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GI.DSSARY OF TERMS (11), (12), (13), (24) 

ADHESION 

APPLICATION RATE 

AVAILABLE WATER 

BASIC IllTAKE RATE 

CUT BACK STREAM 

DESCRIBING FUNCTION 
ANALYSIS 

DYNAMIC HEAD 

EQUIVALENT GAIN 

FIELD CAPACITY 

The ability of soil-Jarticles to attract and 
hold water to their surface. 

The equivalent rainfall rate expressed in.inches 
of water depth per hour. 

Is limited to the cai:acity of water the root 
zone can hold between field ca:i:acity and the 
permanent wilting point. 

The nearly constant soil intake rate developed 
after some time has elapsed from the s tart of 
irrigation. 

Furrow length in 100's of feet times l:a.sic 
intake rate in g. p.m. This corresponds to 
the cut l::ack flow rate • 

.. frequency response technique for analyzing 
nonlinear systems by approximating the 
nonlinearity with a linear equivalent gain. 

This is the sum of s 
1. Pressure head required to operate lateral 

lines in feet. 
2. Friction head losses in the main line and 

submains. 
3. Friction head losses in fittings and valves. 
4. Total static head including s uction lift. 

The linear approximation of a nonlinear transfer 
function. 

The moisture percentage, on a dry weight bl.sis, 
of a soil after a rapid d:tainage has taken 
place following an application of water, 
provided there is no water table within 
capillary reach of the root zone. This moisture 
percentage ustally is reached within t�o to 
four days after an irrigation, the time 
interval depending on the physical character-

istics of the soil. 



FURROW INTAKE 

FURROW STREAMS 

GAIN 

GATED PIPE 

HEAD 

INFILTRATION RATE 

IRRIGATION EFFICIENCY 

NET IRRIGATION WATER 
REQUIREMENT 

OSMOTIC PRESSURE 

-PERCOLATION 

TRANSFER FUNCTION 

Intake rate in gallons per minute per 100 feet 
of furrow. 

At the beginning of an irrigation the largest 
stream of water that will not cause erosion 
in each furrow. This corresponds to the 
initial flow rate. 

The ratio of output to input of a component, 
circuit, or system. 

Portable metaf pipe, usially aluminum, with 
a number of small gates along one side through 
which water can be run into corrugations, 
furrows and borders. 

Water pressure in a line which is equivalent 
to that being produced by a body of water 
stored at this height. 

The rate at which soil will take water during 
he irrigation period, expressed in inches 

of water depth per hour. 

The percentage of applied irrigation water 
that is stored in the soil and avaiJ.able for 
consumptive use by the crop. 

2 

The amount of water exclusive of precipitation 
required for crop production or it is the amount 
of irrigation water that JllUSt be stored in 
the root zone to meet the consumptive use 
requirement of a crop. 

Tension caused by salts. Water moves from 

the solution of lower concentration to the 

one of higher concentration. 

The movement of water through the soil profile. 

The nathema.tical model of a component or 
system which relates its input to output. 



INTRODUCTION 

The total supply of water on the earth today is about the same 

as it was thousands of years ago. Man has manipulated it with respect 

to time and spice but ha.s not changed the total quantity of water. 

The demand for water has increased because there are more people 

using it today than ever before. It is estimated that by the year 

2020, 1, 380 billion gallons of water will be used every day to satisfy 

the needs of 468 million people in the United States (2 1).  Priorities 

will therefore have to be established to allocate the limited supply 

of water among the alternative users. One criterion, 1:a.sed on a n  

economic analysis of the user, for ma.king the allocation decision is 

presented by Reynolds (2 1 ) .  Unfortunately, agriculture has been 

awarded a rather low priority level as comi:ared to municipil and 

domestic users.  It  is desirable, therefore, to make optimum use of 

the water allocated for agricultural endeavors. 

The largest single use of agricultural allocated water is for 

irrigation. It is estimated that by the year 2000, 150,000 million 

·gallons of water per day will be used for irrigation purposes in the 

United States (21). It is estimated that 20 to 4o% of the water 

applied by conventional means is lost due to runoff, evaporation, or 

deep percolation (3 ) . It is desirable to minimize these losses, 

3 



thereby optimizing the use of irrigation water. One way to 

accomplish these goals is through the use of automation. 

Automation of surface irrigation systems, especially autonatfon 

of cutl:a.ck furrow irrigation systems, can optimize the use of water 

for irrigation. Even without automation, the cutrack system employs 

two rates of flow which if properly timed can minimize the amount 

of runoff water. With automation the irrigation efficiency could 

be further improved. Garton (5 ) states that not only is irrigation 
\ 
\ 

efficiency improved through automation, but the labor savings as a 

result of automation will JB.Y the installation costs in less than the 

useful life of the system. 

Fishbach (2) states that the three ta.sic components of a well 

designed automatic system are: {a ) The Distribution System, 

(b) Electric Controls, and (c ) The Telemetry System. The distribution 

4 

system includes the water supply, the interconnecting valves and lines, 

and some type of outlet system to distribute the water on the land. 

The electric controls are responsible for adjusting and naintaining 

the rate of flow for ea.ch irrigation station, timing the irrigation 

of each station, and automatically sequencing the system after a 

predetermined time interval. The telemetry system measures and 

records the amount of moisture stored in the root zone of the field. 



The scope of this piper is to examine the pirt of the system which 

deals with electric controls. This thesis will investigate the 

use of automated flow control valves to program the application rates 

of water on the soil during an irrigation. 

'·· 

5 



THE STATE m, THE AR'r 

Until recently the extent of automa.tion in surface irrigation 

systems was characterized by traveling gun or sprinkler type systems. 

This type of irr:lgation system is the predominant form of surface 

irrigation in the Midwest. This system employs a closed conduit, 

pressurized supply and spr inkler mechanisms which uniformly distribute 

water at a rate below the intake rate of the soil. The efficiency and 

uniformity of the system is determined almost exclusively by the 

weather and terrain (9). Some of the i;arameters to be reckoned with 

are the wind, the amount of direct sunlight, the slope of the land, 

the pressure in the lines, and the size of the irrigation streame 

In the South and. West where the land is flat, open channel cutl::ack 

irrigation is employed. The cutb3.ck system has the potential for the. 

greatest efficiency among surface irrigation systems. This system 

utilizes two rates of flow for furrow irrigation. Initially a high 

rate of flow, lower than the soil erosion rate and higher than the 

soil absorption rate, is maintained for a period of time which is 

long enough to allow the water to reach the end of the irrigation 

furrow. The flow is then "cutback" to a lower ra.te equal to the 

absorption rate of the soil. By dividing the fields into sections 

or stations, a sequence can be established so that when one station 



is operctlne; at the low rate of flow; the previous station is off o� 

not irrigating, and the next station is operating.at the high rate 

of flow. This allows the irrigator to n:aximize the use of available 

water, thereby improving the efficiency of the supply. The irrigation 

efficiency of this system is determined by how accurately each of the 

two flow rates can be maintained. Slnce flow and pressure head can be 

assumed linear over a limited pressure range in this system, flow can be 

regulated by maintaining a constant head. As can be anticip:t ted., to 

improve efficiency it is more important to maintain a constant flow 

during the "cutcack" flow period than durlng the initial flow period • .. 
Garton states, 

"Since the discharge varies as the square root of 
the head, the cutb:tck furrow flow varies more 
widely with changes in supply flow than does the 
initial furrow flow" (6). 

