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ABSTRACT 

FEEDING INCREASING LEVELS OF REDUCED-OIL DISTILLERS DRIED 

GRAINS WITH SOLUBLES FROM TWO ETHANOL FERMENTATION METHODS 

IMPACTS FINISHING PIG GROWTH PERFORMANCE AND BELLY QUALITY 

AUSTIN EGOLF 

2020 

Reduced-oil distillers dried grains with solubles (DDGS) are an affordable source 

of energy in finishing pig diets, but differences in DDGS fermentation method on 

finishing pig growth performance and belly quality is relatively unknown. The objectives 

of this study were: 1) determine the influence of increasing dietary inclusion rate of hot 

fermentation (HF) and cold fermentation (CF) DDGS on growth performance, carcass 

characteristics and belly quality, and 2) compare the effect of HF and CF DDGS on 

finishing pig growth performance, carcass characteristics, and belly quality. Crossbred 

pigs (n = 200) were used in a randomized complete block design and assigned to one of 

eight treatments with varying inclusion rates of HF and CF DDGS (0, 20, 40, or 60%) 

and a diet with 40% inclusion of CF DDGS and withdrawal period. A 5-phase feeding 

program was utilized with diets formulated to be isocaloric and isolysinic. Pigs were 

harvested at a commercial abattoir when the average pen weight reached 122.5 kg. Two 

bellies per pen were collected for analyses. Orthogonal polynomial contrasts were used to 

determine linear and curvilinear effects. As inclusion rate of CF DDGS increased, overall 

average daily gain (ADG) and gain to feed ratio (G:F) decreased linearly (P < 0.0001), 

but HF DDGS did not influence ADG (P >0.24) or G:F (P >0.25). Pigs fed CF DDGS 

had decreased ADG (P < 0.001) and ADFI (P = 0.03) compared to HF DDGS. As 



x 

inclusion rate of CF DDGS increased, hot carcass weight decreased linearly (P = 0.02), 

however, as inclusion rate of HF DDGS increased a quadratic effect was observed (P = 

0.04). Carcass yield linearly decreased (P = 0.01) as HF DDGS inclusion increased and 

tended to decrease linearly (P = 0.08) as CF DDGS inclusion rate increased. Carcass 

yield was not different between CF and HF DDGS (P = 0.12). As DDGS inclusion rate 

increased, regardless of fermentation method, belly quality decreased, evidenced by a 

linear decrease in belly flop scores (P < 0.0001) and percentage of saturated fatty acids (P 

< 0.0001). Iodine values (P < 0.0001) and percentage of polyunsaturated fatty acids (P < 

0.0001) increased linearly with inclusion rate regardless of fermentation method. 

Increasing the inclusion rate of HF DDGS did not affect growth performance, but 

decreased belly quality, however, feeding increasing levels of CF DDGS decreased 

growth performance and belly quality. Furthermore, pigs fed HF DDGS displayed 

improved growth performance compared to CF DDGS.     
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CHAPTER 1 LITERATURE REVIEW  
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Ethanol and DDGS Production 

Over the past 30 years, there has been an increased demand for ethanol in the 

United States resulting from a desired decrease in dependency on fossil fuels and foreign 

oil (RFA, 2019). To meet the growing demand, ethanol production increased 

exponentially from 175 million gallons in 1980 to approximately 16.1 billion gallons in 

2019 (RFA, 2019). Ethanol is produced by extracting and fermenting starch from cereal 

grain, such as corn, wheat, barley, rye, and sorghum, which contain 50-70% starch on a 

dry matter basis (Kelsall and Piggot, 2009). In the United States, corn is the most utilized 

cereal grain for ethanol production and is processed into ethanol primarily through dry 

grinding and wet milling.  

In 2019, more than 90% of ethanol fuel was produced by ethanol manufacturers 

utilizing the dry grind process (RFA, 2019). During dry grinding, the grain kernals 

ground into flour or meal before being combined with water to produce a slurry that will 

be fermented to produce ethanol (Rosentrater et al., 2012). The basic steps in the dry 

grind process are grinding, slurrying, liquefication, saccharification, fermentation, 

distillation, and dehydration (Figure 1A) (Cinelli et al., 2015). The initial step in the dry 

grind process reduces the particle size of corn by grinding it with a hammermill into a 

flour or meal, making it easier for water and starch hydrolyzing enzymes to break down 

starch during liquefication and saccharification. The flour or coarse meal is then mixed 

with fresh water and remaining liquid from previous batches to form a solution, referred 

to as mash, containing 30% solids during slurrying. After the mash is formed, 

liquefication occurs and enzymes are added. The mash is then heated, held, and  cooked 

at temperatures between 120°C  - 140°C (Rosentrater et al., 2012). As the mash is heated 

and cooked the starch granules become more accessible to enzymes that hydrolyze starch 
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into shorter oligosaccharides that can be broken down into individual glucose molecules 

for fermentation during saccharification (Kelsall and Piggot, 2009). During 

saccharification, the mash is cooled and oligosaccharides are broken down into individual 

glucose molecules (Kelsall and Piggot, 2009). Upon the completion of saccharification, 

mash is transported to the fermentation chamber where yeast (Saccharomyces cerevisiae) 

is added to ferment glucose to ethanol (Rosentrater et al., 2012). During fermentation, the 

yeast consumes glucose molecules, converting it into heat, ethanol, and carbon dioxide. 

The resulting liquid, known as beer, leaves the fermenter and is sent through a 

stripping/rectifier column to remove the ethanol (Rosentrater et al., 2012). After 

distillation of ethanol, remaining water and nonfermentable components, including fiber, 

protein, and oil, referred to as whole stillage, are centrifuged to separate the water-soluble 

solids (thin stillage) and coarse solids (wet cake) (Shurson, 2018). Thin stillage is 

processed through an evaporator to produce condensed distillers solubles (CDS). Coarse-

solid products from centrifugation can be marketed as distillers wet grains (DWG), dried 

by themselves to create dried distillers grains (DDG), or combined with condensed 

distillers solubles and dried to create distillers dried grains with solubles (DDGS). The 

resulting distillers grain product can vary in composition based upon the method used 

during ethanol production. 
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Within the dry grind process, there are two starch hydrolysis methods. The first is 

known as the dry grind process and is commonly utilized by the industry. The second has 

been termed granular starch hydrolysis, raw starch hydrolysis, cold hydrolysis, native 

starch hydrolysis, or sub-gelatinization temperature starch hydrolysis, but in this review it 

will be referred to as cold starch hydrolysis for simplicity (Cinelli et al., 2015). Major 

differences between starch hydrolysis during the dry grind process and cold starch 

A 

B 

Figure 1 Diagrams of the conventional ethanol production process a) dry grind b) cold starch 

hydrolysis. Figure adapted from (Cinelli et al., 2015) 
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hydrolysis include: no high temperature liquefication and cooking steps and simultaneous 

saccharification and fermentation. In place of liquefication and cooking, cold starch 

hydrolysis utilizes a low temperature heat process below the gelatinization point of starch 

in combination with a raw starch hydrolyzing enzyme and other hydrolases to break 

down starch into glucose in preparation for the simultaneous saccharification and 

fermentation step (Textor et al., 1998; Robertson et al., 2006; Kelsall and Piggot, 2009; 

Cinelli et al., 2015). An economic benefit for ethanol producers utilizing the cold starch 

hydrolysis process is a reduction in the energy required for ethanol production, therefore, 

reducing the cost of production (Robertson et al., 2006).  

In addition to cold starch hydrolysis, ethanol manufacturers have implemented oil 

extraction technology to further increase ethanol yields and energy efficiency of 

processing plants. Backend corn oil extraction technology became commercially 

available in 2005, and is used to produce biodiesel from extracted corn oil as a means to 

increase ethanol plant energy efficiency and fuel yields (Shurson, 2018). Shurson (2018) 

estimated approximately 90% of ethanol plants in the United States utilize a backend oil 

extraction technology to remove oil from whole and/or thin stillage prior to mixing and 

drying DDGS. Removing oil from stillage prior to DDGS manufacture has given rise to 

reduced oil DDGS. Historically, oil content of DDGS has been >10% but depending on 

the proportion of oil extracted, reduced oil DDGS may contain amounts of oil ranging 

from 0-9%. Before noting how these processes impact DDGS composition, it is important 

to understand the general nutrient composition of DDGS.  

 Distillers dried grains with solubles are composed of the non-fermentable 

portions (i.e protein, lipids, fiber and ash) of grains used in ethanol production. Dried 
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distillers grains with solubles are recognized as a good source of energy, protein and 

phosphorus for livestock  (NRC, 2012; Shurson, 2018). Additionally, DDGS are a 

valuable feed ingredient for livestock due to cost and availability (Shurson, 2018).  

Studies show DDGS can be successfully utilized in beef cattle, dairy cattle, swine, and 

poultry rations (Klopfenstein et al., 2008; Swiatkiewicz and Koreleski, 2008; 

Schingoethe et al., 2009; Stein and Shurson, 2009).  

DDGS Nutrient Composition 

 Nutrient composition of DDGS is partially characterized by the nutrient 

composition of the cereal grain used for ethanol production (Stein and Shurson, 2009). 

Corn generally contains approximately 8.2% crude protein (CP), 3.5% ether extract (EE), 

1.3% ash, 62.1% starch, 9.1% neutral detergent fiber (NDF), and 2.88% acid detergent 

fiber (ADF) on an as-fed basis (Table 1.1) (NRC, 2012). As a result of converting most 

of the starch in corn to ethanol, concentration of the remaining nonfermentable nutrients 

in DDGS increase about three-fold (Spiehs et al., 2002; Han and Liu, 2010). 

Subsequently, fiber, amino acids, oil, and phosphorus content are important factors that 

affect utilization of DDGS in swine diets.  

 

 

 

 

 

 

 

  



7 

 

 

Table 1.1 Chemical composition of corn (as-fed basis, corn) distillers dried grains with 

solubles (DDGS), and reduced-oil DDGS. Table adapted from (NRC, 2012) 

 
DDGS 

Item Corn >10% Oil > 6 and < 9% Oil < 4% Oil 

No of Samples 37 to 163 12 to 81 4 to 13 1 to 2 
     

Dry Matter, % 88.31 ± 2.41 89.31 ± 1.91 89.35 ± 1.55 89.25 ± 2.20 

CP, % 8.24 ± 0.93 27.33 ± 1.53 27.36 ± 2.00 27.86 ± 4.73 

Crude Fiber, % 1.98 ± 0.61 7.06 ± 1.24 8.92 ± 1.38 6.19 

ADF, % 2.88 ± 0.83 11.75 12.02 ± 2.47 16.91 

NDF, % 9.11 ± 1.97 32.5 ± 5.42 30.46 ± 5.68 33.75 ± 1.20 

Either Extract, % 3.48 ± 0.78 10.43 ± 1.03 8.90 ± 0.46 3.57 ± 0.62 

Starch, % 62.55 ± 4.61 6.73 ± 1.70 9.63 ± 2.95 10 

Calcium, % 0.02 ± 0.01 0.12 ± 0.19 0.08 ± 0.07 0.05 

Phosphorus, % 0.26 ± 0.05 0.73 ± 0.10 0.60 ± 0.20 0.76 

Ash, % 1.3 ± 0.32 4.11 ± 0.91 4.04 ± 1 4.64 

Essential AA %     

Arginine 0.37 ± 0.05 1.16 ± 0.17 1.23 ± 0.16 1.31 

Histidine 0.24 ± 0.05 0.71 ± 0.07 0.74 ± 0.08 0.82 

Isoleucine 0.28 ± 0.06 1.02 ± 0.09 1.06 ± 0.09 1.02 ± 0.28 

Leucine 0.96 ± 0.15 3.13 ± 0.46 3.25 ± 0.44 3.64 

Lysine 0.25 ± 0.04 0.77 ± 0.12 0.90 ± 0.13 0.68 ± 0.28 

Methionine 0.18 ± 0.03 0.55 ± 0.09 0.57 ± 0.11 0.50 ± 0.12 

Phenylalanine 0.39 ± 0.05 1.34 ± 0.10 1.37 ± 0.16 1.69 

Threonine 0.28 ± 0.04 0.99 ± 0.08 0.99 ± 0.06 0.97 ± 0.18 

Tryptophan 0.06 ± 0.01 0.21 ± 0.03 0.20 ± 0.03 0.18 ± 0.01 

Valine 0.38 ± 0.05 1.35 ± 0.12 1.39 ± 0.12 1.34 ± 0.28 

Swine ME, kcal/kg 3395 3434 3396 3102 

 

Dietary fiber is about three times higher in DDGS than the whole corn grain due 

to starch removal during ethanol production (Table 1.1)(Liu, 2009; NRC, 2012). Dietary 

fiber is defined as carbohydrates (non-starch polysaccharides and lignin) that are not 

digested or are poorly digested in the small intestine, but are completely or partially 

fermented by microbes in the large intestine (Devries, 2004). Dietary fiber is composed 

of soluble and insoluble portions that have similar physical properties but interact with 
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water in the gastrointestinal tract (GIT) very differently. Soluble fiber, mainly found in 

small amounts in legumes, oats, barley and rye, forms a viscous gel with water in the 

intestinal tract. This increases the viscosity of the digesta, slowing the release and uptake 

of nutrients, as well as reducing digestibility of other nutrients and increasing endogenous 

nutrient losses (Davidson and McDonald, 1998). Insoluble fiber, mainly found in corn 

and wheat, has a bulking effect in the digestive tract. This increases passage rate of 

gastrointestinal digesta, increasing secretion and re-absorption of endogenous nutrients 

(Davidson and McDonald, 1998). Insoluble fiber makes up a large portion of the dietary 

fiber profile of corn (NRC, 2012). As both components impact digestion differently, it 

can be expected growth rates will be impacted based upon the amount of soluble and 

insoluble fiber in the diet.  

Fiber is only partially digested by growing pigs compared to protein, fat, and 

starch (Noblet and Le Goff, 2001). Furthermore, high-fiber diets have been shown to 

reduce fat, protein, and energy digestibility in growing pigs (Knudsen et al., 1993; 

Jørgensen et al., 1996). This is due to a combination of increased endogenous nutrient 

losses and increased digesta passage rate (Agyekum et al., 2012b). Stein and Shurson 

(2009) reported corn DDGS possess six times more insoluble fiber compared to soluble 

fiber. Agyekum et al. (2012b)  reported pigs fed diets with 30% DDGS compared to pigs 

fed a corn-soybean meal-based diet possessed increased weights of their portal-drained 

viscera (comprised of spleen, pancreas, stomach, small intestine, cecum, and colon + 

rectum), likely resulting in higher maintenance energy requirements, potentially 

influencing pig growth. Additionally, increased viscera weight also contributes to lower 

carcass yields (Asmus et al., 2014b).  
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 According to the NRC (2012) fiber content of low-oil DDGS (<4% oil), medium-

oil DDGS (6-9% oil), vary with no identifiable trend. However, the values for nutrient 

profiles for low-oil and medium-oil DDGS are based upon a small sample size and may 

not accurately reflect the variation in fiber content across low-and medium-oil DDGS. 

Nevertheless, Graham et al. (2014b) evaluated nutrient composition differences between 

low-, medium-, and high-oil DDGS and reported increasing oil level increased crude 

fiber. Several studies utilizing either sorghum or corn DDGS have shown cold starch 

hydrolysis DDGS have a reduced fiber content compared to DDGS from the conventional 

dry grind process (Robinson et al., 2008; Kelzer et al., 2010b; Nkomba et al., 2016). 

Feeding cold fermentation DDGS instead of conventional hot fermentation DDGS may 

help reduce levels of dietary fiber in swine diets. This is because cold fermentation 

DDGS, regardless of cereal grain, contain lower levels of ADF and NDF than 

conventional hot fermentation DDGS (Robinson et al., 2008; Nkomba et al., 2016). 

Lower fiber content suggests DDGS from cold starch hydrolysis are likely to be more 

digestible for pigs compared to DDGS obtained from conventional dry grind.  

Crude protein and amino acid content of conventional and reduced-oil DDGS are 

similar (Table 1.1) (NRC, 2012; Curry et al., 2014; Curry et al., 2016; Espinosa et al., 

2019). Corn DDGS have a similar proportion of amino acids compared to corn because 

they are not affected during fermentation. The concentration of amino acids in corn 

DDGS increase three-fold compared to corn before ethanol processing (Spiehs et al., 

2002; Han and Liu, 2010). However, digestibility of amino acids in corn DDGS are about 

10% less than corn, possibly due to heat damage via the Maillard reaction during the 

drying process of ethanol production (Stein and Shurson, 2009) (Pahm et al., 2008b; 
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Almeida et al., 2013). The Maillard reaction is a result of complex chemical reactions 

between amino acids and reducing sugars that form products, such as amadori 

compounds and premelanoidins, that are not digestible by pigs (Mauron, 1990; Pahm et 

al., 2008a). Lysine, the first limiting amino acid in cereal grain-based swine diets is 

particularly vulnerable to the Maillard reactions during the drying process because of its 

free ɛ-amine group (Mauron, 1990; Almeida et al., 2013). Previous studies (Cromwell et 

al., 1993; Spiehs et al., 2002; Pahm et al., 2008a) have shown greater variability of lysine 

content and digestibility in DDGS but, digestibility of other amino acids remain within 

the normal range of variation compared to other feed ingredients. As ethanol production 

has advanced and improved, heat damage of DDGS has decreased as evidenced by higher 

lysine concentrations resulting in increased lysine to crude protein ratio (Lys:CP) in 

DDGS from modern ethanol plants (Espinosa et al., 2019). Espinosa et al. (2019) 

reported that lysine concentration and Lys:CP have increased in DDGS from 0.78% to 

0.99%, and 2.80 to 3.40, respectively from 2002 to 2016. This is further evidence ethanol 

manufacturers continue to decrease heat damage to amino acids by utilizing new 

processing technologies such as cold starch hydrolysis, more effective enzymes, better 

fractionation, and improved drying systems to enhance the nutritional value of DDGS 

(Espinosa et al., 2019).  

