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CHAPTER 1
INTRODUCTION

History tells us that one of the most interesting topics
of mathematics is elementary number theory, the arithmetic Gauss
spoke of when he said, '"Mathematics is the queen of the sciences
and arithmetic the queen of mathematics." We will investigate
one conjecture concerning the theory of numbers.

Throughout this paper small case Latin letters with the
exception of e and i will represent integers where the set of
rational integers is denoted by Z. The Latin letters e and i
respectively represent the base for the natural logarithms and
the so-called imaginary unit for the set of complex numbers.

An Eisenstein integer, o, is a complex number that can be written
as o« = a + bw where a and b are rational integers and » is the

2“1/3, so that w = (-1 +1/3)/2. We denote

cube root of umity, e
the set of Eisenstein integers by Z(w) = {a + bw | a,b ¢ Z} and

let the Greek letters a, 8, vy, p, and & represent integers in

Z(w). Since w is a cube root of unity, wz + @ % Ji=0s
The set of integers in Z(w) will be represented geometrically
by the lattice points in a Cartesian coordinate system formed

by the intersections of the lines through the points (m,0) and



making angles of 60° or 120° with the x-axis. The system is
a honeycomb of equilateral triangles.

If « and B are elements of Z(w) where a # 0, we say that
a divides 8, written as a|B, iff there exists a y in Z(w) such
that 8 = ay. Furthermore, if §|a for all a in Z(w), then §

is called a unit. Since a is a complex number, it has a complex
conjugate denoted by a. It is easy to show if a = a + bw, then

a=a - b(1~+ w). Since the nom of a, denoted by N(a), is

24 ab + bz. Obviously

defined as N(a) = aa, we see that N(a) = a
N(o8) = N(«)N(B) for all a and B, and N(a) > 0 for any a.

Using these two facts, it can be shown that § is a unit iff

N(§) = 1. Hence, the units of Z(w) are #1, *w, 1 + w, ‘and

-1 - w. Throughout the remainder of this paper we shall let the

Greek letter & represent any unit of Z(w). We define a and B

as associates iff a = Bs. If a = a + bw, then we define |af

as |a =/;2- b

We say that a and B are congruent modulo y iff y|(a - B).

We write a = B(mod v). It is a trivial matter to show that
congruence modulo y is an equivalence relation on Z(w). Hence,
as in the real case, we define a complete residue system modulo
vy as a nonempty collection S of elements in Z(w) such that
(1) no two elements of S are congruent modulo v, and ﬁZ) every
element of Z(w) not in S is congruent to some element in S.

A complete residue system modulo y is abbreviated as C.R.S. (mod y).



In [1], Bergum exhibits several representations of a

C.R.S. (mod y). In particular, the following is observed:

Theorem 1.1. For any vy, let V = y(1 - w)/3. Let T1 be

the set of points interior to the hexagon ABCDEF whose

nki/3

vertices are respectively given by ve vitere' 1 s k. €6.

Let T2 be the set of points on the line segments

(-9 ve41ri/3
’

], [Ve4ﬂi/3, VeSwi/S]’ ey [VeSni/S’ ).

Let T=T, UT

1 2 The set T is a C.R.S. (mod v).

Furthermore, Bergum [1] shows that T = T1 U T2 is an
""absolute minimal representation'' where such a representation

is defined as follows:

Definition 1.1. A representation T of a C.R.S. (mod vy)

is said to be an absolute minimal representation iff for

any representation R of a C.R.S. (mod y) we have

L lel < T |8l
aeT BeR
A problem suggested in [1] is that of finding necessary
and sufficient conditions for an absolute minimal representation
of a C.R.S. fmod y) to be unique. It is quite apparent that

T=T, UT,is unique iff T, = @. It is the purpose of this

thesis, therefore, to establish necessary and sufficient conditions



for T2 to be empty.

The appropriate result, which is established in Chapter II,

is stated as follows:

Theorem 1.2. The "absolute minimal representation' T

of a C.R.S. (mod y) has T2 =@ iff (a- 2b, a+ b, b - 2a) =1

where y = a + bw and (a - 2b, a + b, b - 2a) denotes the

greatest common divisor of the ordered triple.

