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Chapter 1
INTRODUCTION

Growing concern for the preservation of the natural beauty of this
country has spurred the development of underground cable. Overhead
circuits, which once cluttered the landscape, are being retired and
underground circuits are being installed. At new development sites,
whether rural or urban, the question of installing underground circuits
is being considered.

The advantage of added beauty is not the only favorable considera-
tion for underground distribution systems. In the Midwest, the unpre-
dictable weather often becomes a formidable opponent of the electric
utility. Since the underground cable is buried in the earth, the haz-
ards of wind, ice, and lightning are either eliminated or reduced
considerably. The added advantage of service quality is augmented by
the increased safety of underground systems. There are no poles to be
struck by out-of-control vehicles, no live wires iying on the ground to
endanger citizens, and no overhead lines to be snagged bv large
equipment.

However, to simply state the advantages of underground distribution
systems would be misleading. The}e are disadvantages which, through
added research, hopefully can be resolved. The major disadvantage in
employing underground systems is cost. To simply revise all of the
existing overhead systems by installing underground systems would
virtually be an impossibility. Therefore, if there is to be a revision

of existing systems, it will have to be a gradual process. The other



disadvantage of underground distribution is its inaccessibility in case
of a fault. Research is being carried out to develop new methonds of
fault location. Once these methods are established, part of the problem
of inaccessibility can be reduced.

Research in the area of underground cable is an expanding field.
The never-ending goal of decreasing the cost’of cable has resulted in
various new designs. The concentric neutral underground cable is one
of these designs.

The purpose of this thesis is to make a study of a single-phase
underground circuit comprised of this concentric neutral cable, and a
study of a single-phase underground system that is physically paralleled
with a single-phase overhead circuit. Formulas will be developed for
the inductance and capacitance of each of these cases. These formulas
will be developed, based on the assumption that all of the phase current
returns in the neutral conductor. An equivalent circuit will be pro-
posed for each of these cases, and numerical values for each of the
circuit parameters will be calculated. Finally, solutions will be
obtained using formulas which take into account the earth-return path.
Values which are obtained from these formulas will be checked with data

measured in the field.



Chapter II
REVIEW OF LITERATURE

Electrical characperistics of cables are dictated by the tvpe,
configuration, and application of the cable. Through the years, the
physical construction of cables has changed considerablv. These changes
were brought about due to the need for increasing voltage levels,
higher current carrying capacities, more desirable mechanical charac-
teristics, and more economical products. Through these transitions,
the electrical characteristics have been altered. I!Modifications of the
electrical characteristics affect the circuit parameters which comnrise
the equivalent circuit. _Therefore, it is valuable to examine the
development of these cables and review the theorv behind the parameters
of the equivalent circuit.

Depending on geographical location, early cables were insulated
with rubber or paper. In the United States, local legislation some-
times imposed restrictions on trenching, limiting‘it to an authorityv.
The ducts provided by this authority were not necessarily designed for
electrical circuitry. For this reason, rubber insulated cables, which
were very flexible, were used extensively. In other parts of the world,
wound paper insulation was chiefly adonted. Impregnated paper insula-
tion, though offering a more rigid construction, posed no particular
problem, since direct burial procedures were common.

World War I marked *he successful introduction of the belted
cables. These cables were made up of three conductors which were

separately insulated and wrapped with an impregnated paper. The entire



assembly was then surrounded by a lead sheath. These cables were very
good at voltages of 22 kV and below, but proved to be a dismal failure
at higher voltages. The failure of the belted cable, due to longitudi-
nal electric stresses acting on the relatively weak paper, was corrected
Wwith the introduction of a cable designed by Hochstadter. This new
design incorporated conducting core shields which surrounded each core,
thus establishing a radial field with respect to both the earth and the
phase voltages. Hochstadter's cable is better known as the H-type
cab]e.]

With an increase in voltage levels, problems such as the formation
of voids in the insulation and non-uniform dielectric quality sourred
the development of the oil-filled and gas-pressure cables. One of the
advantages of the oil-filled cables was that the insulation thickness
could be decreased. Another advantage was that moisture could not
penetrate the insulation, thus causing an insulation failure. Both
the oil-filled cable and the gas-pressure cable are still being used
at higher voltage levels. These voltage levels are now ranging to over
500 kV.2 |

Extensive research in the area of direct buried cable was initiated
due to the increasing deve]opﬁent and high cost of underground distri-
bution in the United States. Mugh of the work was done in the field of
insulation. As mentioned before, rubber was used extensively in the
United States because it was flexible and had acceptable insulating
characteristics. However, rubber had the tendency to absorb moisture

and had to be jacketed with lead or treated with fibrous materials.

The lead sheath, while providing moisture protection, also added



physical protection for installation and supplied an electrnstatic
shield. Unfortunately, disadvantages such as shield current, non-
flexibility, and high cost, overshadowed these advantages.

World War II stimulated research with synthetic rubbers. Out of
this research, butyl was found to have excellent dielectric properties
as well as temperature stability. However, like natural rubber, butyl
had to be jacketed. Another synthetic, neoprene, was discovered to be
a very good jacketing material. Heoprene was found to have excellent
mechanical characteristics. Unfortunately, its use was limited due to
a high cost of production.3

Until this time, the lead-sheathed cable was primarilv used.
However, because of cost and the development of underground distribu-
tion, a new type of cable was introduced. This was the concentric
neutral cable. The original concentric neutral cable, developed for
single phase distribution on a multi-grounded neutral wve-type svstem,
was rubber insulated. It was a #6 AWG copper phase conductor with an
unshielded neoprene covering or jacket over the rubber insulation.
Wound concentrically around the jacket, were six #14 AWG wires which
acted as the neutral return path.4

The concentric neutral cables were introduced in the late 1940's.
In the 1950's, the development of plastics proved to be vital to the
cable industry. Of all the plastics to be developed, polyethylene has
turned out to be the best. Polyethylene not only has fine electrical
characteristics, but also possesses outstanding mechénica] character-
istics. Unlike rubber, polyethylene absorbs practically no moisture

and is very tough.



Polyethylene can be subdivided into two categories--high-molecular
weight and crosslinked polyethylene. Both of these polyethylenes are
thermo-plastic compounds. However, high-molecular weight polyethylene
is cured by cooling, while crosslinked polvethylene is cured by heating.
The main difference between these two insulations is the maximum
allowable conductor temperature ratings. Hiqh-mo]ecu]ar weight poly-
ethylene has a conductor temperature rating of 75 deqrees C, while
crosslinked polyethylene has a conductor temperature rating of 90
degrees C.3

The outstanding qualities that these new insulations possessed
were immediately used in the development of a new cable. This cable
was called underground distribution (UD) or underground residential
distribution (URD), and was comprised of a stranded or solid conductor,
an extruded semiconducting shield, a polyethylene insulation, a semi-
conducting polyethylene layer, and a concentrically annealed copper
neutral. Here again, the polyethylene insulation may be crosslinked
or high-molecular weight, depending on the anticipated conductor
temperature.

Electric cables have been modified, improved, and adapted for
various applications since their introduction. The basic laws gov-
erning the solution of electric Circuits have not been altered. How-
ever, the parameters which are integral to the equivalent circuits have
been modified. The following discussion examines the early theory
proposed for cables and the alterations involved in switching to gnder—

ground distribution.



Most of the theoretical work developed in conjunction with cables
was presented in the early years of this century. Early investigators
in cable theory were Dr. J. R. Carson and Dr. Reinhold Riidenberg.

Carson published a significant paper, in 1926, entitled "Wave
Propagation in Overhead Wires With Ground Return“.5 Since this paper
directly included the ground return, Carson recognized the problem of
current distribution through the earth. This problem exists because of
the nonuniformity of the earth and the lack of conductive homogeneity.
To alleviate these obstacles, Carson assumed that the earth was a plane
of homogeneous semi-infinite solid material.

He considered the earth to be a plane parallel to the conductors.
Using a three dimensional system, the X-Z plane corresponded to the
earth's surface. The conductor and conductor image were positioned on
the y-axis, equidistant from the origin. For y >0, the conductivity,

A , was assumed to be zero, and for y <0, the conductivity was assigned
a finite value dependent on soil conditions, which were determined from
field tests.

Carson not only derived an expression for the wave propagation
constant, ¥ , but also derived the relations, later to become Carson's
formulas. These formulas describe the self-impedance with earth-return
and the mutual impedance with common earth-return. These equations,

stated in a general form, are

z

aa_g (rc + Raa_g) + j(xi + Xaa_ ) (2'])

g
and

Zab-g Rab-g * JXab-g (2-2)



where

conductor resistance in nanoohms per centimeter
conductor internal reactance in nanoohms per centimeter

resistance of the component of self-impedance with earth-
return external to the conductor in nanoohms per centimeter

reactance of the component of self-impedance with earth-
return external to the conductor in nanoohms per centimeter

resistance of the mutual impedance with common earth-return
between two conductors in nanoohms per centimeter

reactance of the mutual impedance with common earth-return
between tvo conductors in nanoohms per centimeter,

The internal impedance of the self-impedance mav be assumed to be

given by the resistance of the conductor.5 With this in mind, the

parameters

vhere

r
c

=

>X X 0

aa-g
ab-g
aa-g

ab-g

which constitute Carson's formulas are

conductor resistance in nanoohms per centimeter
40P in nanoohms per centimeter
4w P in nanoohms per centimeter

4ha 3 .
2u>]oge —a—-+ 40 Q in nanoohms per centimeter

2u)]09e gig.+ 4w Q in nanoohms per centimeter
a

frequency in Hertz -

height above ground of the conductor in centimeters
diameter of the conductor in centimeters

distance between conductors in centimeters

distance from one conductor to the image of the other,
assuming a perfectly conducting earth, in centimeters



w=27rf

©
n

resistive correction factor

reactive correction factors,

o
n

Carson's formulas were originally developed for use in overhead
cable design. These equations may be adapted to underground cable by
assuming the height of the conductor above the earth to be equal to
zero. This assumption can be made if the self- and mutual impedances
of cables with earth-returns are essentially the same value below the
ground as they are at the earth's surface.7 The latter assumption can

8 This paper indi-

be made as a result of a paper published in 1929.
cated that if a conductor was placed reasonably close to the surface

of the earth, the deviation from the circular symmetry of earth in all
directions had little effect on the impedance. The circular symmetry
referred to in this case, dealt with the finite distance of soil above
the conductor, in respect to the infinite distance below the conductor.
The deviation from the circular symmetry was so small that Carson
stated that the correction factor developed in his paper might not be
justified.

Like Carson, Dr. Reinhold Riidenberg assumed that the earth has a
uniform resistivity o . However, Riidenberg attacked the self- and
mutual impedance problem from a different viewpoint. Riidenberg
assumed that a conductor of diameter "d", whether overhead at a

distance "h" above the earth's surface, or underground at a distance

"h" from the surrounding earth, could be replaced by a conductor of
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diameter “d" in a semicircular trough in the earth of radius “h".6
The radius "h" of the semicircular trough corresponds directly to the
height of the cable above ground or to the radius of the sheath of a
cable directly buried in the earth.

Ridenberg's equation for self-impedance of a conductor takes into
account not only the impedance due to the flux in the earth, but also
the impedance due to the flux within the trough mentioned above. The

equation for self-impedance with earth-return was given as

z

2 - 0.178 /€
aa-g = (re ¥ m°f) ¢ j(2wlog, T\/;+ X3) (2-3)

-
where
r = resistance of the conductor
f = frequency in Hertz
d_ = diameter of the conductor

x. = internal reactance of the conductor,

The equation for the mutual impedance with a common earth-return con-

sists of the impedance due to the flux in the earth and the impedance

due to the flux within the trough. This equation was given as

o B, 0,178\/§ -
Zab-g - f + 32401oge s VF (2-4)

6

vhere s_, was the spacing between the centers of the conductors.

ab
As might be expected, Rudenberg's equations show an independence

from the height or the depth of the cable. Comparison of Rudenberg's

and Carson's work shows only an increase in the reactance term of



1

Carson's formula. This increase is only 0.019 for a frequency of 60 Hz.
Essentially, this showed that their work could be used for underground,
as well as for overhead systems.

