed.;
Princeton, New Jersey: Princeton University Press, 1957), p. 4.




2. Deterioration costs. Deterioration costs are the losses in
value due to actual detgrioratidn, obsolescence or damage of the
inventory item.
3. Insurance and taxes. Since most inventories are insured,
this cost should be taken into account. Taxes are mainly
property taxes.
4. Storage costs. Storage costs include rent, or its equiva-
lent ownership costs, and heat, light and other utility costs.
It is the usual practice to combine all of these costs into a single
item called the holding cost or inventory carrying cost, expressed
as a percentage of the factory or purchase cost of the items being
stored.
The decreasing costs are:
1. Ordering cost. The ordering cost is the internal cost
incurred in placing and processing a purchase order and is usually
assumed to be a constant for each order placed. It would include
cost of forms, cost of preparation and, frequently, receiving
inspection.‘
2. Set up costs. Thé set up costs are the costs incurred in
preparing a machine for the production of an item. TIt is
applicable to items produced internally. This cost is a con-
stant for each set up.
3. Shortage cost. The shortage cost is the cost incurred due
to the non-availability of an item in stock. This cost would

include the additional cost involved in taking emergency



measures to meet the demand in time as well as the loss of
customers' good will and positive loss of profit if the demand
is not met in time. If a company keeps a spare parts inventory
for its own use, the shortage may result in direct losses if a
machine becomes inoperative due to the non-availability of
spare parts in stock.

The shortage cost may depend upon the amount of the shortage,
the duration of the shortage and/or the number of shortages per
unit time.2

The eérliest theoretical work in the field of inventory control
was the derivation of a formula for the economic order quantity. The
economic order quantity is a minimum cost relation that takes into
account both the ordering and set up costs and the holding costs.
Other authors call this the Economic Lot Size.

Before going into a discussion of the different models, it may
be specified that the following assumptions are used for all the
models unless otherwise mentioned.

(a) Lead time is known and adequate so that goods can be

ordered to arrive when they are needed.

(b) Supply (production) is instantaneous.

2Russell L. Ackoff and Maurice W. Sasieni, Fundamentals of
Operations Research (New York: John Wiley & Soms, Inc., 1968),
Rzl 72:.




In 1915, Harris derived his 'Simple Economic Lot-Size Formula.'3 His
model has the following assumptions:
(a) Demand is continuous and is at a constant rate.
(b) No shortages are permitted, that is, the shortage cost is
infinite.

Harris' formula is

75
@ =KW @a.uw
where
Q = economic order quantity.
K = a constant which takes into account the interest and other

costs such as storage cost, insurance and taxes on a daily
basis.

P = ordering cost per order.

S rate of daily usage.

unit cost.

C

About ten years later, several other investigators developed

essentially the same formula for economic order quantity.4 These

.

took the form
2YS

ic (i.2)

Q

3F. E. Raymond, Quantity and Economy in Manufacture (New York:

McGraw Hill Book Co., 1931), pp. 121-122, cited by Om Prakash Goel,
"Studies and Application of the Theory of Inventory and Production"
(unpublished M.S. Thesis, South Dakota State University, 1966),

PP. 5-6.
4

Whitin, p. 32.



where

Q = economic order quantity.

Y = yearly sales in number of units.
S = ordering cost per order.

I = holding cost/unit time/dollar.

C = unit cost.

This 'Simple Economic Order Quantity Formula' continues to be used in
the same form. An implicit assumption is that there is no deteriora-
tion during the storage period. This simplification, while true in
many situations, is not universal in nature. Because almost all items
degrade during storage, deterioration will be defined as decay,

damage and spoilage such that the item cannot be used for its original
purpose and must be destroyed or abandoned. The terms deterioration
and decay will be used interchangeably. If the item can be repaired
or restored and the rate of decay is constant, the cost of such repair
or restoration can be included in the holding costs. Frequently this
is not the case and it will be unrealistic to use this mecdel in those -
cases. The effect of deterioration on inventory level is similar to
that of an additional demand over the actual demand as shown in

Figure 1.1. But this effect of the deterioration is not taken into

account in the previous analysis.



A number of specialized inventory situations in which deteriora-

tion takes place have been reported in the literature.

With Decay
Without Decay

Inventory
Level

Time

Figure 1.1. A simple inventory model.

The inventory control of style goods was studied by Whitin.
Hid model has the following assumptions:

(a) An order can be received only at the beginning of the

single period under consideration.

(b) Demand is probabilistic in nature.

(¢c) The inventory at the end of the period is liquidated at a

8

loss.

(d) The shortage cost is proportional to the quantity of goods
that are short.
The condition for maximum profit is reached when the expected profit
obtainable through stocking an additional unit is equal to the
expected losses from stocking that unit,

i.e., pP+pO0=(1l-p)L

SWhitin, pp. 62-72.



where

p = probability of selling an additiunal unit during the period
P = profit per unit

L = loss per unit not sold during the period

O = cost of omission, that is, shortage cost per unit

This model can be applied also to items which completely deteriorate
at the end of the period. This is a stochastic model and might not
be appropriate for continuous demand (i.e. high volume) items.

The optimum "inventory'" policy for a radio-active Nuclide
Generator was studied by Ermons.® The Nuclide Generator uses a
radio-active element of long half-life which decays exponentially
over time. Methods are proposed for finding the optimum replenishment
quantity for such exponentially decaying substances as shown in

Figure 1.2.

S

o)

-

O

P

(=32 .

v QO
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]

S1 :

1
L
T

Time

Figure 1.2. Inventory model for Nuclide Generators.

