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CHAPTER ORE

IETRODUCTIOR

The transform Kernel of the Fourier transform is
exp(-1wt), i.e. cos(wt) - 1sin(wt); where iI={(-1). Obviously
the complex arithmetic is needed to obtain the required
Fourier transform In 1942, Hartley([i) proposed a new
formulation of the Fourier integral identity by using cas(wt)
as the transform Kernel, where cas(wt)=cos(wt) + sin(wt), 1is
an abbreviation for cosine and sine. It 1is called the
Hartley transform and has many properties similar to those of
the Fourier transform. The important distinctions are that
the Hartley transform of a real-valued function is also real
valued, and the inverse transformation is the same integral
operation as the direct transformation. Furthermore, its
evaluation does not 1involve complex functions. This is a
potential advantage if the transform is to be explicitly
computed.

The discrete Fourier transform (DFT) has the same
transform Kernel as the Fourier transform. In 1963,
Bracewell[2) introduced the discrete Hartley transform (DHT)
by using Hartley’s transform Kernel, I e. cas(wt). The DHT
can apply to numerical spectral analysis and convolution.
Unlike the DFT, no additional program is required for the
inverse DHT as it is the same as the direct transformation.

If the real and imaginary parts 6f the DFT are expressly



required then they are directly obtainable as the even and
‘odd parts' of +the DHT. The power spectrum can also be
obtained directly from the DHT without first calculating the
real and imaginary parts of the DFT as in the usual way of
calculating power spectra.

In 1984, Bracewell[3] worked out a fast algorithm for
pPerforming the DHT of a data sequence of N elements in a time
proportional to NlogpN. He proved that the fast Hartley
transform (FHT) 1i1s as fast as or faster than the fast Fourier
transform (FFT) and serves for all uses such as spectral
analysis, digital signal processing, and convolution to which
the FFT is at present applied. Since then, many discussions
on the FHT [5 - 10) and its applications [16]), [18]) were
aroused.

The vector processor (VP) was initiated by Miron 1in
1985. It is an adjunct to an IBM personal computer 1in which
a sequence of data is passed from the host’s memory to a row
of mathematical coprocessors, operated on simultaneously by
each of a sequence of the coprocessor’s instructions, and
then the results are passed back to the main memory ([21]). It
is a single-instruction, multiple-data stream (SIMD) computer
system [23]. The purpose of this device is to economically
achieve maximum speed in the computer execution of a group of
scientific calculations.

Since the FHT 1is applied on a data sequence of N

elements, where N is usually very large, it 1is a good



candidate to Dbe performed on the vector processor and
'theoreticaily, a great improvement on the computer execution
time should be obtained.

The Hartley transform, the DHT, and their properties
will be presented in the subsequent chapters. The derivation
of the DFT from the DHT will also be illustrated. Finally, a
software system for computing the DHT on a VP will De

discussed and its performance will also be evaluated.



CHAPTER TWO

THE HARTLEY TRANESFORHM

2-1 Definition

The o0l1ld version of the Fourier transform and the

inverse Fourier transform were written as

S(w)

(4 4]
(2m)—% [ V(t) exp(-1iwt) dt ,

-®

Vit)

[+ 4]
(2m)—% J S(w) exp(iwt) dw.

®

In order to achieve a symmetrical appearance, Hartley

(1) introduced the different pair of formulas

(w)

[+ ]
(2m)—H% [ V(t) cas(wt) dt ,

-®

vV(t)

©
(2m)—H% J 3(w) cas (wt) dw ,

(0 1)



where cas is the sum of the cosine and sine, 1i.e. cas(Xx)
Eos(x) + sin(x). However, the new Version of the Fourier
transform uses (au)“S(w) instead of S(w). The result is that
the factor (au)'% disappears from the transform definition
but a factor (;"rr)"1 appears in the inversion formula. In

terms of frequency, the Fourier transform can be written as

®
F(f) = [ V(t) exp (-12mft) dt , (2-1)
-
®
V(t) = I F(f) exp(12nft) df. (2-2)
-

Adopting this practice leads to

©

H(f) = J V(t) cas (2rft) dt , (2-3)
-
®

V(t) = J H(f) cas (2nft) df. (2-4)
-

The proof of equation (2-4) can be found in [10].

Therefore, the inverse Hartley transform is indistinguishable

from the direct transform.



Relationship Between H(f) And F (f)

Rewriting equation (2-1) and (2-3),

F(f) =
41}
[+ ]
= J V(t) cos(2rft) dt -
-
[+ ]
» 1 I V(t) sin(2rnft) dt ,
-
and
H(f) -

®

®
= [ V(t) cos(2rft) dt +

o

®
J V(t) sin(2rft) dt.

Equation (2-5) and (2-6) imply that

we have

®
] V(t) [cos(@rmft) - l1sin(@wft)] dt

(2-5)

®
J V(t) [cos (@wft) + sin(@wmft))] dt

(2-6)



H(f) = Re F(f) - Im F(f). (2-7)
Let H(f) = E(f) + O(f), where E(f) and O(f) are the

even and odd parts of H(f) respectively. Then

®
Re F(f) = E(f) = [V(t) cos (2rft) dt (2-8)
-
®
Im F(f) = -O(f) = -l V(t) sin(2nft) dt. (2-9)
-®
By definition, E(f) = E(-Ff)
and Oo(f) = -O(-¥).
Therefore

H(f) + H(-T)

E(f) =
2
®
= [ V(t) cos (2wrft) dt
-0
and
H(f) - H(-)

O(f) =

V(t) sin(@2nft) dt.

"
|1—,8



These two integrals are Known as the Fourier cosine
‘transform 'and the Fourier sine transform respectively and
have been extensively tabulated([ii)]. It 1is true that E(f),
O(f), Re F(f), and Im F(f) are real only when V(t) is real.

The discussion above is summarized as follows: The
Fourier transform is the even part of the Hartley transform
minus 1 times the odd part; conversely, the Hartley transform
is the real part of the Fourier transform minus the imaginary

part.

Some good examples can be found in [4].

-3 Power Spectrum
The power spectrum is well presented in [4]).

By definition, the power spectrum P(f) is

P(f) |F(f)|2

[(Re F(£))2 + [Im F(f))2.

It 1s also possible to obtain the power spectrum

directly from the Hartley transform. Thus

P(f) [(Re F(£))2 + [Im F(£))2

[E(f))2 + [0(£))2

(H(f) + H(-£))2 + [H(f) - H(-f))2

4

[(H(£))2 + [H(-f))2

2

Thus in lieu of squaring the real and imaginary parts

and summing the two values at a given value £, we square and



sum the two values of the Hartley transform at +f and -f, and

then divldé the result by a factor of 2.

2-4 Theorems

Two sorts of theorem are discussed in [4). The first
pertains to operations such as modulation, convolution, and
other common operations that may be carried out on a
function. This sort of theorem tells what corresponding
operation goes on simultaneously in the transform domain.
The second kKind of theorem deals with relations between
functions and their transforms that can typically be
expressed 1in the form of an equation. They are reproduced
from [(4) and listed in Table 2.1 and Table 2.2 respectively.
A worthy point to note is the convolution theorem. If one or
both of the functions entering into the convolution are even,
then the Hartley theorem 1s the same as the Fourier theorem,

i.e. Hy (f) Hp(f).
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Table 2.1 Theorems for the Fourier and Hartley
transforms

Theorem V(t) F(f) H(Sf)

Similarity V(it/D) |T|F(Tf) |T|H(Tf)

Addition Vi(t)+Va(t) Fy(£)+Fp (1) Hy (£) +Hp (1)

Reversal V(-¢) F(-1) H(-f)

snift V(t-T e-12nT1p ( £) cos (2rTHH( F)
+8in(2rTfYH( -F)

Modulation V(t)cos2rfot %[F(£f-£fpo)+ X[H(f-fo) +

F(f+£fp)) H(f+£fp))

Convolution Vi(t)nVo(t) Fq(£)Fp (1) ¥[Hy (HHo(F) -
Hy (-HHo(-1)+
Hy (f)Ho (-1) +
Hy (-f)Ha ()]

Product Vi(t)Va(t) Fyq(f)xFp(5) % [Hy (£f)Hp (£) -
Hy (-f)xHpo (-1) +
Hy (f)¥Hpa (-1) +
Hy (-£) #Hp (1))

Autocorrelation V(t)@ev(t) |F(f)|3 x[[H(f)]2+[H(-f)]3]

Derivative V2 (¢) 120 fF () -2rfH (-1

2nd derivative V©(¢t) -4me £2F ( £) -4l FEH ( £)




. Table 2.2 Theorems for

11

relations between domains

Fourier Hartley
Theorem Property relation relation
Infinite
integral vt)dt = F(0) = H(O)
-®
First e
moment tV(t)dt = F°(0)/(-128rm) = -H’ (0)/2x
J-o
Second el
moment t2v (t)dt = -F’’(0)/4%2 = -H’’(0)/4n2
J-o
r 0
tv(t)dt
J-o
Centroid S =4F’ (0)/ (2wF(0))= -H’ (0)/(2WH(0))
T vV(t)dt
J-o




12

CHAPTER THREE

THE DISCRETE HARTLEY TRANSFORM

3-1 Definition
The discrete Fourier transform (DFT) and its

inverse have the standard form

N-1
F(k) = N-1 Eof(n)exp(-larnkln) (3-1)
ns=
N-1
£(n) - Kgor(k)exp(1aunx/N) (3-2)

The function f(n) may be the discrete representation
of an underlying continuous waveform or may be a function of
a variable that is basically discrete.