M. C. Gray proposed a derivation for both finite and infinite
power lines which deviated from that of Rudenberg.and Carson.g’]0
Gray's work differed from that of Rudenberg and Carson in that he did
not assume the earth to be uniformly conducting. Instead, Gray made

the assumption that the conductivity of the earth varies exponentially

as the depth increases. This assumption was given as
A =xeP? 240 (2-5)

where A, was the conductivity at the surface of the earth, which was
the X-Y plane.

Mayr proposed that the earth be replaced by a thin conducting
surface layer. Haberland, Riordan and Sunde studied the idea of two-
layer horizontal stratification with a thin surface layer. The two-
layer stratification has been extended to three layers, but an accurate
study of soil conditions must be available to use these ideas.]]

With the advent of the concentric neutral cable, the equations
developed by the people previously mentioned, had to be adapted to the
new cables. R. C. Ender publisﬁéd a recent paper updating these
f"or‘mu]as.]2 Ender simply adapted Carson's formulas for use in under-

ground distribution and extended them to take care of the concentric

neutral. The derivations for these formulas will be developed in the

appendix.
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F. C. Van Wormer published a paper in 1967 dealing with anproxi-

13

mate impedance calculations for underground cables. Van Wormer made

several assumptions which allowed him to simplify the impedance equa-
tions, and at the same time, yield sufficient accuracy. The first of
these assumptions was that all of the current in the phase conductor
would return in the neutral conductor. This, meant that the impedance
of the earth could be neglected. The second assumption was that the
current was distributed uniformly in the phase and neutral conductors.
This assured a uniform magnetic field. Van Wormer further assumed that
the concentric neutral strands, which make up the total return circuit,
could be approximated by a very thin continuous shell. As a result,
Van Wormer stated that the impedance of the return circuit consisted
only of the resistance of the neutral strands.

Like Van Wormer, D. L. Stone assumed that the concentrically wound
neutral could be represented by a thin she]l.]4 However, Stone con-
sidered two cases: (1) earth neglected, and (2) earth considered. By
neglecting the earth, all of the current in the phase conductor is
assumed to return in the neutral conductor. The equations that resulted
were similar to those of Van Wormer. Stone proposed that the impedance
of the earth could be taken into account by paralleling the neutral
impedance and the earth's impedéhce. In order to obtain the total
impedance of the circuit, the phase conductor impedance would have to

be added in series with the parallel combination. This is expressed as
14

7.7 + ke

2-6
p Zn+Z ( )

e
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vhere

= Rp + j.004657f 1og (h/GMR) in ohms/mile

Rn + jO0.0 in ohms/mile

o SN Y

= .00159f + j.004657f ]og(De/h) in ohms/mile

phase conductor resistance in ohms/mile

el
©
n

f = frequency in Hertz y
GMR = geometric mean radius of the phase conductor in feet

h = distance from the center of the phase conductor to the
center of the neutral in feet

R = neutral resistance in ohms/mile

D - 2160/§
e f

= earth resistivity in meter-ohms,

Stone concluded that neglecting the effect of the earth-return
resulted in a considerable error for small cable sizes. However, a
graph that was presented for a #4/0 AWG cable showed that this error
was not as great for larger cable diameters.

J. V. Barger and D. R. Smith presented a paper in October, 1971,
at the IEEE 1971 Conference on Underground D1'str1'but1’on.15 This paper
dealt with two methods of solving for the series impedance of the com-
bined circuit. Each of these methods required the application of
Carson's formulas, which were ad;pted for use with underground cables.
One of the methods presented made use of the uniform, thin sheath
representation of the concentric neutral. .In this case, the mutual

impedance between each strand need not be considered. The second

method considered each strand separately. This meant that the mutual

28362 - i e O TN
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impedance between each strand must be calculated. Smith and Barger
concluded that there was not an appreciable error between the final

results of these two methods.

14
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Chapter III
DEVELOPHMENT OF THE INDUCTANCE FORMULAS FOR AN UNDERGROUND CIRCUIT
ALONE AND AN QVERHEAD-UNDERGROUND PARALLEL CIRCUIT

Concentric neutral cable is being widely accepted by the electric
utility industry as a primary supply circuit to underground residential

13 An illustration of %his cable is shown in

distribution systems.
figure (3-1). The concentric neutral consists of strands of #14 AWG
annealed copper. The number of strands comprising the neutral normally
depends on the size of the pnase conductor. A rule of thumb dictates
that the return path should be capable of handling as much current as
the phase conductor.]2 This means that for a three phase system, the
number of strands can be reduced to provide approximately one-third of
the circular mil area of one of the phase conductors. However, the
Rural Electrification Administration has specified a reduced neutral
for single-phase as well as for three phase systems.]6 This can be
specified since only part of the phase current refurns in the neutral
conductor. The remainder of tﬁe return current uses the earth as a
conducting path. The formulas developed in this chapter are based on a
reduced neutral for a single-phase system. These formulas are: (1) the
inductance and inductive reactance for underground cables alone, and (2)
the inductance and inductive reactance for parallel overhead-underground
circuits.

The equations to be developed for both the underground circuit

alone and the paralleled underground-overhead circuit are based on the

same basic assumptions. First, the current density in the phase
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conductor and the neutral conductor is constant. It is also assumed
that all of the current in the phase conductor returns in the concen-
tric neutral. Since each of the strands comprising the neutral return
is identical and electrically in parallel, the return current splits
equally between each strand of the neutral.

The underground single-phase circuit is, similar to the overhead
single-phase circuit in that both have a phase conductor and a neutral
return. The phase conductor of the underground circuit will be
designated as conductor 3. The neutral return conductor, consisting of
"s" number of strands, will be designated as conductor 4. Each strand
of the neutral return will be designated by a small letter as follows:
a, b, ¢, d, e, and f. Figure (3-2) shows a cross section of a concen-
tric neutral cable. The linas connecting the center of each strand
illustrate a geometric distance given by a capital letter "D", with
subscripts indicating the strands or conductors being described. Thus,
D b represents a distance between the centers of strand “a" and strand

a
"b" of conductor 4. D_._ represents a distance between the center of

a3
strand "a" of conductor 4 and the center of the solid conductor 3.

The same procedures developed in Appendix A are used in develoning
an expression for the inductance of an underground cable. 1In order to
calculate the total inductance 6% a single-phase circuit, the induc-
tance of each conductor must be considered. The inductance of each
conductor depends on the flux linkages which describe the magnetic
field. The expression shown in Appendix A, which relates the flux

linkages and inductance of a conductor, is given as



Figure (3-2)

GEOMETRIC DISTANCES USED TO DETERMINE
THE INDUCTANCE OF AN UNDERGROUND CABLE
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i% henrys/meter, (3-1)

where ¥ represents the total flux linkages of a conductor in weber-
turns and I represents the current in the conductor in amps.17 There-
fore, the total flux linkages of the conductor, both internal and

external, must be defined in order to derive an expression for an

equivalent inductance.
The inductance of conductor 3 will be considered first. The total
flux linkages, which describe the magnetic field about the phase con-

ductor, can be given as

Total flux linkages = Internal flux linkages of conductor 3
due to the current in conductor 3 + external flux linkages
of conductor 3 due to the current in conductor 3 + external
flux linkages of conductor 3 due to the current in strand
"a" + external flux linkages of conductor 3 due to the
current in strand "b" + external flux linkages of conductor
3 due to the current in strand "c" + external flux linkages
of conductor 3 due to the current in strand "d" + external
flux linkages of conductor 3 due to the current in strand
“"e" + external flux linkages of conductor 3 due to the cur-
rent in strand "f".

The currents in each strand of the concentr%c neutral are opposite in
direction of the phase conductor current. This direction is considered
by inserting a minus sign in the expression for the flux linkages when
considering the return currents.” Initially, the flux linkages can be

written as



3q
_ I3 =, Ml3j dx  al
jd’bg,'“z"‘“’ e I
s
D D
cq d
,ulaj dx Ml4j |
T 2ms X~ 2ms
D3¢ D34
D
fq
w~1g dx
T 2ws X
D3¢

where "s" represents the number of strands which comprise conductor 4,

and "q" is some finite point in space.

combining the internal and external components of flux linkages, as is

done in Appendix A, yields

D I
- 3q 4
¥3=2x10 (I3 Tog_ Sk — log
-£4—-]og .D_cg._zﬂ’.]og 993.-
S e 03C s e D3d

Combining terms, equation (3-3) becomes

(3-2)

D I D
20 _ 4. B
eD S eD3b
14 10q 2ea . 14959 Dfq
s 199, D. = 199, D )
3e 3f
(3-3)

20

Integrating equation (3-2), and



1/s
7 D3 (DaaPbaPcaldqPeqPf
(I3 Tog, 22 - 1, Yoy, 4290060 490 q) ).

e r3’ ]/S
(03a03b03cD3dD3eD3f)

}”3 =2 x10

(3-4)

The logarithm of the product of two quantities can be expressed as the
sum of the natural logarithms of the quantities. Applying this state-

ment to equation (3-4) yields

#3=2x107 (1, log, 0

3q

]
+ — -
I3 loge r3’ I4 loge (Danququdq

)]/S : 1 )
D D -1 og 1 ~
€ (D34D3,D3.D34D3e03¢) (8 (3-5)

eq fq 4

Since the return current in conductor 4 is equal in magnitude to the
phase current in conductor 3, and the difference of two natural loga-
rithms can be expressed as the logarithm of a quotient, equation (3-5)

can be rewritten as
1/s
(03,03503¢P34P3e03¢)
- r/
3

= -7
¥3=2x10" (I Tog,

(3-6)
’3q ).
1/s

+ 13 loge
(DagPbqPeqPdqPeqPfq)

As the point "q" moves farther away from the conductor, the ratio of

21
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D
39 s approaches unity. Since the natural logarithm

(PaqPbqPeqPdqPeqPrq)
of unity is zero, the latter term of equation (3-6) has no effect on the
inductance of conductor 3. The flux linkages of conductor 3 are

written as

1/s
) 7 1 1oq. \D3aD3603cP3dP3e03¢ )
¥3=2x10 3 109e 7 weber-turns.
3

(3-7)

Substituting equation (3-7) into equation (3-1) results in the expres-

sion for the inductance of conductor 3, which is

1/s
: D3303503¢D3dD3eD
L. =2 x 107 10g (P3aP3bD3cD3dD3eD3f) °7 (3-8)

3 e 7
Yy

The above expression is the inductance of conductor 3, if it is a solid

conductor.

The inductive reactance of a conductor can be written as

X, = 2L ohms/meter (3-9)

-

where f is the frequency in Hertz. Substituting equation (3-8) in

equation (3-9) yields

1/s
(03aD35P3c03dD3eD3f)

"3

s (3-10)

-7
X 3 = 27f (2 x 10 ) Tog,



which simplifies to

1/s
(D3a03p03¢D3d03eD3¢)
- ohms/meter.

"3

. =7
X 3 = 47f x 107 1og,

(3-11)

Equation (3-11) represents the inductive reactance of conductor 3 in
ohms/meter.

The inductance of conductor 4 is dependent on deriving an expres-
sion for each strand of "s" strands which comprise the conductor. An
expression for strand "a" will be developed and extended to give an
equation for the inductance of the reduced concentric neutral. The
same principles can be applied here as were applied previously. Since

all of the current in the phase conductor is assumed to return in the
I
neutral, the current in each strand is equal to-{}.

The expression for the flux linkages of strand "a" of conductor 4
is

Flux linkages of strand "a" = Internal flux linkages of
strand "a" due to the current in strand "a" + external flux
linkages of strand "a" due to the current in strand "b" +
external flux linkages of strand "a" due to the current in
strand "c" + external flux linkages of strand “a" due to the
current in strand "d" + external flux linkages of strand "a"
due to the current in strand "e" + external flux linkages

of strand "a" due to the current in strand "f" + external

flux linkages of strand "a" due to the current in conductor 3.