6Hamilton Emmons, 'A Replenishment Model for Radioactive
Nuclide Generators,' Management Science, January, 1968, pp. 263-274.




Specifically, a time interval T is considered during which the radio-
activity of the material decreases from the initial level, S, to the
final level, S;. The following assumptions are made:

(a) Replenishment is made when the inventory level reaches

the reorder point, S;.

(b) The residual stock at the time of replenishment is dis-

carded.
The replenishment cost and carrying cost are taken into consideration
for the analysis. The replenishment cost [C(S)] is the sum of the
fixed ordering cost, and the purchase cost which depends on the size
of the replenishment. ©Note that in this model the purchase cost per
unit time is a variable cost, as this is the cost of deterioration
which depends on the inventory level. The carrying cost (C;) per
unit quantity per unit time is a fixed fraction (f) of the replen-

ishment cost of a unit quantity.

The constant rate of decay establishes the relationship

s e =5 (1.3)
where ‘
P = rate of decay per time period.
T = cycle time.
S = order quantity.
Therefore

T =1 1n(8/Sp)- (1.4)
P



In practice, f is very small when compared with P and the carrying

-

cost can be neglected in the calculation of the total variable cost.

The total cost per unit time [K(S)] is equal to the replenishment

cost per unit time [C2(S)], or

K(S) = C2(8)

c(S)
T

=P c(s) .
In (S/87) (1.5)

Assuming that the cost function is continuous and differentiable, to
minimize the cost per unit time, we set the derivative of Equation

1.5 equal to zero.

C'(S) 1In(S/S1) - Cc(S) =0
S

The minimum value of S which satisfies this equation can be found out
by any of a number of numerical methods.

Ghare and Schrader describe a model for an item with a constant
rate of deteriorat':ion.7 The following assumptions are made:

(a) Demand is a known, regular and integrable function of time,

D(X)'

(b) No shortages are allowed.

(¢) There is no repair or replacement of deteriorated inventory

during a cycle time.

7p. M. Ghare and G. F. Schrader, '"A model for exponentially
decaying inventory,'" Journal of Industrial Engineering, Vol. XIV

(1963), pp. 238-243.
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(d) Demand and decay are simultaneous and continuous.

Inventory
Level

—— Ip

f— — —

x  (x+dx) T
Time

Figure 1.3. Inventory situation for Ghare's model.

Figure 1.3 indicates the generalized inventory situation as
described by the assumptions. A time interval T is considered during
which the initial inventory, I,, diminishes to Ip.

The constant rate of decay of an inventory item may be repre-

sented mathematically by the differential equation

i -6dt
I(}S + dX) = IX € (1.7)
where

Ix = inventory level at the end of time x.

I(x =t dk) = inventory level at the end of time (x + dx).

8 = a fraction representing the rate of decay per time period.

A small interval dx after time x is considered. During the interval

dx, the loss due to decay is

dL = Iy - I, e 9dx,



The total inventory depletion during dx is

e-edx + D(x)dx

=dr =1, —1,
Imposing the boundary conditions on the general solution of this
differential equation and integrating gives
-8T -6T T ex
Ep = T Je - e / D(x) e dx. (1.8)

o

The depletion due to decay alone is

% eT T T Ox
Ip - Ip= It(e - 1) - D(x)dx + D(x) e " dx (1.9)
o} o
where
IT* = inventory level at the end of time T, if depletion were

due to demand usage alone.

The exponential decay model was further simplified for constant

demand, that is, D(x) = K, and for IT = 0. Assuming that 1 is
e

considerably larger than T, Equation 1.9 can be simplified to

Iy - Ip = Ker2.
2 (1.10)

The economic order quantity also was determined by Ghare and
Schrader. The total cost per unit time is equal to the sum of the

purchase cost, ordering cost and holding cost, per unit time.

C, = CIKT + KoT2] + A + iC[KT + KOT? ] Gl 1)
T 2 T T 2

where
C¢ = total cost/unit time.

C = unit cost.

1
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i = a fraction such that iC is the holding cost per unit of
initial inventory.
In order to minimize the total cost per unit time Equation 1.11 is
differentiated and set equal to zero:

d_ (C¢) =K6C A KiC , KiCeT = 0. qn.2)y
dt 2 2t

The value of T which satisfies this equation, T¥, gives the cycle time
corresponding to the economic order quantity. Finally, the economic
order quantity, Q, can be computed using the equation

2 \
Q = KT K;T . (1. 13)

This model can be used for a deteriorating item with a variable
rate of decay if the appropriate changes are made in the basic
differential equation, but this changes the entire analysis.

A dynamic deterministic lot-size model was discussed by Hadley
and Whitin using dynamic programming.8 This approach is characterized

by the following assumptions:

(a) Only a fixed planning horizon or a finite period of time

.

is considered.
(b) The planning horizon is divided into 'n' periods and
orders can be placed only at the beginning of these periods.

Also, there is a procurement lead time associated with each

other.

8G. Hadley and T. M. Whitin, Analysis of Inventory Systems
(Englewood Cliffs, NJ: Prentice-Hall, Inc., 1963), pp. 336-343.
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(c) The inventory carrying cost per unit per period varies

from period to period.

(d) The demand rate is deterministic.

(e) No back orders or lost sales are allowed.

(f) The unit cost of the item is a constant.

The quantities Qj(le;,O, J =1 2, 3, . @& niito jhemondered at
the beginning of each of the n periods is determined by minimizing
the sum of the ordering and carrying costs over the planning horizon.

