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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

The probl em of the control and maintenance of inventories of 

physical goods is common to most enterprises. In the past, inven-

tories were considered as the 'grave yard' of American business, 

because surplus stock was a principal cause for business failures. 1 

When companies are small and the competition is lax, � reasonabl y· 

good inventory policy can be established through an intuitive under-

standing of the needs of the business. However, in large scale enter-

prises the inventory system may become too l arge and compl ex to be 

anal ysed intuitively and any deviation from the optimum inventory 

policy would mean substantial losses. As a result of the current 

small profit margins, proper inventory control has become even more 

important. 

The basic concept in inventory control consists of striking a 

balance between the cost factors which increase as inventories 

increase and those which decrease as inventories increase. Among 

the costs which increase are: 

1. Interest: (cost of money) Some companies use the interest 

paid fo� the capital and others use the return that could have 

been obtained by investing the capital elsewhere. In either 

case, the cost of the goods in inventory must be considered. 

lThomas M. Whitin, The Theory of Inventory Management (2d ed. ; 
Princeton, New Jersey: Princeton University Press, 1957), p. 4. 
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2. Deteriorat�on costs. Deterioration costs are the l osses in 

value due to actual deterioration, obsolescence or damage of the 

inventory item. 

3. Insurance and taxes. Since most inventories are insured, 

this cost should be taken into account. Taxes are mainly 

property taxes . 

4. Storage costs. Storage costs incl ude rent, or its equiva­

lent ownership cos ts, and heat, light and other utility costs.  

It is the usual practice to combine-all of these costs into a s ingle 

item called the holding cost or inventory carrying cost� express ed 

as a percentage of the factory or purchase cost of the items being 

stored. 

The decreasing costs are: 

1. Ordering cost. The ordering cost is the internal cost 

incurred in placing and processing a purchase order and is us ually 

ass umed to be a constant for each order placed. It would include 

cost of forms, cost of preparation and, frequentl y, receiving 

inspection. 

2. Set up costs. The set up costs are the costs incurred in 

preparing a machine for the production of an item. It is 

appl icable to items produced internally. This cost is a con-

stant for each set up. 

3. Shortage cost. The shortage cost is the cost incurred due 

to the non-avail ability of an item in stock. This cost would 

include the additional cost involved in taking emergency 



measures to meet the demand in time as well as the loss of 

customers' good will and positive loss of profit if the demand 

is not met in time. If a company keeps a spare parts inventory 

for its own use, the shortage may result in direct losses if a 

machine becomes inoperative due to the non-availability of 

spare parts in stock. 

The shortage cost may depend upon the amount of the. shortage, 

the duration of the shortage and/or the number of shortages per 

unit time.2 

The earliest theoretical work in the field of inventory control 

was the derivation of a formula for the economic order quantity. The 

economic order quantity is a minimum cost relation that takes into 

account both the ordering and set up costs and the holding costs. 

Other authors call this the Economic Lot Size. 

Before going into a discussion of the different models, it may 

be specified that the following assumptions are used for all the 

models unless otherwise mentioned. 

(a) Lead time is known and adequate so that goods can be 

ordered to arrive when they are needed. 

(b) Supply (production) is instantaneous. 

2Russell L. Ackoff and Maurice W. Sasieni, Fundamentals of 
Operations Research (New York: John Wiley & Sons, Inc., 1 968), 
p. 172. 
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In 1915 ,  Harris derived his 'Simple Economic Lot-Size Formula. ,3 His 

model has the following assumptions: 

{a) Demand is continuous and is at a constant rate. 

(b) No shortages are permitted, that is, the shortage cost is 

infinite. 

Harris' formula is 

Q = K J�s (1. 1 )  

where 

Q = economic order quantity. 

K = a constant which takes into account the interest and other 

costs such as storage cost, insurance and taxes on a daily 

basis. 

P = ordering cost per order. 

S = rate of daily usage. 

C = unit cost. 

About ten years later, several other investigators developed 

essentially the same formula for economic order quantity. 4 These 

took the form 

Q 
{2Ys -JIC (1.2) 

3F. E. Raymond, Quantity and Economy in Manufacture (New York: 
McGraw Hill Book Co. , 1931), pp. 121 -122, cited by Om Prakash Goel, 
"Studies and Application of the Theory of Inventory and Production" 
(unpublished M. S. Thesis, South Dakota State University, 1966), 
pp. 5 -6. 

4wh· · 32 i.t1n, p. • 
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where 

Q e conomic orde r quantity .  

Y = yea r ly sales in numbe r o f  units . 

S = ord ering cos t per order . 

I = holding c o s t /unit  time / dollar . 

C unit c os t . 

This ' Simp le  Economic Ord e r  Quantity Formula' c ontinue s t o  be u s e d. in 

the s ame form. An implicit as s umption is  that the re is no de t e riora-

tion during the s t orage period. Thi� simp lific a tion , while true in  

many situations , is not unive r s al in  nature. Be cau s e  a lmos t a ll items 

degrade during s torage , deterioration wi l l  be de fine d as decay , 

damage and s poilage such tha t the item cannot be u s e d  for i ts original 

purpose and mus t  be d e s troyed or abandoned .  The terms d e t e riora tion 

and decay wi ll be u s ed inter changeably .  I f  the i tem can be re paired 

or res t ored and the r a te of decay is  c ons tan t ,  the c os t of s uch repair 

or res t ora tion c an be included in the holding cos ts.  Frequently thi s 

is not the cas e  and i t  will be unrea lis tic to  use  this  mod e l  in those· 
' 

cas e s . The e f fe c t  of  deterioration on inventory level is s imilar to 

that of an additional demand over  the ac tual demand a s  s h own in 

Figure 1 . 1.  �ut this  e f fe c t  of the de terioration is  not take n into 

account in the previous ana lysis . 

5 



A number o f  spec ia l ize d inventory s i tu�tions in which d e t e r i ora­

t i on take s plac e  have been repor ted in the li tera ture. 

Decay 

Time 

F igure 1. 1 .  A s imple inventory model . 