This expression is rewritten in integral form and appears as
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Daq qu ch
_1a -7, ~1a dx 4, «Ig dx 4 «<Ig dx
fdfua"éixw o 7+27rsj 7+ersf K3
ra Dab Dac
’da Peq D
. 14 dx , «<Ig dx , «I4 dx
27s X 2mws X 27s
D,q D, D ¢
I 3q
A% dx .
— j X, (3-12)
Da3

where the algebraic signs are the result of the relative direction of
the flux linkages. Integrating equation (3-12) and combining like

terms gives

1/s
¥a=2x10 7 (I4 'loge ,q 9 TR I3 1oge EJE )
(ra DabDac ad ae“af) a3

(3-13)

where r© = r e 7. Remembering that the total current in both conduc-
a a

L] b

tors is equal in magnitude, and applying the proper rules in simplifying
the logarithmic expression, a new expression for‘}”a results. This new

expression becomes



" D
. =2x10 7 (I, 1og a3
a 4 e , s 1/s
(ra DapPacPadPaelaf)
1/s (3-14)
+ 1 Tog Paa’ba’cq’dq’eq’fq) )
4 e D ’
3q
1/s
(D004 00 qDdaPoqDfq)
where the quotient aq°bq qudq eq”fq approaches unity as the
3q

finite point "q" approaches infinity. This means that as "q" moves
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farther away from the conductor, the flux linkages of strand "a" simpli-

fy to

D
7 a3
I, log
4 e (p’ /s
(ra DabDacDadDaeDaf)

weber-turns.

W, =2x 107

(3-15)

The inductance of strand "a" is obtained by substituting equation
(3-15) into equation (3-1). The inductance of strand "a" is given as
7 Da3

s log
€ (”; DabDacDadDaeDaf’)]/S
S henrys/meter,

(3-16)

L. = lﬁ§-= 2 x 107
a 14

Equation (3-16) represents the inductance of only strand "a". There

are "s" number of strands which comprise the concentric neutral. There-

fore, the average inductance of "s" strands must be calculated in order

to derive an expression for the total inductance of conductor 4. The
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average inductance of a stranded conductor consisting of "s" strands is

La*Lp * Lo *Ly+Lle*Ls
Lave = -2 Cg d € ~ (3-17)

Since there are "s" strands which are geometrically svmmetric and iden-
tical in construction, the inductance of each strand is equal. Equa-

tion (3-17) can then be simplified to g

sLa

Lave = < - Ly- (3-18)

The total inductance of conductor 4 is calculated using the relationship

L
_ Lave _ "a
= = S ° (3-]9)

L4 S

Substituting the expression for La into equation (3-19) and simplifying,
yields

7 . Da3 -
0g . ) 3
€ (ra DabDacDadDaeDaf)

henrys/meter,

L, =2x 10

4
(3-20)

which is the inductance of conductor 4.

The inductive reactance of conductor 4 can be derived by substi-
tuting equation (3-20) into equation (3-9) and simplifying. The re-

sulting equation for the inductive reactance of conductor 4 is

Da3

€ (ry DabDacDadDaeDa

X o = &47rf X 'IO-7 log /s ohms/meter.
L4 £)

(3-21)
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The total inductance and total reactance of the circuit can be
derived by adding the two inductance terms given in equations (3-8) and
(3-20) and substituting the result in equation (3-9). The total circuit

inductance and the total inductive reactance are given as

1/s
(D33D3,03¢03dV3e03¢) *~ (Da3)

-7
LrotAaL = 2 x 10 7 Tog
R Y s
(r3-)(ry" D4p0acDadPaelaf)
henrys/meter
(3-22)
and
(Ds.DayDs DaDrDag) /5(0. 2)
X -TotAl® 47rf X 1077 1og --3a 3b°3c 3d"3e°3f a3
. e # 2 1/s
(r3 )(ra DapPacPaqPaelaf) /
ohms/meter.
(3-23)

The inductance and inductive reactance formulas, which have been
derived thus far, hold true only if the overhead circuit and the under-
ground circuit are considered individually. The equations which follow
pertain to the situation where the overhead and the underground circuits
are physically parallel, but only the neutrals of each are electrically
Parallel. For simplification purposes, it is assumed that one span of
overhead cable is equal to one span of underground cable. The same
assumptions used previously apply in this case. These assumptions are:
(1) the current density in each conductor is constant, and (2) the total
current in the phase conductor returns in the paralleled neutrals. The

methods required to derive the new expressions are exactly the same as
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the previous derivations. Figure (3-3) illustrates the configuration
to be analyzed. As before, the distance between each conductor, or

strand, is designated by a "D", with subscripts indicating the conduc-

tor or strands in question.

I1Tustrated in figure (3-3) are the distances to be considered
when deriving an expression for the inductance of conductor 1 or con-

ductor 2. Initially, the flux linkages of conductor 1 can be written as

Flux linkages of conductor 1 = Internal flux linkages of
conductor 1 due to the current in conductor 1 + external
flux linkages of conductor 1 due to the current in con-
ductor 1 + external flux linkages of conductor 1 due to
the current in conductor 2 + external flux linkages of
conductor 1 due to the current in conductor 3 + external
flux linkages of conductor 1 due to the current in strand
"a" + external flux linkages of conductor 1 due to the
current in strand "“b" + external flux linkages of conduc-
tor 1 due to the current in strand “c" + external flux
linkages of conductor 1 due to the current in strand "d“
+ external flux linkages of conductor 1 due to the current
in strand "e" + external flux linkages of conductor 1 due
to the current in strand "f".

The point "q" is not shown in figure (3-3) but is assumed to be’
located at a finite distance in space. Therefore, the expression for

the flux linkages of conductor 1 can be written as



Figure (3-3)

GEOMETRIC DISTANCES USED TO DETERMINE THE
INDUCTANCES OF CONDUCTOR 1 AND CONDUCTOR 2 OF A
PARALLELED OVERHEAD-UNDERGROUND SYSTEM
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w1y dx _ «ls dx
“Zms) x zms)  x° (3-24)

Integrating and combining like terms yields

_S.+ 13 log Dﬁ.

] & D
V/] =2x10 (I] log, —* - I, log, e Dy3

" e Dy
e DlaleD]cDIdD]eD1f

-1

where r{ = re 4. The algebraic signs are a result of the relative

direction of the flux linkages. Equation (3-25) can be rewritten as

991 =2x 10’ [I log, : + 1y log, (D ) I, log, D:2

1
= I3 logg (DZq)+ I; Togg 5;;'+ I3 logg (D3q)

1/s

1
- 1 109, (D;DpqPcqPdqDeqPq) ~ J-

(07201501 cL1dP1eP1 )

= 14 1oge
(3-26)
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As the point "aq" moves farther away from the conductors and approaches

infinity, the distances D]q, qu, D3q, Daq’ qu, ch, qu, Deq’ and qu
can be assumed to be approximately equal. Therefore, the terms per-

taining to point "q" in equation (3-26) can be written as
I]1%9(%q)—12]we(%q)+13hwe(%q)-14hme(%qh
(3-27)

Since I] t 13 =1, + 1, equation (3-27) can be rewritten in terms of

the logarithm of a quotient. The resulting quotient is

D]
+ —1q , 3-28
(I] 13) 1098 D]q ( )

which is equal to zero, since the 1oge1 = 0. As a result, equation

(3-26) simplifies to

s -7 L s 1
¥1=2x10 (1, log, — 12 log, i I3,loge 4
1 12 13
- I4 loge : . ] weber-turns. (3-29)

1/s
(01201601 P1dP1e1 )/

Substituting equation (3-29) into equation (3-1) and simplifying, yields

-7
_2x10 loa L -1.1log 1 +1,l0og ——
L] —-—-———11 [11 Oge rn’ 2 e Dy; 3 e 01‘3
1 ] henrys/meter. (3-30)

- I, log 1
4 " (D),01p01cD1d1eD1F) /S
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The inductive reactance of conductor 1 can be derived by once
again utilizing equation (3-9). Substituting equation (3-30) into

equation (3-9) and simplifying, yields

47rf 7 1 1 1
X, , = —x 10" (I, log —~-1_1log —+ I, log —
LI I] 1 e r] 2 e D]2 3 e 013
1
- I, log ) ohms/meter,
4 7% (04,0101 D101l )/
(3-31)

which is the inductive reactance of conductor 1.

The inductance of conductor 2 is derived in exactly the same manner
as is conductor 1. In order to avoid repetition, the formal derivation
for the inductance of conductor 2 will not be given. However, the final

formulas for the inductance and for the inductive reactance will be

given below. They are

-7
=2x10 1 1 TR sl
L =&Xx 1Y (-1] ]oge S+ 12 Tog, o~ 13 1oge 5

2 1 D2y 2 23
2
¥ 10ge 1 75 ) henrys/meter (3-32)
(D2302p02cP2402eP2¢)
and
x = 477f x 107 (-1, log, -+ 1 Tog -1 - I, log, Bl‘
T 1 776Dy 2 Ter 23
+1, 1o L ) ohms/meter.

g 1/s
4 78 (DpD20pcP2d02eD2f)
2a (3-33)
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Due to the presence of the overhead circuit, the inductance of the
underground phase conductor is modified. This alteration is taken into
account by including the flux linkages due to the currents in conductor
1 and conductor 2. The new expression for the flux linkages of conduc-
tor 3 becomes

Total flux linkages = Internal flux linkages of conductor 3

due to the current in conductor 3 + external flux linkages

of conductor 3 due to the current in conductor 3 + external

flux linkages of conductor 3 due to the current in conductor

1 + external flux linkages of conductor 3 due to the current

in conductor 2 + external flux linkages of conductor 3 due

to the current in each of the strands of conductor 4.

Figure (3-4) illustrates the distances which describe the 1imits of
integration used in determining the flux linkages of conductor 3. The
point "q" is not shown in figure (3-4), but is assumed to be a finite

point in space. Analytically, the total flux linkages of conductor 3

can be expressed as

D3q Diq - D
d}u - 3x]0-7+/“-13 _C_ii_',/ul] qQ(__AIZ zqd_x_
3 2 2 x 2 X 27 X
r3 013 023
D D D
a bq
wlg (Vax aly d_x-&l_z;fqg&
T 2ms X 2rs X 2rs X
3a D3p D3¢
D D D
d eq f
Ad4jqu %%j' quﬂsfqéi.
< 275 X T 2mrs X 21rs X
D34 D3e D3¢

(3-34)



Figure (3-4)

GEOMETRIC DISTANCES USED TO DETERMINE THE INDUCTANCE
OF CONDUCTOR 3 OF A PARALLELED OVERHEAD-UNDERGROUND SYSTEM

34
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After integrating and combining comsion terms, equation (3-34) becomes

y’3 =2 x 10'7 (I] loge g}g-- [, 1oge g§§.+ I, log, gig
s 1%']°ge gangqgcquqgqufq) e
3a 3b"3c 3d 3e 3f
which, as before, can be simplified to
¥3° 2 x 10'7 (I] loge ﬁ%; S 12 1oge ﬁ%;'+ 13 loge ;27
] ) weber-turns.

"% (03,03503cD3¢03e03¢) *°
(3-36)
Equation (3-36) is the final expression representing the flux linkages
of conductor 3 due to all of the currents in the other conductors which
comprise the parallel combination. Now that the total flux linkages
have been determined, an expression for the inductance of conductor 3
can be developed. Substituting equation (3-36) into equation (3-1) and

simplifying, results in an equation for the inductance of a solid con-

ductor. This expression is

2 x 10-7 . 1
= & X 10 1 —— -1, log I, log v
1 ) henrys/meter. (3-37)

- I, log
4
e(D3aD3b03cD3dD3eD3f)
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The inductive reactance of conductor 3 can be obtained by substi-
tuting equation (3-37) into equation (3-9). After simplifying, the

expression becomes

47rf x 1077
Xio= 221X 1Y (I3 loge -1 log J_+ 1.1 1
L3 1 9e 9 g —
I3 D3 2 el 3 er,
- 14 Tog, 1 ) ohms/meter, (3-38)

1/s
(D33D03503¢03403603¢)

Finally, the last of the four inductances to be considered 1is
the neutral return path consisting of '"s" identical strands. Figure
(3-5) illustrates the distances to be considered in determining the
total flux linkages of strand "a". Again, the aséumption is made that
a point "q" exists at a finite distance in space. The flux linkages of

strand "a" include

Total flux linkages = Internal flux linkages of strand "a"
due to the current in strand "a" + external flux linkages

of strand "a" due to the current in strand “"a" + external
flux linkages of strand "a" due to the currents in strands
“b", "¢", *d", "e", and "f" + external flux linkages of
strand "a" due to the current in conductor 3 + external flux
linkages of strand "a" due to the current in conductor 1 +
external flux linkages of strand "a" due to the current in

conductor 2,

which can be expressed analytically as
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QY
e /
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Figu're (3-5)

- GEOMETRIC DISTANCES USED TO DETERMINE THE INDUCTANCE
OF STRAND "a" OF A PARALLELED OVERHEAD-UNDERGROUND SYSTEM



D3 D D
q b
dy. = Ia x 1077 + «l4 ax 4 wulg dx , «l14 “d dx
a 2s 27rs X 2mrs X 27s X
ra Dab Dac
Dd D
q
+ mly dx 4 xlg =4 dx , :ﬁlﬁ_ fa dx
277s X 27Ss X 27s X
Dad Dae Daf
D D D
aady (39 g, o [Pgx sl 19
2 B3 2 X T x °
Da3 Da2 Da]
(3-39)

After eliminating the terms pertaining to point "q", as was previously

accomplished, and simplifying, equation (3-39) becomes

= -7 - _]_+I 1 _]__I 1o _]_
$Va .2 x 107" [-1, log, o T2 0g, 5, 3 9e D1

1 ] weber-turns
e / ’ ]/S *
(ra DabDacDadDaeDaf)

& 14 log
(3-40)

Again, utilizing equation (3-1), the inductance of strand "a" can be

Written as

-7
«'2.x 10 1 41,109 -1, 10g 7—
La I, & ['I] 1oge Da7 2 %% D32 3 e D3
1 henrys/meter,
+ I, Tog )17s ! AL

/
® (ry DapDacPadPaelaf (3-41)
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The total inductance of conductor 4 can be derived by first applying
equation (3-17), and then equation (3-18). In this particular case, due
to symmetry, the inductance of each strand can be assumed to be equal.
This will not introduce an appreciable error. Therefore, the average
inductance is equal to the inductance of any one of the "s" strands.