It has been suggested that the extraction of oil may affect the amino acid 

digestibility in reduced-oil DDGS (Curry et al., 2014). Consequently, several studies 

(Curry et al., 2014; Gutierrez et al., 2016; Espinosa et al., 2019) have evaluated and 

compared the amino acid digestibility of conventional and reduced-oil DDGS, revealing 

conflicting and inconclusive results. In finishing pigs, Curry et al. (2014) evaluated the 
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standardized ileal digestibility (SID) of  two reduced-oil DDGS [7.5% and 6.9% acid 

hydrolyzed ether extract (AEE); as-fed basis], reduced-oil DDGS with added fat in the 

form of corn oil, and high-oil DDGS (11.5% AEE). Pigs fed the diets containing the two 

reduced-oil DDGS and the two reduced-oil DDGS with added corn oil had decreased SID 

values for all amino acids compared to high-oil DDGS. Furthermore, Gutierrez et al. 

(2016) noted a similar reduction in the apparent ileal digestibility (AID) of dietary lysine 

as reduced-oil DDGS were fed at increasing rates to growing-finishing pigs, but was not 

enhanced by the addition of soybean oil to diets. In contrast, Espinosa et al. (2019) 

utilized eight samples of reduced-oil DDGS between 6-9% AEE and noted SID and AID 

values for amino acids for all eight treatments were similar with SID and AID values 

reported for high-oil DDGS (NRC, 2012; Curry et al., 2014; Stein et al., 2016). However, 

in this study there was variation in SID of amino acids (AA) observed among the sources 

of reduced-oil DDGS used in the study. Different results across studies may be attributed 

to the variation in DDGS used in the studies as it is known there is variation in DDGS 

nutrient profiles due to processing methods and parameters (Belyea et al., 2010). 

Phosphorus (P) is an important mineral in swine diets because it plays key roles in 

the formation of cell membranes, bones, and teeth, in addition to being utilized in other 

physiological functions (Kornegay and Thomas, 1981; Kornegay, 1985; Peo Jr, 1991; 

Crenshaw, 2000; NRC, 2012). Corn contains approximately 0.25-0.29% P, mostly in the 

form of phytate, but phytate is biologically unavailable for pigs without a phytase (an 

enzyme that cleaves inorganic P from phytate) (NRC, 2012; Espinosa et al., 2019). As 

corn is processed into ethanol, the concentration of inorganic P increases, phytate P 

decreases, and overall concentration of the P in DDGS increases to 0.93% (Liu and Han, 
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2011). The shift from higher concentrations of phytate P may be the result of phytate 

undergoing degradation by yeast phytase during fermentation (Liu and Han, 2011). The P 

content in reduced-oil DDGS follows a similar trend as conventional DDGS (Espinosa et 

al., 2019). Increasing inorganic P and decreasing phytate P, increases the bioavailability 

of P in reduced-oil DDGS. Pedersen et al. (2007) reported in corn DDGS the apparent 

total tract digestibility (ATTD) of P in corn DDGS fed to growing pigs was greater than 

corn (59.1% vs 19.3%), respectively. The NRC (2012) suggests P in DDGS is more 

digestible relative to corn as evidenced by 65% standardized total tract digestibility 

(STTD) in DDGS versus 34% STTD in corn. Consequently, when formulating swine 

diets containing high-oil and reduced-oil DDGS there is less supplemental inorganic P 

needed. The concentration and bioavailability of nutrients is dependent on the grain and 

process utilized to manufacture ethanol. Therefore, a discussion of the variation in 

nutrient composition of DDGS is required to understand the value of DDGS in livestock 

feed.  

Variation in Nutrient Composition of DDGS 

The primary concern with using DDGS as a feedstuff in livestock rations is 

variation in nutrient composition. It is well documented DDGS composition can vary 

between ethanol production facilities, as well as between individual batches within plants 

(Cromwell et al., 1993; Belyea et al., 2004; Liu, 2009; Belyea et al., 2010). Several 

reasons for nutrient composition variation across the ethanol industry include the cereal 

grain used for ethanol production, ethanol processing methods and parameters, the 

amount of condensed distillers solubles (CDS) added to distillers wet grains (DWG), 

effect of fermentation yeast, and analytical methods (Nuez Ortín and Yu, 2009; Belyea et 

al., 2010; Liu, 2011; Nkomba et al., 2016).  
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Within the same species and variety of grain there can be variation in composition 

due to growing conditions such as soil conditions, fertilizer, weather, and harvesting 

methods (Olentine, 1986). The nutrient composition of DDGS produced from the cold 

fermentation process is modified compared to DDGS from the dry grinding process 

(Kelzer et al., 2010a; Nkomba et al., 2016). Nkomba et al. (2016) reported sorghum 

distillers dried grains with solubles (DDGS) produced via cold starch hydrolysis 

contained less crude fiber (6.84% vs 8.11%), acid detergent fiber (ADF; 29.32% vs 

35.59%), and neutral detergent fiber (NDF; 32.28% vs 44.04%) than sorghum DDGS 

produced via the dry grinding process. Additionally, corn oil removal affects the nutrient 

composition of DDGS by lowering the fat/oil content. Variation in DDGS production 

methods influence nutrient composition (Belyea et al., 2010; Nkomba et al., 2016). 

Therefore, understanding the effects of utilizing DDGS in pig diets is essential.  

Feeding DDGS to Growing-Finishing Pigs 

Effects on growth performance 

 DDGS production methods have changed as technological advancements in 

ethanol production have been made, modifying the composition of DDGS produced 

resulting in improved DDGS quality (Espinosa et al., 2019). There have been inconsistent 

results reported when high-oil DDGS are fed in grower finishing pig diets up to and 

above 30% inclusion rate. Whitney et al. (2006), reported decreased average daily gain 

(ADG), feed efficiency (G:F) and final body weight across high-oil DDGS inclusion rates 

of 20 and 30%. The authors concluded 10% high-DDGS inclusion in finishing pig diets 

was ideal. Similarly, Linneen et al. (2008) reported a linear decrease in ADG and ADFI 

as high-DDGS inclusion rate increased from 0 to 20%. The authors suggested high-
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DDGS should be included in finishing pig diets between 10 – 15% for ideal growth. 

Conversely, several studies reported high-oil DDGS could be included up to 30% and not 

influence overall growth performance (Xu et al., 2010b; Wang et al., 2012; Davis et al., 

2015). Several studies reported inclusion rates of high-DDGS above 30% negatively 

impacted growth performance of growing-finishing pigs (Cromwell et al., 2011; 

Bergstrom et al., 2014; Hardman, 2014). Cromwell et al. (2011) revealed as DDGS 

inclusion level increased from 0 to 45%, ADFI and G:F were unaffected, however, ADG 

decreased, respectively. Furthermore, studies have shown decreased growth parameters 

when feeding high-oil DDGS at 60% inclusion rates (Bergstrom et al., 2009; Hardman, 

2014). Several factors that could have contributed to reduction in performance include: 1) 

Feeding too much crude protein in diets with DDGS resulting in excess energy cost to 

pigs to digest excess amino acids 2) inaccurate use of DDGS nutrient and energy 

digestibility values in diet formulation 3) potential heat damage to some DDGS sources 

reducing lysine digestibility 4) decreased palatability of diets including DDGS (Hastad, 

2005; Stein and Shurson, 2009; Almeida et al., 2013; Hardman, 2014).  

 As ethanol producers began to extract oil from thin stillage in 2005, producing 

reduced-oil DDGS, concern was raised about how reduced-oil DDGS would impact 

growth performance of grower-finisher pigs. Due to the relatively recent implementation 

of oil extraction technology there are fewer peer-reviewed studies that evaluated the 

effects of reduced-oil DDGS on growth performance of grower-finisher pigs. They have 

shown mixed results with regards to the impact of reduced-oil DDGS on growth 

performance of grower finisher pigs. Graham et al. (2014a) fed grower finisher pigs 

increasing levels (0%, 15%, 30%, and 45%) of medium-oil (7.63%) DDGS. The authors 
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reported a linear decrease in ADG and G:F as inclusion rate of medium-oil DDGS 

increased. The authors noted ADG decreased by approximately 2.3% for every 15% 

medium-oil DDGS added to the diet. In another study, Graham et al. (2014b) evaluated 

feeding increasing levels of low-, medium-, and high-oil DDGS on growth performance 

of finisher pigs in two experiments. In one experiment, finishing pigs were fed 0, 20 and 

40% inclusion levels of low-oil and medium-oil DDGS. Results revealed ADG of 

finishing pigs fed 20 and 40% low and medium-oil DDGS were not different compared to 

the pigs fed the control corn-soybean meal diet. As inclusion rate of low and medium oil 

DDGS increased to 20 and 40% ADFI increased. Pigs fed low-oil DDGS had increased 

ADFI at 20 and 40% inclusion levels compared to pigs fed medium-oil DDGS. This 

contributed to negatively influenced G:F for pigs fed 20% and 40% low-oil DDGS 

compared to pigs fed medium-oil DDGS. Overall, these results suggest pigs fed low-oil 

DDGS needed to consume more feed to maintain the same growth rate as pigs fed 

medium-oil DDGS and the control diet. In the second experiment in this study the 

authors did not report any differences in growth performance between pigs fed increasing 

rates (0, 20 and 40%) of medium-oil and high-oil DDGS. In contrast, Wu et al. (2016) 

evaluated how low, medium, and high-oil DDGS with similar metabolizable energy 

values included in grower finisher diets at 40% inclusion rate effected growth 

performance. Wu et al. (2016) reported that pigs fed a corn-soybean meal diet had 

increased growth performance compared to the low, medium, and high-oil DDGS. 

Additionally, they did not observe a difference in growth performance across all reduced-

oil and high-oil DDGS diets. Conflicting results from the 3 studies suggests additional 

research is needed to further investigate how reduced-oil DDGS impact growth 



16 

performance of grower finisher pigs. Due to the impact DDGS have on growth 

performance of finishing pigs it is important to understand how DDGS influence pork 

carcass characteristics. 

 

Effects on carcass characteristics 

 There are controversial findings in the literature regarding the influence of DDGS 

on carcass characteristics, specifically hot carcass weight and carcass yield (Stein and 

Shurson, 2009). Leick et al. (2010) reported hot carcass weight (HCW) and carcass yield 

decreased with increasing levels (0, 15, 30, 45, and 60%) of high-oil DDGS. These data 

agree with several other studies, as inclusion level of high-oil DDGS increases, HCW and 

carcass yield decrease (Whitney et al., 2006; Linneen et al., 2008; Overholt et al., 2016). 

However, other studies have reported no differences in HCW or carcass yield as high-oil 

DDGS inclusion rate increases (Widmer et al., 2008; Xu et al., 2010a; Davis et al., 2015). 

In comparison Wu (2015) reported 40% inclusion of reduced-oil DDGS decreased HCW 

and carcass yield. These data agree with several other studies confirming that as inclusion 

of reduced-oil DDGS increases in finishing pig diets HCW and carcass yield are linearly 

decreased (Graham et al., 2014a; Graham et al., 2014b). A decrease in carcass yield in 

pigs fed increasing levels of DDGS is thought to be linked to the approximately 3 times 

increased amount of NDF content in DDGS causing an increase in gut fill, intestinal and 

visceral organ mass (Kass et al., 1980; Agyekum et al., 2012a; Asmus et al., 2014b). 

Several studies reported DDGS did not influence loin depth, back fat depth or percentage 

of fat free lean (Widmer et al., 2008; Leick et al., 2010; Davis et al., 2015). Conversely, 

Xu et al. (2010b) reported as high-oil DDGS inclusion levels increased fat depth 
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decreased. The reduction in backfat depth may be due to decreased energy available for 

fat deposition resulting from low digestibility of lipid in DDGS. Additionally, studies 

(Graham et al., 2014a; Graham et al., 2014b; Wu et al., 2016) evaluating reduced-oil 

DDGS found that percentage fat-free lean was not affected by reduced-oil DDGS. This 

indicates that swine diets including high and reduced-oil DDGS can provide adequate 

amounts of digestible amino acids for lean tissue growth and development. Aside from 

understanding how high-oil and reduced-oil DDGS influence carcass characteristics it is 

important to understand how pork fat quality, an indicator of consumer satisfaction, is 

inflenced by DDGS.  

Effects on pork fat quality 

Pork fat quality is determined by the fatty acid composition that in turn affects fat 

firmness, color, and shelf-life (Azain, 2001). Pork fat firmness is a primary concern for 

pork processors because soft fat creates challenges when further processing bellies into 

bacon due to slicing difficulties, oily appearance, and increased vulnerability to oxidation 

causing rancidity (NPPC, 2000; Benz et al., 2010). Both high-oil (Whitney et al., 2006; 

Benz et al., 2010) and reduced-oil (Graham et al., 2014a; Graham et al., 2014b; Wu et al., 

2016) DDGS fed to growing-finishing pigs have negatively influenced pork fat quality. 

This is caused by the concentration and fatty acid composition of corn oil in DDGS. 

However, (Graham et al., 2014b; Wu et al., 2016) observed improved pork fat quality as 

reduced-oil DDGS were fed at the same levels to growing-finishing pigs as high-oil 

DDGS. 

  The fatty acid profile of pork fat, specifically the relationship between saturated 

fatty acids (SFA) and unsaturated fatty acids (UFA) can impact other pork fat 
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characteristics including firmness, color, and oxidative stability (Azain, 2001). 

Unsaturated fatty acids have lower melting points compared to saturated fatty acids. 

Naturally, the fatty acid profile of pork has a higher polyunsaturated fatty acid (PUFA) 

content, specifically linoleic acid (C18:2) in relation to SFA (Wood and Enser, 1997). 

This is because dietary fatty acids are digested unmodified and deposited directly in 

adipose tissue (Farnworth and Kramer, 1987; Wood et al., 2008). Corn DDGS have 

historically contained >10% corn oil which contains increased proportion of UFA (81%), 

especially linoleic acid (54%) and a decreased concentration of SFA (13%). It has been 

well documented that the fatty acid composition of pork fat will reflect the composition 

of the dietary fat consumed (Averette Gatlin et al., 2002). Accordingly, studies have 

shown that the fatty acid profile of pigs fed both high-oil (Whitney et al., 2006; Benz et 

al., 2010) and reduced-oil (Graham et al., 2014a; Graham et al., 2014b; Wu et al., 2016) 

DDGS increased in PUFA, particularly linoleic acid, and decreased in SFA. However, 

when pigs were fed reduced-oil DDGS with lower concentrations of corn oil compared to 

high-oil DDGS the concentration of PUFA was decreased, particularly linoleic acid, 

indicating as more corn oil is extracted the negative effects of feeding DDGS on pork fat 

quality may be reduced (Graham et al., 2014b; Wu et al., 2016). Iodine value (IV) is most 

commonly used to measure the degree of unsaturation in pork fat. Feeding increasing 

levels of high-oil and reduced-oil DDGS to growing-finishing pigs results in elevated IV 

values (Whitney et al., 2006; Benz et al., 2010; Graham et al., 2014a; Graham et al., 

2014b; Wu et al., 2016). However, the extent of reduction of negative effects on fat 

quality due to lower oil content in reduced-oil DDGS is unknown. A potential factor 

effecting the magnitude of the reduced negative effect on fat quality of reduced-oil 
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DDGS may relate to the variability of digestibility of the non-extracted oil remaining in 

the reduced-oil DDGS (Kerr et al., 2013). 

Consequently, further research is needed to determine the effects of reduced-oil 

DDGS on pork fat quality. Due to limited number of published studies available on the 

impact of reduced-oil DDGS and cold starch hydrolysis DDGS on finishing pig growth 

performance, carcass characteristics, and belly quality further research is also warranted. 

Thus, the objectives of this study were: 1) determine the influence of increasing dietary 

inclusion rate of hot fermentation and cold fermentation DDGS on growth performance, 

carcass characteristics and belly quality, and 2) compare the effect of hot fermentation 

and cold fermentation DDGS on finishing pig growth performance, carcass 

characteristics, and belly quality.  
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CHAPTER 2 FEEDING INCREASING LEVELS OF REDUCED-OIL DISTILLERS 

DRIED GRAINS WITH SOLUBLES FROM TWO ETHANOL FERMENTATION 

METHODS IMPACTS FINISHING PIG GROWTH PERFORMANCE AND BELLY 

QUALITY 

 

Introduction 

Distillers dried grains with solubles (DDGS) is a coproduct of the ethanol 

industry, commonly used to replace corn and soybean meal in swine diets due to 

nutritional content, affordability, and availability (Shurson, 2018). Historically, DDGS 

has contained greater than 10% oil, providing a feeding value similar to corn when fed to 

pigs (Stein and Shurson, 2009). Since 2005, the economic value of corn oil has increased, 

resulting in over 90% of ethanol plants installing oil extraction technology to recover a 

greater proportion of corn oil, therefore, producing reduced oil DDGS ranging from 4-

10% oil content (Shurson, 2018). Several studies have shown feeding reduced oil DDGS 

to finishing pigs has similar effects as conventional DDGS on finishing pig growth 

performance, carcass characteristics, and fat quality (Graham et al., 2014a; Graham et al., 

2014b; Wu et al., 2016).  

Ethanol manufacturers have typically used high temperature fermentation systems 

to produce ethanol and DDGS. However, new technological advances in ethanol 

production systems have led to the development of cold fermentation methods, which use 

starch hydrolyzing enzymes at low temperatures in lieu of high temperatures to produce 

ethanol and DDGS (Cinelli et al., 2015). Cold fermentation systems have become more 

popular amongst ethanol manufactures due to the reduction in energy and water usage, 

increasing energy efficiency (Robertson et al., 2006). A benefit of cold fermentation is 

that it minimizes the probability of maillard reactions occurring which reduces DDGS 

amino acid digestibility. Also, cold fermentation (CF) DDGS contain less fiber compared 
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to hot fermentation (HF) DDGS, indicating digestibility of CF DDGS may be easier for 

monogastric animals such as pigs (Nkomba et al., 2016). Yet, there is limited research 

available on how reduced oil DDGS from cold fermentation and hot fermentation 

systems influence finishing pig growth performance, carcass characteristics, and belly 

quality.  

Therefore, there were two objectives of this study. The first objective was to 

determine the influence of increasing dietary inclusion rate of HF and CF DDGS on 

growth performance, carcass characteristics and belly quality. The second objective was 

to compare the effect of HF and CF DDGS on finishing pig growth performance, carcass 

characteristics, and belly quality. We hypothesized increasing levels of HF and CF 

DDGS will have a negative effect on growth performance, carcass characteristics and 

belly quality. Furthermore, we hypothesized CF DDGS will improve growth performance 

compared to HF DDGS.  