The i nve ntory con t r o l  of  s tyle goods was s tud ied by Whi tin . 5 

Hid model ha s the following as s umptions : 

(a) An order c an be rece ived only a t  the be g i nning of the 

s i ngle  pe riod under  consideration . 

(b) Demand i s  probabilis t i c  in na tu re� 

(c) The inve nt ory a t  the e nd o f  the pe r iod  is liquida ted a t  a . 

los s . 

(d) Th e-shor tage cos t is  proport ional to the quan t i ty of goods 

that ar:e shor t . 

The cond i tio n fo r maximum profi t i s  re ached whe n  the expe c te d  pro fi t  

obtai nab le throu gh s tocking a n  addi tiona l unit i s  equal t o  the 

expe c ted los s e s  from s tocking tha t unit, 

i . e . ,  p P + p 0 = (1-p)L 

5Whi ti n, pp . 62-72. 
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whe re 

p = probabi li ty of s e lling an additivnal unit during the period 

p = profit per  unit 

L = los s  pe r u ni t  not  s old during the pe riod 

0 = cos t of omission, that is , shor tage cos t pe r u ni t  

This mod e l  can be  app lied als o  t o  items which comp l e tely de t e riora t e  

a t  the end of the period . This is a s tochas tic  model a nd migh t not 

be appropria te for c on tinuous demand (i . e .  high volume) item s . 

The optimum "inve nt ory" policy_for a radio-ac tive Nu clide 

Genera tor �a s  s tudied by Ennnons . 6 The Nu c lide Gene ra to r  u s e s  a 

radio-ac tive e l emen t of long half- life which dec ays· expone ntia lly 

over time . Me thods are propos ed for finding the optimum reple ni shment 

quan tity for such expone ntia l ly decaying subs tance s  a s  shown in 

Figure 1 . 2 . 

Time 

Figure 1 . 2 .  I nve ntory mode l for Nuclide Genera tor s .  

6Hami l ton Emmons , "A Rep lenishment Mode l for Radi oa c tive 
Nuc lide Gene ra tors , "  Managemen t Science , January , 1968 , pp. 263-274. 

7 



Specifically , a time in te rva l T is c onside red during which t he radio -

a c tivity of the material  de crea s e s  from the initia l level, S, to  the 

final l eve l ,  s1 . The fo llowing a s s umptions are made: 

{a) Replenishme nt is made whe n the inve nt ory level re a ches 

the re orde r point, s1. 

{b) The re sidual s t ock a t  the time of  replenishme nt is  d i s-

carded. 

The replenishme nt cos t and car rying cos t are take n into  c onsideration 

for the analysis . The replenishment-c o s t  [ C(S) ] is  the s um o f  the 

fixed orde ring c os t, and the pur6has e  cos t which depends· on the s ize 

of  the replenishme nt . Note tha t in this model the pur chase cos t per 

uni t  time i s  a variable cos t, as this  is the c os t  o f  de teriora tion 

which depends on the inve ntory leve l .  The c arrying cos t (C1) per 

unit quan ti ty per unit time is a fixed fraction (f) o f  the r ep l e n-

ishme nt cos t o f  a uni t  quantity . 

where 

The cons tant rate o f  decay e s tab lishes the re la tionship 

P = rate of  d ecay per time pe riod . 

T = cycl� time. 

S order quan tity . 

There f ore 

(1 . 3) 

(1 . 4) 

.8 



I n  practic e ,  f is ve ry sma l l when compared with P and the carrying 

c ost can be  neg l ected in the ca lculation of the t ota l variab le cost. 

The tota l cost pe r unit time [K(S)] is equal  to the r ep lenis hment 

c ost per u nit time [Cz {S) ] ,  or 

K {S) = C2 {S) 

= Q{fil_ 
T 

= P C(S) 
1n {S/81) {1. 5) 

Assuming that the c ost function is c-0ntinuous and differentiab le ,  to 

minimize the cost pe r unit time , we s et the derivative of Equati on 

1. 5 equa l to ze r o. 

c' {S) ln(S/ S1) _ Q{fil_ = O s 

s = 81 eC(S)/ SC ' (s). (1. 6) 

The minimum va lue of S which satisfies this equation can b e  found out 

by any of a number  of nume rica l  methods. 

Ghare and Schrader d es c ribe a mode l for an item with a c onstant 

rate of deterioration . 7 The fo l l owing assumptions a re mad e : 
' 

(a) Demand is a known , regu lar and inte grab le  funct ion of t ime , 

D(x) · 

{b) No ·s hortages a re a l l owed .  

{c) There is no repair or rep lac ement of deteriorated inventory 

during a cyc le time. 

7p. M. Ghare and G. F .  Schrader, "A mode l for exponent i a l ly 
dec aying inve ntory , "  Journa l of Industria l Engine e ring ,  Vo l.  XIV 
(1963) , pp.1238 -243. 

9 



(d) Demand and decay are s imultane ou s and continuou s. 

x (x+dx) � T 
Time 

Figure 1. 3. Inventory s i tuation for Ghare's model. 

Figure 1.3 indicates  the gene ralized i nventory situation as  

10 

de scr ibed by the assumptions. A time inte rval T is conside re d du ring 

which the ini tia l inven tory , I0 , diminishes t o  IT . 

The c ons tan t rate of decay of an invent ory i tem may be repre-

sented ma thematical ly by the diffe rential equation 

where 

_ - edt  I(� + dx) -
Ix e 

Ix = inventory level a t  the end o f  time x. 
I(x + d�) =inventory level at the end of time (x + dx) . _ 

(1 . 7) 

e = a frac tion representing the rate of decay per time pe riod . 

A smal l interval dx after  time x i s  considered. Du ring the inte rval 

dx , the l os s  due to decay is 

dL =Ix - Ix e-edx. 