Bracewell [2] defined the discrete Hartley transform

(DHT) of a finite length sequence and its inverse as

N-1
H(k) = N-1 Bof(n)cas(EVnk/N) » (3-3)
ns=
N-1
f(n) = kBOH(}t)cas(almk'/N) . (3-4)
O ¢ n ¢ (H-l) ’
where cas(Xx) = cos(x) + sin(x). The proof of equation (3-4)

can be found in (4), pp. 28. The DHT is real if £f(n) 1is
real. Comparing these equations, one can see that the DHT

and the DFT are closely related.
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3-2 Relationship Between The DHT And The DFT

Rewriting equation (3-1) and (3-3), we have

N-1
F(k) = N-1 zof(n)[cos(EInkyn) - isin(2mnk/N))
ns=
N-1
= N-1 £ f(n)cos(2wnk/N) -
n=0
N-1
IN-1'B £(n)sin(2wnk/N)
n=0
and
N-1
H(k) = N-1 Bof(n)[cos(atnk/n) + sin(2rnk/N) )
ns=

N-1
= N-i'¢ f(n)cos(2rnk/N) +
n=0

N-1
N-1 ¢ f(n)sin(2wnk/N).
n=0

AsS in the continuous case, the DHT possesses even and

odd parts

H(k) = E(K) + O(K)

where E (k)

N-1
N-1 © f(n)cos(2wnk/N) |,
n=0

O (k)

N-1
N-1 't f(n)sin(2mnk/N) .
n=0

If K 1s replaced by (N - k),

N-1
E(N-k) = N-1 nof(n)cos(ezn-ennx/N)

ns

HILTON M BRICTS LSRARY

South Dakota S s University
Brookings. 3D 57¢67-1023
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1R-1
N~ Bof (n)cos(2wnk/N)

ns=
= E(k)
and
N-1
O(N-k) = N1 Bof(n)sln(é‘rn-almk/ll)
ns=
N-1
= -N~1 ¢ f(n)sin(2w¥nk/N)
n=0
= -O(k) .
Thus
[H(k) + H(N-K))
E(k) =
2
and
[H(K) - H(N-K))
O(k) =

2
In the case of K = 0 and K = N/2, one can prove that
E(0) = H(O) ’ o(0) = 0
E(N/2) = H(N/2) , O(N/2) = O.
From the definition of the DFT, it is apparent that

F (k) can be formed from the DHT’s even and odd parts

by
F(kK) = E(k) - 10(K)
(H(k) + H(N-K)) (H(k) - H(N-K))
d 2 -2 2
| (H(¥-k) + H(k)) o B (H(N-K) - H(K))

2 a2



15

conversely, to form H(K) when F (k) is available
H(k) = Re F(k) - Im F(k) .
These relations are strictly analogous to those
obtained previously for the continuous variable.
A number of examples that 1illustrates the chara-

teristics of the DHT can also be found in [4]).

3-3 Theorems

The theorems of the DHT discussed here are based upon
(4). Just as there is a Hartley transform theorem for every
theorem that applies to the Fourier transform, there are also
corresponding theorems for the discrete transforms. The
theorems such as convolution, autocorrelation, and first
value, etc. are listed in Table 3.1 and Table 3. 2.

The proofs and discussions on some theorems such as
reversal, addition, shift, product, and convolution are well
presented in ([4).

One may note that the mean value of the sequence ffn)
1s given by H(O) and that the mean square value of f(n) \is
given by LH2,

Some of the theorems for the two different transforms
correspond exactly, as 1s the case with TH(k) = £(0) and
Zf(n) = N x H(O), but some exhibit differences.

The only theorem not listed in the table is the
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sStretch or similarity theorem. It states that if a sequence
£ (n) 1s Stretched to0 double 1ts length by inserting a zero
element after each given element, then the elements of the
original DHT are repeated. For example,

{1 2 3 4) has the DHT (2.5 -1 -0.5 0O} ,

then {1 0 2 0 3 O 4 0} has the DHT

(2.5 -1 -0.5 0 2.5 -1 -0.5 O].

The properties of the DHT commend themselves for
application to numerical analysis. The fact that the
transform values are real 1s a convenience in managing
calculations. In addition, the reversibility of the
transform 1s helpful as one does not need to Keep track of
which domain one is in. Furthermore, several of the theorems
for the Fourier transform have different forms according to
the domain, a concern that is obviated with the DHT. The
factor N 1s domain-dependent and could be a normalization
factor or calibration factor to be applied at the end of a
numerical calculation. Experience shows that the last step
is the place to consolidate proportionality factors and so
the departure from strict reversibility represented by the

factor N is not computationally important [4).
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Table 3.1 Theorems for operations on discrete transforms

Function DFT DHT
Theorem f(n) F (K) H (k)
Reversal f(-n) F(-K) H ( -k)
Addition £ (n)+£2(n) Fy (K)+F2 (K) H4 (k) +Hp (K)
shift £(n-17 e-12¥TK/Np (k) cos(28TK/N)H(K)

+8in(27Tk/N)H (N-K)

Convolution £fy(n)xfpo(n) NF4 (K)Fp (K) ¥N([Hy (K)Hp (K) -
Hy (-K)Hp ( -K) +
Hy (K)Hp ( -K) +
Hy (-K)Hp (K))

Product fy(n) £fa(n) Fy(K)aFp(K)  %N[Hy (X)*Hp (K)-

Hy (-K) #Hp ( -K) +

Hy (K) »Hp ( -K) +

Hy (-k) »Hp (K) )
Autocorrelation f(n)ef(n) XN|F‘(R) |a K([H(k))a+ [H(—k)]ai
Derivative £’ (n) 128KF (K) 2TKH ( -K)

2nd derivative £"(n) -4 nCKeF (K) -47CKH (K)
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Table 3.2 Theorems on relations for discrete transforms

N-1
Sum of sequence Bg(n) = NF(O) = NH(O)
ns=
N-1 N-1
First value £(0) = EF(kK) = TH(k)
K=0 K=0

N-1 N-1 N-1
Quadratic content Séf(n)]a : N z&r(x”a : N z:ymc)p?
n= K= K=
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CHAPTER FOUR

THE FAST HARTLEY TRANSFORH

Since the discrete Hartley transform (DHT) is closely
related to the discrete Fourier transform (DFT), one can
pPredict that the fast Fourier transform (FFT) algorithm can
be converted to a fast Hartley transform (FHT) with some
modifications. The FHT can be expected to transform one real
array of length N in half the time that it takes the FFT to
process a complex array of length N. Buneman [10) presented
the similarities between DHT and DFT and showed that the role
Played by the imaginary part in the complex Fourier transform
is taken on by the real Hartley transform recorded bacKwards
so that one can convert an FFT program into an FHT program
with only a few indexing changes.

About one YyYear after his proposal of the DHT,
Bracewell (3] published the first fast algorithm for
performing the DHT which was basically the same as Cooley and
TuKkey’s method [12) for the FFT, or so-called decimation-in-
time (DIT) algorithm (It is also called a decimation-in-time
radix-2 algorithm or Jjust a radix-2 algorithm.) Since then,
the various methods for computation of the FFT were examined
and attempted for the FHT. The methods such as decimation-
in-frequency (DIF) FHT ([5], split-radix (SR) FHT (9], in-
Place FHT (6], and radix-4 FHT [8] had Dbeen worked out for

computing the DHT. The total numbers of the operations of



the first two

[9):

methods

Additions

Multiplications

20

and the DIT are summarized as follows

DIT
DIF

SR

For ease

2N(logpN-1)+2

372 N(logpN-1)+2

(2N-4) (10ogyN)

of comparison,

various values

N(logpN-2)+2
N(logpoN-3)+4

(N-4) (1ogyN)

calculated and shown in Table 4.1 and Table 4. 2.

Table 4.1 Number of real multiplications to compute
an N-point DHT

of N

N DIT DIF SR
16 34 20 24
32 98 68 84
64 258 196 180
128 642 516 496
256 1538 1284 1008
512 3586 3076 2540
1024 8194 T1T72 5100

Table 4. 2 Number of real additions to compute an

N-point DHT

N DIT DIF SR
16 98 T4 56
32 258 194 180
64 642 482 372
128 1538 1162 1008
256 3586 2690 2032
512 8194 6146 5100
1024 18434 13826 10220

are
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A‘ comparison of operation counts on various methods
of the FHT can be found in (7], (8], and [9]. The application
of the same method but with different approach will cause a
minor difference in operation counts. Although [7])] and [8]
concluded that the FHT algorithms do not give any increase in
performance over the existing fastest real-valued FFT
algorithms such as Winograd’s FFT algorithm (i14] and Bergland
and Dolan’s algorithm [15), one may predict that the FHT has
a great potential in some situations as its real-valued
function nature and the equivalence of the forward and
inverse DHT may Jjustify the cost. Hou([13) presented his
algorithm and showed that in lower order transforms the
number of nontrivial, real arithmetic operations in his FHT
is about the same as in the wWinograd’s FFT.

One may note that N-! in equation (3-3) wusually is
regarded as the normalization factor in the FHT algorithm and
is neglected until the very end.

Equation (3-3) can be written in matrix form as

(H) = N1 [cas) [Xx). (4-1)
where [H] and [X) are N x { matrices, N-1 is a

scalar, and
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k n=o,1’a.-o".'n-1

[CAS) cos(2mrnk/N) + sin(2mrnk/N)

For a computer language which has powerful matrix
manipulations, e.g. APL, equation (4-1) 1is very useful and
should be considered.
If the cas function 1is carefully analyzedq, one may
notice that
when n is replaced by (N - n)
cos[2n(N-n)K/N) = cos[2mnK/N] ;
sin/[2n(N-n)K/N) = -sin/[2mnkK/N] ,

and when K is replaced (N - K)
cos [2mn(N-K)/N) = cos [2mnK/N)] ;
sin/2mn(N-K)/N] = -sin/2mnk/N] . .