Veinott has studied a multiperiod single product, non-stationary
inventory situation.9 This is a dynamic programming problem and the
basic structure of the model is similar to the previous model. This
has the following major differences.

(a) The author considers a constant fraction of the inventory

being spoiled during each interval of time. More precisely,

whenever the amount of stock on hand Y;, after ordering in
period i, is greater than the total demand Dy, during the
period, then a fraction (l-a) of the inventory on hand spoils
and is not avéilable for future use.

(b) There are several classes of demand for the product in

each period.

Arthur F. Veinott, Jr., "Optimal Policy in Dynamic Single
Product Non-Stationary Inventory Model With Several Demand Classes,'
Operations Research, March 1965, pp. 761-768.

269655
' s cTATE UNIVERSITY LIBRARYX
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(c) Partial or complete back logging of unfilled demand is

permitted.

(d) The ordering cost is proportional to the amcunt of stock

ordered.

(e) The holding and penalty costs vary over time.

Although both the methods discussed above are very powerful,
these analyses cannot be used for items with variable rate of decay.
This is due to the fact that the cost due to a variable rate of decay
cannot be ipcluded in the variable carrying cost. Note that the
deterioration during a particular period depends on the time at
which the stock arrives, whereas the variable carrying cost is
fixed for a fixed period.

Veinott's model can be used for an item with constant rate of
decay subject to the above mentioned conditions.

The review of the selected articles in the literature show that
deterioration has been studied under the following conditions:

(1) Constant rate of deterioration.

(2) All deca§ occurs at the end of the storage period.

Missing is the more general situation in which the rate of deteriora-
tion varies with time. Such generalized relations would require
replacing the exponential function with one that degenerates to the
exponential under specific conditions, and, if possible, degenerates
to 'all deterioration at the end of the period' under a different set
of specified conditions. Such a relation would be advantageous in

providing a more general framework for those and other special cases.
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CHAPTER 2
DEVELOPMENT OF THE MODEL

Although a number of models have been developed that provide for
deterioration during an inventory cycle, they are all designed for
specific situations. A generalized model is needed that will
include these as special cases of the generalized model. Obviously
a single general model for all possible cases is not possible, if
for no other reason than having to deal with discrete and continuous
functions. However, a broad generality seems possible.

A genéral relation that is widely used in the Reliability area

is the Weibull distribution, with probability density function:

f(x) = B xB-1 e'xB/A 2.1
A
where
A = scale parameter, positive real number.
B = shape parameter, positive real number.
x = random variable, positive real number.

For inventory control work, f(x) will be the probability density

.

function for the time to deterioration. Therefore, the probability

that the item will deteriorate prior to sometime, t, is

’ ~X B
F(t)=/ gtBlet/Adt
(o) A
B
=1 - e X /A, 62:2)
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The instantaneous deterioration rate is

B(x) = B x5 1 (2.3)
A

These are different forms of the Weibull distribution, which can be
applied to a family of decay rate functions which remain stable,
or increase or decrease ''smoothly'" with time, that is, without any
discontinuities or turning points. The constant failure rate, or
exponential density function, is thus included as a special case.
Experiments on certain deteriorating items have shown that their
deterioratibn follows a Weibull distribution.10 Hence the Weibull
distribution can be advantageously used for an analysis of decay
rate functions.

The inventory model using the Weibull distribution has the
following assumptions:

(a) Demand is known and has a constant rate.

(b) No shortages are allowed.

(c) There is no repair or replacement of deteriorated items

during a cycle time.

(d) Holding cost per unit per unit time is a constant.

(e) Ordering cost and set up cost are proportional to the

number of orders and number of setups respectively.

IOJ‘ N. Berrotom, ''Practical Applications of Weibull distri-

bution," Industrial Quality Control, August 1969, pp. 71-79.




(f) Unit cost is constant.

With Decay

Inventory
Level

x
a1
X
-
Y .~

Time

Figure 2.1. Inventory situation for a deteriorating item.

Figure 2.1 shows the inventory-time relation for the model under

consideration. During the cycle time, T, the initial inventory, I,%
depletes completely due to decay and demand usage. To determine the
general relation, the inventory depletion during a time dx must be

expressed. That is, the change in inventory during some small time,

dx, is the result of both depletion due to deterioration and

depletion due to demand usage. This can be expressed as

-dI = I, Rate of decay dx + R dx
or
- B-1 2 4
-dI = Iy B x dx + R dx (2.4a)
A
where
I, = inventory level at any time x such that 0 =x & T

X

Equation 2.4a can be rewritten as

XB-l IX = _R (2.4b)

%
_!-
> |

[a¥
b

17
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and solved using standard procedures giving
B 3 B
ex /AT =[ (-R) et™/A at + ¢ (2.5a)

or

s B
/ (-R) et /A 4t + ¢
= .0

IX

. (2.5b6%

B
e™ /A

When x = 0, Ix = I,, the initial inventory. Substituting this into

Equation 2.5b when x = 0, gives

I,=0+C
1
or
CwTy
Thus X
B
f (-R) et /A dt + 1
I, =0 (2.6)
oXB/A
At some time, T, the inventory reaches zero, that is, when
x =T
. Iy = 0
These values can be substituted into Equation 2.6,
L B
{[ (-R) eX /A ax + L,
0 = 2.7)
B
X /A

and the relation solved for I,. Since the denominator disappears in

the solution process,

T B
I, =/ R eX /A 4x. (2.8

o



s

The portion of the initial inventory stocked to cover the decay
process during the cycle time, T, is
Ip = I, - RT

[T R eX/A dx - RT. (2.9)

Having derived a general equation for the inventories, the total
variable cost for the interval, T, can be found in terms of T. The
total variable cost (Kp) for the period is equal to the sum of the
cost of inventory, the holding cost and the ordering cost. For holding
cost calculations it is assumed that the average inventory is equal
to half the initial inventory. Thus

Kp = C[Io - RT] + Cp %Q T + Cy (2.10)

where

C = item cost per unit quantity.