  

Materials and Methods 

General 

The Institutional Animal Care and Use Committee at South Dakota State 

University (Brookings, SD) approved all experimental protocols (#18-084E). In the 

experiment, pigs were housed in an environmentally controlled, mechanically ventilated 

grower-finisher barn containing 49 pens at the South Dakota State University Swine 

Extension and Research Facility in Brookings, SD. Pigs were housed in 1.75 m x 2.36 m 

pens with concrete slatted floors, a 2-hole wean-to-finish dry feeder, and one cup water to 
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allow ad libitum access to feed and water. Feed was delivered to pigs using a digital scale 

system (Feed Logic Corp, Wilmar, MN).  

Animals and Diets 

A total of 200 crossbred [Compart Duroc males X (Large White X Landrace 

females)] ; PIC, Hendersonville, TN; initially 44.37 kg BW), mixed sex pigs were used in 

a 79-day growth study to determine the effects of feeding increasing dietary inclusion 

rates of reduced-oil HF and CF DDGS in finishing pig diets on growth performance, 

carcass characteristics, and belly quality. Pigs were weighed 2 weeks prior to the start of 

the trial and were assigned to one of 40 pens with 5 pigs (3 gilts and 2 barrows, or 3 

barrows and 2 gilts) per pen. Pigs were assigned to pens based on initial weight and sex, 

with initial weight being the blocking factor. At the beginning of the trial, pens were 

randomly assigned to 1 of 8 dietary treatments with 5 replications per treatment. Diets 

were fed in meal form with the control diet containing no DDGS. Treatment groups were 

fed a corn-soybean meal diet with 20, 40, or 60% inclusion rate of HF or CF DDGS. An 

additional treatment group was fed the 40% CF DDGS diet and allowed a withdrawal 

period during the last 14 d or 21 d on feed. During the withdrawal period, pigs initially 

fed the 40% CF DDGS diet were switched to the control diet. A five phase feeding 

program was utilized: phase 1 from 40.8 to 54.4 kg (Table 2.1), phase 2 from 54.4 to 77.1 

kg (Table 2.2), phase 3 from 77.1 to 96.2 kg (Table 2.3), phase 4 from 96.2 to 109.8 kg 

(Table 2.4), and phase 5 from 109.8 to 122.5 kg (Table 2.5).  

Diets were formulated to contain the same metabolized energy (ME), lysine to 

calorie ratio for each phase, and to meet or exceed all nutritional requirements (NRC, 

2012). Soybean oil was added to diets containing increased DDGS inclusion rates to 
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maintain equal ME across all diets. Ractopamine hydrochloride (Elanco Animal Health, 

Greenfield IN) was included in all diets during phase 4 at 0.03% and phase 5 at 0.04%.  

Two sources of DDGS were utilized in this study. Due to logistical issues CF 

DDGS were obtained from two batches from an ethanol production plant in Emmetsburg, 

Iowa (Poet, LLC; Sioux Falls, SD). A single batch of HF DDGS were obtained from an 

ethanol plant in Lamberton, Minnesota (Highwater Ethanol, LLC; Lamberton, MN). Feed 

samples were collected from every feeder randomly during each phase and pooled for 

analysis. The DDGS samples were taken randomly from each batch at one time point and 

mixed together. The DDGS and diet samples from each phase were analyzed for crude 

protein, fat, crude fiber, acid detergent fiber (ADF), neutral detergent fiber (NDF) and 

amino acid content at two laboratories; 1) a commercial laboratory (Minnesota Valley 

Testing Laboratory; New Ulm, Minnesota) and 2) the University of Missouri Agricultural 

Experiment Station Chemical Laboratories (Columbia, MI). Diet nutrient composition 

results from both labs and the average are shown by phase (tables 2.6, 2.7, 2.8, 2.9, 2.10). 

The DDGS composition is shown in Table 2.11. The HF and CF DDGS as well as 

soybean oil fatty acid profile (AOCS method Ce-1b-89 modified; (AOCS, 1998) ) are 

reported in Table 2.17. Table 2.12 contains all analysis methods utilized by each 

laboratory.  

Individual pig weight and weight of feed in feeders were obtained when phase 

changes occurred on days 0, 13, 23, 31, 46, 58, 71, and 78 to calculate ADG, ADFI, and 

G:F. Pigs were marketed in two separate groups (d 72 & 79) to achieve an average off-

test body weight of 122.5kg, and then transported to a commercial packing plant and 

harvested. Prior to transportation, pigs were individually tattooed to allow for individual 
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carcass data collection. There were no pigs from either of the 60% DDGS diets marketed 

in the first group due to lighter body weights. All treatments except for 60% HF and CF 

DDGS were represented in both harvest dates. Pens from the 40% CF DDGS treatment 

were split across the marketing groups resulting in a 14 d and 21 d withdrawal periods. 

Immediately after evisceration, a sequential identification number was written on the 

shoulder of each carcass and respective individual number tattoo was recorded. 

Hot carcass weight (HCW) was measured and carcass yield was calculated by 

dividing HCW by live weight. Fat depth and loin depth data were collected by a Fat-O-

Meater probe (SFK Technology A/S; Herlev, Denmark) that was inserted between the 

third and fourth rib from the posterior end of the carcass. Percent fat free lean was 

calculated according to the National Pork Producers Council (NPPC, 2000) procedure 

using the equation, %FFL = ((15.31 – (31.277 x backfat depth (in)) + (3.813 x loin depth 

(in)) + (0.51 x HCW (kg))) / HCW) x 100. Carcasses were sent through a blast chill for 

approximately 120 minutes and held in equilibration bay until fabrication at 

approximately 18 hr postmortem. Once in equilibrium bays, carcasses were given a 

crayon identification on the belly and lumbar vertebrae of the right side of the carcass for 

tracking through fabrication to collect bellies and boneless loins. Fat samples, 

approximately 50 grams, were taken at the clear plate from the left side of the carcass for 

iodine value (IV) analysis. Carcasses were fabricated and labeled bone-in loins and skin-

on bellies were collected.  
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Loins 

Loins were cut into boneless Canadian back loins (IMPS #413), and an identifier 

button was placed in the boneless center-cut of each loin to maintain identification. 

Boneless loins were collected and weighed. Visual muscle color (6-point visual scale; 

(NPPC, 1999)), marbling (10-point visual score; (NPPC, 1999)), subjective firmness (5-

point subjective scale; (NPPC, 1991)), and objective color measurements (L*, a*, b*; 

Konica Minolta CR-400 colorimeter with a D65 light source, 2” observer, 8 mm 

aperture) were evaluated on the ventral surface of the boneless loin. 

 

Bellies 

At the plant, skin-on bellies were measured for weight, length, width, scribe line 

width, belly depth at 25%, 50%, and 75% the length of the belly from the shoulder end, 

and a subjective belly flop score (on a scale 1-5 ; 1 = soft, 5 = firm). Average belly depth 

was calculated as an average of belly depth at 25, 50, and 75% the length of the belly 

from the shoulder end. A subsample of 2 bellies per pen (from a barrow and gilt closest to 

the average pen weight) were transported back to the South Dakota State University Meat 

Laboratory and frozen for further analysis.  

 

Fat Quality Analysis 

Fat samples collected at the plant from the clear plate region of the shoulder were 

measured using Bruker near-infrared technology. Belly samples for fatty acid profile and 

iodine value (IV) analysis were taken by cutting a 3-inch slice off of on the anterior end 

of the belly from a region on the navel edge posterior to the sternum and anterior to any 
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mammary tissue. The 3-inch slice was cut in half and the most dorsal portion was used 

for fatty acid profile and IV analysis. Fatty acid profile (AOCS method Ce-1b-89 

modified; (AOCS, 1998) ) and analyzed IV by iodine titration (AOCS method Cd1-25 

modified; (AOCS, 1998)) was conducted at a commercial laboratory (Diversified Labs, 

LLC, Chantilly, VA). 

 

Statistical Analysis 

Growth data was analyzed as a randomized complete block design utilizing 

PROC MIXED procedure of SAS (SAS Institute Inc., Cary, NC) with pen as the 

experimental unit. The 14 d and 21 d 40% CF DDGS withdrawal groups were analyzed 

for statistical differences in all data. Finding no statistical differences between 14 d and 

21 d 40% CF DDGS withdrawals, all data were combined as a single group for analysis. 

Treatment and block were used as main effects in the model for growth performance data 

analysis for each individual phase except for phase 5. In the analysis for phase 5 and  

cumulative growth data, treatment and block were used as main effects and days on feed 

included as a covariate. Days on feed was utilized as a covariate to account for additional 

days on feed for the second group of pigs. The model used for the analysis of loin, belly, 

and carcass measurements (except for HCW), included treatment and slaughter group as 

main effects with HCW as a covariate in the model. Hot carcass weight was used as a 

covariate for the model to account for variation due to different hot carcass weights. For 

all growth performance, carcass, loin, and belly data, orthogonal polynomial contrasts 

were used to determine linear and quadratic effects of increasing HF and CF DDGS. The 

40% CF DDGS withdrawal group was not included in the orthogonal polynomial 
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contrasts. A single degree of freedom contrast was used to partition the sums of squares 

to compare inclusion rates of HF versus CF DDGS. The 40% CF DDGS withdrawal 

group was included in the single degree of freedom contrasts to compare inclusion rates 

of HF versus CF DDGS. Significance was determined when P ≤ 0.05 and tendencies 

were determined when 0.05 < P ≤ 0.10. 

 

Results and Discussion 

Chemical Analysis 

Chemical analysis of HF and CF DDGS samples are reported in table 2.11. 

Analyzed samples of HF DDGS and CF DDGS showed variability in nutrient 

composition. CF DDGS analyzed samples contained lower concentrations of CP, fat, 

ADF, NDF, and the majority of essential amino acids compared to HF DDGS. Variation 

in CP, fat, ADF, NDF, and essential amino acid concentration between HF and CF 

DDGS may be due to differences in ethanol production methods (Belyea et al., 2004; 

Belyea et al., 2010). Nkomba et al. (2016) investigated how cold fermentation and hot 

fermentation ethanol processes impacted the nutrient profile of sorghum DDGS and 

found cold fermentation DDGS contained less ADF and NDF than hot fermentation 

DDGS. Graham et al. (2014b), utilized hot fermentation reduced-oil DDGS with a similar 

5.4% fat concentration as the CF DDGS and observed higher CP concentration, but 

similar concentrations of all other essential amino acids. In addition analyzed samples of 

CF DDGS contained less ADF but slightly more NDF compared to 5.4% reduced-oil 

DDGS used by Graham et al. (2014b). Nutrient content variability between studies could 

be attributed to differences in corn used as raw materials or ethanol production methods. 
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Compared to the NRC (2012), nutrient profile for medium-oil DDGS, HF DDGS used in 

this study contained numerically greater amounts of CP and essential amino acids but 

similar levels of ADF and NDF. According to NRC (2012), the lysine content of 

medium-oil DDGS is 0.90%. HF and CF DDGS contained 0.99% and 1.00% lysine, 

respectively.  

 

Growth Performance 

Growth performance data are reported in Table 2.13. Cumulatively, pigs fed diets 

containing increased levels of HF DDGS showed no negative impact (P > 0.24) on 

growth performance as there were no linear or quadratic effects on ADG, ADFI, and G:F 

as percent HF DDGS increased. Comparatively, as CF DDGS inclusion rate increased, 

cumulative ADG and G:F decreased linearly from 0% to 60% inclusion rate(P <0.001). 

This was evident through phase II and phase III of the study, pigs fed increasing levels of 

CF DDGS grew slower through phase II (P < 0.01) and III (P < 0.0001). This was the 

result of linearly decreased ADG (P < 0.01) and ADFI (P < 0.02) during the respective 

phases. Unlike cumulative results from HF DDGS, but similar to CF DDGS, Hardman 

(2014) and Graham et al. (2014a) showed as reduced-oil DDGS inclusion rate increased 

from 0% to 60% and 0% to 45%, respectively, ADG decreased linearly. Cumulatively, 

pigs fed HF DDGS had increased ADG (P < 0.001) compared with pigs fed CF DDGS 

diets. Cumulative G:F results from pigs fed CF DDGS agreed with Graham et al. 

(2014a), showing as reduced-oil DDGS inclusion rate increase from 0% to the highest 

inclusion rate, feed efficiency decreased linearly. Another study conducted by Graham et 

al. (2014b) utilized reduced-oil DDGs with the same oil concentration as CF DDGS in 



35 

the current study and observed a similar G:F decrease, but also reported a linear decrease 

in ADFI. However, in the present study a linear or quadratic decrease (P > 0.53) were not 

observed for ADFI. Differences in ADFI may be attributed to how diets for each 

respective study were formulated. Diets in the study conducted by Graham et al. (2014b) 

were formulated using total AA and SID AA coefficients resulting in 2-6% higher 

concentrations of crude protein in the diet as DDGS inclusion rate increased from 0% to 

20% and 20% to 40% through finishing phases. Increased levels of crude protein in pig 

diets result in decreased feed intake (Chen et al., 1999). The diets in the current study 

were formulated to be isocaloric and isoenergetic to control for feed intake between HF 

and CF DDGS. Interestingly, pigs fed HF DDGS had increased ADFI compared to CF 

DDGS (P = 0.03). Decreased ADFI for pigs fed CF DDGS could be due to pigs eating to 

satiety, limiting adequate nutrient supply to fulfill nutritional requirements for maximum 

growth as a result of  palatability, fiber content and/or nutrient availability (Bach 

Knudsen, 2001; Hastad, 2005). Numerically cumulative the G:F data range between HF 

and CF DDGS were within 0.03, but statistically CF DDGS revealed a linear decrease (P 

< 0.0001) and HF DDGS did not (P = 0.25). There was not a statistical difference (P = 

0.66) between feed efficiency of HF and CF DDGS. To the author’s knowledge there is 

no previous research comparing growth performance of growing finishing pigs fed 

reduced-oil HF and CF DDGS. Therefore, this study provides evidence suggesting 

growth performance of finishing pigs differs between reduced-oil HF and CF DDGS 

when fed at increasing levels. 
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Carcass Characteristics 

Carcass data are reported in table 2.14. Hot carcass weights (HCW) of pigs fed 

increasing levels of CF DDGS decreased linearly (P = 0.02). In contrast, HCW of pigs 

fed HF DDGS followed a quadratic effect, with the heaviest pigs in the 0% treatment and 

decreasing across 20 and 40%, then increasing at 60% (P = 0.04). Also, HCW of pigs fed 

HF DDGS displayed a tendency to be greater than pigs fed CF DDGS (P = 0.07). 

Different effects of HF and CF DDGS on HCW may be related to differences in final 

body weight prior to harvest. Carcass yield linearly decreased (P = 0.01) as HF DDGS 

inclusion increased and tended to decrease linearly (P = 0.08) as CF DDGS inclusion rate 

increased. These findings are consistent with previous research that observed a similar 

decrease in HCW and carcass yield as reduced-oil (Graham et al., 2014a; Graham et al., 

2014b) and conventional DDGS inclusion rate increased (Whitney et al., 2006; Linneen 

et al., 2008; Cromwell et al., 2011). The decrease in HCW and carcass yield is thought to 

be caused by increases in intestinal and organ weights that may be caused by variable 

amounts of insoluble fiber found in corn DDGS (Agyekum et al., 2012a; Asmus et al., 

2014a). Loin depth, percent lean and backfat were not influenced by dietary treatment (P 

> 0.39). Backfat and percent lean results were similar to other studies evaluating reduced-

oil DDGS (Graham et al., 2014a; Graham et al., 2014b). Comparatively, Graham et al. 

(2014a) reported as reduced-oil DDGS inclusion rate in the diet increased, loin depth 

decreased linearly. A linear decrease in loin depth may have been the result of a 

combination of factors including: decreased energy intake, increased maintenance energy 

requirements due to higher fiber content increasing organ weights, and an excess crude 
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protein intake requiring additional energy to deaminate and excrete (Agyekum et al., 

2012a; Graham et al., 2014a).  

 

Boneless Loin 

Boneless loin data are reported in Table 2.15. All quality measurements for this 

study were recorded on the ventral side of the whole boneless Canadian back loin (IMPS 

413). In comparison, other studies (Whitney et al., 2006; Leick et al., 2010; Xu et al., 

2010b) evaluated the effects of conventional DDGS dietary inclusion on pork loin quality 

on the cut anterior surface of the pork loin between the 10th and 11th rib. DDGS treatment 

did not have an effect on loin weight or subjective firmness (P > 0.05). These results for 

subjective firmness conflict observations made by Leick et al. (2010) that showed as 

DDGS inclusion rate increased from 0% to 30% firmness decreased and then increased 

from 30% to 60%. Although there is a statistical difference in subjective firmness values 

observed by Leick et al. (2010), they most likely would not be noticed by a consumer. 

Subjective loin color scores from pigs fed HF and CF DDGS diets decreased linearly (P 

≤ 0.05) as inclusion rate increased. These results are in contrast to previous research 

(Whitney et al., 2006; Leick et al., 2010) that showed increased DDGS did not influence 

subjective color score. Values for subjective color scores in the current study were within 

a 3 color score on the NPPC (1999) 10 point color scale. Consequently, visual differences 

may not be noticed by a consumer. Boneless loin subjective marbling score decreased 

linearly as both HF and CF DDGS inclusion rates increased (P < 0.02). However, there 

was no difference between HF and CF boneless loin subjective marbling scores (P = 

0.43). Previous research (Whitney et al., 2006; Leick et al., 2010; Xu et al., 2010b) shows 
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conflicting subjective marbling results, indicating increasing DDGS has inconsistent 

impacts on marbling. As HF and CF DDGS inclusion rate increased redness or a* values 

linearly decreased for HF (P = 0.02) and had tendency to decrease for CF DDGS (P = 

0.05), respectively. This indicates that has HF and CF DDGS increased boneless pork 

loins displayed a paler, less desirable red color that is potentially unappealing to 

consumers. As HF DDGS increased b* decreased from 0.18 at 20% to 0 at 40% and 60% 

(P < 0.01). However, the changes in b* value would not be able to be detected by the 

human eye. The current study showed increasing inclusion rate of HF and CF reduced-oil 

DDGS had minimal effects on boneless pork loin color, firmness, and marbling, 

suggesting that pork loin quality is impacted similarly by HF and CF DDGS. 