Also, when n = O or K = O, the values of the cosine
terms are all ‘i1’s and the sine terms are all ‘0O’s.

when n = N/2 or K = N/2, the values of the sine terms
are also all ’0O’s but the values of the cosine terms are
varied, that is

cos(mk) = (-1)K and
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cos(mn) = (-1)A,

These imply that

(o) 1 #Frs. smomers o oFereie ol N/SiRENFR. o Lonkd N
(o) 1 N (200 0 o "D o [ 55 o - Do TN B |
[COS] = 1 z Z . 00" -1 3 . Zz 2z
1 2 2 1
2 1 2 |2y, "ome o MoRe 1 e.OM0 O et/
: 3 .4 ... ¢ 1. .23
N/2 b -4 1 -4.... il s ieens it
H 1 z z . . -1 . e o 0 0 0 z z
) 3 "4 4 3
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Recall that
[CAS) = [COS]) + [S1m),
which means a quarter of each sine and cosine
matrix shall be calculated so that the complete matrix can

be formed via move and negate instructions. Since the time
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taken for calculating the trigonometric function 1s much

longer than moving the data to the various locations, a time

‘reduction ;hould be achieved Dby using this method although
it increases the complexity of the program.
Since cas(x) = cos(x) + sin(x) ‘
cos(wm/4) = sin(w/4) = 2~%

it may be faster to replace cas(x) by a%sin[x+{w/4)]

or 2%cos[x-(u/4)] on some computers.
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CHAPTER FIVE

THE VECTOR PROCESSOR

The vector processor (VP) was initiated by Miron 1in
1985. It 1s an adjunct to a personal computer in which a
sequence of data is passed from the host’s memory to a row of
mathematical coprocessors (MCs), operated on simultaneously
by each of a sequence of coprocessor instructions, and then
the results are passed back to main memory. It is a single-
instruction, multiple-data (SIMD) auxiliary computer. Its
purpose 1s to speed up all those operations which can be
expressed in vector-matrix forms by parallel execution of the
data operations [21].

The general arrangement of the major elements of the
VP is shown in figure 5. 1. The vector control unit (VCU) in
the vector processor is as important as the general purpose
processor (GPP) in the personal computer. It consists of a
vector instructions decoder, a sequential load/store control
unit, and a parallel execution control unit. Its function is
to co-ordinate the operation between the GPP and the row of
MCs. If the vector operation (parallel mode) is not
requiredq, the VCU will connect one of the MCs to the GPP as
in the conventional architecture of figure 5.2 so that faster
speed in executing ordinary arithmetic operations can Dbe
achieved. when a vector instruction appears, it is decoded

by the VCU and appropriate action taken. The effect of these
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actions 1is to 1load the elements of the required vectors
sequentially from fast memory into the MCs, do the required
‘operations simultaneously, and then store the results
sequentially into fast memory.

A prototype wusing two MCs was built by Manja [22) to
demonstrate the operation in 1986. In his prototype, an
Intel 8088. and two Intel 8087s are used as GPP and MCs
respectively, and the VP 1is attached to an IBM personal
computer. The VCU monitors the queue status lines of the GPP
to detect a clear-queue condition. This condition will Dbe
set after a jump statement (JMP). If it is set, the decoder
will decode the next two bytes to see if they are one of the
three vector instructions. These are FVECTOR-OP (parallel
mode), FVECTOR-SQ (sequential mode), and FSCALAR (scalar
mode). Their hexadecimal codes are DFFD, DFFF, and DFFE
respectively. FVECTOR-OP 1is ¢to go into parallel mode.
FVECTOR-SQ 1s used for loading/storing the data to/from the
MCs, whereas FSCALAR is for returning to the conventional
mode and also acting as a reset between the other two modes.
In each mode, the VCU selects the MC by its READY and queue
status lines. The functional Dblocks and signals managed in
the VCU are shown in figure 5. 3.

As mentioned earier the purpose of the VP is to speed
up the processing time of the data. A measure of the
improvement to Dbe expected is defined as the ratio of the

total time to process the data with a single MC to the time
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with M MCs in a VP [21]. For a given function, let

E = execution time for one result element,

T total data transfer time for that result element,
M = the number of MCs,
and R = improvement ratio.

By definition,

R = M(E+T)/ (E+MT)
= M(1+(E/T))/ (M+E/T) (5-1)
If E/T >> M >> 1, then R appro. = M.

If E/T = O, then R = {.

Therefore, the range of R is { to M.

Equation (5-1) implies that effort in maximizing E
and minimizing T will yield significant improvement on the
processing time. The estimates of R for some typical

scientific functions can be found in [21).



CHAPTER 81X

THE FHT OB A VECTOR PROCESSOR

6-1 S8election of an Algorithes

A program 1is written for computing the discrete
Hartley transform (DHT) on a vector processor (VP). Some
fast Hartley transform (FHT) algorithms that have Dbeen
published are for a single processor [3 - 10]. These
algorithms can be implemented on the VP with some modifica-
tions. An algorithm with less processing time for a single
processor may not necessarily be the best algorithm for the
VP. This is due to the VP’s configuration. An Intel 8088
and some Intel 8087s are assumed to be the general purpose
processor (GPP). and the mathematical coprocessors (MCs)
respectively for a VP. As proved in chapter five, the
greatest improvement on the processing time will be achieved
i1f the execution time for one result element is much greater
than the total data transfer time for that result element.
This means the data set involved 1in parallel processing
should be arranged in such a way that a result can be derived

from the original data set and not the results previously

computed from the data set. This is called data 1indepen-
dence. If the elements of the data set are not independent
of each other, parallel processing cannot be applied.

Furthermore, comparison of the intermediate result must De

avoided. Comparison can only be done in scalar or sequential



32

mode. It will defeat the purpose of parallel processing. The
Intel 8087’ has eight internal registers [24)], [25). Fully
using these registers to Keep the intermediate results will
definitely reduce the data transfer time. Al though sometimes
it 1s done at the expense of the memory storage, data
independence, avoiding comparison, and reducing the data
transfer time are the Key considerations for programming the
parallel processing routine on a VP.

The result from the above discussion is the use of
the algorithm of Bold [7) for computing the DHT on a VP. A

detailed discussion on the algorithm will be presented in the

next section.

6-2 The FHT Algorithma
Consider a data sequence
£(n) = tay ap by bp ¢4 ¢ 4y dp},
we can rewrite it as
f(n) = gy(n) + 82(n-1) ’

where g4(n) = {ag 0 by 0 ¢4 0 44 0O} ,

g2(n) fap 0O bp 0 cp 0 4 0O} ,
and g2(n-1) = (0 ap 0 bp 0 c2 O 4y}
Suppose {a; by ¢y d4] has the DHT

fag By 7y 941
and fap bp cp dz] has the DHT

{ap B2 T2 921.



K .

By applying the stretch theorem and the shift theorem

for the DH’I‘l. we can show that

Gy (k) fag By 74 9y xq By 74 94} ,

Ga (k)

taxag B2 T2 92 az Bz 72 92} ,
and Gp(k-1) = cos(2mK/N)Gp (k) + sin(2%7k/N)Gp (N-K).

Therefore, the DHT of a sequence f(n) can be written
as

G(K) = Gy(K) + cos(2mk/N)Gp (K) +

sin(2wk/N)Gp (N-K).

Adopting this approach, Bracewell ([4) shows that the
general decomposition formula that produces the discrete
Hartley transform (DHT) for a sequence f(n) of N elements,
where N = 2P, 1is

H(K) = Hoqa(K) + Heyen(K)cos(2rmK/N) +
Heven (N-K) sin(2sk/N), (6-1)

where kK = 0,1,2,3,......., (N-1), Hogqa(k) and Heyen (k)

are the DHT of the odd and the even numbered terms in the

sequence f(n) respectively.

Since cos(2rx((N/2) +k) /N) -cos (2rKk/N) ,

sin(2»((N/2) +k) /N)

-sin(2rk/N),
and the terms in Hoggqq and Heyen repeat modulo N/2 (4],
equation (6-1) can be rewritten as
H(K) = Hoqa(K) + Heven(K)cos(2wk/N) +
Heven (¥-K) sin(2xk/N) (6-2)
and H( (N/2)+K) = Hoqa(K) - Heven(K)cos(2mk/K) -

Heven (¥-K)sin(2wk/N), (6-3)
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where K = 0,1,2,3,......., ((N/2)-1).

Since Hgygq(K) and Heayen (k) can be derived Dby
continued decomposition until two-element sequences are
reached, the complete breakdown is expressible in terms of
the original data. This 1s similar to the form used by
Cooley and TuKey [12]) for computing the DFT. Consequently, a
bit-reversing operation is required before the computation
begins. The basic algorithm for a bit-reversing operation
can Dbe found in [26). The signal flow graph as developed
from equation (6-2) and equation (6-3) for a i16-element

sequence is shown in figure 6. 1.

6-3 System Design

The algorithm used for computing the FHT on a VP is
based on the work of Bold (7). However, some modifications
have been made so that optimization of processing time can be
achieved. The algorithm for the bit-reversing operation in
Bold’s work involves comparison of the data. Hence it is not
suitable for programming on the VP and is replaced by the
work done by Brigham [26]. Because the VP has its own three
unique instructions, i.e. parallel mode, sequential mode, and
scalar mode, which cannot be recognized by the high level
computer languages (such as FORTRAN, BASIC, PASCAL, and C),
assembly language must be used. By using assembly language,
the VP’s three instructions can be coded as data constants,

using their corresponding hexadecimal numbers. In the
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process of calculating the DHT, real (floating-point) numbers
are 1nev1table. Assembly language can handle integer numbers
well but not real numbers. Thus a special routine 1is

required so that the format of real numbers in the GPP (Intel

8088) 1is compatible with that in the MCs (Intel 8087). This
indeed 1is a hard task! Fortunately, the assembly language
program can be called Dby a high level 1language. If the

format of a real number defined by a high level language 1is
the same as the one in the MC, the problem is obviated.

