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ABSTRACT 

 

ANTIDIABETIC ACTIVITY OF CISSUS ROTUNDIFOLIA PLANT GROWING IN 

SAUDI ARABIA 

 

SAAD ALSHEHRI 

2020 

 

Diabetes mellitus (DM) is a metabolic disease characterized by high levels of blood 

glucose resulting from defects in insulin production or action. A world-wide increase in 

the diabetes rate is projected to reach pandemic levels over the next 10-20 years. Current 

data shows that high numbers of the population in Saudi Arabia suffer from diabetes and 

prediabetes. Non-traditional treatments of diabetes from medicinal plants has shown 

potential antidiabetic activity. A considerable percentage of the population still prefer or 

use medicinal plants as a treatment or supplement to traditional medicine. Cissus 

rotundifolia (family Vitaceae) is a known plant in southwestern Saudi Arabia used by 

people in the region to treat skin diseases, burns and diabetes. The chemical and 

biological characteristics of Cissus rotundifolia’s active compounds are unknown. The 

aim of this study to investigate the chemical and biological properties of this medicinal 

plant using bio-assay guided separation. Aqueous methanol extract of Cissus rotundifolia 

was fractionated by partitioning against hexane and ethyl acetate. Methanol, ethyl acetate 

and hexane extracts were then screened for antidiabetic activity using an alpha-

glycosidase assay at a concentration of 12.5-50 mg/ml. Methanol extract showed a 

significant alpha-glucosidase inhibition percent of 58-95%. Further, LC separation 



 xvi 

afforded six compounds isolated and characterized using 1H-NMR, 13C-NMR and 

2DNMR. Two of the isolated compounds: 3 and 4 (1,4-dimethyl 2-hydroxybutanedioate 

and 3-hydroxy-4-methoxy-4-oxobutanoate, respectively) showed a significant inhibition 

of alpha-glycosidase enzyme in the range of 25% to 50% at a concentration range from 

1.00 – 0.25 mg/ml. Also, since glucose uptake is considered one of the main pathways to 

control blood sugar levels, the fractions and the isolated compounds were investigated for 

their glucose uptake activity. Glucose uptake assay results showed that the ethyl acetate 

fraction has a significant uptake activity. The isolated compounds 3 and 4 showed 

increased of glucose uptake activity reach of 19 % and 25%, respectively, with Insulin 

used as the positive control. Structural similarities of isolated compounds to malate which 

is a main substrate of citric acid cycle, prompted us to build hypothesis that these 

compounds might interfere with gluconeogenesis process through inhibition of the citric 

acid cycle. Molecular modeling study of isolated compounds and their analogs targeting 

all enzymes involve in citric acid cycle was conducted to examine potential binding 

affinity of these compounds toward proteins in citric acid cycle. Docking study showed 

analogs S-2-aminosuccininamide (AN21), levulinic acid and isolated compound SAA4 

exhibiting high affinity binding to the fumarase enzyme that plays an important role in 

citric acid cycle. Docking study clearly suggest compound SAA4 has potential inhibition 

of gluconeogenesis.  In conclusion, this study authenticated that C. rotundifolia potential 

antidiabetic activity through inhibition of intestinal α-glucosidase, induction of glucose 

uptake activity and possible inhibition of gluconeogenesis. 

 

 



 1 

 

1 CHAPTER ONE: GENERAL INTRODUCTION AND BACKGROUND 

1.1 Natural products 

1.1.1 Natural product overview 

Plants produce different types of metabolites (primary and secondary) which 

regulate multiple functions.1 Primary metabolites are synthesized by plants to maintain 

biochemical processes such as growth and development. Primary metabolites include 

amino acids, simple sugars, nucleic acids, and lipids. On the other hand, secondary 

metabolites are chemicals synthesized by plants to perform specific functions that are not 

necessary for biochemical processes. Alkaloid, terpenoid and phenolics are the major 

groups of compounds in plants (figure 1). Secondary metabolites are chemicals 

synthesized by living organisms to perform certain functions that are not specifically for 

biochemical processes; for example, defenses against herbivory or pollinator attraction. 2 

Natural products are defined as organic compounds originating from living organisms 

such as animals, plants and microorganisms.3 However, the term "natural products" is 

established from secondary metabolites.3 According to the definition mentioned 

previously, natural products refers to whole organisms such as plants; animals; parts of 

organisms like leaves, roots or flowers; extracts from organisms; isolated animal organs; 

or pure compounds isolated from organism extracts such as flavonoid, terpenoid, alkaloid 

or steroid.3  

1.1.2  Natural product history as source of novel medicine 

Plants are always very rich sources of drugs, and the majority of currently 

available drugs on the market have been derived—directly or indirectly—from plants.4, 5 
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In fact, plants have actually provided a starting point for the synthesis of over 50% of 

available used pharmaceutical drugs.6 For example, Glucophage® (metformin), one of 

the cheapest and most popular oral hypoglycemic drugs available nowadays on the 

market, is derived from Galega Officinalis (Fabaceae).3 Based on ethno-botanical data, 

about 800 plant species show hypoglycemic activity and more than 1,000 plants 

worldwide have been used as folk medicine to control of type-II diabetes.7 Momordica 

charantia, commonly known as bitter melon, is one of the most common plants used to 

treat diabetes in the world, particularly in Asia, South America and India. Folk medicine 

of various native communities has long used medicinal plants to treat diabetes. 

Examining this practice provides a new area of research on the antidiabetic effect of 

medicinal plants.8 Natural products, especially medicinal plants, have played a very 

important role in treating human disease, and the use of medicinal plants has been dated 

back to ancient times.3 Natural products are used in the treatment of numerous health 

conditions. Further, the use of natural products for medicinal purposes by countries such 

as India, China and South Africa has been practiced for thousands of years.3 According to 

the World Health Organization (WHO), 65% of the global population is dependent on 

natural products for healthcare.3 In China, for example, more than 7,295 plant species are 

used as sources of medicinal agents.3 Today, in developed countries, 70% to 80% of the 

population uses some form of alternative or complementary medicine.3 Moreover, herbal 

medicine is one of the most popular forms of traditional medicine in addition to being 

ranked as the most lucrative industry in the international marketplace.3 Various cultures 

worldwide still rely on herbal medicines with approximately 38% of American adults 

using alternative medicines.9 People depend on alternative or complementary medicine 
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primarily to manage side effects of pharmaceutical drugs or turn to it as an alternative 

when pharmaceutical options do not provide relief from disease. The drug discovery field 

depends on natural products for new medicines especially because existing therapies have 

many side effects that result in the recall of drugs.10 Therefore, there is a need to study 

these medicinal plants in order to give scientific authentication to the proper use of these 

plants and remove any medications that may cause harm to patients. It is encouraging to 

see that, recently, many researchers became interested in giving scientific authentication 

to the activity of plants used in traditional medicine around the world.  

1.1.3 Sources of natural products 

Sources of natural products are numerous and may include plants, marines, 

animals and microbes. Plants are the richest source of natural products, and the use of 

certain plants can be seen in herbal medicine throughout human history.6 The current 

predicted number of plant species worldwide is around 250,0000.11 However, a limited 

number of these plant species have been screened for medicinal properties. In fact, less 

than 10% of medicinal plant species have been investigated and validated for their 

medical properties.12 Furthermore, un-investigated plants could be a major source in drug 

discovery. Therefore, the search for effective, safe, affordable and convenient agents 

from medicinal plants has continued to be an important area of investigation. Numerous 

drugs currently available on the market have been derived from plants either directly or 

indirectly.13, 14 Examples include the narcotic analgesic morphine from Papaver 

somniferum, the anticancer drug vincristine from Vinca rosea, the antimalarial drug 

artemisinin from Artemisia annua, the anticancer drug Taxol from Taxus brevifolia, the 
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antibiotic penicillin from Penicillium ssp and the most common antidiabetic available 

drug Metformin derived from Galega officinalis plant.3, 14 (Figure 1-1) 

 

 

 

 

Figure 1-1: Structure of some important plant-derived drugs. 
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1.1.4   Drug discovery from natural product 

Compounds isolated from natural products have a significant role in the discovery 

and developments of new medicines.7 In spite of combinatorial chemistry’s proposals of 

new drugs, natural products still remain the main sources of drug discovery and are 

involved in the most used clinical drug available today.8 According to a study of all new 

chemical entities (1,355 total) accepted as new medicines in the period time between 

January 1981 and December 2010, 26% are natural products or their derivatives, and 

another 24% are synthetic natural product mimics or have natural product 

pharmacophores. Also, 15% are biological macromolecules such as peptides, 6% are 

vaccines and 29% are totally synthetic (Figure 1-2). 15 These data obviously prove that, as 

a minimum, 50% of all these new drugs are related to natural products. In 1999, one of 

the top twenty best-selling, non-protein medicines (simvastatin, pravastatin, lovastatin, 

augmentin, enalapril, atorvastatin, ciprofloxacin, cyclosporine clarithromycin and) were 

originally natural products or their synthetic derivatives, with expected sales exceeding 

$16 billion annually.16 In addition to the important of natural products as sources of drug 

leads and the significant role of natural products in drug discoveries, natural products 

have greater chemical novelty and large-scale structural diversity than any other drug 

sources.16  

 About 40% of the natural products recorded in the natural products database 

(Dictionary of Natural Products, Chapman & Hall) are not derived from synthetic 

chemistry.16 On the other hand, a variety of tools have been established to accelerate the 

drug discovery process. Among the most popular and frequently used tools in drug 

discovery are bioassay-guided fractionation and computer-aided drug design. 
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Figure 1-2: Natural products as sources of new drugs over 30 years (1981 to 2010)  Reprinted 

from 17.  

1.1.4.1 Bioassay-guided fractionation  

The bioassay-guided fractionation method is frequently used in drug discovery 

involving natural products because of its ability to connect the chemical profile of 

extracts and fractions to specific biological tests.18 Bioassay-guided fractionation is a 

process of generating a fractionated and refractionated extract using several analytical 

methods until a pure biologically active compound is isolated.19 This technique begins 
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with fractionating the crude mixture into several fractions, then each fraction is estimated 

using different bioassay systems. Only biologically active fractions are exposed to a 

further fractionation process. The process of  fractionation and biological assessment 

continues until a pure biologically active compound is isolated.3 The general steps of 

bioassay-guided fractionation are presented in Figure 1-3.  

 

Figure 1-3: The general steps of bioassay-guided fraction.3 

 

1.1.4.2 Computer-aided drug design  

Connecting computational power and progressive technologies to combined 

chemical and biological fields has extremely accelerated drug discovery, design, 

development and optimization.20 Computer Aided Drug Design (CADD) is an approach 

that plays an essential role in drug discovery and has increasingly become widespread in 
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the pharmaceutical industry.20 Practically, Computer Aided Drug Design (CADD) refers 

to diverse terms like computational drug design, computer–aided molecular design 

(CAMD), rational drug design, computer–aided rational drug design, computer–aided 

molecular modeling (CAMM) and in silico drug design.20 Computer Aided Drug Design 

(CADD) is generally expressed using computational tools and resources for the storage, 

management, analysis and modeling of compounds.20 The fundamental goal of CADD “is 

to discover hits (active drug molecules), determine leads (the most likely candidates for 

further evaluation), and modify leads i.e. transform biologically active molecules into 

suitable drugs by improving their properties such as physicochemical, pharmaceutical, 

ADMET/PK (pharmacokinetic) properties.”20 Several computational tools are used in the 

computer-aided drug design process; these include ligand and structure-based 

pharmacophore modeling, homology modeling, docking and scoring, ligand-based 

quantitative structural activity relationship development, molecular dynamics simulation, 

similarity-diversity analyses, designing and enumerating virtual libraries, virtual high-

throughput screening and computational prediction of absorption, distribution, 

metabolism, elimination (ADME) properties.21 There are two types of CADD approaches 

based on the availability of the experimental 3D structures of the target proteins. The 

ligand-based drug design approach, such as pharmacophore analysis and Quantitative 

Structure Activity Relationship (QSAR), can be used when protein structures are 

unknown. Otherwise, the structure-based approaches, for example molecular docking, 

can be utilized when protein structures are known.17  
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1.1.4.2.1 Molecular docking  

Molecular docking is the most commonly used strategy in the structure-based 

drug design approach. It is also used in the drug discovery method to find the highest 

matches between a receptor and a ligand.17 The molecular docking process involves 

predicting the conformations and orientation of a compound in the active site of target 

macromolecules and detecting the preferred configurations and conformations of 

molecules interacting therein.17 The major objectives of molecular docking are to perfect 

structural modeling and make a suitable prediction of activity.3 Furthermore, molecular 

docking has been used in different stages of the drug discovery pipeline, such as 

quantitative structure activity relationship, virtual combinatorial library generation, lead 

optimization and the discovery of a potential lead through virtual screening.22 In addition, 

the application of molecular molding has been used to study of the physico-chemical 

parameters of the ligand, involving absorption, distribution, metabolism and 

elimination/toxicity using different applications and programs.20 In molecular modeling, 

the scoring function is commonly used to determine the interaction between the ligands 

and the binding sites of target macromolecules. For example, using one of the scoring 

methods employed in virtual high throughput screening, a virtual library of a significant 

number of ligands docked into the binding sites of target macromolecules is created, 

which are then scored based on their affinity to the binding sites of the target 

macromolecules.21 There are large numbers of docking programs that have been 

developed and are used in the drug discovery process, including AutoDock, DOCK, 

ArgusDock and FTDock.21 OpenEye Software sets (Fast Rigid Exhaustive Docking 
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(FRED), make Receptor, Omega, FRED and VIDA) were used to run the molecular 

docking studies. 

 

1.2 Saudi flora 

Saudi Arabia is a Middle Eastern country with a population of more than 25 million 

people. In Saudi Arabia, people live in both urban and rural areas and quit sectors are still 

use traditional natural medicine for health care and treatment of diseases.23 Saudi Arabia 

has biodiversity, which consists of an admixture of elements from a variety regions like 

Asia, Africa and the Mediterranean. The mountainous area of southwestern Saudi Arabia 

is characterized by the richness of its flora and its species diversity.24 This region, from 

Taif to the Yemen border, contains about 70% of Saudi flora. The southwestern part of 

Saudi Arabia has the largest number of these medicinal plants spread in area named 

Alsawdah mountain near the city of Abha, the capital of Asir province.4 The climate in 

this region differs from all other regions of Saudi Arabia due to the heavy rainfall and 

high altitude.4 The climate around the Abha area is characterized by differences in 

temperature and relatively high rainfall throughout the year coupled with complex 

topography, resulting in the construction of unique and diverse plant communities.21  

Saudi flora contains 2,250 species arranged in 142 families; among these, more 

than 1,200 species are expected to have medicinal uses.25 However, a limited number of 

these plant species in this rich flora area have been screened for medicinal properties. 