Recent developments include a hybrid type of system implementing 

the desirable characteristics of the two previously men tioned systems . 

This system, ca.llcd a "closed conduit furrow irrigation system", employs 

the principles of the open channel cutl::a.ck system with a presstl.riz.ed. 

closed conduit supply and distribution system. Coupled with a reuse 

system to recycle tb..e runoff water this system has an irrigation 

efficiency of 91.9%. 'I'hls is compared wlth an efficiency of 64.8% for 

the same system with out the reuse system (3) · 



The large difference in these two efficiencies is directly related to 

how closely the two flow rates can be maintained. 

Although the advantages of automation more than outweigh the 

initial and maintenance costs, it is still desirable to minimize the 

cost of the system. Therefore an attempt should be made to optimize 

the efficiency of the latter hybrid system without adding the extra 

expense of a reuse system. The supply and distribution portions of 

this system have already been designed and tested (23). It was found 

that with manually adjusted valves, an efficiency of 86% could be 

maintained. However, it is anticipited that with the utilization of 

automatic pressure regulating valves this efficiency can be improved. 

Several attempts have been made at the implementation of these 

automatic pressure regulating valves by Fishl::ach and others. One 

scheme employs a pneumatically actu:i.ted valve which has met with 

limited success. The main dra.wl:ack to this scheme is the possibility 

of excessive irrigation should a leak develop in the required air 

supply line (9). This system would also be more costly since the air 

compressors must be driven by either a gas or an electric motor. 

It is the intent of this iaper to present a design for an 

automatic, electrically actuated, pressure regulating valve and 

controller. It will include the caplbility of being programmed for 
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irrigation on a daily or weekly l::asi$. The valve will also be able 

to naintain a constant programmable output pressure regardless of 

typical input pressure variations • 

.......... . 
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THF. PROBI_JEM 

The problem is to develop, const.!.'uct, and test a prograr!�!i�a ble, 

elcctricalJ.y aclu� ti:-�d, pressm·e regulJ.. ting, ir:('iga tion vaJ.ve and 

com,:r.ollcr whlch i!:i to be inco:cpo:ca. ted into the existing distribution 

system (23). The cont.roller consists of two µ;i.rts, the prcf�mm 

control ancl the valve control. The p:r.og:ram conti�o1 should opexa te 

on 120 V., 60 Hz, A. C. power. It should h3.ve the C3.pJ.bility of 

progra;;Jming u11 to ten valves, two at a time, wlth adjustable flow 

rate and duration for each V2..1vc. It also should 1.n9lude a twenty-

four hour p-.cogn":tn�D:tb1e clock a.ncl electronic switching lo-6ic:. 

The valve control should have the cap3.bility of maintc-.dnlng a. 

constant output flo:-1 corresponding to prossu�ces of 4 to 36 inches of 

hc-..ad with an c.ccv.racy of + 2 inches of head. .The input to the vaJ.ve 

should be allmred to vary betm�cn 3 a.nd 6 feet of head. Tne valve 

control �J1ould inc1ude an electro-mechanical posi.tionlng system, 

dec:ision electronics, a.nd. a pr.essurc sensing device. It also shouJ.cl 

O"r'le .L 120 u 60 H A C ,..., er THO im1")or.tant constraints on .t ' ra "'e on .., .. 1 z, . • .. • p,_,-vr -· • ..1:: 

the total system are sir.ipJ ici.ty and economy. 

A typical su:pply 8.l!cl dist.ri but.io11 syste:�1s into 1;hiC'h the 

automatic valve will be intc5r��tc:<1., consists of JO foot, quick 
.. 

10 
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distribution system for each station :l.s inrallel to the rr.ain supply 

line. It employs h:o sections of pipe with closed ends, joined 

together by a tee to form a distribut:ion b3.nk. These two sections 

have one-inch d:i.<:..riie-CeJ:.'1 equ�lly sµlced, orifices corresponding to 

the furro:-1 s }B.cir..g. The tee is connected to the me.in supply line 

through the autorr�tic pressure reeulating valve. 

A cb:awing of the physical system showing the main supply 

llne, automJ.tic valve, and distribution lznk is sho'tm in figure L 

It should be noted that the lerl8th "Ii'' of the dist::cibution 

lank in flgu:r·e 1 m:i.y not ah:ays be equal to 60 feet. The length 

of the distribution b'1nk depends ui:�n the position of the µtrticul;;; .. r 

station with res poet to the supply, the s )?3.cing of the holes in the 

11 

pipe, the lni tial and cutb.3.ck fl01·: ra tcs, and the len�th of the previous 

distribution lank. Adjusting the lengths of the distribution l::anks 

allows the irrigator to use the total potential of the supply. For 

a series of "k" 1::a.nI�s, k�n, equation 1 determines ths length of l:anI� 

"n" (23): 

L = Q s - (L 1 qcb) n E n- (Eg_�'°-tion 1.) 

qi 

where: 1,2r . . .  
n ::: • n rnxt b0r of lanks, 

1 ::..: lcn&th of l·Hnk "n" in feet, 
n 
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L
n-i = length of the preceeding lank in feet , 

Q = total water supply in gpm, 

qi = ipitial flow ra.te in gpm, 

q0b = cutla.ck flow ra.te in gpm, 

and S = outlet sµi.cing in feet . 
p 

·-
A schema.tic drawing of the total field installation is shown 

in figure 2. 

269643 
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THE SOLUTION 

The first step toward a solution of the problem is to define 

the control system in block diagram form. This block diagram is 

15 

shown .in figure ). The fundamental components of the control system 

with physical units of each input or output are labeled on the diagram. 

It should be noted that the valve control block can be made analogous 

to a single, closed loop, negative feedl:ack control system. This 

analogy will be used in the analysis portion of this thesis. The 

transfer functions of each basic block will be further developed in 

the following sections. 
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The Valve Control 

The Pressure Sensor 

The first step toward a solution of the problem is to convert 

inches and feet of head to pounds per inch squared, (psi). 

1 ft . of head = 1 ft. X 62.4 lb X ft
2 

144 in2 

1 ft. of head = o.433 psi (Equation 2) 

To give an id.ea of the pressure involved, a list of some typical 

conversions is shown in table 1. The pressure is measured in pounds 

per square inch gauge. 

As can be seen from table 1, a sensor with the gauge pressure 

range of O.O to 2.5 psi would be sufficient. Other desirable 

characteristics for this device include linearity, repeatability, and 

ease of mounting. With these constraints in mind, it was decided t.ha t 

a potentiometric type movement would yield the best linearity. 