 

Belly Dimension, Quality, and Fatty Acid Profile 

Belly dimensions and quality data are reported in Table 2.16. Belly dimensions 

are important to pork producers and processors because pork belly is manufactured into 

bacon, a very popular and important item in the food industry. Due to the popularity of 

bacon, pork belly is highly valued. The current study revealed HF and CF DDGS 

inclusion rate did not affect belly dimensions, including belly weight, length or scribeline 

width. In this study belly weights were similar (P > 0.38) across all treatments, implying 

pigs fed up to 60% reduced-oil DDGS may not compromise belly size. The results from 

this study show that reduced-oil DDGS do not negatively impact belly size contrary to a 

previous study by Leick et al. (2010) that reported as inclusion rate of conventional HF 

DDGS increased belly weight, length and width decreased linearly. Average belly depth 

decreased linearly as HF DDGS inclusion rate increased (P < 0.0001) but CF DDGS 
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followed a quadratic trend (P < 0.04), decreasing from 0% to 20% and then increasing at 

40% and slightly decreasing at 60%. The results of HF DDGS bellies agree with previous 

research (Whitney et al., 2006; Leick et al., 2010) that showed as inclusion of 

conventional DDGS increased from 0 to 60% average belly depth decreased linearly. 

However, average belly depth results from pigs fed CF DDGS do not agree with previous 

research. Belly depth results from pigs fed CF DDGS may be due to variation in pigs 

between previous research and finishing pigs in this study. Arkfeld et al. (2017) reported 

that 83.5% of variation in belly depth can be attributed to the pig.  

Belly quality is determined by the fat content and fatty acid profile that impacts 

firmness, shelf-life (lipid oxidation and color stability), and flavor (Wood et al., 2004). In 

the current study belly firmness was measured by assigning belly flop scores on a scale 

from 1 to 5 with 1 indicating soft, 5 indicating firm, and remaining numbers between 

indicating degrees of softness or firmness, respectively. Results revealed belly flop scores 

followed a similar linear decline (P < 0.0001) as both HF and CF DDGS increased, 

implying as increasing levels of HF and CF reduced-oil DDGS are incorporated into 

growing-finishing pig diets bellies become softer. Previous research (Whitney et al., 

2006; Leick et al., 2010; Cromwell et al., 2011; McClelland et al., 2012) came to the 

same conclusion but utilized slightly different variations of the belly flop test to measure 

firmness. Instead of assigning subjective flop scores, bellies were hung over a metal rod 

and the distance between the caudal and cranial ends of the belly measured to determine a 

flop or flex value. A higher value meant the belly was firmer and lower values softer. 

Softer bellies are more difficult to process into bacon due to difficulty handling and 

slicing (Leick et al., 2010). 
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Increased belly softness as HF and CF reduced-oil DDGS increased are supported 

by iodine value and fatty acid profile results. Iodine value (IV) is the measurement of the 

degree unsaturation of fatty acids in fat and is used as an indicator of fat firmness. It is 

defined by the number of grams of iodine absorbed per 100 grams of fat (Azain, 2001). 

As HF and CF DDGS inclusion rate increased, IV increased linearly (P < 0.0001) 

regardless of location, analysis, or calculation, indicating that unsaturated fatty acid levels 

increased as DDGS levels increased. Increasing IV in relation to increasing levels of HF 

and CF reduced-oil DDGS show similar trends as previous research feeding conventional 

(Whitney et al., 2006; Leick et al., 2010; Cromwell et al., 2011; McClelland et al., 2012) 

or reduced-oil DDGS (Graham et al., 2014a; Graham et al., 2014b). Belly fat IV from 

iodine titration and shoulder fat IV were different between ethanol production method 

with HF DDGS having lower values compared to CF DDGS (P < 0.04). These results 

were unexpected because previous research by Graham et al. (2014b) investigated the 

effect of low, medium, and high-oil DDGS on IV reported that belly, jowl, and backfat 

IV from pigs fed increasing amounts of reduced-oil DDGS with different oil content 

(9.6% vs 5.4%) increased linearly, but, belly and backfat IV were increased by a greater 

magnitude in pigs fed 9.6% oil DDGS compared to 5.4% oil DDGS. Corn DDGS were 

used in both studies, implying they contain corn oil that is high in unsaturated fatty acids, 

specifically polyunsaturated fatty acids C18:2 and C18:3. Therefore, DDGS with 

different oil concentrations would contain slightly different proportions of unsaturated 

and saturated fatty acids that would be deposited into swine adipose tissue and influence 

IV. Fatty acid profile data for the HF and CF DDGS are reported in Table 2.17 support 

this idea, as CF DDGS contain a lower concentration of polyunsaturated fatty acids 
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(PUFA) such as essential fatty acids C18:2 and C18:3 than HF DDGS that would be 

directly deposited into adipose tissue. In the current study HF DDGS and CF DDGS 

contained 6.85% and 5.4% oil, respectively and showed that IV from pigs fed CF DDGS 

with less oil content were higher than pigs fed HF DDGS at every inclusion rate. A 

potential reason that may explain part of the difference amongst studies may be due to the 

addition of supplemental soybean oil to maintain isocaloric diets across all treatments in 

the current study. The soybean oil utilized in the study diets contained 5-6% increased 

concentration of PUFA compared to HF and CF DDGS (Table 2.17). In pigs it is known 

that fatty acid composition of fat depots closely reflect fatty acid composition of the diet 

(Averette Gatlin et al., 2002). Therefore, the higher levels of soybean oil added to CF 

DDGS than HF DDGS could have contributed increased amounts of unsaturated fatty 

acids, increasing IV in carcasses from pigs fed CF DDGS. The limited research indicates 

acceptable IV ranges between 70 (Barton-Gade, 1987; Madsen et al., 1992; NPPC, 2000) 

and 74 (Boyd et al., 1997) in the pork industry. However, there is not a consensus range 

of acceptable IV among pork processors. Putting the IV results from this study into 

perspective using the 70-74 range as acceptable, only the IV values from the control 

would be considered acceptable. Previous research on conventional DDGS (Whitney et 

al., 2006)  reduced-oil DDGS (Graham et al., 2014b) has shown that bellies from pigs fed 

30% and 40%, respectively can produce IV within the acceptable range. 

Belly fatty acid profile data are reported in Table 2.18. Belly fatty acid profiles 

were mainly comprised of C16:0, C18:0, C18:1, and C18:2. As HF and CF DDGS 

inclusion rate increased, total saturated fatty acid (SFA), total monounsaturated fatty acid 

(MUFA), C16:0, C18:0, and C18:1 content decreased linearly (P < 0.0001). Results from 
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this study agree with previous studies (Benz et al., 2010; Leick et al., 2010; Xu et al., 

2010b). Also, other SFA (C10:0, C14:0, C20:0) and C16:1 also showed a linear decrease 

as HF and CF DDGS inclusion rate increased (P < 0.02). Total polyunsaturated fatty acid 

(PUFA) content, C18:2, C18:3, C20:2, C20:4 content increased linearly as HF and CF 

DDGS rate increased (P < 0.0001). Additionally, total PUFA content, C18:2, C18:3, 

C20:2, C20:4 content was increased in bellies from pigs fed CF DDGS (P < 0.02). 

Results from this study agree with previous studies (Benz et al., 2010; Leick et al., 2010; 

Xu et al., 2010b). The ratio of unsaturated fatty acids (UFA) to SFA increased linearly as 

inclusion rate of HF and CF DDGS increased (P <0.0001) indicating as DDGS inclusion 

rate increased UFA levels increased in relation to SFA. Bellies from pigs fed CF DDGS 

had a higher UFA:SFA ratio compared to HF DDGS (P <0.01). The PUFA:SFA ratio 

increased linearly (P <0.0001) as inclusion rate of HF and CF DDGS increased showing 

as DDGS inclusion rate increased PUFA content increased in relation to decreasing SFA 

levels. Additionally, CF DDGS bellies had higher PUFA:SFA ratio compared to HF 

DDGS (P <0.0001). Higher UFA, PUFA and corresponding lower SFA levels indicate as 

DDGS inclusion rates increased belly fat became more unsaturated, therefore softer, 

decreasing belly quality. These results in combination with the IV results show as 

inclusion rate of reduced-oil DDGS increased bellies became softer. Softer bellies can 

cause issues when further processing into bacon including, difficulty slicing, oily 

appearance in the package, and increased susceptibility to lipid oxidation (Leick et al., 

2010).    
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Conclusion 

Increasing inclusion of HF DDGS in diets of finishing pigs did not affect overall 

growth performance. Conversely, increasing inclusion of CF DDGS negatively affected 

overall growth performance by decreasing ADG and worsening feed efficiency. Pigs fed 

HF DDGS had improved growth performance compared to pigs fed CF DDGS. Overall, 

as HF & CF DDGS inclusion increased, carcass yield decreased. Additionally, as HF and 

CF DDGS inclusion increased, belly quality decreased as evidenced by a linear increase 

in iodine value, polyunsaturated fatty acid content and decreased flop scores. Further 

research is needed to investigate the mechanism influencing the divergent effect of cold 

fermentation and hot fermentation DDGS on finishing pig growth performance and belly 

quality. 

  



44 

Literature Cited 

 

Agyekum, A. K., B. A. Slominski, and C. M. Nyachoti. 2012a. Organ weight, intestinal 

morphology, and fasting whole-body oxygen consumption in growing pigs fed 

diets containing distillers dried grains with solubles alone or in combination with 

a multienzyme supplement. J. Anim. Sci. 90(9):3032-3040. doi: 

10.2527/jas.2011-4380 

Agyekum, A. K., B. A. Slominski, and C. M. Nyachoti. 2012b. Organ weight, intestinal 

morphology, and fasting whole-body oxygen consumption in growing pigs fed 

diets containing distillers dried grains with solubles alone or in combination with 

a multienzyme supplement1,2. Journal of Animal Science 90(9):3032-3040. doi: 

10.2527/jas.2011-4380 

Almeida, F. N., J. K. Htoo, J. Thomson, and H. H. Stein. 2013. Amino acid digestibility 

of heat damaged distillers dried grains with solubles fed to pigs. Journal of animal 

science and biotechnology 4:44. doi: 10.1186/2049-1891-4-44 

AOCS. 1998. Official methods and recommended practices of the AOCS. 5th ed. ed. 

Champaign, Ill. : American Oil Chemists' Society, Champaign, Ill. 

Arkfeld, E. K., D. A. Mohrhauser, D. A. King, T. L. Wheeler, A. C. Dilger, S. D. 

Shackelford, and D. D. Boler. 2017. Characterization of variability in pork carcass 

composition and primal quality. Journal of Animal Science 95(2):697-708. doi: 

10.2527/jas.2016.1097 

Asmus, M. D., J. M. Derouchey, M. D. Tokach, S. S. Dritz, T. A. Houser, J. L. Nelssen, 

and R. D. Goodband. 2014a. Effects of lowering dietary fiber before marketing on 

finishing pig growth performance, carcass characteristics, carcass fat quality, and 

intestinal weights. J. Anim. Sci. 92(1):119-128. doi: 10.2527/jas.2013-6679 

Asmus, M. D., J. M. Derouchey, M. D. Tokach, S. S. Dritz, T. A. Houser, J. L. Nelssen, 

and R. D. Goodband. 2014b. Effects of lowering dietary fiber before marketing on 

finishing pig growth performance, carcass characteristics, carcass fat quality, and 

intestinal weights1,2. Journal of Animal Science 92(1):119-128. doi: 

10.2527/jas.2013-6679 

Averette Gatlin, L., M. T. See, J. A. Hansen, D. Sutton, and J. Odle. 2002. The effects of 

dietary fat sources, levels, and feeding intervals on pork fatty acid composition. J. 

Anim. Sci. 80(6):1606-1615. doi: 10.2527/2002.8061606x 

Azain, M. 2001. Fat in swine nutrition. In: A. Lewis and L. Southern, editors, Swine 

Nutrition. CRC Press, Boca Raton, FL. p. 95-106. 

Bach Knudsen, K. E. 2001. The nutritional significance of “dietary fibre” analysis. 

Animal Feed Science and Technology 90(1-2):3-20. doi: 10.1016/s0377-

8401(01)00193-6 

Barton-Gade, P. A. 1987. Meat and fat quality in boars, castrates and gilts. Lives. Prod. 

Sci. 16(2):187-196. doi: 10.1016/0301-6226(87)90019-4 

Belyea, R. L., K. D. Rausch, T. E. Clevenger, V. Singh, D. B. Johnston, and M. E. 

Tumbleson. 2010. Sources of variation in composition of DDGS. Anim. Feed Sci. 

Technol. 159(3-4):122-130. doi: 10.1016/j.anifeedsci.2010.06.005 

Belyea, R. L., K. D. Rausch, and M. E. Tumbleson. 2004. Composition of corn and 

distillers dried grains with solubles from dry grind ethanol processing. Bioresour. 

Technol. 94(3):293-298. doi: 10.1016/j.biortech.2004.01.001 



45 

Benz, J. M., S. K. Linneen, M. D. Tokach, S. S. Dritz, J. L. Nelssen, J. M. Derouchey, R. 

D. Goodband, R. C. Sulabo, and K. J. Prusa. 2010. Effects of dried distillers 

grains with solubles on carcass fat quality of finishing pigs1. J. Anim. Sci. 

88(11):3666-3682. doi: 10.2527/jas.2010-2937 

Bergstrom, J., M. D. Tokach, J. L. Nelssen, J. M. DeRouchey, R. D. Goodband, and S. S. 

Dritz. 2009. Effects of feeder design, gender, and dietary concentration of dried 

distillers grains with solubles on the growth performance and carcass 

characteristics of growing-finishing pigs.   

Bergstrom, J. R., J. L. Nelssen, M. D. Tokach, S. S. Dritz, R. D. Goodband, and J. M. 

Derouchey. 2014. The effects of feeder design and dietary dried distillers' grains 

with solubles on the performance and carcass characteristics of finishing pigs. 

Journal of Animal Science 92(8):3591-3597. doi: 10.2527/jas.2014-7686 

Boyd, R., M. Johnston, K. Scheller, A. Sosnicki, and E. Wilson. 1997. Relationship 

between dietary fatty acid profile and body fat composition in growing pigs. PIC 

USA T & D Technical Memo 153 

Chen, H. Y., A. J. Lewis, P. S. Miller, and J. T. Yen. 1999. The effect of excess protein 

on growth performance and protein metabolism of finishing barrows and gilts. J. 

Anim. Sci. 77(12):3238. doi: 10.2527/1999.77123238x 

Cinelli, B. A., L. R. Castilho, D. M. G. Freire, and A. M. Castro. 2015. A brief review on 

the emerging technology of ethanol production by cold hydrolysis of raw starch. 

Fuel 150:721-729. doi: 10.1016/j.fuel.2015.02.063 

Crenshaw, T. D. 2000. Calcium, phosphorus, vitamin D, and vitamin K in swine 

nutrition, Swine nutrition. CRC Press. p. 207-232. 

Cromwell, G. L., M. J. Azain, O. Adeola, S. K. Baidoo, S. D. Carter, T. D. Crenshaw, S. 

W. Kim, D. C. Mahan, P. S. Miller, and M. C. Shannon. 2011. Corn distillers 

dried grains with solubles in diets for growing-finishing pigs: A cooperative 

study. J. Anim. Sci. 89:2801-2811. doi: 10.2527/jas.2010-3704 

Cromwell, G. L., K. L. Herkelman, and T. S. Stahly. 1993. Physical, chemical, and 

nutritional characteristics of distillers dried grains with solubles for chicks and 

pigs. Journal of Animal Science 71(3):679-686. doi: 10.2527/1993.713679x 

Curry, S., D. M. D. L. Navarro, F. Almeida, J. A. Almeida, and H. Stein. 2014. Amino 

acid digestibility in low-fat distillers dried grains with solubles fed to growing 

pigs. Journal of Animal Science and Biotechnology 5(1):27. doi: 10.1186/2049-

1891-5-27 

Curry, S. M., O. J. Rojas, and H. H. Stein. 2016. Concentration of digestible and 

metabolizable energy and digestibility of energy and nutrients by growing pigs in 

distillers dried grains with solubles produced in and around Illinois. The 

Professional Animal Scientist 32(5):687-694. doi: 10.15232/pas.2016-01524 

Davidson, M. H., and A. McDonald. 1998. Fiber: Forms and functions. Nutrition 

Research 18(4):617-624. doi: 10.1016/s0271-5317(98)00048-7 

Davis, J. M., P. E. Urriola, G. C. Shurson, S. K. Baidoo, and L. J. Johnston. 2015. Effects 

of adding supplemental tallow to diets containing 30% distillers dried grains with 

solubles on growth performance, carcass characteristics, and pork fat quality in 

growing–finishing pigs1. Journal of Animal Science 93:266-277. doi: 

10.2527/jas.2014-7895 



46 

Devries, J. W. 2004. Dietary fiber: The influence of definition on analysis and regulation. 

J. AOAC Int. 87:682-706.  

Espinosa, C. D., S. A. Lee, and H. H. Stein. 2019. Digestibility of amino acids, energy, 

acid hydrolyzed ether extract, and neutral detergent fiber, and concentration of 

digestible and metabolizable energy in low-oil distillers dried grains with solubles 

fed to growing pigs1. Translational Animal Science 3(2):662-675. doi: 

10.1093/tas/txz025 

Farnworth, E. R., and J. K. G. Kramer. 1987. FAT METABOLISM IN GROWING 

SWINE: A REVIEW.  67(2):301-318. doi: 10.4141/cjas87-029 

Graham, A. B., R. D. Goodband, M. D. Tokach, S. S. Dritz, J. M. Derouchey, and S. 

Nitikanchana. 2014a. The effects of medium-oil dried distillers grains with 

solubles on growth performance, carcass traits, and nutrient digestibility in 

growing–finishing pigs. J. Anim. Sci. 92(2):604-611. doi: 10.2527/jas.2013-6798 

Graham, A. B., R. D. Goodband, M. D. Tokach, S. S. Dritz, J. M. Derouchey, S. 