1.3 Vitaceae family  

Plants of the grape family, the Vitaceae family, are identified by their climbing 

vines and tendrils and the distinctive clusters of berries.26 The leaves are represented 
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alternate, forming opposite from the tendrils and flowers. Flowers are regular with 4 or 5 

small sepals.27 There are 4 or 5 petals, which may be united at the tips, falling away as 

the flower opens with4 or 5 stamens. The ovary is positioned superior and consists of 2 

(rarely 3 to 6) united carpels (syncarpous) with the partition walls present to form an 

equal number of chambers.26, 27 It matures as a berry with 1 to 2 seeds per cell. Most 

members of the Grape family have edible leaves, stems, sap, and berries. The vegetation 

is often mildly astringent.27   

1.3.1 Genus  

The Cissus genus contains about 350 species; some of these species are used in 

herbal medicine as treatment or supplement for different ailments. For example, Bush 

Medicine Practitioners in Australia use C. hypoglauca as medicine for sore throat.28 In 

Asia, many cultures use local species of Cissus to treat different aliments. In China, C. 

assamica, is often used as an anti-snake venom as a result of decreasing endothelin-1 and 

sarafotoxin 6B,29 while in India and Sir Lanka, a species called Cissus quadrangularis is 

used for wound healing30 and as agent with anti-obesity activity.31 C. hamaderohensis is 

used in West Asia, it is reported to inhibit the angiotensin converting enzyme (ACE), 

aminopeptidase N (APN) and neutral endopeptidase (NGP).32 In Africa, several countries 

use species of Cissus in their herbal medicine; for example, in Cameroon, they use C. 

aralioides as an antimicrobial agent.33 Cissus rotundifolia is one of the known species in 

Africa and Asia. It shows anti-bacterial properties as a crude methanolic extract; 

however, it has not been investigated to identify the active constituent compounds. The 

methanolic extracts of cissus rotundifolia were screened for their antibacterial activity 

against different kind of bacteria such as against Bacillus cereus, Staphylococcus aureus, 
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Listeria monocytogenes, Escherichia coli.34,35 C. rotundifolia is one of the common plant 

species growing in southwestern Saudi Arabia and is used locally to treat different 

aliments in traditional medicine such as skin disease , burns and to control the high blood 

glucose in diabetic patient. Based on the efficiency of cissus rotundifolia in traditionally 

uses, Investigation of the antidiabetic activity of C. rotundifolia might lead to a new 

effective and safe antidiabetic agent so I focused this study on C. rotundifolia to 

determine the plant compounds that have potential antidiabetic activity. 

 

1.3.2 Cissus rotundifolia  

Cissus rotundifolia is a perennial, climber, evergreen wild plant belonging to the 

family of Vitaceae (grape family).36 It is known as a common Arabian wax cissus, Peru-

vian Grape Ivy, Venezuelan tree bine and, locally (in south of Saudi Arabia), as 

Algalaf.37 It is commonly used as a food thickener. Moreover, it was found to have many 

therapeutic effects such as hypoglycemic and hypolipidemic as an extract however it has 

not been investigated for specific active compound.34, 38 In addition, its extract shows 

antibacterial activity.35 Cissus rotundifolia grows extensively in the southern part of 

Saudi Arabia, and its leaves are widely consumed after cooking as leafy vegetables. It is 

commonly used to prepare various dishes according to the traditional dietary culture of 

locals and used as alternative medicine to reduce the blood glucose for diabetic patients 

and skin burns.37 However, it has not been studied for its antidiabetic activity. Therefore, 

this study aimed to evaluate the antidiabetic components of Cissus rotundifolia leaves. 
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1.3.3 Morphology  

 
Figure 1-3 : Cissus rotundifolia (Arabian wax cissus, grape ivy) 

 
The Cissu rotundifolia plant is a strong climber up to 30 ft long. Stems are often 

4-5 feet sloping and soft of hairless.27 Tendrils are 2-fid. C. Rotundifolia leaves are 

simple and sometimes lobed. Leaf-stalks are soft, up to 1 cm long and up to 8 x 8 cm in a 

circular to ovate shape, blunt at the tip, heart-shaped at the base with a toothed margin, 

velvety to hairless on both sides, thick and fleshy.27 Stipules are up to 4 mm long, 

semicircular, and hairless. The flowers are borne in lax cymes, leaf-alternated and at 

branch ends.36 Cymes are carried on 3 cm long stalks and flower-stalks are 4-5 mm and 

flower-buds are 3.5 x 1.5 mm.36 Petals are green and the ovary hairless with a length of 

0.5 mm. Fruit is 1.5 x 1.3 cm and red when ripe. Seeds are 1-2 per fruit, 9 mm. long, and 

smooth with a single crest.27, 36 Cissus rotundifolia is native to Africa and the Arabian 

Peninsula.37 
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1.3.4 Taxonomy 

The generic name originated from the Greek word kissos, meaning "ivy."39 In the 

1980s, the genus was divided according to certain details of the flower. The large 

caudiciform species were changed to the new genus Cyphostemma. The genus name was 

started by Car Linnaeus who used species epithets that are adjectives with the feminine 

grammatical gender in Latin (e.g., C. trifoliata L.). This matches the form of tree names 

ending in -us in Latin and having feminine gender.40 The Cissus rotundifolia plant 

belongs to one of the biggest kingdoms of plant called Plantae. The general taxonomy of 

Cissu rotundifolia as shown in table 1. 

 

Kingdom Plantae– plantes, Planta, Vegetal, plants 

Subkingdom Viridiplantae – green plants 

Infrakingdom Streptophyta – land plants 

Super division  Embryophyta 

Division Tracheophyta – vascular plants, tracheophytes 

Subdivision Spermatophytina – spermatophytes, seed plants, phanérogames 

Class  Magnoliopsida 

Superorder Rosanae 

Order Vitales 

Family Vitaceae – grapes 

Genus  Cissus L. – treebind, treebine 

Species Cissus rotundifolia (Forssk.) Vahl – Venezuelan treebine 

Table 1-1: General taxonomy of Cissu rotundifolia. 
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The species of Cissus genus are frequently used as medicinal plants as they 

contain vitamins, proteins, polyphenols and carbohydrates. Leaves of Cissus genus 

contain Sterols, Quinones, and Phenolic compounds. In addition to, Anthocyanins, 

Saponins and flavonoids are found in the plants leaves and fruits.41 Phytochemical studies 

on methanol extract has been reported the presence of triterpenes including α- and β- 

amyrins, β-sitosterol, ketosteroids, phenols, tannins, carotene and vitamin C. 41 

1.3.5 Occurrences of Cissus rotundifolia 

Cissus rotundifolia is one of the most common plants that grow freely in the wild 

with no agricultural treatments that allow this plant to be consumed as a food.37 This 

species of plant is consumed worldwide in both developing and developed nations and 

provides nutrition and food security for poor rural communities in several regions.42, 43 

For example, C. rotundifolia serves  as a diet supplement in Japan, Europe and North 

American.44-46 The known plants of these species are rich in minerals, dietary fiber, 

vitamins, amino acids and fatty acids.47, 48 Previous studies showed that the 

corresponding domesticated types of these plants have some therapeutic potential; for 

example, phytic acid has been shown to have anticancer and antioxidant activity.49, 50 

Therefore, there are indeed reasons to investigate the nutritional impacts of this plant. 

Moreover, it is necessary to understand its impacts on consumer’s health51. 

1.3.6 Medical uses of Cissus Rotundifolia 

Cissus rotundifolia (fam, Vitaceae) spread from the African Mediterranean region 

and are currently cultivated in many countries worldwide.37 It was consumed by the 

ancient Greeks, Romans and Persians and reached the Far East being used either as a 

food or alternative medicinal as anti-inflammatory.26 In the southwestern part of Saudi 
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Arabia, people use the leaves of cissus rotundifolia to control a variety of medical issues 

like skin disease, burns, cold symptoms and, in traditional medicine for the patient who 

suffers from diabetes to control the high level of glucose in the blood.37 

1.4 Diabetes mellitus overview 

Diabetes mellitus (DM) is a metabolic disease characterized by high levels of blood 

glucose resulting from defects in insulin production or insulin action. The increase of the 

diabetes rate world-wide is projected to reach pandemic levels over the next 10-20 years. 

1.5  Classification of diabetes mellitus 

In 1997, the American Diabetes Association (ADA) established new classification 

criteria for diabetes mellitus disease.52 The ADA classified Diabetes in four clinical 

classes: the first clinical class of diabetes is Type 1 diabetes (T1DM) based on β-cell 

destruction leading to absolute insulin deficiency. The second class is the most common 

type of diabetes; type 2 diabetes mellitus (T2DM) diagnosed due to a progressive insulin 

secretory weakness on the background of insulin resistance. The third clinical class of 

diabetes includes other specific types of diabetes resulting from other causes such as 

genetic defects in insulin action, genetic defects in β-cell function and diseases of the 

exocrine pancreas. The fourth class is Gestational diabetes mellitus (GDM) that occurs 

under specific health conditions and is diagnosed during pregnancy.53 

1.6 Clinical diagnosis of diabetes  

Diabetes can be diagnosed through direct blood glucose level testing during 

individuals primary clinical care with low-risk and diabetes risk assessment. Early 

diagnosis of type 2 diabetes mellitus (T2DM) is recognized by blood tests that measure 

plasma glucose levels (PG).52 The fasting plasma glucose level (FPG) is the most 
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preferred test to detect the blood glucose level in the body with a level of ≥126 mg/dL or 

7.0 mmol/L verified by doing the test again on another clinic visit. This test needs fasting 

for at least 8 h. Another test is the 2-hour plasma glucose (PG) of ≥200 mg/dL or 

11.1 mmol/L in a patient with frank symptoms of diabetes like polyuria, unexplained 

weight loss and polydipsia.54 A positive result of the oral glucose tolerance test (OGTT) 

will demonstrate a PG level of ≥200 mg/dL or 11.1 mmol/L after a glucose load 

containing 75 g of glucose solution in water. Although the two-hour PG OGTT test is 

more accurate, it is not commonly used in the clinic because of less convenience and 

more expense for patients.  

1.7 Clinical management of diabetes 

 The initial evaluation required for a patient suffering from a high blood glucose 

level is specific to the patient’s risk factors and symptoms. Comprehensive care for a 

patient to help to optimally manage the diabetic case or even diagnose prediabetes is 

necessary. The main way to control diabetes proceeds from Non-pharmacological therapy 

(e.g. lifestyle change) to using antidiabetic therapy followed by blood glucose 

monitoring. 

1.7.1 Non-pharmacological Management 

1.7.1.1 Lifestyle Modification 

Lifestyle modification is the most effective way to prevent one of the most 

common type of diabetes (T2D) and leads to about a 58% reduction in risks over 3 years 

.55 The patient suffering from one or two of high risk factors is highly recommended to 

implement lifestyle changes such as healthy diet and more time exercising. Later, the 

diabetic patient already suffering from diabetes, needs to follow up with nutrition 
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specialists to follow the right diet that will help to avoid sugar sources that increase the 

level of blood glucose. On the other hand, the patient diagnosed with diabetes needs to 

moderate his/her weight loss (~ 7% of body weight) as one of the important tactics to 

control diabetes and impact the cholesterol level in addition to positively controlling  

blood pressure.55 Diabetic patient can manage weight loss with a balanced diet, avoiding 

carbohydrates and control of the calories daily consumed.56, 57 

 Also, other studies show that exercise plays an important role in preventing and 

controlling hyperglycemia (lower HbA1C level by 0.66%).57 Exercise is considered an 

essential part in order to prevent and control both prediabetes and diabetes. The U.S. 

Department of Health and Human Services recommends that adults ≥18 years of age need 

to do at least 150 min/week of moderate exercise, such as walking for 15 to 20 min, or 75 

min/week of intensity physical activity like running and aerobics over at least 3 days per 

week to achieve the benefits.52, 54 For patients younger than 18 years old, the U.S. 

Department of Health and Human services recommends 60 min of physical activity 

daily.52 

 In addition to the lifestyle modifications mentioned previously, the diabetes 

patient needs to moderate alcohol consumption, especially the patient suffering from any 

another cardiovascular disease, such as hypertension, with diabetes. Also, consumption of 

alcohol in a fasted state is considered life-threatening in that it can cause hypoglycemia 

and coma. In general, diabetic patients need counseling and psychosocial support to 

successfully fight the complication effects of diabetes.58 
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1.7.2 Pharmacological Management 

Diabetes mellitus is a chronic disease difficult to control but the management of 

this disease emphasizes keeping the plasma glucose levels in the blood as close as 

possible to a normal range with the support of glucose lowering medications, healthy 

nutrition and exercise.52 Target goals depend on each patient and the optimal way to 

control the diabetes is determined after consultation with a medical practitioner. The 

treatment goal differs from young, adult and elderly to reach normoglycemia without 

significant hypoglycemia. Hemoglobin A1c (HbA1c) is the shape of hemoglobin (a 

blood pigment that carries oxygen) that binds to glucose. The HbA1c test is used to 

screen patient glycaemia and the key element is patient education and understanding of 

the disease and complications related to diabetes, such as cardiovascular disease. 

Management of diabetes depends on the type of diabetes. In general, Type 1 diabetes 

mellitus is produced by absence of insulin; therefore, insulin should be controlled in a 

patient suffering with Type 1 diabetes. Type 2 diabetes is described by insulin resistance 

and treatments include oral anti-diabetic medications.59, 60  

1.7.2.1 Insulin Therapy 

Insulin is used for treatment of diabetes mellitus Type 1 and includes management 

of combined split-mixed injections. Moreover, insulin is used in acute diabetes 

emergencies, for example diabetic ketoacidosis (DKA) and pregnancy. Also, insulin can 

be used as a supplement in diabetes Type 2 in case oral therapy fails to control blood 

glucose concentrations. The main adverse effect observed with insulin therapy is 

hypoglycemia, which might lead to brain damage. Mostly, patients with chronic renal 
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impairment needed less insulin, so regular control of blood glucose levels must be made 

to minimize the risk of hypoglycemia.61  

1.7.2.2 Oral antidiabetic 

There are major classes of oral antidiabetic medications, including biguanides, 

sulfonylureas, meglitinide, thiazolidinedione (TZD), dipeptidyl peptidase 4 (DPP-4) 

inhibitors and α-glucosidase inhibitors. Diabetes diagnosis depends on the HbA1C test 

result, if HbA1C  level rises to 7.5% while on medication or if the initial HbA1C is ≥9%, 

combination therapy with two oral agents, or with insulin, may be considered.61, 62 

However, these medications have limitations regarding efficiency, side effects and patient 

compliance.61  

1.7.2.2.1 Biguanide  

Biguanide and its derivatives are the most common and available treatment for 

diabetes. The discovery of biguanide started from extraction of a plant called Galega 

officinalis; this plant was found to have different components, such as guanidine, 

galegine and biguanide, which showed potential antidiabetic activity through decreasing 

blood glucose levels.63 Metformin is the most common, cheapest available and the first-

line oral medicine for type 2 diabetes mellitus (T2DM). Metformin is a biguanide that 

activates adenosine monophosphate-activated protein kinase in the liver, causing hepatic 

uptake of glucose and inhibiting gluconeogenesis through complex effects on the 

mitochondrial enzymes.63 Metformin is a small molecule synthesized based on the 

pharmacophore of the natural product compound isolated called galegine from Galega 

officinalis. Metformin is the first line drug of T2DM, and it reduces the risk of 

complications and mortality rates in patients through decreasing hepatic glucose synthesis 
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(gluconeogenesis) and sensitizing peripheral tissues to insulin.63 However, metformin has 

side effects: a risk of hypoglycemia and low chances of weight gain. Metformin might 

also cause vitamin B12 and folic acid deficiency.64 This needs to be monitored, especially 

in elderly patients. Another potential problem resulting from the use of metformin is a 

decrease in the drug’s efficiency as diabetes progresses. Metformin is highly effective 

when there is enough insulin production; however, when diabetes reaches the state of 

breakdown of β-cells and results in a type 1 phenotype, metformin loses its efficacy.61 

1.7.2.2.2 Sulphonylureas  

Sulphonylureas is a class of organic compounds used as oral antihyperglycemic 

drugs. The mechanism of action of sulphonylurease occurs through binding to the 

sulfonylurea receptor on the beta cell surface to indicate secretion of insulin from the 

pancreatic beta cells. Sulphonylureas are classified into two main groups: first generation 

and second generation. Second generation sulphonylureas are characterized by fewer side 

effects and more effective action than the first generation. The duration of action is 

shorter in the first generation compared to the second generation. Universally used first 

generation drugs are tolazamide, acetohexamide, tolbutamide and chlorpropamide. 