A SsSoftware system is designed for computing the DHT,
inverse DHT, and discrete Fourier transform (DFT). Among all
the compilers and assemblers available, QuicKBASIC (BASIC
compiler) 3.0 [28) and Microsoft Macro Assembler 5.0 [27) are
chosen for use because of their IEEE real number format and
the ease of programming. The designed system is menu-driven.
It consists of one compiled BASIC program called HARTLEY and
five assembly language programs named P2, FHT, SCALE, DFT,
and SEQ. The blockKk diagram of the system is shown in Figure
6.2. All the source programs can be found in the appendix.

The Compiled BASIC program HARTLEY serves as the co-
ordinator for the assembly language programs. It defines the
real number variables required for computation, allows input
of the data, calls required assembly language programs, and
prints the result after computation. Input can be of two
forms: auto or manual. Auto input will generate a data set

from { to N with an interval of 1. It 18 designed for
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testing and demonstration. After computing the DHT, the
result can be shown on the terminal or sent to the printer.

As mentioned before, for a sequence of N elements, N
must be equal to 2P, where P 1is a positive integer. At
present P 1is 1imited +to being not greater than 8 for
‘demonstration purpose. It can be changed to any number as
long as there is sufficient memory storage. After entering
the value of P in the HARTLEY program, P2 1is called to
calculate the value of N.

Program FHT is the heart of the system. It computes
the inverse DHT which is the same as the direct DHT without
multiplying by a factor of i1/N. For ease of comprehension of
the program, it is translated into a BASIC program as shown
in figure 6. 3. One point to note is the calculation of the
trigonometric functions. The partial tangent instruction
(FPTAN) is the only trigonometric function available in the
Intel 808T7. It computes tanA, where A, in radians, is the
top stack element and is between 0 and w/4. The result is a
ratio Y/X, with Y replacing A and X being pushed onto the
stack. when O0< A < /4 , with the aid of this function, sinA -
and cosA can be calculated by Y/SQRT (X2 + Y2) and X/SQRT (X2 +
Y2) respectively [25). When A is outside its acceptable
range, some procedures are used to obtain a suitable range
that 1s 1inside the O to w/4 range. The program first
computes all the angles required for the FHT and reduces them

to the range between O and nw/4, i.e. MOD(w/4). It also Keeps



10
20

30
40
50
60
TO
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510

GOSUB 60 ’bit-reversal rtn

GOSUB 220 ‘cal. angles required
GOSUB 350 “‘cal. FHT
END

‘BIT-REVERSAL RTN
FOR I:=-0 TO L-1
K=0
J=1
FOR Q=1 TO P

H=J

K=Kx2+ (J-2xH)

J=H

NEXT Q

IND(I):=K

NEXT I

FOR I=0 TO L-1

Y(I)=X(IND(I))

NEXT I

FOR I=-0 TO L-1 : X(I)=Y(I) : NEXT I
RETURN

’ CAL. ANGLES REQUIRED

K=1 : BX:=0 : P2:=-6.283185 : J:=P
N2=K : K:=K+K : FK:=P2/K

R=N2 : I:=0

F=FKxI

ANG (BX) =F

BX:=BX+1

I-I+1 : R=R-1 : IF R<>0 THEN 250
J=J-1 : IF J<>0 THEN 230

Q:=BX : BX:=0

C(BX):=COS(ANG(BX)) : S(BX):=SIN(ANG(BX))
BX:=BX+1 : Q=Q-1 : IF Q<>0 THEN 310
RETURN

REM FHT TRANSFORM SECTION

K=1 : BX:=0 : J=P

GOSUB 500

N2=K : K=K+K : NM - L-K : Q=NM\K+1
R=N2 : I:=0

T=-Q : BP=I : SI=zI+N2 : DI=K -I
U=X(SI)x*C(BX) + X(DI)x*S (BX)

wW=X (BP)

Y(BP) =W+U

Y(SI)=w-U

BP-BP+K : T:=T-1 : SI=SI+K : DI:=DI+K
IF T<>0 THEN 400

BX-BX+1 : I=I+1 : R=R-1 : IF R«<>0 THEN 390
J=J-1 : IF J<>0 THEN 360

FOR M=0 TO L-1 : X(M)=Y(M)/L : NEXT M
RETURN

FOR Mz0 TO L-1 : X(M) = Y(M) : NEXT M
RETURN

Figure 6.3 Program FHT in BASIC
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Run times for the inverse DHT
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CHAPTER SEVER

CONCLUSION

The Hartley transform 1is closely related to the
Fourier transform. Its properties commend themselves for
dpplication to0 numerical analysis. Since one complex
multiplication equals four real multiplications, the real-
valued Kernel of the Hartley transform makes it a potential
replacement to the Fourier transform which has the complex-
valued Kernel. Most of the existing fast algorithms for
computing the discrete Fourier transform (DFT) can be applied
to the discrete Hartley transform (DHT) with some modifica-
tions. However, the speed of a fast Hartley transform (FHT)
should be about twice that of a fast Fourier transform (FFT).
In addition, one program is required for both the forward FHT
and the inverse. In the FFT, additional control must be
implemented for reversing the sign of i in the exponential
exp(-l12mkn/N) during the operation of changing from a forward
transformation to an inverse transformation or vice-verse.
The FHT can also serve as the intermediate stage for the
computation of other transforms such as the DFT and the
discrete cosine transform (DCT) (13) so that time reduction
can Dbe achieved. Although the Hartley transform is a new
term in signal processing, many researches on this subject
have been carried out [16]-[20]). The growing interest will

generate more researches and publications in the near future.
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The vector processor (VP) discussed here is a single-
instruction, multiple-data stream computer system. The
purpbse of this device is to speed up the processing of a
group of scientific calculations. The greatest improvement
can be obtained by minimizing the total data transfer time
for each result element. Data independence, avoiding
branching on comparison, and reducing data transfer time are

the Key considerations for programming the parallel

processing routine on a VP. Sometimes this is done at the
expense of the memory storage. However, the memory storage
is relatively less expensive nowadays. A program running on

a VP usually consists of scalar mode and parallel mode
operations. It should be designed in such a way that scalar
mode procedure is at minimum level. If scalar mode
procedures dominate the whole program, overall performance of
the system will be less significantly improved although
parallel mode procedures are at the desired level.

A software system has been designed for computing the
DHT, the 1inverse DHT, and the DFT on a VP. In this
pParticular systenmn, the improvement factor increases with
both the number of the data points and the number of the
mathematical coprocessors.

Finally, 1loading a dummy one to the unused MCs is an
unproductive process 1in the VP Hence it should be
eliminated if the improvement of the VP is considered in the

future.
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LIST OF SYMBOLS

discrete Fourier transform
discrete Hartley transform
decimation-in-frequency
decimation-in-time

fast Fourier transform
fast Hartley transform
Hertz

general purpose processor
mathematical coprocessor
split-radix

vector control unit

vector processor
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APPENDIX

COMPUTER PROGRAMS

A software system which consists of one compiled
BASIC program and five assembly language programs 1is designed
for computing the fast Hartley transform (FHT) on a vector
processor (VP). The block diagram of the system is shown in
figure 6. 2. Their source programs are listed in this

appendix and can be found as follows:

HARTLEY - Figure A-1 ,
FHT - Figure A-2 ,
P2 - Figure A-3 ,
SCALE - Figure A-4 ,
DFT - Figure A-5 ,
SEQ - Figure A-6

At present the number of the data points N is limited
to 256 for demonstration purpose. However, if the memory
storage 1is sufficient, it can be expanded to any number by
modifying the arrays’ size in line 250 of HARTLEY and the
sizes of Y, SIN, CoOSs, ANGLE, and LINDEX as defined in the
data segment of the program FHT. Note that if the VP 1is
available, NUM_PROC which is defined in FHT should be changed
to the actual number of the mathematical coprocessors (MCs)
and the semi-colon preceded the VP’s three instructions

should be removed.



100
110
120
125
130
140
150
160
170
180
190
200
210
220
230
240
250
255
260
265
280
290
300
310
315
320
330
340
350
360
370
2095
2100
2105
2110
2120
2130
2140
2150
2160
2199
2200
2205
2210
2220
2230
2240
2250

IR R R R R R R R Y Y R 22222222222

' Date

Author : Boon Pock Lim
Program Name : HARTLEY
: March 14, 1988

This program is to calculate direct and inverse
Hartley transform by calling other assembly

language subroutines.
Assembly language subroutines required:

|}
|}
|
'
P2 '
FHT '
SEQ '
SCALE '
DFT '
]
1
'
!

g e de ke de ke de de ke de ke de de ke de ok de ok de ke de ke de ke de ok de de ke de ke d ok de ok gk k de ok ok ke ok ok ok ok ok kk

DEFINT N,P
DEFSNG I,R,X,Y

DIM X(256),

Y(256), RE(256), IM(256)

' MAIN RTN
'
GOSUB 2100 'DISPLAY HEADING
INPUT "N = 2°P , Input P = ",P
IF P <1 ORP > 8 THEN 280
CALL P2(P,N) 'CAL. N
LOCATE 5,1 : PRINT SPACES(10);"P =";P,"N =";N
GOSUB 2200 '"INPUT DATA
GOSUB 2500 'SAVE INPUT DATA
GOSUB 2600 'TRANSFORMATION
INPUT "New data set ? (Y/N) ",AS
IF A$ = "Y" OR A$ = "y" THEN 280
END
1]
'DISPLAY HEADING
!
CLS
LOCATE 1,1 : PRINT "Date : ";DATES
LOCATE 1,35 : PRINT "S D Ss uU"
LOCATE 2,26 : PRINT "Electrical Engineering Dept."
LOCATE 4,30 : PRINT "The Hartley Transform"
RETURN
!
' INPUT DATA
)
LOCATE 7,20 : PRINT "Input data set"
LOCATE 9,20 : PRINT "(1) Auto"
LOCATE 11,20 : PRINT "(2) Manual"
LOCATE 13,20 INPUT "Option : ",0PT
IF OPT = 1 OR OPT = 2 THEN 2270

Figure A-1

HARTLEY program listing
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2260 LOCATE 13,1 : PRINT SPACES$(80) : GOTO 2240
2270 ON OPT GOSUB 2300, 2400

2280 RETURN

2295 !