Nitikanchana, and J. J. Updike. 2014b. The effects of low-, medium-, and high-oil 

distillers dried grains with solubles on growth performance, nutrient digestibility, 

and fat quality in finishing pigs. J. Anim. Sci. 92(8):3610-3623. doi: 

10.2527/jas.2014-7678 

Gutierrez, N. A., N. V. L. Serão, and J. F. Patience. 2016. Effects of distillers' dried 

grains with solubles and soybean oil on dietary lipid, fiber, and amino acid 

digestibility in corn-based diets fed to growing pigs. Journal of Animal Science 

94(4):1508-1519. doi: 10.2527/jas.2015-9529 

Han, J., and K. Liu. 2010. Changes in Composition and Amino Acid Profile during Dry 

Grind Ethanol Processing from Corn and Estimation of Yeast Contribution toward 

DDGS Proteins. Journal of Agricultural and Food Chemistry 58(6):3430-3437. 

doi: 10.1021/jf9034833 

Hardman, S. 2014. Effect of dietary distillers dried grains with solubles (DDGS) and pig 

removal strategy at harvest on the growth performance, carcass characteristics, 

and fat quality of growing-finishing pigs, University of Illinois, Urbana, Illinois. 

Hastad, C. W. 2005. The use of dried distillers grains with solubles in swine diets. 

Dissertation, Kansas State University, Manhatten, Kansas. 

Jørgensen, H., X.-Q. Zhao, and B. O. Eggum. 1996. The influence of dietary fibre and 

environmental temoperature on the development of the gastrointestinal tract, 

digestibility, degree of fermentation in the hind-gut and energy metabolism in 

pigs. British Journal of Nutrition 75(3):365-378. doi: 10.1079/bjn19960140 

Kass, M. L., P. Van Soest, W. G. Pond, B. Lewis, and R. McDowell. 1980. Utilization of 

dietary fiber from alfalfa by growing swine. I. Apparent digestibility of diet 

components in specific segments of the gastrointestinal tract. Journal of Animal 

Science 50(1):175-191.  

Kelsall, D. R., and R. Piggot. 2009. Grain milling and cooking for alcohol production: 

Designing for the options in dry milling. In: W. M. Ingledew, D. R. Kelsall, G. D. 

Austin and C. Kluhspies, editors, The Alcohol Textbook. Nottingham : 

Nottingham University Press, Nottingham. p. 151-177. 

Kelzer, J. M., P. J. Kononoff, L. O. Tedeschi, T. C. Jenkins, K. Karges, and M. L. 

Gibson. 2010a. Evaluation of protein fractionation and ruminal and intestinal 



47 

digestibility of corn milling co-products. Journal of Dairy Science 93(6):2803-

2815. doi: 10.3168/jds.2009-2460 

Kelzer, J. M., P. J. Kononoff, L. O. Tedeschi, T. C. Jenkins, K. Karges, and M. L. 

Gibson. 2010b. Evaluation of protein fractionation and ruminal and intestinal 

digestibility of corn milling co-products.  93(6):2803-2815. doi: 

10.3168/jds.2009-2460 

Kerr, B. J., W. A. Dozier, and G. C. Shurson. 2013. Effects of reduced-oil corn distillers 

dried grains with solubles composition on digestible and metabolizable energy 

value and prediction in growing pigs1. Journal of Animal Science 91:3231-3243. 

doi: 10.2527/jas.2013-6252 

Klopfenstein, T. J., G. E. Erickson, and V. R. Bremer. 2008. BOARD-INVITED 

REVIEW: Use of distillers by-products in the beef cattle feeding industry1. 

Journal of Animal Science 86(5):1223-1231. doi: 10.2527/jas.2007-0550 

Knudsen, K. E. B., B. B. Jensen, and I. Hansen. 1993. Digestion of polysaccharides and 

other major components in the small and large intestine of pigs fed on diets 

consisting of oat fractions rich in β-D-glucan. British Journal of Nutrition 

70(2):537-556. doi: 10.1079/bjn19930147 

Kornegay, E. 1985. Calcium and phosphorus in swine nutrition. Section 3:9.  

Kornegay, E., and H. Thomas. 1981. Phosphorus in swine. II. Influence of Dietary 

Calcium and Phosphorus Levels and Growth Rate on Serum Minerals, Soundness 

Scores and Bone Development in Barrows, Gilts and Boars. Journal of Animal 

science 52(5):1049-1059. doi: 10.2527 

Leick, C. M., C. L. Puls, M. Ellis, J. Killefer, T. R. Carr, S. M. Scramlin, M. B. England, 

A. M. Gaines, B. F. Wolter, S. N. Carr, and F. K. McKeith. 2010. Effect of 

distillers dried grains with solubles and ractopamine (Paylean) on quality and 

shelf-life of fresh pork and bacon. J. Anim. Sci. 88:2751-2766. doi: 

10.2527/jas.2009-2472 

Linneen, S. K., J. M. Derouchey, S. S. Dritz, R. D. Goodband, M. D. Tokach, and J. L. 

Nelssen. 2008. Effects of dried distillers grains with solubles on growing and 

finishing pig performance in a commercial environment. J. Anim. Sci. 

86(7):1579-1587. doi: 10.2527/jas.2007-0486 

Liu, K. 2009. Effects of particle size distribution, compositional and color properties of 

ground corn on quality of distillers dried grains with solubles (DDGS). Bioresour. 

Technol. 100(19):4433-4440. doi: 10.1016/j.biortech.2009.02.067 

Liu, K. 2011. Chemical Composition of Distillers Grains, a Review. Journal of 

Agricultural and Food Chemistry 59:1508-1526. doi: 10.1021/jf103512z 

Liu, K., and J. Han. 2011. Changes in mineral concentrations and phosphorus profile 

during dry-grind processing of corn into ethanol. Bioresour. Technol. 

102(3):3110-3118. doi: 10.1016/j.biortech.2010.10.070 

Madsen, A., K. Jakobsen, and H. P. Mortensen. 1992. Influence of dietary fat on carcass 

fat quality in pigs. A review. Acta Agriculturae Scandinavica A-Animal Sciences 

42(4):220-225.  

Mauron, J. 1990. Influence of Processing on Protein Quality. Journal of Nutritional 

Science and Vitaminology 36(4-SupplementI):S57-S69. doi: 10.3177/jnsv.36.4-

supplementi_s57 



48 

McClelland, K. M., G. Rentfrow, G. L. Cromwell, M. D. Lindemann, and M. J. Azain. 

2012. Effects of corn distillers dried grains with solubles on quality traits of pork. 

J. Anim. Sci. 90:4148-4156. doi: 10.2527/jas.2011-4779 

Nkomba, E. Y., E. Van Rensburg, A. F. A. Chimphango, and J. F. Görgens. 2016. The 

influence of sorghum grain decortication on bioethanol production and quality of 

the distillers’ dried grains with solubles using cold and conventional warm starch 

processing. Bioresour. Technol. 203:181-189. doi: 10.1016/j.biortech.2015.12.045 

Noblet, J., and G. Le Goff. 2001. Effect of dietary fibre on the energy value of feeds for 

pigs. Animal Feed Science and Technology 90(1-2):35-52. doi: 10.1016/s0377-

8401(01)00195-x 

NPPC. 1991. Procedures to evaluate market hogs. 3rd ed. National Pork Producers 

Council, Des Moines, IA. 

NPPC. 1999. Pork Quality Standards. National Pork Producers Council, Des Moines, IA. 

NPPC. 2000. Pork composition and quality assessment procedures. National Pork 

Producers Council, Des Moines, IA. 

NRC. 2012. Nutrient Requirements of Swine: Eleventh Revised Edition. 11th ed. 

National Academies Press. 

Nuez Ortín, W. G., and P. Yu. 2009. Nutrient variation and availability of wheat DDGS, 

corn DDGS and blend DDGS from bioethanol plants. Journal of the Science of 

Food and Agriculture 89:1754-1761. doi: 10.1002/jsfa.3652 

Olentine, C. 1986. Ingredient profile: Distillers feeds. In: Proceedings of the distillers 

feed Conference. p 13-24. 

Overholt, M. F., J. E. Lowell, E. K. Arkfeld, I. M. Grossman, H. H. Stein, A. C. Dilger, 

and D. D. Boler. 2016. Effects of pelleting diets without or with distillers' dried 

grains with solubles on growth performance, carcass characteristics, and 

gastrointestinal weights of growing–finishing barrows and gilts. Journal of 

Animal Science 94(5):2172-2183. doi: 10.2527/jas.2015-0202 

Pahm, A. A., C. Pedersen, D. Hoehler, and H. H. Stein. 2008a. Factors affecting the 

variability in ileal amino acid digestibility in corn distillers dried grains with 

solubles fed to growing pigs1. Journal of Animal Science 86:2180-2189. doi: 

10.2527/jas.2008-0868 

Pahm, A. A., C. Pedersen, and H. H. Stein. 2008b. Application of the Reactive Lysine 

Procedure To Estimate Lysine Digestibility in Distillers Dried Grains with 

Solubles Fed to Growing Pigs. Journal of Agricultural and Food Chemistry 

56(20):9441-9446. doi: 10.1021/jf801618g 

Pedersen, C., M. G. Boersma, and H. H. Stein. 2007. Digestibility of energy and 

phosphorus in ten samples of distillers dried grains with solubles fed to growing 

pigs1. Journal of Animal Science 85(5):1168-1176. doi: 10.2527/jas.2006-252 

Peo Jr, E. 1991. Calcium, phosphorus, and vitamin D in swine nutrition, Swine nutrition. 

Elsevier. p. 165-182. 

RFA. 2019. 2019 Ethanol Industry Outlook. https://ethanolrfa.org/wp-

content/uploads/2019/05/RFA_outlook_2019_newlogo.pdf (Accessed 6/3/2019 

2019). 

Robertson, G. H., D. W. Wong, C. C. Lee, K. Wagschal, M. R. Smith, and W. J. Orts. 

2006. Native or raw starch digestion: a key step in energy efficient biorefining of 

grain. J. Agric. Food Chem. 54(2):353-365. doi: 10.1021/jf051883m 

https://ethanolrfa.org/wp-content/uploads/2019/05/RFA_outlook_2019_newlogo.pdf
https://ethanolrfa.org/wp-content/uploads/2019/05/RFA_outlook_2019_newlogo.pdf


49 

Robinson, P. H., K. Karges, and M. L. Gibson. 2008. Nutritional evaluation of four co-

product feedstuffs from the motor fuel ethanol distillation industry in the 

Midwestern USA. Animal Feed Science and Technology 146(3-4):345-352. doi: 

10.1016/j.anifeedsci.2008.01.004 

Rosentrater, K. A., K. Illeleji, and D. B. Johnston. 2012. Manufacturing of Fuel Ethanol 

and Distillers Grain - Current and Evolving Processes. In: K. Liu and K. A. 

Rosentrater, editors, Distillers Grains Production, Properties, and Utilization. 

CRC Press, Boca Raton, Florida. p. 73-103. 

Schingoethe, D. J., K. F. Kalscheur, A. R. Hippen, and A. D. Garcia. 2009. Invited 

review: The use of distillers products in dairy cattle diets. Journal of Dairy 

Science 92(12):5802-5813. doi: 10.3168/jds.2009-2549 

Shurson, G. C. 2018. Precision DDGS Nutrition. U.S Grains Council DDGS User 

Handbook. p 376. U.S Grains Council. 

Spiehs, M. J., M. H. Whitney, and G. C. Shurson. 2002. Nutrient database for distiller's 

dried grains with solubles produced from new ethanol plants in Minnesota and 

South Dakota. Journal of Animal Science 80(10):2639-2645. doi: 

10.1093/ansci/80.10.2639 

Stein, H. H., L. V. Lagos, and G. A. Casas. 2016. Nutritional value of feed ingredients of 

plant origin fed to pigs. Animal Feed Science and Technology 218:33-69. doi: 

10.1016/j.anifeedsci.2016.05.003 

Stein, H. H., and G. C. Shurson. 2009. Board-Invited Review: The use and application of 

distillers dried grains with solubles in swine diets. J. Anim. Sci. 87:1292-1303. 

doi: 10.2527/jas.2008-1290 

Swiatkiewicz, S., and J. Koreleski. 2008. The use of distillers dried grains with solubles 

(DDGS) in poultry nutrition. Worlds Poult. Sci. J. 64(2):257-265. (Review) doi: 

10.1017/s0043933908000044 

Textor, S. D., G. A. Hill, D. G. Macdonald, and E. S. Denis. 1998. Cold enzyme 

hydrolysis of wheat starch granules. The Canadian Journal of Chemical 

Engineering 76(1):87-93. doi: 10.1002/cjce.5450760111 

Wang, H., L.-S. Wang, B.-M. Shi, and A.-S. Shan. 2012. Effects of dietary corn dried 

distillers grains with solubles and vitamin E on growth performance, meat quality, 

fatty acid profiles, and pork shelf life of finishing pigs. Livestock Science 149(1-

2):155-166. doi: 10.1016/j.livsci.2012.07.009 

Whitney, M. H., G. C. Shurson, L. J. Johnston, D. M. Wulf, and B. C. Shanks. 2006. 

Growth performance and carcass characteristics of grower-finisher pigs fed high-

quality corn distillers dried grain with solubles originating from a modern 

Midwestern ethanol plant. J. Anim. Sci. 84:3356-3363. doi: 10.2527/jas.2006-099 

Widmer, M. R., L. M. McGinnis, D. M. Wulf, and H. H. Stein. 2008. Effects of feeding 

distillers dried grains with solubles, high-protein distillers dried grains, and corn 

germ to growing-finishing pigs on pig performance, carcass quality, and the 

palatability of pork1. Journal of Animal Science 86(8):1819-1831. doi: 

10.2527/jas.2007-0594 

Wood, J. D., and M. Enser. 1997. Factors influencing fatty acids in meat and the role of 

antioxidants in improving meat quality. British Journal of Nutrition 78(1):S49-

S60. doi: 10.1079/bjn19970134 



50 

Wood, J. D., M. Enser, A. V. Fisher, G. R. Nute, P. R. Sheard, R. I. Richardson, S. I. 

Hughes, and F. M. Whittington. 2008. Fat deposition, fatty acid composition and 

meat quality: A review. Meat Sci 78(4):343-358. doi: 

10.1016/j.meatsci.2007.07.019 

Wood, J. D., R. I. Richardson, G. R. Nute, A. V. Fisher, M. M. Campo, E. Kasapidou, P. 

R. Sheard, and M. Enser. 2004. Effects of fatty acids on meat quality: a review. 

Meat Sci. 66(1):21-32. doi: 10.1016/s0309-1740(03)00022-6 

Wu, F. 2015. Growth performance, carcass composition, and pork fat quality of growing-

finishing pigs fed distillers dried grains with solubles (DDGS) with variable oil 

and energy content, and prediction of metabolizable and net energy, Minnesota. 

Wu, F., L. J. Johnston, P. E. Urriola, A. M. Hilbrands, and G. C. Shurson. 2016. 

Evaluation of ME predictions and the impact of feeding maize distillers dried 

grains with solubles (DDGS) with variable oil content on growth performance and 

carcass characteristics of growing-finishing pigs. Anim. Feed Sci. Technol. 

215:105-116. doi: 10.1016/j.anifeedsci.2016.02.023 

Xu, G., S. K. Baidoo, L. J. Johnston, D. Bibus, J. E. Cannon, and G. C. Shurson. 2010a. 

The effects of feeding diets containing corn distillers dried grains with solubles, 

and withdrawal period of distillers dried grains with solubles, on growth 

performance and pork quality in grower-finisher pigs. Journal of Animal Science 

88(4):1388-1397. doi: 10.2527/jas.2008-1403 

Xu, G., S. K. Baidoo, L. J. Johnston, D. Bibus, J. E. Cannon, and G. C. Shurson. 2010b. 