Examples of the most commonly used second generation drugs are glibenclamide, 

glipizide, glimepiride and gliclazide. Sulphonylurease is used either as monotherapy or in 

combination with other antihyperglycemic drugs. The major side effects of this class of 

antidiabetic drugs are hypoglycemia and weight gain.54, 65  

1.7.2.2.3 Thiazolidinediones (TZDs)  

Thiazolidinediones (TZDs) are a class of antidiabetic drugs use by patients 

suffering from type 2 diabetes (T2DM). Rosiglitazone and Pioglitazone are the most 
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common TDZ drugs currently available. The mechanism of action of TDZs depends on 

binding to the peroxisome proliferator activated receptor gamma (PPAR-γ), a kind of 

nuclear regulatory protein located in fat, muscle and liver. TZDs are expected to increase 

insulin sensitivity, decrease cellular resistance and improve glycaemic control based on 

enough production of insulin by pancreatic beta cells. TZDs might be used either as 

monotherapy or in arrangement with other oral antidiabetic medications. In fact, use of 

this class of drugs (TZDs) has been reduced due to side effects, such as myocardial 

infarction, angina fluid retention, heart failure, hypoglycemia and liver injury as indicated 

by multiple retrospective studies.65, 66  

1.7.2.2.4 α-glucosidase inhibitors 

Alpha glucosidase inhibitors (AGIs) are one of the first line therapy classes of anti-

diabetic drugs. These oral antidiabetic medicines are enzyme inhibitors that do not affect 

the pancreas during the mechanism of action. The mechanism of action of AGIs depends 

on the delay of carbohydrate absorption in the gastrointestinal tract. In addition, AGIs 

control postprandial hyperglycemia and provide cardiovascular benefit. Carbohydrates 

are present as oligo — or poly — saccharides. Polysaccharides need to be broken down 

to monosaccharides (glucose, fructose, galactose) for digestion. For example, starch is 

one of the most common polysaccharides digested through the alpha glucosidase enzyme 

that breaks starch (polysaccharides) down to monosaccharides. Acarbose inhibits alpha-

glucosidase enzyme, thus preventing absorption of starch from the brush border of the 

intestine. Therefore, AGIs class of antidiabetic medicine, which delays intestinal 

carbohydrate absorption, reduces postprandial glycaemia and helps manage diabetes.67  
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1.8 Diabetic case statistics in Saudi Arabia  

425 million people suffer from diabetes worldwide according to the World Health 

Organization and more than 39 million people in the MENA region. Saudi Arabia is one 

of the MENA region countries that has a high prevalence rate of diabetes disease. By 

2045, the expected number of diabetic patients around the world will rise to 67 million. 

There were 3.852.000 people suffering from diabetes in Saudi Arabia in 2017 while the 

total adult population is about 20,770,000 people, so the prevalence of diabetes in adults 

is approximately 18.5%.61 

In Saudi Arabia, diabetic disease occurs as one of the major medical issues and 

cardiovascular disease is considered the first leading cause of death. Saudi Arabia has the 

highest prevalence rates of diabetics with the increase of diabetes cases in Saudi Arabia 

affecting more than one fourth of the adult Saudi population.68 The dramatic increase in 

the prevalence rate of diabetes  is a result of rapid socioeconomic development, lifestyle 

changes and a change in dietary patterns. Etiological factors that cause high blood glucose 

level like obesity, dietary habits and lack of exercise also contribute.69  

1.9 Cissus rotundifolia as potential therapy for different medical issues 

Cissus Rotundifolia as a crude extract has been reported to possess biological 

activities.70, 71 72  This section provides a summary of the potential antimalarial and 

antidiabetic effects of cissus rotundifolia as an extract. 

1.9.1 Antimalarial activity of cissus rotundifolia as a crude extract  

Malaria is an infectious disease that remains associated with considerable 

morbidity and mortality and economic impact on developing societies.70 According to the 

World Health Organization (WHO), malaria is widespread in 91 countries, mostly in 
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Africa, Asia and Latin America. Approximately 40% of the world’s population is at risk 

and it will continue to be distributed widely, essentially due to the drug resistance 

developed by Plasmodium falciparum.72 A study of medicinal plant assessment showed 

the antimalarial activity of crude extracts of Cissus rotundifolia.70 The results confirm 

that this plant, consumed in traditional medicine, has significant antimalaria activity in 

vitro and verified its use in traditional medicine.72, 73 However, in vivo studies of this 

medicinal plant need to be completed to determine toxicity of the active constituents, 

pharmacokinetic properties and diffusion in different body sites in addition to side 

effects.73   

1.9.2 Antidiabetic activity of cissus rotundifolia as a crude extract 

Cissus rotundifolia is a climbing or prostrate shrub found throughout Africa and the 

Arabian Peninsula being used as food. C. rotundifolia leaves extract has shown anti-

diabetic as well as antiparasitic properties.34, 74 In Saudi Arabia, the boiled leaves of C. 

rotundifolia are prepared with meals as an appetizer and also used as an antipyretic in the 

treatment of malaria and dengue fever.71 The present study was designed to evaluate the 

hypoglycemic activity of C. rotundifolia components using different pathways to control 

glucose blood levels compared to the most common antidiabetic drugs like acarbose and 

metformin. 

1.10 Molecular target of diabetes mellitus  

Diabetes mellitus known as high level of glucose in the blood. The two main 

sources of glucose in the body comes from either degradation of complex carbohydrates 

or the producing of the glucose by liver as result of gluconeogenesis process. In order to 

control of blood glucose level in early stage need to delay the absorption of glucose to the 
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blood through inhibition Alpha-glucosidase enzyme as a molecular target that used to 

breakdown the carbohydrate consumed to glucose. Moreover, through reduce the 

production of glucose in the body that result from gluconeogenesis process. 

 
1.10.1 Alpha-glucosidase (AG) enzyme  

Alpha-glucosidase enzyme is located in the brush border in the small intestine, 

which is the key enzyme in carbohydrate synthesis and breakdown.75 Alpha-glucosidase  

is an exo-type carbohydrase, breaking glycosidic bonds in complex polysaccharides to 

release absorbable monosaccharides (Fig. 1-4).76 The degradation of dietary 

carbohydrates is considered the principal source of increased levels of glucose in the 

blood. After hydrolysis of the complex dietary carbohydrate, the consequent absorption 

in the intestine is made by alpha-glucosidases.77 One of the main strategies to control 

type 2 Diabetes mellitus (T2D) is to decrease postprandial high blood glucose levels by 

delaying the absorption of glucose through inhibition of carbohydrate-hydrolyzing 

enzymes, alpha-glucosidase, in the digestive processes.78 Furthermore, one interesting 

property of the alpha-glucosidase inhibitor is its ability to both improve and extend 

glucagon-like peptide 1 (GLP-1) secretion in normal individuals and patients with Type 2 

diabetes mellitus disease.79, 80 
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Figure 1-4: Mechanism of action for alpha-glucosidase enzyme.81 

1.10.2 Gluconeogenesis Inhibition   

Gluconeogenesis is the main pathway to produce glucose in human body. In 

diabetic patients, gluconeogenesis is high so the current target to control diabetic disease 

is to inhibit gluconeogenesis in order to manage hyperglycemia. Gluconeogenesis is the 

reversal of glycolysis, with some workarounds for the irreversible reactions in this 

pathway.82 The reactions that interact for glycolysis and gluconeogenesis are presented in 

blue in the figure 2-1, whereas gluconeogenesis’s reactions are shown in red.83 It is 

realized that both pyruvate and oxaloacetate as substrates from the citric acid cycle are 

starting points for gluconeogenesis. These pathways are presented here by green arrows. 

The major substrate source for gluconeogenesis is protein, both dietary and endogenous. 
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Moreover, any of the TCA cycle intermediates can serve as substrates for 

gluconeogenesis. 

Gluconeogenesis occurs only in the liver and the kidneys, and the liver is 

synthesizing most of the glucose. Gluconeogenesis provides stable blood glucose levels 

between meals; however, it is found to be high in diabetic patients. Gluconeogenesis also 

helps us to maintain glucose levels when on a diet that is low in carbohydrates.83 

Therefore, based on the similarity in the chemical structure between the isolated 

compound from cissus rotundifolia and citric acid cycle substrates, our hypothesis builds 

on the investigation of the binding affinity of isolated compound and citric acid cycle 

enzymes in order to screen the inhibition activity for gluconeogenesis to control the 

hyperglycemia. 
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Figure 1-5: Gluconeogenesis process (in red) starts by oxaloacetate substrate from citric acid 

cycle reactions. 

 

The citric acid cycle, or tricarboxylic acid cycle, has a fundamental role in the 

gluconeogenesis process that is considered the main pathway of the hepatic production of 

glucose. The citric acid cycle is a series of reactions in mitochondria that result from 
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oxidization of the acetyl moiety of acetyl-CoA to CO2 and decreases coenzymes that are 

reoxidized through the electron transport chain related to the formation of ATP. The 

enzymes involving in citric acid cycle play important role in regulation of 

gluconeogenesis through catalyzes each step of the cycle to form the substrates. 

Oxaloacetate is a substrate of citric acid cycle and it is the starting material for 

gluconeogenesis. Although the properties of citric acid cycle enzymes have been studied, 

the reports of targeted small molecule modulators of the activity have been limited. 

Therefore, in this study the isolated compound and small analogs investigated for their 

binding affinity to citric acid cycle enzymes that might lead to inhibition activity of 

gluconeogenesis. 

 

1.11 Project objectives 

1. Extraction, isolation, and structural elucidation of the active constituents 

from Cissus Rotundifolia with potential anti-diabetic activity using bioassay-

guided fractionation. 

Cissus Rotundifolia (Vitaceae), which is locally called Algalaf, is 

commonly used in Saudi folk medicine to control high blood glucose level 

(Diabetes Mellitus). The overall objective of this study was the extraction, 

isolation and structural elucidation of the active constituents with potential 

antidiabetic activity from Cissus Rotundifolia using bioassay-guided fractionation. 

The antidiabetic activities of the extracts, fractions and pure isolated compounds 

obtained from the bioassay-guided fractionation were evaluated in vitro using 

alpha glucosidase enzyme inhibition bioassay and glucose uptake induction to the 
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cell using liver cell line (HepG2). The chemical structures of the pure isolated 

compounds were elucidated using H NMR, C15 NMR and 2D NMR. To the best 

of our knowledge, this is the first chemical profile investigation of the antidiabetic 

activities in Cissus Rotundifolia. 

2.  In-vitro evaluation of anti-diabetic activity of isolated compounds. 

One of the current targets of novel antidiabetic agents to control high 

blood glucose in the blood is glucose uptake induction. In fact, the most important 

effects of insulin on glucose metabolism are the regulation of GLUT4 trafficking 

and, consequently, glucose uptake.84 Moreover, glucose transport plays the 

essential role in insulin-regulated glucose metabolism. The isolated compounds 

with potential antidiabetic activity from cissus rotundifolia extract conduct an in 

vitro evaluation of glucose uptake induction through glucose uptake assay.  

3.  In-silico molecular modeling study of isolated compounds targeting citric 

acid cycle enzymes. 

Gluconeogenesis provides stable blood glucose levels between meals; 

however, it is found high in diabetic patients. Gluconeogenesis also helps us to 

maintain appropriate glucose levels when on a diet low in carbohydrates. 

Therefore, based on the similarity in the chemical structure between the isolated 

compound from cissus rotundifolia and citric acid cycle substrates, our hypothesis 

builds on investigations of the binding affinity of the isolated compound and citric 

acid cycle enzymes in order to screen the inhibition activity for gluconeogenesis 

to control the hyperglycemia. Gluconeogenesis steps start by oxaloacetate, which 
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is one of the citric acid cycle substrates. Therefore, gluconeogenesis could be 

reduced through inhibition of citric acid cycle enzymes.  
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2 CHAPTER TWO: ISOLATION OF ANTIDIABETIC CONSTITUENTS 

FROM CISSUS ROTUNDIFOLIA THROUGH BIOASSAY – GUIDED 

FRACTIONATION. 

 
2.1 Introduction 

 Nature has long been the source of the basic elements of life such as food, medicine, 

clothing and shelter.1 Natural products performed a significant role in human disease 

therapy and compounds derived from natural products have continuously been noted as a 

valued sources for drug discovery.1, 2 

Plants are the richest source of remedies and the use of some plants is known in 

herbal medicine throughout human history.3-5 The current predicted number of plant 

species worldwide is around 250,000 species.6, 7  However, a limited number of these 

plant species have been screened for medicinal properties. In fact, less than 10% of 

medicinal plants species have been investigated and validated for their medical 

activities.6 Plants have always been a very rich source for drug discovery, and the 

majority of currently available drugs on the market have been derived directly or 

indirectly from plants.6, 8 For example, several available drugs derived from plants for 

different diseases therapy exist, such as  the anticancer drug vincristine from Vinca rosea, 

the narcotic analgesic morphine from Papaver somniferum, the antimalarial drug 

artemisinin from Artemisia annua, the anticancer drug Taxol from Taxus brevifolia, the 

antibiotic penicillin from Penicillium ssp 1 and the most common antidiabetic available 

drug, Metformin, derived from Galega officinalis.9 10 
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The Vitaceae is a commonly known plant family that forms one of the largest and 

most diverse plant families worldwide, growing in a variety of environments. This family 

contains more than 900 known species, occurs in 14 genera, and is mainly spread in 

tropical and subtropical areas of the world.11 The largest genus of this family 

is Cissus, including about 350 species. Some of the important genera belonging to the 

Vitaceae family include Acareosperma, Ampelocissu, Cyphostemma, Amplopsis, Psedra, 

Leea, Vitis and Cissus.4 Most of the plants in this family are identified by their climbing 

vines, tendrils and distinctive clusters of berries. Their leaves are alternate, forming 

opposite from the tendrils and flowers. Flowers are regular with 4 or 5 small sepals.12 

Vitaceae is also considered one of the most economically important plant families due to 

the cultivation of many edible Vitaceae species, including the European wine grape (V. 

vinifera) and the North American fox grape (V. labrusca) which are the parent species of 

most of the cultivated slipskin American grapes. The Boston ivy (q.v.; Parthenocissus 

tricuspidata) and the Virginia creeper (q.v.; P. quinquefolia) are the most common 

woody vines in the eastern United States.4, 13 The Vitaceae family has drawn the attention 

of many researchers since their fruits, leaves and vegetables are traditionally consumed as 

food and medicine to treat some skin burns in addition to uses as a diet supplement to 

reduce the blood glucose level in diabetic patients  .14 A number of plant species from the 

Vitaceae family have been extensively reviewed in the literature for their medicinal 

properties, such as Cissus quadrangularis, C. araloides, C. assamica, C. 

hamaderohensis, C. hypoglauca, C. sicyoides, C. debilis, C. ibuensis, C. populne, C. 

verticillata and C. rotundifolia  screened as a crude extracts and showed that they have 

medicinal activity as anti-inflammatory and anti-malaria, in addition to hypoglycemic 
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activity as a methanolic extract however, it is not significantly investigate for the active 

constituents compounds.11 Several parts of the plants, including the seeds, fruits and 

leaves, of the Vitaceae family have been consumed by humans and reported to have 

medicinal properties.11, 15  

Cissus rotundifolia is a perennial, climber, evergreen, wild plant belonging to the 

family of Vitaceae (grape family). It is known as a common Arabian wax cissus, 

Peruvian Grape Ivy, Venezuelan tree bine and locally (in the south of Saudi Arabia) as 

Algalaf. It is commonly used as a food thickener. Moreover, it was found to have many 

therapeutic effects as a hypoglycemic and hypolipidemic , based on the literature study, 

the hypoglycemic activities of plant extracts of C. rotundifolia still not fully investigated 

to specific mechanism of action however the study mentioned that the antidiabetic 

activity of C. rotundifolia extract could be due to the stimulation of insulin secretion from 

the remaining β-cells which promotes tissue glucose utilization in diabetic rats either by 

enhancing its uptake and metabolism or by inhibiting hepatic gluconeogenesis. Moreover, 

C. rotundifolia extracts significantly corrected the levels of cholesterol and triglycerides 

towards normal.  This improvement may be partly attributed to the increase in insulin 

secretion that affects lipid metabolism and to the regeneration of β-cell as a result of the 

decrease in production of free radicals by lipid peroxidation.16 In addition, the methanolic 

extract of cissus rotundifolia has been reported to possess antibacterial activity when 

tested against E. coli, S. infantis, S. aureus and L. monocytogenes in study where only the 

extracts of edible plants were screened for their antibacterial activity however the 

investigation of specific active compound need future studies.17 
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 .18 Cissus rotundifolia grows extensively in the southern part of Saudi Arabia, and its 

leaves are widely consumed after cooking as leafy vegetables. Cissus rotundifolia extract 

has been reported to contain components such as flavonoid, hydrolysable tannin and 

vitamin C. In addition to, an appreciable amount of protein, fat, crude fiber and minerals. 