The tot a l  inventory de p l e tion during dx is 

-dI = Ix - Ix e -Sdx + D(x) dx 

Imposing the boundary condi tions on the general  so lu tion of this 

differential  equa tion and integrating gives 

IT = Io e -9T - e -9T IT 
D(x) e9x dx • 

0 

The de p le tion due to dec ay a lone is 

IT
* 

- IT = IT(e8T - 1 )  - �T 
D(x) dx + IT 

D(x) e�x dx 
0 0 

where 

(1 .8) 

(1. 9) 

-;'( 
IT = inventory leve l a t  the end of time T, if de p le tion we re 

due to demand us age a lone . 

The exponentia l d ecay mode l  was fur ther simp lified for cons tant 

demand, tha t  is, D(x) = K, and for IT = 0 .  Assuming tha t 1 is 
0 

considerab ly larger than T, Equa tion 1. 9 can be simp lified to 

(1 . 10)  

The e conomic order qua nti ty a lso was de termine d by Ghare a nd 
. 

S chrade r . The to ta l cos t per unit time is equa l to the s um of the 

purchas e cos t, orde ring cos t and hol ding cos t, per uni t  time . 

ct = _g [ KT + K�n21 + !:. + iC [KT + K9T21 
T 2 T T 2 

(1. 1 1) 

whe re 

Ct = tota l cos t/unit time . 

C = unit cos t .  

1 1  



i = a frac t i on such that i C  i s  the ho lding c os t  per u ni t  of 

ini t ia l  inve ntory. 

In  orde r t o  minimize the tota l cos t pe r u nit t ime Equa tion 1.11 i s  

differentiated and s e t  equa l t o  ze ro! 

d (C t) = K8C 
d t  2 

A + KiC + KiC8T 
T2" 

o. ( 1 . 12) 

12 . 

The value of  T which s a t i s f ie s  this equat ion , T* , give s the cyc l e  t ime 

c orres pond i ng to the e c onomic order quant i ty. Fina l ly, the economic 

order quant i ty ,  Q, can  b e  c ompu ted using the equa tion 

Q = KT + K8T2• 
2 

(1.13) 

This mod e l  can be  u s e d  for a de teriora ting i tem with a variab le  

rate  of  decay i f  the appropria te changes are made in the  basic 

differen t ia l equation , bu t th is cha nges  the entire ana lysis. 

A dynam i c  determinis tic lot- size mod e l  was di s cu s s ed by Had ley 

and Whi tin u s ing dynamic programmi ng. 8 This a pproach i s  cha rac terized 

by the fo l l owing as s ump tions : 

(a) On ly a f ixed p la nil ing horizon or a finite pe ri od o f  time 

is con s idered . 

(b) The p la nn ing horizon is  divided in to ' n' periods and 

orde rs can be p laced on ly a t  the beginning of  the s e  periods. 

A l s o, there is a procurement  lead time as s oc ia te d  w i th e ach 

o ther. 

8G .  Had l ey and T. M. Wh i t i n ,  Analys is of  I nven t ory Sys tems 
( Eng lewood Cl if fs , NJ: Prentic e-Hal l ,  Inc. , 1963) , pp . 3 36- 34 3. 



(c) The i nve n tory carry i ng c os t  per uni t  per p er i od var i es 

fr om pe r i od to per i od . 

(d) The demand rate is determinis t i c . 

{e) No back orders or l os t  sa les are a l l owe d .  

(f) The u n i t  c os t  of the i tem i s  a c ons tan t . 

The quant i t i es Qj (Qj � 0 ,  J = 1 ,  2 ,  3, . . . • n) t o  be ordered a t  

the beginning of each of the n pe r i ods i s  de termined b y  m i n imiz i ng· 

the sum of the orde r i ng and carrying c os ts over the p l an n i ng hor izon . 

Ve inott  has s tudied a mu l t i per iod s i ng le produ c t, non-s t a t i o nary 

. t 't  . 9 1nven ory s1 uat1on . This is a dynamic progrannni ng prob l em and the 

bas i c s t ruc ture of the mode l is s imi lar to the pr evi ous mod.e l .  This 

has the fol l owing major d i f ferences . 

(a) The author c ons iders a cons t an t  frac t ion of the i nven tory 

be i ng s poi l e d  du r i ng each i nterva l of t ime . Mor e pre c ise ly, 

whe never the amoun t  of s t ock on hand Yi , af ter order i ng in 

pe r i od i ,  is gre a te r  than the t o ta l  demand Dim duri ng the 

pe riod , then a frac t ion (1- a) of the i nve ntory on hand s po i ls 
. 

a nd is n ot avai lab l e  for fu ture use . 

(b) There are s eve r a l  c lass es of demand for the produ c t  i n  

e ach pe r:Lod . 

9Ar thur F .  Ve i not t ,  Jr. , "Optimal Pol icy in Dynami c Singl e  
Produc t  Non-Stat ionary Inve ntory Mode l W i th Severa l Demand C l asses, " 
Operat i ons Res earch ,  March 1965, pp . 761- 768. 

269655 
C'.'"' 'T _J � (\ v.'\T A �TATE uN·iVERSITY UBRAR'{ 
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(c) Partia l or comp l e t e  back logging of unfi l l ed demand is 

permi t ted . 

(d) The ordering cost is proportiona l to the amcunt ·o f  stock 

ordered . 

(e) The holding and pena lty costs vary over time . 

A l though bo th the me thods discuss e d  above are very powerful, 

thes e ana lyses cannot be u s e d  for items with variab l e  �ate o f  decay . 

This is du e to the fact tha t the cos t due to a variab le rate o f  decay 

canno t be inc luded in the variable  carrying cos t .  Note that the 

de terioration during a par ticu lar period depends on the time at 

which the s tock arrives, whereas the variab le c arrying cost is 

fixed for a fixe d period. 

Veinott's mod e l  c an be used for an item with constant rate of 

decay subje ct to the above mentioned conditions. 

·The review of the s e lected ar tic les in the litera ture show that 

deteriora tion has been studie d under the fo l lowing condi tions: 

(1) Cons tant ra te  of de t erioration . 

(2) A ll decay oc curs a t  the end of the storage period . 