A "Giannini. 1�5176-G" pressure transducer available through A. S.� 

Servo _§,yster.is Incor12oi.atec1 of Newark, New Jersey, is used to measure 

the pressure in the line. This transducer has a potentiometric, 

5000 ohm movement over the O.O to 5.0 psi range. It was originally 

used to measure a I>ressure differential in this range, therefore, two 

input ports are available. Gauge pressure can be moni to::-ced by 

17 � 
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TYPICAL CONVERSIONS 

HEAD .. P. S. I  • 
(in.) 

4 0.144 

8 0,288 

12 o.433 
.. 
18 o.649 

24 o . 866 

JO 1.082 

36 1.299 

48 1.732 

60 2.16S 

Table 1 



venting one port to the atmosphere while the other is connected to 

the distribution lank. The desirable characteristic·s of this device 

include a resolution and repeatability of O.J% of full s cale. This 

corresponds to a pressure of 0.015 psi. 

19" 

The transfer function for this device when biased at 5.0 volts is 

shown in figure 4. As can be seen from this figure, a slope of unity 

is a good a ppro>:ima t i on for determining the transfer function 

of input pressure to output voltage over the desired operating range 

of 0.130 to 1.JO psi. Therefore, the assumption will be made that 

one volt at the output of the sen sor is equal to one psi at the input. 

'l1he Valve 

The valve, furnished by the Water Resources Institute at S.D.s.u., 

is an Ames "Series S" model. This is an eight-inch, manually 

operated, gate valve with worm gear drive. Modifications necessary 

to more easily adapt the valve to motor operation include installation 

of a sprocket for chain drive and a mounting platform for the motor. 

The static transfer function, found experimentallyo relating 

output pressure, input pressure, and valve position is shown in 

figure 5. The true relationship between valve position and output 

pressure is constantly changing. This is due to the relationship 

between discharge or ve oci ty and the input hca,d. As the valve opens 
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the discharge and velocity increase which cause a decrease in the 

input pressure due to friction losses. When the valve closes the 

reverse is true. 

Another important characteristic of the valve is that it acts 

as an integrator. Tha.t is, revolutions per minute from the output 

of the motor is integrated into the position of the valve gate. 

Although this integration is implicit and is actially the result of 

the entire valve control, it is convenient to assume that the valve \ 

22 

actually performs the integration. This assumption will be used later 

in the analysis portion of this pi.per • . .. 
It was found experimentally that the torque requirements for 

this valve were quite high. The motor must supply 15 foot-pounds of 

torque in order to close the valve against an input pressure of ten 

feet of head. 

Another integral plrt of the valve block is the distribution 

line. In the or igina l analysis it was neglected. That is, it was 

assumed that the pressure in the line responded all1tost ins.tantaneously 

with the valve position. Experimental evidence proved this assumption 

to be false. It was found, however, that the line could be nacle 

analogous to a low :i;ass filter for the purpose of mathematically 

modeling the system, This also will be further exµlnded in the 



are.lysis portion of this i:aper. 

The Motor 

Some of the desirable characteristics that the motor must have 

are high torque, low rpn., low current, and it must be reversible. A 

motor possessing these characteristics is available through B&B Motor 

and Control Comp::ny in New York. It is a permanent split caracitor, 

23 

induction, fractional horse power, gear motor. Some of the character-

lstics of this motor are listed below: 

Horse Power 
Gear Ratio 
R.P. M. 

1/6 H.P. 
)6 I 1 
40 

Power Requirements 
Torque 

115 V. AC, 2 Amp. 
21 ft. lbs. 

The 21 f oat-pounds of to:rq ue is we 11 above the 15 foot-pounds required 

to close the valve. The 40 rpm of the motor is geared down such that 

the valve worm gear turns at 26 rpm. The motor is caiable of 

instantaneous reversal by interchanging two leads. · Other desirable 

qttilities are low starting current (120% of running current), and 

high starting torque (10o% of running torque) . 

The Error Detector 

The error detector sh ould have the caplbility of compiring two 

D. C. signals, the control signal and the error signal. It should 

have a double ended input and single e
_
nded output. Stability and 



low offset are two important characteristics this device should 

possess. 

An R. C . A . CA-3001 integrated circuit differential amplifier 

fulfills the requirements quite well. This device is a monolithic 

integrated circui.t in a T0-5, 12 terminal JE.Ckage. When the circuit 

is operated in operating mode "C" the following characteristics 

apply (20), (25) : 

Power Supplies 
Input Resistance 
Output Resistance 
Voltaae Gain 
.Input Off set Voltage 

± 5 v. 
150 k ohms 
45 ohms 
10 
1. 5 mV. 

The circuit diagram for thi:5 device is shown in figure 6. 

The inputs to the circuit are pins 1 and 6. The output is taken 

between pins 8 and 11. Note that both the input and output are 

emitter - follower coupled. This provides a high input impedance 

and low output impedance. Q3 and Qj.} make up the actual differential 

circuit. Resistors R5 and R6 provide local feedb3.ck for the 
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differential circuit which decreases the overall gain of the amplifier 

but adds stability. Q7 provides the constant current source for 

biasing the circuit. The connection diagram and ti.-ansfer function of 

this circuit are shown in figures 7 and 8 respectively. 

Input resistors R1 and R2 were selected to be 3 k ohms in order 
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to naximize the voltage gain. Note that the output is taken between 

pins 8 and 11 in order for the transfer function to be symmetrical 

about the input . 

As can be seen from figure 8, the transfer function is linear 

' 
until the output reaches the saturation voltage, at this time the 

amplifier saturates. The equation relating the input to the output 

over the linear portion of operation iss 

where: Gv = 10, the voltage gain. (Equation 3) 

The Trigger Circuit 

The main cons traints on the trigger circuit are single ended 

input with double ended output, sufficient dead zone such that the 

motor will not be running continually� and a short time delay to . 

allow the motor to come to a full stop before reversing. It should 

be able to respond to both the positive and negative signals from the 

output of the differential amplifier. Also the output stages of the 
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trigger circuit must incorporate relays to perform the actua.l switching 

which will be discussed in the next :ra:rag:raph. 

Relays must be used to do the actual switching because three 

Wires must be switched, two for the direction of rotation and one 

power line must be broken. Two three - contact relays with 1.4 k ohm 



coils were used for the cont.actor devices. The coils could be 

actuated by the application of ± 17 v. DC. Since the differentia l  

amplifier only supplies a maximum of ± 5 volts, a power buffer stage 

must also be implemented. This stage must supply the needed voltage 

amplification to actu:ite the relays. 

A time delay on the order of one second is sufficient to allow 

the motor to come to a complete halt before reversing. This coasting 

effect is due to the inertial load provided by the valve and motor 
\ 

rotor. 