According to nutritional evaluation of cissus rotundifolia, the protein fraction includes a 

relatively high level of essential amino acids; fat contains a high concentration of 

unsaturated fatty acids; Macro elements (Magnesium, Sodium, Potassium; Microelements 

(Iron, Zinc, Manganese, Copper and Chromium). However, up to present, no 

phytochemical studies have been reported regarding the isolation and identification of the 

phytoconstituents of C. rotundifolia. It is commonly prepared in various dishes according 

to the traditional dietary culture of locals and is also used as an alternative medicine. 

However, it has not been studied for its antidiabetic activity. Therefore, this study aims to 

evaluate the antidiabetic components of Cissus rotundifolia leaves. 

2.2 Distribution and uses of cissus rotundifolia plant in Saudi Arabia 

 
Saudi Arabia is one of the Middle East countries with a population of more than 

25 million people. In Saudi Arabia, people live in both urban and rural areas and sectors 

still use traditional, natural medicine for health care and treatment of diseases.19 Saudi 

Arabia has plant biodiversity, which consists of an admixture of elements from variety 

regions like Asia, Africa, and the Mediterranean. The mountainous area of southwestern 

Saudi Arabia is characterized by the richness of its flora and species diversity.20  Cissus 

rotundifolia is a perennial, climber, evergreen wild plant belonging to the family of 

Vitaceae (grape family).21 It is known as a common Arabian wax cissus, Peru-vian Grape 
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Ivy, Venezuelan tree bine and, locally (in south of Saudi Arabia), as Algalaf.22 It is 

commonly used as a food thickener. Cissus rotundifolia grows extensively in the 

southern part of Saudi Arabia, and its leaves are widely consumed after cooking as leafy 

vegetables. It is commonly used to prepare various dishes according to the traditional 

dietary culture of locals and used as alternative medicine to treat some skin burns and 

also uses to reduce the blood glucose for diabetic patients. However, it has not been 

investigated for its antidiabetic activity. Therefore, this study aimed to evaluate the 

antidiabetic components of Cissus rotundifolia leaves using the bioassay guided 

separation of methanolic extract of C. rotundifolia leaves.  

 

 

2.3 Aim of the study  

Identification of  the chemical constituents of the plants used in traditional 

medicine is very important since several studies have found them to have potential 

biological activities, such as potential antidiabetic activity.23 All established information 

will expand our current knowledge of the ethnopharmacology of the plants that have 

medicinal properties and are used in traditional medicine and might aid in identifying 

new chemical entities with antidiabetic activities.23 The aim of the present study was the 

extraction, isolation and structural elucidation of the active constituents with potential 

anti-diabetic activity from Cissus rotundifolia using bioassay-guided fractionation. Cissus 

rotundifolia (Figure 2-13) (Vitaceae), which is locally called Algalaf, is used in Saudi 

traditional medicine for the treatment of skin burn, malaria and control of diabetes 
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disease. Cissus rotundifolia grows widely in different regions close to Abha city, Saudi 

Arabia. 

 

 

2.4 Molecular target of diabetes mellitus 

Diabetes mellitus known as high level of glucose in the blood. The two main 

sources of glucose in the body comes from either degradation of complex carbohydrates 

or the producing of the glucose by liver as result of gluconeogenesis process. In order to 

control of blood glucose level in early stage need to delay the absorption of glucose to the 

blood through inhibition Alpha-glucosidase enzyme which play an important role on 

regulation of blood glucose level in the blood. 

 
2.4.1 Alpha-glucosidase (AG) enzyme  

 
Alpha-glucosidase is a carbohydrase enzyme, breaking glycosidic bonds in 

complex polysaccharides to release absorbable monosaccharides (fig. 2-1).24 The 

degradation of dietary carbohydrates is considered the principal source of increased 

glucose in the blood. After the hydrolysis of the complex dietary carbohydrate, the 

consequent absorption in the intestine is made by alpha-glucosidases.25 One of the main 

strategies to control type 2 Diabetes mellitus (T2D) is to decrease postprandial high blood 

glucose level by delaying the absorption of glucose through inhibition of carbohydrate-

hydrolyzing enzymes, alpha-glucosidase, in the digestive processes.26 
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Figure 2-1:  Hydrolysis of Polysaccharides to glucose as catalyzed by alpha-glucosidase. 
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2.5 Materials and methods 

2.5.1 General procedures and reagents 

1H-NMR, 13C-NMR and 2D-NMR were conducted using Bruker AVANCE-400 

MHz and 600 MHz NMR spectrometer in deuterated chloroform (CDCl3) using 

tetramethylsilane (TMS) as the internal standard; chemical shifts are given in ä (ppm) 

values. Column chromatography was carried out using silica gel (230–400 mesh) 

purchased from Sorbent Technologies (Norcross, GA, USA). TLC was performed using 

pre-coated silica gel PE Sheets purchased from Sorbent Technologies (Norcross, GA, 

USA), visualized under ultraviolet at 254 nm, stained with Ceric Ammonium Molybdate 

(CAM) stain and followed by heating. All solvents were obtained from commercial 

suppliers and used as received. 

α-Glucosidase enzyme (Cat. No. G 5003, Sigma Aldrich Chemical Co, USA). 

Bovine serum albumin (Sigma Aldrich Chemical Co, USA), Sodium azide (Sigma 

Aldrich Chemical Co, USA). Para nitrophenyl-α-d-glucopyranoside (Cat No: N 1377, 

Sigma Aldrich Chemical Co, USA). Acarbose (Sigma Aldrich, PHR1253, USA). 

2.5.2 Plant materials 

Fresh leaves of Cissus rotundifolia were collected in June 2016 from the area near to 

Abha, Saudi Arabia. Al-Sawdah Mountain, the site of Cissus rotundifolia plant 

collection, is located east of Abha, in area between latitude 17°30’ north and 21°00’ north 
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and longitude 41°30’ east and 44°30’. The plant was botanically authenticated, and a 

voucher specimen was deposited in Pharmacognosy Department Herbarium, College of 

Pharmacy, King Khaled University, Abha, Saudi Arabia. 

2.5.3 Preparation of plant extracts and fractions 

The leaves of Cissus rotundifolia (7 kg) were cut into small pieces and 

homogenized in methanol (a blender was filled to third (1/3) volume with leaves, 1.5 L of 

methanol was added, the mixture was homogenized for 5 min). Then, the mixture was 

macerated in methanol for 72 hours. The methanol extract was filtered, concentrated 

under reduced pressure at 40°C using a rotary evaporator and lyophilized to afford a 

residue. The dried methanol extract (210 g) was dispersed in deionized water (500 ml) 

and partitioned sequentially with n-hexane (500 ml×3) and ethyl acetate (500 ml×3).The 

combined solvent of each partitioned extract was concentrated under reduced pressure at 

40°C using the rotary evaporator and freeze dried for 72 hours to yield an n-hexane 

fraction (32 g), an ethylacetate fraction (20 g) and the remainder of the water fraction 

(158 g). All fractions were tested for their antidiabetic activity through evaluation of their 

inhibition activity of α -glucosidase enzyme using α -glucosidase inhibition bioassay. 

 

2.5.4 Isolation 

According to the bioassay-guided fractionation, the ethyl acetate fraction showed 

the greatest potential antidiabetic activity, thus this fraction was selected for further 

study. The EtOAc fraction was subjected to column chromatography on silica gel (300 g) 

and eluted with stepwise gradients of n-hexane/EtOAc (100:0, 90:10, 80:20, 70:30, 

60:40, 50:50, 45:55, 40:60, 30:70, 20:80, 10:90, 0:100 v/v) and finally with 2 L methanol. 
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A total number of 532 fractions (20mL each) were collected and combined on the basis 

of their TLC profiles into five main fractions as follows: fraction I (70-136) (941 mg), 

Fraction II (136-237) (633 mg), Fraction III (238-298) (460g), Fraction IV (299-363) 

(302g) and Fraction V (362-534) (720 mg). All these sub-fractions are examined for α -

glucosidase inhibition bioassay in order to evaluate their antidiabetic activity through 

inhibition activity of α -glucosidase enzyme. 

2.5.5 Alpha-glucosidase inhibition assay 

α-Glucosidase inhibitors act as competitive inhibitors of intestinal α-glucosidase 

enzyme, which results in delay of the digestion and subsequent absorption of elevated 

blood glucose levels.27 The extracts were pre-incubated with the α-glucosidase enzyme 

before adding the substrate p-nitrophenyl- α-d-glucopyranoside (PNPG). The α-

glucosidase enzyme (Cat. No. G 5003, Sigma Aldrich Chemical Co, USA) was dissolved 

at a concentration of 0.1 U/ml in 100 mM phosphate buffer, pH 7.0, containing bovine 

serum albumin 2000 mg/ml (Sigma Aldrich Chemical Co, USA), and sodium azide 200 

mg/ml (Sigma Aldrich Chemical Co, USA), which was used as enzyme source. Para 

nitrophenyl-α-d-glucopyranoside (Cat No: N 1377, Sigma Aldrich Chemical Co, USA) 

was used as substrate. Cissus rotundifolia extract was weighed and serial dilutions of 50, 

25, and 12.50 mg/ml were made up with equal volumes of dimethylsulfoxide and 

distilled water. Ten microliters of C. rotundifolia extract dilutions were incubated for 5 

min with 50 µl of the α-glucosidase enzyme source. Then, 50 µl of substrate was added 

and incubated for 5 min at room temperature. The pre-substrate and post substrate 

addition absorbance was measured at 405 nm on a microplate reader (Biotek Instruments 

Inc, USA). Percent α-glucosidase inhibition was calculated as follows: (1–B/A) Å~ 100, 
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where (A) is the absorbance of control and, (B) is the absorbance of samples containing 

extracts. 

 The activity of the α-glucosidase enzyme was measured by determining the color 

developed by the release of p-nitrophenol resulting from the hydrolysis of substrate 

PNPG by α – glucosidase using a spectrophotometric method. Experiments were done in 

triplicate. Acarbose (Sigma Aldrich, PHR1253, USA) was dissolved in distilled water 

and serial dilutions of 10, 5 and 2.5 mg/ml were made and used as positive controls. 

2.6 Results and Discussion 

2.6.1 Isolation and structure elucidation 

The methanolic extract of the leaves of Cissus rotundifolia was dispersed in 

deionized water and partitioned sequentially with n-hexane and ethyl acetate. Based on 

the bioassay-guided fractionation, the ethyl acetate fraction showed the highest potential 

antidiabetic activities and thus it was subjected to a series of chromatography techniques 

to yield 6 compounds (Figure 2-12). 

Compound 1 was isolated as a white powder, then identified using 
1
H, 

13
C and 2D 

NMR spectra. 1H NMR spectrum showed signals mainly in the upfield region. The 

spectra showed only two signals with sharp chemical shifts values; the first one 

resonated in the olefinic region and the other was observed a little up field region. The 

1H-NMR spectra of compound 1 also exhibited a signal corresponding to the proton 

connected to C-3 hydroxyl group, which appeared as a multiplet at δ 3.46 (1H, m). Six 

other proton signals were marked, including four secondary methyl groups (δH 0.91, 

0.82, 0.81 and 0.79 all doublets with J = 6.6, 7.2, 6.4 and 6.4 Hz respectively) and two 

tertiary methyl groups (δH 0.66 and 0.99. Since Cissus rotundifolia extract has been 
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reported to contain components such as sterols. The olefinic signal at δ 5.28 (1H, J = 4.8 

Hz) appeared to be characteristic of the sterols, and it was assigned to the H-6 proton in 

the β–sitosterol (1) chemical skeleton. The 13C NMR spectra exhibited 29 carbon 

signals characteristic of phytosterols: 13C NMR (151 MHz, CDCl3) δ 140.77, 121.74, 71.82, 

56.78, 56.06, 50.14, 45.84, 42.34, 42.32, 39.79, 37.27, 36.52, 36.16, 33.95, 31.93, 31.92, 31.68, 

29.72, 29.15, 28.27, 26.07, 24.32, 23.08, 21.10, 19.84,19.04, 18.79, 12.00, 11.88. In addition 

to 2D, DEPT135 showed that 11 carbon signal inverted as represent of CH2 group:  13C 

NMR (151 MHz, CDCl3) δ 121.75, 71.83, 56.78, 56.06, 50.13, 45.83, 42.31 (inverted), 

39.78 (inverted), 37.26 (inverted), 36.16, 33.95 (inverted), 31.91,31.67 (inverted), 29.73 

(inverted), 29.14, 28.27 (inverted), 26.06 (inverted), 24.32 (inverted), 23.07 (inverted), 21.98, 

21.10 (inverted), 19.82, 19.42, 18.79, 12.00,11.88.. These data corresponded with the 

structure of the β-sitosterol compound (Figure 2-2). The NMR data of compound 1 (β-

sitosterol ) is in agreement with the published values.28 

Compound 2 was isolated as white powder. 1H NMR spectra of 2 showed one 

methyl group signal at δ 3.72 (s, 3H) and a doublet signal at δ 2.84 (m, 1H) and 2.71 (d, 

J=1.2Hz, 1H). Further, it showed a proton signal at δ 4.54- 4.62 (d, J = 2.5 Hz, 3H) with a 

secondary alcoholic proton signal δ 2.09 (d, J = 49, 2.8 Hz, 1H). The 13C-NMR data of 

compound 2 showed the presence of seven carbon signals in addition to two carbon 

signals for acetone solvent at δ 30.03 and 202.07. The 13C-NMR data present two 

carbonyl signal at δ 174.25, 171.98 and two peaks showed at the olefinic region at δ 