Mis sing is the more genera l si tuation in which the rate o f  deteriora­

tion varies with time . Such genera lized re lations would require 

replacing the exponential func tion with one tha t degenerates to the 

exponentia l under specific conditions, and , if possible, degenerates 

to 'al l deterioration at the end of the period' under a di f ferent set 

of specified conditions . Such a re lation wou ld be advantageous in 

providing a more g eneral framework for those and other specia l cases.  
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CHAPTER 2 

DEVELOPMENT OF THE MODEL 

Al though a numbe r of  mode l s  have been deve lope d  tha t provide for 

de teriora tion during an inve ntory cyc l e , they are a l l  de signed for 

s pecific situations. A genera lized mode l is  neede d  tha t will 

include thes e as  s pe cia l c as e s  o f  the genera lized mode l. Obviou sly 

a single gene ra l  model for a l l  pos sib l e  cases  is  not  pos s ible , if  

for  no o the r reas on than having to dea l with discrete  a nd c o n tinuous 

func tions. Howeve r, a broad gene ra l i ty se ems pos sib l e . 

A gene ra l re la tion tha t is  wide ly used  in the Relia�ili ty area 

is the Weibu l l  dis t ribu tion , with probabili ty density func tion : 

whe re 

f {x) = B xB-1 e -xB/A 
A 

A s ca le parame t e r ,  posi tive real number .. 

B = s hape parame t e r ,  posi tive real numbe r .  

x = random variab le, posi tive rea l number . 

(2.1 )  

For inve n t ory control  work , f (x) wi l l  b e  the probabili ty density 

fu nc tion for the time to de terioration. There fore, the probability 

that the item wi ll de teriorate prior t o  s ome time, t,  i s  

�x B i B-1 - t  /A F(t) = ] t e dt 
o A 

- xB/A = 1 - e • (2. 2) 



The instantaneou s  deterioration rate is 

�(x) = ! XB-1 

A 
(2. 3) 

The se  are different forms of  the Weibull distribution, which can be 

applied to a fami ly of decay rate functions which remain stable, 

or incre as e or decreas e  "smoothly" with time, that i s, without any 

discontinuitie s or turning points . The c onstant failure rate, or 

exponentia l density function , is thus included as a s pe cial cas e. 

Experiments on certain deteriorating_items have shown that their 

deteriorati�n follows a Weibu l l  distribution.
10 

Hence the Weibull 

distribution can be  advantage ou sly used for an analysis of decay 

ra.te functions. 

The inve ntory model using the Weibull distribution has the 

foll owing assumptions : 

(a) Demand is known a nd has a c onstant rate. 

(b) No shortages are allowed . 

(c) There is no repair or rep lacement of  deteriorated items 

during a cycle time. 

(d) Ho ldi.ng cost per unit per unit time is a constant. 

(e) Ordering c ost and s et up cost are proportional to  the 

number of orders a nd numb er of s etups re s pe ctively. 

lOJ. N. Berrotom , " Practica l App lications of Weibull distri­
bution , " Industrial Quality Control , August 1969 ,  PP· 71-79 . 
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(f) Unit  cos t i s  cons tant . 

RT 

>. 
H r-1 
0 Q) 
.1-J :> c:: Q) a> H :> c:: H 

L 

" 

A 
W i thou t  I I� 

Dec ay I -1 "'-
I 1 "" 
I � 
x (x+dx) 

T 
T ime 

�·1 

Figu re 2.1 .  Inve nt ory s i tuat ion for a de ter iorat ing i tem. 

Figure 2.1 shows the inventory- t ime re lat ion for the mod e l  under· 

c ons idera t i on. Du r ing the cyc le t ime, T ,  the i ni t ial  i nve n t o ry ,  I0� 

dep l e t e s  c omp le te ly due t o  decay and demand us age. To d e t e rmi ne the 

gene ra l re la t i on ,  the i nve ntory dep l e t ion during a time dx mu s t  be  

expressed. That i s , the  change in i nve nt ory du r i ng s ome sma l l  t ime, 

dx , is the resu l t  of both dep l e t ion due to de teri orat ion and 

deple t i on due t o  dema nd usage. This can be expre s sed  as  

or 

where 

- dI = Ix Ra te of de cay dx + R dx 

- dI I B XB- l dx + R dx X-
A 

Ix = invent ory l eve l a t  any time x such tha t 0 S x -5 T .  

Equat ion 2.4a can be rewr i t te n  as 

dI +] xB- l Ix = -R 
dx A 

{2.4a) 

(2 .4b) 
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and solved using standard procedures giving 

B 
= 
[x 

ex /A I x (2. Sa) 

or 
;

x 
(-R) et8/A dt + C 

Ix = _o����������� (2. Sb) 

When x = 0, Ix = I0, the initial inventory. Substituting this into 

Equation 2.Sb when x = 0, gives 

or 

Thus 

I0 = 0 + C 
1 

/
x 

(-R) 
Ix = _o���������� 

At some time, T, the inventory reaches zero, that is, when 

x = T 

These values can be substituted·into Equation 2.6, 

�
T

(-R) exB/A dx +Io 
0 = �o���������� 

{2. 6) 

(2. 7) 

and the relation solved for I0 . Since the denominator disappears in 

the solution process, 

IT . B I0 = Rex /A dx. 
0 

(2.8) 

18 
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T he portion of the initial inventory stocked to cover the decay 

process during the cycle time, T, is 

In = Io - RT 

R eX dx - . RT. = 

[T B/A (2. 9) 

Having derived a general equation for the inventories, the total 

variable cost for the interval, T, can be found in terms of T. The 

total variable cost (KT) for the period is equal to the sum of the 

cost of inventory, the holding cost and the ordering cost. For holding 

cost calculations it is assumed that the average inventory is equal 

to half the initial inventory. Thus 

where 

KT = C[I0 - RT] + C1 1.a T + C3 
2 

.c = item cost per unit quantity. 

c1 = holding cost per unit quantity per unit time. 

C3 = ordering cost per order. 

Utilizing Equations 2 .  8 and 2 .-9 provides 

KT = c[/T 
R exB/A' dX - RT] + CJT !

T 
R exB/A dx +c3 · 

2 0 

(2 . 10) 

(2 . 1 1) 

The total variable cost per unit time (CT) can be found by dividing 

KT by the storage period T. 