2300 ' AUTO INPUT

2305 !

2310 FOR J = 0 TO N-1

2320 X(J) = J+1

2330 NEXT J

2340 FOR J = 7 TO 13 STEP 2

2350 LOCATE J,1 : PRINT SPACES$(80)

2360 NEXT J

2370 RETURN

2395 !

2400 ' MANUAL INPUT

2405 !

2410 FOR J = 9 TO 13 STEP 2

2420 LOCATE J,1 : PRINT SPACES$(80)

2430 NEXT J

2440 LN = 9

2445 FOR J = 0 TO N-1

2447 IF LN <> 23 THEN 2460

2450 FOR K = 9 TO 23

2452 LOCATE K,l1l : PRINT SPACES$(80)

2454 NEXT K

2456 LN = 9

2460 LOCATE LN,1 : PRINT "X (";J;") = "; : INPUT "",X(J)
2470 LN = LN + 1

2480 NEXT J

2482 FOR J = 7 TO LN

2484 LOCATE J,l1 : PRINT SPACES$(80)

2486 NEXT J

2490 RETURN

2495 !

2500 ' SAVE INPUT DATA

2505 !

2510 FOR J = 0 TO N-1

2520 Y(J) = X(J)

2530 NEXT J

2540 RETURN

2595 !

2600 ' TRANSFORMATION

2605 !

2610 LOCATE 7,20 : PRINT "(1l) Direct FHT"
2620 LOCATE 9,20 : PRINT "(2) Inverse FHT"
2630 LOCATE 11,20 : INPUT "Option : ",OPT
2640 IF OPT = 1 OR OPT = 2 THEN 2660

2650 LOCATE 11,1 : PRINT SPACE$(80) : GOTO 2630

Figure A-1 (continue)



2660
2665
2670

2695

2700
2705
2710
2720
2730
2740
2795
2800
2805
2810
2820
2895
2900
2905
2910
2920
2930
2940
2950
2960
2970
2972
2974
2980
2990
2995
3000
3005
3010
3020
3040
3050
3060
3070
3080
3090
3092
3094
3100
3105
3110
3120
3130
3150

ON OPT GOSUB 2700, 2800

GOSUB 2900 'OUTPUT
RETURN

1]

' DIRECT FHT

1)

CALL FHT(X(0),P)

CALL SCALE(X(0),N)

CALL DFT(X(0),N,RE(0),IM(0))
RETURN

'

' INVERSE FHT

|}

CALL FHT(X(0),P)
RETURN

|}

' OUTPUT

1]

LOCATE 7,20 PRINT "Output U
LOCATE 9,20 PRINT " (1) Display 8
LOCATE 11,20 : PRINT "(2) Print W
LOCATE 13,20 : INPUT "Option : ",T
IFT=1O0RT = 2 THEN 2970

LOCATE 13,1 : PRINT SPACES$(80) : GOTO 2940
FOR J = 9 TO 13 STEP 2

LOCATE J,1 : PRINT SPACES$(80)

NEXT J

ON T GOSUB 3000, 3300

RETURN

]

' DISPLAY OUTPUT

]

LOCATE 9,1

ON OPT GOSUB 3200,3250 'SUB HEADING
LN =9

FOR J = 0 TO N-1

IF LN <> 22 THEN 3110

LOCATE 23,1 : PRINT "PRESS ANY KEY TO CONTINUE"
K$ = INKEYS : IF K$ = "" THEN 3080

FOR K = 10 TO 23

LOCATE K,1 : PRINT SPACES$(80)

NEXT K

LN = 9

LOCATE 10,1

LN = LN + 1

PRINT USING "###";J;TAB(10);

ON OPT GOSUB 3220,3260 'DISPLAY OUTPUT
NEXT J

Figure A-1 (continue)
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71

3160 RETURN
3195 !

3200 ' DISPLAY -DIRECT FHT SUB HEADING

3205

3207 PRINT " n,k";TAB(18);"f(n)";TAB(30);"H(k)";
3210 PRINT TAB(41);"RE(F(k)]";TAB(54);"IM(F(k)]"
3212 RETURN

3215 !

3220 ' DISPLAY DIRECT FHT

3222

3230 PRINT USING " ####.Hidduns",Y(J3),X(J),RE(J),IM(J)
3232 RETURN

3245 !

3250 ' DISPLAY INVERSE FHT SUB HEADING

3252 !

3254 PRINT " n,k";TAB(18);"H(k)";TAB(30);"f(n)"
3256 RETURN

3258 !

3260 ' DISPLAY INVERSE FHT

3262 '

3264 PRINT USING " #H#h.Héddua8",¥Y(J),X(J)

3266 RETURN

3295"

3300 ' PRINT OUTPUT

3305 '

3310 PG = 0 : GOSUB 4000 'PRINT HEADING

3320 FOR J = 0 TO N-1
3330 IF LN > 56 THEN GOSUB 4000
3340 LN = LN + 1
3350 LPRINT USING "###";J;TAB(10);
3360 ON OPT GOSUB 4150,4250 'PRINT OUTPUT
3380 NEXT J
3390 RETURN
]

3995

4000 ' PRINT HEADING

4005 !

4010 LPRINT CHRS$(12) : PG = PG + 1 : LPRINT

4020 LPRINT "Date : ";DATES$;TAB(35);"S D S U";TAB(71);"Page";PG

4030 LPRINT TAB(26);"Electrical Engineering Dept."
4040 LPRINT

4045 LPRINT "The Hartley Transform : P =";p;" , N = 2"P =";N
4047 LPRINT
4050 ON OPT GOSUB 4100,4200 'SUB HEADING

4070 LN = 7

4080 RETURN

4095 !

4100 ' PRINT DIRECT FHT SUB HEADING
4105

Figure A-1 (continue)



4110
4115
4120

4145

4150
4155
4160
4170
4195
4200
4205
4210
4220
4245
4250
4255
4260
4270

LPRINT " n,k";TAB(18);"f(n)";TAB(30);"H(k)";

LPRINT TAB(41);

RETURN
|}

"RE[F(k)]1";TAB(54);"IM[F(k)1"

' PRINT DIRECT FHT

LPRINT USING "
RETURN
!

HERR . HRNEBRR";Y(T),X(J),RE(T),IM(J)

' PRINT INVERSE FHT SUB HEADING

LPRINT " n,k";TAB(18);"H(k)",;TAB(30);"£(n)"

RETURN
|}

' PRINT INVERSE FHT

LPRINT USING "
RETURN

Figure A-1

HUMB. RUBRBER";Y(T),X(T)

(continue)
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.8087
.MODEL MEDIUM
.CODE g

.
’

Ve Ne Ne Ve Ve "o Ve Ve Ve Ne N

Program Name : FHT
This subroutine(Procedure) calculates the Fast Hartley
Transform by using radix-2 method (decimation in time).
From compiled BASIC program : CALL FHT(X(0),P)
Subroutines (Procedures) required : BIT_REV

REORDER_Y

Y TOo_X

ANGLE_TB

H_TRAN
Author : Boon Pock Lim
Date : Feb 22, 1988

EXTRN SEQ_LD_2:FAR
EXTRN SEQ_ST_2:FAR
EXTRN SEQ_LD_4:FAR
EXTRN SEQ_ST_4:FAR

PUBLIC FHT

73

-

FHT PROC FAR
PUSH BP
MOV BP,SP
PUSH AX ;Save the registers
PUSH BX
PUSH CX
PUSH DX HE e e
MOV BX,[(BP1+8 ;1st Arg - Store the
MOV X, BX ;address in X
MOV BX,[(BP1+6 ;2nd Arg
MOV CX, [BX]
MOV POWER, CX
MOV AX,1 ;Calculate # of
SHL AX,CL ;elements N
MOV N,AX ;N = 27°POWER
MOV CX,AX ;Set CX = N
XOR BX, BX ;Set BX = 0
XOR DX, DX ;Set DX = 0
MAIN_1:
MOV LINDEX[BX],DX ;Set up index table
ADD BX, 2 30,1,2,..... SJN-1
INC DX
LOOP MAIN_ 1 HE
: JMP MAIN D_1 ;Dummy jump

;
;MAIN D_1:

Figure A-2 FHT program listing
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; DB ODFh, OFDh ;Parallel mode

’
MOV DX, POWER ;Set DX = POWER
CALL BIT_REV ;Bit reversing
CALL REORDER_Y ;Y = new order of X
CALL Y TO_ X ;Set X = Y
CALL ANGLE_TB ;set up angle table
CALL H_TRAN ;FHT

’

o JMP MAIN_D_2 ;Dummy Jjump

sMAIN D_2:

H DB ODFh, OFEh ;Scalar mode

’
POP DX ;Restore the
POP CX ;registers
POP BX
POP AX
POP BP He e s s
RET 4

FHT ENDP
PUBLIC BIT_REV

BIT_REV PROC NEAR

This procedure performs bit reversing

operation

Ve N Ne Ve NWe Ne Ne We Ne Ne We Ne We Ne We Ne Ne o wWe %o %o

’
’
; Input parameters : AX = # of elements
s DX = # of bits
; Reads : LINDEX, BASE, TEMP
; Writes : LINDEX, TEMP
; Algorithm : Let J be the original index
H K =0
3 FOR Q = 1 TO (# of bits)
- L = J MOD 2
- J = INT(J/2)
- K =K * 2 + L
- NEXT Q
; new index = K
; Contents of the 8087's registers
B ST(7) = -1
H ST(6) = J = original index
b ST(5) = 2 = BASE
- ST(4) = L = J MOD 2
A ST(3) =1
G ST(2) = K
’ PUSH AX

