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CHAPTER I 

INTRODUCTION 

A. Introduction to the Problem 

1 

Pattern recognition theory has a wide range of applications in 

radar [32], sonar [5], imagery recognition, and alpha-numeric character 

identification [8]. The recognition of patterns is accomplished by many 

different algorithms. They process th� input data according to the 

algorithms in order to draw conclusions. Since a pattern recognition 

problem is usually concerned with classifying a set of input data into 

one of many classes, the resultant conclusion is the designation of the· 

input data set to a certain class. In order to use the algorithms they 

are usually implemented as software or hardware. Therefore, large 

quantities of data can be processed rapidly and complex data inputs 

are reduced to outputs which provide a simple, understandable result 

to a user of the algorithm. 

There seems to be no limit for the development of the algorithms. 

Any algorithm which is useful for the solution to a recognition problem 

can be included in the field of pattern recognition algorithms. Many 

algorithms are mathematically well defined and developed to meet the 

conditions of the problems. There are, however, two general approaches 

to the recognition problems [38]. One is to treat the problem in deter-

ministic sense while the other starts wi"i:h the statistical point of 
' 

view. The statistical approaches can again be subdivided into para-

metric and nonparametric methods. 

Nonoarametric methods, which have attracted the attention of many 
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investigators rec en tly, have advantages over parametric methods in their 

relative insensi ti vi ty to the changes of the inp:ut statistics and no 

n eed for a priori informa tion about the parameters of the probability 

density func tion ( pdf ) [2]. 

One of the problems encountered at the Remote Sensin g Institute of 

South Dakota State Uni versity i s the recognition of crops on the film, 

which is exposed at various al titudes! Since the pho tographic imagery 

is affect ed by complex set of f ac tors , th e no npa rame tric methods seem 

to be appealing to investigators in search for an appropriate 

recognition algorithm. 

Nonparametric methods have inherent drawbacks and it is n ecessary 

to compare the se methods to those of p arame tric methods which have 

already _been proposed and used. Many works on nonparametric area have 

ap peared as indica ted by the literature review presented in th is report. 

Many of the au thors show the good asp ects of these no nparametric methods 

with rela tively little abou t the limitations of their use, especi ally 

in the practical situations . A study on the compar at ive performance of 

no nparame tric methods wi�h respect to the para metric me thods is necessary. 

B. Obj ectives and Significance of the T hesis 

The main obje c t ive of thi s thesis is to determine and compare the 

classification error probabiliti es of several non parametric methods to 

parametric ones in practical or near practical conditions using computer 

simulation. The usefulness of the Asymptotic Relative Efficiency (ARE) 

is also observed. T he ARE is used to compare one algori tbm with another 

in the limit case conditions which are far from practic al circum5tances. 

Details of the ARE concept is given in Chapter II and 
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some of the literatures [7], [22]. 

The next objective is the investigation of the complexity of the 

several algorithms studied. Many investigators are .implementing their 

algorithms on computers, and since the computer time is determined by 

the complexity of the algorithm, a very crucial aspect of any algorithm 

is its complexity. If the data are processed by other than computer, 

the hardware of the system required will become more expensive and com

plicated as the calculation gets more complex. In this respect, the 

calculation problem is studied. 

The previously stated objectives are performed extensively with 

two-class problems, but the actual classification problem in imagery 

recognition usually is a multi-class one. Hence, the generalization of 

the two-class problem to the multi-class one is studied as a minor 

objective. 

One of the important aspects of this work is that the performance 

of each algorithm with various data distribution conditions can be found 

in very practical, not theoretical, circumstances. The adoption of a 

method as a data processing algorithm by a designer of the system can 

be based more positively on the results of this uork. The merits and 

the limitations of the nonparametric methods are also determined by the 

actual handling of data through each method. 

The effects of sample sizes and signal-to-noise ratios on error 

probabilities are experimented to give more insight into the algorithm 

and to see various situational behavior of the method. Through the 

experiments, determining a nonparametric threshold happens to be an 

important'matter in actual applications of algorithms. This is also 



studied and a specific result is draw�. 

C. Literature Review 

Bradley [l] talks about the j ustifi cat ion of using nonparame tric 

methods in many cases . His book is also an exce llen t souree of general 

information on the nonparametric me thods. Several useful cases of non

parame t ric tests are treated in the works of Carlyle and Thomas [2] 

and Thomas [2]. 

Mathematical aspects of nonparametric methods are handled by 

Fraser [7]. Kraft and van Ee den (17] approach the nonparametric method 

in a unique fashion using treatment and effect concept. Over 3000 

nonpa.rametric ref eren ce s are listed in the work of S avage [21]. A 

determination of probability density fun ct ion o f  sequentia l rank vector 

is done by Fu [8], and Fu and Chien (9]. More work on the sequen tial 

nopparametric method is gi ve n by ·chadwick and Kurz [3]. 

The de tailed process of determining the ARE of some nonparametric 

algorithms with re spe ct to the Student's t- test is given in the famous 

work of Hodges and Lehmann [15]. They showed that the ARE of the 

nonp arametric rank sum method compared to the t-test never fal ls below 

0. 864. 
Feus tel and Daviss on [5] report that mixed statistics is a good way 

of compromising be tween calculation complexity and performance efficiency. 

Daly and Rush forth [4] compare the AR!: of n onparamet ric to parametric 

optimal detector in the Gaussian and non-Gaussian distribution. It was 

s.hown that nonparame tri c me thods are more flexib le than the c orrespond

ing optimal de tectors in ARE sense. 

Fralick and Scott [6] deal with the nonparametric nearest-neighbor 



method to estimate the Bayes' risk. It is proven by Groeneveld [10] 

that the method based on the correlation of the signs of differences of 

observed data has an e fficien cy exceedinc more than un ity compared to 

the parame�ri c method under certain noise distributions . 

A procedure is reported by Kanefsky and Thomas (16 ] that modifies 

given sampled-data parametric dete ctors to asymptoti cally nonparametri c 

ones. Appli cations of the K-S test t? a s ignal detection problem are 

performed by Millard and Kurz in their two s imilar works [18], [19 ]. 

D. Organi zation of the Thes is 

Sin ce the nonparametri c methods are c.ompared to the parametri c 

Bayes ' classifier , a brief review of parametri c  and n onpararootric 

methods is provided in Chapter II . 

5 

Part A of Chapter II deals with parametric methods according to the 

available a priori knowledge o f  the probability density funct ion . Part 

· B of the chapter starts with the definition of ARE and explains one

input nonparametri c methods as well as the two- input cas e .  Correlation 

methods are also discussed . 

In Chapter III the :two-class problem is used to tes t  the performance 

of nonparairetri c and Bayes' classifiers . A fixed sample s ize of 15 is 

used for each of the five different conditions of the separations of 

means for the Gaussian dat a .  For tha double-sided exponential an d  

Rayleigh distribution cases there are three different sample sizes use d  

for each of the different signal level separations . The di fferen t error 

probabilities for di fferent nonparametric thresholds are als o experiment-

ed to see the effe ct of threshold values• 

The multi-class problems are treated in Chapter IV. The uni variate 



multi-class, the multivariate two-class and the multivariate multi

class problem are considered separately in that order. 

6 

The conclusions of the thesis work and the suggestions for further 

research are dis cussed in the last chapter. 



CHAPTER II 

PATTERN RECOGNITION ALGORITHMS 

A. Parametric Methods 

In general, the first decision that should be made by a designer 

of a system to solve a pattern recognition problem is to make a choice 

of an algorithm. The designer can choose between a deterministic and 

a statistical algorithm. A deterministic procedure which has been 

also very important and well developed [35] will n ot be discussed here 

except for the relationships with the statistical one. The statistical 

approach can be conveniently subdivided into parametric and nonpara

tretric algorithms. A parametric method makes use of the parameters 

7 

·of the probability density function (pdf) or the distribution of input 

data. The distribution information may not be complete and it is 

ne.cessary to estimate the parameters. Reasonable assumptions and 

convenient derivations can be made quite often to make the problem of 

paran-eter estimation easier. The question of how good the approximation 

is compared to the original is not simple to ans�er. The nonparametric 

statistical methods wilL be discussed in part B of this chapter. 

The p arametric methods can be studied in several cases according 

to the type or combinations of types of available information [12]. 

The first type of data information gives only the form of the distribu

tion but not the parameters, e. In the second type of information, the 

parameter values are also g iven in addition to the functional form of 

�he distribution, hence, complete information is furnished. In the 

third t�lpe of data information!. neither the function al form of the 

distribution nor the parameters are given but only a set of samples 



from known clas�es is provided. In this third type, the samples should 

be utilized to estimate the distribution. The last type of information 

gives only the samples without any a priori information. This fourth 

type is the most diffi cult and probably the most general situati on in 

which pattern recogniti on algorithms have to be developed. The data 

samples are used to determine possible de.cision boundaries. 'New input 

data can be classified as soon as the .. de cision boundarie s  are 

determined. 

While these parametric methods are straightforward an d mathemati

cally e ligible for deeper analyses, they also have many shortcomings. 

In many instances, little-or almost no prior information about the 

input data is given. It will be very tedi ous and time consuming to 

evaluate the distribution. Even if it is possible to spare the time 

and labor to figure out the distribution, it may not be easy to 

represent the distribution with a finite number of parameters be cause 

8 

of the complexity o f  the distribution shape. In the follCMing secti ons, 

each case in connection with the data types is studied further. 

1. Bayes 1 de cisi on rule 

Consider the case where the distribution is completely known and 

there are only two classes to classify from. This i s  the case where 

the combined informati on of the data type one and two is furnished. 

Le t the conditional probabili ty density function of class 0 and class 

1 be f( x/Ho) and f( x/H 1 ), respe ctively. x is the given set of data 

represented in ve ctor form with n elemen ts and Ho is the null 

hypothesis that -che data set is from class 0 instead of the alternative 

H1 that the data set is from class l. The most widely accepted de cision 
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criterion is the maximum likelihood ratio. The ratio of the two distri� 

butions is compared to a certain threshold of value c. If the ratio 

exceeds the threshold the hypothesis Ho is accepted, otherwise 

alternative H1 is accepted. It can be written as follows: 

L(x) = f(x/H0) I f(x/H1) 

and if 

L(x) > C + H is accepted or - 0 

if L(x) < C + H is accepted. 1 

To determine the bias C is the responsibility of the investigator. 

The Bayes' decision rule determines the threshold by the a priori 

probability of class i, p(i), and the cost of making decisions of the 

class, Ki, as 

C = p(O)K0 /p(l)K1 

where p( O ) , p( 1) and K 0 , K 1 are assumed known·. 

The Bayes' decision optimally minimizes the overall risk of making 

errors. The f\llldamental Neymann-Pearson criterion requires 8 to be a 

minimum for a fixed value of a. It is shown that the likelihood ratio 

test given above will satisfy the Neymann-Pearson criterion also [29]. 

In other words, the test gives a lower probability of error of second 

kind than any other tests for the $ame or less probability of error of 

the first kind. If the distributions are Gaussian with variance-

covariance matrix E and mean vector µo for class O and E1, �1 accord-o -
ingly for class 1, then the likelihood ratio can be expressed in a 

more explicit form. Again n is the number of elements of vector x and 

E-1 is the inverse matrix of E in the next equations. 
i i 
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n \ _1 I T As f(x/O) = (2n)-'7 I L01 z exp (

-l/2(x-µo) 2;1cx-µo)J -.... --

n 
. and f(x/l) = (2n)-2"1 L l-

l/2 exp[-l/2(�µ1)Tl1- \�-J:i}], then the 

likelihood r'atio 

The equation becomes more compact in form if we make 2o=li=l · 

-
and by taking logarithms of both sides as 

Without utilizing the knowledge of quadratic form, the above expression 

can be simplified to a linear form as shown in Appendix A, �o, 

T 1 
ln L(�_) = � l- (l:o-�1) + const. 

This is essentially a linear polynomial equation and of course easy 

to work with. 

These quadratic forms represented as Q(x) = (�-µ)l- 1 (�-µ) imply 

the square of distance between � and �, and are optimal for the Laplace 

and rectangular distributions [26], as well as the aforementioned 

Gaussian distribution. 

Going back to Bayes 1 decision, which requires minimum probability 

of error, it is understandable that a decision should be made to assign 

an unknown x to the one of k classes for which f(x/k) is greater than 

any other classes. For those distributions st�ted above, decisions 

�an be made by only comparing the quadratic form itself if there are 

some reasonable assumptions. 



2. Leaming with a teacher 

When the functional form of conditional distribution with unknown 

parameters is given together with a set of samples from known classes, 

the given samples would be used as a training set to estimate ·the 

unknown parameters. Writing the sets of samples as xi(n) = {xi(l), • • •  

xi(n)}, i = O,l and the conditional probability distribution fu�ctions 

of each class as f(x/Xi(n), i) instead of the form f(x/8,i) for known - -

parameters e, the principal quantity of likelihood ratio can be 

represented with the same format as before. 

L(.?!.) = f(x/x0(n) , o ) / f(x/X1(n) , 1) 

The basic operation is to calculate f(x/Xi_(n) ,i) for each i and it is 

done by a recursive procedure in Appendix B, as 

f(x/Xi(n),i) = f(x/G,i) f(8/Xi(n) ,i) dG 

11 

an4 f{e;xi<n>}= [f{xi(n)/G} f {e;xi(n-l)}J/[�= f(xi(n)/G)f(G/Xi(n-l)dG] 

Here, the expression of f(G/Xi(n)) is used for simplicity instead of 

f(0/Xi(n),i). From this recursive way, f(0/Xi(n)) can be calculated 

and used for the likelihood ratio test even thougp it in fact may. be 

difficult to execute. If the distribution is assumed Gaussian, then 

there is a direct way of calculating the parameters [28]. 