In Chapter III, we introduce the concept of prime Eisenstein
integers and discuss the relationship of the prime decomposition

of y =a+ bw to T2 being empty.



CHAPTER II
PROOF OF THEOREM 1.2

If vy = a + bw, then the coordinates of A, B, and C are

b 2a-b

a-b,a+tU3’ -2, ),mm

respectively — g

a a-2b
2, 3)

Since the hexagon is symmetric with respect to the origin, the
coordinates of D, E, and F are obvious. Using the distance
formula, we find that the length of each side of the hexagon
is |y|/¥Y3 units so that the hexagon is regular.

The linear equation for the line through A and B is

2b - a N(y)
—3a—)"3 * 33

if a# 0 and x = -b/2 if a = 0 while the equation of the line

y=x

through B and C is’

aa+—b )/3 + Z(Y) /3

if a#b and x = -b/2 if a = b. Similarly, the line through

) i

C and D is expressed by

b - 2a _ N(v)
__35__-/3 Y3

“3b

y=x
ifb#0and x = -2/2 if b = 0. By symmetry, the equations for
the lines DE, EF, and FA are seen to be respectively the same

as the equations for the sides AB, BC, and CD except for the



y-intercept which is of the opposite sign.

Lemma 2.1. Let y =a + bw. If (a-2b,a+b,b- 2a)=23d,
then T2 # @. (See figures 1 and 2).

b-a
2

Proof.--Choose a = (b 3 Za) -

-‘agﬂﬂh

8 Filier e
S

Since 3|3d, o is in Z(w). Using the equation of the line through

D and E, we have

b - a) 2b - a

3a

_NGy) 2 =
> Y3 -7§;—/3 =

a+b

“g——)/3

. ~ b, BA! M &
ifa#0. If a=0, thena = = = 6#31. Hence, in either case,

we see that o i1s on DE. Since a is the point D, T2 # @ and

the lemma is proved.

Lemma 2.2, If y =a+bwand (a - 2b, a+b, b-2a) =3d+ 2,

then T2 # @. (See figures 3 and 4).

Proof.--We first observe that (3d + 2)|3b and (3d + 2)|3a.

However (3d + 2, 3) = 1 so that (3d + 2)|a and (3d + 2)|b.

_3d( - a) + (2b - a) _-a-d(a+b)
Let x = 240 ACCER) and y v &7 ) B that

X+y= b - a%d++d§b - 2a) Obviously (x + y) and 2y are

rational integers so that

a= (x+Yy)+ 2yw=x+y/3i

is in Z(w).



C.R.S. (mod 18w)




If a = 0, then we find that o = g-- 7ng£glff and a is on

the line DE.
Suppose a # 0. Substitution of the value for x into the
equation of the line through D and E yields y so that a is on DE.

Since 3d + 2 > 0 and d is non-negative, we observe that
Jé¢ +# 1 > 0. Hence, 9d2 +9d + 3 < (3d + 2)2. Therefore, the

distance from the origin to a, denoted by Oa, is less than the

distance from the origin to either D or E. That is,

2
O = (N34 94 7 3 . 15 = [y|/48,
3 (38D

so that o is between D and E and the lemma is proved.

C.R.S. (mod 14w)




C.R.S. (mod 5 + 15uw)

Comparing the coordinates of o with those of D and the

midpoint of DE, we have

Corollary 2.1. The point a, as described in Lemma 2.2,

is never D and is the midpoint of DE iff d = 0.

Lemma 2.3. If y=a+bywand (a - 2b, a+b,b-2a) =3d+1

with d # 0, then T2 # @. (See figures 5 and 6).

Proof.--As in Lemma 2.2, we observe that (3d + 1)|a and

(3d + 1)|b.
_3d® -a)+ (a+Db) e (b = 2} - difs i
Let x = TGI+ D) el A& KDY s0
_ b+ d® - 2a) - .
that x + y = =T+ T . Obviously (x + y) and 2y are rational

integers so that



a=(x+y)+2yw=x+y/3i
is in Z(w).