PUSH BX

Figure A-2 (continue)
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PUSH CX
PUSH DX Dy
DEC ax ;AX = N - 2 , 1st
DEC AX ;and last elements
OR AX,AX ;are the sanme.
JNZ BIT HO YA
JMP BIT_4
BIT:
MOV BX,2 ;Begin with 2nd
BIT_1: ;element
POP DX ;Get # of bits
PUSH DX ;Store
FINIT ;Initialize 8087
FSTCW TEMP ;Set 8087 rounding
FWAIT ;control -
OR TEMP,0CO00h ;round down
FLDCW TEMP
FLD1 ;ST(7)=-1 , Scale
FCHS ; factor
PUSH BX ;Load index
LEA BX,LINDEX([BX] ;sequentially
CALL SEQ_LD_2
POP BX jommmm -
FILD BASE ;ST(5)=2 , Base
FDECSTP ;SET ST=4
FLD1 ;ST(3)=1
FLDZ ;ST(2)=K ,
BIT_2: ;init. value = 0
FINCSTP ;SET ST=4
FINCSTP
FSTP ST(0) ) i I S O e
FLD ST(1) ;ST(4)=L=J
FPREM ;L=J MOD 2
FINCSTP ;SET ST=6
FINCSTP P el S
FSCALE ;J=INT(J/2)
FRNDINT - et
FDECSTP ;SET ST=2
FDECSTP
FDECSTP
FDECSTP P il = Sl — =T =T
FSCALE ;K=K*2
FADD ST,ST(2) ;K=K*2+L
FWAIT s;remainder
DEC DX
OR DX, DX ;Do POWER times
JNZ BIT_2
PUSH BX ;Store new index

Figure A-2 (continue)
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LEA BX,LINDEX[BX] ;sequentially
CALL SEQ_ST_2
POP BX P T e e~ — = —
MOV CX,NUM_PROC ;Set next address
CMP CX,AX
JBE BIT_3
MOV CX,AX
BIT_3:
ADD BX, 2
LooP BIT_3 e —————
SUB AX,NUM_PROC ;Do (N-2) times
CMP AX,O
JLE BIT_4 ;JG will cause out
JMP BIT_1 ;of range error
BIT_4:
POP DX ;Restore the
POP CX s;registers
POP BX
POP AX e e e
RET
BIT_REV ENDP
PUBLIC REORDER_Y
REORDER_Y PROC NEAR

’
This procedure makes Y equal to bit-reversal order of X. ;
Input parameter : AX = N H
Reads : LINDEX, X H
Writes : Y H

Ne Ne Ne Ne N

Ne

PUSH AX ;Save the registers
PUSH BX
PUSH CX
PUSH SI
PUSH DI jmmmmmmm e
MOV CX,AX ;Set CX = N
XOR BX,BX ;Set BX = 0
XOR DI,DI ;Set DI =0
; IMP REORDER_D_1 ;Dummy Jjump
;REORDER_D_1:
F DB ODFh, OFEh ;Scalar mode
’
FINIT ;Initialize 8087

Figure A-2 (continue)



REORDER :
MOV SI,LINDEX[BX]
ADD SI,sI
ADD SI,sI
ADD SI,X
FLD DWORD PTR [SI]
FSTP Y(DI]
ADD DI, 4
ADD BX, 2
: LOOP REORDER
14
; JIMP REORDER_D_2
;REORDER_D_2:
; DB 0DFh, OFDh
;
POP DI
POP SI
POP cX
POP BX
POP AX
RET
REORDER_Y ENDP
PUBLIC Y_TO_X
Y _TOo_X PROC NEAR

4
; This procedure moves Y to X.
; Input parameter : AX = N

; Reads : Y
; Writes : X

~

PUSH AX
PUSH cX
PUSH SI
PUSH DI
MOV CX,AX
XOR SI,SI
MOV DI, X
4
; JIMP Y X _D_1
;Y X D1
; DB 0DFh, OFEh
’
FINIT
Y_X_MOVE:
FLD Y(SI)

Figure A-2 (continue)
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;Find the actual
;address of X
;O0ffset = index * 4

;Next addr of Y
;Next addr of index
;Do N times

;Dummy Jjump
;Parallel mode

;Restore the
sregisters

; ——————————————————
;Set CX = N

;Set SI =
;DI = 1lst addr of X
;Dummy Jjump

;Scalar mode
;Initialize 8087

;Transfer Y to X



Ve Ve Ne Ne “o

Y To X

FSTP
ADD
ADD
LOOP

JMP

Y X D_2:

DB

POP
POP
PoOP
POP
RET
ENDP

PUBLIC
PROC

DWORD PTR [DI)
SI,4

DI, 4

Y_X_MOVE

Y X D 2
0DFh, OFDh
DI

SI

CX
AX

ANGLE_TB
NEAR

’

;Next addr - 2
;word, 4 for S
;and 8 for D.
;Dummy Jjump

;Parallel mode

;Restore the
;registers

for
. re
real

al

This procedure calculates sine and cosine of the angles

Ne Ve Ne Ne N N N

we

Ne Ne Ne Ne Ne “o

required for the FHT.
Reads POWER, ANGLE,
Writes :
Intermediate variables

ANGLE, LINDEX,

LINDEX,
SIN,
K,

cos
N2, I

SIN, cos

Refer to the BASIC program for more information

PUSH
PUSH
PUSH
PUSH
PUSH

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AX
BX
CX
DX
SI

NWe Ne Ne Ne Ne Ne Ve N

This routine calculates all the angles required for the
FHT and reduce them to the range between 0 and PI/4

i.e. MOD PI/4.
octant (0 - 7) of the

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA

MOV
XOR
XOR
FINIT
FLD1
FLDPI
FSCALE
FSTP
FILD
FCHS

Figure A-2 (co

angles.
K,1

BX, BX
SI,SI

ST(1)
BASE

ntinue)

It also calculates the corresponding

;Set K =1
;Set BX = 0
;Set SI =0
;Initialize 80
;ST(7)=1
;ST(6)=PI
;ST(6)=2%P1
;ST(7)=2%P1
;ST (6)=2
;ST(6)=-2

87

Ne Ne WMo Ne Ne N



FLDPI
FSCALE
- FSTP
FWAIT
XOR
MOV

ANG_POWER:

ANG_I_LP:

MOV
SHL
FILD
FDIVR
FWAIT
XOR

CALL
FMUL
FLD
FINCSTP
FXCH
FDECSTP
FPREM
PUSH

LEA
CALL
POP
FXCH
FINCSTP
FXCH
FDECSTP
FPREM
FDIV
FSTCW
FWAIT
OR
FLDCW
PUSH
LEA
CALL
POP
FXCH
AND
FLDCW
FWAIT
PUSH
MOV
CMP
JBE

Figure A-2

ST(1)

DI,DI
CX,POWER

AX,K
K,1

K
ST,ST(2)

DX, DX
ANG_LD_I
ST,ST(1)
ST(0)

ST(2)

BX

BX, ANGLE[BX ]
SEQ_ST_4

BX

ST(2)

ST(2)
ST,ST(2)
TEMP

TEMP, 0COOh

TEMP
BX

BX,LINDEXI[SI)

SEQ_ST_2

BX

ST(2)
TEMP, OF 3FFh
TEMP

cX
CX, NUM_PROC
CX, AX
ANG_INC_1

(continue)
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;ST(5)=PI
;ST(5)=P1/4
;ST(6)=PI/4

;Set DI=0
;1st loop, CX=POWER
;N2 = K

;K = K + K

;ST(5)=K
;ST(5)=2*PI/K

;Set DX = 0

;Load I sequentially
;ST(4)=2*PI*I/K
;ST(3)=ST(4)

;Set ST=4

;ST(4)=PI1/4

;Set ST(3)
;ST(3)=ST(3) MOD PI/4
;Store ANGLE
;sequentially

;0 <= ANGLE <= PI/4

’

;Exchange

;Set ST=5

;ST(5)=2*%P1

;Set ST=4
;ST(4)=ST(4) MOD 2*PI
;ST(4)=ST(4)/(P1/4)

;Set 8087 rounding control

;control
;Round down

;Store the octant
;(0-7)

;Exchange

;Set 8087 rounding
;control - round to
;hearest or even
;Set next address



MOV

ANG_INC_1:
ADD
ADD
INC
INC
LOOP
POP
MOV
SUB
CMP
JLE
JMP

ANG_A:
FSTP

FWAIT

DEC

OR

JzZ

JMP
ANG_NEXT:

MOV

’
’
; (PI/4 - A).
AR A A AN A A AN AAAAAAAAAAAAAAAAAAAAAAAAAAA AN AN AN AN AN
;
; JMP ANG_D_1
;ANG_D_1:
- DB ODFh, OFEh
’
FINIT
FILD BASE
FCHS
FLDPI
FSCALE
FSTP ST(1)
XOR BX, BX
XOR S1,S1
MOV CX, DX
ANG_ADJ:
MOV AX,LINDEX[SI]
SHR AX,1
JNC ANG_OUT
FLD ANGLE[ BX]
FSUBR sT(0),ST(1)
FSTP ANGLE([BX]
Figure A-2 (continue)

CX, AX

BX, 4

SI,?2

DI

DX
ANG_INC 1
cX

I,DX
AX,NUM_PROC
AX, 0
ANG_A
ANG_I_LP

ST(0)

CX

CX,CX
ANG_NEXT
ANG_POWER

DX,DI

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN

This routine changes the angle A in octant 1,3,5,7 to

80

’
;DI=DI+1
; DX=DX+1

; I=DX

;LOOP will cause out
;of range error

’
;1st loop end

;DX=% of elements in
; ANGLE

Ne Ne Ne Ne

;Dummy Jjump
;Scalar mode

;Reset 8087
;ST(7)=2
;ST(7)=-2
;ST(6)=PI
;ST(6)=PI/4
;ST(7)=PI1/4

;BX=0

;SI=0

; CX=DX

;Loop begin
;Check the octant
;(PI -angle) if it
;is odd



ANG_OUT:

ANG_D_2:

with a

Ne Ne Ne Ne Ne We Ne Ne “o

ANG_CAL:

ANG_CONT:

FWAIT

ADD
ADD
LOOP

JMP

DB

proper sign.