C; = holding cost per unit quantity per unit time.
C3 = ordering cost per order.
Utilizing Equations 2.8 and 2.9 provides
T Doak a4 B
Kp = c[[ R eX /A dx - RT] czl'rf R e/A dx +Cy. (2.11)
o

The total variable cost per unit time (CT) can be found by dividing

Kt by the storage period T.

CT=H
i
T B 5 B
=Q/ Rex/Adx-CR+_C_1_/ Rex/Adx+Q. (2.12)
T 2 o© T
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To minimize the total variable cost per unit time Equation 2.12 can be

differentiated and set equal to zero.
That is,

d(Cp) = 0.
dT

Carrying out the differentiation gives

B, T B B
C [TReT/A- R el /A dx] + ¢ R eT /A - gy = 0.
T2 o 2 s

(2.13)

The terms within the bracket in Equation 2.13, which shall be desig-

nated as A, can be further simplified.

Remembering that

o
s
n=0

n!

it can be noted that TB/A can replace x, giving

)
eTB/A = ;E rnB ,

n=0 AD n!

The first term becomes

B (0]
TRel /A=Tr > 1%B
n=0 Aii n!

and the second term becomes

b

(o) n=0 A n}

The second term can now be integrated.

. BT
/ " exB/A T ;‘” (nB+1

o n=0 (nB+1) A" n! o

or
(0.°)

=R B+l
n=% (nB+1) A" n!

\/ﬂ R e dx =IR{!\ EE ' dx .

(2.14)

(2.15)

(2.16)

2.17

(2.18)
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Substituting Equation 2.15 and 2.17 into the first term of Equation
2.13 gives

A=RT > 1"
n=0 AR

B [00)
. B st (2.19)
n. n=0 (nB+1) AR n!

Collecting terms gives

oo
A=RS rBtl [1— 1 ] (2.20)
n=0 A" n! (nB+1) :

which can be restated as

Q0
A=r=> "8l nB (2.21)
n=1 A" n! (nB+l)

where the lower limit was changed to n=1 from n=0, as the expression
reduces to zero for n=0.

Substituting Equation 2.21 into Equation 2.13 gives

a
c R B+l nB R G =0
T2 n=1 AT n! (aB+l) 2 T
or
2.2 B
crR> 1Bl 18  +c rReT/A - g =o0. (2.22)
n=1 A n! (nB+l) 2 T

If this relation is correct, when B=1l, Equation 2.22 is the
corresponding equation in Ghare's analysis for exponentially decay-
ing items.

Setting B=1 gives

oo
R > 1! n_+C Re

-Cc3=0. 2
n=1 A% n! (ntl) 2 TQ

Expanding the first quantity and using

eT/A=[1+T/A+T/A22!+. . .1



Equation 2.23 can be written as

cr [1 1 T 2 .. .. C1 R [1 +T+T2 o+ . ]-
Swi o £ + + L1 =
[A 2 Az 21 3 ] 2 s AP
(

2:

b

i o

)
Assuming that A is considerably larger than T (which is the assump-

tion made in Ghare's model) and neglecting terms involving IZ and
A

its higher orders in the first term in Equation 2.24 and E; and its
A

higher orders in the second term, Equation 2.24 reduces to

CR+C R+CIRT - Cy= 0. (2125
284 2 2A T

The corresponding equation in Ghare's model (Equation 1.8) is

CK® + (iC)K + (iC)KOT - éz =0
i

2 2
where
=1
A
2iC = Cl
A = C3
K =R

£N

Therefore Ghare's equation is a special case and the derivation is

correct for at least this point.

Further, when A —¢0 Equation 2.22 reduces to the equation for a

non-deteriorating item. Carrying out this substitution gives

0+CiR-Cy= 0 (21263
2 T

which is the corresponding equation for a non-deteriorating item.

Again, this adds confidence to the derivation.
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Equation 2.22 can be solved numerically for T, to obtain the
cycle time, T¥*, corresponding to the economic order quantity. The
method of solution is explained in the next chapter.

The economic order quantity, I%*, is calculated from T* using

Equations 2.8 and 2.17, that is

% =r > _ p@B) (2.27)
n=0 (nB+l) A™ n!

For the computation of the total cost per unit time to be used

later for the verification of the results, Equation 2.12,

y B/ < B
CT=§['ReXAdx-CR+£lf R eX /A dx + C3 (2. 1)
T 2 %o T (repeated)
can be modified, by collecting and rearranging terms, to
B xB/A :
Cpr =C3- CR + (C + Q1) R e dx. (2.28)
T T 2 o

Substituting Equation 2.17

T fos}
/‘ R /A g 2R 1 (BH)
(o n=0 (nB+1) A" n!

into the Equation 2.28 gives

[e0)
B+1
G =gy - CR+(C+C) R> _ 10 (2. 8%
T T 2 n=0 (nB+l) A" n!
and expanding the last term gives
B+1
Cp=C-CR+ (C+C)R [T+I + 12B+1
T T 2 (B+1) A  (2B+1) A% 2!
+ 3Bt + 00 Ok (2.30)

(3B+1) A7 3!