A c omplementary :rair of switching transistors would satisfy the 

needed power buffer requirements . This stage is operated .in the 

class "B" mode with the n-p-n transistor responding to the positive 

signals from the differential amplifier and the p-n-p to the negative 

signals. This stage is not designed to be a linear amplifier, rather 

the transistors are driven from cut-off to saturation by the output 

signals of the error detector. Germanium bipolar transistors were 

chosen in order to minimize the dead zone. The n-p-n transistor is  

a 2N13� and the p-n-p trans istor is  a 2N1305. The circuit diagram 

for the entire trigger circuit is shown in figure 9. 
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Note the addition of 1N810 diodes in shunt, and limit switches in 

series with the relay coils• The diodes' D1 and D2' allow the 
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transistors to switch from saturation to cut-off without being held 

in saturation by the inductive coils ( 18) . The limit switches , S t  

and S2 , are mounted on the va lve shaft guide and a llow the va lve to 

be opened or c losed only a certain distance before they will be 

30 

actuated. At the time . of acttation of either limit switch the c ircuit 

to the relay coil is broken and the motor stops . The motor is then 

only allowed to rotate in the opposite direction. 

The 1 k ohm res istors and 1000 uF. capicitors in figure 9 provide 

the desired time delay . In order to determine the amount of t ime 

delay obtained by this scheme , assume that the output of the error .. 
detector is -5 V .  A t  t=O the error detector switches from - 5  V .  to 

+5 V. From figure 9 it can be reasoned th:J.t at t=O-
cap;icitor C1 is 

charged to -5 v. ,  with minus on the case of Q1, while the charge on 

C2 is essentially zero because Q2 is conducting . If v0(t ) represents 

the total voltage across Cl, v1( t ) represents the total input voltage 

(between pins 8 and 11 of the differential amplifier) , and V 1  

represents the initial voltage on capicitor C1, three eqi.ations can 

be written to describe the situation. 

(Equation 4) 



v 1( t )  = 12 ( t ) R2 + -LJ t i ( t )  d t 
C2 o 2 

· - [  J J: 1 1 ( t )  dt + 1 1 ( t ) n1J (F,qmtion 5) 

v 1 D 

J 
s: 11 ( t )  dt + 1 1 ( t )  R l + 1 1  ( t )  R2 

+ --LJ t i 1 ( t )  d t - i2 ( t )  R2 - _1_ J t i ( t )  dt 
C1 o C2 0 2 

( F,qta.tion 6) 

Solving these three equations simultaneous ly equation 7 is obtained. 
-t 

where s 

v0{ t ) a VS ( 1 - e R! C! ) - V1 (F,qta.tion 7 )  

vs m the tota l  input swing . 

It is known that when v0 ( t ) , in equation 7 ,  reaches +o. 4 v .  Q1 will "' 
start conducting and C 1 will charge no further. Setting v0( t )  = 

+o.4 v • •  vs m 1 0 v . , v 1 = 5 v . , and solving equation 7 for "t " it is 

found that s  

t a 0. 776 seconds (Eqtation 8 )  

This is the time delay provided by the circuit when the motor is 

required to reverse .  Note that from equation 7 this time i s  dependent 

upon the initial charge on C 1  and the magnitude of the output voltage 

swing from the error detector. As is shown in equation 8, the time 

delay is in the des ired one second range . It should a ls o  be noted 

that equation 8 represents the shortest poss ible time delay s ince 

the differentia l amplifier is switching from saturation in one 

3 1 
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direction to saturation in the opposite direction .  Therefore, the closer 

the valve comes to the desired position the longer the time delay. 

This is desirable since it tends to damp out any oscillation of the 

valve control. 

If the motor is assumed to come up to speed instantaneously, 

compired to any other time constants in the loop, and the gear re-

duction between the motor and valve is included in the motor output , 

the transfer function for the trigger circuit and motor is shown in 

figure 10.  Note that some hysteresis is involved. This transfer 

function is s imilar to any transfer function for a relay with .. 
hysteresis . In figure 10 the output voltage from the error detector, 

which is the input voltage for the trigger circuit, is converted 

directly to rpm . Figure 10 also indicates that the dead zone provided · 

by the trigger circuit is o . 6 v.  Transferring this voltage to the 

input of the error detector it is found that v1 - v2 must be larger 

than 0. 06 v .  in order for the motor to be actuated. This corresponds 

to a pressure difference, from figure 4 and eqtation 2 ,  of ± 1 . 67 inches 

of head. This is well within the desired ± 2 inch head accuracy. 

The Power Supply 

The two DC power supplies required by the circuitry are .± 5 v.  

for the error detector and .± 20 V .  for the trigger circuit. As was 
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mentioned previously the output of the differentia l amplif ier must 

be fl03.ting with respe ct to its power supply ground in order to have 

the output symmetrical . Since the output of the error detector is 

directly coupled to th e input of the trigger circuit , t.wo s ep:;tra te 

power suppli es must be des igned . 

. It wa s  decided that full wave rec tifiers constructed from c enter 

tapped transformers would be used . Ca. :i;a citor fi lters were us ed to 

decrease the ripple factor. caµicitor filters yield the sma llest 

ripple fac tor w i th the fewest components . The main des ign constraint. 

is that the dis charge t ime c: onstant of the filter should be much 

larger ( 100 times ) than "T/2 " ,  where "T " is the time for one cyc le . 

A sma ll ripple factor is m ore important in the error detector circuit 

-
than in the trigger circuit . Th is is true becaus e the error detec tor 

is required to perform l inear amplificat ion while the trigger circuit 

merely actu�tes the relays . For this reason 1 000 uF . caJS.citors with 

1 k ohm bleeder res i s t. ors were chosen for the filters of the error 

detector power supply, whi le .500 uF,  cai:acitors and .500 ohm bleeders 

were used. for the trigger c ircuit .  The complete valve control power 

supply is shown in figure 1 1 . Note the voltage di.viders for the 

Pos • t • 1 ·  of the error detector are not equa l 
i ive and negative supp. ies 

valued.  This is due to the fact that the pos i t ive supply draws more 
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current than the negative supply (20 ) , (25 ) .  

!N.547 diodes were used for the full wave rectifiers . These 

diodes a re rate� at 500 mA . while currents of 27 . 5  mA . and 52 . 0  mA . 

will be drawn by the error detector and trigger circuit , respectively. 

The 0 . 1 uF. ca:p3.citor between the center taps of the transformers 

ensures that they are at  the same AC potential .  



The Program Control 

The Sequencer 

The heart of the program control is the sequencer . It is 

responsible for having the right station irrigating at the proper 

rate of flow . Note from figure 3 that the sequencer transmits the 

proper DC signal to the error detector �f each va lve control .  Also 

one program control is res pons ible for up to ten stations with each 

station having a va lve control . 
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As is implied by figure 3 the type of logic used by the s equencer 

is serial in and rarallel out s ince one input signal controls s everal 

valv es .  Th e  inputs are provided by the 24 hour clock and the flow 

control . Parallel out logic is necessary when at least two stations 

are irrigating at the same time . 