/T B 
J

T B 
= _g R ex I A dx - CR + .fl R ex I A dx + .£l . 

T o 2 o T 
(2. 12) 
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To minimize the total variable cost per unit time Equation 2 . 12 can be 

differentiated and set equal to zero . 

That is, 

Carrying out the differentiation gives 
B IT B B 

� [T R eT /A � R eT /A dx ] +.fl. R eT /A - �TC = Q. T2 o 2 ,.,.;2 (2 . 13) 

The terms within the bracket in Equation 2.13, which shall be desig-

nated as A, c an be further simplifieft . 

Remembering that 

it can be noted that TB/A can replace x, giving 
00 eTB/A = � TnB (2.14) 

n=O An n! 

The first term becomes 
B co 

T R e T /A = T R 2: . TnB 
n=O A0 n! 

and the second term becomes f•T B /TCP 
R eT /A dx = R � 

o o n=O 

The second term can now be integrated . 

nB+l x 

XnB d 
An n! 

·1T R 
B oo 

ex /A dx = R � 
o n=O (nB+l) An n! 

or 
00 

= R 2 
n=O (nB+l) An n! 

(2 . 15) 

x . (2 .16) 

(2. 17) 

(2. 18) 



Substituting Equation 2 . 15 and 2 . 17 into the first term of Equation 

2. 13 gives 
Q) 

A =  RT2 TnB 00 
R 2 

n=O An n! n=O 

Collecting terms gives 

A = R ">" TnB+l �- 1 J n=O An n! (nB+l) 

which can be restated as 
co 

T nB+l A = R2: nB 
n=l An n! (nB+l) 

(2 . 19) 
(nB+l) An n! 

(2 . 20) 

(2 . 21) 

where the lower limit was changed to n=l from n=O, as the expression 

reduces to zero for n=O . 

Substitu ting Equation 2 . 21 into Equation 2 . 13 gives 

or 

C R >
n=

a>

l 
TnB+l 

nB + 4
2
C R eTB/A - �

T
C = 0 

T1 An n! (nB+l) rrZ 

a:> 
C R � 

n=l 

nB-1 T 
All t n. (nB+l) 

B 
+ f- R eT /A 

- � = O · nB (2 . 22) 

I f  this rel ation is correc t, when B=l, Equation 2 . 22 is the 

corresponding equation in Ghare' s ana lysis for exponentially decay-

ing items . 

Setting B=l gives 
00 

cR 2:° Tn-l 

n=l · An n! 
n + .£1 R eT/A - � = 0 .. 

(n+l) 2 T 

Expanding the first quan tity and using 

e
T/A 

= [1 + T /A + T/A2 2! + · · · ] 

(2 . 23) 

21. 
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Equa tion 2 . 23 can be wri t ten as 

CR [..! 1 + T I + 
A 2 A2 2! 3 J 

C R [l + T + T2 + 1 c 
+ t1 A AZ 2! 

. J - - � 
(2 . 24) 

Assuming tha t A is considerably larger than T (which is the assump-

tion made. in Ghare' s mode l) and neglec ting terms invo lving T and 
AZ 

its higher o rders in the firs t term in Equation 2.24 and T2 and i ts 
AZ 

higher orders in the second term, Equa tion 2. 24 reduces t o  

CR + ..Ql R + CJ R T 
2A 2 2A 

- .§t = Q. 
T 

The corresponding equa tion in Gha�e' s model (Equa tion 1.8) is 

where 

CK0 + {iC) K + (iC)K9T 

9= 1 
A 

2 2 
- A = 0 

TZ 

(2.25) 

Therefore Ghare' s equation is a special case and the deriva tion is 

correct for a t  leas t this point . 

Fur ther , '  when A--:;;.cC Equa tion 2 . 22 reduces t o  the equati on for a 

non- deteriora ting i tem� Carrying out this subs titution gives 

(2 . 26) 

which is the c or responding equation for a non-deteriora ting item. 

Again , this adds c onfidence to the derivation. 
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Equation 2 . 22 can be solved numerically for T,  to obtain the 

cycle time, T*, corresponding to the economic order quantity. The 

method of solution is explained in the next chapter. 

The economic order quantity, I*, is calculated from 

Equations 2. 8 and 2.1 7 , that is 
00 

T(nB+l) r·k = RL 
n=b (nB+l )  An n! 

For the computation of the total cost per unit time 

later for the verification of the results, Equation 2.12, 

I
T Bl I T- B 

CT = 
_g 

- R ex A dx - CR + ..£J. R ex I A dx + ..Q3 
T o 2 o T 

can be modified, by collecting· and rearranging terms, to 

CT = J4- CR+ � + .!<J.) /T 
R exB/A dx. 

T T 2 o 

Substituting Equation 2. 17 

IT B 
R ex /A dx 

0 

co 
= R 2=. T (nB+l) 

n=O (nB+l) An 

into the Equation 2 . 28 gives 

l 
n! 

()() 
= B - CR. + (Q + s_) R �. TnB+ 1 

T T 2 n=O (nB+l) An n! 

and expanding the last term gives 

+ T2B+l 

T* 

to 

CT = .Q3. - _ CR + (Q + ..Qi) R 
T T 2 

[T + TB+l 
(B+l) A {2B+l) A2 2 ! 

+ T3B+l + . . . ] • 

{3B+l) A3 3! 

using 

(2. 2 7) 

be used 

(2 . 12} 
(repeated) 

(2 . 28) 

(2. 2 9} 

(2.30) 



This equation for total cbs t can be  solved by inserting the 

proper values for the variables. Thus, all o f  the normally desired 

quanti ties of inventory problems can be  de t ermined for inve ntories 

which are subje c t  to a W�ibu ll distributed decay . 

. ' 
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CHAPTER 3 

COMPUTERIZED MODEL 

The solution of Equ ation 2 . 22 for the des i red value of T, the 

opt imum cycle t ime, cannot be carr ied ou t directly s ince the var iable, 

T, cannot be separa ted from the o ther variables. The solution, 

however, can be found by i tera tive processes, which ef fectively try 

various values o f  T until the equa tion does equal zero_. 