This equation for total cost can be solved by inserting the
proper values for the variables. Thus, all of the normally desired
quantities of inventory problems can be determined for inventories

which are subject to a Weibull distributed decay.

24
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CHAPTER 3
COMPUTERIZED MODEL

The solution of Equation 2.22 for the desired value of T, the
optimum cycle time, cannot be carried out directly since the variable,
T, cannot be separated from the other variables. The solution,
however, can be found by iterative processes, which effectively try
various values of T until the equation does equal zero.

The corrective method of Newton is one such method, suitable for

computer solution. This method makes use of a recursion formula

_l_fT
" £'(Ty-1) (3.1)

where

Tp = successive values of T, calculated from the preceding values

Tn-l'
£(T,.1) = value of the function, f(T), for T =
The term f£(T,-.1) is called the correction. This method can be used

£'(Tn-1)
for the solution of Equation 2.22 using the computer,.
In geometric Eerms, the procedure involves finding the tangent
to the curve f(T) at the point T,.j and determining its intersection
Tn with the T axis. Figure 3.1 illustrates the method. As can be

seen, the initial value of T, T,, should be sufficiently close to T*.
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Figure 3.1. 1Illustration of Newton's method.

To assure convergence of T, towards T* for all values of T,,

Equation 2.22

o) B

RS> 2Bl gt oo re /A & - (2.22)

n=1 AR n! (nB+l) 2 T (repeated)

can be modified by multiplying both sides by Tz, giving
o0 B
nB+1 24 YL =
R> 17 _nB_ G RT e /A - ¢, = 0. 3.23
anl AT 01 i) (BTl s 2

But if the value of T is not optimum, the value of Equation 3.2

is not zero, but rather F(T), or

00 B
F(T) = CR :;E:THB+1 nB € ClL B 72 eT/A - C3. (3.2a)

n=1 AD n! (nB+1) 2

The derivative of this function, F'(T) is

(o2e] . : B 2! B
B (T) = CR B+ np o C1R[T? eT°/A B iy B el /A 27]

n= AT n! (nB+1) 2 A
(3.3)
which may be simplified to
oQ B
R9(T) = CrR :§§'T“B B ey R T /A (B T8 + 21). (3.4)

n=1 AM(n-1)! 2 A

26

This expression increases steadily with an increase in the value of T.

But, F'(T) is the slope of the function F(T). Hence the slope of the

function F(T) increases steadily with increase in the value of T from
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0O to o, as shown in Figure 3.2. Further, it may be noted from
expression 3.3, that, when T = 0, F'(T) = 0 or the slope of F(T) is

zero at the origin.

>

F(T)/

|
|
l
|

Tqo T* / -
! Ty T

Figure 3.2. Newton's method as applied to the modified function F(T).

These conditions ensure that any positive value of T, will bring
about convergence towards T*, if Newton's method is used for solving
F(T). Note that Equations 2.22 and 3.1 are forms of the same equation
and will provide identical answers for T%.

The value of T, may be chosen as the optimum cycle time for a
non-deteriorating item under the same conditions as the deteriorating

item. This gives a value of T, reasonably close to T*. Thus

To=2C
JClR (3.5)

where
C3, C1, R are as previously defined.

It is intuitively obvious that in this case, T, will be greater than

T*, the optimum cycle time for a deteriorating item.



28

The solution of Equation 3.2 using Newton's method involves the
computation of the values of F(T) and F'(T) for different values of
T. It should be noted that the computation of the first term of the
function F(T), that is

o9
RS> ™
n=1 AD n! (nB+1)

involves summation from n=1 to n = %, This term may be rewritten as

©o
CRTz[ﬁ]n 1 _nB_,
n=1 LA n! (nB+1)
Note that if_l§ =1 then the nth term will be less than or equal to
A

[

s nB ] times the first term. For example, even for a very low
n! (nB+1)
value of B = 0.5 the 7th term will be less than or equal to

5 o ukid
+ 1) 6480

1 7 x 0.
7! (7 x 0.5

times the first term. In a similar manner the 8th term will be less

than 1 times the first term. Hence if EE could be made less than
50,000 A

or equal to 1, then summation over the first seven terms would give
sufficiently accurate values.
As T, = T*, due to the particular shape of the function F(T),

all values of T during the iterative process will be less than T,.

Hence to satisfy the condition

B 1

>|H

it is enough to ensure that

ToB =<1.
A
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B
13

can be made less than or equal to one by suitably choosing the
A .

unit of time.

For computation of F'(T) Equation 3.4

[o.2]
B

F'(T) =CR > _T°Bp 4L CLReT /A (B ARy (3.4)

n=1 Al(n-1)! 2 A (repeated)
could be altered to

- + B B

F'(T)=CR§ p(n-1)B (B 4 +C1R_BTB1eT/A+CR2TeT/A

n=1 ADl" A (n-1)! 2 A %

(3.6)

That is,

] [e5)

B -1 B B

F'(T) =CRB T =715 " 1, cRBTHT/A  gir o1 T /A.

A n=1A =) g X jAp

(3.7)
@® . . B
Realizing that <éi T L 1 = eT /A
n=1 A (n-1)!
the equation may be written as
B B B

F'(T) = CR B T eT /A+CRBTB+1 eT°/A R 21 T /A (3.8)

= L + ==

A 2 A 2
collecting terms

B
F'(r) =R eT /A [cB TP g B TP Tl (3.9)

A 2 A +

Before we can proceed towards the construction of a computer

program it should be noted that the expression for economic order

quantity

[« 2]
I* = R ::E T,.=nB+1
n=0 (nB+1) A" n!

also involves sumnation from zero to infinity.
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This equation can be further simplified to
0

I* = RIx > b 1
n=0 A (nB+1) n!

and by an argument similar to that used earlier, it can be shown
that summation over the first seven terms, that is, from n=0 to n=6,
will give sufficiently accurate values for I%.