The total inductance of conductor 4, made up of "s" strands, is then

given as
-7

2 x 10 1 1 1
L ===—— (-1, Tog, =—+ I, log, g— - I. log
4 14 1 e Da] 2 S a2 3 e 063

1
+ 1,10 ) henrys/meter.
4 e V4 ]/S
(ry DapPacPadPaelaf)

(3-42)

Substituting equation (3-42) into equation (3-9) and simplifying,
results in an expression for the inductive reactance of conductor 4.

This expression is

Vs -7 1 4 1.10g -1, %09 1
XL4 —I:_ x 10 ( I-I ]OQe Da] 2 ge Daz 3 e Da3
+1, log > 75 ) ohms/meter.
4 7e (ra DabDacDadDaeDaf)

(3-43)
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Chapter IV
DEVELOPMENT OF THE CAPACITANCE FORMULAS FOR AN UNDERGROUND
CIRCUIT ALONE AND AN OVERHEAD-UNDERGROUND PARALLEL CIRCUIT

The capacitance between two conductors is defined as the charge
per unit of potential difference between the two conductors. The unit
of charge, Q, which is the coulomb, is equal to 1 ampere-second and
will repel a like charge at a distance of one meter with a force of
9 x 109 joules.]8 The potential difference between two points is
equal to the work necessary to move a coulomb of charge between two
points.]7 This potential difference can be described in terms of the
electric field between these two oppositely charged conductors.
Capacitance, unlike inductance, is described by the electric field.
The distinct difference between the electric field and the magnetic
field is that the electric field originates at a point of positive
charge and terminates at a point of opposite charge. The lines of elec-
tric flux which emanate from the positively charged ﬁonductor are nu-
merically equal to the total charge on the conductor. Since the con-
ductors of a power line are primarily isolated, and the charge will be
assumed to be uniformly distributed on the surface of the conductor, the
lines of flux describing the electric field will be directed radially
outward. For this ideal case, points located at equal distances on
these 1ines of flux have the same potential and the same electric flux
density. The electric flux density, D, is defined as the charge per

unit area. For a conductor, this is given as
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D= cou]ombs/meterz, (4-1)

-
277X
where Q is the charge on the conductor in coulombs per meter and x is

the radius in meters of the area being calculated. The electric field
intensity is equal to the electric flux density divided by the permit-
tivity, k. This is given as :

= _Q
P volts/meter. (4-2)

£ -

~l|o

The permittivity, k, is defined as k = krko’ where k, is the permit-
tivity of free space and k. is the relative permittivity or the dielec-
tric constant of the insulating medium.]7 The electric field intensity
is a force per unit charge which, when integrated between two points,
results in an expression representing the work done in moving a charge
from one point to another. This work is independent of the path taken.

Therefore, the potential difference between two points can be expressed

as

DZ
= 5 4'3
Uy fcg dx volts (4-3)
Dy

The capacitance between two parallel conductors of a single-phase
system, separated by a distance "D", can be developed using equation

(4-3), figure (4-1), and

farads/meter. (4-4)

(@)
]
<|o
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x

Dy2 —||
Figure (4-1)

CROSS SECTIOH OF TWO PARALLEL CONDUCTORS

Figure (4-2)

CROSS SECTION OF AN UNDERGROUND CABLE
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12 q 2 g,
V., = dx + d -
12 j 2rkx .[ 2 mkx X (4-5)
" Dy

which, when integrated, becomes

D Q r
= 4 Y1z, 2

For a closed system, the sum of the charges Q] and 02 must equal zero.

Therefore, if no other charges exist in the vicinity, Q] = —02 and V]2
becomes
2
Q Dy2
Vo = 3o 190, s volts. (4-7)

The capacitance can then be derived by substituting equation (4-7) into

equation (4-4) to yield

(:]2 = s farads/meter. (4-8)
]oge 12

)

It is evident from this expression that the magnitude of the capacitance

is dependent on the spacing of the conductors, the radius of the conduc-

tors, and the relative permittivity of the medium.

An underground concentric neutral cable is very similar to the

single-phase circuit just described. The cable consists of a phase con-

ductor and a concentrically wound neutral return path. A solid insula-

tion separates the phase conductor from the neutral conductor. A



44

capacitance is created between the phase conductor and the neutral
return when the cable is energized. The sinusoidal voltage impressed
on the newly formed capacitor causes a current through the capacitor.
This current, which is called a charging current, is dependent on the
rate of change of the voltage and the magnitude of the capacitance.]9
The magnitude of the capacitance is dependen; on the spacing between

the two conductors, the physical size of the conductors, and the magni-
tude of the dielectric constant.

Since a cable is a capacitor, lines of flux radiate outward from
the center conductor. These lines of flux, which are assumed to be
uniformly distributed, penetrate the insulation and seek a point of
opposi te charge.20 In order to contain the electric field, a grounded
semiconducting shield is provided. This shield is extruded around the
insulation surface and provides an intimate contact with the insulation.
Close contact of the shield with the insulation helps to prevent corona,
which can initiate cable deterioration.Z] Since the Semiconducting
shield is grounded and uniformly distributed around the insulation, the
radiating electric field terminates at the outer edge of the insulation
surface. This means that the charge is uniformly distributed over the
outer surface of the insulation. Another conducting shield is extruded

around the conductor. This shig]d also aids in the prevention of corona

and helps to uniformly distribute the charge around the inside of the

insulation surface. The various components discussed above are shown
in figure (3-1) of Chapter III. Since the electric field is contained

Within the insulation, the capacitance of the cable is directly affected

by the thickness of the insulation.
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Figure (4-2) is a simplified cross section of an underground cable.
The potential difference between the outer edge of the conductor and

the outer edge of the insulation is given as

4
Vay = ‘J'e dx = j’ 7;§§; dx volts, (4-9)

_— .. ] -
V34 Tk log volts. (4-10)

Substituting equation (4-10) into equation (4-4) and simplifying, yields

C = —LTX. farads/meter, (4-11)

which is the capacitance between the phase conductor and the grounded

. -12
shield. The permittivity of free space, k,, is 8.85 x 10 '~ farads/

meter, which, when converted to farads/1000 feet, becomes 2.71 x ]0'9
farads/1000 feet. Substituting this new value for k  into equation
(4-11), and changing the natural logarithm to a base 10 Togarithm,

results in a new expression for the capacitance. This expression is

C = 0.00736 k. _ farads/1000 feet (4-12)

Dy
10910 6;
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where kr is the dielectric constant of the insulation. This equation

is the same equation which is given in the Rome Cable URD Technical

Manual.Z]

Figure (4-3) represents a parallel overhead single-phase circuit
and an underground single-phase circuit. The neutral conductors of
these two circuits are electrically connected in parallel. If the cur-
rent in conductor 3 is assumed to be equal to zero, the remaining
circuit consists of the overhead phase conductor and the two paralleled
neutral conductors. Since the neutrals of the two circuits are con-
nected, current will exist in both of the conductors. Because there is
current, a charge will exist which is probably not equal in magnitude.
However, since there is a charge on each of the return conductors, a
capacitance will be formed between the phase conductor and each of the
two return paths. Again, it is assumed that all of the current in
conductor 1 returns in conductor 2 and conductor 4. This means that
there is not a return current path in the earth.

The potential between conductor 1 and conductor 2, due to charges

%+ Qy, and Q4, can be written as

" D
2 24
ax , % dx (4-13)
27rk X 27Tk X 2k X
Dy2 D14

where r and r, are the radii of conductor 1 and conductor 2, respec-

tively. Integrating equation (4-13) yields
: D
Y D]Z Q 2, _gi_ log 24 volts.

v
14 = 77% 1% 75 " 7ok (%% Dy, 27
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Figure (4-3)

CROSS SECTION OF A PARALLELED OVERHEAD-UNDERGROUND SYSTEM
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The potential between conductor 1 and conductor 4, due to charges Q],

Qy, and Q,, can be given as

D P
14 ‘4 D
'} = Q d_x + _.0_4_ f d;’_(_ + Qz & d_x 5
14 27k X" 27k J X 2% X ° (4-15)
" D4 D12
which can be integrated and rewritten as
u| Dig ., Qg rg Q D
v B —_ A, e _..2_._ ﬁ
1" 2k 1% v T Ek 1% 0, 2k (% D, VOl

(4-16)

Equation (4-14) and equation (4-6) hoth express the potential between
two conductors in terms of charges and geometric distances. In order
to ca]cuiate the capacitance between these conductors, charge 02 and
charge 04 must be expressed in terms of charge Q]. For a closed system
With no other influencing charge existing external to the three con-

ductors, the sum of the charges in the system must equal zero. This

means that

Q *+ 0, * Gy = 0. (4-17)

Normally, if only conductors 1 and 2 were being considered, the charge

02 would be equal in magnitude and opposite in sign from that of Q,.

In this case, this is not true, since the return current splits between

the two neutral conductors. The amount of charge on Qz can be expressed
as a fraction of Q] by
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where K] is a fraction to be determined. The charge 04 can be simi-

larly expressed by

Qy = K0 (4-19)

where K2 is again a fraction to be determined. One more equation can be
derived by substituting the fractional expressions for 02 and Q4 into

equation (4-16). The resulting equation is

Ky + K= -1, (4-20)

The voltage from 1 to 2 and from 1 to 4 is equal in magnitude. There-
fore, by equating equations (4-14) and (4-15) and utilizing equation
(4-20), each of the fractional constants can be dgtermined. Once these
values are known, the capacitance between each of the conductors can be
calculated.

The capacitance between conductor 1 and conductor 2 can now be
defined in terms of the constants K], KZ’ and the geometric distances.

The capacitance C]2 can be defined as

Q _ 2 77k :
Vou D r 24
12 212 4 K, log, —2— + K, log, ===
Hoge =71 e 5y, 7 72 e by

2 °

farads/meter.

(4-21)

Similarly, the capacitance between conductor 1 and conductor 4 can be

defined as
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_ 0 2 77k
147 Vo,

D24 ry
[oge = * Ky Tog, 5;5.+ K2 109, BTZJ

farads/meter.

(4-22)

In both cases, the magnitude of each capacitance is dependent on the

spacing of the conductors and the fraction of charge on each conductor.
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Chapter V
THE DETERMINATICH OF AN EQUIVALENT CIRCUIT
AND THE CALCULATION OF THE CIRCUIT PARAMETERS

A finite length of a power line can be represented by an equiva-
lent circuit. This equivalent circuit consists of circuit parameters,
which approximately describe the system. The parameters which normally
are considered to be significant are: (1) resistance, (2) inductance,
and (3) capacitance. In preceding chapters, expressions for the induc-
tance and the capacitance of various circuits have been developed. In
this chapter, these circuits will be modeled using the formulas that
were derived. These models will be accompanied by a numerical analysis
of the parameters based on data obtained from the Rome Cable URD
Technical Hanual.Z] The circuits to be represented are: (1) an over-
head single-phase circuit, (2) an underground single-phase circuit, and
(3) an overhead single-phase circuit physically parallel with an under-
ground circuit.