The correc tive method o f  Newton is one such method, s u i table for 

computer solut ion. This method makes use of a recurs ion formula 

where 

(3.1) 

Tn = success ive values o f  T ,  calcula ted from the preceding values 

f(Tn-l) = value of the function, f(T) , for T = Tn-l· 

The term f(To-1) is called the correc t ion . . This method can be used 
f' (Tn-1) 

for the solution of Equa tion 2 . 22 using the computer. 

I n  geometr ic terms, the procedure i nvolves finding the tangent 

to the curve f {T) a t  the point Tn-1 and de termining its intersection 

Tn wi th the T. ax is . Figure 3.1 illustrates the method . As can be 

seen , the in i tial. value o f  T ,  T0, should be sufficien tly close to T*. 



26 

T 

Figure 3.1 . Illustration o f  Newton's method. 

To assure convergence o f  T0 towards T* for all values of T0, 

Equation 2. 22 
(1) 

CR� TttB+l 
n=l An n! 

TB/A -nB + 
2

c1 R e _ 3
T
C = O (nB+l) T2 

can be modi fied by multiplying both sides by T2, giving 

2 eTB/A nB + .Q.i R T - c3 = 0. 
(nB+l ) 2 

(2.22) 
(repeated) 

(3 . 2) 

But i f  the value o f  T is not optimum, the value of Equation 3.2 

is not zero, but rather F(T) , or 

F(T) = CR � TnB+l 
n=l An n! 

The derivative o f  this function, F'(T) is 

(3. 2a) 

F'(T ) =CR � (nB-tl) TnB+l nB + �R[T2 eTB/A] TB-l 
+ eTB/A 2T] 

n=l An n! (nB+l) 2 A 

which may be simplified to 

F' (T ) CR � TnB B + ..Q.J,_ R eTB/A (] TB+l + 2T] . 
n=l A"(n-1)! 2 A 

(3 . 3) 

(3.4) 

This expression increases steadily with an increase in the value o f  T. 

But, F'(T ) is the slope of the function F(T ) . Hence the slope of the 

function F(T ) increases steadily with increase in the value o f  T from 



0 to oo , as shown in Figure 3 .  2 .  Fur ther, i t  may be not ed from 

expression 3 . 3, tha t, whe n  T = 0, F' (T) = 0 or the slope of F(T) is 

zero a t  the origin. 

F(T) 

Figure 3. 2. Newton' s me thod as applied to the modified func tion F(T). 

These condi tions e nsure tha t any positive value of T0 w ill bring 

abou t convergence towards T*, if Newton' s me thod is used for solving 

F(T) . Not e  that Equa tions 2 . 22 and 3.1 a re forms o f  the s ame equation 

and will provide iden tical answers for T*. 
The value of T0 may be chos en as the optimum cycle t ime for a 

non-de teriora ting � t em unde r the s ame condi tions as the de teriorating 

item . This gives a value of T0 reasonably close to T*. Thus 

where 

C3 , C1 , R are as p reviously defined. 

(3 .5) 

I t  is intuitively obvious tha t  in this cas e, T0 will be greater than 

T*, the optimum cycle time for a de teriora ting item. 
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The solution of Equatio n 3. 2 using Newton's method involves the 

computatio n of the values of F (T) and F' (T) fo r diffe rent values of 

T .  It s hould be noted that the computation of the first term of the 

function F (T), that is 

00 
TnB+l CR :2 nB 

n=l An n! (nB+l) 

28· 

involves surmnation from n=l to n = 00. This term may .be rewritten· as 

nB 
(nB+l} 

Note that if TB � 1 then the nth te rm will be less than· or equal to 
A 

[l nB ] times the f i rst term . For example, even for a very low 
n! (nB+l} 

value of B = 0 . 5  the 7th term will be less than or equal to 

1 7 x 0. 5 
7 ! (7 x 0. s + l} 

= -
1 
__ 

6480 

times the first·:term. In  a similar manne r the 8th te rm will be less 

than I times the first term. 
50, 000 

. 

Hence if TB could be made less than 
A 

or equal to 1 ,  the n  summation ove r the first s even te rms would give 

sufficiently accurate values . 

As T0 � 'I:*, due to the particular shape of the function F(T), 

all values of T during the ite rative process will be less than TO· 
Hence to s atisfy the condition 

TB c::: 1 
--

A 

it is enough to e nsure that 



B � c an be made less than or equal to one by sui tably c hoos i ng the 
A 

uni t of t ime. 

For comput a t ion of F' (T) Equat ion 3.4 
(l) 

29 

I ( ) � nB eTB/A B+l F T = CR .::::::::::.... T B . Cl R [] T + 2T ] 
n=l An(n-1) ! + Z- A 

(3.4) 
(repeated) 

could be altered to 

� ( l)B B B+l TB B F' (T) = . CR 2_ T n- T B + CiR] T e /A 
+ .

ClR 2T eT /A. 

Tha t is, 

n=l An-I A (n-1) ! 2 A 2 

CD n-1 
F' (T) = CR] T

B � TB 1 
A n=l A (n-1) ! 

aJ 
TB n-1 Realizi ng tha t -=:::::- 1 c::::::::::.. 

n=l A (n-1) ! 

the equat ion may be wr i tte n as 

B B 1 B B/A F ' (T.) = CR ] T e T I A c JR B TB+ e T I A C 1 R 2T e T 

A + 2 A + 2 

collecting terms 

F'(T) = R eTB/A [ C B TB C B TB+l 
+ C1T] . - +�-

,A 2 A 

(3.6) 

(3. 7) 

(3. 8) 

(3 . 9) 

Before we can proce ed towards the cons t ruc t ion of a computer  

program it  should b e  noted that the express ion for e conom i c  order 

quanti ty 

T*nB+l 

{nB+l) An n! 

also involves summat ion from zero to infini ty .  