Having analysed the applicability of Newton's method to the
solution of Equation 3.1, and the computational aspects of the
various quantities, we are now in a position to develop the computer
program. The flow chart of the program for the solution of -Equation
3.2 and computation of the economic order quantity is shown in

Figure 3.3.
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Figure 3.3.

Starg

Read Input Data A

Compute To B

~

w.

Compute C
Correction, F(T)/F'(T)

Modify D
Cycle Time

Correction Yes

Sufficiently

No

Small

Compute I*

I;rint T*,1I%,Ip

Stop

Flow chart for the solution of Equation 3.1.
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In the flow diagram block A reads the input data, A,B,C,CI,C3,
and R and block B computes the initial value of the cycle time, T8

using Equation 3.5. The correction [F(T) ] is computed in block C
g H)

using Equations 3.2a and 3.4 for F(T) and F'(T) respectively.
The cycle time is modified in block D using the relationship

T. =T - correction

n n-1
Block E checks whether the correction as a fraction of the modified
cycle time is less than a sufficiently small number. This number is
chosen in our problem as 0.001 which gives a reasonably good
accuracy for the optimum value of the cycle time. If the fraction is
greater than this number a new value of the correction is calculated,
in block C, using the modified value of the cycle time. This process
is repeated, until the correction is sufficiently small. The final
value of the cycle time is the oétimum cycle time T*. If the
correction is small enough the value of economic order quantity, I %,
is calculated, in block F, using Equation 2.27. The total decay
during the cycle t%me, Io, is computed using Equation 2.9 and 2.17.
Block G prints the values of A,B,C,C1,C3,R,T*,I* and ID.
The computer program is given in Appendix A.
It may be pointed out that special care is needed in the appli-
cation of the Weibull distribution to items with a decreasing rate of
B-1

decay. Under these conditions the function B t
A

exactly a practical decay rate function as this theoretical function

will not represent

becomes infinite as T-»0, while practical problems do not.



Figure 3.4 shows hypothetical, actual and theoretical decay rate
functions. However, for large values of B8, the difference between
the theoretical and actual decay rate functions will be very small.
Also, decreasing decay rate functions with small values of B are not
of much practical importance. Hence the model developed as well as
the computor program can be used in most of the practical decreasing

decay rate situations with reasonably good accuracy.

l
\

\f/,/fTheoretical Decay Rate Function

Actual Decay Rate Function

Decay Rate

Time

.

~Figure 3.4. Theoretical and actual decreasing decay rate functions.
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CHAPTER 4
NUMERICAL EXAMPLE
The inventory model developed in the second chapter and
programmed for the digital computer in the third chapter should be
demonstrated in a numerical example. A hypothetical product subject
to decay will be selected and, after it has been demonstrated that
the decay follows the Weibull distribution, the computer program will
be used to compute the optimum cycle time and the economic order
quantity. The optimality of the solution will be confirmed by finding
the total coét for the optimum cycle time as well as a shorter and

longer time.

Consider then, an item that has a cumulative frequency distri-

bution as shown in Table 4.1.

Table 4.1
Cumulative Frequency Function
Number Of Days Cumulative
To Decay Percent Decay
2 0.47
5 1.9
10 5.0
15 9.5
20 14.0
25 19.0
30 24.0
35 30.0
40 35.0
45 40.0
50 45.0
55 49.0
60 54.0
65 58.0




o,

In addition, let

C = $4.00 per unit.

C, = $0.001 per item day.

C3 $20.00 per order.
R = 10 units per day.

The problem is of concern only if the distribution of the

deterioration follows the Weibull distribution. A widely accepted

method of confirming that the distribution is of the Weibull type

that simultaneously gives the values for the parameters A and B,

makes use of a special graph paper called Weibull Probability Paper

(WPP). The method is derived and demonstrated in Appendix B using

the data from Table 4.1. The values for A and B that are obtained

are:

A = 600

B 1.5

Utilizing these values and the normal inventory information listed

above as input, a computer output is obtained as shown in Figure 4.1.

Of prime impoftance is the optimum cycle time of 11.64 days,

the economic order quantity of 119.55 units and the total number

of units that could be expected to decay, 3.15 units.
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600.CO
2C.CO

CYCLE TINME |

63.2455
44.5235
29.5933
20.0126
14.2809
12.0187
11.6499

CPTIMUM CYCLE TIML

ECONCMIC ORLER QUANTITY

TOTAL CECAY BDURING CYCLE TIME

‘Figure 4.1.

Computer output.. .

nou

1.5CC0 C
10.CCCC

CORRECTION

18.72205
14.53C23
9. 98C64%
5.73168
2.26224
0.36874
0.00939

0.11641E 02
C.11955E €3

0.31468E 01

4.00C0

Cl

0.001C00

9¢
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The optimality of the cycle time obtained will be checked by
comparing the total cost per unit time corresponding to the optimum
cycle time with costs corresponding to cycles that are longer and
shorter. The total cost per unit time corresponding to the optimum
cycle time is obtained by substituting T = 11.64 and the values of

the constants in Equation 3.2.