110.23 and 145.33. One carboxylate methyl ester at δ 52.28.19 and C2 hydroxyl at 68.19 

ppm respectively. One carbon signal at δ 39.36 which was assigned to methylene CH2 

based on calculated NMR data and 2D NMR Dept 135 spectrum that showed signal at δ 
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39.36 (inverted). Stereochemistry at C-2 could not be established at this point, further X-

ray analysis to establish the chirality at C-2 at this point could not be conducted. The 

above data indicated that structure 2 was characterized as 1-methyl 4-vinyl 2-

hydroxysuccinate (Figure 2-2). The NMR data of compound 2 corresponds with the 

published values. These dicarboxylic acids derivatives are widespread in nature and often 

appear with other functional groups. In addition, several synthesized dicarboxylate have 

wide spread applications in food industry and supplement preparations.29  

Compound 3 was isolated as yellow powder. 1H NMR (600 MHz, CDCl3) spectra 

of 3 showed two methyl group signals at δ 3.81 (s, 3H) and 3.71 (s, 3H) and a hydroxyl 

group proton at δ 3.39 (s, 1H) with a doublet signal at δ 2.83 (ddd, J = 22.7, 16.4, 5.3 Hz, 

2H) and secondary alcoholic proton signal at δ 4.53 – 4.50 (m, 1H). The 13C-NMR data 

of compound 3 showed the presence of six carbon signals in addition to a carbon signal 

for chloroform CDCl3. The 13C-NMR data presented two carbonyl signals at δ 173.74 and 

171.03, and three oxy carbons signals at δ 67.24, 52.82 and 52.03 ppm, which correspond 

to the dimethyl ester and C-2. One carbon signal, at δ 38.44, was assigned as C2 as result 

of 2D NMR Dept 135 spectrum that showed signal at δ 38.44 (inverted). Stereochemistry 

at C-2 could not be established at this point, further X-ray analysis to establish the 

chirality at C-2 at this point could not be conducted. The above data indicated that 

structure 3 was characterized as 1,4-dimethyl 2-hydroxybutanedioate (Figure 2-2). The 

NMR data of compound 3 is in agreement with a cited literature value.30 

Compound 4 was isolated as white crystal. 1H NMR (600 MHz, Acetone) spectra 

of 4 showed carboxylic acid proton at δ 8.42 (s, 1H), and one methyl group signal at δ 

3.71 (s, 3H) with a doublet signal at δ 2.76 (ddd, J = 23.4, 16.2, 5.9 Hz, 2H) and 
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secondary alcoholic proton signal at δ 4.54 (dd, J = 7.2, 4.7 Hz, 1H). The 13C-NMR data 

of compound 4 showed the presence of five carbon signals, in addition to two carbon 

signals for acetone solvent. The 13C-NMR data presented two carbonyl signals at δ 

174.39 and 172.68, and two carboxylate methyl signals showed at δ 68.29 and 52.58 

ppm. One oxy-carbon signal at δ 39.36 which was assigned to C2 hydroxyl based on 

calculated NMR data and 2D NMR Dept 135 spectrum that showed signal at δ 39.36 

(inverted). Stereochemistry at C-2 could not be established at this point, further X-ray 

analysis to establish the chirality at C-2 at this point could not be conducted. The above 

data indicated that structure 4 was characterized as 3-hydroxy-4-methoxy-4-oxobutanoate 

(Figure 2-2). The NMR data of compound 4 is in agreement with the published values.31 

Compound 5 was isolated as a white powder, then identified using 
1
H, 

13
C and 2D 

NMR. 1H NMR (600 MHz, CDCl3) spectra of 5 showed two proton signals at δ 7.88 (s, 

1H) and 6.82 (s, 1H), assigned for C-1 and C-2. Then, a proton signal at δ 4.50 (d, 1H) 

assigned for CHOH carbon proton and at δ 2.84 (m, 1H) proton assigned for hydroxyl 

group proton. In addition, a signal proton showed at δ 3.74 (t, 3H) and δ 3.65 (m, 3H) 

assigned for C-3 and C-5 as two methyl groups. Two signal peaks showed at δ 2.78 (m, 

2H) and δ 2.70 (m, 2H) assigned for CH2 at C-6 and C-7. The 13C-NMR data of 

Compound 5 presented twelve carbon signals. Two carbonyl signals at δ 173.78 and 

171.15, and three methoxy carbons signal showed at δ 67.22, 52.42 and 52.12 ppm. One 

oxy-carbon signal at δ 38.44 which was assigned to C2 hydroxyl based on calculated 

NMR data and 2D NMR Dept 135 spectrum that showed signal at δ 39.36 (inverted). 

Stereochemistry at C-2 could not be established at this point, further X-ray analysis to 

establish the chirality at C-2 at this point could not be conducted. Two carbon peaks of 5 
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spectra showed at δ 132.34 and δ 115.29 assigned for C-3 and C-4. The above data 

indicated that structure 5 was characterized as Dimethyl-2-hydroxy-5-

methylenehexanedioate (Figure 2-2). The NMR data of compound 5 is in agreement with 

a cited literature value.32 

Compound 6 was isolated as a white powder, then identified using 
1
H, 

13
C and 2D 

NMR. 1H NMR (600 MHz, CDCl3) spectra of 6 showed proton signals at δ 4.72 (s, 1H) 

assigned for C-2 as and proton signal at δ 2.64 (m, 1H) assigned for hydroxyl group at C-

2. The 1H-NMR spectra of compound 6 also exhibited a signal corresponding to the 

proton connected to C-3, which appeared as a multiplet at δ 2.66-2.54 (m, 2H). The 13C 

NMR spectra of compound 6 exhibited 4 carbon signals δ 178.26, 175.55, 67.287 and 

39.36. At δ 178.26, AT δ 175.55 showed two carbon signals assigned for carbonyl groups 

at C-1 and C-4. Also, compound 6 spectra showed carbon peak at δ 67.287 and was 

assigned for methoxy group at C-2. Stereochemistry at C-2 could not be established at 

this point, further X-ray analysis to establish the chirality at C-2 at this point could not be 

conducted. Carbon peak signal showed up filed at δ 39.36 and was assigned to CH2 at C-

3. The above data indicated that structure 5 was characterized as 2-hydroxysuccinic acid 

(Figure 2-2). The NMR data of compound 6 is in agreement with the published values.33 
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Figure 2-2: Isolated compounds (1-6) from Cissus extract 
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2.6.2 Biological evaluation 

α-Glucosidases are a series of enzymes located on the intestinal brush-border. The 

source of important carbohydrates in diet (e.g. starch and sucrose) are hydrolyzed to 

monosaccharide (glucose and fructose) by α-glucosidase, and then absorbed into the 

blood to increase blood glucose level. Normally, these processes happen in the upper 

portion of the small intestine and greatly increase blood glucose concentration, especially 

in diabetic patients. 34 According to literature study proposed that α-Glucosidase 

inhibitors (e.g. acarbose) increases the duration time of carbohydrate absorption and 

flatten the blood-glucose concentrations. Therefore, acarbose have been used as the first-

line drugs in treatment of diabetes.34 In this study, the aims were to explore the active 

compound compared with acarbose and evaluate how this active compound inhibited α-

glucosidase activity. Hexane, ethyl acetate and aqueous extracts, cissus rotundifolia 

showed variable inhibition of alpha-glucosidase enzyme based on alpha-glucosidase 

inhibition assay. Alpha-glucosidase inhibition was measured in the concentration range 

of 12.5 mg/mL to 50 mg/mL for each fraction and 12.5 uM to 100 uM for each pure 

compound. As shown in figure 2-2, the ethyl acetate fraction exhibits significant 

inhibition effects on alpha-glucosidase enzyme at different concentrations of 12.50, 25, 

and 50 mg/mL, respectively, while the n- hexane fraction was found to have lowest 

inhibition activity. The aqueous fraction showed slight inhibition activity against alpha-

glucosidase enzyme. In addition, the ethyl acetate fraction showed a concentration-

dependent inhibitory effect on the alpha-glucosidase enzyme. These results obviously 

suggest that the ethyl acetate fraction possesses the highest inhibition activity and led us 
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to carry out a study to identify the active constituents that may contain potential 

antidiabetic compounds.  

The ethyl acetate fraction subjected to column chromatography on silica gel to give 

five main fractions (F1- F5). Fraction 1 afforded pure sitosterol compound 1 (Figure 2-

12). Both fractions 3 and 4 demonstrated the highest inhibition activity in a 

concentration-dependent manner. The bioassay guided purification of subfractions 

resulted in the isolation and identification of six compounds: SAA1 (1), SAA2 (2), SAA3 

(3), SAA4 (4), SAA5 (5) and SAA6 (6) (Figure 2-12). Compound 3 showed the most 

promise with significant inhibition 51 % of alpha-glucosidase enzyme activity. The dose-

dependent manner present at four different concentration 100, 50, 25 and12.5 uM of the 

promising compounds and acarbose was used as a positive control (figure 2-8).  

In most reports, the mechanism of the inhibition against α-glucosidase was not yet 

clear. 26 In our experiments, six compounds isolated from Cissus rotundifolia showed 

different degree of activity against α-glucosidase.1,4-Dimethyl 2-hydroxybutanedioate 

(3) and 3-hydroxy-4-methoxy-4-oxobutanoate (4) had promising inhibition activity, and 

that might be because of C-2 hydroxyl group and dimethyl carboxylate at C-1 and C-4 in 

compound 3 that also strengthen α-glucosidase inhibition activity. At the same time, from 

compounds 2, 5 and 6’s structures, we inferred that if dimethyl group at C-1 and C-4 

were changed, it might cut down α- glucosidase inhibition activity. The difference 

inhibition activity between compound 2 and compound 3 could be related to the 

structural difference at C-4 the vinyl ester). However, the increase of compound 3 

inhibition activity could be attributed to the dicarboxylate methyl ester at C-1 and C-4. It 

is worth mentioning that dimethyl ester is relatively non-polar and therefore the polarity 



 62 

difference between active and nonactive compounds could be the reasons of this 

differences in the inhibition activity. The data from this study also indicated that 1,4-

dimethyl 2-hydroxybutanedioate (3), as the most effective compound, displayed a 

significantly inhibitory activity against α-glucosidase. All the findings indicated that 

cissus rotundifolia has potential activity for treatment of diabetes, and 1,4-dimethyl 2-

hydroxybutanedioate (3) as the most active compound showed inhibition of α-

glucosidase activity. 

 

2.7 Conclusion 

Cissus rotundifolia (Vitaceae), called Algalaf in Arabic, is used in Saudi folk 

medicine for the treatment of skin, malaria and control of diabetes. The chemical 

constituents were examined to determine chemical profile and potential antidiabetic 

activity. In the present study, bioassay-guided fractionation and purification were used to 

isolate the antidiabetic compounds of an extract of Cissus rotundifolia leaves. All 

fractions, sub-fractions and pure compounds were screened for their antidiabetic activity 

against the alpha-glucosidase enzyme. The highest inhibition activity was found to be in 

the ethyl acetate fraction, resulting in the isolation of six compounds identified as 

sitosterol (1), SAA2 (2), SAA3 (3), SAA4 (4) and SAA5 (5). Among the compounds 

isolated and tested for the first time, SAA3 and SAA4 showed potent antidiabetic 

activities through inhibition of the alpha-glucosidase enzyme different concentrations. 

This finding may help us to identify new antidiabetic compounds as inhibitor of alpha-

glucosidase enzyme. 
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Inhibitory activity for cissus rotundifolia fractions against alpha-glucosidase enzyme  

Figure 2-3 : Alpha-glucosidase enzyme inhibition of Cissus rotundifolia fractions 

 
 

Inhibitory activity for ethyl acetate sub-fractions against alpha-glucosidase enzyme 

 
Figure 2-4: Ethyl acetate sub-fractions (1&2) at three different concentrations (10, 5, 2.5 mg/l), represented in blue,  
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compared with Acarbose as positive control, represented in orange, to show the inhibition of alpha-glucosidase 
enzyme activity. 

 

Figure 2-5 : Ethyl acetate sub-fractions (3 & 4) at three different concentrations (10, 5, 2.5 mg/l), represented in blue,  
compared with Acarbose as positive control, represent in orange, to show the inhibition of alpha-glucosidase enzyme 
activity. 

 

Figure 2-6 : Ethyl acetate sub-fraction (5) at three different concentrations (10, 5, 2.5 mg/l), represented in blue, 
compared with Acarbose as positive control, represented in orange, to show the inhibition of alpha-glucosidase 
enzyme activity. 
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Inhibitory activity for isolated compounds against alpha-glucosidase enzyme. 

 

Figure 2-7 : Isolated compound (1) at four different concentrations (100, 50, 25, 12.5 µM), represented in blue, 
compared with Acarbose as positive control, represented in orange, to show the inhibition of alpha-glucosidase 
enzyme activity. 

 

Figure 2-8 : Isolated compound (2) at four different concentrations (100, 50, 25, 12.5 µM), represented in blue, 
compared with Acarbose as positive control, represented in orange, to show the inhibition of alpha-glucosidase 
enzyme activity. 
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Figure 2-9 : Isolated compound (3) at four different concentrations (100, 50, 25, 12.5 µM), represented in blue, 
compared with Acarbose as positive control, represented in orange, to show the inhibition of alpha-glucosidase 
enzyme activity.  

 

 

Figure 2-10 : Isolated compound (4) at four different concentrations (100, 50, 25, 12.5 µM), represented in blue, 
compared with Acarbose as positive control, represented in orange, to show the inhibition of alpha-glucosidase 
enzyme activity. 
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Figure 2-11 : Isolated compound (5) at four different concentrations (100, 50, 25, 12.5 µM), represented in blue, 
compared with Acarbose as positive control, represented in orange, to show the inhibition of alpha-glucosidase 
enzyme activity. 

 

 

Figure 2-12 : Isolated compound (6) at four different concentrations (100, 50, 25, 12.5 µM), represented in blue, 
compared with Acarbose as positive control, represented in orange, to show the inhibition of alpha-glucosidase 
enzyme activity. 
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Figure 2-13 : Photo of: Cissus Rotundifolia plant. (Vitaceae) 
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3 CHAPTER THREE: IN-VITRO EVALUATION OF ANTI-DIABETIC 

ACTIVITY OF ISOLATED COMPOUNDS. 

3.1 Introduction 

Diabetes mellitus is a metabolic disease characterized by high blood glucose level. 