XOR
XOR
MOV

FINIT
FLD1
PUSH
MOV
CALL
POP
FLD1
PUSH
MOV
CALL
POP

PUSH
LEA
CALL
popP
FPTAN
FMUL
FXCH
FMUL
FLD
FMUL
FLD
FMUL
FADD
FSQRT
FLD
FDIVR
PUSH
LEA

Figure A-2

BX, 4
SI,?2
ANG_ADJ
ANG_D_2

ODFh, OFDh

This routine calculates sine and cosine of the angle

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA

BX,BX
SI,SI
AX,DX

BX
BX, SI
SIGN_S
BX

BX
BX,SI
SIGN_C
BX

BX
BX, ANGLE([BX ]
SEQ_LD_4

BX

ST,ST(2)
ST(1)
ST,ST(3)
ST(0)
ST,ST(1)
ST(2)
ST,ST(3)
ST,ST(1)

ST(0)
ST,ST(3)
BX
BX,SIN([BX]

(continue)
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;Set next addresses
;Loop end
;Dummy Jjump

;Parallel mode

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAAAAAAAA,

’
H
H
’

; BX=0

;SI=0

; AX=DX

;Reset 8087
;ST(7)=Sign of sine
i=1

;ST(6)=Sign of
;cosine=1

;Load ANGLE

;sequentially

ST(4)=X
for cosine

;ST(5)=Y,
;Set sign
;ST(5)=X, ST(4)=Y
;Set sign for sine
;ST(3)=ST(4)=Y
;ST(3)=Y*Y

;ST(2)=X

;ST(2)=X*X
;ST(2)=(X*X) + (Y*Y)
;ST(2)=SQRT(ST(2))
;ST(1)=ST(2)
;ST(1)=ST(4)/ST(1)
;=sine

;Store SIN



CALL
POP

"FDIVR

PUSH
LEA
CALL
pPoP
PUSH
MOV
CMP
JBE
MOV

ANG_INC_2:

Ve Ve Ne Ne Ve Ne Ve Ne N

ANG_SWAP:

ANG_DONE:

ANG D_3:

ADD
ADD
LOOP
pPoP
SUB
CMP
JG

JMP

DB

FINIT

XOR
XOR
MOV

CMP
JE
CMP
JE
CMP
JE
CMP
JE
FLD
FLD
FSTP
FSTP

ADD

Figure A-2

SEQ_ST_4
BX
ST,ST(3)
BX

BX,COS [BX)
SEQ_ST_4
BX

cX

CX, NUM_PROC
CX, AX
ANG_INC_2
CX, AX

BX, 4

SI,?2
ANG_INC_2
cX
AX,NUM_PROC
AX,0
ANG_CAL

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA

ANG_D_3
ODFh, OFEh
BX, BX

SI,sI
CX, DX

LINDEXI[SI],O

ANG_DONE

LINDEXI[SI],3

ANG_DONE

LINDEXI[SI], 4

ANG_DONE

LINDEX(SI],7

ANG_DONE
SIN[BX]
COS[BX)
SIN[BX]
COS[BX)

BX, 4

(continue)

’

7ST(2)=ST(5)/ST(2)

;=cosine
;Store COS

’

82

;Set next addresses

;Loop end

AAAAAAAAAAAAAAAAAA

This routine swaps the values of sine and cosine for
the angle in octant 1,2,5,6.

AAAAAAAAAAAAAAAAAANAAAAAAAANAANAAAAAAANAAANANAAAAANAAANAAANAAAAANANAANA

;Dummy Jjump
;Scalar mode

;Reset 8087

; BX=0
;SI=0
; CX=DX

;Loop begin
;Swap sin and cos
;1f octant is

e Ne Ne N

;Set next addresses

R



ADD
LOOP

JMP

Ne Ne %o

ANG_D_4:
; DB

Ne N

ANGLE_TB

SI,?2
ANG_SWAP

ANG_D_4
0DFh, OFDh

SI
DX
CX
BX
AX

83

;Loop end
;Dummy Jjump
;Parallel mode

;Restore the
sregisters

This procedure loads integer I sequentially.

’
’
; Input parameters
;
’

Reads NUM_PROC

AX
DX

lst # of I

’
;
# of data to be processed ;
;
’

<

ANG_LD_D1:
DB

Ne We Ve N N

MOV
XOR
MOV
MOV
CMP
JBE
MOV
MOV

ANG_LD_1:
MOV
FILD
INC
LOOP
OR
JZ
MOV

Figure A-2

ANG_LD_D1
0DFh, OFFh

BX, DX
DX, DX
CX,NUM_PROC
sI,CX

CX, AX
ANG_LD_1
CX, AX

DX, 1

I,BX
I

BX
ANG_LD_1
DX, DX
ANG_LD_3
cX,SI

(continue)

;Dummy Jjump
;Sequential mode

; BX=DX

;If AX < # of
;processors then
;CX=AX else

;CX=% or processors
;DX Flag

;Set 1
;Load 1
; BX=BX+1



SUB
ANG_LD_2:

FLD1

: LOOP

ANG_LD_3:
;
; JMP
;ANG_LD_D2:
DB
JIMP

we

ANG_LD_D3:
DB

Ne WNe “e %o

POP
POP
POP
pPoP
POP
RET

ANG_LD_I ENDP

PUBLIC

PROC

CX,AX

ANG_LD_2

ANG_LD_D2

0DFh, OFEh
ANG_LD_D3

ODFh, OFDh

SI
DX
CX
BX
AX

SIGN_S
NEAR

84

;Load dummy 1 to
;other processors.

;Dummy Jjump

;Scalar mode
;Dummy Jjump

;Parallel mode

;Restore the
;registers

This procedure checks the octant [(LINDEX]
and changes the sign of ST(7)

Reads

’

H

’

; Input parameters
’

’

; Writes :

ST(7)

AX
BX

(sine)

if required.

= # of data to be processed
= index of LINDEX

NUM_PROC, LINDEX

sequentially

“

SIGN_S D_1:
DB

Ne Ne Ne Ve o

MOV
CMP
JBE
MOV

SIGN_S_1:

CMP
JB
CMP

Figure A-2

SIGN_S_D_1
ODFh, OFFh

CX,NUM_PROC
CX, AX
SIGN_S_1
CX,AX

LINDEX[BX],2
SIGN_S_2
LINDEX[BX], 3

(continue)

;Dummy Jjump

;Sequential mode

;Set the count

;I£f octant
;then sine
;else sine

0,1,3,6
+ve
-ve



JE

CMP

JE

~ FCHS
SIGN_S_2:

ADD

LOOP

JMP
SIGN_S_D_2:
DB
JMP

Ne Ne Ne Ne Ne So

SIGN_S_D_3:
; DB

Ne N

POP
POP

POP

RET

SIGN_S ENDP

SIGN_S_2
LINDEX[BX],6
SIGN_S_2

BX, 2
SIGN_S_1
SIGN_S_D_2

0DFh, OFEh
SIGN_S_D_3

ODFh, OFDh
CX

BX
AX

PUBLIC SIGN_C

SIGN_C PROC

This procedure checks the octant

and changes the sign of ST(6) (cosine)

Reads : NUM_PROC, LINDEX

;
’
’
; Input parameters :
’
’
’

Writes : ST(6)

~

SIGN_C_D_1:
DB

Ne Ne Ne e “we

MOV
CMP
JBE

85

;Dummy Jjump

;Scalar mode
;Dummy Jjump

;Parallel mode

;Restore the
;registers

NEAR
————————————————————————————————————————————————————————— ;
(LINDEX] sequentially ;
if required. §
AX = # of data to be processed F
BX = index of LINDEX g
4
’
__________________________________________________________ ;
AX ;Save the registers
BX
CX e e e e e e
SIGN_C_D_1 ;Dummy Jjump
ODFh, OFFh " ;Sequential mode
CX,NUM_PROC ;Set the count
CX, AX
SIGN_C_1
CX,AX

MOV
SIGN_C_1:
CMP
JB
CMP

Figure A-2

LINDEX([BX],3
SIGN_C_2
LINDEX[BX],7

(continue)

;I1f octant = 0,1,2,7
;then cosine = +ve
;else cosine = -ve



SIGN_C_2:

SIGN_C_D_2:

Ne Ne Ne Ne Ne N

;SIGN_C_D_3:

Ne N

SIGN_C

JE
FCHS

ADD
LoOP

JMP

DB
JMP

DB

POP
pPoP
POP
RET
ENDP

SIGN_C_2

BX, 2
SIGN_C_1

SIGN_C_D_2

ODFh, OFEQh

SIGN_C_D_

ODFh, OFDh

CX
BX
AX

PUBLIC H_TRAN

PROC

NEAR

3

This procedure calculates the FHT.