3. Learning without a teacher 

If the given set of samples are not predefined or classified, 

then the method discussed in the 11learning with a teacher" scheme 

cannot be used without modification. This so �alled, "learning without 

a. teacher" case is quite realistic, but the difficulties of handling 

data are enormous and one t:sually resorts to suboptimum solution rather 
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than the direct application of procedures. 

Learning with or without a teacher method is not easy� In each 

stage of calculation of conditional probability density functions, the 

system should be capable of adapting itself for various operations, 

both linear and non-linear, and the possibility of this happening makes 

the predictions on system behavior very difficult. The realization of 

the system is complex, also. 

4. When the functional forms are not known 

This is the most general and difficult of the four cases. 

The data sets are given without any prior knowledge on the functional 

distribution, and the classification of samples may or may not be known. 

There is no conclusive result on the case when the samples are not 

classified [28], [38]. 

If the samples are from known classes , two deterministic approaches 

exist. The first one is to find a linear decision fnnction which is 

valid at least for the given samples of known classification [35]. 

The assumption is that a sufficient number of samples are available. 

A linear classifier thus. assigns an tmknown pattern !:, to class 0 if 

� ·w>C and to class 1 otherwise. The coefficients w. of w are pro-
J -

portional to the components of a vector onto which the patterns are 

projected. The simplest method of computing the parameters of a linear 

classifier is to let w = s0-s1 
where Si's are typical members of the 

two classes. Quite o�en these Si's are set 

�an vectors of the samples. 

equal to µ0, µ1,. the 

As the functional forms of the distributions are not given, then 

!_, which minimizes the error probability, cannot be solved analytically. 



This determinist�c method requires an optimization.procedure to 

calculate the coefficients. Since this deterministic method does not 

make use of uny a priori probability, it lacks the property of 

quantitative evaluation of the performance. 

13 

The second method achieves pattern recognition usi�g a conditional 

probability density f\.Ulction f(i/x) (30]. If the probability density 

f\.Ulction can be expanded into a series.- then the decision function g(x), . . -

which classifies a given set of data to class O if it is positive and 

class 1 if it is not, can be expressed as 

g(x) = f(l/x) - f(O/x) 

= 2 f(l/x) - l 
00 

= l w .g �c x). ·-1 J J -
J-

To determine gj is another difficult problem and usually orthonormal 

functions are used. Suppose that gj ' s are defined, then the problem 

which remains is only to calculate w.'s for values of the functions 
J 

measured at random points • 

. 
s. Sequential decision methods 

In the previous sections, certain satisfactory numbers of features 

or measurements were assumed to be fixed and every method was mentioned 

without asking the question, "How many measurements should one take 

from a class?" There should be at least enough features or measure-

ments, but the number cannot be increased indefinitely because of the 

cost of tal<ing measurements or the limitation in time [ 33], [34]. If 

the cost of taking measurements is significant or the-features them

selves are sequential in nature, then sequential methods should be 

used [8]. 

274247 
. - . ·· - , ... - � . 

.. ' .. -
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It is specifically important to have the data in such an order that 

the decision should be terminated at the earliest stage possible. After 

the n-th feature measurement is taken, th� likelihood ratio 

n 
LC.�)n = TI f(x/H0)/f(x/H1) 

i=l 

is calculated and compared with two stopping boundaries A and B• 

If Ln � A, then x is classified into c).ass O and if L� � B, then x is 

classified into class 1, otherwise the same process is repeated for 

the (n+l)th measurement. 

The stopping boundaries A and B are s�t in much the same way as 

the threshold is determined in Neymann-Pearson criterion for fixed 

number of measurements, or 

A = (1-y)/a, and B = y/(1-a) 

where y and a are set by the user. 

It is shown, for a two-class decision problem, that a sequential 

decision method has an optimal property in the sense that it consumes 

the least number of features to make the same or lower probability 

of error compared to any other classification algorithms [9]. ·1f the 

ftmctional forms of distributions are not given, learning schemes should 

also be adopted in addition to the use of the sequential method. 

The four cases sited before in connection with the available 

information about the distributions, and the possible algorithms that 

could be adopted for classifications are tabularized for simple display 

in Table II-1. 

6. Summary of the parametric methods 

· The basic properties of Bayes' optimal decision rule are 
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discussed along with Neymann-Pearson criterion for the case when complete 

a priori information is known for the conditional distributions. If 

the parameters of the distributions are t•Ot gl ven, the samples from 

known classifications can be used to estimate the parameters. If the 

sample classes are not given, a nonsupervised learning method is 

necessary. Every method·mentioned can be substituted by sequential 

decision procedures which guarantee the optimal solution. When no 

f\Ulctional form is supplied with samples, and this is the most probable 

case of all, deterministic ways of using disc�iminant functions or 

stochastic methods are available for substitution, but no absolutely 

general method is in existence. , 

While these parametric methods seem straightforward and mathe

matically eligible for further development of algorithms, it ·should 

be also noted that the assumptions set for the parametric methods do 

not always conform to practical situations. In fact, the ft.mctional 

form of distributions are not known and their forms are rarely Gaussian 

(1), or after non-linear transformations which ar� commonly used, the 

data certainly will not remain Gaussian if the original data are 

Gaussian ( 31]. The learning with or without a teacher is in most 

cases too involved and not easy to implement. The motivation to 

investigate nonparametric methods is thus aroused. 



Table II-L Available information and possible a
.
lgori thrns of the four cases 

Case 1 Case 2 Case 3 

Shape of 
distribution known known unknown 

Parameters 

Available of the pdf \lllknown known unknown 
information . 

Set of not 
samples given necessary given 

Sample not not 
classification given given necessary given 

Direct use I 

of Bayes ' rule no no yes no 

Learning 
with a teacher yes no no no 

Possible 
algorithms Learning 

I 
without a teacher no no yes no 

Deterministic 
method possible possible possible yes 

Sequential 

! decision yes I yes yes 

Case 4 · 

unknown 

U.'lknown 

not 
given 

not 
given 

no 

no 

no 

yes 

� 0) 
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B. Nonparametric Methods 

For most general situations in which little is known about the 

distribution of random variables, it is necessary to develop methods 

that do not �epend on any particular form of a probability density 

function, or on less restric tions on the form of distributions. A 

nonp arametri c method can be used when less than a complete knawledge of 

the pdf is provided and the estimation of the distribution is impossible 

with a finite number of parameters. 

The term "nonparame tric" comes from the fact that :these tests do 

not test or estimate the parameters of dis�ributions as is done for 

parametric methods. Since this category of statistical. methods requires 

ver:y little knowledge of the distribution of the variables, the nume 

"distribution-free method" is also often used. 

Karl Pearson ' s chi-square test of fit [14.] prop osed in 1900 is one 

of the earliest nonparametric methods but relatively little con cern was 

directed to this so mewhat unfamiliar field of statistics until 

Wilcoxon•s rank method was introduced in 1945. This test showed 

remarkable perf ormance in its simplicity and re lative error probability, 

even when the distributions are Gaussian. These nonparametri c methods 

thl.is have advantages which are: (l) insensitivity to the input 

variables statistics while a fixed maximum error probability in one 

class is maintained , (2) relatively easy implementation of the system 

and software resulting in reduced time for calculation. 

While the lack of statistical utilization of information about the 

input variables keeps one from designing an absolutely optimal system, 



it should also be remembered that an optimum system is not always 

feasible in practice. Nonparametric methods are worth consideration. 

The performance figure of nonparametric methods is considered next. 

l. Asymptotic relative efficiency 

Asymptotic relative efficiency (ARE) is used as a figure of merit 

of one pattern recognition algorithm with respect to another method 

for the same hypothesis test. 

Let N 1 and N2 be th e smallest number of observations needed for 

each of the two algorithms to be compared to reduce the B error at 

most below a certain value while maintaining the same fixed a error. 

Pitman's relative efficiency is defined as 

This ratio should be a function of a, '3 and the probability density 

function of each class [2], [7], or 

e1,2 = n1(a,8,f(x/H0), f(x/H1))/ n/ a,S,f(x/H0), f(x/H1)) 

As the relative efficiency defined above is difficult to evaluate 

for any arbitrary a, B, and pdf's, the asymptotic
. 

relative efficiency 

is derived for·sirnplified comparison by letting N1. and N2 approach 

infinity. However, it is necessary to reduce the signal level to 

18 

zero in order not to have 8 become zero with infinite number of samples 

as it would be for cons istent statistics. 

Then the ARE is, 

ARE1 2 = lim 
' 
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The s ub s cripts specify the ARE of me thod 2 comp ared to me thod l .  

Allowing H 1  to approach H0 is in analogy to taking a re lative effi cien cy 

of two sys tem performance in weak-signal condition , hence an ARE less 

than unity means that algorithm 2 is less effi cient than algorithm 1 .  

An ARE more than unity means that algorithm 2 is better than the other . 

I t  is true that ARE gives a measure of comparin g two methods in perform

an ce , but its engineering value has not yet been completely proven . 

2 .  One-input tests ( With Re ference Noise ) 

Suppose there is only one input channel and each me asurement ve ctor 

ob tained from either of the two classes has data length of n .  Several 

methods are availab le t o  process the data. 

a. Si gn tes t  

This test i s  sensitive to the difference o f  the medians o f  the 

two classes provide d  one of the medians is at ·the origin . 

, Let H 0 , H 1 be the null and alternative hypothes is , respe ctively , and x 

an input vector as before . I f  the x . ' s ,  the elements of x ,  are all . l. -

independent and i dentically distributed with the same cumulative 

dis tribution function F( xi ) '  then the null hypothes is H0 is that F( O )  

equals one half and the alternative H 1 is that F( O )  is not equal to one 

half. 

For class O the prob ability of positive observations occurring 

is the same as that of the negative observation occurren ce . For class 

l with median values n ot equal to zero , the probabili ty of observin g 

positi ve or ne gative values is greater th an that of the opposite sign 

obse1 .. vations . This test calculates the number of pos it ive or negat ive 

observations , which ever is smaller , and compares it t o  a certain thres-

hold .  
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I f  the observation number e xceeds the threshold , H 0 is accepte d , otherwise 

H1 .is accepted .  'l'he th reshold i s  determined in the followin g way : 

For the case when on ly class O is present , the prob ability of 

obs erving positive s i gns is the s ame as th at of observin g negative s i gns . 

l ,  if x .  > 0 
l. Le t U .  { l. 0 1  if xi < O 

then U .  corresponds t o  a s ingle 
l. 

i ty  of occurren ce of a l or o .  

dis tributed corresponding t o  n 

independen t variable with equal probabil
n 

The sum ,  m ' = l U . , will b e  b inomia lly 
. l l. .i.= 

independent tri als of an experiment with 

equal a priori prob abili ties of negative and pos itive s_i gn  observat i ons . 

Naturally the number of positive or negative signs will be ch an ge d  

appre ci ably from the me an value of clas s O ,  or n /2 , whenever a s e t  of 

data from class 1 is processed . If the dat a  in class l h ave ·more p ositive 

nedian than class O data , the number of positive observat i ons w i ll be 

greater th an the n umber of negative s igns . For class l with a more 

negative median, the reverse will be true . To a certain predetermine d 

significance leve l , the number of posi tive or ne g�tive obs ervati ons i s  

compare d and determined whether class O is present or n ot .  For e xample , 

s uppose a signi ficance leve l of 10 per cent . i s  selected .  With clas s l 

which has the more positi ve median .and for samp le s i ze n = 12 , m should 

be less than 4 be caus e 

3 (12 )  

4 f2 \ 
( l /2 ) nI

. 
( l/2 )n<o . l< ( l/2 )nl / ( l /� }n 

m= O . m m=O m 
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For a sufficiently large number of s amples , the binomial 

distribution can be approximated by a normal distribution with me an 

µ 1 =np=n /2 m�d varian ce o� =npq=n /4 [2 2 ] .  The thn!shold c is de termined 

by 

r(�2) = l - a where F( x )  is cumulative normal distribution 

fun ction with µ=O and o 2 = 1 .  

It has been proven that the s i gn  de te ctor has an ARE o f  about 64% 

compared to a line ar optimal de tector of de signals in Gaussian noise .  

For a noise other than Gaussian , like the Laplace distributions , the 

efficiency becomes greater than unity [7 ] • . 

b .  Wilcoxon • s s i gned-rank tes t  

This test is also s ensitive to the difference i n  the median 

be tween the classes and requires the clas s O distrib ution b e  symme tri c 

ab�ut the ori gin . It is s aid th at the nonsymmetry o f  class 1 can be 

dete cted through this test (l] . 

On the contrary to the sign test which does not us e  much · in£orma-

tion about the input data e xcep t for the signs , tJ:iis test use s · the 

information of ranks of � ach observation . This implies that the s igns 

are ·weighted according to the dis tance from the origin . For this t es t � 

a s e t  o f  data is ordered and ranked according t o  their abso lute values 

in in creas ing order and one t akes the rank sum of positive data. From 

H0 , for whi ch F( O )  = 1/2 and with identi cal distribution for each 

observed variab le , it is clear that the sum of ranks of pos itive or 

n.e gative obs ervati ons should be a random variable . Each of the 2n 

sets of poss ible s ums h as  the same probab i lity of occurren ce ,  so that 

the distribution of sums is pre determined. The distribution wi ll range 



2 2  

from O to n ( n+ l ) /2 w i th mean at n ( n+ l ) /4 .  For the alternative H i ,  for 

which F( O ) < l/2 be cause of the pos iti ve signal , the number of p os it ive 

observat i on ranks will b e  more th an that of negative obs ervation ranks . 

I f  a p articular s um of ranks of an observation falls i nto a regi on 

within a certain threshold, then the hypothesis H o  is accep ted , o ther

wise , H 1 is accepted. Mathemat i cally, 

n 
J.. f \ d . > C ,  H l accept 0 or . 1 l.-

1= 

n 
if l d . < C ,  accept H1 

i=l l. 