Both the overhead single-phase circuit and the underground single-
Phase circuit can be represented by the same equivalent circuit. The

Proposed model is commonly called the nominal-77 equivalent circuit.

This model is shown in figure (5-1), where Z represents the series

impedance of the line, and Y represents the shunt admittance to neutral

of the line. The series impedance is calculated by finding the sum of

the total resistance and the total inductive reactance of the conduc-

tors. The shunt admittance requires the derivation of the capacitance

between phase and neutral.
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Figure (5-2) represents a single-phase overhead circuit which has
been short-circuited from phase to neutral. According to Kirchhoff's

voltage law

E] = I]Z] + 1215 (5-1)

where Z.| and Z, represent the equivalent impedances of conductors 1 and

2
2, respectively. The voltage drops I]Z] and I,Z, can be expressed as

and

1,2, = ToRo + je L. (5-3)

However, since % = IL, equations (5-2) and (5-3) can be rewritten as

1121 - I]R] + jwﬁul (5-4)

and

1229 = Isz + 1‘“) %2' (5-5)

Therefore, the equations which were derived in Appendix A for the flux
linkages of conductor 1 and conductor 2 can be used to determine the

series impedance of the circuit, since
E
1. (5-6)
Z:.,I..--Z] +22
1
and

- (5-7)
I] = 12.



The resulting expression for the series impedance of a single-phase

overhead circuit is
2

D
log, —J2 _ ohms/1000 feet.
n’re

2

= (R] + R2) +J 2.29 x 10°

(5-8)

The resistances for all of the cases to be considered are d-c resis-
tances corrected to 50°C. The neutral resistance of the underground

conductor is corrected to 40°C.

The shunt admittance is given as

Y =0.0+ jwC (5-9)

where C is the capacitance between the phase conductor and neutral.

Equation (4-8) can be substituted into equation (5-9) to yield

=2
Y =0.0+j l;jlzs;U%z_ mhos/1000 feet, (5-10)

which is the shunt admittance for the overhead single-phase circuit.

The numerical values for this specific case can be calculated by

substituting the data found in table (5-1) into equation (5-8) and
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equation (5-10). The series impedance for two #1/0 AWG aluminum conduc-

tors was found to be equal to 0.362 + j 0.282 ohms /1000 feet. For two
#2 AUG aluminum conductors the series impedance was found to be equal
ko °~574 + 3 0.294 ohms/1000 feet. The shunt admittance between two
#1/0 AWG aluminum conductors was determined to be 0.0 + j 5.4 x 1077

mhos/1000 feet, and between two #2 AWG aluminum conductors to be



Table (5-1)

GEOMETRIC DISTANCES FOR CALCULATION OF CIRCUIT PARAMETERS

Geometric Distance

D;2

D132 D1a 201 = D1 = Dyg =
D1e = Dyf = D23 ~ Dog — Yop =~
DZc ~ DZd ':DZe = DZf

D3a = D3y = D3¢ = D3q = D3 = B3¢

For #1/0 AWG aluminum conductors
For #2 AWG aluminum conductors

Dap = Daf
Dad

Dac = Dae
M=rz=r;

For #1/0 AWG aluminum conductors
For #2 AWG aluminum ccrductors

Distance in Feet

5.0

33.1

0.0393
0.0360

D3a

ZD3a

J§D3a

0.0135
0.0107

0.00266

55



56

0.0 + j 5.18 x 10-7 mhos/1000 feet. This information, as well as other
numerical values to be calculated, will be presented in table (5-2) at
the end of this chapter.

The nominal-7 eduiva]ent civcuit is valid for the single-phase
underground circuit, as well. Figure (5-3) is a representation of the
two conductors which comprise the uaderground circuit when it is short-
circuited from phase to neutral, Kirchhoff's law can be applied to the

circuit in figure (5-3) to yield

The same procedure used to cbtain tne series impedance for the overhead
circuit can be applied in this case. Equaticns (3-7) and (3-15),
developed in Chapter III fer the flux linkages of conductor 3 and con-
ductor 4, can be substituted into the expressions for 23 and Z4,
respectively. The resulting equaticn for the series impedance of an

underground single-phase circuit bacomes

2
D3a

R -2
= 4 i ( 8
Z (R3 + _;) + 3 2.29 x 10°° Tog, 0 )]/s

(r3 )(ry DapPacPadPaelaf
ohms/1000 feet.

(5-12)

The numerical results for the series impedance can again be calcu-
lated using the informa.ion in table (5-1). The series impedance for a
- #1/0 AWG aluminum phase conductor and a ~14 AlG annealed copper concen-

tric neutral was calculated to be equal to 0.6805 + j 0.0346 ohms/1000
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feet. The series impedance for a #2 AWG aluminum phase conductor was
calculated to be equal to 0.787 + j 0.0362 ohms/1000 feet. In both
cases, the resistance of the concentric neutral was multiplied by 1.10
to allow for stranding.]6
The shunt admittance can be calculated by utilizing equation (5-9)

and the expression developed for the capacitance of an underground

cable in Chapter IV. The expression for the shunt admittance can be

written as
0.00736 k
Y=0.0+jow [————~——Efl-] mhos/1000 feet. (5-13)
2
logg o<

1

where D, is the distance from the center of the conductor to the out-
side edge of the insulation, and D] is the distance from the center of
the conductor to the inside edge of the insulation. If a #1/0 AWG
aluminum phase conductor is considered, the shunt admittance can be
calculated to be equal to 0.0 + j 1.6 x 10-5 mhos/1000 feet. The shunt

admittance for a #2 AWG aluminum phase conductor is equal to 0.0 +

J 1.39 x 10'5 mhos/1000 feet.

Formulas were derived in Chapter III for a single-phase overhead
Circuit physically parallel to a single-phase underground circuit. The
neutrals of these two circuits are connected electrically in parallel.
Figure (5-4) is a circuit diagram which illustrates this particular
Situation. Two variations of this circuit will be considered.

First, assume that the phase conductor of the overhead circuit is

Physically short-circuited to the neutral conductors and the current in
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conductor 3 is zero. Figure (5-4) will be altered as shown in figure
(5-5). It is assumed that the current in the phase conductor returns
entirely in the neutral conductors and not in the earth. Therefore,
a node equation representing the currents in the conductors can be

written. This equation is

I] = 12 + I4o (5‘]4)

Fdrthermore, utilizing Kirchhoff's voltage law, two loop equations can

be written. These equations are
E1 = I]Z] + 1222 (5‘]5)

and

Since 13 = 0, the equations for the flux linkages of conductor 1,

conductor 2, and conductor 3 become

1 1
X I2 1oge T I4 ]oge

1 12

-5
y/‘l = 6,096 x 10 [I1 109e

(5-17)
1
(D1201501cP1dP1el1 £

)]/S ]s
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-5 " ]
= 9 - -+
ylz 6.09 x 10 ~ [ I] 'Ioge 55 12 ]oge r2’ + 14 ]oge
(5-18)
1
1,
1/s
(05,0507 02402002 ¢) .
and
= -3 - ] _l,.+
¥4 =6.09 x 107 [-I, Tog, D]a » 109, 5, I, log,
(5-19)

1

(r DabDacDad aeoaf)

1/s 1.

Substituting these expressions into equations (5-15) and (5-16) and
eliminating all of the currents except I], yields an equation in terms

of E] and I]. This equation is given as

) -2
I
1

D
-2 2] 1
= [R] + 3 2.29 x 10 loge ;;7-] + C] [RZ +Jj 2,29 x 10

5-20
2 | (5-20)
2

log
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where C.I is equal to

1/s
2 D15 (0240260cDp¢0eD¢) "/ :

1oge > 75
(ra DanDacDadDaelaf) '~ Dy

[ E§'+ j2.29 x10°
2

R
[R, + =+ § 2.29 x 107

log

1/s
(D2aD2502¢024D2002¢) DZa]

€ /s

rp 7 {ry DapDacDadPaelaf)
Substituting the numerical values listed in table (5-1) into
equation (5-20) results in a numerical value for the series impedance.
Two numerical values were obtained fcr the series impedance. First, a
case was considered where both the «verhead circuit and the underground
circuit consisted of #1/0 AWG ajusinum conductors. The series imped-
ance for this case was calculated to be equal to 0.317 + j 0.230 ohms/
1000 feet. The second value was obtained for both the overhead and
underground circuits consisting of #2 AWG aluminum conductors. The
series impedance for this case was found to be equal to 0.4698 +
J 0.2324 ohms/1000 feet.
The shunt admittance, when Iy = 0, will now be considered. Since
the neutral conductors of the two circuits are electrically connected
in parallel, a portion of the charge on conductor 2 will exist on con-
ductor 4. Therefore, the total capacitance which defines the shunt
.admittance consists of two parallel capacitances. These parameters were
defined in Chapter IV. If the overhead circuit and the underground

Circuit consist of #1/0 AWG aluminum conductors, numerical values can

be calculated for each of these capacitances. The proportion of charge

- O conductor 2 and on conductor 4 must be determined before the
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capacitances can be evaluated. The voltage from conductor 1 to conduc-
tor 2 is equal to the voltage from conductor 1 to conductor 4. There-
fore, equating these potentials yields an expression in terms of K] and
KZ‘ These constants describe the proportion of the charge on conductor
2 and conductor 4. Once this expression is determined, equation (4-20)
can be applied to evaluate K] and K2 individually. For #1/0 AWG alu-
minum conductors, Ky = -0.528 and K, = -0.472.

The capacitance between conductor 1 and conductor 2 was determined
to be 1.885 x 10-344 farads/1000 feet. The capacitance between conduc-
tor 1 and conductor 4 was determined to be 1.50 x 10'314.farads/1000
feet. Therefore, the total capacitance was calculated to be 3.38 x 10-3
« farads/1000 feet. The shunt admittance was then calculated to be
numerically equal to 0.0 + j 1.275 x 30-6 mhos/1000 feet. Once again,
the circuit just described can be represented by the nominal- 77

The last variation of ficure (5-4) is a short circuit of the under-
ground phase conductor to the underground neutral, with the current

I] = 0. As before, a node equation representing the currents in the
conductors can be written. This equation is

I,=1,+1,. (5-21)

This equation is true only when all of the current returns in the neutral

conductors and not in the earth. Applying Kirchhoff's voltage law to

figure (5-6), which represents the new short circuit, two loop equations

can be written which will aid in the circuit solution. These equations

are



and

1,2, = 1222. (5-23)
Since I] = 0, the equations for the flux linkages of conductors 2, 3,
and 4, respectively, can be rewritten as ,

" -5 1. 1
¥, =6.09% x 107 [I, Tog, —- - I, logy ——+ I, Tog

2 D)3
(5-24)
‘ ]
1/s °°
(Dp20phD2cD2dD26 D2 )
= -5 ] 1
f”3 = 6,096 x 10 [-12 log, ﬁgg-+ 13 log, = 14 1oge
3
(5-25)
] i )]/S ]s
(D3,03,D3¢D3403e03f
and
- 1
@, = 6.09 x 10 e [1, Tog, Big-- ; 1o, 5;;-+ 1, log,
(5-26)
1
75 -

(ry DabDacDadDaeDaf)
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Substituting these equations into equation (5-22) and equation (5-23)

and eliminating all of the currents except I3, results in an equation

in terms of E3 and I3. This equation is

-2 -2

E
3= [Ry + j 2.29 x 10

I3 log ] + c [ +3j2.29 x 10

1o ge
1/s
(D3,03,D3.D34D34D3¢) (5-27)

1/s
(ra DabDacDadDaeDaf)

where C2 is equal to

023054 ]

. -2
(R, +J 2.29 x 10 1oge 72" D3a

£ R Dpy (DsDppD0cDpDpeD
[ -4+ Ry + 3 2.29 x 1072 Tog, -2 (D2aP2b02c024%2eP2f)

—J
.

/7 4
ry” (ra DapPacPadlaelaf)

Table (5-1) was utilized to calculate numerical values for three cases.
In the first case, the underground cable consisted of a #1/0 AWG alu-
minum phase conductor and the overhead circuit consisted of two #1/0

AWG aluminum conductors. The series impedance was calculated to be
0.3857 + j 0.176 ohms/1000 feet. The second case varied from the first
byvchanging the #1/0 AWG aluminum overhead conductors to #2 A4G aluminum
conductors. The series impedance was evaluated and found to be 0.387

*J 0.178 ohms/1000 feet. Finally, both circuits were assumed to be
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comprised of #2 AWG aluminum conductors. The series impedance for this
: case was found to be 0.52 + j 0.15 ohms/1000 feet.