Effects of feeding diets containing increasing content of corn distillers dried 

grains with solubles to grower-finisher pigs on growth performance, carcass 

composition, and pork fat quality. J. Anim. Sci. 88:1398-1410. doi: 

10.2527/jas.2008-1404 

 

  



51 

1Standardized Ileal Digestibility 
2 Provided per kg of complete diet: 11,002 IU vitamin A supplement, 1651 IU vitamin D3 

supplement, 55.1 IU vitamin E supplement, 0.044 mg vitamin B12 supplement, 4.4 mg 

menadione as menadione dimethylpyrimidinol bisulfite, 9.91 mg riboflavin supplement, 

60.6 mg D-pantohenic acid as D-calcium, 55.1 mg niacin supplement, 1.1 mg folic acid, 

3.3 mg pyridoxine as pyridoxine hydrochloride, 3.3 mg thiamine as thiamine mononitrate 

and 0.171 mg biotin, 165 mg Zn as zinc sulfate, 165 mg Fe as ferrous sulfate, 43.5 mg 

Mn as manganese sulfate, 16.5 mg Cu as basic copper chloride, 0.36 mg I as 

ethylenediamine dihydriodide and 0.3 mg of Se as sodium selenite. 
3Control = corn and soybean meal based diet with no DDGS added; Hot = Hot 

fermentation ethanol production method; Cold = Cold fermentation ethanol production 

method 
440% Cold Fermentation withdrawal treatment fed 40% cold diet during phase 1 

Table 2.1 Phase 1 reduced-oil DDGS diet composition (as-fed basis)  
Distillers dried grains with solubles inclusion rate, % 

 Control3 Hot Cold 

  0 20 40 60 20 404 60 

Ingredient, %        

Corn 65.69 60.02 53.46 46.64 59.78 53.07 46.06 

Soybean meal 46.5% 28.71 24.17 20.57 17.24 24.41 20.95 17.80 

Hot Fermentation DDGS 0.00 10.00 20.00 30.00 0.00 0.00 0.00 

Cold Fermentation DDGS 0.00 0.00 0.00 0.00 10.00 20.00 30.00 

Soy oil 2.05 2.28 2.53 2.79 2.31 2.60 2.89 

Lysine  0.31 0.40 0.46 0.51 0.39 0.45 0.50 

Methionine 0.11 0.10 0.08 0.05 0.10 0.07 0.05 

Threonine  0.28 0.28 0.27 0.26 0.28 0.26 0.25 

Tryptophan 0.02 0.03 0.04 0.05 0.03 0.04 0.05 

Limestone 1.02 1.17 1.32 1.46 1.14 1.25 1.37 

21% Monocalcium phosphate 1.07 0.80 0.53 0.26 0.81 0.55 0.29 

Salt 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

Vitamin, trace mineral Premix2 0.35 0.35 0.35 0.35 0.35 0.35 0.35 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Calculated analysis 
  

      

Amino Acids1, % 
 

       

Lysine 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

TSAA 0.64 0.64 0.64 0.64 0.64 0.64 0.64 

Thr 0.86 0.86 0.86 0.86 0.86 0.86 0.86 

Trp 0.22 0.22 0.22 0.22 0.22 0.22 0.22 

Ile 0.68 0.68 0.68 0.68 0.68 0.68 0.68 

Val 0.75 0.75 0.76 0.78 0.75 0.76 0.78 

Leu 1.44 1.51 1.61 1.71 1.50 1.58 1.67 

TSAA:Lys 58.00 58.00 58.00 58.00 58.00 58.00 58.00 

Thr:Lys 78.00 78.00 78.00 78.00 78.00 78.00 78.00 

Trp:Lys 20.00 20.00 20.00 20.00 20.00 20.00 20.00 

Ile:Lys 62.00 60.00 60.00 60.00 60.00 60.00 60.00 

Val:Lys 68.00 68.00 69.00 71.00 68.00 69.00 71.00 

Leu:Lys 131.00 138.00 146.00 155.00 136.00 144.00 152.00 

Total Lysine, % 1.23 1.25 1.27 1.29 1.25 1.27 1.29 

ME, kcal/kg 1534 1534 1534 1534 1534 1534 1534 

SID Lys/ME, g/Mcal 3.25 3.25 3.25 3.25 3.25 3.25 3.25 

CP,% 19.34 19.51 20.01 20.59 19.71 20.36 21.12 

Ca, total, % 0.68 0.68 0.68 0.68 0.68 0.68 0.68 

P, total, % 0.60 0.59 0.58 0.57 0.59 0.58 0.56 

Available P, %   0.30   0.30   0.30   0.30   0.30   0.30   0.30 
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1Standardized Ileal Digestibility 
2 Provided per kg of complete diet: 11,002 IU vitamin A supplement, 1651 IU vitamin D3 

supplement, 55.1 IU vitamin E supplement, 0.044 mg vitamin B12 supplement, 4.4 mg 

menadione as menadione dimethylpyrimidinol bisulfite, 9.91 mg riboflavin supplement, 

60.6 mg D-pantohenic acid as D-calcium, 55.1 mg niacin supplement, 1.1 mg folic acid, 

3.3 mg pyridoxine as pyridoxine hydrochloride, 3.3 mg thiamine as thiamine mononitrate 

and 0.171 mg biotin, 165 mg Zn as zinc sulfate, 165 mg Fe as ferrous sulfate, 43.5 mg 

Mn as manganese sulfate, 16.5 mg Cu as basic copper chloride, 0.36 mg I as 

ethylenediamine dihydriodide and 0.3 mg of Se as sodium selenite. 
3Control = corn and soybean meal based diet with no DDGS added; Hot = Hot 

fermentation ethanol production method; Cold = Cold fermentation ethanol production 

method 
440% Cold Fermentation withdrawal treatment fed 40% cold diet during phase 2 

Table 2.2 Phase 2 reduced-oil DDGS diet composition (as-fed basis)  
Distillers dried grains with solubles inclusion rate, % 

 Control3 Hot Cold 

  0 20 40 60 20 404 60 

Ingredient, % 
 

  
     

Corn 72.92 59.72 45.94 31.41 59.34 45.21 30.39 

Soybean meal 46.5% 21.67 14.53 7.88 1.33 14.91 8.63 2.44 

Hot Fermentation DDGS 0.00 20.00 40.00 60.00 0.00 0.00 0.00 

Cold Fermentation DDGS 0.00 0.00 0.00 0.00 20.00 40.00 60.00 

Soy oil 2.05 2.56 3.11 3.91 2.62 3.23 4.06 

Lysine  0.31 0.43 0.54 0.64 0.43 0.53 0.63 

Methionine 0.07 0.03 0.00 0.00 0.03 0.00 0.00 

Threonine  0.24 0.22 0.19 0.17 0.22 0.18 0.15 

Tryptophan 0.03 0.04 0.05 0.07 0.04 0.06 0.07 

Limestone 0.99 1.28 1.52 1.72 1.22 1.41 1.51 

21% Monocalcium phosphate 0.97 0.42 0.00 0.00 0.44 0.00 0.00 

Salt 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

Vitamin, trace mineral Premix2 0.35 0.35 0.35 0.35 0.35 0.35 0.35 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Calculated analysis 
  

      
Amino Acids1, % 

 
       

Lysine 0.94 0.94 0.94 0.94 0.94 0.94 0.94 

TSAA 0.54 0.54 0.55 0.60 0.54 0.56 0.61 

Thr 0.73 0.73 0.73 0.73 0.73 0.73 0.73 

Trp 0.19 0.19 0.19 0.19 0.19 0.19 0.19 

Ile 0.57 0.56 0.56 0.56 0.56 0.56 0.56 

Val 0.64 0.67 0.71 0.74 0.67 0.70 0.74 

Leu 1.28 1.47 1.67 1.87 1.44 1.62 1.79 

TSAA:Lys 58.00 58.00 59.00 64.00 58.00 60.00 65.00 

Thr:Lys 78.00 78.00 78.00 78.00 78.00 78.00 78.00 

Trp:Lys 20.00 20.00 20.00 20.00 20.00 20.00 20.00 

Ile:Lys 61.00 60.00 60.00 60.00 60.00 60.00 60.00 

Val:Lys 68.00 71.00 75.00 79.00 71.00 75.00 79.00 

Leu:Lys 137.00 157.00 178.00 199.00 154.00 173.00 191.00 

Total Lysine, % 1.05 1.09 1.13 1.18 1.09 1.13 1.17 

ME, kcal/kg 1539 1539 1539 1539 1539 1539 1539 

SID Lys/ME, g/Mcal 2.76 2.76 2.76 2.76 2.76 2.76 2.76 

CP,% 16.60 17.60 18.80 20.00 18.00 19.50 21.00 

Ca, total, % 0.63 0.63 0.63 0.69 0.63 0.63 0.67 

P, total, % 0.55 0.53 0.53 0.62 0.53 0.52 0.61 

Available P, % 0.27 0.27 0.30 0.41 0.27 0.29 0.40 
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1Standardized Ileal Digestibility 
2 Provided per kg of complete diet: 11,002 IU vitamin A supplement, 1651 IU vitamin D3 

supplement, 55.1 IU vitamin E supplement, 0.044 mg vitamin B12 supplement, 4.4 mg 

menadione as menadione dimethylpyrimidinol bisulfite, 9.91 mg riboflavin supplement, 

60.6 mg D-pantohenic acid as D-calcium, 55.1 mg niacin supplement, 1.1 mg folic acid, 

3.3 mg pyridoxine as pyridoxine hydrochloride, 3.3 mg thiamine as thiamine mononitrate 

and 0.171 mg biotin, 165 mg Zn as zinc sulfate, 165 mg Fe as ferrous sulfate, 43.5 mg 

Mn as manganese sulfate, 16.5 mg Cu as basic copper chloride, 0.36 mg I as 

ethylenediamine dihydriodide and 0.3 mg of Se as sodium selenite. 
3Control = corn and soybean meal based diet with no DDGS added; Hot = Hot 

fermentation ethanol production method; Cold = Cold fermentation ethanol production 

method 
440% Cold Fermentation withdrawal treatment fed 40% cold diet during phase 3 

 

 

 

Table 2.3 Phase 3 reduced-oil DDGS  diet composition (as-fed basis)  
Distillers dried grains with solubles inclusion rate, %  

 Control3 Hot Cold 

  0 20 40 60 20 40 60 

Ingredient, % 
       

Corn 77.56 63.92 50.05 32.76 63.54 49.32 32.83 

Soybean meal 46.5% 17.24 10.57 3.93 0.00 10.95 4.68 0.00 

Hot Fermentation DDGS 0.00 20.00 40.00 60.00 0.00 0.00 0.00 

Cold Fermentation DDGS 0.00 0.00 0.00 0.00 20.00 40.00 60.00 

Soy oil 2.04 2.56 3.13 4.08 2.62 3.25 4.19 

Lysine  0.31 0.42 0.52 0.55 0.41 0.52 0.57 

Methionine 0.05 0.00 0.00 0.00 0.00 0.00 0.00 

Threonine  0.22 0.19 0.16 0.10 0.18 0.15 0.10 

Tryptophan 0.03 0.04 0.05 0.05 0.04 0.06 0.06 

Limestone 0.90 1.19 1.39 1.71 1.12 1.28 1.50 

21% Monocalcium phosphate 0.90 0.35 0.00 0.00 0.37 0.00 0.00 

Salt 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

Vitamin, trace mineral Premix2 0.35 0.35 0.35 0.35 0.35 0.35 0.35 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Calculated analysis 
  

      

Amino Acids1, % 
 

       

Lysine 0.83 0.83 0.83 0.83 0.83 0.83 0.83 

TSAA 0.48 0.48 0.52 0.59 0.48 0.53 0.59 

Thr 0.65 0.65 0.65 0.65 0.65 0.65 0.65 

Trp 0.17 0.17 0.17 0.17 0.17 0.17 0.17 

Ile 0.50 0.50 0.50 0.54 0.50 0.50 0.52 

Val 0.57 0.61 0.64 0.72 0.60 0.64 0.70 

Leu 1.18 1.38 1.58 1.84 1.36 1.53 1.73 

TSAA:Lys 58.00 58.00 63.00 71.00 58.00 64.00 71.00 

Thr:Lys 78.00 78.00 78.00 78.00 78.00 78.00 78.00 

Trp:Lys 20.00 20.00 20.00 20.00 20.00 20.00 20.00 

Ile:Lys 60.00 60.00 60.00 65.00 60.00 60.00 63.00 

Val:Lys 68.00 73.00 78.00 87.00 73.00 77.00 84.00 

Leu:Lys 143.00 167.00 191.00 221.00 163.00 184.00 209.00 

Total Lysine, % 0.94 0.98 1.02 1.07 0.97 1.01 1.05 

ME, kcal/kg 1543 1543 1543 1543 1543 1543 1543 

SID Lys/ME, g/Mcal 2.44 2.44 2.44 2.44 2.44 2.44 2.44 

CP,% 14.90 16.10 17.30 19.30 16.40 18.00 20.00 

Ca, total, % 0.57 0.57 0.57 0.68 0.57 0.57 0.66 

P, total, % 0.52 0.50 0.51 0.62 0.49 0.50 0.60 

Available P, % 0.25 0.25 0.29 0.41 0.25 0.28 0.40 
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Table 2.4 Phase 4 reduced-oil DDGS diet composition (as-fed basis)  
Distillers dried grains with solubles inclusion rate, % 

 Control3 Hot Cold 

  0 20  40 60 20 404 60 

Ingredient, % 
       

Corn 69.44 56.71 42.97 28.38 56.33 42.25 27.36 

Soybean meal 46.5% 25.12 17.50 10.84 4.29 17.87 11.59 5.40 

Hot Fermentation DDGS 0.00 20.00 40.00 60.00 0.00 0.00 0.00 

Cold Fermentation DDGS 0.00 0.00 0.00 0.00 20.00 40.00 60.00 

Soy oil 2.04 2.53 3.08 3.91 2.60 3.20 4.05 

Lysine  0.31 0.44 0.55 0.66 0.44 0.54 0.65 

Methionine  0.09 0.05 0.01 0.00 0.05 0.00 0.00 

Threonine  0.26 0.25 0.22 0.19 0.24 0.21 0.17 

Tryptophan  0.02 0.04 0.05 0.07 0.04 0.06 0.07 

Limestone 0.95 1.24 1.49 1.73 1.18 1.38 1.53 

21% Monocalcium phosphate 0.99 0.45 0.00 0.00 0.47 0.00 0.00 

Salt 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

Vitamin, trace mineral Premix 0.35 0.35 0.35 0.35 0.35 0.35 0.35 

Ractopamine 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Calculated analysis 
  

     

Amino Acids1, % 
 

     

Lysine 1.02 1.02 1.02 1.02 1.02 1.02 1.02 

TSAA 0.59 0.59 0.59 0.62 0.59 0.59 0.63 

Thr 0.79 0.79 0.79 0.79 0.79 0.79 0.79 

Trp 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

Ile 0.63 0.61 0.61 0.61 0.61 0.61 0.61 

Val 0.69 0.71 0.75 0.79 0.71 0.75 0.79 

Leu 1.36 1.54 1.74 1.93 1.51 1.68 1.85 

TSAA:Lys 58.00 58.00 58.00 61.00 58.00 58.00 62.00 

Thr:Lys 78.00 78.00 78.00 78.00 78.00 78.00 78.00 

Trp:Lys 20.00 20.00 20.00 20.00 20.00 20.00 20.00 

Ile:Lys 62.00 60.00 60.00 60.00 60.00 60.00 60.00 

Val:Lys 68.00 70.00 74.00 78.00 70.00 74.00 77.00 

Leu:Lys 134.00 151.00 171.00 190.00 149.00 166.00 182.00 

Total Lysine, % 1.14 1.18 1.22 1.26 1.18 1.22 1.26 

ME, kcal/kg 1537 1537 1537 1537 1537 1537 1537 

SID Lys/ME, g/Mcal 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

CP,% 18.00 18.80 20.00 21.10 19.20 20.70 22.20 

Ca, total, % 0.63 0.63 0.63 0.70 0.63 0.63 0.69 

P, total, % 0.57 0.55 0.54 0.64 0.55 0.54 0.62 

Available P, % 0.28 0.28 0.30 0.42 0.28 0.29 0.40 

1Standardized Ileal Digestibility 
2 Provided per kg of complete diet: 11,002 IU vitamin A supplement, 1651 IU vitamin D3 

supplement, 55.1 IU vitamin E supplement, 0.044 mg vitamin B12 supplement, 4.4 mg 

menadione as menadione dimethylpyrimidinol bisulfite, 9.91 mg riboflavin supplement, 

60.6 mg D-pantohenic acid as D-calcium, 55.1 mg niacin supplement, 1.1 mg folic acid, 

3.3 mg pyridoxine as pyridoxine hydrochloride, 3.3 mg thiamine as thiamine mononitrate 

and 0.171 mg biotin, 165 mg Zn as zinc sulfate, 165 mg Fe as ferrous sulfate, 43.5 mg 

Mn as manganese sulfate, 16.5 mg Cu as basic copper chloride, 0.36 mg I as 

ethylenediamine dihydriodide and 0.3 mg of Se as sodium selenite. 
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3Control = corn and soybean meal based diet with no DDGS added; Hot = Hot 

fermentation ethanol production method; Cold = Cold fermentation ethanol production 

method 
440% Cold Fermentation withdrawal treatment fed 40% cold diet during phase 4 
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1Standardized Ileal Digestibility 
2 Provided per kg of complete diet: 11,002 IU vitamin A supplement, 1651 IU vitamin D3 

supplement, 55.1 IU vitamin E supplement, 0.044 mg vitamin B12 supplement, 4.4 mg 

menadione as menadione dimethylpyrimidinol bisulfite, 9.91 mg riboflavin supplement, 

60.6 mg D-pantohenic acid as D-calcium, 55.1 mg niacin supplement, 1.1 mg folic acid, 

3.3 mg pyridoxine as pyridoxine hydrochloride, 3.3 mg thiamine as thiamine mononitrate 

and 0.171 mg biotin, 165 mg Zn as zinc sulfate, 165 mg Fe as ferrous sulfate, 43.5 mg 

Mn as manganese sulfate, 16.5 mg Cu as basic copper chloride, 0.36 mg I as 

ethylenediamine dihydriodide and 0.3 mg of Se as sodium selenite. 
3Control = corn and soybean meal based diet with no DDGS added; Hot = Hot 

fermentation ethanol production method; Cold = Cold fermentation ethanol production 

method 

Table 2.5 Phase 5 reduced-oil DDGS diet composition (as-fed basis)  
Distillers dried grains with solubles inclusion rate, % 

 Control3 Hot Cold 

  0 20 40 60 20 404 60 

Ingredient, % 
       

Corn 69.49 56.76 43.02 28.43 56.38 42.30 27.41 

Soybean meal 46.5% 25.09 17.47 10.81 4.26 17.85 11.56 5.37 

Hot Fermentation DDGS 0.00 20.00 40.00 60.00 0.00 0.00 0.00 

Cold Fermentation 0.00 0.00 0.00 0.00 20.00 40.00 60.00 

Soy oil 2.00 2.50 3.05 3.87 2.56 3.16 4.02 

Lysine  0.31 0.44 0.55 0.66 0.44 0.54 0.65 

Methionine  0.09 0.05 0.01 0.00 0.05 0.00 0.00 

Threonine  0.26 0.25 0.22 0.19 0.24 0.21 0.17 

Tryptophan 0.02 0.04 0.05 0.07 0.04 0.06 0.07 

Limestone 0.95 1.24 1.50 1.73 1.18 1.38 1.53 

21% Monocalcium phosphate 0.99 0.45 0.00 0.00 0.47 0.00 0.00 

Salt 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

Vitamin, trace mineral Premix 0.35 0.35 0.35 0.35 0.35 0.35 0.35 

Ractopamine 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Calculated analysis 
  

     

Amino Acids1, % 
 

     

Lysine 1.02 1.02 1.02 1.02 1.02 1.02 1.02 

TSAA 0.59 0.59 0.59 0.62 0.59 0.59 0.63 

Thr 0.79 0.79 0.79 0.79 0.79 0.79 0.79 

Trp 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

Ile 0.63 0.61 0.61 0.61 0.61 0.61 0.61 

Val 0.69 0.71 0.75 0.79 0.71 0.75 0.79 

Leu 1.36 1.54 1.74 1.93 1.51 1.68 1.85 

TSAA:Lys 58.00 58.00 58.00 61.00 58.00 58.00 62.00 

Thr:Lys 78.00 78.00 78.00 78.00 78.00 78.00 78.00 

Trp:Lys 20.00 20.00 20.00 20.00 20.00 20.00 20.00 

Ile:Lys 62.00 60.00 60.00 60.00 60.00 60.00 60.00 

Val:Lys 68.00 70.00 74.00 78.00 70.00 74.00 77.00 

Leu:Lys 134.00 151.00 171.00 190.00 149.00 166.00 182.00 

Total Lysine, % 1.14 1.18 1.22 1.26 1.18 1.22 1.25 

ME, kcal/kg 1536 1536 1536 1536 1536 1536 1536 

SID Lys/ME, g/Mcal 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

CP,% 17.90 18.80 20.00 21.10 19.10 20.70 22.20 

Ca, total, % 0.63 0.63 0.63 0.70 0.63 0.63 0.69 

P, total, % 0.57 0.55 0.54 0.64 0.55 0.54 0.62 

Available P, % 0.28 0.28 0.30 0.42 0.28 0.29 0.40 
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440% Cold Fermentation withdrawal treatment fed control diet during final 14 or 21 days 

on feed 
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Table 2.6 Phase 1 reduced-oil DDGS diet analyzed nutrient composition (as-fed basis) 
Distillers dried grains with solubles inclusion rate, % 