O ,  if x . <O 
where d .  { l. 

J. 
i ,  if x . >O l.-

The threshold i s  ob tained by the dire ct use of a error , the error 

probabili ty of type l ,  s i nce a fixed n umber m of 2
n 

combinati ons 

should b e  out s i de of the threshold , or m/2n�a. 
For a sufficien tly large number of observations , the distrib ution 

of rank s urns can be appr�ximated by normal distri�uti on [16] wi th me an 

µ=n (n+ l ) /4 and · vari ance o 2 =n ( n + l ) ( 2n+l ) /2 4 , hence threshold C is 

calculate d from 

F [ (  c- µ ) /o ] = 1-a 
I t  is found th at the Wi lcoxon '  s s i gned-rank method h as  an ARE of about 

95 . S  per cent with respect t o  optimal linear detector if the dis tribu-

tion is . Ga�ss ian but it in preases considerably to more than 100 per 

cent as the distribution is drifting away from Gaussian [7]. A more 

impressive res ult was reported by Hodges and Lehmann [ 15 ] .  They 

showed th at the ARE of the Wilcoxon ' s  test relative to the t- tes t is 



never less than 86 . 4  per cent for any kind of distributions F(x ) , and 

is arbitrarily high without botmd. So the line ar test requires only 

13. 6 per cent less dat a than Wilcoxon ' s  tes t  at its best for the s ame 

performan ce , but it may requi re more s amples in many cas es . 

c .  Sequential nonp arametri c method 

Sequential methods in p arametric cases are mentioned in p art A of 

2 3 

this chapter. Accordin g t o  Fu and Chien [9 ] ,  s i gnificant findings were 

made in re cen t  ye ars in calculations of sequen tial distributions an d  

the practi cal us e of  i t  t o  nonparametri c case . In applyin g  ordinary 

sequenti al prob ab i lity ratio test t o  its nonparametric cas es , i t  is 

neces sary t o  fin d out the probabi lity distributions o f  the sequent i al 

rank vect ors r(n ) = ( r 1 ,r2 , • • •  , rn ) of ori gin al ve ct or �· The 

sequential rank is represented as rn i f  x
n 

i s  the rn- th smalle s t  

element in the s amp le ve ct or �· 

Since there exists a one-to-one correspondence between the ordered 

observations and the sequential rank vector , the dis trib ut i on of  the 

sequential rank is comp letely dete rmined by the o�de red obs e rvati on .  

I f  x .  's are all in dependent , then , l. 

= .r • • • • • • • • • • • • •  

_oo< x 1.::.• • <� <oo 

n 
!IT dF . ( x . )  

• • J J 
J = l. 

where F . ( x . )  in di cates the distribution fun ct ions of  xj • 
J J 

If Lehmann • s alternatives are adopted for the distribut i on 

functions r . ( x . ) , then 
J J 



F .  ( x . )  = F
r j( x . )  = { r( x ) l r 

. >o J J J j I ] '  rj 

where rj is the obs erve d s equential rank , 

or dF . ( x . )  = dFr j ( x . )  
] J J 

= rj fr j- 1( x
j

) 

From this , 

F( x 1_< x2 < • • •  <x )  = - - n 

n 
! . . . . . . . . . . . . . .  !IT dFr j ( x . )  

j = l  J 

_oo<x 1 < • • • < x  <oo - - n 

whi ch i s  foun d_ by s ome s imple man ipulation . 
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Re lab e ling the x
J
. ' s ,  the prob ab i li ty of any order of the x ' s  can b e  

j 

de te rmined . 

3 .  Tw o- input tests 

S uppos e th at , in addit ion t o  the channe l  of th e one input cas e , 

there is another s t at i s t i cally in dependent noise channe l  whi ch is n ot 

pert urb e d  by the p resence o f  s i gn als . Le t this addit i on al s e t  o f  

re feren ce n oi se inp ut dat a  by � =  Cy 1 ,Y2 , • • • ' Yn ) whi ch i s  indepen den t 

of x . This s i tuation s hould not be con fus e d  with the cas e whe re 

the presen ce of s i gn al ch an ges s t atisti cs in both channe ls . The lat te r  

case is men ti oned i n  late r s e ction .  

Wi th the s ame as s ump ti on s  made in one- inp ut tes t , the n ull 

hypothes is is that the me di an of one clas s is th e s ame as t h at of the 

other against the altern ati ve that t he medi ans are di fferen t , or 



Ho  F( z . = O )  = 1/2 
.l. 

H 1 F ( z . =O ) ¢ 1/2 

where z . = x . - y  . •  
l. l. .l. 

l. 

The s ame procedures dis cussed in previ ous s ecti on o f  one- input cas e 

can be employed by treating z .  as the vari ab le x .  of one-input cas e • .l. l. 

a .  S i gn tes t  

This t es t  calculates t h e  numb er o f  positi ve o r  n egati ve s i gns 

of � = � - x_ and comp ares the number t o  a certain threshold . As j_n 

the one- input s i gn tes t , the threshold is found from the fact that 

s i gns of obs ervations a re elements of a random vector whi ch h as equal 

probab i li t y  of occurrence o f  ei ther posi tive or negative s i gns if H 0 

is true. For a s equence o f  random s i gns , th e di stributions should b e  

. binomi al.  If a dis tribution falls beyond a predetermin ed threshold 
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of the binomi al di stributi on , H0 is rej ected � otherwis e H 1 is rej ected .  

b. Wi lcoxon ' s  signed-rank tes t 

Lik e the s i gn  test for the two-input cas e ,  this t es t  also makes 

use of the s ame concep t  as for th e one input cas e. Firs t , determine 

the s i gn ed differences of the two s ets of obs ervat ions , � and y_. I.,et 

� b e  the s i gned differen ces in vector form. Then determine the ranks 

· of elements accordin g to their abs olut e values . Thes e ranks are then 

attached with pos itive or negative signs , whi ch ever are ori ginal.  

For an alternative hypothes is whi ch has more posi ti ve median th an the 

null hypothes i s , there will b e  more pos itive elemen ts than negative 

· on�s ,  h en ce more pos itive ranks th an negati ve. The n ext s tep is t o  



find the sum of .ra'Tlks o f  p ositive signs i f  the alternative h as more 

posi tive medi an , negative s i gns if the alternat i ve has more negative 

medi an .  
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Sin ce the sum of ranks is a random va�i· ab le whi· ch i" s · .1.. approximate ly 

normally distributed with mean µ=n ( n+l )/4 and standard deviation 

cr= ln(n+lX2n + l ) /24 [ 16], the prob ability of a value of sum as e xtreme 

as it can be computed .  I f  i t  falls beyond a threshold , that the . 

distributi on di ffers dis tinctive ly , the alternative H 1  is  accepte d .  

Otherwise H o  is accepted .  The above can b e  expressed s imply as , 

n n �c+H 0 i s  accepted 

l l U ( x . -y . ) { . 1 . l. .J. J =  i =n <C+H 1 is accepted ,  

for pos i t i ve alte rnat ive .  Thre shold C is determined in the s ame way 

as for the one input case . 

c. Rank-sum test 

It has been shown th at the previous ly mentione d s i gn or s i gned-

rank tests require s ome restri ctions on the distribution shapes . For 

the tes t of the null hyp othes is H0 , that the two � and y are from 

i den ti cal dis tribut ions , against the alternative H 1, th at the two 

are from di fferen t distributions , the Wi lcoxon , Mann-Whitney ' s  rank-s um 

method can be used . It is as s umed that the xi ' s  are independen t  and 

identi cally dis trib ute d as all yi ' s  are , als o .  

Di fferent s ample s i zes may we ll be used , s o  let m and n be the 

number of meas urements in each of � and y ,  respe ct ive ly . From the 

assumption of independent random meas urements of xi ' s  and y 
i

' s , e ach 

of the ( n+m) ! pos.s ib le permutat ions of me as ure ments o f  the ori gin al 

se ts must have the s ame a p riori probab i li ty i f  th e n ull hypothes is o f  



identical dis tribution is true , In other words , any of the 
r m:n) 

pos s ib le combinati ons of � and y data sets from ( m+n ) me as urements 

were equally prob ab le to h ave b e come the actual observat ion s et .  

For each o f  these {ro:n) poss ible data s ets , there e xi s ts a value 
m 
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l R . , where R .  is the rank of x1• in s ize among the ( m+n ) obs ervat ions . 
i= l 1 1 m 

( m+ } · Then the distribut ion of l R .  values o f  all the m
n 

poss ib le data 
. 1 l. i= 

sets must conform to a prede fined distribution to s at i s fy  H 0 • The 

null hypothes is of identi cal distribution is rej e cted if the act ual 
m 

values of l R .  falls outs ide of presele cted s�gnifi cance leve l .  Thi s  
i= l l. 

test is very sensi tive to the di fference in the leve l ( mean )  sep arat ion 

but is als o s omewhat sens itive to the di fference in shape and varian ce 

[ l ] .  

The A RE  of the rank-s um test with respe ct to the op timal linear 

detector for Gaussian distribution cas e is 0 . 9.55 . This is the s ame 

as that of s igned-rank test s ince both methods are the s ame for 

symme tri cal distrib utions . The ARE of this test never falls b e low 

0 . 864 with respe ct t o  the optimal linear dete ctor an d  can b e  arbitrary 

high for many distributions ( 15 ] . 

4 . Two-input tests ( correlation me thod ) 

Assume a system w ith two input channels which have s t atistically 

independent noises but the presence of a s i gnal perturbs both ch anne ls 

simultaneous ly . The appropri ate test de cides on the hypothes is that 

the two ch anne ls are independen t vers us the alternative o f  dependen ce . 

This kind o f  s ituation occurs in the pract ical cas e of the s cat tere d 

or fadin u rad io commun i cat ion channe l. The two most wide ly use d  n on-
o 

p arametri'C methods for tes
.
t in g  if  corre lati on e xists 



are the rank correlation and p olarity coinciden ce correlation methods 

[6 ] ,  [22 ] .  

a .  Rank corre lation method 

Let each of 'the two channe ls be represented by � and l.,t respe ct

ively . A pair ( xi,yi ) is a sample which is obtained at the s ame 

instance of observation, or mat ched observations . The ordinary linear 

s ample corre lation coeffi cient is defiped as 

Nonparametri c rank correlation coeffi cient- is found by the s ame pro-

cedures except that the actual values of x . and y .  ai"e rep laced by 
1 1 

their respe ct ive ranks among each � and y .  

This method is als o calle d Spe arman ' s  rank corre lation test . I f  

the coe ffi cient i s  les s th an a predetermine d threshold c ,  the 

hypothesis Ho that the tw o  ch anne ls are not correlated is accep te d. 

If r e xceeds c ,  then the alternative H1 of dependen ce is accepte d . 

The ARE of this rank correlation te chnique is kn�n t o  be 0 . 9 1  with 

respe ct to ordinary linep.r s ample corre lation methods i f  the s ample 

dis tributions are Gauss ian.  The ARE can be greater than unity if the 

distribut ions are not Gaussian [l ) . 

b .  Polarity coin ciden ce correlation 

If only the polari ties of each s amp le-p air are examined for a 

test, the least comp licated method is availab le . The tot al number 

�f points ( x .  ,y . ) whi ch fall in the first and th ird quadrants of the · 

1 l. n 
x-y plane can be written in the form L U( x . ,y . ) . 

. 1 l. 1 J.= 

2 8  
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This polarity coin cidence corre lator de cides th at a s ignal is present 

when the above value excee ds a threshold. The ARE of th is test is shown 

to be 0 . 202 for Gauss i an  distribution wit� respe ct to optimal dete ctor. 

As usual , the threshold should be set at an appropriate leve l whi ch 

conforms to signi fi cant correlation between the two channels .  

s. Brie fs on nonp arame tri c methods 

Nonparametri c methods for the one and two input cases were review-

e d. Even th ough the pract ical usefulness of ARE is not yet thoroughly 

investigated , the nonparame tric methods have very. good re lative 

e fficiencies for distributions other than Gaussian. For nonparametri c 

methods , th e probability of making an error of one kind can be pres et 

to a value no matter what dis tribution forms the random vari ab le h as , 

and j us t  a few general ass umptions are necessary to proceed . The 

assumptions are :  ( 1 ) continuous distribution over a range of the 

· variable , ( 2 )  different median of each class , and ( 3 )  symmetri ca.l 

dis tribution for s igned-rank test. 

The sequential method has als o been considered. The sequential 

distribution of ranks has a one-to-one correspondence with the ordered 

measurements . 
t lt + • th Hen ce , assumin g the Lehmann s a erna '" i  ve , e 

prob ability of any order of sequential rank vector can be calculated .  
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CHAPTER I I I  

BAS I C  PE RFORMANCE COMPARI S ONS 

The com� aris ons of the p erforman ce of p arame tri c and n onp arametri c 

me th ods des cribe d  e arli e r  are made in thi s  chapte r .  F o r  e as e  i n  

analys i s o f  t h e s e  me thod s  the p erforman ce o f  the B aye s ' clas s i fier i s  

us e d  a s  a re feren ce . Random vari ab les of kn own prob ab i li ty dens ity 

fun c t i ons are us e d  as c orrup ting n ois e . - The p df ' s us e d  are the G aus s i an 
. ' 

two- s i de d  e xp onen t i al or Lap laci an an d  the Ray le i gh dis trib ut i on s . 