The shunt admittance for this particular circuit would be deter-
mined only by the capacitance between the phase conductor and the
grounded conducting shield of the underground cable. This would be
true since the electric field terminates on the oppositely charged
shield. Again, the equivalent circuit would be the nominal-7 equiva-

lent shown in figure (5-1).



Table (5-2)

NUMERICAL VALUES OF THE SERIES IMPEDANCE AND
SHUNT ADMITTANCE FOR VARIOUS CIRCUITS

Type of Circuit
and Conductors

Single-phase overhead

#1/0 AWG aluminum
#2 AWG aluminum

Single-phase underground

#1/0 AWG aluminum
#2 AWG aluminum

Parallel single-phase
underground-overhead
circuits, 13 =0

#1/0 AWG aluminum
#2 AWG aluminum

Parallel single-phase
underground-overhead
circuits, Il =0

#1/0 AWG aluminum

#2 AWG aluminum

#1/0 AWG aluminum
overhead

#2 AWG aluminum
underground

JA

(Ohms /1000 Feegl

.362
.574

oo

.6805
.787

oo

317
.4698

oo

0.3857

+ +

+
(SN Py AFN

+

+

+

oo

(& Ne)

o o

.282
.294

.0346
.0362

.230
.2324

.176
15

.178

Y
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(Mhos /1000 Feet)

oo

oo
o o

[ Sy 2P

.

— —t
.

— e
.

.275

.39

X
X

x

-7

107

1076

10
107°

10°°
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Chapter VI
DERIVATION OF THE CIRCUIT I“PEDANCE OF A SINGLE-PHASE
UNDERGROUND CIRCUIT WITH EARTH-RETURN AHD A
PARALLELED SINGLE-PHASE UilDERGROUND-OVERHEAD CIRCUIT

In a previous chapter, equations were developed for the inductance
of a single-phase underground circuit and fo} a paralleled single-phase
underground and overhead circuit. These equations were based on the
assumption that all of the current in the phase conductor would return
in the neutral conductors, or that none of the current would return in
the earth. However, it is generally accepted that a portion of the
Phase current returns in the earth in a conventionally grounded distri-
bution system. Formulas have been developed by other authors which
describe the impedance of conductors with earth-return for overhead
circuits.6 These equations were based on information developed by Dr.
John R. Carson.8 Recently, these equations have been modified to
describe the impedances of concentric nautral underground cab]es.]2 In
this chapter, these equations, which have been derived in Appendix B,
Will be used to describe a single-phase underground circuit and a
single-phase overhead circuit.

The underground single-phase circuit is comprised of a phase con-

ductor and a concentric neutral return path. The circuit diagram for

this case is illustrated in figure (5-3). If the earth-return 1s not

neglected, another return path for the phase current must be considered.

Figure (6-1) represents a single-phase concentric neutral underground

Circuit with earth-return. The impedances shown in figure (6-1)
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represent the self-impedances of each conductor with earth-return and

the mutual impedance between the two conductors with common earth-return.
These parameters are defined in Appendix B. The identity of the earth
impedance, Zg, is retained in figure (6-1). If a short circuit is
applied across terminals b, d, and f, and another short circuit across

terminals ¢ and e, the following voltage equations can be written:

E3 = 13 (Zaa~g ") -1 (Zan-g - Ig) + I9Zg (6-1)

and

0= Yy gy ~ ) = Ty By ~TX+EZ (6-2)

The current, Ig, can be expressed as

Ig= 13- I (6-3)
Therefore, equations (6-1) and (6-2) can be reduced to
E3 = I3 zaa-g -1 Zan-g (6-4)
and
0= 13 2o - Iy Znnog- (6-5)

The series impedance of an underground single-phase circuit can be
evaluated by utilizing equations (6-4) and (6-5). Solving these two

equations for the single-phase impedance of the circuit vields

2

Z= E§.= Zaa-g " fan-g_ ohms/1000 feet.
3 “nn-g

(6-6)



n

Substituting equations (B-20), (B-23), and (B-34) into equation (6-6)
results in an expression in terms of geometric distances and resistivity.

A computer program was written, which would solve equation (6-6)
given information from table (5-1) and values of resistivity. This pro-
gram was designed to yield resuits for varying values of resistivity.
The resistivity was varied since the conductivity of the soil was
inversely proportional to the resistivity. This parameter was varied
between values of 100 meter-ohms and 1000 meter-ohms for cable sizes of
#1/0 AWG aluminum and #2 AWG aluminum. The circuit impedance was calcu-
lated for each value of resistivity. The real part of Z was plotted in
graph (6-1) and the imaginary part of Z was plotted in graph (6-2) as
the resistivity was increased in steps of 100 meter-ohms. There was a
slight increase in magnitude c¢f the circuit impedance as the resistivity
was increased.

The circuit impedance for an underground single-phase circuit,
paralleled with an overhead singie-phase circuit, can be developed by
The circuit

applying the same procedures as werc applied previously.

diagram for this case is shown in figure (6-2). Once again, the iden-

tity of the earth-return is retained. The current in the overhead phase

conductor is assumed to be equal to zero. The mutual impedances between

the conductors with earth-return are shown in figure (6-2). These

impedances are defined by equations (B-22; and (B-23) in Appendix B. If

a short circuit is applied across the terminals d, f, h, and j and

another short circuit across e and g, the following voltage equations

can be written:
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E3 - 13 (be_g - Zg) s 14 (anz__g - Zg) - 12 (an]_g - Zg) + Ing,
(6-7)

(z (z -2)-1, (2

- Z Y
g) I n2-g g 2

3 *"bn2-g nin2-g ~ Zg) * Ing’

(6-8)
and
0= 13 Zynig - Zg) - 14 (Zninz-g = Zg) = Tp (Znyg - Zg) + 142,

(6-9)

In this case, the current Iq can be expressed as

= e (6-10)

These equations can be solved simultaneously to eliminate all of the

currents but I3. The equation which results is given in terms of E3

and I3. The circuit impedance can be obtained by dividing E3 by 13.

The expression which results is

-

: . 2 anZ—g _ anligznlnz-g Zb ] 7 - ]
3 - - 1- _ “bn1-g"nlin2-g
T = [ Zobeg - 2 - i n2-g z
nZ-g
Zn]-g )

- ohms/1000 feet.

(6-11)
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Due to the spacing distance between conductor 2 and conductor 3, and
conductor 2 and conductor 4, the mutual impedances between these conduc-
tors with earth-return can be assumed to be equal. The circuit imped-
ance for this case was calculated by slide rule for two different
conductor sizes. First, it was assumed that the paralleled circuit
consisted of #1/0 AWG aluminum conductors. The circuit impedance was
calculated to be 0.295 + j 0.247 which was consistent with previous
results. When the circuit was assumed to be comprised of #2 AWG alumi-
num conductors, the circuit iimpedance was calculated to be 0.3984 +
j 0.2462. Both of these values were calculated for a resistivity of 100
meter-ohms.

Sioux Valley Empire Electric Association, located at Colman,
South Dakota, requested that short circuit tests be made on various
lengths of installed underground cable. The test which was performed
required the phase conductor and the neutral to be shorp—circuited. A

voltage was applied to the shorted cable and the voltage, current, and

watts were measured. Table [A-1) contains information from one of these

tests. From the measuired quantities it was possible to calculate the

real and imaginary components of the circuit impedance. The results of

this test will be discussed in the following chapter.



Table (6-1)

SHORT CIRCUIT TEST DATA

76

LOCATIOH: Near Valley Springs, South Dakota
DISTANCE: 9,210 feet

E I p i CoS 6 R X

(OH!S PER (oHMS PER

(voLTS)  (AMPS)  (KW)  (OHMS)  (RADIANS) 1000 FEET) 1000 FEET)
45.0 11.44 0.48  3.94 .939 .402 .146
49.9 12.72 0.60  3.92 .945 .404 .138
55.0 13.96 0.79  3.94 .935 .399 .147
72.0 18.0 1.20 4.01 .925 .404 152
80.0 20.0 1.50  4.00 .939 .408 .148
84.9 21.1 1.64  4.02 .918 .399 72
90.0 22.5 1.8 4.0 .910 .396 - 179
95.0 23.8 2.05  3.99 .908 .393 .183
100.0 25.0 2.30 4.0 .918 .398 AN
105.0 26.4  2.51 3.98 .908 .392 .183
109.9 27.5 2.75  3.99 .914 .396 176
112.0 28,1 2.88  3.98 .914 -396 75
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Chapter VII
DISCUSSION OF THE RESULTS

A single-phase concentric neutral cable consists of a phase conduc-
tor and a neutral conductor. Equation (3-11) represents the inductive
reactance of the phase conductor in terms of geometric distances. These
distances, which are tabulated in table (5-13, were substituted into
this equation. The calculated value of the inductive reactance for a
#2 AWG aluminum conductor was found to be 0.0335 ohms/1000 feet. The
calculated value for a #1/0 AWG aluminum conductor was found to be
0.0300 ohms/1000 feet. Both of these values are based on the assumption
that all of the phase current returns in the neutral conductor. These
values were found to be the same values given in the Rome Cable URD
Technical Manua].Z] Equation (B-20) represents an expression for the
self-impedance of a conductor with earth-return. This equation was
solved utilizing data from table (5-1). The inductive reactance of a
#2 AWG aluminum conductor with earth-return was found to be 0.2928
ohms/1000 feet. The inductive reactance of a #1/0 AWG aluminum conduc-
tor with earth-return was found to be 0.28694. Both of these values
were calculated for a value of earth resistivity equal to 100 meter-
ohms. These calculations indicated that when the earth-return was
considered, the reactance of the cable increased.

Some authors assume that the inductive reactance of the concentric
Neutral is equal to zero.]3 Equation (3-21) represents the inductive
réactance of the neutral conductor of a concentric neutral cable. As

before, these equations were solved utilizing the data in table (5-1).
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The inductive reactance, neglecting the earth-return, of a #1/0 AWG
aluminum conductor was found to be 0.0043 ohms/1000 feet. The value
calculated for a #2 AWG aluminum conductor was found to be 0.0040 ohms/
1000 feet. When the earth-return was considered, the value for the
inductive reactance of a #1/0 AWG aluminum conductor was found to be
0.26798 ohms/1000 feet. The value obtained for the inductive reactance
of a #2 AWG aluminum conductor was found to be 0.26963 ohms/1000 feet.

These magnitudes reflect the fact that the true inductive reactance
of the concentric neutral is not equal to zero. When the earth-return
is neglected, the inductive reactance of the return current is approxi-
mately 11.8% of the total inductive reactance of a single-phase circuit.

The equations which were derived to describe the inductive reac-
tance of a concentric neutral cable were used to calculate the series
impedance of the single-phase underground circuit. These equations
neglect the earth-return path. The series impedance fdr a #1/0 AWG
aluminum conductor was calculated to be 0.6805 + j 0.0346 ohms/1000
feet. The value obtained for a # AWG aluminum cable was 0.787 +

J 0.0362 ohms/1000 feet. As expected, the resistive term increased

substantially since a smaller cable was used. The reactive component

did not change significantly.

-

The series impedance of the same single-phase circuit was calcu-

lated using the formulas derived in Appendix B. These formulas consider

the earth as a return path for the current. The circuit impedance for

a #1/0 AWG aluminum cable and a #2 AWG aluminum cable was calculated

for values of resistivity ranging from 100 meter-ohms to 1000 meter-

ohms. The reactive component of the #1/0 AWG aluminum cable ranged
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from 0.2210 ohms/1000 feet to 0.23206 ohms/1000 feet. This increase in
inductive reactance represented only a 4.7% rise over a range of 900
meter-ohms. The values of circuit impedance for a #2 AWG aluminum cable
ranged from 0.22528 ohms/1000 feet to 0.23621 ohms/1000 feet. This
increase represented a 4.68% rise over a range of 900 meter-ohms. The
relative magnitudes and the rise in magnitudes over a range of varying
resistivities are displayed in graph (6-1). Graph (6-2) represents the
magnitudes of the resistive components of the circuit impedances for
both the #1/0 AWG aluminum cable and the #2 AWG aluminum cable as the
resistivity increases. This graph shows a rise in resistance of
approximately 3.7% for #2 AWG aluminum cable and a rise of approximately
5.1% for #1/0 AWG aluminum cable. The magnitude of the reactance with
earth-return was found to be much greater than the reactance neglecting
an earth-return. However, the resistive component of the circuit im-
pedance with earth-return was found to have a value which was smaller
than that of the resistive component without an earth-return.