This equation can be fur the r s impli fied to 
00 

I* = RTi' � Ti'•B n 1 
n=O A (nB+l) n! 

and by an argume nt similar to tha t used earlier, i t  can be shown 

that summat ion over the firs t seve n terms, tha t is, f rom n=O to n=6, 

wi ll give sufficien t ly accurate values for I*. 

Having analysed the applicab i lity of  Newton's me thod to the 

solu tion of Equat ion 3 . 1, and the compu ta tional aspec ts o f  the 

various quanti ties, we are now in a position to develop the computer  

program . The f low char t of  the program for the solu tion o f  · Equation 

3 .  2 and compu t a t ion o f  the econom i c  order quantity is shown _in 

Figure 3. 3 . 

. . 
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No 

•· 

Compu te To B 

Compu te C 
Correc t ion, F(T)/ F'(T) 

Mod i fy 
Cyc le Time 

D 

Yes 

Compute I* 

Figure 3 . 3 .  F low c har t for the solution o f  Equation 3. 1 .  

31 

F 



In the f l ow diagram b l ock A reads the input data, A, B,c,c1, c3, 

and R and block B computes  the initia l value of  the cycle t ime, T0, 
u sing Equation 3 . 5. The corre c tion [F(T) ] i s  c omputed in  block c 

F'{T) 

using Equations 3 . 2a and -3. 4 for F(T) and F'(T) res pect ively . 

The cycle time i s  modified in block D using the relation�hip 

Tn = Tn-1 - correction 

B lock E checks whether the c orrection as a fraction of the modi fied 

cycle time is l e s s  than a s u fficie ntly sma ll numbe r .  This numbe r is 

chos en in our pr oblem as 0 . 001 which gives a reas onably good 
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accuracy for the optimum va lue o f  the cyc l e  time . I f  the fraction is 

greater than this number a new value o f  the c orre ction is  calculated, 

in block C, u sing the m odified va lue of the cycle time. This proc ess 

is repeated, until the correction is sufficiently sma11 . The f inal 

va lue of the cycle time is the optimum cyc le time T*. If the 

correcti on is sma l l  enough the value of  economic order quantity, !0*, 

is ca lcu lated, in b l ock F, using Equation 2.27 . The total decay 

during the cycle time, Io, i s  computed using Equa tion 2.9 and 2 . 17 .  
' 

Block G prints the va lue s of A, B,C,C1,C3,R,T*,I* and In· 

The c ompute r  program is give n in Append ix A. 

It may be ·  pointed ou t that s pecia l care is  ne eded in the appli-

cation of the Weibull distribu tion to items with a decreasing rate of 

decay . Under the s e  conditions the function B tB-1 will not rep re s e nt 
A 

exactly a practical decay rate function as  this the oretical function 

becomes infinite as r�o, while practica l  problems do not. 



Figure 3.4 shows hyp othetica l, actual and theoretical decay rate 

functions . However, for large va lues of rl, the difference between 

the theoretica l and actual decay rate functions wi ll be very small . 

A l s o, decreasing decay rate functions with smal l values o f  B are not 

o f  much practica l importance. Hence the mode l deve l oped a s  well as 

the computor program can be used in most of  the p ractical decreasing 

decay rate situations with reas onably good accuracy. 

I 
\ 
\� Theoretica l Decay Rate Function 

'
, Actual Decay Rate Function 

Time 

·F· 3 4 Theoretical and actual decreasing decay rate functions. 
/ 1gure . . 
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CHAPTER 4 

NUMERICAL EXAMPLE 

The inve ntory model developed in the s e c ond chapte r  and 

programmed for the digital computer in the third chapte r should be 

demonstrated in a numeric al example . A hypothetical product s ubject 

to decay will be s e l ected and, afte r it has be en demonstra�ed that 

the .decay fol l ows the Weibul l distribution, the computer program will 

be used to compute the optimum cyc le time and the ec onomic order 

quantity . The optimality of the s olu�ion will be c onfirmed by finding 

the total cost for the optimum cycle time as well a s  a shorter and 

longer time. 

Consider the n, an item that has a cumulative frequency distri-

bution as shown in Table 4. 1. 

Table 4. 1 
Cumulative Freque ncy Function· 

Number Of Days Cumulative 
To Decay Percent Decay 

2 0.47 
5 1.9 

10 s.o 
15 9. 5 
20 14. 0 
25 19. 0 
30 24. 0 
35 30. 0 
40 35. 0  
45 40. 0 
50 45. 0  
55 49. 0 
60 54. 0 
65 58. 0 



In addition, l et 

C = $4.00 per unit. 

C l = $0.001 pe r item day . 

C3 = $20.00 pe r orde r. 

R = 10 units pe r day . 

The prob lem is  o f  concern only i f  the distribution o f  the 

deterioration fo l l ows the Weibu l l  distribution . A wide ly accepted . 

method of  confirming that the distribution is of  the Weibu l l  type 

that simu ltane ou s ly give s the va lue s �for the paramete rs A and B, 

makes use of a specia l graph paper ca l led Weibul l Probabi lity Paper 

(WPP) . The me thod is derived and demonstrated in Appendix B u sing 

the data from Tab l e  4 . 1. The va lues  for A and B that are obtained 

are: 

A = 600 

B = 1 . 5  

35 

Uti lizing the s e  va lues and the norma l inve ntory in formation listed 

abo�e as input, a compute r output is obtained as shown in Figure 4 . 1. 

O f  prime importance is the optimum cyc le time o f  11 . 64 days, 

the economic order quantity of 119. 55 units a nd the tota l number 

of  units that cou ld be expected to decay, 3 . 15 unit s . 



A = 600.CO .. B . . = l.5COO c = 

C3 = 20.00 R = 10.0CCO 

CYCLE TIME , CORRECTION 
63.2455 18.72205 
44.5235 14.53023 
29.9933 9. 98064 
20.0126 5.73168 
14.2809 2.26224 
12.0187 0.36874 
11.,6499 0.00939 

OPTIMUM CYCLE TIME = 0.11641E 02 

ECONOMIC ORDER QUANTITY = 0.11955E 03 

. TOTAL DECAY DURING CYCLE TIME = 0.31468E 01 

Figure 4. L Computer output� .. 