On ly the two- clas s p rob lem is in ves ti gate d  us in g the algori thms 

dis cus s e d  in Ch ap te r  I I . The gene rali zat i on o f the two- c las s prob le m  

in to a mu lti - clas s  one i s  done in Ch ap te r  I V .  The s i gned- rank a n d  s i gn 

tes t s  are emp loye d  e xtens ive ly . K- clas s  algorithm [ 39 ] ,  whi ch i s  one 

of the nonp arametri c me th ods deve l op e d  re cen t ly , i s  a ls o  · us e d . The us e 

of the K- clas s alg ori thm was made p os s ib le by a· subrout ine s upp l i e d  by 

G. Ne ls on of the E le ctri cal En gineering Dep artmen t anci the Remot e  

Sens ing Ins ·t i  tute of S outh Dak ota S t ate Uni vers i ty .  

To perform comp uter s imulat i ons of the di ffer�n t me th ods , a ran dom 

sequen ce of s i gn als an d ran dom nois es of known dis tribution s  were 

gene rate d  accordin g t o  the proce dures dis cuss e d  ne xt .  

A . Generat i ons of Ran dom Si � als an d Noises 

1 .  Random s i gn a ls 

The c omput e r s ubroutine RAN DU is use d t o  gene rat e  5 12 un i formly 

dis t ribut e d  ran dom vari ab l� s  from O t o  1. The re as on for ch oos in g this 

512 i s th at it is large en ough t o give con s i s ten t error p rob ab i li t i e s  

for e ach algori tl)m an d i s  not too l arge t o  proce s s  b y  compute1• . 
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Since this is on ly a two- clas s  prob lem , signal zero is  ass i gned i f  the 

l.llli form random vari ab le h as a value lower than one-h alf and s i gnal one 

is as s i gned i f  the vari ab le is greater than one-h alf .  Be cause the 

distribut i ons are uni form , the a pri ori prob ab i lities o f  s i gn al zero 

and one occurring are equal to one-half. In analogy t o  the communi ca-

tion ' s  prob lem , zero may repre s ent that the re is not a s i gn al present , 

whi le a one indi cates the pres en ce o f  a s i gnal with unit amp litude . 

For e ach s i gn al of zero or one , sixteen s amp les are taken and cor•rupted 

by independent noises . The prob lem is t o  determine whether the s i gnal 

was originally ze ro 01" one , usin g  di fferent algori thms . When Lap laci an 

and Rayle i gh distribut i on n oises are used , s amp le s izes or four an d  

e i ght are us ed addi tionally to investi gate the e ffe cts of the s amp le 

s i zes on the prob ab i li ty of error . 

2. Random noises 

Three general approaches to numeri cal generation of ra."ldom 

variab les with a gi ven dis trib uti on are avai lab le .  The s o- called 

inverse trans form te chnique i s  the eas iest one to work with i f  the · 

cumulative distribut i on fun ction F( x) o f  the ran dom vari ab le is known .  

Sin ce any cumulat i ve distribution fun ction is de fined ove :r the range 

of zero to one and a un i formly dis tributed ran dom vari ab le r can b e  

generate d  over the s ame ran ge b y  us in g the s ubroutine RAN DU , r may be  

set to equal to r( x ) . For eve ry  r there is a unique x w hi ch is  

1 
· tran� form of the cumulat i ve dis tri-ca culate d  by t ak ing the inve rse -

b · - 1 ( ) As r � s  a uni form ran dom vari ab le and ut ion funct ion or x= F r • • 

f( x )  1· s F ( x ) , x is the desired value of the random 
the derivative of 



vari ab le wi th the s pe ci fi e d  pdf f ( x ) . 

Mathemat i cally ,  

x 
r = F( x)  = f f( x ) dx _ co  

an d F( x)  = p ( x '�x ) = p [ r<F ( x ) ]  = p [ F- 1 ( r) <x ]  
hen ce , x = F- 1 ( r ) i s  the random vari ab le w i th density fun cti on o f  f (  x ) . 

T h e  ab ove p roce d ure is applied very e as i ly t o  a two- s i de d  e xp onen-
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t i al distrib u t i on f ( x ) = c 12 ) < r 1 )  h c e xp - c  x w os e cumulati ve di s t rib ut i on 

fun cti on i s 

F( x)  : { 1- 1/2 e xp ( - cx ) 
1 /2 e xp ( ex ) 

i f  x > 0 
i f  x z 0 

Sin ce p os it i ve values of x correspond t o  0 . 5  � r � l . O ,  and ne gative x 
to 0 < r < o . s ,  x i s det e rmined from e ach r as 

r = 1- 1 /2 e xp ( - cx ) +x = ( - 1 /c ) ln ( 2 - 2 r ) for 0 . 5  < r < 1 . 0  

an d  r = 1 /2 e xp ( cx ) +x = ( l /c ) ln ( 2 r ) for 0 < r < 0 . 5 

Random vaPi ab le with Ray le i gh distrib ut i on can als o be foun d 

through . the s ame proce dures . The dens i ty fun cti on h as the form 

f( x)  = ( x /0 2 ) e xp ( - x2 /2a 2 ) , x > O and the cumulat i ve dist ribution 

fun cti on is F( x)  = 1 - e xp ( - x2 /2a 2 ) as s een in Fi gure 3- 1 .  Sin ce there 

is a uni que x for e ve ry  random vari ab le r with uni form dis trib ut i on 

over the ran ge ze ro t o  one s u ch th at r= l- e xp ( - x2 /2cr 2 ) , then 

x = f.2a 2 ln ( 1- r } 
1 12 

Gaus s i an ran dom vari ab les are .generat e d  by use o f  the s ub p ro gram 

GAUSS whi ch u t i li zes the central limi t theorem w i th twe lve vari ab les 

whi ch are in dependent and i den tically dis t ribut e d . In th i s  s ub rout ine 

s ubprog1 ... am , random vari ab le s  generate d by RAN DU with uni form 
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dis tribution from zero to one are used.  

B .  Gaus s i an  Di s tribut i on Cas e 

The firs t s imulation p rob lem is e xecuted w ith Gaus s i an noise 

cas e . To che ck the effe ct of the s i gnal-to-noise ratio , five s ep arate 

experiment s  with di fferent mean values of s ignal one were use d  wi th a 

fixed value of vari an ce .  In other words , the distrib ut i on of s i gn al 

zero has a mean value of ze ro and vari ance of one whi le s i gnal one 

has mean values of 0. 3 ,  O .  5 ,  0 .  75 " 1. O and l .  25 , respective ly , fori 
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diffe
_
rent � xperirnents with the s ame variance . To each of 16 fi xe d  me an 

values from whe ther a s i gnal zero or one , statist i cally in dependent 

Gaus s i an noise wi th mean zero and variance one is  adde d . Hen ce , for 

s ample one the me an value in cre as es to a value larger than zero . The 

case of corre lated noise mi ght h ave been studied here but it is avoi ded 

to concentrate only on the prob lem of comp arin g nonparametri c methods 

to the p arametri c methods . 

As the noise dis tributi ons are all independent and i denti cal w ith 

each other , the op timal B ayes ' de cis ion is achieved by tak in g  the s um 

of 16 observed values and comparing it to a threshold , whi ch is 

determined by the followin g way .  I f  the risk for making a de cis ion 

in one clas s  is the s ame as that of the other class , and the a priori 

probabi lity is als o the s ame in both classes , then the th reshold is 

found from 

f( x/H 0 ) 16 16 

1 ,  n f( x . /H0 ) = II f( x �  /H 1 }  = or 
f( x/H 1 )  1 i= l 

1 
i = l  

Wi th independent and i denti cal distribution for each vari ab le , the 



ab ove can b e  reduced to linear form as in Chap ter I I , or 

x l  + X2 + • • •  + X 1 6 =  8 . 0  i f  the s i gnal one has me an value of one . 

Hence , for the s um whi ch is less th an ei gh t , si gn al zero is assi gned , 

otherwis e  s i gn al one is ass i gned . 

35 

The nonparame tri c s i gned- rank tes t and s i gn  tes t for the one

input cas e  are als o appJ_i e d .  As "it was s een in Chapter I I , the 

p os i ti ve or negat i ve  I,ank s um for si gned- rank tes t  is a random vari ab le 

whos e  range is from O to 136 = 16 ( 16+ 1 ) /2 .  This is readi ly un ders t ood 

because there are s ixteen ranks from 1 to 16 accor�in g t o  the absolute 
values of observations and the s i gns attached to the ranks are the 

signs of ori ginal obs ervations whi ch are random In character . When 

si gnal zero is presen t , ther-e will be almost equal probab ilities of 

observin g ei ther negat i ve or p os i tive s i gns .  But when s i gnal one is  

present , the probability of obs erving posi tive s i gns will in cre ase in 

accordan ce wi th the in cre ase of mean value , mal<in g the s um of p os .1. t i  ve 

ranks more th an that of the negat�ve ranks . 

For a large number of s amples , say n � 12 , distribution of s i gned-

rank sums for s ignal zero can be app roximated by Gaussian w i th me an 

µ = n(n+ l ) / 4 ,  and varian ce a2 = n ( n+l ) ( 2n+l ) /2 4 .  For the samp le s i ze 

16 us ed in this e xperimen t , µ = 6 8  and o2 = 37 4 .  The thre shold for 

this test is determined next.  As an example , to make the a-error 

prob abi li ty less th an 5 percent , whi ch is als o the s i gnifi caTl ce leve l 

of the hypothes is tes t ing that a dis trib ut i on is signifi cant ly di fferen t 

from the null dis tribut i on , the threshold C should be s uch that F( C )  = 

0 . 950 . F( x ) is the cumulative dis tribution fun ction of Gaus s i an case . 
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From the tab le of the cumulative distribution fun cti on of Gaus s ian 

pdf the followin g values were determined. 

F ( z ) · = 0 . 9 5 o+z= l . 6 4  where µ= O and cr2 =1 

To calculate the value o f  the threshold c ,  set ( C- µ ) /cr eq ual to 1 . 6 4 .  

Then the value o f  C i s  99 . 6 .  

Since the rank s um is  an inte ger vari able , the C should als o take 

the form of inte ger . The nearest integer number to make the sp e cified 

a-error prob ab i lity is 10 0 , whi ch is the threshold value c .  I f  the 

rank s um of p os it ive s i gns is equal to or les s  t h an 100 , s ign al zero 

is ass ume d to be p resent within 5 per cent of error p robab i li ty . I f  

the s i gned-rank s um is more than 10 0 , si gnal one i s  presen t . 

The s i gn test provides an eas ier arithmet i c  man ipulat i on than the 

s igned- rank test. Since the distribution of the number of p os i t i ve 

s igns or negat ive s i gns for s i gn al ze ro is bin omi al , a thresho ld can be 

foun d  from a bin omia l  dis tribut i on tab le or by using Gaussian approxi

mations for a large n umber of samp les . For the approximation ,  the 

me an value is determined as µ = np an d the varian ce as cr2 = npq . 

The numbe r of e ither si gn h as only an integer value which range s 

from O to n and the thr--e shold is also discrete within thi s  range . There 

are on ly ( n+ l )  p os s ib le thres hold values. The th reshold cannot b e  

adj usted t o  a value wh i ch is a non -integer numb er to make si gn i fic an ce 

leve l o f  the test arbitrary . The threshold for each sign a l  level is 

determine d  accordin g to the cri te ri a discus sed , and thei r values are 

given in Tab le I I I - 1 . 
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Tab le I I I - 1  Thresholds for each test 

�Si �al leve l 
Algorithm "" 0 . 3 o . s  0 . 7 5 1 . 0  1 . 2 5  

Bayes ' Op timal 2 . 4  4 . 0 6 . 0  a . o 10 . 0  

S i gne d-rank 7 8. 0  85 . 0  9 3 . 0 10 3 . 0 10 8 . 0 

S i gn  tes t  9 . 0  9 . 0 10 . 0  10 . 0  10 . 0  

The s i gnifi can ce le ve ls or a-error probabi lities of the s i gned-

rank tes t are s e t  approximate ly at those of the calculated value s  of 

Bayes ' clas s i fier be cause the two clas s i fiers are expe cted t o  perform 

equally we ll.  Thi s  is e xp e ct e d  s ince the ARE of the s i gned-rank test 

wi.th respe ct t o  the B ayes is ne arly one .  For the sign test , the e rror 

probab i lities are s e t at the neares t higher dis cre te value above the 

error probabilities of s i gned-rank test with the s ame con di ti ons s in ce 

the s i gn  s um h as on ly a dis crete intege r  value from 0 t o  n .  

The results o f  the computer s imulat i on experiment are sha..m in 

Fi gure 3-2 . As it was e �e cted , the s i gne d-rank test comp are s  very 

we ll over the s e le cte d value of the me an diffe r�nce between s i gn al and 
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n oise . I t  works be t ter than the optimum Bayes ' clas s i fi e r  for the mean 

di fferences less than 0 . 75 and deteri orates a little beyon d  the me an 

di ffe�n ces of one . This  degradation of performan ce may be from the 

fact that the �-e rror prob ab i lities are predetermined and the e rror 

prob ab ilities do n ot change no mat ter which distribution con dit ion is 

used .  The s i gn test h as ab out fi ve per cent more error pr·ob ab i lit ies 

than the Bayes '  res ult , but i t  s t i ll performs we ll . The K- clas s  
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algorithm performed exceedingly well. The reason seems to be that 
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the test finds the optimized linear decision boundary without re garding 

any statistical distributions and that the complete data sets generated · 

are used to train the algorithm. Additional computer simulation 

experiments on data not used t o  train the K-class classifier are 

necess ary .  I t  i s  important t o  note that the noise distributions simulat

ed by computer are not pure Gaussian because only twelve uniformly 

distributed random variab les are used to give a Gaussian variate . 

The error probability ratios of Bayes ' a.lgoritbm with respe ct to 

the nonparametric methods are
. 

given in Figure 3-3 .  The ratio is n ot 

the direct value of ARE but it gives the idea of how the nonparametri c 

methods are working for different me an  values . The figure shows that 

nonparametric method is more · useful for small s ign al-to-noise ratio less 

than one . Since the absolute value of error probabilities for mean 

values greater than one is very small for either the signe d-rank method 

or the sign test , the deteriorations of error probab ility curves do 

not ne cess arily mean that the nonparametric me thods ·  are impracticable .  