The information that was measured in the field was tabulated in
table (6-1). The cable that was tested consisted of a #2 AWG aluminum

cable and six #14 AWG annealed copper strands which comprised the

neutral. The data was accumulated over a range of voltages. HNo par-

-

ticular pattern was observed with an increase in voltage. The values

obtained were relatively close in magnitude to the results obtained

from the computer program which solved the circuit impedance with earth-

return. The relative magnitudes of the field data, when compared to

the calculated values, might suggest that the soil in the test area had
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a resistivity of approximately 100 meter-ohms. Various methods have
been devised to measure the resistivity of the earth. If this measure-
ment was made before the tests were conducted, relative magnitudes of
the components of the circuit impedance could be calculated.

The ratio of the current in the neutral to the current in the

phase conductor, for a circuit considering ap earth-return, can be

written as

I Z
4 = . _dn- -
4 . . (7-1)
3 nn-g

If equations (B-23) and (B-24) are substituted into equation (7-1),
results can be obtained for various values of resistivity and cable

dimensions.

This calculation was performed using data obtained from the com-
puter program that was written. The cable that was chosen was a #2 AWG

aluminum cable. The resistivity of the earth was assumed to be 100

meter-ohms. The value of Zan was computed to be 0.01805 + j 0.258

ohms/1000 feet and the value of Znn-g was found to be 0.517 + j 0.269

ohms/1000 feet. Substituting these values into equation (7-1) and
simplifying, resulted in a ratio of 0.233 + J 0.38. The magnitude of

this ratio was calculated to be approximately .4455. This means that

about 44.5% of the phase current returns in the neutral conductor. A

magnitude of this size indicates that the assumption of 40% return

current in the neutral conductor, as suggested by the REA, was justi-

fied. This also means that a significant savings in the cost of the
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cable can be realized by the utility since a reduced neutral can be
specified.

Equations (3-30), (3-32), (3-37), and (3-42) represent the induc-
tance of each conductor, with earth-return, of a physically paralleled
overhead-underground single-phase circuit. The neutrals of these two
Circuits are electrically connected in paral]el. These equations are
dependent on the geometric distances of the cable and the magnitude of
the current in each conductor. Since these equations are dependent on
the current, they can be altered to describe other circuits. By
assuming 13 and 14 to be equal to zero, the equations simplify to

equations (A-27) and (A-28) which represent the inductance of conductor

1 and conductor 2 of an overhead single-phase circuit. Likewise, if I]

and 12 are assumed to be equal to zero, the equations for the inductance

of an underground single-phase circuit can be defined.

In order to investigate whether the neutral of the underground
cable had a significant effect on the circuit impedance of the overhead

circuit, I, was assumed to be equal to zero. This meant that the

returning phase current would have to split in some manner between the

two paralleled neutrals. Values for the circuit impedance were calcu-

lated for both a #1/0 AWG aluminum conductor and a #2 AHWG aluminum

conductor. The results of these calculations were listed in table

(5-2). In comparing the results of this circuit with that of an over-

head single-phase circuit, it was found that there appeared to be only

a slight decrease in the relative magnitude of the components.

This same procedure was applied to the underground circuit. The

results were again listed in table (5-2)- In this case, it was found



82

that the magnitude of the reactive component increased substantially
and the resistive component decreased. This would suggest that circuit
impedance would be significantly altered when these neutrals are
paralleled.

If the current in each conductor is known, the circuit impedance
for the case where both the underground and the overhead circuits are
energized could be obtained. However, if these currents are not known
quantities, the problem of calculating a circuit impedance increases.
The complication results because the expression for the circuit imped-
ance contains more than one unknown. This is one area which requires
further research.

The capacitance of an underground cable exists between the phase
conductor and the grounded semiconducting shield around the insulation.
The expression which was derived for the capacitance is given in equa-
tion (4-11). From this equation, it is evident that the magnitude of
the capacitance is dependent on the thickness of the insulation and the
magni tude of the dielectric constant.

The cable which was tested consisted of a high molecular weight

Polyethylene insulation. The relative dielectric constant for this

material was assumed to be 2.3. Values were obtained for the capaci-

tance of the two sizes tested. The #1/0 AWG aluminum cable was found

to have a capacitance of 4.23 x lo'z,a.farads/looo feet. The #2 AWG

. -2
aluminum cable was found to have a capacitance of 3.69 x 10 ~_. farads/

1000 feet. This data substantiates the fact that as the separation of

the conductors increases, the capacitance decreases. With an increase

in capacitance, the shunt admittance of the equivalent circuit will
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increase. Therefore, as the phase conductor increases in size, the
shunt admittance decreases in magnitude. Magnitudes of the shunt
admittance for the single-phase underground circuit were given in table
(5-2).

- The capacitance of the paralleled underground-overhead single-phase
circuit, when I] = 0, is given as the capacitance of the underground
cable. The values derived for the underground cable capacitance are
applicable in this case. The shunt admittance of the equivalent circuit
varies similarly, as well.

The capacitance of the paralleled underground-overhead single-phase
circuit, when I3 = 0, is given as the equivalent capacitance of two
parallel capacitances. Equations (4-21) and (4-22) represent the two
parallel capacitances. Like the expression derived for the capacitance
of an underground cable, these equations are dependent on the geometric
spacing and the magnitude of the dielectric constant.. However, these
equations are also dependent on the manner in which the charge splits
between conductor 2 and conductor 4, since they are connected together.
Normally, it would appear that the capacitance between conductor 1 and
conductor 4 would be very small due to the large separation distance.

Numerical values were obtained for the constants K] and K2 which
indicate the proportion of charéé, Q], on conductor 2 and conductor 4.
The value of K] vas found to be -0.528 and the value of K, was found to
be -0.472. The capacitance between conductor 1 and conductor 2 was
calculated to be 1.885 x 10'3“¢farads/1000 feet. The capacitance

between conductor 1 and conductor 4 was calculated to be 1.5 x 10'3
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.« farads/1000 feet. The equivalent capacitance was calculated to be
3.38 x 10'3/A<farads/1000 feet. The capacitance between conductor 1 and
conductor 2, neglecting conductor 4, was calculated and found to be
equal to 1.05 x 10'2/4 farads/1000 feet. Comparing the equivalent
capacitance with the capacitance between conductors 1 and 2 would
suggest that a paralleled neutral would tend, to decrease the capacitance
due to a split in the charge.

Throughout this thesis, one particular problem existed. It was
difficult to verify some of the results that were obtained. Therefore,
it is recommended that if this research is extended, one span of

paralleled single-phase overhead-underground cable be constructed.
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Appendix A

This appendix develops an expression for the inductance of two
overhead conductors separated a distance "D" apart. This development
will include the derivation of a fundamental expression for the induc-
tance parameter, the derivation of the internal and external inductance
of a conductor, and finally, an application of these derivations to an
overhead circuit.

A general expression defining inductance can be developed by con-
sidering the magnetic field of a conductor. The magnetic field of a
conductor is described by the flux linkages, which radiate concentri-
cally outward from the conductor. An induced voltage is produced if

there is a rate of change of these flux linkages. This voltage is

given as
d»

e = = volts, (A-1)
dt |

where e is the induced voltage and 7 represents the flux linkages in

weber-turns. A magnetic field can be produced by either a changing

electric field or a current.22 If the current is a changing current,

then the magnetic field which is produced will also be changing.
Therefore, the number of the flux linkages, which describe the changing

magnetic field, will be proportional to the current causing the mag-

netic field if a constant permeability is assumed. The induced

voltage which is produced can now be described as

di (A-2)
= | — volts,
e L at
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where L in henrys is the constant of proportionality and i is the

current in amps. Equating equations (A-1) and (A-2) and solving for L

results in

- d7
L = %;— henrys. (A-3)

Since a constant permeability is assumed, this expression can be re-
L}

written as

henrys
or (A-4)

Li flux linkages.

—lulﬁ

T’

Here, the terms i and 7 represent instantaneous quantities. If these

terms are expressed as phasor quantities, the resulting expression is

¥= L1 weber-turns. (A-5)

From the above expression, it can be seen that if the total flux
linkages for a conductor are known and the current through that conduc-
tor is known, then the inductance can be determined.

The total flux linkages of a conductor consists of an internal

and external component. With the aid of figure (A-1), the internal

component of the flux linkages will be obtained. The current enclosed

within a conductor can be expressed as

jﬁH e amp-turns , (A-6)

where H is the magnetic field intensity in ampere-turns per meter, s

is the distance along the path in meters, and I is the enclosed current
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Figure (A-1)

CROSS SECTION OF A CONDUCTOR FOR DETERMINING
THE INTERNAL FLUX LINKAGES

Figure (A-2)

A CONDUCTOR AND TWO EXTERNAL POINTS FOR
DETERMINING THE EXTERNAL FLUX LINKAGES

b
P
4
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in amperes. Consider the current Ix flowing through the enclosed sec-
tion of the conductor. The magnetic field intensity in this area would be

Hx’ and the expression for the enclosed current would be
r; -
ijds =1, amp-turns. (A-7)
If there is uniform current density, the current Ix can be expressed as

TF x-
I = nﬂﬁf I, (A-8)

which is a fraction of the total current enclosed. Since JFds = 27X,

equation (A-7) can bz exprassed as

2rx H o= 1. (A-9)
S

The flux density of a conductor, B, is defined as

B = «H webers/meters2 (A-10)

where «« is the permeability constant. The permeability constant for

air is 47 x 107/ henrys/meter. Therefore, the flux density is

= ~xI webers/metersz. C(A-T)

Since the flux per meter of length is the magnetic flux density times
the cross-sectional area of the element normal to the flux lines, dg,

Which is the flux per meter of length, can be expressed as

dp = B dx = a X1 dx webers/meter of length.]7 (A-12)
X 27Tr2
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Finally, the flux linkages per meter of length can be expressed as a
product of the flux per meter and the fraction of current linked, which

results in

wlx3 17
d¥ = 7 dx weber-turns/meter. (A-13)
2mr
In order to find the internal flux of the cohductor in figure (A-1),
this expression must be integrated from the center of the conductor to

the outer edge of the conductor. The resulting expression is

Yint = g%%_ weber-turns/meter (A-14)

which simplifies to

int = %‘x 10 weber-turns/meter. (A-15)

Utilizing equation (A-5), the internal inductance can be expressed as

Lint = L x 1077 henry/meter-. (A-16)

1
2

The flux linkages external to the conductor can be determined in
the same manner as the internal flux linkages. However, the current
enclosed by the path of integration is the total current, as shown by

figure (A-2). The expressions for the field intensity, flux density,

flux per unit length, and the flux linkages would be:

H = Magnetomotive force - I amp-turns/meter, (A-17)

length of conductor 2 77X
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B =_«H= a1 webers/metersz, (A-18)
27r X
dé = Bdx = el dx webers/meter of length, (A-19)
2 77X
and
D D
2 2 D
27 =~f dg =‘J- %%}; dx = é%; loge ﬁg weber-turns/meter.
D, D, | 1
(A-20)

The external inductance can be determined using equation (A-5). Since
the relative permeability of air, A is equal to 1, the expression for

the external component of inductance between two points becomes

D
L =2 x ]0'7 log 2 henrys/meter. (A-21)
12 e D]

The total inductance of a conductor is equal to the sum of the

internal and external components of inductance. Methods of obtaining

these components have been developed above, and will now be applied to
the situation of an overhead single-phase power line.
The problem to be solved is shown in figure (A-3). Conductor 2 is

the return circuit for conductor 1, and it is assumed that these

currents are equal and opposite in direction. The inductance of conduc-

tor 1 can be calculated as before, by summing up all of the flux

linkages and then applying equation (A-5). In general terms, the sum

of the flux linkages can be written as
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CROSS SECTION OF TWO
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Figure (A-3)

PARALLEL CONDUCTORS AND AN EXTERNAL POINT P

L6
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Total flux linkages = Internal flux linkages of conductor

1 due to the current in conductor 1 + external flux linkages
of conductor 1 due to the current in conductor 1 + external
flux linkages of conductor 1 due to the current in conductor
2.