A ten pos ition ,  three wiper arm stepping switch · was f ound t o  fill 

the requirements for the sequencer quite well . The wiper arm is 

mounted on a ratchet and s pring arrangement such that one relay w ill 

advance it through the ten posit ions while a second relay is required 

· to reset the devic e .  The f orward relay has a 132 ohm coil which can 

be acti.ated by � v .  DC.  The res et relay which ca n  be actuated by 

the same voltage has a 2 1 1  ohm coil . The irrigation sequence can be 

hard-wired along the wiper arm contacts ,  since once the sequence is 
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establ ished it prol:ably will not be ch:lnged for the entire season. 

The 24 Hour Clock 

The 24 hour clock is the programmable portion of this control . As 

. was pointed out in the previous sec tion, the clock mus t provide two 

si�nals . One s ignal advances the s equenc er through its ten pos itions , 

while the other s igna l rese ts the s equencer at the end of an irrigation 

cycle . 1be clock wh ich wa s  implemented is ea s i ly programrna ble by 

positioning tabs at the edge of its 24 hour disk . These tabs actuate 

the advance and res et relays of the sequencer at a minimum of 5 minute 

intervals . This c l oc k  als .has the cap3.bility of being programmed 

on a weekly ln s i s .  It a ls o  ha s the advantage of ski pping any twelve 

or twenty- four h our period should weather conditions dictate the 

interruption of the irrigation s chedule . 

A manual cyc le sw i tch is a ls o  incorpora ted into the program 

control . This switch , which is in rarallel with the 24 hour c lock ,  

allows the irrigator t o  manually s equence through the irrigation cycle . 

Added irrigation may in this manner be suppl ied to any station or group 

of stations whi.ch may warrant 1.t .  

The Flow Control 

As has been s°k'l ted previously , the total range of regulation 

f 4 1· nches to 36 inches of head. 
required by the va lve control is rom 



This range can be divided into the h igh or initial flow rate and 

the low or cut1:ack flow rate. The low flow rate corresponds to a 

pressure range of 4 to 20 inches of head, while the high flow rate 

is in the range of 16 to 36 inches of head. If v1 and V
H 

represent 
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the voltages c orresponding to the low and high flow rates, from figure 

4 a nd equation 2 the voltage ranges are : 

V1 � 0. 144 V .  to 0 . 72 V.  (Equation 9) 

VH a �. 575 V. to 1 . 30 V .  (F,quation 10)  

It is desira.ble to set v1 and VH by potentiometers and at nearly the 

same value for all station � The design has included the flexibility 

of changing the high and low flow rates from day to day to compensate 

for changing weather and s oil conditions. Once the i rrigation cycle 

has started, however, these rates need not be changed from station 

to station. 

The complete program control circuit diagram is shown i n  figure 

12 . The same power supply design constraints used for the error 

detector are used here. Note that because of the small resistance of 

the stepping switch coils the filter cap:icitor has to be 5000 uF. 

The 2 . 7 k ohm bleeder allows discharge of the caiacitor when the 

power is disconnected. WE1265 diodes which are rated at 1 Amp. must 

be used for the full wave rectifier because of the 370 mA. current 
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needed to actuate the stepping switch relays . The 1N751 zener diode 

in series with the 1 . 5  k ohm voltage divider provides a constant 5 . 1  

volts DC to the flow control network. The meter which monitors the 

current flowing to the valve control circuit can be reca librated to 

measure voltage.  This can be done because the loo.d on the program 

control is a constant J k ohm which is the input resistor of the 

error detector . Figures 13 through 16 are photographs of the total 

system. 

The va lve control electronics is housed in a water proof box 

mounted on the side of the yalve. The pressure sensor is mounted 

vertically on the side of the valve control box . The program 

control which would be located at some central location is pictured 

in figure 16 , to the left of the valve control. 
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ANALYSIS 

As wa s  stated in a previous section the valve control block , 

in :figure 3 ,  can be ma.de analogous to a closed loop, negative 

feedl:ack, control sys tem . From the t:ransf er functions of the 

components within the loop, as shown in figures 4 , 5 , 8  and 10 ,  it is 

evident that the valve control has some nonlinear components . The 

problem is to analyz e the valve control with these nonlinear 

components interconnected with linear components . \ 

Several techniques have been presented by Gibson (7 ) , and others 

for the analysis of this -_ t.rpe of nonlinear system . One technique 

which seems to work quite well is the describing function technique . 

The Describing FUI1ction Technique (24) 

The end result of any solution technique in control system 
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theory is to try to reduce the system ' s  block diagram to two c omponent 

blocks which c onstitute the forward and feedl:a.ck piths of the original 

system .  Th i s  ca n  b e  accomplished by representing each c omponent 

block by its transfer function in the frequency domain and combining 

these com ponent blocks by conventioral block diagra.m techn iques ( 16). 

When nonlinear component blocks are present in the system , more care 

must be taken in combining the blocks . The e�tension of c onventional 

techniques requires that the nonlinearity be described by an equation 
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in the frequency doma in and that this eqi.ation be c om_P3.tible for use 

with the transfer funct ions of the l inear components·.· These require-

ments yie ld an "approx ima te transfer function "  or "describing function" 

which is a linear approximation of the effect of the nonlinearity in 

the frequency doma in . 

This describing function hereafter referred to as an " equivalent 

gain " ,  is derived by a ssuming a pure s inusoida l s ignal of c onstant 

amplitude and frequency is a pplied to the input of the nonlinearity . · 
\ 

After steady state condit ions preva i l ,  the Fourier series of the output 

waveform is obta ined . Assuming that there is no DC component and no .. 

subharmonics in the output waveform , the fundamental term in this 

Fourier s eries has the same frequency as the input signa l but may 

differ in amplitude and phase.  The equivalent gain is then defined 

as being the ratio of the nagnitude of the fundamental term in the 

Fourier series of the output waveform to the magnitude of the input 

sinusoid a t  a phas e  ang le which is the angle between the two waveforms . 

An equiva lent ga in rri,ay be found for all permissible amplitudes and 

frequencies of the input waveform . 

Mathematica lly , if the input wave is represented by : 

Input = A s in w t  
(Equation 1 1 )  

and the fundamental tenn in the Fourier series of the output is : 



Fundamental term = F(A ,w) [sin wt +¢ (A ,w� (&ita.tion 12 ) 

then the equivalent gain for this nonlinearity is defined as : 

Equivalent gain = f F(Alw) I I r/J (A,w) (Eqta.tion 13) 

The three l:asic assumptions applied in the derivation of the 

describing function are : 

1 .  The input to the nonlinearity is a pure sinusoidal wave. 

2. The output contains no DC component , no subharmonics , and all 

higher harmonics may be neglected. 