To che ck the validity o f  these simulation experiments , the oretical 

error probabi'lities for Gaussian dis tribution case are calculated and 

compared to the values obtained from the experiment. When the a priori 

�robabili ty of each signa.l occurrence is equal to that of the other 

signal and each signal is uncorrelated , the average probabi1i ty of 

error is � for Bayes ' classifier , 

P = 1/2 [1-erf( µ/20 ) ]  e ; 

which can be readily ccil.culated by use. of a table or by computer 

program wri tten to calculate the probability of error. These calculated 
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value s  are c omp are d t o  the e xperimen t a l  values in Fi gure 3- 4 .  S in ce 
di ffe ren ce s  of the s e  tw o s e ts of e rror p rob ab i l i ties are in the ran ge of le ss t h an  3 p e r  cen t , i t  s e e ms to be a reas onab le c on clus ion that 

the s imulation e Xpe ri men ts are q ui te pract i ca l  to e valuat e the pe rform-
an ce of the s e  algori thms , s o  far as the Gaus s i an dis t rib uti on i s  con-
cerne d . 

Anoth e r  p oi n t  can als o be ment ion e d . As i t  was n ot e d  b e fore , a 
nonparame tri c method does p re de te rmine the e rror prob ab i l i ty of anv one 
clas s . T ab le I I I - 2  s h ows the pre de te rmin e d  and the res ultan t  e xpe ri-
men tal values of the a- e rror prob ab i li t ie s  in this s imulati on prob lem . 
I t  s e e ms t o  be a general gu i de line t o  s e t  the error prob ab i li ty of a 
clas s  at ab out the s ame or a li ttle h i gh e r  value than th at of B ayes ' 
op t i mal clas s i fi e r  i f  i t  i s  kn own . Th i s  is be caus e the p e rformance 
of the s e  me tho ds is ve ry c lose to e ach othe r .  I t  i s. als o foun d t h at 

· the overall p rob ab i l i ty o f  e rror is ve ry much affe c te d  by the value 
of the p rede te rmined e rror probab i l i ty of one class or the s i gn i fi can ce 
le ve l .  Thi s  i s  a ls o  obs e rve d in oth e r  dis trib uti on cas e s . Expe rimen ts 
on th is phenomenon are pe rforme.d wi th the Ray le i gh di s t ributi on cas e . 

T ab le I I I - 2 . Pre de t e rmi n e d  an d e xnerimen tal a- e rror 
-

1 ---............ Me an value of 

Algori thms 
s i gn al 0 . 3 O e S  0. 75  l . O 

% 
Si gne d-rank 

P re de t e rmine d 30 2 0  1 0  3 . 5 
tes t Exp e rimen t a l  

Res u lt 2 8 . 2  16 . 7 6 . 0  _3_. 2 
about ab out about ab ou t  

S i gn te s t  Predetermine d  2 0  2 0  10 10 
E xp e rimen t al 
Re s ult 19 . l 19 . 1  8 . 7 8 . 7 

1 . 2 5 

2 . 0 

2 . 0  

ab out 
10 

8 . 7 

41 



% 
30 

,..., \ o'P \ " '-' 

v \ 
...... 
r-f 
•r-f 
� 
-8 Theoret i cal H 
p,. 2 0  
H 
0 
H 
H 

� 

10 E Xperi men tal 

0 . 3  o . s  o . 75 1 . 0  1 . 2 5  

Me an Di ffe ren ce Be tween S i gn al an d N oi s e  ( cr 2 = 1 . 0 )  

Fi gure 3- 4 .  The ore t i cal and e xp e riment al error prob � i li t i e s  o f  
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C .  Two- s i de d  Exp onen t i al Distrib ut i on Cas e 

Followin g  the s ame p roce dures whi ch are des cribed in Ch apter I I , 

the two- s i de d  e xponentially dis trib uted n oises are generated and added 

to a ran dom s_equence o f  s ign al zero and one . Three d i f fe rent s ample 

s i zes of n= 4 , 8 and 16 are used for the five different me an value s  of 

s i gn al one .  The me an value o f  s i gnal zero is always fi xed t o  the yalue 

of zero . The fi ve me an values of s i gnal one are set equal to thos e o f  

4 3  

the Gaus s i an d i s trib ut i on cas e . The threshold for Bayes ' opt imal det ect-

or i s  de te rmin e d  by 
n 
IT 

f( �/H 0 ) i = l  f ( xi /H0 ) ---- = 
n 
TT f ( xi /H i ) 
i = l 

= 1 

for in depen dent and iden tical dis tribut ion of e ach random vari ab le . 

A p ri ori p rob ab i li ti e s  and risks for mak in g de cis ions are equal for 

both s i gnals . Or 

e xp [ -k { I x 1 I + I x 2 1  + • • •  + I xn I - ( I x l - µ 1 I + I x 2 - µ l l + • • • + I Xn-µ l I ) } ] = 1 

where k i s  a cons tan t .  

The above i s  re duce d t o  

l x 1 l + l x2 l + • • •  + l xn l - < l x 1 - l l + l x2- l l + • • •  + I Xn- l l ) = O 

where the me an value of s i gnal one is one . For a gi ven s et of data �' 

i f the ab ove calculat i on e xcee ds zero , s i gn al one is de ci de d , othe rwise 

s i gn a l  ze ro i s  de ci de d . · 

case .  

Sign tez t  and s i gned-rank test are ap? lied as in the Gaus s i an n oise 

· d e rror prob ab i lities of _clas s  one are set 
On ly the p re de termine 

at a li ttle h i ghe r value th an that of Gaus s i an n oise s in ce gre ater 
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e rror prob ab i li �ies a re  e xpe cte d be cause o f  the dis trib uti on s h ape . 

In addi ti on to the pre vi ous algori thms , the K- class a lgorithm an d a 

clas s i fi e r  whi ch ope rate s with th e ass ump i on th at the dis trib ution s  

are Gaus s i an  . are us e d .  

The th resh olds according to the n umbe r o f  s amp le s  a� d me an di ffer-

en ces are calculate d for di fferen t  algori thms an d are l i s te d  in Tu.b le 

I I I - 3 .  O f  cours e , random vari ab les s uch as s i gned- rank s ums or s.ign 

s ums take on inte gar value s only , b ut they are wri t t en in re al type for 

use in comp ute r programs . 

I t  i s  in tere s ting t o  n ot e  th at there are on ly five p os s ib le 

thresho lds for s amp le s i ze of four , an d nine pos s ib le thre s h olds to 

ch oos e from for a s amp le s i ze of e i gh t , in the s i gp  tes t .  On ly ( n.+ l ) 

i n te ger value s  are avai lab le for threshold values for s ample s i ze of n .  

T ab le I I I - 3 .  Thre s h old for e a ch s ample s i ze and me an di fferen ce 

S i gn al le ve l 

Alrrorithm l�;imM 1 '  � i "To o .. 3 o . s  0 . 7  1 . 0 1 . 2 5  

B ayes ' de cis i on 4 0 . 6  1 . 0 1 . 5 2 . 0  2 . 5  
with Gaus s i an 
as s ump ti on 8 1 . 2 2 . 0  3 . 0 4 . 0  s . o  

16 2 . 4  4 . 0 6 . 0  8 . 0 10 . 0  

Si gne d- r•ank 4 s . o  s . o  6 . 0  6 . 0  7 . 0  
me th od 

8 19 . 7 2 1 .  5 2 3 . 7 ) 5 . 7 �6 . 7  

16 75 . 6  8 1 . 3 8 8 . 4 � 4 . 0 loo . o  

S i gn 4 3 . 0  3 . 0  3 . 0 3 . 0 4 . 0 

tes t  
8 5 . 0  5 � 0  5 . 0  6 . 0  6 . 0  

16 9 . 0  9 . 0  10 . 0  10 . 0  10 . 0  
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Usin g the thre s h o lds s hown in T ab le I I I - 3 , p erforman ce t e s ts ar e  e xe cut

e d  an d th e results are shown in Fi gures 3 - 5 , a ,  b , ' c .  In th e s e  e xperi

ments the B nye s ' op timal clas s i fier pe rforme d bes t as i t  s hould do . 

The other algori thms are clos e  c ompeti tors . The s i gne d-rank met h od 

p roved t o  be better than any oth e r  algori thm e xcept the B ayes ' .  The 

average error prob ab i li ties of each me thod for di fferen t s amp le s i zes 

are gi ven in T ab le I I I - 4 .  

Tab le I I I - 4 . Ave rage e rror prob ab i li ti e s  for e ach algori th m w i th 

di ffe rent s amp le s i ze s . 

G aus s i an S i gne d-rank S i gn  
As s ump t i on Me thod Test B ayes ' 

4 0 . 2 7 8 3  0 . 2 1 1 3  0 . 3 7 5 4 0 • .2 5  79 

8 0 .  2 3 3 5  o . 2 2 6 5  0 . 2 5 11 0 . 19 39 

16 0 . 16 2 1  0 . 146 6 0 . 1 5 44 0 . 12 0 1  

Be caus e the K- clas s  algori thm ?erforms wi th irregulari ty in error 

prob ab i li ty for di ffe rent condi t i on s  of dat a , the average of th e who le 

may n ot g i ve much me aning , hen ce i s  omitte d in the t ab le .  The 

expe ct at i on th at the s i gne d-rank t e s t pe rforms b e tter than the a lgorithm 

us ing the Gaus s i an as s umpt i on i s  j us ti fi e d  for s amp le s i ze s  l arge r  th an 

four an d  me an di fferen ce le s s  than one . It i mp lies th at the re l at i ve 

e ffi cien cy i s  more th an un ity for the n onp arame tri c s i gn e d- rank t es t  

comp are d t o  the line ar c las s i fie r ; an agreement with the A RE  value wh i ch 

is more than un i ty for the two- s i de d  e xp onent i al dis tribut i on case . 

The sign tes t s e e ITs t o  be too di ffi cult for small s amp le s i zes .  

Howe ver , for s amp le si zes of e i gh t  or ;nore , i t  w orks almos t as w e l l  
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as the others do . S ome o f  the n onp aramet ri c  thresholds c ould h ave b e en 

adj ust e d  to more app ropri ate values wh i ch give les s prob ab i li ties o f  

error . 

The K- �las s a lgorithm performe d very we ll , again . It  works b e t ter 

than opt i mal clas s i fiers in some occas i ons but wi th much more f luct uation 

in e rror p rob ab i li t i e s  for di fferent conditions . Th is i rregularity 

in pe rformance is e xce s s i ve for small s amp le s i ze . The s ame fact was 

s een in Gaus s i an and Ray le i gh dis tribut i on cas e s . One of the re as ons 

i s  th at the re lat i ve ly small n umber of s ignals are us e d .  Ins t e ad of 

the 5 12 s i gn als us e d  for other algorithms , . on ly 10 0 s i gn als are us e d  for 

training an d clas s i fi cat ion .  Ab ove all , it i s  in te re s tin g t o  s ee t h at 

the performan ce of e ve ry  a lgori thm be comes quite close with e a ch othe r 

as s amp le s i ze in cre as e s . 

I t  w as ob serve d throueh the e xperiments th at , on ce t he o verall 

prob ability o f  error is foun d for a cer tain prede termi�e d thre s h o ld 

( or the prob ab i li ty of error of one clas s ) ,  the s ame algorithm can 

be repe ate dly us e d  t o  p roduce an asymptot i c  minimum e rror prob ab i lity 

us in g n ew thresholds wh i 9h are set equal "Co the ove rall e rror 

p rob ab i li ty fou.n d  from the forme r ca lculati on . S o , i f  a s e t  o f  train ing 

s amp les of known clas s es are gi ven , the thre shold whi ch y i e lds minimum 

error prob ab i lity for a n onp aramet r i c  algorithm can be dete 1,mined .  The 

· · 
· 

h the error n, robab i li ty of one clas s  i s  the s ame tnl. n i.mum error occurs w en _ 

as the other clas s i f  the a pri ori prob ab i li t ies of the two clas s e s  are 

the s ame . Th i s  fact i s  con s idered more in ten s i ve ly in the Ray lei gh 

di s tribut ion case . 



Prede te rmined a-- e rror p rob ab i li ties of the nonparame tri c me th od.-::; 

and the e xperimental re s u lts are compared in the T ab le I I I - 5 . �ben 

50  

the s amp le s i ze s  are s mall , the experiment al result s  of e rror prob ab i l

ities are n ot in agre ement w i th the p re de termined value s . They be come 

closer to pre de te rmined values when the s amp le s i zes in cre as e . For 

s amp le s i ze of 16 , the di fferen ce s  between the pre de termine d and the 

resultant values are in the range of two to three per cen t  wh i ch is 

als o the range for Gaussian di s tribution cas e . 

The tren d  of ove rall error prob ab i li ti e s  of an algo�i thm w ith 

respe ct t o  the s arnpl-e s i zes is cons i dered in thi s  e xperimen t [ Fi gure 

3-6]. The s ign tes t  h as the h i ghest s en s i tivity to the cha� ges
_
o f 

s ample s i ze s  whi le the algori thm with the Gaus s i an  as s umpti on h as 

the le as t  ran ge of ch ange . As it w as mentione d be fore , the s i gn test 

is ve ry crude in i ts nature , hen ce i t  is ve ry much depen dent on the 

number of s amples avai lab le to clas s i fy . As a whole the s i gned- rank 

method works better than line ar c las s i fier b ased on Gaus s i an  as s ump t i on 

and is very compe t i tive with the optimal clas s i fier. The sign test 

i s  too crude to use for very s mall s amp le s i ze b ut i t  i s  use ful for 

fairly large number ··. of s amples . The s i gn test works almost as good 

as any other clas s i fier for s amp le s i ze of 16 . 