If a = 0, we find that a = %-+ ngiagglégi-and a is on

the line DE.

Substitution of x into the equation of the line through D
and E with a # 0 yields y and a is again on DE.

Since 3d + 1 > 0 and d # 0, we have 3d - 1 > 0 so that

(3d + 1)2 > 9d2 + 3. Therefore, the distance from the origin

to a, denoted by Oa, is less than the distance from the origin

to D or E. That is,

or = /NGO | 9d® + 3 < 0D = |y|/V3.
3 13 1)

Hence, o is between D and E and the lemma is proved.

Examination of the coordinates of a, D, and the midpoint

of the line joining D and E yields the following result:

Corollary 2.2. The point a, as described in Lemma 2.3,

is never D and is the midpoint of DE iff d = 1.

Combining Lemmas 2.1, 2.2, and 2.3, we have

Corollary 2.3.

then T2 # @. Equivalently, if T2 = (@, then

(a-2b,a+b,b-2a)=1.

10

Let y = a + bw. If(a-Zb,a+b,b‘Za)7‘1,_



C.R.S. (mod 13w)

FIG. 5

C.R.S. (mod 7 - 1l4w) .

11



To prove the converse of Corollary 2.3, we first establish

several lemmas.

Lemma 2.4. If (a,b) =1, then (a - 2b, a+b, b - 2a) =1

or 3.

Proof.--Since (a,b) = 1, there exist integers x and y such
that ax + by = 1. Therefore, 3ax + 3by = 3. Let
(a-2b, a+b,b- 2a) =d. Then d|3a and d|3b so that d|3.

The result is now obvious.

Lemma 2.5. If (a,b) = d, then (a - 2b, a +b, b - 2a) =d

or 3d.

= 1. By Lemma 2.4,

a b

d> d

a 2b a_. b b 2al _ [a’- 2b"a+b b - 2a = 4
d " R

Proof.--Since (a,b) = d, we have

we see that a—-a—,a-+a,a- T |
or 3. The result is now obvious.
Lemma 2.6. If T2 # @, then we can assume without loss of

generality that there is a point on side DE.

Proof. --Since T, # @, there exists a point on CD, DE, or

EF with the points C and F excluded. If the point a is on CD,

then a(1 + «) is on DE while -wa is on DE if a is between E and F.



Theorem 2.1. If y = a + bw and T2 # @, then

(a-2b, a+b, b-2a) #1. (See figures 7 and 8).

Proof.--By Lemma 2.5, the result follows vacuously if
(a,b) = d # 1. Suppose (a,b) =1 and a = u + vu is on the line
through D and E. Obviously, a # 0 so that

 N(y) = -a(u + v) + b(2u - v).
Because a(a - b) + bb = N(y) and (a,b) = 1, we know that the
linear Diophantine equation ax + by = N(y) is solvable and all

solutions are given by

x = (a-Db) + bt
for some t.
y =b - at
Hence,
2u -v=>b- at
for some t,
u+v=>b-a-bt
or

3u=(2b - a) - t(a+Db).

Let the directed distance from D to a be denoted by |Dal.

Then since a # -b,

3u + (2a - b)
a+bp

11 - tl vl /5.

The point a is between D and E, in a directed sense, iff

b - 2a
Tt But

|v|//3

| Det|

7 -
l1-t=0o0rl1l. Ift=0, thenu= —9—3—§-and v

272159 SOUTH DAKOT,\ oT...€ Liwvenwis LIBRARY
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u and v are rational integers so that (a - 2b, a + b, b - 2a) # 1.

-.—(i-g-—b-)—. Hence, we again

.y _b - 2a _
If ¢ =93 thenu———3—andv—

have (a - 2b, a + b, b - 2a) # 1 and the theorem is proved.

C.R.S. (mod -7 + 8w)

. yc

Y S Eraran o VAU

/4
0 o / ............
. - '( .........................
.(/ ..............
B P A S e &
< A\ .
. -\. .
...... N e
R \._.____

FIG. 7

C.R.S. (mod 5 - 7w)

As a consequence of Theorem 2.1, we have

14



Corollary 2.4. Let y=a + bw. If T2 # @ and (a,b) =1,

then the only points in T2 are D and E.