 
Control3 

Hot Cold 

 0 20 40 60 20 40 40W4 60 

Crude Protein 
        

Calculated 19.34 19.51 20.01 20.59 19.71 20.36 20.36 21.12 

Lab 11 18.07 20.31 19.45 21.71 18.79 20.60 20.68 21.06 

Lab 22  14.70 19.30 18.80 21.10 18.20 20.70 20.80 20.00 

Average 16.39 19.81 19.13 21.41 18.50 20.65 20.74 20.53 

 

Fat  

        

Calculated 4.74 5.53 6.33 7.13 5.35 5.96 5.96 6.57 

Lab 11 2.07 2.11 3.06 4.18 2.26 2.84 2.89 3.50 

Lab 22  4.39 4.66 5.60 6.13 4.47 5.23 5.49 6.25 

Average 3.23 3.39 4.33 5.16 3.37 4.04 4.19 4.88 

 

Crude Fiber 

        

Lab 11  2.11 2.73 3.23 3.63 2.56 2.90 3.02 3.66 

 

ADF 

        

Calculated 3.41 3.95 4.51 5.09 3.96 4.54 4.54 5.12 

Lab 22  2.54 2.97 3.67 3.84 3.19 3.08 3.23 3.33 

 

NDF 

        

Calculated 8.34 10.51 12.67 14.83 10.14 11.93 11.93 13.72 

Lab 22  5.69 6.61 10.80 12.40 7.99 8.68 10.30 12.10 

 

Lysine  

        

Calculated 1.23 1.25 1.27 1.29 1.25 1.27 1.27 1.29 

Lab 11  1.36 1.34 1.24 1.36 1.35 1.41 1.24 1.34 

Lab 22  1.21 1.34 1.24 1.37 1.23 1.33 1.42 1.35 

Average 1.28 1.34 1.24 1.36 1.29 1.37 1.33 1.34 

Histidine1 0.52 0.52 0.50 0.60 0.53 0.58 0.53 0.57 

Isoleucine1 0.84 0.83 0.75 0.90 0.83 0.87 0.78 0.83 

Leucine1 1.66 1.76 1.79 2.14 1.70 1.92 1.80 1.97 

Methionine1 0.37 0.33 0.47 0.37 0.39 0.41 0.36 0.39 

Phenylalanine1 0.95 0.94 0.94 1.03 0.92 1.00 0.91 0.96 

Threonine1 1.01 1.04 0.91 0.96 0.93 0.96 0.96 1.01 

Tryptophan1 0.22 0.23 0.23 0.23 0.24 0.24 0.26 0.25 

Valine1 0.93 0.94 0.88 1.08 0.94 1.01 0.91 1.00 

1 University of Missouri Agricultural Experiment Station Chemical Laboratories 
2 Minnesota Valley Testing Laboratories 
3 Control = corn and soybean meal based diet with no DDGS added; Hot = Hot 

fermentation ethanol production method; Cold = Cold fermentation ethanol production 

method 
440 W = 40% cold fermentation withdrawal during final 14 or 21 days on feed 
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Table 2.7 Phase 2 reduced-oil DDGS diet analyzed nutrient composition (as-

fed basis) 
Distillers dried grains with solubles inclusion rate, % 

 
Control3 Hot Cold 

 0 20 40 60 20 40 40W4 60 

Crude Protein 
       

Calculated 16.62 17.63 18.80 19.97 17.99 19.51 19.51 21.04 

Lab 11 16.34 17.97 18.52 21.10 17.18 18.97 18.68 20.49 

Lab 22  15.90 16.70 18.90 21.10 16.30 18.60 18.80 19.60 

Average 16.12 17.34 18.71 21.10 16.74 18.79 18.74 20.05 

         

Fat  
        

Calculated 4.89 6.49 8.12 9.97 6.11 7.36 7.36 8.80 

Lab 11 2.23 2.95 4.69 8.30 3.28 5.05 4.39 5.92 

Lab 22  4.30 5.68 6.87 8.42 5.70 7.16 6.61 8.13 

Average 3.27 4.32 5.78 8.36 4.49 6.11 5.50 7.03 

         

Crude Fiber 
        

Lab 11  2.11 3.48 4.12 5.53 3.19 3.84 5.28 5.61 

         

ADF 
        

Calculated 3.24 4.38 5.52 6.64 4.40 5.56 5.56 6.71 

Lab 22  1.86 3.88 4.85 7.19 4.51 3.64 4.06 5.00 

         

NDF 
        

Calculated 8.42 12.74 17.05 21.29 12.00 15.57 15.57 19.08 

Lab 22 7.64 8.80 15.10 21.70 11.60 13.60 13.60 17.00 

         

Lysine  
        

Calculated 1.05 1.09 1.13 1.18 1.09 1.13 1.13 1.17 

Lab 11 1.14 1.13 1.23 1.19 1.21 1.22 1.23 1.16 

Lab 22 1.06 1.19 1.20 1.26 1.06 1.21 1.27 1.32 

Average 1.10 1.16 1.22 1.23 1.13 1.22 1.25 1.24 

Histidine1 0.47 0.49 0.54 0.59 0.46 0.52 0.54 0.54 

Isoleucine1 0.74 0.73 0.77 0.79 0.68 0.71 0.74 0.72 

Leucine1 1.51 1.72 2.09 2.31 1.63 1.85 1.90 2.05 

Methionine1 0.30 0.34 0.36 0.37 0.33 0.34 0.34 0.37 

Phenylalanine1 0.85 0.85 1.05 0.95 0.85 0.84 0.87 0.86 

Threonine1 0.77 0.80 0.91 0.87 0.91 0.81 0.88 0.80 

Tryptophan1 0.20 0.20 0.22 0.23 0.20 0.22 0.23 0.22 

Valine1 0.83 0.88 0.96 1.04 0.80 0.89 0.92 0.94 

1 University of Missouri Agricultural Experiment Station Chemical Laboratories 
2 Minnesota Valley Testing Laboratories 
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3 Control = corn and soybean meal based diet with no DDGS added; Hot = Hot 

fermentation ethanol production method; Cold = Cold fermentation ethanol production 

method 
440 W = 40% cold fermentation withdrawal during final 14 or 21 days on feed 
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1 University of Missouri Agricultural Experiment Station Chemical Laboratories 
2 Minnesota Valley Testing Laboratories 
3 Control = corn and soybean meal based diet with no DDGS added; Hot = Hot 

fermentation ethanol production method; Cold = Cold fermentation ethanol production 

method 
440 W = 40% cold fermentation withdrawal during final 14 or 21 days on feed 

Table 2.8 Phase 3 reduced-oil DDGS diet analyzed nutrient composition (as-fed basis) 
Distillers dried grains with solubles inclusion rate, % 

 
Control3 Hot Cold 

 0 20 40 60 20 40 40W4 60 

Crude Protein 
       

Calculated 14.92 16.08 17.27 19.32 16.44 17.97 17.97 20.00 

Lab 11 12.61 15.56 17.60 20.11 14.65 15.88 16.49 18.60 

Lab 22  11.90 13.20 17.60 20.00 14.70 16.30 17.20 18.60 

Average 12.26 14.38 17.60 20.06 14.68 16.09 16.85 18.60 

         

Fat  
        

Calculated 4.97 6.57 8.22 10.16 6.20 7.46 7.46 8.98 

Lab 11 1.50 3.59 5.25 7.96 3.14 6.74 3.89 5.05 

Lab 22  4.00 5.90 6.93 8.51 5.76 6.48 6.55 8.07 

Average 2.75 4.75 6.09 8.24 4.45 6.61 5.22 6.56 

         

Crude Fiber 
        

Lab 11  1.74 3.04 4.11 5.45 3.03 3.82 5.25 5.38 

         

ADF 
        

Calculated 3.14 4.29 5.43 6.61 4.31 5.47 5.47 6.65 

Lab 22  1.43 2.88 4.36 7.46 3.71 2.91 5.54 4.07 

         

NDF 
        

Calculated 8.48 12.80 17.10 21.31 12.06 15.62 15.62 19.11 

Lab 22  6.42 11.10 15.50 19.30 11.50 15.40 14.10 17.00 

         

Lysine  
        

Calculated 0.94 0.98 1.02 1.07 0.97 1.01 1.02 1.05 

Lab 11  0.85 0.96 1.00 1.19 1.08 1.11 1.00 1.25 

Lab 22  1.02 1.03 1.04 1.11 1.00 1.02 1.15 1.19 

Average 0.93 0.99 1.02 1.15 1.04 1.07 1.07 1.22 

Histidine1 0.34 0.41 0.48 0.58 0.43 0.48 0.48 0.53 

Isoleucine1 0.50 0.56 0.65 0.78 0.60 0.64 0.64 0.68 

Leucine1 1.07 1.45 1.82 2.32 1.43 1.71 1.72 1.93 

Methionine1 0.23 0.23 0.33 0.39 0.28 0.32 0.32 0.37 

Phenylalanine1 0.58 0.67 0.78 0.94 0.70 0.75 0.74 0.80 

Threonine1 0.62 0.69 0.76 0.84 0.72 0.76 0.76 0.77 

Tryptophan1 0.17 0.17 0.21 0.21 0.20 0.18 0.20 0.20 

Valine1 0.58 0.70 0.84 1.03 0.73 0.82 0.82 0.90 
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Table 2.9 Phase 4 reduced-oil diet analyzed nutrient composition (as-fed basis) 
Distillers dried grains with solubles inclusion rate, % 

 
Control3 Hot Cold 

 0 20 40 60 20 40 40W4 60 

Crude Protein 
       

Calculated 17.96 18.80 19.97 21.13 19.16 20.67 20.67 22.19 

Lab 11 16.21 17.53 20.30 22.23 19.25 19.41 19.35 21.70 

Lab 22  14.90 17.20 20.20 21.90 19.00 18.90 19.60 20.10 

Average 15.56 17.37 20.25 22.07 19.13 19.16 19.48 20.90 

         

Fat  
        

Calculated 4.80 6.40 8.03 9.91 6.02 7.27 7.27 8.74 

Lab 11 1.63 3.34 4.92 7.56 3.43 4.85 5.52 6.01 

Lab 22  4.14 5.35 6.41 7.90 5.84 6.88 6.68 7.69 

Average 2.89 4.35 5.67 7.73 4.64 5.87 6.10 6.85 

         

Crude Fiber 
        

Lab 11  2.39 3.27 4.80 5.55 3.53 4.01 5.60 5.32 

         

ADF 
        

Calculated 3.33 4.45 5.59 6.71 4.47 5.63 5.63 6.78 

Lab 22  2.40 2.78 5.10 7.73 3.75 4.28 4.79 4.42 

         

NDF 
        

Calculated 8.39 12.71 17.02 21.26 11.97 15.54 15.54 19.05 

Lab 22  8.45 11.40 17.30 18.60 11.70 14.30 14.50 16.70 

         

Lysine  
        

Calculated 1.14 1.18 1.22 1.26 1.18 1.22 1.22 1.26 

Lab 11  1.21 0.97 1.28 1.43 1.37 1.26 1.28 1.42 

Lab 22  1.12 0.90 1.23 1.29 1.32 1.24 1.33 1.46 

Average 1.16 0.94 1.26 1.36 1.35 1.25 1.31 1.44 

Histidine1 0.46 0.50 0.58 0.62 0.51 0.55 0.54 0.61 

Isoleucine1 0.74 0.73 0.84 0.86 0.76 0.77 0.75 0.82 

Leucine1 1.42 1.70 2.14 2.48 1.71 1.90 1.90 2.21 

Methionine1 0.32 0.30 0.38 0.39 0.37 0.34 0.32 0.41 

Phenylalanine1 0.82 0.84 0.97 1.03 0.94 0.89 0.87 0.96 

Threonine1 0.86 0.75 0.94 0.96 0.97 0.86 0.85 0.97 

Tryptophan1 0.20 0.21 0.21 0.25 0.25 0.21 0.22 0.25 

Valine1 0.82 0.87 1.03 1.11 0.89 0.94 0.94 1.06 

1 University of Missouri Agricultural Experiment Station Chemical Laboratories 
2 Minnesota Valley Testing Laboratories 
3 Control = corn and soybean meal based diet with no DDGS added; Hot = Hot 

fermentation ethanol production method; Cold = Cold fermentation ethanol production 

method 
440 W = 40% cold fermentation withdrawal during final 14 or 21 days on feed  
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Table 2.10 Phase 5 diet analyzed nutrient composition (as-fed basis) 
Distillers dried grains with solubles inclusion rate, % 

 
Control3 Hot Cold 

 0 20 40 60 20 40 40W4 60 

Crude Protein 
       

Calculated 17.95 18.80 19.96 21.12 19.15 20.66 17.95 22.19 

Lab 11 15.72 22.30 19.84 21.77 17.67 19.40 15.89 20.65 

Lab 22  16.00 22.05 20.25 22.00 17.15 17.55 15.90 20.35 

Average 15.86 22.18 20.05 21.89 17.41 18.48 15.90 20.50 

         

Fat  
        

Calculated 4.77 6.37 8.00 9.87 5.99 7.23 4.77 8.70 

Lab 11 1.45 4.46 4.38 7.35 2.94 4.08 3.67 5.80 

Lab 22  4.01 5.77 6.71 7.90 5.39 6.09 4.63 7.84 

Average 2.73 5.11 5.54 7.63 4.17 5.08 4.15 6.82 

         

Crude Fiber 
        

Lab 11  2.27 4.37 4.44 5.64 3.21 4.13 2.27 5.39 

         

ADF 
        

Calculated 3.33 4.45 5.59 6.71 4.47 5.63 3.33 6.78 

Lab 22  2.32 6.18 5.49 7.42 3.08 5.26 3.17 5.69 

         

NDF 
        

Calculated 8.39 12.71 17.02 21.26 11.97 15.55 8.39 19.05 

Lab 22  7.64 15.95 15.30 21.10 10.80 14.15 7.84 18.30 

         

Lysine  
        

Calculated 1.14 1.18 1.22 1.26 1.18 1.22 1.14 1.25 

Lab 11  1.18 1.41 1.28 1.29 1.19 1.29 1.18 1.41 

Lab 22  1.10 1.28 1.21 1.32 1.19 1.26 1.15 1.38 

Average 1.14 1.34 1.24 1.30 1.19 1.28 1.16 1.39 

Histidine1 0.40 0.59 0.56 0.60 0.49 0.54 0.46 0.60 

Isoleucine1 0.64 0.91 0.81 0.83 0.71 0.77 0.72 0.81 

Leucine1 1.29 2.02 2.04 2.34 1.60 1.83 1.42 2.13 

Methionine1 0.30 0.38 0.36 0.39 0.32 0.34 0.31 0.38 

Phenylalanine1 0.75 1.03 0.93 0.99 0.82 0.87 0.81 0.94 

Threonine1 0.74 1.06 0.92 0.96 0.83 0.94 0.82 0.92 

Tryptophan1 0.21 0.25 0.21 0.22 0.23 0.21 0.23 0.22 

Valine1 0.70 1.06 0.99 1.06 0.84 0.94 0.81 1.03 

1 University of Missouri Agricultural Experiment Station Chemical Laboratories 
2 Minnesota Valley Testing Laboratories 
3 Control = corn and soybean meal based diet with no DDGS added; Hot = Hot 

fermentation ethanol production method; Cold = Cold fermentation ethanol production 

method 
440 W = 40% cold fermentation withdrawal during final 14 or 21 days on feed 
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Table 2.11 DDGS composition, % (as-fed basis)   
DDGS Composition 

  Hot Fermentation Cold Fermentation 

  Lab 11 Lab 22 Average Lab 11 Lab 22 Average 

Moisture 12.30 12.87 12.59 11.32 12.13 11.73 

Protein 28.84 28.60 28.72 26.49 26.00 26.25 

Fat 7.43 6.26 6.85 5.55 5.40 5.48 

Crude Fiber 8.34 - 8.34 8.58 - 8.58 

ADF - 10.15 10.15 - 7.49 7.49 

NDF - 31.30 31.30 - 26.60 26.60 

Ash 3.89 - 3.89 5.42 - 5.42 

AA, %  

Alanine 2.05 - 2.05 1.88 - 1.88 

Arginine 1.41 - 1.41 1.19 - 1.19 

Aspartic Acid 1.93 - 1.93 1.80 - 1.80 

Cysteine 0.62 - 0.62 0.60 - 0.60 

Glutamic Acid 4.00 - 4.00 4.05 - 4.05 

Glycine 1.14 - 1.14 1.09 - 1.09 

Histidine 0.89 - 0.89 0.79 - 0.79 

Hydroxylysine 0.01 - 0.01 0.04 - 0.04 

Hydroxyproline 0.41 - 0.41 0.24 - 0.24 

Isoleucine 1.20 - 1.20 1.03 - 1.03 

Lanthionine 0.14 - 0.14 0.06 - 0.06 

Leucine 3.45 - 3.45 2.90 - 2.90 

Lysine 1.09 0.89 0.99 1.09 0.91 1.00 

Methionine 0.60 - 0.60 0.55 - 0.55 

Ornithine 0.04 - 0.04 0.07 - 0.07 

Phenylalanine 1.40 - 1.40 1.21 - 1.21 

Proline 2.23 - 2.23 2.12 - 2.12 

Serine 1.34 - 1.34 1.23 - 1.23 

Taurine 0.07 - 0.07 0.08 - 0.08 

Threonine 1.16 - 1.16 1.05 - 1.05 

Tryptophan 0.20 - 0.20 0.22 - 0.22 

Tyrosine 1.06 - 1.06 0.96 - 0.96 

Valine 1.57 - 1.57 1.35 - 1.35 
1 University of Missouri Agricultural Experiment Station Chemical Laboratories 
2 Minnesota Valley Testing Laboratories 
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Table 2.12 Analytical methods for feed analysis  
Analytical Methods 

  Lab 11 Lab 22 

Moisture AOAC 934.1 AOAC 930.15 

Crude Protein AOAC 984.13 AOAC 990.03 

Fat AOAC 920.39 AOAC 2003.05 

Crude Fiber AOAC 978.10 - 

Neutral Detergent Fiber - AOAC 2002.04 

Acid Detergent Fiber - AOAC 973.18 

Ash AOAC 942.05 - 

Complete Amino Acid Profile AOAC 982.30 - 

Lysine - AOAC 994.12 
1 University of Missouri Agricultural Experiment Station Chemical Laboratories 
2 Minnesota Valley Testing Laboratories
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Table 2.13 The influence of ethanol production method and treatment (0, 20, 40, 40W, 60) of reduced-oil distillers dried grains with 

solubles (DDGS) on growth performance (n = 40) of finishing pigs. 
 