B+1 2B+1
€57= €3 _ CR 4 (C 4 G R [T 4.1 +T( )
T T 2 (B+1)A  (2B+1) A2 2!

+ p(3B+D) i 5 . ek (3.2)
-(3B+1) A 3! (repeated)

Substituting the numerical values gives

C = 20 -4x10+[ 4 0.001] 10 [11.64 , 11.642°>
11.664 = _20__ i + 11647~
11.64 11.64 2 WA
TN 11,6417 o 0l

4 % 6002 x 2 ' 5.5 x 6003 x 6
or a solution of
C11.64 = $2.86 per day.
Similarly, the value of Cp for T = 13, a slightly larger value, gives
Ci13 = $2.87 per day.
Finally, for a smaller value, T = 10, Cr is
Cip = $2.91 per day.

A comparison of these values indicates that the minimum cost is

between T = 10 and T = 13. This is in agreement with the concept of

optimality.
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CHAPTER 5
CONCLUSIONS

A theoretical model has been developed for the determination of
the economic order quantity for items which have Weibull decay rate
function. The assumptions of constant and known rate of demand,
no shortages and instantaneous supply or production are made. It has
been demonstrated that under the special condition of exponential
decay, this model reduces to a special model developed by Ghare and
Schrader for exponential decay and under the condition of no decay,
the model beéomes the standard E.0.Q. model. A computer program was
developed to provide the numerical solution to the model. A
numerical example was used to show the solution form and to verify
that the solution gives minimum total cost per unit time. Therefore,
this model will provide optimal lot-sizes for deteriorating items

over a wide range of practical situations.

The following recommendations for further development may be made:

1. A model may be developed using the 3-parameter Weibull dis-

B
N t-r A
tribution : F(t) =1 - e( )7/

where r = location parameter, any real number, such that t =r.

2. The Simple Weibull model should be modified to accommodate

deteriorating items for which the values of A and B change

during the desired cycle time.
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3. More sophisticated models should be developed for the study
and solution of inventory systems in which decaying items with
Weibull distributions also have non-instantaneous supply or
production, finite shortage cost, probabilistic demand or

combinations of these attributes.
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APPENDIX A

HCUST - C1 SCUST - C3 COST - C CORKR — CORRECTION
FT - THE FUNCTION F(T)

OFT - DERIVATIVE QF F(T),FUNCTION (3.4)

PECAY - TOTAL DCCAY OURING THE CYCLE PERIOD

LET - THE FIRST TERM IN EQUATION (3.2)

HOLD - THE SZCOND TERM IN EWQUATION (3.2)

SETUP - —C3

REAU(11,20)asB,COST4HCOST, SCOSTHR
FORMAT(F10e292F1lUebyFLlI.642F10.%)

[=0

T=SGRT(2.0%SCUST/ (HCOST*R))

wWRITE(1294)A,B9CCSTHyHCOST

FOGRMAT(1HL, TH A =9F10.2,3Xy0H B =9Fl0.%93Xy3HC =9Fl0.%4,y3Xy4HC
21 =,F10.6)

WRIISE(125,5)SCOST4R

FORMAT(LH +7H C3 =,F10.293Xy6H R =,F10.4)
WRITE(12,14)

FORMAT(/11X9 1OHCYCLE TIME, 10Xs 1OHCORKECT [ION)
OET=0.

UO 45 N=1'7

CALL MFACT(N,NFAC)
O=(T#+B/A)*%|xT*N*B/ ( (N&B+1.)&NFAC)
OET=DET+D

CONTINUE

DET=COST#R&VET
HOLD=HCOST =R+ T#222EXP(T*2B/A)/ 2.
SETUP=-5COST

FT=UET+HGLD4 SETUP

UFT=R&EXP (1%%53/A)%(COST*BXT#33/A+HCOST*B*T#3(B+1.)/(2.%A)+HCOST*T)
CORR=FT/UFT

WwRITE(12,15)T,CORR

FORMAT(LH 910XsF10.4,10X,F10.5)

FORMAT(1H »10XyFl0.4,10X,F10.5)

T=T-FT/DFT

1=1+1

IF(1-10)41,9,9

IF(ABS(CORR/T)=0.001)65,40,40

QTY=0.

DO 75 M=1,7"

N=M-1

CALL NFACT(N,NFAC)

Q=T#*(N23+1.G)/( (N¥B+1.) *A**N*NFAC)

QTY=QTY+Q

QTY=R&QTY

UECAY=QTY-R*T

WRITE(12,6)T

FURMAT(/1HO,31HOPTIMUM CYCLE TIME =+E15.5)
WRITE(12,7)QTY

FORﬂAT(iQO.SLHECUNOMlC ORDER QUANTITY =vEl5.5)
ARITE(le y8)UECAY

FUR&&I(lAO.}lHTUTAL DECAY DURING CYCLE TIME =53E15.5)

GO TO 1

sTae

END
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APPENDIX Bl
The Weibull cumulative frequency function is given by
F(t) = 1 - e t/A
For the case of deteriorating items, this represents the probability
that the item will deteriorate prior to the time, t. This can be

rewritten:
B
1 = et /A
1 - F(t) (B-1)

A double logarithmic transformation will eliminate all powers of

numbers. Equation B-1 is expressed as

ln il 1 ] =-1nA+Blnt (B-2)
1 - F(t)
and provides a relation between the variables 1n 1n[ il ] and
1 - F(t)

ln t. Therefore Equation B-2 represents a straight line with
intercept - 1n A and slope B.