Theorem 1.2 is a direct result of Corollary 2.3 and Theorem 2.1.

15



CHAPTER III

PRIMES AND T2 =0

We say that p = a + bw is a prime iff p = aBf implies that
a or 8 is a unit but not both. Obviously, all of the associates
of p and p are prime if p is prime. If p is a prime in Z(w) and
Z, we call p a real prime. Primes p in Z are, in contrast, referred

to as rational primes.

In [3], we find a discussion of primes. In particular

we find

Theorem 3.1. (a) p =2 + w is a prime.

(b) p is a real prime iff p is a rational

prime congruéht to 2 modulo 3.

(c) p = a + bw, where p is not an associate
of a prime in (a) or (b), is a non-real prime iff N(p) is

a rational prime congruent to 1 modulo 3.

Since Z(w) is a Euclidean domain it is a unique factorization
domain. Hence, every y in Z(w) can be written as a product of

primes in Z(w) and the representation is unique up to order and

units.



Lemma 3.1. Let y = a + bu. If the prime decomposition of

y contains at least one rational prime p, then T2 # 9.

(See figures 9 and 10).

Proof.--Since p|y, we know that p|(a,b). The result follows

from Lemma 2.5 and Corollary 2.3.

C.R.S. (mod 2 + 16w)

Assume that the prime decomposition of y = a + bw does not

contain a rational prime. Then one of the following must be true:

(a) vy = 50?1p22...pﬁk where the p; are all non-real primes

and no two are conjugates or associates of each other.

) vy =602+ w)npglpgz...pﬁk where the p. are all non-real

17



C.R.S. (mod 4 - 12uw)

primes and no two are conjugates or associates of each other

and § = #1.
() y =6(2+ w)p?lpgz...pﬁk where the p, are all non-real

primes and no two are conjugates or associates of each other

and § is a unit different from =1.

Lerma 3.2, If y = a + bw is of the form given in (b) or (c),

then T2 # 0. (See figures 11 and 12).

Proof.--Since y = a + bw = (2 + w)(u + vu), we see that

a=2u-vandb =u+v. By adding, we conclude that 3|(a + b).

Subtracting 2b from a we have 3| (a - 2b). Hence,

(a-2b,a+b,b - 2a)#1. Therefore, by Corollary 2.3, we

are finished.

18



C.R.S. (mod 3 - 6w) where

(3 - 6w) = (-1} # W il iE.)

FIG. 11

C.R.S. (mod 7 + 14w) where
(7 + 14w) = () (2 + w) (2 + 3w) (3 + 2w)

---------------

Lemma 3.3. Let y = a + bw where (a,b) = 1 and

N(y) = 1(mod 3). Then (a - 2b, a + b, b - 2a) = 1.

Proof.--Since (a,b) = 1 we know that (a - 2b, a+ b, b - 2a) =

or 3. Assume that (a - 2b, a + b, b - 2a) = 3. Then 3| (a - 2b)

19



and 3| (a + b) so that 3|(a2 - ab - 2b2). But 3|(a2 R 1 18

Hence, 3|(3b2’- 1) which is impossible and the lemma is proved.

Lemma 3.4. If y = a + bw is of the form given in (a) above,

then T2 = @. (See figures 13 and 14).

Proof.--Obviously (a,b) = 1 and N(y) = 1(mod 3) so that

(a-2b, a+b,b - 2a) =1. The result now follows from Theorem 2.1.

C.R.S. (mod -9 + 4w) where

(-9 + 4w) = (2 + 3w)(3 + Suw)

Combining Lemmas 3.1, 3.2, and 3.4 we have

n np nx
1°2°- where

Theorem 3.2. The set T2 =@ iff vy = 6p Py

the p. are all non-real primes and no two are conjugates
i

or associates of each other.

20



C.R.S. (mod -8 + 9w) where

(-8 + 9uw) = (2 + 3w)(5 + 6w)

21
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