3. The nonlinearity is not time-varying. 

In a closed loop contr9l system the describing function approxi-

nation is quite accurate if the linear }Rrt of the system contains 

low :rass filters . This constra int allows the higher harmonics of 

the output waveform of the nonlinearity to be filtered out such that 

the feedl:ack signal to the input of the nonlinearity is nearly a 

sinusoid. As will be pointed out in the next section , the valve 

control satisfies this requirem ent.  

Applying the Describ ing Function Technigue 

It . should be noted that all functions of time , f (t ) , in this 

analys is are assumed to be zero for t(O.  Therefore , the Fourier 

transform mentioned in the previous section is identical to the 

laplace transform with the Fourier opera.tor, jW , being replaced by 
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the Iaplace operator, s .  These two transforms will be used inter-

ch3.ngeably in this section when it is advantageous . 

The equivalent control system block diagram of the valve control 

is shown in figure 17 . The components of this diagram are somewhat 

different from those shown in figure J .  The G1 (s ) block in figure 

17 constitutes the error detector and the time constant portion 

of the trigger circuit in figure J .  It i s  assumed, for the purpose 

of analysis , that the error detector is operating in the linear 

portion of its transfer function. That is , the input to the error 

detector , VI'  is greater thc:,n or equal to o. 04 v. but less than or 

equal to 0. 5 V. The transfer function of figure 8 is replaced by a 

47 

constant linear gain of ten . The � portion of the G1 ( s ) block is the 
s-te. 

"s" donain transfer function of the R-C input stage of the trigger 

circuit. This can be obtained by taking the Iaplace transform of 

the time derivative of eqtntion 7 with caplcitors C 1  and C2 initially 

discharged . When this is done , it is found tha. t a = _1_ = _j__ = 1 .  
R1C1 R2 C2  

The N1 (E1 ) block in figure 17  presents the first nonlinearity 

· to the system . This block is , of course , the trigger circuit and 

motor transfer function shown in figure 10 .  E1 , the input to this 

block is the output voltage of the error detector. The constant 

output of this block is 0 . 434 revolutions per second (rps ) which is 
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the 26 rpm in figure 10  divided by 60 seconds per minute . An 

equivalent gain , K1 (E
1 ) ,  for N

1 (E1) is given by Gibson ( ? ) : 

where s 

K
1

(E
1 ) = 2F! ( cos e 1  + cos 92 ) -j 2M (sin S 1 - sin S2 ) 

1tE1 11'E
1 

M = 0. 4)4 rps 

9 1 = sin - l 0 .  4 
E

1 

e -1 2 = sin � 
E

1 

(Eq�tion 14)  
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The G2( s )  block represents the implicit time integration performed 

by the system . This integration is assumed to take place between the 

motor output and valve input . The output of this block, E
2 , has the 

units of valve position in revolutions from the fully closed position. 

The N
2

(E
2 ) block is the second nonline:trity in this system. This 

block represents the transfer function of the valve. · As can be 

noted this block is quite different from the static valve transfer 

fwiction presented in figure 5.  A straight line approximation for 

these curves for an input pressure of four feet of head is. presented 

here . The end result is a constant linear gain of 5 . 15 inches of 

output head per revolution . The horizontal lines in the transfer 

function of this block represent ta.cklash in the gear mechanism 

between the motor and the valve . The amount of b:l.cklash , "c " , which 



is difficult to measure
.
in the physical system , will be a variable 

in the derivation of an equivalent gain for this noniinearity . 

equivalent gain , K2 (E2 ) ,  for the N2 (E2 )  nonlinearity is g iven by 

Gibson ( ? ) : 

where : N • 0. 186 � 
rev. 

9 = sin-1  c ; 
'\ . EJ 

c • amount of 'tacklash in revolutions . 

An 

The last component block in figure 17 which need be considered 

is the c3 (s ) block . This block represents the t:ransfer function for 

the irrigation line and discharge lank . As was stated in a previous 
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section , the line can be ma.de analogous to a R-C low i:ass filter for the 

purpose of analysis . This equivalent circuit is shown in figure 18 . 

R1 in figure 18 is a resistor which is related to the friction 

losses in the line from the input of the valve to the pressure s ensor 

input tap. R2 is a resistor which is related to the friction losses 

in the distribution l::ank. The cai:acita.nce , C ,  in � this circuit is 

dependent upon the length and diameter of the distribution lank, and 

the rate of discharge from the 1:a.nk.  The value of these components 

is very difficult to measure. However, the overall effect of this 



component can be ob�erved and a transfer function develope d .  

The transfer func tion , G ( s ) , o f  the equiva lent circuit in 

f igure 1 8  is : 

! 
G ( s ) = R 1 C  

s + R 1 +R2  
R 1 R2 C  (E4_uation 16 ) 

If R2 is much greater than R 1 , a s  would norma l ly be the ca se , s ince 

the orlfice diameter i s  much sma ller than the line diameter equa tion 

16 reduces to : 

_1_ 
G ( s ) = R 1 C  

s + _L 
R 1 C  

If " b  . .  i s  equated t o  _1_, c3 ( s )  is obta ined : 
R 1 C 

G
3

( s ) = _]>_ 
s +b 

A value f or " b "  must now be found . 

(Eg_uation 17 ) 

(Equation 18 ) 

When the total system was a ssembled and tested in the hydra ulics 

laboratory , it was found to oscillate . The frequency of osc illation 

was one cy cle ev ery n ine s e c onds . The output of the pres sure s ensor 

was monitored by a strip-chart recorder. A portion of th is data is 

shoun in f igure 19, The s pikes in t his waveform are due to the 

actua.tion of the relays which allow the mo tor to rotate . The spike 

which occuTs at t=O in f igure 19 corresponds to opening of the relay 

51 ;. 

Which a llows the motor to open the valve . It is shown tha t the pressure 
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continues to rise for a period of time · after the motor has stopped . 

· This implies the low piss filter analogy previously mentioned.  The 

equation for the output pressure, p( t) , from t=O to t=t
1 

i s : 

(Eqiation 19 ) 

where : pl a final pressure 

P0 • initial pressure 

In figure 19 it is shown that : 

P
1 

• 5 divisions 

P0 • 4 divis ions 

p( 0. 4 )  = 4 . 5 divis ions at t=0. 4 seconds . ,, 
Substituting these values into equation 19 and solving for "b" i t  is 

foWld that : 

b a 1 . 74 /second (FAiuation 20) 

All of the component blocks in figure 17 have now been analyzed 

with the excepti on of the single block in the feedblck i:ath. This 

is , of course ,  the pressure sensor. Since this is a unity gain device 

which merely changes units , its transfer function is unity �  

The previous implication i s  tha t all of the component blocks in 

the forward :re.th of figure 17 can now be combined into one equival ent 

transfer function . This , however, is not the case . The best that can 

be done is to combine the linear plrts into an equivalent linear 



transfer funct i on and the nonl inear µtrts into an equiva lent gain . 

Ca.re must aga in be taken , for as is shown in figure 17 the non-

linearities are sere .. rated by a l inear c omponent . This requires a 

special te chnique . 