Tab le II I-5 . Pre determined and experimen tal p rob ab i li t ies of error in e xp onenti al 

distrib uti on case 

s ign al leve l 
Q _ �o () S O  () 15 1 ('\('\ L?S 

Predetermine d 
value 0 . 350  0 . 350  0 . 2 50 0 _ 2 s n  O _  l C\fl 

4 E xperimen tal 
value 0 . 418 0 . 430 0 . 2 AC\ 0 � l c; fl 1 Q h. 

Pre determine d 
s.igned-rank value o .  39 0 0 . 2 80 0 . 20 0  0 . 12 0  0 . 10 0  

8 Expe rimen tal 
Meth od value 0 . 42 3  o .  304 0 . 2 74 0 . 16 7  0 . 10 7  

Pre de te rmine d 
val ue o . 350  0 . 2 50 0 . 15 0  0 . 0 70 0 . 045  

16 
Experimen tal 

value 0 . 3 3 3  0 . 26 7  0 . 1 3 3  0 . 0 7 7  0 . 0 15 

Pre determine d 
I 

4 value 0 . 06 2  0 . 06 2  0 . 0 6 2  0 . 06 2  o . ooo 
E xperimental 

0 . 0 4 8  o . o s s  o . o4 e  0 . 0 6 6  o . ooo  v;::i l 11P 

Pre de termine d 
Sign value 0 . 145 0 . 145 0 . 145 0 . 0 35 0 . 0 3 5  

8 Experimental 
Test value 0 . 2 0 0  0 . 20 0  0 . 10 0  0 . 10 0  0 . 100  

P re de termined 
value 0 . 2 0 0  0 . 200  0 . 100 0 . 10 0  0 . 100  

16 E xperimen tal 
value o . 2 1a 0 . 2 3 3 0 . 0 89 0 . 10 0 . 0 89 U1 

fo-J 



% 
10 0 

H 80 0 
H 
H 
� 

4-f 
0 
� bO 60 fa . 

tj 
� 

•r-( ...., 40 rt1 
r-1 
& 

20 

4 

�' 

( 1 )  
( 2 )  
{ 3 )  
{ 4 ) 

---- -
-- -
-- - -

' �� � �". 
' ·� ' "/. ' '  

' 
,

, ., '�--

5 2  

Op timal clas s i fi e r  
Si gne d-rank t e s t 
S i gn tes t  
Gaus s i an  as s umption 

' ' '  
,, , :, '-. •', ', c z� ) ' •� (2 ) 

� ( 1 )  
' ( 3 ) 

8 16 

Fi gure 3- 6 . Re lat i ve chan ges of e rror prob abi li ties in accordan ce 

with s amp le s i ze s 



D .  Rayleigh Dis t ribution Case 

Random variab les with Rayleigh dis tributi on are used as the last 

case for comparis on of performance . Di fferent mode values for the two 

classes o f  s i gnals are use d  instead of the di fferent me an  values use d  

for e xp o�en t i al and Gaus s i an distribution cases . Three dif fe rent mode 

5 3  

values of cr 1 = 0 . 7 ,  0 . 8 ,  0 . 9  are used_ for s i gnal one whi le a fi xe d value 

of mode a0 = 1 . 0 is use d  for s i gnal zero . Three di fferent s ample s i ze s  

are use d  as be fore . The s amp le s i zes use d  are n = 4 ,  8 an d  16 . Thresh-

olds for different algorithms are de ci de d  as follows . 

The B ayes ' optimal thresh old is determine d as 

---- = 

n 
II 

i= l f( xi /H0 ) 
------ = 1 

n 
II f( x . /H 1 ) 
. 1 l. i= 

i f  the a p ri ori prob abi li ty of e ach clas s  occurrin g i s  the s ame as the 

other and the risk of making a de cis i on is the s ame for all s ignal::; . 

Independent and i denti cal distributions o f  samp le s  are ass ume d . 

The res ult ing clas s i fier de cision rule is 

n 

! x� 
. 1 l. 1 = 

·I f the calculation of the ab ove for a gi ven x excee ds zero , si gnal zero 

is dete rmine d .  Otherwise , s i gnal one is determine d.  The thre shold 

t .  th t the di s tributi ons are 
for Bayes '  de cis i on with the as sump ion a 

Gauss ian is fotm d from the quadrat ic form of 



( l/2N 1 -l /2N ) �x� + ( m  /N -m /N ) \x + ( n /2 ) ( m1 /N - m IN ) . 0 l. 0 0 l 1 l i 1 O '  o 

5 4  

. 
where mi and N

i 
are the me an  and vari ance o f  the correspondin g  Ray leigh 

distribution . For x whi ch makes the ab ove calculati on more th an zero , 

signal ze ro i s  de cide d .  Otherwise , s ignal one is ass igne d .  For the 

Ray leigh distributi on with the pdf f( x )  = ( x/cr2 ) exp ( -x2 /2cr2 ) ,  the 

expe cted value ( me an value ) m = cr ( II/2 ) 1fz = l . 2 5 3cr and the variance 

N = o2 ( 4  - Il ) /2 = 0 . 42920� respectively ( 34 ] . 

Nonp arametri c  s i gned- rank test whi ch was used for Gaus s i an  or 

e xp onential dis tribut ion cas e  cannot be use d  without los ing e fficien cy 

when the pdf is Raylei gh .  The reas on i s  that the s i gne d- rank test is 

bas e d  on the ass umption of symmetri c distributi on of th e s i gnal 0 

s uch that f( xi ) = f( - xi ) .  For the Rayleigh distributi on , the condit ion 

can not be me t  by a line ar trans formation .  The s i gn tes t  on the other 

hand , can s ti ll be adopted as before by shi ftin g  the p df to s atis fy 

the condi ti on F ( O )  = 1/2 . 

Non line ar . rankin g for the s i gne d-rank method may b e  adopted for 

this circums tance . Instead of the usual ranking procedures a trans-

formati on of data is us ed to result in a symmetri c or near symmetri c  

dis tribution .  Howe ve r ,  the trans formation o f  data require s  complete 

distribution in formation whi ch is not appropri ate iv the use of 

nonparame tri c me th ods .  

Cons i derin g the di ffi c ulties of us ing s i gne d-rarik meth od in thi s  

e xperiment , two- inp ut case s i gn an d  s i gned-rank methods are als o use d  

by generatin g  independent noise ch anne l data.  Results of t h e  e xperi�ents 
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wh i ch in clude the B ayes ' op timal clas s i fi�r , · B aye s ' c l as s i fi e r  w ith 

Gaus s i an as s ump ti on , s i gned-rank t e s t , s i gn  tes t an d K- clas s a lgorithm 

are gi ven in Fi gure s 3- 7 , a ,  b ,  c ,  an d  the e xpe riments for the two

inp ut channe l  s i gn an d s i gn e d-rank tes t  are comp are d in Fi gure 3- 8 .  

The s i gne d-rank t e s t  doe s  n ot perform as we l l  as the opt i mal tes t  

in th is distrib uti on cas e . The reas on i s  as s tate d i n  p age 5 4 .  Si gn 

te s t  wh i ch i s  alre ady known to be t oo crude for s mall n umb e rs o f  s amp le s 

disp layed itse lf again as a p oor clas s i fier . For the s amp le s i ze s  

four an d e i gh t , i t  re s ulte d in e rror prob ab i lities whi ch a re  t oo large 

for practi cal use comp are d to other clas s i fi ers . S i gn  an d  s i gne d- rank 

tes t  app li e d  for tw o- input cas e als o  give large e rror prob ab i lities 

comp are d to the opt imal clas s i fier. The c lass i fier b as e d  on the 

ass ump t i on of Gaus s i an distrib ution works ve ry good o ve r  the en tire 

ran ge o f  e h-pe rimen tal con di t i ons . There is very l i t t le advant age 

· to us e th e op timal clas s i fier ins te ad of adoptin g the G aus s i an as s umpt i on 

s in ce there is les s  th an one pe rcen t of e rror prob ab i lity d i ffe ren ce 

on the average by us i n g  the op timal class i fier. The re as on for this 

e xtraordinary performan c; o f  the clas s i fier b as e d  on t h e  Gaus s i an 

as s ump t i on s eems t o  be th at the Ray le i gh dis trib uti on b e c omes s imi l ar 

t o  the Gaus s i an as the mode value in cre as es . 

As in th e other e xpe ri ments alre ady s een , the K- c las s a lgori thm 

works good in mos t of the varie d  ci rcums tan ce s . Th i s  algor i thm s ee ms  

a litt le inferi or t o  t h e  op timal clas s i fier for re lat ive ly l arge s i gn al 

s ep aration ( mode value di ffe ren ce ) b ut it works bett e r  t h an any o th e r  

algori th m  for s m a l l  s i gn �l s eparat i ons . Irre gular ch an ge o f  error 

prob ab i li t ies for d i f ferent dat a  condi t i on s  like s amp le s i ze s an d  
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s i gnal- t o-noi s e  .rati os i s  observe d again as in the p re vi ous e xperiments .  

One of the re as ons for this irregularity is that fewer s i gn a ls are 

use d  in th is K- class algori thm th an in the othe r a lgorithms . 

I n  general , nonparametri c  rrieth ods s eem to be in fe ri or to p arame tri c 

me th ods for the Rayle i gh dis tri� uti on .  Only for large s amp le s i ze s , 

s ay n = 16 , and small s i gn al- to-noise rat i o  their us efulness 

pre domin ates . 

One con cept is worth n ot in g .  N onp aramet ri c  methods s eem to b e  

les s  s ens itive to the s amp le s i zes and s ignal le ve l  di ffe ren ce s �  The 

re lative changes in e rror prob ab i li ties of. B ay_e s ' opt imal clas s i fier 

and the nonp arametri c me thods for di ffe ren t mode value s are s e en in 

Fi gure 3-9 . The re lat i ve changes of error prob ab i li ties on the average 

for di fferent mode values h ave the le ast s lope for s ign tes t wh i le the 

algori thm wi th Gaus s i an ass umption h as the s teepest s l ope of all . 

Though it does n ot ne cess ari ly imp ly the us e fulness of n onp arame t ri c  

tests , the rob us tness d oes show that s i gn te s t  or s i gned- rank test is 

vi ab le for an algori thm w i th other small s i gn a:i- to-n oise  rat i o  si tua-

ti ons .  I t  was · emph as i zed seve ral times be fore that · the ove ra ll 

probab i li ty  of error of a nonp arametri c  algori thm is qepen dent on the 

pre de te rmine d error prob ab i li ty of one class . For the Raylei gh 

dis trib ut i on tes t s  were run to obse rve tne actual beh avi or of the 
' 

error prob ab i lities accordin g  t o  the chan ges of threshold values 

wh i ch dete rmine a-e rror prob ab i lit ies . Two mode values a 1 = 0 . 7  and 

O .  g are ass i gned t o  the di strib uti ons of clas� one whi le c lass zero 
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has a fi xe d mode value o f  O o = l . O .  A s amp le s i ze of 16 i s  use d  i n  b oth 

s i gned-rank an d s i gn tests . Res ults are shown in Fi gures 3- 10 . a ,  b ,  c .  

In the fi gures i t  i s  n otice d  th at the minimum overall e:r'ror probab i li ti�s 

occur at or near the thresholds at whi ch both a and B-error prob ab i lities 

be come equal . This phenomen on is more apparen t when the di fferen ce of 

mode values o f  b oth classes  is larger . The dis crepan cy  of h avin g 

a minimum error probab i li ty  at a threshold value other than that wh i ch 

makes the a and S-error equal in the Figure 3- 10 . d  may be e liminated by 

us in g a larger n umber of s amp les . 

E .  Comp lexi ty o f  Calculat ion of Each Algorithm 

The comp le xi ty of calculat i on for the spe ci fied algori thm is 

one of the mos t importan t  fact ors in the practi cal app li cat i on .  Each 

algori thm h as a un ique process of data tre atment .  I t  i s  comp are d t o  

other algori thms for its require men ts on calculations i n  thi s  s e ct ion . 

A n onp arame tri c s i gn  tes t  nee<ls only n comp aris ons o f  s i gns an d  

n s umming ope rati ons on integer n umbers for n inout dat a .  I t  als o 

needs only a coup le of memory ce lls for a thres hold an d a s umme d 

integer n umber of s i gns . Thi s  is the leas t  complex- algorithm of all . 

The s i gne d  rank method should rank th e abs olute values of n 

observe d dat a an d take the s um of ranks o f  pos itive obs ervat i ons , hen ce ,  

it  requires n operati ons of t ak in g  abs olute values , n ( n+ l ) /2 comp aris on 

steps for rankin g an d n comparis ons of s i gns an d  n s umming operations .  

Th is requires at le as t 2n p lus a few memory ce lls . Apparen t ly s i gne d

rank me th od t akes much more time for dat a proce s s in g
-

than the s i gn tes t 

and a line ar clas s i fi er do but it  has no multip li cati on or divis i on 
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operat i ons whi ch are presen t in some other class i fi e rs . 

A line ar clas s i fier which is b as ed on in dependen t  an d  iden ti cal 

Gaus s i an n oi s e needs essen tial ly n s ummin g  and one thresh oldin g opera-

ti on to make a decis i on on n observed dat a .  On ly a coup le o f  memory 

ce lls are nece s s ary .  Of cours e , the variances o f  b oth c lass e s  are 

as � ume d s ame . I f  the variances di ffer from e ach other , the opt imal 

clas s i fier s h ou ld perform n multipli cati on and 2n s ummati ons in addi t ion 

t o  a few thresh oldin g ope rat i ons . The mul tip li cati Qn t akes much more 

time th an addin g ,  s ub tractin g or comparing a s e t  of data .  For the d at a  

wi th two- s i de d  e xp onent ial di s trib uti on , 2n s ummat i ons , n s ub tract i ons 

and 2n abs olute value s  are ne ce s s ary to make a deci s i on .  A few me mory 

ce lls are re q ui re d . I f  the dat a is Rayleigh dis trib uted , n s ummat i ons 

an d n multi p l i cat i ons on inp ut data an d one thresh old op e rat i on i s  

necess ary for the op ti mal de ci s i on . The memory s t orage I'eq ui re d i s  

s mal l .  The ab o ve i s  s ummari zed in Tab le I I I-6 . 