DDGS Inclusion, % 
 

P-value 
 Control1 Hot Cold  Hot Cold 

Hot vs Cold 
 0 20 40 60 20 40 40W2 60 SEM Linear Quadratic Linear Quadratic 

Phase I               

Initial BW, kg 44.09 44.19 44.07 44.74 44.48 44.56 43.67 45.14 0.74 0.68 0.77 0.36 0.95 0.82 

ADG, kg 1.08 1.05 1.03 1.06 1.03 1.04 1.01 1.03 0.04 0.70 0.39 0.49 0.76 0.58 

ADFI, kg 2.39 2.34 2.28 2.30 2.25 2.26 2.17 2.22 0.07 0.36 0.70 0.18 0.46 0.13 

G:F 0.45 0.45 0.46 0.45 0.46 0.47 0.47 0.47 0.01 0.48 0.54 0.82 0.75 0.45 

Phase II              
 

ADG, kg 1.08 1.08 1.00 0.99 1.03 0.98 0.95 0.84 0.03 <.0001 0.89 <.0001 0.28 <0.01 

ADFI, kg 2.75 2.83 2.68 2.70 2.73 2.53 2.58 2.48 0.07 0.44 0.71 0.02 0.88 0.01 

G:F 0.40 0.38 0.38 0.37 0.39 0.37 0.37 0.34 0.02 0.21 0.77 0.11 0.54 0.64 

Phase III              
 

ADG, kg 1.22 1.22 1.15 1.15 1.14 1.03 1.04 0.96 0.04 0.10 0.91 <.0001 0.96 <.0001 

ADFI, kg 3.45 3.48 3.40 3.36 3.28 3.10 3.23 3.03 0.07 0.32 0.59 <.0001 0.45 <.0001 

G:F 0.36 0.35 0.35 0.34 0.33 0.32 0.34 0.31 0.01 0.16 0.54 0.01 0.59 0.04 

Phase IV              
 

ADG, kg 1.25 1.25 1.18 1.20 1.25 1.14 1.16 1.14 0.05 0.42 0.85 0.03 0.90 0.36 

ADFI, kg 3.43 3.37 3.26 3.33 3.25 3.07 3.25 3.21 0.09 0.42 0.56 0.10 0.17 0.09 

G:F 0.37 0.37 0.39 0.36 0.37 0.36 0.36 0.35 0.01 0.65 0.88 0.36 0.14 0.72 

Phase V3              
 

ADG, kg 1.14 1.04 1.19 1.13 1.09 1.05 1.36 1.04 0.03 0.47 0.69 0.02 0.46 0.58 

ADFI, kg 3.36 3.22 3.57 3.44 3.22 3.45 3.66 3.33 0.08 0.19 0.98 0.74 0.94 0.70 

G:F 0.34 0.32 0.34 0.33 0.31 0.37 0.33 0.31 0.01 0.44 0.56 0.03 0.55 0.69 

Cumulative3              
 

Final BW, kg 130.98 129.13 127.76 130.42 129.38 124.72 127.17 121.98 1.65 0.61 0.22 0.02 0.78 0.01 

ADG, kg 1.14 1.11 1.09 1.12 1.11 1.05 1.09 1.01 0.02 0.47 0.24 <.0001 0.70 <.001 

ADFI, kg 3.04 3.03 3.02 3.09 2.98 2.93 2.96 2.92 0.06 0.92 0.78 0.53 0.66 0.03 

G:F 0.38 0.37 0.37 0.36 0.36 0.37 0.36 0.35 0.01 0.25 0.46 <.0001 0.42 0.66 
1Control = corn-soybean meal-based diet with no DDGS added; Hot fermentation ethanol production method; Cold Hydrolysis ethanol 

production method 
240W = 40% Cold fermentation DDGS withdrawal during final 14 or 21 days on feed 
3 Model Adjusted for days on feed as a covariate 
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Table 2.14 The influence of ethanol production method and treatment (0, 20, 40, 40W, 60) of reduced-oil distillers dried grains with 

solubles (DDGS) treatment on carcass characteristics (n = 40) of finishing pigs 

 

1Control = corn and soybean meal based diet with no DDGS added; Hot = Hot fermentation ethanol production method; Cold = Cold 

fermentation ethanol production method 
2Carcass Yield = Hot Carcass Weight / Live Weight 
3Loin depth and backfat measured between 3rd and 4th from last rib 
440W = 40% Cold fermentation DDGS withdrawal during 14 or 21 days on feed 
5Hot carcass weight used as covariate  

 
DDGS % Inclusion 

 
P-value  

Control1 Hot 
 

Cold 

  
Hot Cold 

 

 0 20 40 60 20 40 40W4 60 SEM Treatment Linear Quadratic Linear Quadratic Hot vs Cold 

HCW, kg 103.07 99.50 98.01 101.31 100.32 97.31 99.06 93.01 4.18 0.01 0.84 0.04 0.02 0.88 0.07 

Carcass Yield2,5, % 75.65 74.57 74.13 73.95 74.95 74.72 74.48 74.27 0.34 0.04 0.01 0.12 0.08 0.80 0.12 

Back fat3,5, mm 15.56 15.49 16.19 14.64 15.76 15.46 16.80 15.22 0.60 0.39 0.32 0.06 0.67 0.75 0.40 

Loin Depth3,5, mm 57.58 61.35 59.93 58.16 59.46 59.03 60.10 58.10 1.37 0.56 0.88 0.13 0.66 0.11 0.53 

Percent Lean5, % 53.36 53.65 53.14 53.92 53.35 53.54 52.77 53.56 0.40 0.62 0.42 0.26 0.61 0.97 0.37 
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Table 2.15 The influence of ethanol production method and treatment (0, 20, 40, 40W, 60) of reduced-oil distillers dried grains with 

solubles (DDGS) on boneless loin weight and quality (n = 40) of finishing pigs 
 

DDGS % Inclusion 
 

P-value 

 Control1 Hot Cold   Hot Cold  

 0 20 40 60 20 40 40W2 60 SEM Treatment Linear Quadratic Linear Quadratic 

Hot 

vs 

Cold 

Boneless Loin 

Weight, kg5 3.91 4.10 4.07 4.03 4.11 4.08 3.94 4.08 0.08 0.57 0.28 0.43 0.13 0.33 0.79 

Subjective Color3,5 3.38 3.34 3.11 3.13 3.07 3.27 3.00 3.02 0.11 0.04 0.05 0.78 0.01 0.76 0.15 

Subjective Firmness5 2.28 2.28 2.02 1.75 2.20 2.29 2.19 2.08 0.25 0.52 0.06 0.71 0.54 0.83 0.26 

Subjective 

Marbling4,5 
2.41 1.95 2.00 1.57 1.79 1.58 1.99 1.57 0.18 0.07 0.01 0.66 0.02 0.14 0.43 

L*5 48.30 48.88 47.70 48.51 48.88 46.70 48.29 47.25 0.90 0.67 0.68 0.80 0.72 0.95 0.38 

a*5 9.07 8.44 8.24 8.17 8.29 7.72 8.08 7.45 0.30 0.10 0.05 0.28 0.02 0.50 0.08 

b*5 0.51 0.18 0.00 0.00 0.02 0.00 0.00 0.00 0.22 0.46 0.01 0.36 0.22 0.63 0.43 

1Control = corn and soybean meal based diet with no DDGS added; Hot = Hot fermentation ethanol production method; Cold = Cold 

fermentation ethanol production method 
240W = 40% Cold fermentation DDGS withdrawal during 14 or 21 days on feed  

3Color scale 1-6, 1 = Pale pinkish-grey to white, 6 = Dark purplish-red 
4Marbling scale 1-10 
5Hot carcass weight used as covariate 
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Table 2.16 The influence of ethanol production method and treatment (0, 20, 40, 40W, 60) of reduced-oil distillers dried grains with 

solubles (DDGS) belly dimensions and quality measurements (n = 40) of finishing pigs 

 DDGS Inclusion, %        

 Control1  Hot  Cold   Hot Cold  

 0 20 40 60 20 40 40W4 60 SEM Treatment Linear Quadratic Linear Quadratic Hot vs 

Cold 

Weight, kg7 7.41 7.57 7.39 7.52 7.51 7.67 7.68 7.83 0.13 0.38 0.76 0.91 0.20 0.73 0.07 

Length, cm7 63.27 63.41 62.51 63.00 62.81 61.60 63.50 62.32 0.70 0.58 0.60 0.48 0.44 0.42 0.42 

Width, cm7 35.47 36.50 37.00 37.51 36.74 36.77 36.49 37.50 0.49 0.19 <.0001 0.90 0.08 0.78 0.72 

Scribe line Width, 

cm7 
8.12 7.99 8.08 8.06 8.23 7.73 7.99 8.18 0.21 0.54 0.86 0.44 0.97 0.35 0.92 

25% Depth, cm7 2.59 2.40 2.41 2.26 2.37 2.46 2.59 2.46 0.10 0.14 0.04 1.00 0.54 0.21 0.08 

50% Depth, cm7 2.12 1.94 1.80 1.73 1.78 1.84 1.98 1.79 0.07 0.01 0.01 0.48 <.0001 0.01 0.63 

75% Depth, cm7 2.08 1.91 1.81 1.69 1.88 1.91 2.02 1.92 0.06 <.0001 <.0001 0.75 0.09 0.05 <0.01 

Average Depth, cm7 2.28 2.10 2.02 1.90 2.02 2.08 2.21 2.06 0.06 0.01 <.0001 0.71 0.07 0.04 0.07 

Belly Iodine Value 

from Titration6, 7 73.07 81.54 83.43 89.76 83.03 87.50 82.16 95.67 1.25 <.0001 <.0001 0.38 <.0001 0.41 0.02 

Calculated Iodine 

Value3, 7 70.99 78.61 80.98 86.57 79.47 84.23 79.07 92.09 1.33 <.0001 <.0001 0.34 <.0001 0.70 0.10 

Shoulder Iodine 

Value2, 7 72.54 77.86 81.95 89.08 80.54 85.77 80.13 89.79 0.69 <.0001 <.0001 0.30 <.0001 <.0001 0.04 

Flop Score5, 7 3.12 2.41 1.93 1.55 2.23 1.91 2.58 1.69 0.18 <.0001 <.0001 0.78 <.0001 0.08 0.30 

1 Control = corn-soybean meal-based diet with no DDGS added; Hot fermentation ethanol production method; 2Cold Hydrolysis 

ethanol production method;  
2 Fat sample taken from clear plate and analyzed with Bruker near infrared 
3Calculated Iodine value = 

(C16:1*0.95)+(SUM(C18:1)*0.86)+(SUM(C18:2)*1.732)+(SUM(C18:3)*2.616)+(C20:1*0.785)+(C22:1*0.723) (1998 AOAC) 
440W = 40% Cold Fermentation DDGS withdrawal during 14 or 21 days on feed  

5Scale 1-5; 1 = soft, 5 = firm 
6AOCS method Cd1-25 modified 
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7Hot carcass weight used as covariate 
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Table 2.17 Reduced-oil DDGS and soybean oil Fatty Acid Profile (as-fed basis), % of 

total 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Hot fermentation ethanol production method; Cold Fermentation ethanol production 

method; Soybean Oil 
2Total SFA = C14:0 + C16:0 + C17:0 + C18:0 + C20:0 + C22:0 
3Total MUFA = C16:1 + C18:1 + C20:1  
4Total PUFA = C18:2 + C18:3 + C20:2   
5Total UFA = C16:1 + C18:1 + C18:2 + C18:3+ C20:2 
6UFA : SFA = Total UFA / Total SFA  
7PUFA : SFA = Total PUFA / Total SFA 

 
CF DDGS1 HF DDGS Soybean Oil 

C14 0.07 0.05 0.07 

C16 13.68 13.78 10.85 

C16:1 0.09 0.09 0.08 

C17 0.07 0.06 0.12 

C18 2.18 1.92 3.89 

C18:1 26.52 25.39 21.43 

C18:2 54.88 56.45 53.95 

C18:3  1.51 1.32 8.83 

C20 0.42 0.4 0.29 

C20:1 0.32 0.3 0.19 

C20:2 0.04 0.04 0.03 

C22 0.15 0.14 0.22 

Other 0.07 0.06 0.05 

Total SFA2 2.89 2.57 4.59 

Total MUFA3 26.93 25.78 21.7 

Total PUFA4 56.43 57.81 62.81 

Total UFA5 83.36 83.59 84.51 

UFA:SFA6 28.84 32.53 18.41 

PUFA:SFA7 19.53 22.49 13.68 
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Table 2.18 The influence of ethanol production method and treatment (0, 20, 40, 40W, 60) of reduced-oil distillers dried grains with 

solubles (DDGS) treatment on fatty acid profile of belly adipose tissue, % of total (n = 40) of finishing pigs 
 

 DDGS Inclusion, %  P-value 

 Control1 Hot Cold   Hot Cold 

 0 20 40 60 20 40 40W2 60 SEM Treatment Linear Quadratic Linear Quadratic Hot vs Cold 

C10:08 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.04 0.00 0.03 <.0001 0.82 0.03 0.37 0.21 

C12:08 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.00 0.16 0.02 0.64 0.06 0.31 0.76 

C14:08 1.17 1.05 1.02 0.97 1.09 1.09 1.04 0.92 0.04 0.01 <.0001 0.43 0.01 0.42 0.50 

C15:08 0.02 0.03 0.04 0.05 0.02 0.04 0.03 0.03 0.01 0.11 0.03 0.64 0.12 0.63 0.06 

C16:08 22.40 20.39 19.94 19.02 20.40 19.61 20.33 17.47 0.42 <.0001 <.0001 0.19 <.0001 0.97 0.29 

C16:18 2.04 1.81 1.55 1.51 1.79 1.68 1.47 1.21 0.11 <.0001 <.0001 0.27 <.0001 0.29 0.21 

C17:08 0.19 0.26 0.26 0.28 0.23 0.23 0.24 0.29 0.02 <.0001 <.0001 0.18 0.01 0.68 0.07 

C18:08 12.77 11.00 11.33 10.09 10.91 10.22 12.03 9.38 0.39 <.0001 <.0001 0.42 <.0001 0.16 0.50 

C18:18 40.34 39.01 37.08 35.42 38.40 35.85 37.25 33.22 0.55 <.0001 <.0001 0.93 <.0001 0.55 0.02 

C18:28 17.33 22.06 24.28 27.88 22.76 26.53 23.23 32.00 0.82 <.0001 <.0001 0.34 <.0001 0.89 0.02 

C18:38 1.50 1.79 1.98 2.28 1.85 2.07 1.90 2.47 0.07 <.0001 <.0001 0.84 <.0001 0.76 0.23 

C20:08 0.27 0.23 0.24 0.22 0.25 0.25 0.27 0.22 0.01 <.0001 <.0001 0.42 <.0001 0.56 0.02 

C20:18 0.77 0.78 0.69 0.72 0.76 0.70 0.75 0.67 0.03 0.26 0.19 0.66 0.02 0.83 0.74 

C20:28 0.78 0.99 1.02 1.12 1.03 1.14 1.01 1.31 0.05 <.0001 <.0001 0.14 <.0001 0.31 0.01 

C20:38 0.24 0.27 0.28 0.24 0.26 0.29 0.26 0.30 0.02 0.39 0.94 0.13 0.04 0.63 0.17 

C20:48 0.22 0.26 0.25 0.28 0.27 0.28 0.26 0.32 0.01 <.0001 0.01 0.74 <.0001 0.46 0.01 

C21:08 0.03 0.06 0.08 0.06 0.06 0.06 0.05 0.05 0.03 0.95 0.32 0.50 0.81 0.62 0.56 

Total SFA3,8 36.74 32.96 32.87 30.60 32.90 31.44 33.89 28.38 0.74 <.0001 <.0001 0.27 <.0001 0.56 0.37 

Total 

MUFA4,8 42.97 41.45 39.19 37.52 40.85 38.12 39.32 35.08 0.62 <.0001 <.0001 0.78 <.0001 0.43 0.02 

Total PUFA5,8 20.12 25.42 27.86 31.85 26.21 30.33 26.73 36.44 0.92 <.0001 <.0001 0.33 <.0001 0.87 0.02 

UFA:SFA6,8 1.73 2.03 2.04 2.29 2.04 2.19 1.95 2.56 0.30 <.0001 0.08 <.0001 0.64 <.0001 0.25 

PUFA:SFA7,8 0.56 0.78 0.85 1.05 0.80 0.97 0.79 1.31 0.05 <.0001 <.0001 0.69 <.0001 0.38 0.04 
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1Control = corn-soybean meal-based diet with no DDGS added; Hot fermentation ethanol production method; 2Cold Hydrolysis 

ethanol production method; 
240W = 40% Cold Fermentation DDGS withdrawn during final 14 or 21 days on feed 
3Total SFA = C10:0 + C12:0 + C14:0 + C15:0 + C16:0 + C17:0 + C18:0 + C20:0 + C21:0 + C24:0 
4Total MUFA = C16:1 + C18:1 + C20:1  
5Total PUFA = C18:2 + C18:3 + C18:3 Gamma + C20:2 + C20:3 + C20:4  
6UFA : SFA = Total UFA / Total SFA  
7PUFA : SFA = Total PUFA / Total SFA  
8Hot carcass weight used as covariate 
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