A procedure for handl i ng th is situa ti on is outlined by Thaler 

and Pa.stel (24 ) . The equiva lent ga in of the c ombination of the two 

nonlineariti es is des ired : 

E2 must be redefined in terms of E1 : 

where : G2 (w) = 1 
w 

(Equa tion 2 1 ) 

(Equation 22 ) 

Note that the 90° phase lag introduced by G2 (tJ) has been neglected . 

This can be done because the equiva lent gain is ampl itude and 

frequency s ens i t ive but not phase s ens itive to its input . _ 

A FORTHAN co:nputer program wa s written and run on the IBM 360 

digita l c omputer to eva luate Keq (E1<.J) as a ftmction of radian 

E 
frequency w ,  the input s i.gna l _1, and the 1:a cklash c .  This program is 

10 

shown in appendix A of thi.s i-ci.per .  

The l inear component blocks o f  figure 17  can be combined by 

c onventi ona l techniques ( 16 )  to y i eld : 



G ( s )  = 1 Ch b  eq s(s+a )  (s +b) 
( Equat ion 23 ) 

The Foud.er transform for the equivalent linear tra.nsfer function 

can be obta ined by re plac ing "s " in equation 23 with "j ;J' . A c omputer 

program , which is shown in appendix B ,  was written to eva luate this 

Fourier transform as a func t i on of frequency , 

The tota l valve c ontrol has now been reduced to two compor.ents , 

the equiva lent ga in Keq (E 1  , w) and the equiva lent linear transfer 

func tion G ( jw) .  The transfer func tion ,  T. F. , f or the va lve · c ontrol eq 

now becomes : 

T . F .  

1 + K ( F.:1 ,w G ( j w ) eq eq 
(Equ=ition 24) 

The denom i na tor of equa t ion 24 , the characteristic equation , i s  m ost 

important . When the d enom ina tor of equa tion 24 takes on the value 

of z ero , system instabj_ l ity could result . In plrticular � the system 

c ould osci l late . A pl ot of G ( jw) and - 1  can be made in 
eq K f E CJ) eq \ 1 ' 

the frequcn0y doma in . The inters ections of these two loci a re 

solutions to the chara c teristic equat i on . The two previously ment ioned 

computer programs are used to obta in the data for this plot which is 

shown in f igure 20 .  

1ami· 1y of curves in figure 20  are all ca lcuL-1 ted 
The nonlj_nearity ' s .... 

� 
at a Of Ol1e Cv cle every n ine seconds , f - - 0 . 1 1 1  Hz . 

constant frequency .; 
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The "X" indi ca tes the point on the equivalent linear transfer :funct ion 

curve where f = 0. 1 1 1  Hz . As is shown an intersection depicting a 

limit cycle is indicated for a l:acklash , "c " ,  of J/8 revoluti on .  This 

i s  a reasonable value . 
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COMPENSATION 

It is desirable to nanipulate either the linear . or nonlinear 

locus in figure 20 to avoid an intersection of the two and thus 

avoiding the possibility of oscillation.  Many techniques have been 

proposed to accomplish this for this type of system . 

Recent :IRpers ( 19 ) , (22 ) describe techniques for compensating 

the nonlinear :rart of the system . These techniques almost always 

employ the addition into the system of an extra nonlinearity or 
\\. 

extra high frequency input signal.  This is  costly in two respects . 

First , these techniques ten.fl to smooth out the original nonlinearity 

which would be undesirable in this case . Secondly , the c ircuitry 

required to implement these techniques is usually complicated and 

costly . 

Linear compensation techniques , on the other hand, rarely 

produce any undesirable effects in the system ' s  response and are more 

59 

easily implemented. The "classical" technique for linear compensation 

is presented by Kochenberger ( 14 ) . His method is to add a i:assive 

element filter into the system directly preceeding the nonlinearity. 

In this manner, phase lead or phase lag compensation of the linear 

locus can be obtained by the use of a high or low i;.e.ss f ilter. The 

only disadvantage in this method is that by using :rassive elements 



in the compensation network the steady state error and thus the 

res olution is increased. This is due to the fact that the gain in 

any iassive element network must be less than unity. The technique 

which will be used here is to employ an active element filter for 
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the compensator network. In this manner the resolution of the c ontrol 

will not have to be sacrificed s ince the minimum gain is unity. 

The circuit to be used will employ a UA-741 operational amplifier 

opemted in the voltage follower mode. This operating mode ensures 

that the circuit gain will be a minimum of unity. Thus the resolution 

of the control is not affec"ted. Unlike the inverting mode , the voltage 

follower mode provides no added phase shift between input and output. 

The approximate voltage gain eqtl:3.tion for the voltage follower 

mode is given by (4) : 

where : Z = circuit input impedance I 

Z c: impedance in the f eedb3.ck loop. F 

(&}.tation 2.5) 

If' � in equation 25 is replaced by a pi.ra.llel R-C network, �fj c ,  

R I '  the circuit ' s  "s " domain transfer function ,  and z1 _ ,"rith a resistor ,  

c4(s ) , becomes : 

s + 1 
RFC 

(Eq_u:3.tion 26 ) 



This yields the desired low i:ass filter effect with the advantag e  

of having n o  attenta tion .  

In figure 2 0 it i s  shown that an added 25° of phase la g  at 

the frequency of 0 . 1 1 1  Hz , would move the l inear locus out of the 

range of pos s i ble inters ections . Wi th this as a design c on s tra int 

·-
and picking C and R1 to be 10  uF. and 10 k ohms res pectively , RF 

was found t o  be 78 . 4  k ohms . The total compensator c ircuit is shown 

in figure 2 1 .  

Th e  8. 1 k ohm res is tor in series with pin 3 represents the 

equiva lent DC :i;ara llel of Zj' and Zr This helps to ma intain DC 

stabi lity .  The 10 k ohm potentiometer between pins 1 and 5 can a ls o  

be adjus ted to ma inta in zero offs et . The 100 k ohm potentiometer 

6 1  

in series and the 8 . 3 k ohm resistor in shunt with the input repre sents 

a voltage divider network which adjusts the voltage gain of the 

c ircuit and thus the res olution of the control . This effectively 

shortens or lengthens the dead zone of the trigger circuit in f igure 

9. The .± 18 v .  power supply which is required by this c ircuit i s  

ava ilable from t he  error detector power supply i n  figure 1 1 .  

The computer program in appendix B i s  revised to include 

eqt.ation 26 in the equiva lent transfer function of the linear :inrt 

of th e control . This program is sh own in appendix C of this pl.per . 
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The locus of the c ompensated linear JB.rt in the frequency doma in is 

also shown in figure 2 0 .  

As i s  shown i n  figure 2 0  the compensation ha s  added enough 

pha se lag into the control to avoid an intersection with the 

equivalent gain loci . This ensures that the valve control will not 

be unstable . 