Table I I I- 6 . Calculat i on s  in volved in e ach algorithm 

Algori thms 

S i gn  tes t  

Addi -

ti on 

n 

Sub trac- C omp ari -

t i  on son 

0 n 

n ( n+ l )  

Multip li - Ab s ol ute ·1emory 
cat i on value req uired 

0 0 le ss than 3 

S i gn e d- rank 0 0 0 n 2n + a few n+ 2 

0 Gaus s i an 

p 
eq ua.l 

0 0 0 0 le ss than 3 
v;:n"'i ;:mce n 

T Gauss i an 
I di ffe ren t 2n 0 0 n 0 les s  th an lC 
M vari an ce 
A 
L .  Lap laci an 2 n  n 0 0 2n less t h an 5 

I• 

Ray le i gh n 0 0 n 0 les s  t h an  3 
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F .  Summary o f  th e Ch apter 

The p e rforman ce s of n onp arame t ri c  clas s i fiers and B aye s ' p arame t ri c  

opt imal class i fier are c omp are d .  The Gauss i an as s ump t i on an d  the K

c lass algori thms are als o  us ed for addi t i onal comp ari s ons . Thes e me thods 

are app lied to the noise dis trib ution s  o f  the form of Gaus s i an , two

s i de d  e xp onen ti al or L ap laci an an d  __ Ray le i gh . 

N onparame tri c methods work ve ry well for G aus s i an a..Tl d  L aplaci an 

dis trib ut i on cas e s . Even th e s i gn tes t  h as more e ffi cien cy t h an the . 

line ar class i fier for re lati ve ly large s amples like n = e i gh t an d  more 

when the di s t ribution is L ap laci an . H owever , the s e  n onparame t ri c  tes ts 

gi ve cons iderab ly larger e rror prob ab i li t ies for the Ray le i gh. dis trib u-

t i on cas e , where t h e  distribut i ons are n ot symmetri c a l . Thi s  requirement 

o f  symme tri c di s trib ut i on s ee ms to be the maj or dis advan t age o f  the 

nonp aramet ri c  s i gne d- rank tes t .  

Two- inp ut n onp arametric me thods ge nerally fai led . Even more , i t  

r•equires tw o indep endent input ch anne ls wh i ch are n ot e asy t o  fin d  in a 

practi cal s it uati on . 

As a wh ole , the n onp arame tri c  s i gn  tes t  looks a tt ractive as an 

algorithm when th e  s i gn al-t o-noise rat i o is very s mall and there are 

S aT"ln, • . le s i" zes of more than four are n e e de d  for s at i s -enough s amp le s . ' "t' 

factory re s ults . Th e s i gne d-rank method is als o  very us e fu l  for the 

symme tri cal d i s t :r•ibu.t ions . Howe ve r , the calculat i on comp le xity o f  th i s 

te s t  in cre ase s  rap i dly as s ample s i ze in cre as e s  an d  i s  n ot favorab le 

c?mp are d to the linear c las s i fier . The linear c las s i fi e :ri  wh i ch i s  

b as ed on t h e  Gaus s i an distribut i on as s ump ti on works wel l for mos t of 



the e xpe ri ments producin g . cons i s ten t res ults wh i ch are comp arab le 

to opt i ma l  clas s i fi er ' s .  
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The n onp arame t ri c threshold whi ch gi ves an asympt oti c min imum e rror 

prob ab i li ty can be foun d by repe ate d adj us tmen t of thresh o l ds i f  a s e t  

of s amp le ve ct ors o f  kn own c l as s es is given . 

The ARE o f  a n on p arame tri c me �hod may not be a genera l performance 

inde x  s in ce the actual e ffi ci en cy of one method comp are d t o  the qther 

is ch an gin g be caus e of the di fferen t  s i gn a l- to-n ois e  r ati o and th e n um

ber of s amp le s . B ut i t  s t i ll gi ves a very good i de a  o f  the re lat i ve 

performan ce of the algori thms . 

The limi t ations us ing the n onparame tri c me thods are the requi re men ts 

on the dat a  dist ributi ons s uch as : the s tat i st i cal in dependen ce b etween 

e ach d a ta the i den ti cal d i s trib ut i on o f  e a ch other and the con tinuous ' 

an d symme tri cal dis t rib ut i on of the vari ab les . Symme tri c con di t i  on is 

require d espe ci a lly for the s i gn e d- rank me thod . 

The multivari at e , mult i - c lass prob lem is cons ide re d in Chapter I V .  
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CHAPTE R IV 

APPLI CAT I ONS TO THE MULTI- CLASS PRO B LEMS 

Throu�h out pre vi ous ch ap ters on ly the un i vari ate , two- c lass prob le ms 

are cons i dere d . In the p racti cal p attern re cogni ti on p rob lems , h owever , 

the general n ature of input data are multivari ate and the de c i s i on-

mak ing i s  us ually multi- c las s  con di t i oned. The gene ra li z at i on of the 

two- clas s prob lem in t o  a multi - class , multi vari ate prob le m  is cons i dere d 

in this ch ap te r .  

Since the nonp arame tri c me thods a lre a dy dis cus s e d  i n  un ivari ate 

cas e s  h ave inhe rent limi t at i ons like i n dependent s amp lin g  of data and 

symme tri cal dist rib uti ons for e a ch  c las s in cas e  o f  th e s i gn e d- rank 

te st , the re mus t b e  modi fi cat ions of the n onp arame tri c me thods to apply 

the me thods to multi- clas s an d rnul ti vari ate . s it uat i ons . 

For clarity of un ders tandin g the prob le ms , the mult i- cl as s , 

multi vari ate p rob lems are grouped int o seve ral cate gorie s  a c cordin g  

t o  the n a�ure o f  the vari ab le : ( 1 ) un i vari ate , multi- class case , ( 2 ) 

multi vari at e , tw o- clas s cas e , ( 3 ) multivari ate , multi - clas s c as e .  They 

are di s cus s e d  in the following s e ct i on s . 

A .  Un i vari ate , Mult i - clas s  Prob lems 

Sin ce the n onp arame tri c method ess en ti a lly te sts a c ompos i t e  

h t h  · · i· t me re l\r tes ts whe ther the n ull hyp othes i s i s  true yp o es is , 1 .  e .  , � 

or n ot , this me thod nee ds at mos t k in depen dent s t at i s ti ca l te s ts for 

k d i ffe rent clas s e s . I f  th e dat a are from tm i vari ate dis tribut i on , 

the me th ods us e d  in the tw o- class p rob lems can be app lied in a 

repe ti ti ve w ay t o  the multi- c lass p roblems . 
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1 .  S i gn tes t 

This test is appli cable when the condi tions requi 1-ied in the two

clas s p roblems are s atisfied.  They are the continui ty o f  distrib uti ona 

ove r the range and th e di fferences in the me di an values o f  the k 

di fferent classes . The data ob t ained should be independent of each 

othe r. Le t E!_i , • • •  '�k be th e median ve ctors of e a ch of k clas s e s , and 

x be th e me as urement ve c tor w i th n obs e rvat i ons . The two- clas s � i gn  

test i s  app lie d  for e ach pair of .!::_ - � ;  i = l ,  2 ,  • • • ,k . I f  the x 

has been from the j -th clas s , the n umber of the pos i t i ve and ne gati ve 

signs would b e  almost equal for the dat a x - m . . For the res t  of the - J 
classes the value x - m . ; i � j ,  would show a larger numb e r  of pos itive --1. 

or ne gat i ve s i gns than the number of oppos i te s i gns . S o , after det e r-

mining p os i t i ve an d ne gative s i gns of e ach of k di fferent data s ets , 

x - m . ; i= l ,  • • •  ,k , the ve ctor x is ass i gned to the clas s  at wh i ch the - � -

di fferen ce of n umoers be tween p os it i ve an d  n egati ve s i gns is the 

minimum. Nat urally occas i ons when there are more th an one class whi ch 

yie ld the s ame mini mum di ffe ren ce in numbers o f  p os i t i ve an d n e gat i ve 

s i gns may h appen espe ci ally for small number of observati ons . There 

· seems to be no w ay out of th is con fus i on .  Hen ce , a suffi cien tly large 

n umber of observations is n e cess ary for this test . 

2 .  Si gned-rank test 

Th i s  tes t i s  als o t h e  dire ct gene rali zat ion o f  th e two- class 

s i gned- rank test , and is s ens iti ve to the di fferen ces in mean value s  

between t h e  c lasses of symmetri cal distributions . Let the re be k 

b the me as urement ve ct or of n obs ervat ions &  clas s es as be fore and let � e 

h me an ve ct ors of the k different clas s es . Ass ume µ 1 , � , • • •  ,� to be t e 
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The tes t  then follows the proce dures des cribed in two- class prob lem 

for e ach of � - � ;  i= l ,  • • •  ,k , data sets . For examp le , at the j-th 

tes t , find the di fferen ce of x - µ .  and fin d  the rank o f  e ach e lement - J 
in increas ing order of abs olute magnitude of the di fferen ce . I f  the 

s ample � is from the j-th clas s , the fund2.mental condi tions of in depen

den t  s amples are insurin g that the _ _  s um of ranks from pos i ti ve di ffer-

ences will be about equal to the sum of ranks from negati ve di fferences . 

So , after determining pos itive an d  negative s i gned-rank s ums o f  each 

of k - tests , the data set � is assigned to the class for whi ch the rank 

sum of ne gative di fferen ces is closest to that of pos itive di fferen ces .  

The test may be termin ate d before k steps are t aken . During the 

tes t , the data set � may be assigned to the class at whi ch the signe d-

rank s um is within a certain s i gni ficance leve l ,  whi ch can b e  deter-

mined through the s ame way used in a two- class problem. 

3. Rank sum test 

Compared to the s ign tes t ,  the signed-rank tes t is much more 

e fficient as it w as seen in two- class problems but it imp oses a serious 

res triction whi ch is that the data distributions are symmetri c al . I t  

i s  thus ne cess ary t o  adop t  an algorithm whi ch i s  more general than 

those dis cusse d .  The rank s um test. is used ins tead for t es t in g  the 

di fferen ces in me an values of di fferent classes whose distributions 

need not be symmetrical but i denti cal in shapes for all c lasses . 

As in the two- class  prob lems , rank s um test can be used for 

re lati ve ly general hypothe sis  testing b ut it nee ds additi onal 

· · h ent k different clas s es . 
independent data s ets wh i c  repres The two-

are e x
.
ecuted in turn to the k p aired s ets. of 

c las s rank· sum tests 



data ; � an d th e . s amp le ve ctor o f  each class . By the s ame re as on 

s tate d in the two- clas s  prob lem , the rank s um of the obs e rve d ve ctor 

x wi ll be d i s t rib ut e d  in a s tat is ti cally fi xed form for the null 

hyp othes is tb at the dat a  are from the j - th clas s . Instead of on ly one 

null hyp othes i s  o f  the two- clas s problem , there are k indepen den t  null 

hypothes es for the multi- c las s pr_?ble m .  

Us in g t h e  fi xe d  distrib ut i on fun cti on de termin e d  from the null 

hyp oth e s e s , a l l  the k rank s ums are che cked corresp on dingly to get the 

prob ab i li ties of the s e  s ums occurring . The dat a s e t  x is as s i gned t o  

the j -th class i f  the prob ab i li ty o f  the j.-th rank s um  i s  the large s t .  

B .  Multi vari nt e , Tw o- c las s Prob lems 
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Be fore procee ding t o  the multivari ate multi- c las s prob le m , i t  s eems 

ne ce s s ary to cons i de r  the mult i vari ate two- c las s prob lems t o  s e e  the 

nat ure of the multi vari ate cas e . Le t x = {x 1 , • • •  x } be t h e  obs e rvat i on - n 

ve ctor from one ch anne l and y = {y 1 , • • •  ,yn } from another . The multi

vari ate two- clas s  r an k  s um tes t  can be applied for th i s c as e . In the 

pre vi ous e xamp le o f  un i  vari ate dat a  �' y ,  where all of the xi ' s and 

y . ' s  are identi c al an d  i ndepen dent , th e n onparametric rank s um method 
). 

. make s us e of the ranks of the comb ined dat a to test the null hypothes is 

th at the two dat a s e t s are from the s ame dis trib ution agai n s t  the 

a lte rn at i ve th at t h ey are not . The te st es sen ti ally i s  b as e d  on the 

mb \1 '1 \.1 wh ere Mi· is the number of y ' s falling b e tween nu e rs l' 0 , • 1 , • •  • , 1• n 

the i- th an d ( i+ l ) st order�d x ' s .  When the ob servat i ons x ' s an d y ' s  

are from mul ti vari ate distribut i ons then the nm11b er Mi .
wh i ch gives 

pre ci s e  st at i s t i yal equivalen ce to the un ivari ate s i tuat ion is n ot 

· · a d F ; rs t there mus t be determine d  the hyperplane b lo cks 
re adi ly de ci e • _,_ 
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[ 2 3 ]  whi ch a re  the multi variate analogy t o  the uni vari ate regions between 
the ordere d  xi ' s .  A deeper s tudy in dete rmining b locks is called for but 

i t  is n ot tried in this work . . On ce the equi valent b lo cks are fol.nld , 

the procedu� s of h and lin g  the rank d ata remain to be the s ame as 

thos e of un i vari ate two- class prob lems . 