The verification of whether an item has a decay rate function of
the Weibull type reduces to the determination of whether the variables

In 1n( 1 ] and 1n t have a straight line relationship. This
1 - F(t) '

can be accomplished by plotting the values F(t) and t on the Weibull
Probability Paper. If the points fall reasonably close to a
straight line, it can be assumed that the deterioration adequately

follows Weibull distribution. Figure B-1 illustrates the method and

11Berrotoni, op. cit., pp. 77-79.



i Hllﬂhuﬂl‘lﬂl

PRINCI?__ AL ABSCIS

Ligee

b

P
R 3
e
N
: c |
Fix) 5 3
o =
e A r
o, § ; L_ ; 3 - t
b @]
L 40
R
© 10 3
i | 3
E_ ~—50
N 51' 1 :I.., = it i-:
. o3 5F31 FEEHEES S 3SR LR 1
a = 1 [+-60
m ettt L. FERRS IS WS PES B0l wen P B8 5 o 1.‘_:. A I PG RIS 0900 0a 1 PEGSSes e 20 D 04 2
0. [ 03 04 0506 a3 w 20 30 40 0 € 0 Ko 700 300 430 300 600 608 K10
: Figure B.1. Method of finding A and B using the ‘ X) P

Weibull Probability Paper.

(A4



43

and paper. The data used is that in Table 4.1, Note that the WPP

has the [ 1n 1n ( 1 )] scale and 1n(t) scale in addition
1 - F(t)

to the F(t) and t scales. The value of - 1n A is given by the
intercept C. Thus
-1lnA=-6.4

A=C

]
IO\
(@]
(@]

The slope of the line, B, can be computed using the scales on the
principal abscissa and principal ordinate. Thus

B =

B>|D>
w0

I
(o))

-4

.2

= 145

In this case, the points lie directly on the Weibull line. If
there were random variations, a least squares model might be used to
find the best fit line. Thus, the graphical technique, explained in

this appendix, with the help of the WPP provides a simple method for

the determination of the Weibull parameters.



44

BIBLIOGRAPHY

Ackoff, Russell L, and Maurice W. Sasiem. Fundamentals of Operations
Research. New York: John Wiley & Sons, Inc., 1968.

Arrow, Kenneth J., Samuel Karlin, and Herbert Scarf. Studies in the
Mathematical Theory of Inventory and Production. Stanford,
California: Standord University Press, 1958.

Berrotoni, J.N. "Practical Applications of Weibull Distribution,"
Industrial Quality Control, August, 1969, 71-79.

Emmons, Hamilton. '"A Replenishment Model for Radioactive Nuclide
Generators,'" Management Science, January, 1968, 263-274.

Ghare, P.M., and G.F. Schrader. "A Model for Exponentially Decaying
Inventory,'" Journal of Industrial Engineering, Vol. XIV (1963),
238-243.

Goel, Om Prakash. '"Studies and Application of the Theory of Inventory
and Production,' Unpublished M.S. Thesis, South Dakota State
University, 1966.

Hadley, G., and T.M. Whitin. Analysis of Inventory Systems.
Englewood Cliffs, NJ: Prentice-Hall Inc., 1963.

Kaplan, Wilfred. Advanced Calculus. Reading, Mass: Addison-
Wesley Publishing Co. Inc., 1952.

Miller, Irwin, and John E. Freund. Probability and Statistics for
Engineers. Englewood Cliffs, NJ: Prentice-Hall Inc., 1965.

Shooman, Martin L. Probabilistic Reliability: An Engineering
Approach. New York: McGraw-Hill Book Company, 1968.

Starr, Martin K., and David W. Miller. Inventory Control: Theory
and Practice. Englewood Cliffs, NJ: Prentice-Hall Inc., 1962.

Weibull, Walodi. "A Statistical Distribution Function of Wide
Applicability," Journal of Applied Mechanics, Vol. 18, 1951.

Whitin, Thomas M. Theory of Inventory Management. Princeton, NJ:
Princeton University Press, 1957.




	Inventory Control of Deteriorating Items
	Recommended Citation

	Philip-George_1972-0001
	Philip-George_1972-0002
	Philip-George_1972-0003
	Philip-George_1972-0004
	Philip-George_1972-0005
	Philip-George_1972-0006
	Philip-George_1972-0007
	Philip-George_1972-0008
	Philip-George_1972-0009
	Philip-George_1972-0010
	Philip-George_1972-0011
	Philip-George_1972-0012
	Philip-George_1972-0013
	Philip-George_1972-0014
	Philip-George_1972-0015
	Philip-George_1972-0016
	Philip-George_1972-0017
	Philip-George_1972-0018
	Philip-George_1972-0019
	Philip-George_1972-0020
	Philip-George_1972-0021
	Philip-George_1972-0022
	Philip-George_1972-0023
	Philip-George_1972-0024
	Philip-George_1972-0025
	Philip-George_1972-0026
	Philip-George_1972-0027
	Philip-George_1972-0028
	Philip-George_1972-0029
	Philip-George_1972-0030
	Philip-George_1972-0031
	Philip-George_1972-0032
	Philip-George_1972-0033
	Philip-George_1972-0034
	Philip-George_1972-0035
	Philip-George_1972-0036
	Philip-George_1972-0037
	Philip-George_1972-0038
	Philip-George_1972-0039
	Philip-George_1972-0040
	Philip-George_1972-0041
	Philip-George_1972-0042
	Philip-George_1972-0043
	Philip-George_1972-0044
	Philip-George_1972-0045
	Philip-George_1972-0046
	Philip-George_1972-0047
	Philip-George_1972-0048