The major risk of diabetes is obvious based on the dramatically high distribution rate of 

this disease. Recently, current estimations showed that the number of diabetics will 

increase up to 439 million in 2030.1, 2The majority of diabetics, more than 90%, are type 

2 diabetics.3 Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance in the 

hepatic and peripheral tissues. Glucose transporter 4 (GLUT4) plays a main role in the 

pathophysiology of T2DM4. Generally, it is defective expression or translocation to the 

peripheral cell plasma membrane in type 2 diabetes mellitus patients that delays the 

entrance of glucose into the cell for energy production.5 Type 2 diabetes (T2DM) is 

identified by insulin resistance and a progressive weakening in β-cell function.6, 7 

Recently, it has been reported that insulin resistance is one of the most important factors 

in the pathogenesis of type 2 diabetes, which is known not only by reduced 

responsiveness of the peripheral target tissues like liver, skeletal muscle and adipose 

tissue to insulin, but also by a remarkable decrease in glucose uptake and utilization.8, 9 

Therefore, inducing glucose uptake in the above three key tissues is one of the main 

effective therapeutic approaches for treating Type 2 diabetes.10 Meanwhile, natural 

products are the main source of drug discovery.11 
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Cissus rotundifolia (fam. Vitaceae) is one of the traditional medicinal plants widely 

distributed in south western part of Saudi Arabia. C. rotundifolia  leaves have been used 

as a folk herbal drug to treat skin, bacterial infections, inflammatory conditions and flu in 

alternative medicine.12, 13 It has also been reported to possess antibacterial activity when 

tested against E. coli, S. infantis, S. aureus and L. monocytogenes in study where only the 

extract of edible plant were screened for their antibacterial activity however the 

investigation of specific active compound need future studies.14.15 Cissus Rotundifolia as 

a crude extract has been reported to possess biological activities.16, 17,  18 For example, 

antimalarial and anti-inflammatory effects as an extract.16, 19 However, there is no report 

on the antidiabetic activity of C. Rotundifolia  leaves antidiabetic activity such as glucose 

uptake or metabolism. Therefore, this study was to investigate whether the leaves of C. 

rotundifolia fractions possessed antidiabetic activity or not through inducing glucose 

uptake. 

3.2 Glucose uptake pathway 

Through an intracellular pathway, insulin induces translocation of glucose 

transporters (GLUTs) into the cell membrane of the cells.20-22 Actually, the most 

important effects of insulin on glucose metabolism are the regulation of GLUT4 

trafficking and, consequently, glucose uptake.23 Furthermore, glucose transport plays the 

essential role in insulin-regulated glucose metabolism, including glycogen synthesis, 

glycolysis and lipogenesis, where a dysfunction in this route in muscle and adipose tissue 

signifies an important defect in the insulin action.24, 25 Insulin receptor is a heterotetramer, 

involving two extracellular α subunits (binding fraction) and two transmembrane β 

subunits (with intrinsic tyrosine kinase) linked by disulfide bonds.26 In insulin-responsive 



 76 

tissues, such as liver, skeletal muscle and adipose tissue, the action of insulin begins by 

binding to its specific receptor.27 The activation of the insulin receptor makes a structural 

change in the α subunit, leading to autophosphorylation of a tyrosine kinase domain of β 

subunits and subsequent tyrosine phosphorylation of numerous protein intermediates, 

involving insulin receptor substrate (IRS -1, 2, 3 and 4).28, 29 Both of these 

phosphorylated substrates identify and bind to domains with homology SH2, especially 

phosphatidylinositol-3-kinase (PI3-K).28, 30 Then, upon attachment to the cell surface, 

protein kinase B (AKT) is activated, resulting in the AKT-dependent phosphorylation of 

many substrates. In addition to glucose uptake, virtually all of insulin's metabolic effects 

are regulated by AKT.31 For example, AKT-dependent phosphorylation of glycogen 

synthase kinase 3 (GSK-3β) leads to the activation of glycogen synthase and enhances 

glucose storage as glycogen.32, 33 Generally, the most important effects of insulin on 

glucose metabolism are the regulation of GLUT4 trafficking and, consequently, glucose 

uptake.23 Moreover, glucose transport plays the essential role in insulin-regulated glucose 

metabolism. Therefore, the isolated compounds with potential antidiabetic activity from 

cissus rotundifolia extract conduct to an in vitro evaluation of glucose uptake induction 

through glucose uptake assay.  

 

3.3 Aim of the study 

Natural bioactive compounds have a long history of effective use in the treatment 

of diabetes mellitus. Cissus rotundifolia (Vitaceae) have been used locally (in 

southwestern part of Saudi Arabia), for the treatment of different ailments such as skin 
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disease, malaria and hypoglycemia.34. Although the hypoglycemic effect of C. 

rotundifolia leaves extract has been reported, the exact mechanism of this effect has not 

been fully discovered. 19 In fact, the most important effects of insulin on glucose 

metabolism are the regulation of GLUT4 trafficking and consequently glucose uptake.23 

Moreover, glucose transport plays the essential role in insulin-regulated glucose 

metabolism, including glycogen synthesis, glycolysis and lipogenesis. The present work 

aims to study the effect of fractions and the isolated bioactive compounds of Cissus 

rotundifolia extract on glucose uptake in liver cell lines (HepG2). This study evaluates 

the glucose uptake activity of cissus rotundifolia leaves methanolic extract fractions, sub 

fractions and the isolated compounds in HepG2 cell in vitro. The isolated compounds, 

cell viability and antidiabetic activity of the extract were also discussed.  

3.4 Materials and methods 

3.4.1 Reagents 

Dimethyl sulfoxide (DMSO), 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-

tetrazolium-bromide (MTT), sodium dodecyl sulphate (SDS). Fetal bovine serum (FBS) 

was purchased from HyClone (Logan, UT, USA). Dulbecco’s modified Eagle medium 

(DMEM), phosphate buffered saline (PBS) 1X solution and trypsin were purchased from 

Gibco (Grand Island, NY, USA). Glucose (Oxidase) Liquid Reagents were purchased 

from Fisher Scientific (Turnberry Hanover, IL, USA). Insulin solution from bovine 

pancreas at 10 mg/mL insulin, pH 8.2, BioReagent, sterile-filtered, suitable for cell 

culture was used as positive control. 
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3.4.2 Extracts and Isolated Compounds 

Fresh leaves of Cissus rotundifolia were collected in June 2016 from the area near 

Abha, Saudi Arabia. The plant was botanically authenticated, and a voucher specimen 

was deposited in Pharmacognosy Department Herbarium, College of Pharmacy, King 

Khaled University, Abha, Saudi Arabia. 

3.4.3 Preparation of plant extracts and fractions 

The leaves of Cissus rotundifolia (7 kg) were cut into small pieces and 

homogenized in methanol (a blender was filled to third (1/3) volume with leaves, 1.5 L of 

methanol was added, and the mixture was homogenized for 5 min). Then, the mixture 

was macerated in methanol for 72 hours. The methanol extract was filtered, concentrated 

under reduced pressure at 40°C using a rotary evaporator and lyophilized to afford a 

residue. The dried methanol extract (210 g) was dispersed in deionized water (500 ml) 

and partitioned sequentially with n-hexane (500 ml×3) and ethyl acetate (500 ml×3).The 

combined solvent of each partitioned extract was concentrated under reduced pressure at 

40°C using the rotary evaporator and freeze dried for 72 hours to yield an n-hexane 

fraction (32 g), an ethylacetate fraction (20 g) and the remainder of the water fraction 

(158 g). 

3.4.4 Cell Culture  

A human cancer liver cell line (HepG2) was obtained from American Type Cell 

Culture (ATCC, Rockville, MD, USA). The HepG2 cell line was maintained at 37°C in a 

humidified atmosphere of 5% CO2 in a DMEM medium containing 10% fetal bovine 

serum and antibiotics (100 IU/mL penicillin and 100 µg/ml). 
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3.4.5 Cell viability assay 

Cell viability was determined by the MTT method, as previously described, with a 

modification. Briefly, cells (1 ×104cells/well) were seeded into a 96-well plate and 

allowed to attach to the well overnight. Fractions were then added at different 

concentrations (100, 50, 25, 12, 50 mg/ml) and cells were incubated for a further 24 

hours. After incubation, 10 µL of 5 mg/mL of MTT dye was added to the cells for 4 

hours at 37°C, followed by the addition of 100 µL of 10% SDS in 0.01 N HCl as a 

solubilizing agent. The absorbance at 570 nm was recorded using an ELISA microplate 

reader. The results of viability were expressed as a percentage of the control. 

3.4.6 Glucose uptake assay 

Glucose uptake using human liver cancer cell line (HepG2) as liver tissue plays a 

significant role in controlling blood glucose level. Briefly, HepG2 cells were seeded in 

96-well plate with some wells left blank. Then, when the cells gained confluence, the 

medium was exchanged for DMEM containing 0.2% BSA and incubated for 18 hours. 

After incubation, the cells were treated with DMEM containing 0.2% BSA with the 

selected concentrations of test samples for another 24 h. Then 10 uL of medium was 

removed from each well and placed into a new 96-well plate that contained 200 uL of 

glucose oxidase reagent (Glucose CII-Test, IL, USA). Finally, the plate was incubated at 

37C for 15 min and the optical density (OD) was measured at 490 nm using a microplate 

reader. The percent of glucose uptake was estimated by subtracting the glucose 

concentrations of the blank wells from the remaining glucose in the cell plated wells. 

Insulin (10 mg/mL) was used as positive control. 
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3.5 Results and Discussion 

3.5.1 Cell viability assay 

The cell viability of the methanol extract and the fractions of ethylacetate and hexane 

from Cissus rotundifolia on HepG2 cells was assessed by MTT assay (Figure 3-1). At the 

concentration of 100 mg/mL, the cell viability of the extract was about 85% for HepG2 

and the cell viability of the ethylacetate fraction was evaluated at concentration 100, 50, 

25, 12, 50 mg/ml respectively as presented in figure 3-1. Cissus rotundifolia extracts 

toxicity was tested in vitro in HepG2 cell line using MTT assay. Extract concentrations 

that kept at least 80% cell viability were considered as safe. MeOH extract (Fig. 3-1) was 

found to be safe up to 100 mg/ml where’s hexane (Fig. 3-1) and aqueous extract (Fig. 3-

1) were found to be lower than 80% cell viability at 100 mg/ml. Ethyl acetate extract 

(Fig. 3-1) was found to be safe up to 100 mg/ml that showed 86% cell viability at 100 

mg/ml.  Accordingly, all the efficacy studies for the three extracts were performed at safe 

concentrations. Therefore, different doses of the methanol extract and fractions from C. 

rotundifolia leaves (12.5, 25, 50 and 100 mg/mL) were used in the following glucose 

uptake experiments. 

 

 

 

Cell Viability effect of Cissus rotundifolia on HepG2 cell line  
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Figure 3-1 : Comparison of cell viability results obtained using MTT. Cells were treated with 12.5-100 mg/ml of each 
fraction represent in (12.5 (blue), 25 (orange), 50 (gray), and 100 (yellow)). MTT assay was used to measure the cell 
viability %.. 

 
3.5.2 Glucose uptake assay 

The effect of methanol, ethylacetate and hexane extracts of C. rotundifolia leaves on 

glucose uptake in HepG2 cells are illustrated in Figure 3-2. The ethylacetate fraction 

showed a significant induction of glucose uptake in HepG2 cells with a value of 27% at 
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increased glucose uptake in HepG2 cells of about 18%, while the hexane fraction showed 
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rotundifolia. The results indicate that the isolated compounds 3-hydroxy-4-methoxy-4-

oxobutanoate (SAA4) and 1,4-dimethyl 2-hydroxybutanedioate (SAA3) have promising 

glucose uptake inducing activity (Figure 3-4). 3-Hydroxy-4-methoxy-4-oxobutanoate 

(SAA4) has the most significant induction of glucose uptake activity about 26% at 100 

uM concentration. Additionally, isolated compound 1,4-dimethyl 2-hydroxybutanedioate 

(SAA3) showed the enhancement in glucose uptake by 24% at 100 uM concentration. 

While the rest compounds β-sitosterol (SAA1), dimethyl-2-hydroxy-5-

methylenehexanedioate (SAA5), and 2-hydroxysuccinic acid (SAA6) showed no effect 

on glucose uptake inducing activity in comparison to control in HepG2 cell line (figure 3-

7). Compound 4 was found to be most promising compound over the isolated compounds 

for inducing glucose uptake in liver cell line.  Generally, liver is major site of glycogen 

storage and thus, glucose uptake activity is important to maintain normal blood glucose 

level35. Present study showed that the isolated bioactive compounds SAA4 and SAA3 

enhance the glucose uptake in HepG2 at dose dependent manner which may be due to its 

effect on the receptors on the cell membrane in liver cell line (HepG2). Future in vivo 

study to confirm our data is important to support the novel glucose uptake induction of 

these compounds. 

3.6 Conclusion 

In the present study, bioassay-guided fractionation and purification were used to isolate 

the antidiabetic compounds of an extract of Cissus rotundifolia leaves as mentioned in 

Chapter2. All fractions, sub-fractions and pure compounds were screened for their 

antidiabetic activity through glucose uptake inducing activity on the cell. The highest 

inducing activity was found to be in the ethyl acetate fraction and two isolated c 



 83 

compounds SAA3 (3), SAA4 (4). Compounds SAA4 and SAA3 showed potential 

antidiabetic activity through inhibition of glucose uptake in comparison to insulin. Future 

investigation of antidiabetic activities of isolated compounds in vivo to elucidate the 

mechanism could highlight the potential medicinal value of Cissus rotundifolia and 

isolated compounds. 

 

 

Effect of Cissus rotundifolia fractions on glucose uptake

Figure 3-2 : Effect of Cissus rotundifolia fractions on glucose uptake. Fractions of Methanol, Ethylacetate, hexane and 
aqueous represent in orange, compared with insulin as positive control represent in gray to show the induction of 
glucose uptake activity. 
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Figure 3-3 : Isolated compound (1) at four different concentrations (100, 50, 25, 12.5 µM), represented in orange, 
compared with insulin as positive control, represented in gray, to show the induction of glucose uptake activity. 

 

Figure 3-4 : Isolated compound (2) at four different concentrations (100, 50, 25, 12.5 µM), represented in orange, 
compared with insulin as positive control, represented in gray, to show the induction of glucose uptake activity. 
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Figure 
3-5 : Isolated compound (3) at four different concentrations (100, 50, 25, 12.5 µM), represented in orange, compared 
with insulin as positive control, represented in gray, to show the induction of glucose uptake activi

Figure 3-6 : Isolated compound (4) at four different concentrations (100, 50, 25, 12.5 µM), represented in orange, 
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compared with insulin as positive control, represented in gray, to show the induction of glucose uptake activity..

 

Figure 3-7 : Isolated compound (5) at four different concentrations (100, 50, 25, 12.5 µM), represented in orange, 
compared with insulin as positive control, represented in gray, to show the induction of glucose uptake activity.. 

 

Figure 3-8 : Isolated compound (6) at four different concentrations (100, 50, 25, 12.5 µM), represented in orange, 
compared with insulin as positive control, represented in gray, to show the induction of glucose uptake activity. 

0.00

5.00

10.00

15.00

20.00

25.00

100 50 25 12.5

G
lu

co
se

 u
pt

ak
e (

%
)

Concentration (µM)
Control SA_5 insulin

0.00

5.00

10.00

15.00

20.00

25.00

100 50 25 12.5

Gl
uc

os
e u

pt
ak

e (
%

)

Concentration (µM)
Control SA_6 insulin



 87 

3.7 References 

1. Shaw, J. E.;  Sicree, R. A.; Zimmet, P. Z., Global estimates of the prevalence of 

diabetes for 2010 and 2030. Diabetes research and clinical practice 2010, 87 (1), 4-14. 

2. Kadota, A.;  Hozawa, A.;  Okamura, T.;  Kadowak, T.;  Nakmaura, K.;  

Murakami, Y.;  Hayakawa, T.;  Kita, Y.;  Okayama, A.; Nakamura, Y., Relationship 

between metabolic risk factor clustering and cardiovascular mortality stratified by high 

blood glucose and obesity: NIPPON DATA90, 1990–2000. Diabetes care 2007, 30 (6), 

1533-1538. 