C .  Multivari ate , Multi- clas s Problems 

Most of the multi- class problems dis cussed in s ome pub li cat i ons 

[ l ] , [2 3 ]  te st the null hypothesis that all of the k s ets of dat a  are 

from the s ame distribution against the altern ative that there is 

s i gnifi cantly di fferent distrib ution in dat a .  · sin ce this hypothes i s  

testing is not s uffi cient for i denti fying each of k- classes , a di fferent 

algorithm mus t be deve loped .  

One pos s ib le way t o  treat thi s  prob lem seems t o  b e  t o  apply the 

multi vari ate , tw o- clas s algorithms to �' the observed dat a , k times 

with k di fferen t sets of s amp les , each s amp le repres entin g  the typi cal 

distribution of one of k classes . Eventually k di fferent prob ab i lit ies 

whi ch are the prob abilit ies of � being from e ach of the k classes will 

be ob taine d .  x is then as signed t o  the class for wh i ch the probab i lity 

ob tained is the highest . 

This multivariate , multi- class prob lem is very di ffi c ult t o  tre at 

and the above s ugges tion mus t be proven in pra cti cal circums tances . 

D . Summary of the Ch apter 

A un i vari ate multi- class problem is main ly cons idered in this 

ch apter. Repe titive app li cat i ons of two- class algori thms accomp lish 

the j ob .  I f  the problem is multivariate , the transformat i on of 

multi vari ate data t o univari ate dat a  is ne cess ary . Findin g the b locks , 
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which are statistically equivalent t o  the regions bounded by .ordered 

x' s in llllivariate case is the main prob lem . This area needs more study. 

The most gener.al case, multivariate multi-class problem, might be 

solved by repetitive use of multivariate two-class algorithm, but no 

attempt is m ade t o  simulate the prob lem since this gets too involved 

and the merit of nonparametric methods will be lost in the complexity 

of calculations . Many problems may be sclved more easily an d 

practically as sumin g univariate situations. 



A .  Summary 

CHAPTER V 

CONCLUSI ONS 

The non�ararne tri c me thods we?"e compared t o  the optimal p arametri c  

c las s i fiers an d  the K- clas s  algorithm. The nonparametri c methods 

performed very c ompeti t i ve ly for mos t of the conditi ons s ub je cted with 

s ome exceptions . They worked especially good when the s ample s i zes 

were l�rge . 
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The s i gne d-rank test was almos t as good as ,  and sometimes b etter 

than the op timal clas s i fier but the tes t nee ds s omewhat h i gher com

p le xi ty of calculat i ons compare d t o  p arametri c t e s ts for the dens ity 

ftm ct i ons s t udie d. This dis advan tage may be e xcus ed when the dis tribu-

tions are n ot s imp ly Gauss i an , Lap laci an or Ray le i gh ' s  whe re  ordinary 

op timal clas s i fiers need s imple calculation s teps � Nonparametri c 

meth ods , howe ve r , have fi xe d  procedures that do not vary with the dis

trib ut i on shape . Anothe r s igni fi can t  drawb ack of the s.i gne d-rank test 

is its requirement of symme tri c dat a  dis tribution of e a ch class . Sin ce 

this requirement is h ard to be satis fied in practi ce , symmet ri c condi

tions may be as s umed at the expense of the e fficiency of the tes t as i t  

was done i n  the Rayle i gh dis tribution cas e .  

When the s amp le size i s  large an d fas t data processing is ne ces s ary ,  

the s ign test i s  a ve ry us e fu l  me thod . '!'his s i gn  tes t  needs on ly a few 

s imp le inte ge r  arithme t i c  �perat ions for dat a process ing and its 

e ffi cien cy i s  g ood for most of the distributi ons .  A -mixed s tat is t i cal 

test whi ch employs both s i gned-rank and s i gn  test looks attractive as 

the simpli city of s i gn  tes t
.
is comb ined wi th the effi cien cy of s i gned-
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rank t e s t  and the compromise between the two i s  made . 

Tes t s  with two-input channels seemed to be too ine fficient for 

practical us e .  The rank s um test is identi cal to the s i gne d-rank tes t 

i f  the dis tributi ons of the variab les are symme tri c al. This test is 

s ensitive t o  the di fferen ces o f  medians in two iden t i cally or symme tri

cally di.strib ute d dat a .  One maj or demerit o f  this t e s t  i s  that i t  

requires independen t input channels . The ab ove were observed through 

the res ults of s imulations by computer and were depi cte d in fi gures of 

Chap ter I I I .  

The A RE  does n ot give a direct e ffi ciency o f  an a.lgori thm for 

di fferent s ample s i ze s  and s i gnal-to-noise ratios , b ut i t  s t i l l  shows 

the re lati ve fi gure of merit at large of one clas s i fi e r  t o  another . 

The . optimal n onp arametric thresholds we� determ5.ned by taking 

those for whi ch the a- and S-error p robabilities of the two clas s es 

are the s ame .  This phenomenon was als o  e xperimentally s een in Chapter 

I I I . 

It w as obs e rved th at the K- class algorithm competed very well amon g 

. other algori thms b ut the dis tributions had t o  be unimodal to b e  

e fficient i n  clas s ifi cation . 

The generali zat i on of the uni vari ate , two- clas s  prob lems into the 

multivari ate , multi- class prob lem was cons idered . The univari ate , 

multi- class prob lem w as s olve d by repeated app li cations of the un i 

�ariate , two- class algorithms . For the most general case , the 

multi variate , mu. l ti- class prob lems , n o  spe ci fi c  conclus i on was ab le 
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t o  b e  drawn . 

B .  Suggestions for Further Study 

There are five most imminent are as of rese arch to be done . First 

of all , the app li cations of the nonparametric methods to the real dat a 

obtained from the photographi c imagery are des ire d  t o  verify the p racti

cal usefulness of the me thods . A_ uni variate , multi- class algorithm may 

be use d  with re as9nable ass umpt ions . .Nonlinear ranking techniques , in 

the case of nonsymmetri c  distribution , need to be invest_i gated further 

as the second research area. This te chnique is ne cess ary to employ 

the h_i gh effi ciency of the signed-rank test for nonsymmetric data 

distribut ions . 

The third research area includes the determination of optimal 

threshold for nonparametri c methods when the a priori prob abili ties 

of the two classes are di fferent .  The efficiency o f  the K- class 

algorithm using the data which are not used to train the algorithm 

should be investigated for more dire ct comparisons with other methods . 

The last research area is to investigate more on the multivariate ,  

multi- clas s prob lems . Tpe determination of blocks , whi ch is in 

· analogy to the re gi ons of ordered uni variate data � should be  studied .  
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GLOSSARY OF TERMS 

Ran dom vari ab le .  

A ran dom ve ctor with n elemen�s . The underline spe ci fies 

a colurrm vector .  
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X ( m )  A s e t  o f  m random ve ctors x .  A ( m ,n )  matrix is implied.  

f( x )  

F( x) 

y ,  x.. 

µ . l. 

. 2 a .  
l. 

Ho 

Probab i li ty dens ity fun ction ( pdf ) o f  a random vari able x .  

Cumulative distribution function ( cdf ) of a random va�i ab le x .  

Same a s  x ,  � except that these are input from diffe rent 

channe ls . 

Expecte d  value ( or mean value ) of a random variab le .  

Subs cript represents i-th class . 

Variance or a central moment of a random variab le of i-th 

clas s . 

Vari ance and co-variance matrix for multi-class cas e .  

Samp le mean . 

Samp le vari an ce .  

Null hypothes is that noise only is present in the input 

channe l of a classi fier. 

Alternative hypothesis . Signal is assumed t o  be p re s ent 

in the input . 

The e rror of the first kind , or the probab ility of mis-

class i fy ing a set of data as class 1 whi le the data are 

actually from clas s o .  Equivalent to the prob ab ility of 

fals e ly rej e ct ing H o .· 

The error probab ility of the secon d  kind , or the p robabi lity 

f · 1 · fyi· ng a set of data into class 0 whi le the data 
o mis c  as s i  



p { i )  

L ( x )  

K .  
1 

erf( x )  

c 

r 

are actually from class l .  Equivalent t o  the probabi lity 

of fals e ly re j e ct ing H1 • 

A priori probabi lity of class i .  

Like lihood rati o . 

Cost of mak ing a decision of the i-th clas s . 

Error fun cti on of x .  

Threshold for a clas s i fyin g  algorithm . 

A rank of an observat i on x among the set of abs olute 

x . ' s  in in creas ing order. 
l. 

r A ve ct or comp osed of r .  

g( x )  De cisi on function ( di s criminant function ) 

p( x )  Prob ab i lity dens ity fllllction 0 f  x .  This i s  the s ame 

e xpress ion as f( x ) , but p ( x ) is use d  mainly in the 

p arame tri c case . 

e 1 2 A re lat i ve e ffi cien cy of a method 2 compared to an other 
' 

ARE 1 2 , 

+ 

method 1 .  

An asymptoti c re lative e ffi ciency of a method 2 compare d 

to another method 1 .  

The arrow i s  used for e i ther one o f  the words or the s e t  

o f  words : implies , is con cluded as , or i f  • • •  then • 

8 0  
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APPEN DIX A 

RE DU CT I ON OF A QUADRAT I C  FORM TO A LINEAR FORM 

For the multi vari ate Gaus s i an  n oise wh i ch is added t o  the de 

s i gnal , the quadrati c form whi ch is the logarithm of the like lihood 

rati o can b e  re duce d to a line ar form by app lying s ummati on calculat ion , 

without knowin g the characterist1 cs of quadrati c  form . This , of course , 

is pos s ib le when the dis tribution fl.ll'l ctions have the s ame covari an ces 

and 

Then , 

By definition , 

- ( xi-µ l i ) { xj-ii l j  )a ij ] 
1 n n 

=-2 l l < x . x . -x . µo j -xjll o i + llo i µO j-xixj 
i j 1 J l. 

t x. µ 1 . + x µ - lJ 1 ll 1 ) o . . 1 J j 1
i i j l. J  

1 n n 
) =-- \ \' [ ( µ -µ ) x. + ( µ l • -µ 0 • x. 

2 l l l • 0 • J. l. 1 J 
• • J J l. J 
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Sin ce the l as t  term of the above equation is a const ant for any �' 

ln L ( x )  = x
T \- 1

( µ  -µ , ) + const ant -which is a linear polyromi al . The 
- _ l  � --

cons t an t  value is s ome ti me s  called the b i as . 
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APPENDIX B 

ESTI MATION OF PARAMETERS US ING REPETITIVE CALCULATI ONS 

The like lih ood ratio test of the two distributi ons without any 

parame te r  value gi ven but only with the s ample ve ct ors o f  known classes 

encounters the problem of e stimating the parame ters by the use of gi ven 

s ample ve ct ors . Then the like lihobd ratio is 

L ( x )  = f(�x0 ( m ) ,H 0 ) 

f( x/X 1 ( m ) ,H ) - 1 

where Xi ( m) = { xi ( l ) , • • •  xi ( m} } , i=O , l  whi ch is the set of m s amp le 

ve ct ors of class i .  Howe ver , the numerator and denominat or can be 

writ ten as 

f[ x/Xi ( m ) ,H . ]  = j f( x/0 ,H . ) f[0/Xi ( m) ,H . ]d8 
- 1 -oo - 1 1 

The de terminat ion of  f[0/Xi ( m ) ,Hi ] is the main prob lem whi ch is s olved 

in a repe titive way , shown below .  

From the Baye s ' the orem ( n ot Bayes ' criterion ) 

f[ 0/X( m ) ] = 
f ( X ( m ) /0] f( G ) 

/00 f [ X( m } /G] f( G ) d0 
where 

-oo 

• 1• of . X are omitted for convenien ce . 
the condi ti on H . and s upe rs cript 

1 

But f[X( m ) /0] f[ X( m ) · 0] 
= 

f( 0 )  

= f�G) [ f( x( l ) , x( 2 ) , • • •  , x( m } ,e] 



- 1 
- f( 0) f[x( rn ) /X( m-1 ) ,8]  f[8/X( m- l ) ] f[X( m- 1 ) ] 

where X( m- 1 )  = { x( l )  , • • • , x( m- 1 ) } 

Hen ce , 

Here 

-
1 'f"{0j"' f[ x( m ) /X( m- 1�8] f[8/X ( m- l ) ] f( 8 ) . t[ X( �� l ) ] 

f[0/X{ m ) ] = ---------------.----. 
00 

I f( G ) 
-oo f( G) f( x{ m ) /X( m- 1 ) ,8] f[0/X( m- l) ]  f[ X ( rn-1 ) ] d8 

f [ x( m ) /X( rn� l ) ,eJ  f[G/X( rn- 1 ) ] f[X( m- 1 ) ] 
= --------------...-.;--,;_....;;..;...;.���:,..._---

00 
f[X ( m- 1) ] f f[x( rn ) /X ( m- 1 ) ,0]  f[8/X(m- l ) ] d0 

-oo 

= 
f(�( m ) /X ( m- 1 )  , 8] f[ 0/X ( m- l ) ] 
()() 

I f[ x( rn ) /X( m- 1 ) , 8] f[8/X( m- l ) ]d0 
-oo -

f( x( m ) /0 ) f[0/X ( m- l ) ] 
= ------------------------

co 
I f[x( m ) /8]  f[8/X( m- l ) ]d8 

-oo - . 

f[ x( m ) /X( m- 1 )  , 0 ]  is put equal to. f(x{ rn ) /8] b ecause of condit i onal 

indepen de n ee . 

The las t  term is the des i red repeti tive form to be used for the 

calculati on of f[0/Xi ( rn ) , Hi ] of the like lihood ratio test . 
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