6) 



CONCLUS IONS AND RECOMMEL'TDATIONS 

It should be po inted out here , that the sys tem is by no means 

a fin ished product .  At best i t  re presents a n  experimenta l  model used 

in a study to determine the feasibi lity of c ontroll ing irrigat i on by 

elec trica l means . The c oncepts and methods us ed throt:ighout thi s  

:fS. per are all va lid and s e emed to work quite well . However , there have 

been several things l eft for further inves tigation. 

When the compensated system was a ssembled and tested , it met 

w ith lim ited suc ces s . The va lve c ontrol did not oscillate over the 

range of the valve chara c teris t ics which were cons idered . It did .. 
os c i l late at a much lower frequency and larger amplitude when the 

valve wa s  opera.t ing in the fla tter portion of its chara.c �eristic 

c urves . This c ould be due to the tremendous difference in the ga in 

of the va lve at thes e two pos itions . When the ga in ·  of the linear 

re.rt of the system decrea s es the linear locus in f igur� 20 moves 

c loser to the orig in . Thi s produc es an intersection w i th the nonlinear 

loc i at a l ower frequency . Further resea rch should be done and a 

study made into the a:r:ea of finding the proper characteristics that 

a valve should possess to optimize the effect of the valve control . 

Another area for further investigati on includes a s tu y 

inv�stigat ing the fe� s ibility of a dig ital time sampling sys tem 



rather than the analog pos iti oning system whic!1 was developed.  In 

this system the va lve c ontrol would be less sens itive to small 

variations in supply over short periods of tim e . This implies tha t 

s ome guide lines must be developed for the stability of' the supply . 

65 

The value of the c omponents in equivalent c ircuit of figure 18 

has been left for further investiga tors . Modification of this c ircuit 

may be nec essary ,  to inc orpora te the effect of the a ir which is 

trapped in the distribut ion lank during an irrigation .  This effect 

is ana logous to an underdamped s pring mass system . The addi t l on of 

an inductor "L" into the equivalent circuit would s imula te this effect .  

The las t  area for further investigation involves a study of the 

reliabi lity , ma inta ina bility ,  and useful life of the sys t em .  As 

was pointed out in the i ntroduction and state of the art , a useful 

l ife of at least 1.5 years is mandatory . Thi s  a llows the total sys tem 

to be economica l .  
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APPENDIX A 

This is an IBM 360 computer program which evalua. tes the 

equivalent gain of the nonlinear pirt of the system . Radian 

frequency, l::a.cklash , and input voltage are variables in this 

program. 

C D E S C R I B I N G F UN C T I ON A N A L Y S I S  OF N O N L l N E A R I T Y 

CO M P L E X  A l , A 2 , X , A E Q 
1 1  F O R M A T ( l H , l l F l 0 . 3 )  

C = 0 . 2 5 0 

1 0  E l = 0 . 5 0  

2 0  Q l = A R S I N ( 0 . 4 / E l J  

f = 0 . 1 1 1  

Q 2 = A R 5  I N  ( o .  3 / E  l J  

8 1 = ( 0 . 2 7 6 / E l ) * ( C O S ( Q l l £ C O S ( Q 2 J l 

B 2 = ( - 0 . 2 7 6 / c l ) * ( 5 1 N ( W l ) - S I N ( Q 2 ) J 

A l = C MP L X l B l , 8 2 )  
X = ( E l * A l ) / ( f * 6 . 2 8 ) 

E 3 = C A B S ( X ) 

Q 3 = A R S I N ( C / E 3 )  

D l = O . l l 8 * ( 0 . 7 8 5 & ( Q 3 / 2 . 0 ) & ( S I N ( 2 . 0 *Q 3 ) ) / 4 . 0 )  

D2 = - 0 . l l A * t C � S ( Q 3 ) * * 2 ) 

A 2 = C M P L X ( O l , D 2 )  

A E Q = A l * A 2  

Z l = K E A L ( - A E Q ) 

Z 2 = A H11 A G ( - A E O J 

Y = l . O/ C A B S ( A c :J ) 

Q 4 = - 5 7 . 3 * A T A N 2 ( Z 2 , Z l )  

W R I T E ( l 2 , l l ) A l , A 2 , Y , Q 4 , E l t C t F , A E Q  

E l = E l & 0 . 1 0 

I F ( t l . L E . l . O l G O T O  2 0  

C =C � 0 . 1 2 5  

l f ( C . L E . 1 . 0 ) � 0 T O  1 0  
E N O  

69 



APPENDIX B 

I 1 '  / 
I 

This is an IBM .36 0 computer program which evaluates the 

equivalent transfer function of the linear uncompensated 

J;art of the system. Radian frequency is the only variable in 

this program. 

C L I N E A R  P AR T  O f  T HE S Y S T E M 
COMP L E X  O , E , X , R  

l F O R M A T ( l H , 3 F l 0 . 3 )  

F = 0 . 0 5  
A = l . O  
6 = 1 . 7 4 0  

2 W = 6 . 2 8 * F  
O = C M P L X ( O . O , W )  

70 

C =C M P L X ( ( ( W * * 2 l & l 4 . 4 ) / ( ( W * * 2 ) & l . b 4 )  , - 1 0 . 0 * W / ( { W * * 2 ) & l . 6 4 ) )  
E = C M P L X ( A , W ) 
R= C M P L X ( 8 , W )  

X= ( l O . O * A * B ) / { O * E * R ) 
G = C A B S ( X l  
Q= 5 7 . 3 * A T A N 2 ( A l M A G ( X ) , R E A L ( X ) )  
W R I T E ( l 2 , l ) G , F , Q 
f = f � 0 . 0 2 5  
I F ( F . L E . 0 . 7 S O ) G O T O  2 
E N O  



APPENDIX C 

This is an IBM 360 computer program which evalta tes the 

equivalent transfer function of the compensated linear i:art 

of the system. Radian frequency is the only variable in this 

program . 

C AC T I VE E L E � E � T  C O M P E N S A T I O N OF Trl E L I N E A R P A RT 
C OM P L E X  c , o , E , X , R  

1 F O RM A T ( l H , 3 F l 0 . 3 )  
F = 0 . 0 5  

A= l . O  
B= l . 7 4 0  

2 W = 6 . 2 8 * F  

7 1  

O = C �1 P L X (  O .  o ,  W )  
C = C M P L X ( ( ( W * * 2 ) & 1 4 . 4 ) / ( ( W * * 2 ) & 1 . 6 4 ) , - 1 0 . 0 * W / ( ( W * *2 ) £ 1 . 6 4 ) ) 

E = C M P L X ( A , W )  

R= C M P L X ( B , W )  
X = ( l . 4 l * A * B � C ) / I D * E * R ) 

G= C A B S ( X )  

·Q= 5 7 . 3 * A T A N 2 ( A I MA G ( X J , RE A L ( X ) )  
W R l f E ( l 2 , l ) G , F , Q 
F = F & 0 . 0 2 5  

1 F t f . L E . 0 . 7 5 0 J G O  T O  2 
END 
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