4.0000 

- . . . .. �· -· - ·-

Cl = 0.001000 

I :' 

.. .,.. , .... /;.;.', """ .. ·;· .. � .. �· .. � ... � ..,..{, ·�·,.,,, .,... .. _· :"' '' 

,. 

v..> 
0\ 
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The o p t ima li ty o f  the cyc le t ime ob tained wi l l  be checke d by 

comparing the to ta l cost per uni t  time corres ponding to the opt imum 

cyc le time with costs corresponding to cyc les tha t are longe r and 

shor ter . The to tal  cos t per unit  t ime corresponding to th e optimum 

cyc le  time is ob tained by subs t i tu t i ng T = 11. 64 and the va lues o f  

the cons tan ts i n  Equat ion 3. 2. 

CT = £1 _ CR + (Q + �) R ( T + T B+l + T(2B+l) 
T T 2 (B+l)A (2B+l) A22: 

+ T(3B+l) + . . . ] 
- (3B+l) A3 3! 

(3.2) 
(repea ted} 

Subs ti tu ting the numerica l va lues gives 

e n . 64 = _1_0_ - 4 x 10 + [ 4 
11.64 11. 64 

+ 0. 0 0 1 ]  10 ( 1 1. 64 + 1 1. 642 · 5 
2 2.5 x 600 

+ 11. 64 4 
+ -=1;.;.1-=-. 6::::..,4.:.,_5_·_5�-- ·+ • . . 

4 x 6002 x 2 5.5 x 6003 x 6 

or a solu tio n of 

c 1 1. 64 = $2.86 per day . 

S imi l a r ly ,  the va lue o f  CT for T = 13, a s l i ghtly large r  va lue, gives 

c 13 = $2 � 8 7 per day . 

Finally, for a sma l ler va lue, T ; 10, CT is 

c 10 = $2.9 1 per day . 

A comparison o f  these va lues; indica tes tha t the mi nimum cost is 

b e twe en T = 10 and T = 13. This is i n  agreement wi th the concept o f  

optima lity . 



CHAPTER 5 

CONCLUSIONS 

A theoret i cal mod el has been develo ped for the de termina t ion o f  

the economic order qua nt i ty for items which have Weibull decay ra te 

func t ion. The a s sump tions o f  cons tan t and known ra te o f  demand, 

38 

no shor tages and ins tantaneous supply or produc tion are made . I t  has 

been demons trated that under the s pec ial co ndi tion o f  exponen t ial 

decay, th is model reduces to a s pec ial model develo ped by Ghare and 

Schrader for expone ntial decay and und�r the condi t ion o f  no decay, 

the model becomes the s tandard E . 0. Q. model . A computer program was 

developed to provide the numeri cal solution to the model . A · 

numer ical example was used to s how the solu tion form and to ver i fy 

that the solution gives mi nimum total cos t per uni t t ime . There fore, 

thi s model will provide optimal lot-s izes for deter iorat i ng i tems 

over a w ide range o f  prac tical s i tuat ions . 

The following reconnnendations for fur ther development may be made : 

1 .  A mode l may be developed us ing the 3- parameter We i bull d i s ­
B 

(, ) l 
( t-r) /A 

tr ibution : F t = - e 

where r = loc a tion parameter, any real number, such that t ::;: r .  

2 .  The Simple Wei bull model should be modi fied to accommodate 

deter iora ting items for which the values o f  A and B change 

dur i ng the des ire d  cycle time . 



3 .  More s ophisticated mode l s  s hou ld be deve l oped for - the study 

and s o lution of inventory systems in whi_ch decaying items with 

Weibu l l  distributions a l s o  haye non-instantaneou s  supply or 

production, finite shortage c ost, probabilistic demand or 

cqmbinations of thes e  attribute s· . 
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APPENDIX Bll 

The Weibu l l  cumulative frequency function is given by 

F{t) = 1 - e-tB/A 

For the case of deteriorating items, this represents the probabi lity 

that the item wi l l  deteriorate prior to the time, t .  This can b e  

rewritten ·: 

1 

. 4 1 . 

1 - F(t) {B-1) 

A double logarithmic trans formation will eliminate a l l  powers  o f  

number s .  Equation B-1 is expres sed as 

l n l n [ 1 ] = - l n  A +  B l n t 
1 F(t) 

(B-2) 

and pr ovides a relation between the variab les 1 n 1 n [  1 ] and 
1 - F(t) 

l n t .  Therefore Equation B-2 represents  a straight line with 

intercept - 1 n A and slope B .  

The verification o f  whether a n  item has a decay rate function o f  

the Weibul l type reduces t o  the determination o f  whether the variab l e s  

l n l n [  1 ] and l n  t have a straight line re lationship . This 
1 - F(t) 

can be accomp lished by p lotting the va lues F(t) and t on the Weibull 

Probabi lity Paper . I f  the points fa l l . reas onably c l ose to a 

straight line, it can be as sumed that the deterioration adequately 

fol l ows Weibu l l  distribution . Figure B- 1 i l lu strates the method and 

llB · · t 77 79 errotoni, op .  ci . ,  PP· -
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a nd pape r . The data us ed is that in Table 4.L Note that the WPP 

has the [ 1 n 1 n ( 1 ) ] s cale and 1 n(t) s cale i n  addition 
1 - F(t) 

to the F(t) a nd t s c ales. The value of - l n A is given by the 

intercep t  C .  Thus 

- l n A = - 6 . 4  

A = C6 . 4 

= 600 

The slope of the line, B, can be computed using the s cales on the· 

· principal abscissa a nd principal ordi nate. Thus 

B = AC 
AB 

= §..:.!L. 
4 . 26  

= 1. 5 

In this c as e , the points lie dire ctly on the Weibull li ne .  I f  

the re were random var i ations, a leas t squares model might b e  used to 

f i nd the best fit line . Thus , the graphical te chnique, explained in 

thi s  appendix, with the help of the WPP provides a s imple method for 

the determination of the We i bull parameters . 
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