3. Dey, L.;  Zhang, L.; Yuan, C.-S., Letter to the editor: anti-diabetic and anti-obese 

effects of ginseng berry extract: comparison between intraperitoneal and oral 

administrations. The American journal of Chinese medicine 2002, 30 (04), 645-647. 

4. Alam, F.;  Islam, A.;  Khalil, I.; Hua Gan, S., Metabolic control of type 2 diabetes 

by targeting the GLUT4 glucose transporter: intervention approaches. Current 

pharmaceutical design 2016, 22 (20), 3034-3049. 

5. Mahomoodally, M. F.;  Gurib-Fakim, A.; Subratty, A. H., A kinetic model for in 

vitro intestinal uptake of L-tyrosine and D (+) glucose across rat everted gut sacs in the 

presence of Momordica charantia, a medicinal plant used in traditional medicine against 

diabetes mellitus. Journal of Cell and Molecular Biology 2004, 3, 39-44. 

6. Tuomilehto, J.;  Lindström, J.;  Eriksson, J. G.;  Valle, T. T.;  Hämäläinen, H.;  

Ilanne-Parikka, P.;  Keinänen-Kiukaanniemi, S.;  Laakso, M.;  Louheranta, A.; Rastas, 

M., Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with 

impaired glucose tolerance. New England Journal of Medicine 2001, 344 (18), 1343-

1350. 



 88 

7. Degn, K. B.;  Juhl, C. B.;  Sturis, J.;  Jakobsen, G.;  Brock, B.;  Chandramouli, V.;  

Rungby, J.;  Landau, B. R.; Schmitz, O., One week’s treatment with the long-acting 

glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h 

glycemia and α-and β-cell function and reduces endogenous glucose release in patients 

with type 2 diabetes. diabetes 2004, 53 (5), 1187-1194. 

8. Meier, J. J.; Bonadonna, R. C., Role of reduced β-cell mass versus impaired β-cell 

function in the pathogenesis of type 2 diabetes. Diabetes care 2013, 36 (Supplement 2), 

S113-S119. 

9. Song, N.;  Chen, D.-X.;  Qiu, Y.-C.;  Yang, X.-Y.;  Xu, B.;  Tian, W.; Yang, Y.-

W., Stimuli-responsive blue fluorescent supramolecular polymers based on a pillar [5] 

arene tetramer. Chemical Communications 2014, 50 (60), 8231-8234. 

10. YAMASHITA, R.;  SAITO, T.;  SATOH, S.;  AOKI, K.;  KABURAGI, Y.; 

SEKIHARA, H., Effects of dehydroepiandrosterone on gluconeogenic enzymes and 

glucose uptake in human hepatoma cell line, HepG2. Endocrine journal 2005, 52 (6), 

727-733. 

11. Lam, K. S., New aspects of natural products in drug discovery. Trends in 

microbiology 2007, 15 (6), 279-289. 

12. Chakrabarti, R.;  Vikramadithyan, R. K.;  Mullangi, R.;  Sharma, V.;  

Jagadheshan, H.;  Rao, Y.;  Sairam, P.; Rajagopalan, R., Antidiabetic and hypolipidemic 

activity of Helicteres isora in animal models. Journal of Ethnopharmacology 2002, 81 

(3), 343-349. 



 89 

13. Sarvalingam, A.;  Rajendran, A.;  Sivalingam, R.; Jayanthi, P., Occurrence of 

Cissus rotundifolia (Forsk) Vahl-Vitaceae in Peninsular India. Academic Journal of Plant 

Sciences 2013, 6 (3), 117-118. 

14. Alzoreky, N.; Nakahara, K., Antibacterial activity of extracts from some edible 

plants commonly consumed in Asia. International journal of food microbiology 2003, 80 

(3), 223-230. 

15. Mothana, R. A.;  Kriegisch, S.;  Harms, M.;  Wende, K.; Lindequist, U., 

Assessment of selected Yemeni medicinal plants for their in vitro antimicrobial, 

anticancer, and antioxidant activities. Pharmaceutical Biology 2011, 49 (2), 200-210. 

16. Alshawsh, M. A.;  Mothana, R. A.;  Al-shamahy, H. A.;  Alsllami, S. F.; 

Lindequist, U., Assessment of antimalarial activity against Plasmodium falciparum and 

phytochemical screening of some Yemeni medicinal plants. Evidence-based 

Complementary and alternative Medicine 2009, 6 (4), 453-456. 

17. Ali, A. A.;  Al-Rahwi, K.; Lindequist, U., Some medicinal plants used in Yemeni 

Herbal Medicine to treat. African journal of Traditional, Complementary and Alternative 

Medicines 2004, 1 (1), 72-76. 

18. Mesfin, A.;  Giday, M.;  Animut, A.; Teklehaymanot, T., Ethnobotanical study of 

antimalarial plants in Shinile District, Somali Region, Ethiopia, and in vivo evaluation of 

selected ones against Plasmodium berghei. Journal of ethnopharmacology 2012, 139 (1), 

221-227. 

19. Fernandes, G.; Banu, J., Medicinal properties of plants from the genus Cissus: A 

review. Journal of Medicinal Plants Research 2012, 6 (16), 3080-3086. 



 90 

20. Luciano, E.;  Carneiro, E. M.;  Carvalho, C. R.;  Carvalheira, J. B.;  Peres, S. B.;  

Reis, M. A.;  Saad, M. J.;  Boschero, A. C.; Velloso, L. A., Endurance training improves 

responsiveness to insulin and modulates insulin signal transduction through the 

phosphatidylinositol 3-kinase/Akt-1 pathway. European journal of endocrinology 2002, 

147 (1), 149-157. 

21. Shepherd, P. R.; Kahn, B. B., Glucose transporters and insulin action—

implications for insulin resistance and diabetes mellitus. New England Journal of 

Medicine 1999, 341 (4), 248-257. 

22. Fukushima, M.;  Matsuyama, F.;  Ueda, N.;  Egawa, K.;  Takemoto, J.;  Kajimoto, 

Y.;  Yonaha, N.;  Miura, T.;  Kaneko, T.; Nishi, Y., Effect of corosolic acid on 

postchallenge plasma glucose levels. Diabetes research and clinical practice 2006, 73 

(2), 174-177. 

23. Rowland, M.;  Peck, C.; Tucker, G., Physiologically-based pharmacokinetics in 

drug development and regulatory science. Annual review of pharmacology and 

toxicology 2011, 51, 45-73. 

24. Stamnes, M. A.;  Craighead, M. W.;  Hoe, M. H.;  Lampen, N.;  Geromanos, S.;  

Tempst, P.; Rothman, J. E., An integral membrane component of coatomer-coated 

transport vesicles defines a family of proteins involved in budding. Proceedings of the 

National Academy of Sciences 1995, 92 (17), 8011-8015. 

25. Chang, L.;  Chiang, S.-H.; Saltiel, A. R., Insulin signaling and the regulation of 

glucose transport. Molecular medicine 2004, 10 (7-12), 65-71. 



 91 

26. Draznin, B., Molecular mechanisms of insulin resistance: serine phosphorylation 

of insulin receptor substrate-1 and increased expression of p85α: the two sides of a coin. 

Diabetes 2006, 55 (8), 2392-2397. 

27. Le Roith, D.; Zick, Y., Recent advances in our understanding of insulin action and 

insulin resistance. Diabetes care 2001, 24 (3), 588-597. 

28. White, M. F.; Kahn, C. R., The insulin signaling system. Journal of Biological 

Chemistry 1994, 269 (1), 1-4. 

29. Hino, Y.;  Ogawa, W.; Kasuga, M., Insulin signalling system and mechanism of 

insulin resistance. Nihon rinsho. Japanese journal of clinical medicine 2000, 58 (2), 297-

303. 

30. Skolnik, E.;  Lee, C.;  Batzer, A.;  Vicentini, L.;  Zhou, M.;  Daly, R.;  Myers, M.;  

Backer, J. M.;  Ullrich, A.; White, M., The SH2/SH3 domain-containing protein GRB2 

interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of 

ras signalling. The EMBO journal 1993, 12 (5), 1929-1936. 

31. Taniguchi, C. M.;  Kondo, T.;  Sajan, M.;  Luo, J.;  Bronson, R.;  Asano, T.;  

Farese, R.;  Cantley, L. C.; Kahn, C. R., Divergent regulation of hepatic glucose and lipid 

metabolism by phosphoinositide 3-kinase via Akt and PKCλ/ζ. Cell metabolism 2006, 3 

(5), 343-353. 

32. Bouskila, M.;  Hunter, R. W.;  Ibrahim, A. F.;  Delattre, L.;  Peggie, M.;  Van 

Diepen, J. A.;  Voshol, P. J.;  Jensen, J.; Sakamoto, K., Allosteric regulation of glycogen 

synthase controls glycogen synthesis in muscle. Cell metabolism 2010, 12 (5), 456-466. 

33. Rowland, A. F.;  Fazakerley, D. J.; James, D. E., Mapping insulin/GLUT4 

circuitry. Traffic 2011, 12 (6), 672-681. 



 92 

34. Tounekti, T.;  Mahdhi, M.; Khemira, H., Ethnobotanical Study of Indigenous 

Medicinal Plants of Jazan Region, Saudi Arabia. Evidence-Based Complementary and 

Alternative Medicine 2019, 2019. 

35. Patel, M.; Mishra, S., Cell lines in diabetes research: a review. Pharmacognosy 

Reviews 2008, 2 (4), 188. 

 

 

  



 93 

4 CHAPTER FOUR: IN-SILICO MOLECULAR MODELING STUDY OF 

ISOLATED COMPOUNDS TARGETING CITRIC ACID CYCLE ENZYMES 

4.1 Introduction 

Glucose homeostasis is physiologically maintained by balance between glucose 

production by liver and glucose consumption by the peripheral tissues.1 Hepatic glucose 

production and glucose utilization is controlled by insulin, so, in non-insulin-dependent 

diabetes mellitus (NIDDM), hepatic glucose production is high and demonstrates a 

positive correlation with concentrations of glucose in plasma.2 Moreover, increases in 

hepatic glucose production are considered the principal cause of fasting hyperglycemia in 

NIDDM.3 In the liver, two processes produce glucose (gluconeogenesis and 

glycogenolysis); however, gluconeogenesis develops to be significantly increased in 

NIDDM.3 When the process of gluconeogenesis increases, it will further cause increased 

hepatic glucose production and a positive correlation between the rates of 

gluconeogenesis and fasting plasma glucose concentration has been discovered in 

NIDDM subjects.4, 5Therefore, reduced hepatic glucose production also plays an 

important role in controlling blood glucose level and is considered a new target for 

antidiabetic research.6 Gluconeogenesis begins in the mitochondria through citric 

acid cycle intermediates, starting throughout conversion to oxaloacetate, which can also 

function as substrates for gluconeogenesis.7 Gluconeogenesis is a pathway involving a 

couple of enzyme-catalyzed reactions.8 This pathway starts in the mitochondria or 

cytoplasm based on the substrate being used.7 Gluconeogenesis begins with the formation 

of oxaloacetate from carboxylation of pyruvate. This reaction needs one molecule of ATP 

and it is catalyzed by an enzyme called pyruvate carboxylase.9 Pyruvate carboxylase is 

stimulated by high levels of acetyl-CoA.10 Over the reaction of the citric acid cycle, 
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Malate is the intermediate oxidized to oxaloacetate using NAD+ in the cytoplasm, where 

other steps of gluconeogenesis show.11 Oxaloacetate is decarboxylated and 

phosphorylated to generate phosphoenolpyruvate by phosphoenolpyruvate 

carboxykinase.12 

Gluconeogenesis provides stable blood glucose levels between meals; however, it 

is found to be high in diabetic patients. Gluconeogenesis also helps maintain glucose 

levels when on a diet low in carbohydrates.13 Therefore, based on the similarity in the 

chemical structure between the isolated compounds from cissus rotundifolia and citric 

acid cycle substrates, our hypothesis that molecular modeling to study binding affinity of 

the isolated compound with citric acid cycle enzymes could reveal potential mechanism 

of compounds isolated in our study to inhibit gluconeogenesis  and control 

hyperglycemia through inhibition of hepatic glucose production. 

 

4.2 Citric acid cycle (Kreb’s Cycle) 

The citric acid cycle, also called the Krebs or tricarboxylic acid cycle, is a series of 

reactions in mitochondria that result from oxidization of the acetyl moiety of acetyl-CoA 

to CO2 and decreases coenzymes that are reoxidized through the electron transport chain 

related to the formation of ATP.14 The tricarboxylic acid cycle is a pathway for the 

oxidation of carbohydrates, proteins and lipids because glucose, most amino acids and 

fatty acids are metabolized to acetyl-CoA or intermediates of the cycle.15 The citric acid 

cycle has a fundamental role in the gluconeogenesis process that is considered the main 

pathway of the hepatic production of glucose. These processes occur in the liver tissues, 
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the abnormally increased rate of hepatic gluconeogenesis contributes to hyperglycemia 

in diabetes.13, 16 

4.3 Steps of the citric acid cycle  

Several steps during the citric acid cycle occur through enzymatically catalyzed 

reaction in order to generate the molecules produced.17 The molecules produced from the 

citric acid cycle, such as NADH, FADH, and ATP, are important as sources of energy, 

while the intermediate produce through the citric acid cycle are important in another 

process.18 For example, oxaloacetate is one of intermediates of the citric acid cycle that 

plays an essential role and is the starting point of the gluconeogenesis process to produce 

glucose.19 The steps of the citric acid cycle begin when acetyl CoA joins with 

oxaloacetate, four carbon molecules, to form a six-carbon molecule (citrate). This step is 

catalyzed by an enzyme called citrate synthase. The second step, which is a two-step 

process, occurs when citrate is converted into its isomer, isocitrate. This step is catalyzed 

by an aconitase enzyme and it involves the removal and then the addition of a water 

molecule, which is the reason that the citric acid cycle is sometimes defined as having 

nine steps rather than the eight. The third step, the enzyme isocitrate dehydrogenase 

catalyzes this step when the isomer of citrate, isocitrate, is oxidized and releases a 

molecule of carbon dioxide to form a five-carbon molecule called α-ketoglutarate. Next, 

the fourth step begins when α-ketoglutarate oxidizes and releases a molecule of carbon 

dioxide to form a four-carbon molecule. These four-carbon molecules pick up Coenzyme 

A, producing the unstable compound succinyl CoA. The enzyme, α-ketoglutarate 

dehydrogenase, is catalyzed in this forth step and also it is important in the regulation of 

the citric acid cycle. In step five in citric acid cycle, the CoA of succinyl CoA is 
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substituted by a phosphate group, then transferred to ADP to make ATP. The four-carbon 

molecule produced in this step is called succinate. The enzyme that catalyzes this step is 

the succinyl CoA synthetase enzyme. Then, in step six, succinate is oxidized, creating 

another four-carbon molecule called fumarate. An enzyme called succinate 

dehydrogenase catalyzes this step. The result of this reaction, two hydrogen atoms with 

their electrons, are transferred to FAD, forming FADH2. The enzyme involved in this 

step is implanted in the inner membrane of the mitochondrion, so FADH2 can transfer its 

electrons directly into the electron transport chain. Step seven in citric acid cycle involves 

the four-carbon molecule fumarate converting into another four-carbon molecule called 

malate. The Fumarase enzyme catalyzes this step. The last step of the citric acid cycle, 

step eight, creates oxaloacetate, a four-carbon compound formed by oxidation of the 

malate molecule. Malate dehydrogenase catalyzes this step. 
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Figure 4-1 : Citric acid cycle steps. 
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4.4 Gluconeogenesis 

 
Gluconeogenesis is a pathway to produce glucose in the human body.20 In diabetic 

patients, gluconeogenesis is active, especially during fasting, so the current target to 

control diabetic disease is to inhibit gluconeogenesis in order to manage hyperglycemia.21 

Gluconeogenesis is a process to produce glucose from precursors such as lactate, 

glycerol, pyruvate and amino acids.21, 22 A fasting condition requires synthesis of glucose 

from non-carbohydrate sources. Most precursors must enter the citric acid cycle at some 

point to be converted to oxaloacetate.3 Oxaloacetate is an intermediate of the citric acid 

cycle that is the starting material for gluconeogenesis.23  

 

 

Figure 4-2 : Citric acid cycle intermediate, Oxaloacetate, as starting material of Gluconeogenesis process 
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The citric acid cycle, or tricarboxylic acid cycle, has a fundamental role in the 

gluconeogenesis process that is considered the main pathway of the hepatic production of 

glucose. The citric acid cycle is a series of reactions in mitochondria that result from 

oxidization of the acetyl moiety of acetyl-CoA to CO2 and decreases coenzymes that are 

reoxidized through the electron transport chain related to the formation of ATP. The 

enzymes involving in citric acid cycle play important role in regulation of 

gluconeogenesis through catalyzes each step of the cycle to form the substrates. 