Initially, this can be expressed as

D D
1p 2p
I -7 MI]j dx _ &Iy dx
d — X + ax dx _
j.V 2 2w , X 2 X MZD
1 D12

where the point "p" represents a finite point in space defining a dis-
tance between that point and each of the conductors in the system. The
negative sign which appears in equation (A-22) is a result of the

direction of the current in conductor 2. After integrating and simpli-

fying equation (A-22), the equation for the flux linkages of conductor

1 becomes
_ I -7 ) Dyp _ 7 D2p
¥ =107+ 2107 1, Tog, B -2 x 1077 1 Tog,
2 1 12
(A-23)

If 21 x 10_7 is factored out of equation (A-23) and if it is recog-
1 ]

nized that the ]oge e = %—, then a new expression for the flux linkages

-

of conductor 1 can be generated. This expression is

D D
-7 1p. _ 22p (R-24)
501 =2 x 10 [I] ]oge r']’ 12 'Ioge 012]
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2l
P T
where r] = r]e . Since the return current is equal in magnitude to the

phase current and the natural logarithm of a quotient can be expressed
as a difference of two logarithmic quantities, equation (A-24) can be
simplified to yield

-7 D12 D)

¥y =2x107 [1; log =5+ I log  —~P], (A-25)
er 1 eD
1 2p
As the point "p" moves farther and farther away from the conductor, the
D

quotient of _lE.approaches unity. Since the natural logarithm of unity

D
2p
is zero, the final expression for the flux linkages of conductor 1

becomes
-7 D]
Wy =2x10" 1 log _—% weber-turns. (A-26)
1 €iry

Substituting equation (A-26) into equation (A-5) yields the expression

for the inductance of conductor 1 which is given as

o
N

L, =2 x ]0-7 log -], henrys/meter, (A-27)
e

1 r]

Similarly, the inductance of conductor 2 can be developed to yield

-

L, =2 x 1077 log El%. henrys/meter, (A-28)
er,

The inductance of the circuit comprised of two parallel conductors,

separated by a distance "D", is given as the sum of the total inductance



of each conductor. The inductance of the circuit is given as

D 2

=2 x 107 10g e
er'r

1 2

L henrys/meter. A-
TOTAL ys/ L)
This equation represents the inductance for two parallel solid conduc-
tors separated by a distance "D". If these Fonductors are stranded,
then the inductance of each strand must be calculated. In order to

obtain an expression for the total inductance of "n" electrically

parallel strands, the following equation is applied:

L Lave (A-30)

TOTAL ~ 2

where Lave is the average inductance of the "n" strands.

94
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Appendix B

R. C. Ender published a paper in 1971 adapting the equations known

12

as Carson's formulas to describe underground cables. Ender used the

simplified equations found in Edith Clarke's Volume I for the basis of
his work.®

The work that Clarke presented was a sihp1ified version of the
original formulas presented by Dr. Carson.5 In a very general form,

Clarke presented these formulas as

. 4h .
y4 =z + j2wl —8 + 4, (P + = +
2a-g AL w (P +3Q) = (r, Raa-g)
(B-1)
* j(xaa—g * xi)
5 Sab A .
= s + = + =
Zab-g JZuologe - + 4w (P + jQ) Rab-g Jxab_g (B-2)
ab
where
Z =r + jx. = conductor internal impedance in nanoohms per
0 T centimeter
h_,h, = height of "a" and "b" above ground, as shown in figure
a’b  (g-1), in centimeters

d = diameter of conductor in centimeters
s = distance between conductors in centimeters

S = distance from one conductor to the image of the other,
assuming a perfectly conducting earth, in centimeters

w = 27 f

f = frequency in Hertz

P = correction factor for resistance in nanoohms per

centimeter
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Q = correction factor for reactance in nanoohms per centimeter.

The subscripts "a" and “b" refer to the cables in question and the
subscript “g" indicates a ground return path. Therefore, the term
Zaa-g indicates the self-impedance of cable "a" with an earth-return.

The term Za indicates a mutual impedance between the conductors

b-g
"a" and "b", with a common earth-return.

Carson assumed that the internal reactance, X; s which is a part
of the total internal impedance, z, could be neglected without apnre-
ciable error.5 Therefore, the internal impedance was represented only
as a resistance. The self-impedance of a conductor with earth-return
is given as the sum of the conductor internal impedance and the compo-

nent of self-impedance with earth-return external to the conductor.6

Therefore, the expression for Zaa can be written as

= + +3J : B-3
Zaa—g rc Raa-g JXaa-g ( )
where
Raa-g = 4wP in nanoohms per centimeter
= 4ha + i anoohms per centimeter.
Xaa_g = 2w’|oge = 40Q in n p

The correction terms P and Q are expressed in equation form in

-

Clarke's Volume I as

P=7"__1 K coso+ EE_ cos 26 (0.6728 + log, EJ
8 3:= 16 (B-4)
77 k4

2 k3
+ Y 9 sin20+ X~ cos 30 - S—cos 48
e 0 sin a5 2 1536
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and
Q= -0.0386 + L log 2+ _1_k coso - k% cos 20 , k* cos 36
2 ek 32 64 45 2
. ko sin 40 _ Kk cos 49 (1.0 24 1 0gos). 8
384 384 e k
(B-5)

For frequencies of 60 Hz or less, the correction terms P and Q can be

given by

‘.;Z'+A P (B-6)

©
1]

and

- 1 2 -
0.0386 + E.loge 3 + 4Q. (B-7)

o
]

Without appreciable error 4 P and A Q may be neglected, as was done by

C]arke.6

The k used above is actually given as r in the original paper and

is defined as
r= @ Vx (B-8)

X= 4T AW (8-9)

where

\ = conductivity of earth in nanoohms per centimeter cube

”

@ = distance from conductor "a" to the image of conductor "b" in
centimeters

w = 27f.

If the substitutions for « and « are made, r becomes

r= 277'(5'\/5_7\? . 2=l
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Figure (B-1) represents two conductors, "a" and "b", and their images.
The angle B in this figure represents the angle formed between a line
drawn from conductor "a" to its image, and a line drawn from the same

conductor to the image of conductor "b". This can be expressed as
—_—. (B-11)

If 6 =0, then ha = h, and Q”= Sab' Therefore, the new expression for

r becomes

47rha V2 Nf. (B-12)

=
"

Remembering that r and k are one and the same, this expression becomes

k = 47rha V2 N F. (B-13)
Making the above substitutions for P and Q, the equation for Zaa 3
becomes
(7). - 4h '
Z =r +4w 7+ j [2wlog —3 + 40(-0.0386
aa-g c 8 e 4
! S (B-14)
* 2 ]oge 47rha N/BNi )]
After combining terms, the self-impedance can be expressed as
= r +4w(? + j20 Fog 1 - 0.0772)
Zaa-g e = 8 jewt e d VX (4.46) (B-15)
2
In order

which shows the self-impedance to be independent of height.

to represent Z in ohms per 1000 feet, it is necessary to express
aa-g '

"d" in inches by multiplying the centimeter value be 2.540, and replace

.. f i
N with ]0—11/9 , where ¢ is in ohms per meter cube. If the distance
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Figure (B-1)

TWO CONDUCTORS "a" AND w" AND THEIR IMAGES
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“d" is to be expressed in terms of a GMRa, the following conversion can

be used:
d (inches) = 2 x radius (inches) (B-16)
radius (inches) = R (ft) x 12 inches (B-17)
feet
radius (inches) = 12 R (B-18)
d (inches) = 24 R ' (B-19)

where R = GMRa in feet. Finally, Zaa-g must be multiplied by 3.048

X 104 centimeters per 1000 feet. The resulting equation becomes

= (r_ +4.788 (107°) + 297f) + j2f [6.618 (107%)

-5 1 e
. O ] — 9 B-ZO
+6.096 (107°) log, 2GR, \/f ] ( )

/A
aa-g

which is the equation found in Ender's publication.

The expression for the mutual impedance with earth-return can be
similarly obtained by substituting a different expression for e' in

equation (B-10), and then combining terms in equation (B-2). Using

equation (B-11), the angle 6 can be determined. Since in this case,

Q” is equal to the distance between conductor "a" and the image of

"b", k can be expressed as
k = 27rSab V2 nf . (B-21)

If this new value of k is substituted in equation (B-7), and equations

(B-6) and (B-7) are substituted in equation (8-2) and simplified, a new

expression for Z in nanoohms per centimeter is obtained. By using
ab-g
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the same conversion as before, Za can be expressed in ohms per 1000

b-g

feet. If this is done, Z becomes
ab-g

Zyp.q = [4.788 (107%) 27F] + j2rrf [4.681 (107%)

B-22)
-5 ] (

+ 6.096 (107°) log. /€]
e Sab /;:

which, again, is the expression obtained by Ender.

According to the Bulletin of the Bureau of Standards, as well as
other authors, the geometric spacing factor between two conductors is
the distance between their centers.23 In this case, Sab is the distance
from the center of the phase conductor to the center of the neutral
wire. This is shown in figure (B-2). Using this geometric spacing

= b

factor, the expression for zan-g can be obtained by substituting Sab © >

in equation (B-22). The result of this substitution is

z - [4.788 (107%) + 2f] + j2wf [4.68 (107%)
il -5 2 [e ' (B-23)
+ 6,096 (1077) loge 5 ¥-] :

which is the expression used by Ender to describe the mutual impedance

with earth-return for a single-phase line.

The final formula Ender adapted for single-phase concentric neutral

underground cable dealt with the sel1f-impedance of the neutral with

earth-return, Z According to Sunde and Clarke, an expression for

Znn-g can be found using the equation

Pz (B-24)

_ ]

nn-g aa-g
5,11

s 2 3 3
where N is the number of wires comprising the concentric neutral.
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Figure (B-2)
CROSS SECTION OF AN UNDERGROUND CONDUCTOR

Figure (B-3)
CYLINDRICAL "CCGNDUCTOR WITH
N POINTS AROUND ITS CIRCUMFERENCE
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The same expressions developed for Z and Z can be used in the
aa-g an-g

forula above. However, the geometric spacing factor for Z must
an-g

also take into account the flux linkages between the neutral wires.
This can be done by multiplying the geometric spacing factor by a new

factor, Kn’ where
.
K = m) . (B-25)

Kn can be derived with the aid of Cote's Theorem and figure (B-3).

Cote's theorem states that

If the circumference of a circle is divided into "n"
equal parts by the points A,B,C,... and M be any point on
the line through OA (inside or outside the circle), then
putting 0M = X

Moo =mA-mBo- ooy 2 (B-26)
where
a = radius of circle points are located on
x = distance from O to M,

From figure (B-3), it is evident that MA = x - a. Substituting this

expression in equation (B-26), the new expression becomes
which is the same as

n _ an
Z_x_.:_.a_.= MB - MN, (B-28)
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Therefore,

- -2 - B
AL IV S A N e (B-29)

Now let the point "M" coincide with the point "A". Then the distance

defined as MA becomes

MA = a
which means
X =a
and
oM = O0A.

Substituting these new values in equation (B-29) yields

na" ! = M8 - N (B-30)

where

n = number of strands in the neutral.

Since this expression is representative for n-1 terms, the GMD of n-1

terms is
A
n-1
GMD = (MB - MN) . (B-31)
This can also be expressed as ]
n-1
GMD = (nan-]) (B-32)
which is equal to .
n-1
GMD = a(n) . (B-33)
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The distance "a" is equal to g., as is shown in figure (B-3).
Therefore, the tota]]geometric spacing factor can be snlit into two
parts: "a" and (n)"-T. The latter was defined bv Ender as kn' The

total GMD was defined as kn 9—. The expression for Zaa is altered by

2 =
the following changes: (1) the conductor resistance s becomes the
neutral resistance rn, and (2) the conductor.GMRa becomes the neutral
GMRn. Inserting these changes into the original expression for Zaa-g

and Zan-g and simplifying equation (B-24), yields

z = [ ™ +4.788 (107°) - 2mf] + j 2ZE [6.618 (107%)
nn-g N N
+6.096 (107°) log ——]——,/«E + (N-1) 4.681 (1074
: e 24 GR VT
- -5 2 /e B-
+ (N-1) 6,096 (107°) log, ( EpV7 )]. (B-34)

This equation is the same as that proposed by R. C. Ender.
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