Oxaloacetate is a substrate of citric acid cycle and it is the starting material for 

gluconeogenesis. Although the properties of citric acid cycle enzymes have been studied, 

the reports of targeted small molecule modulators of the activity have been limited. 

Therefore, in this study the isolated compound and small analogs investigation of their 

binding affinity to citric acid cycle enzymes that might lead to a new discovery for 

inhibition activity of gluconeogenesis. 

. 

4.5 Molecular docking 

Molecular docking is a structure-based drug design approach. It is frequently used 

in the drug discovery process to determine the best matches between a receptor/target 

protein and a ligand/drug.24 The molecular docking method involves predicting the 

conformations and orientations of a molecule in the active site of target macromolecules 

and labeling the preferred configurations and conformations of molecules binding with 

the active site of target macromolecules.24 The two major purposes of molecular docking 

are right structural modeling and correct prediction of activity.25 Moreover, molecular 

docking has been used in different phases of the drug discovery pipeline, such as 

quantitative structure activity relationship, virtual combinatorial library generation, lead 
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optimization and discovery of a potential lead through virtual screening.25 In addition, the 

application of molecular molding has extended to the analysis of physico-chemical 

parameters of the ligand, including absorption, distribution, metabolism and 

elimination/toxicity using a variety of applications and programs.25, 26 Therefore, in this 

present study, we use computational molecular modeling tools to study and predict the 

interaction of isolated compounds from cissus rotundifolia extract analogs enriched with 

functionalities with citric acid cycle enzymes and gluconeogenesis enzyme PEPCK. 

 

4.6 Aim of the study 

The promising isolated compounds from cissus rotundifolia identified as the dicarboxylic 

aicds analogs showed similarity to malate structure (one of the main intermediates of 

citric acid cycle). Therefore, the similarity in the chemical structure prompt us to build a 

hypothesis for investigating the ability of the isolated compounds to inhibit the 

gluconeogenesis process through inhibition of the citric acid cycle, one of the main 

pathways to reduce the blood glucose level. The molecular docking process includes 

predicting the conformations and orientations of a molecule in the active site of target 

macromolecules and identifying the preferred configurations and conformations of 

molecules interacting with the active site of target macromolecules. In this study, we used 

molecular docking as one of the main strategies in the structure-based drug design 

approach, so we use computational molecular modeling tools to study and predict the 

interaction of the isolated compounds from cissus rotundifolia identified above.  
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4.7 Materials and methods 

 
4.7.1 Compounds 

 Six compounds were isolated from cissus rotundifolia as previously mentioned in 

Chapter 2. In addition to, 2-aminosuccinicamide, 4-methoxy-2,4, dioxobutanic acid and 

levulinic acid compounds. For docking, a vertical library of thirty analogs docked 

including metformin as standard. 

 

 

Figure 4-3: Chemical structure of Isolated compounds (1- 6) from Cissus rotundifolia extract. 
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4.7.2 Molecular modeling 

 Molecular modeling was completed using four application softwares (make 

receptor , Omega, Fred and Vida) using the method previously published by our group.27 

4.7.3 2D and 3D Structures  

A virtual library of thirty analogs and standard metformin compound, along with 

known antidiabetic therapies for the treatment of diabetic mellitus, were prepared using 

ChemOffice Ultra. The energies of the 3D structures were minimized using semi-

empirical PM3 calculations. The energy-minimized structures were then converted into 

pdb files, maintaining all heavy atoms. 

4.7.4 Generation of conformers 

The energy-minimized structures were combined into a single continuous pdb file 

to be used as an input for Omega. The Omega utility uses the MMFF94 force field to 

form multiple conformations for each input ligand in the library in order to induce ligand 

flexibility in an otherwise rigid model. 

4.7.5 Receptor preparation 

 
All of the citric acid cycle enzymes and phosphonyl pyruvate kinase enzyme were 

prepared for the molecular docking process. Citrate synthase (PDB ID: 1cts), aconitase 

(PDB ID: 7acn), isocitrate dehydrogenase (PDB ID: 3blw), alpha-ketoglutarate 

dehydrogenase (PDB: 2jGD), succinyl CoA synthetase (PDB: 2FP4), succinate 

dehydrogenase (PDB: 1neck), fumarase (PDB: 1fuo), malate dehydrogenase (PDB: 

1MLD) and phosphonyl pyruvate kinase enzyme (PECK) (PDB ID:  ) structures were 

downloaded from the RCSB Protein Data Bank and prepared for modeling using Fast 

Rigid Exhaustive Docking (FRED). The application allows for the creation of a grid box 
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by the mode selection pane and adjustment of its size using the mode controls. The box 

size would not exceed 50000–60000Å. Once the grid box size has been created, the 

receptor is ready for use in the docking calculations. 

4.7.6 Docking  

Multiple scoring functions were used in order to identify a consensus structure and 

score in the final output. The scoring functions involve Shapegauss, Chemgauss3, 

Oechemscore, Screen score and PLP. Snapshots and visualizations of the chemical 

interactions between the analogues and receptors were obtained using the VIDA 

application. 

4.8 Results and discussion 

4.8.1 Molecular modeling  

OpenEye Software sets (Fast Rigid Exhaustive Docking (FRED), make Receptor, 

Omega, FRED and VIDA) were used to run the molecular docking studies.27 The crystal 

structure of the citric acid cycle enzymes was used as a molecular target. A virtual library 

of compounds was docked into a ligand binding domain of all the eight enzymes involved 

in each step of the citric acid cycle in addition to phosphoenolpyruvate kinase protein 

(PECK). The molecular docking results showed that analog 2-aminosuccininamide 

(AN21), levulinic acid, and SAA4 compounds possess a high binding affinity on the 

fumarase enzyme. Levulinic acid formed a hydrogen bonding interaction between the 

carboxylic group at C-1 and the amino acid residue ASN135, in addition to another two 

hydrogen bonding interactions between the oxygen of carbonyl group at C-4 with the 

amino acid residues ASN141 and SER140 in fumarase (Figure 4.7). Meanwhile the 

isolated compound, SAA4, is one of the top compounds that showed high binding affinity 
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with the fumarase enzyme. The isolated compound SAA4 formed two hydrogen bonds 

between the oxygen on the groups at C-1and C-3 with SER139 and ASN141, respectively 

(Figure 4-8). Also, analog (AN21) exhibited a high binding affinity with no hydrogen 

bonding interaction (Figure 4.9). Meanwhile, SAA3 compound, which is an isolated 

compound from cissus rotundifolia, formed only one hydrogen bond interaction between 

the carboxylic group at C-1 and the amino acid residue SER140 in fumarase (Figure 

4.10). Alternatively, SAA4 and SAA3 compounds isolated from cissus rotundifolia 

extract showed a binding affinity to three of the citric acid enzymes targeted: isocitrate 

dehydrogenase, succinate dehydrogenase and succinyl CoA. The SAA4 isolated 

compound showed the highest binding affinity to isocitrate dehydrogenase in comparison 

to other isolated compounds and analogs. SAA4 formed hydrogen bonding interaction 

between C-1 and the amino acid residue HIS301 (figure 4.12). SAA3 compound showed 

a high binding affinity to the succinyl CoA enzyme forming two hydrogen bonding  

between the hydroxy group C-2 and carboxylate oxygen C-1 with the amino acid residue 

LYS172 and TYR173, respectively (figure 4.11). Meanwhile, analogs AN21 and 

levulinic acid compounds showed a high binding affinity with the malate dehydrogenase 

enzyme. The AN21 analog formed three hydrogen bond interactions between the amide 

group at C-3 with the amino acid residue ASN118; in addition, two hydrogen bonds 

appeared between the oxygen of carbonyl group at C-1 with two amino acid residues, 

THR211 and ARG80, respectively (Figure 4.13). The isolated compound SAA3 showed 

a high binding affinity to malate dehydrogenase, which exhibited a hydrogen bond 

interaction to malate dehydrogenase enzyme between the hydroxyl group at C-2 with the 

amino acid reside ALA223 (Figure 4.14). On the other hand, compound SAA2 showed 
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less binding affinity on fumarase enzyme and show no hydrogen bond to malate 

dehydrogenase. Structural differences between SAA3 and SAA2 are obvious reason for 

different binding activities. SAA5 does not show binding affinity to fumarase enzyme. 

Higher binding affinity of SAA3 could be attributed to its structural difference from other 

compounds at C-1 and C-4. Furthermore, binding affinity study showed that C-2 hydroxy 

group hydrogen bond to malate dehydrogenase enzyme is the key point behind higher 

binding affinity to malate dehydrogenase enzyme.  Phosphoenolpyruvate protein kinase 

(PEPK) plays an important role in the gluconeogenesis process. The results of docking of 

PEPK with the isolated compounds from cissus rotundifolia and analogs showed that 

SAA3 possesses a high binding affinity. SAA3 formed hydrogen bonding interaction 

between C-1 and the residue of the amino acids VAL335, SER286 and LYS290. (Figure 

4.15). Generally, the result of the top twenty analogs showed a high binding affinity to 

citric acid cycle enzymes and the phosphoenolpyruvate protein kinase. Analogs (AN21), 

(AN4) and Levulinic acid, in addition to, the isolated compounds from cissus rotundifolia 

(SAA4 and SAA3) showed the most promising binding affinity to more than one target of 

enzymes that involved in citric acid cycle, so these molecules based on molecular 

docking result need for further studied using biological evaluation in order to investigate 

the antidiabetic activity through inhibition of gluconeogenesis using in vitro and in vivo 

assays. 

 

4.9 Conclusion 

In this study, isolated compounds from cissus rotundifolia and their analogs, 

including analogs with metformin like functionalities, were studied and their ability to 
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bind to the citric acid cycle enzymes were analyzed using molecular modeling. The 

molecular docking results showed that analog (AN21), levulinic acid and the isolated 

compound SAA4 compounds possess a high binding affinity on the fumarase enzyme, In 

addition to the isolated compound SAA3 and SAA4 showed high binding affinity on 

malate dehydrogenase enzyme, suggesting that they may have potential for treating 

diabetes mellitus through inhibition of citric acid cycle based on the high binding affinity 

of these molecule to fumarase and malate dehydrogenase enzymes. More interestingly, 

our molecular modeling and binding affinity results on the isolated compounds suggests 

they may have inhibition activity for gluconeogenesis due to the high binding affinity to 

citric acid cycle enzymes, in addition to the antidiabetic activity observation from chapter 

2 and chapter 3, since the isolated compounds exhibit significant inhibition activity 

against the alpha glucosidase enzyme and inducing cellular glucose uptake activity.  
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Figure 4-4: Visual representation of levulinic acid analog on fumarase enzyme, where the binding showed at the 
formation of a hydrogen bonds between the group at C-1 and C-4 with the amino acid residues ASN 141, SER 140 and 
ASN 135. 
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Figure 4-5:Visual representation of isolated compound SAA4 binding on the fumarase enzyme, where the binding 
showed at the formation of a hydrogen bond between the carboxylate group with the amino acid residues SER 140, 
and hydrogen bond between the hydroxyl group with the amino residue ASN 141. 
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Figure 4-6: Visual representation of AN21 analog on the fumarase enzyme. 
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Figure 4-7: Visual representation of SAA3 analog on the fumarase enzyme, where the binding showed at the formation 
of a hydrogen bond between the oxygen of carbonyl group at C-1 with the amino acid residues SER 140. 
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Figure 4-8: Visual representation of SAA3 isolated compound from cissus rotundifolia on isocitrate dehydrogenase 
enzyme, where the binding showed at the formation of a hydrogen bonds between the methoxy group with the amino 
acid residues LYS 171 and TYR 173. 
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Figure 4-9: Visual representation of SAA4 isolated compound from cissus rotundifolia on isocitrate dehydrogenase 
enzyme, where the binding showed at the formation of a hydrogen bond between the methoxy group with the amino 
acid residues HIS 301. 
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Figure 4-10: Visual representation of analog AN21 on malate dehydrogenase enzyme. AN21 analog formed three 
hydrogen bonds between the amide group at C-3 with the amino acid residue ASN118; in addition, two hydrogen 
bonds occurred between the oxygen of carbonyl group at C-1 with two amino acid residues: THR211 and ARG80, 
respectively. 
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Figure 4-11: Visual representation of isolated compound SA19 on malate dehydrogenase enzyme. SA19 represents a 
hydrogen bond interaction on the malate dehydrogenase enzyme between the hydroxyl group at C-2 with the amino 
acid reside ALA223. 
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Figure 4-12: Visual representation of levulinic acid analog on isocitrate dehydrogenase enzyme, where the binding 
occurred at the formation of a hydrogen bonds between the group at C-1 and C-2 with the amino acid residues 
PHE169, GLU306 and TYR173. 
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Figure 4-13: Visual representation of SAA3 analog on phosphoenolpyruvate protein kinase enzyme (PECK), where the 
binding showed at the formation of a hydrogen bonds between the group at C-1 and C-3 with the amino acid residues 
VAL335, SER286 and LYS290. 
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5 Appendix 

 
 
5.1 Structure elucidation NMR spectrum 

 
1H-NMR, 13C-NMR and 2D-NMR were conducted using Bruker AVANCE-400 

MHz and 600 MHz NMR spectrometer in deuterated chloroform (CDCl3) using 

tetramethylsilane (TMS) as the internal standard; chemical shifts are given in ä (ppm) 

values.  

 

Figure 5-1 : 1H -NMR Spectrum of 1 in CDCL3 
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Figure 5-2 : 13C -NMR Spectrum of 1 in CDCL3 
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Figure 5-3 : 1H -NMR Spectrum of 3 in CDCL3 

 

Figure 5-4 : 13C -NMR Spectrum of 3 in CDCL3 
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Figure 5-5 : DEPT135 -NMR Spectrum of 3 in CDCL3 
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Figure 5-6 : 1H -NMR Spectrum of 4 in Acetone 
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Figure 5-7 : 13C -NMR Spectrum of 4 in Acetone 
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Figure 5-8 : DEPT90 -NMR Spectrum of 4 in Acetone 
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