Writes : X,

Y

SIN, POWER,

Intermediate variables : TEMP,

H
’
; Reads : X, ¥, COs,
14
14
14

Refer to the BASIC program for more information

N

K, N2,

86

;Set next address

;Dummy Jjump

;Scalar mode
;Dummy Jjump

;Parallel mode

;Restore the
;registers

NM, T

Ne Ne Ne Ne No N

TRAN_POWER:

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
MOV
MOV
MOV
XOR
MOV

PUSH
MOV
CALL

Figure A-2

AX
BX

cX

DX

BP

SI

DI

AX,N
T,AX

K,1

BX, BX
CX,POWER

CX
AX,N
Y TO X

(continue)

~

;Save the registers

;Set BX = 0

;Set 1st 1loop,

;CX = POWER

;Save CX

;Set input para. for
;subroutine and call



MOV
MOV
MOV
SHL
MOV
SHL
MOV
SHL
MOV
SHR
XOR
MOV

TRAN_I_LP:

MOV
MOV
ADD
MOV
SUB
MOV

TRAN_T _LP:

FINIT
PUSH
MOV
ADD
CALL
PoOP
FLD
PUSH
MOV
ADD
CALL
POP
FLD
PUSH
MOV
ADD
CALL
POP
FMULP
FXCH
FMULP
FADDP
FLD
FADD
PUSH
LEA
CALL
POP

Figure A-2

AX,K
N2, AX

CL,?2

AX,CL
N2_ADDRESS, AX
K,1

AX,K

AX,CL
K_ADDRESS, AX
T,1

DX, DX

CX,N2

BP, DX
SI,N2_ADDRESS
SI,DX
DI,K_ADDRESS
DI,DX
AX,T

BX

BX, BP
BX, X
SEQ_LD_4
BX

COS [BX]
BX

BX,SI
BX, X
SEQ_LD_4
BX
SIN(BX]
BX

BX,DI
BX, X
SEQ_LD_4
BX
ST(1),ST
ST(2)
ST(1),ST
ST(1),ST
ST(1)
ST,ST(1)
BX
BX,Y([BP]
SEQ_ST_4
BX

(continue)

87

’

;2 for Single P. real
;3 for Double P. real
;Convert N2 to addr
;K = K + K

;T=T/2

;Set DX =0

;Set 2nd 1loop,

;CX = N2

;BP = DX

;SI = N2 + DX (Addr)

’

;Set 3rd loop,
;CX =T
;Initialize 8087
;Load W=XI[BP]
;sequentially

; ———————————————————
;Load cos

;Load XI[SI]
;sequentially

;Load XI[DI)
;sequentially

’
;ST(4)=X(DI)*SIN(BX]
;ST(4)=COS(BX]
;ST(5)=X[SI)*COSI[BX]
;ST(6)=U

;ST(5)=W

;ST(5)=W+U

;Store Y(BP]
;sequentially



TRAN_INC_1:

TRAN_B:

TRAN C:

TRAN_DONE:

H_TRAN

Figure A-2

FSUBR ST,ST(1)
PUSH BX
LEA BX,Y[SI]
CALL SEQ_ST_4
POP BX
PUSH AX
MoV AX,K_ADDRESS
PUSH CX
MOV CX,NUM_PROC
CMP CX,AX
JBE TRAN_INC_1
MOV CX,AX
ADD BP, AX
ADD SI,AX
ADD DI,AX
LOOP TRAN_INC_1
POP CX
POP AX
SUB AX,NUM_PROC
CMP AX,O0
JLE TRAN_B
JMP TRAN_T_LP
ADD BX, 4
ADD | DX, 4
DEC CX
OR CX,CX
JZ TRAN_C
JMP TRAN_I_LP
pPoOP CX
DEC CX
OR CX,CX
JZ TRAN_DONE
JMP TRAN_POWER
MOV AX,N
CALL Y_TO_X
pPoOP DI
POP SI
POP BP
POP DX
POP CX
POP BX
POP AX
RET
ENDP
(continue)

88

;ST(6)=W-U
;Store YI[SI]
;sequentially

;Set next addr for
;BP,SI,DI

;3rd loop end

;Set next addr for
;BX, DX

;LOOP will cause
sout of range error

;3rd loop end

;Set input para. for
;subroutine and call
;Restore the
sregisters

N



.DATA

POWER
BASE
TEMP
X

Y
SIN

cos

K
K_ADDRESS
N2
N2_ADDRESS
T

I

ANGLE
LINDEX

NUM_PROC
N

.STACK

DW Oh
DW 2h
DW Oh
DW Oh
DD 256
DD 256
DD 256
DW Oh
DW Oh
DW Oh
DW Oh
DW Oh
DW Oh
DD 256
DW 256
PUBLIC NUM
DW 1h
PUBLIC N
DW Oh
END

(conti

Figure A-2

DUP (0)
DUP (0)
DUP (0)

DUP(0)
DUP (0)

_PROC

nue)

89



.M
.C

ODEL MEDIUM
ODE

Program Name

This subroutine
power of P, where P is the input parameter.
From compiled BASIC program : CALL TWO_TO_P(P,N)

Author

P2

: Boon Pock Lim
Date : March 10,

(procedure)

where N = 2 =~ P

is to calculate 2 to the

90

Ne NWe Ve Ne Ne Ne N %o

“

P2

Figure A-3

1988
PUBLIC P2
PROC FAR
PUSH BP
MOV BP, SP
PUSH AX
PUSH BX
PUSH cX
MOV BX, [BP1+8
MOV CX,WORD PTR [BX]
MOV ax,1
SHL AX,CL
MOV BX, [BP]+6
MOV WORD PTR [BX],AX
POP cX
POP BX
POP Ax
POP BP
RET 4
ENDP
END

P2 program listing

~

;Save BP
; BP=SP
;Save the registers

’
;1st Arg.= P
;CX=P

;AX = 2°P
;2nd Arg. = N

;Restore the
;registers

N



.8087
.MODEL MEDIUM
.CODE

Ne Ne Ve Ve e Ne N

we

SCALE

Ne Ne “o

SC_D_1:

Ne N

SC_RTN_1:

SC_RTN_2:

Figure A-4

Program Name
This subroutine (procedure) is to scale the result from
the FHT by N.

From compiled BASIC program : CALL SCALE(X(O0),N)

Author : Boon Pock Lim

Date : March 10,

SCALE

91

We Ne Ve Ne Ve Ne %o

1988

————————————————————————————————————————————————————————— ;

EXTRN SEQ_LD_4:FAR

EXTRN SEQ_ST_4:FAR

PUBLIC SCALE

PROC FAR

PUSH BP ;Save BP

MOV BP, SP ; BP=SP

PUSH AX ;Save the registers

PUSH BX

PUSH CX HE

MOV BX,[BP]+6 ;2nd Arg.

MOV AX,WORD PTR [BX]

MoV N, AX

MOV BX,[BP]+8 ;1st Arg.

JMP SC_D_1 ;Dummy Jjump

DB ODFh, OFDh ;Parallel mode

FINIT

FILD N

CALL SEQ_LD_4 ;Load X sequentially

FDIV ST,ST(1) ;Scaling

CALL SEQ_ST_4 ;Store X sequentially

MOV CX,NUM_PROC ;Set next address

CMP CX,AX

JBE SC_RTN_2

MOV CX,AX

ADD BX, 4

LOOP SC_RTN_2 HE et

SUB AX,NUM_PROC

CMP AX,O

JG SC_RTN_1

JMP SC_D_2 ;Dummy Jjump

SCALE program listing

e



SCALE

.DATA

DB

POP
POP
POP
POP
RET
ENDP

EXTRN
EXTRN

END

Figure A-4

0DFh, OFEh

CX
BX
AX
BP
4

NUM_PROC: WORD

N:WORD

(continue)

92

;Scalar mode

;Restore the
sregisters

NS



93

.8087
.MODEL MEDIUM
.CODE
el e it H
Program Name : DFT F
This subroutine(procedure) is to calculate the DFT ;
from the DHT A
From compiled BASIC program : H
CALL DFT(X(0),N,RE(0),IM(0)) H
’
’
’
;

e

where RE : real part of DFT
IM : imaginary part of DFT
Author : Boon Pock Lim
Date : March 10, 1988

NWe Ne Ve We WMo Ve Ne Ne o

-
~

EXTRN SEQ_LD_4:FAR
EXTRN SEQ_ST_4:FAR

PUBLIC DFT

DFT PROC FAR
PUSH BP ;Save BP
MOV BP, SP ; BP=SP
PUSH AX ;Save the registers
PUSH BX
PUSH CX
PUSH DX
PUSH SI
PUSH DI N R e T == ——
MOV SI,[(BP]1+12 ;1st Arg.
MOV BX,(BP1+10 ;2nd Arg.
MOV AX, [BX] ;N
DEC AX ;N-1
PUSH AX
MOV CX,2 ;(N-1)*4 - offset
SHL AX,CL P
MOV DI ,AX ;Last element of X
ADD DT ;81 jommmmmmmmm—m e
POP AX
MOV BX, [BP]+8 ;3rd Arg. - RE
MOV BP,[BP1+6 ;4th Arg. - IM
FINIT ;Reset 8087
FLDZ ;ST(7)=0
FLD DWORD PTR ([SI] ;ST(6)=X(0)
FSTP DWORD PTR [BX] JRE = X(0)
FSTP DWORD PTR ([BP] ;IM = 0
; JMP DFT_D_1 ; Dummy jump
;DFT_D_1:

Figure A-5 DFT program listing

N LI



Ne “eo “o

DFT_RTN_1:

DFT_RTN_2:

’
;DFT_D_2:

DB ODFh, O0FDh
FINIT

FLD1

FCHS

MOV DX, 4

ADD SI,DX

ADD BX, DX

ADD BP, DX
PUSH BX

MOV BX,SI
CALL SEQ_LD_4
MOV BX,DI
CALL SEQ_LD_4
POP BX

FLD ST(O0)
FINCSTP

FXCH ST(2)
FDECSTP

FADD ST,ST(2)
FSCALE

CALL SEQ_ST_A4
FXCH ST(2)
FSUBRP ST(1),ST
FSCALE

PUSH BX

MOV BX,BP
CALL SEQ_ST_4
POP BX

MOV CX,NUM_PROC
CMP CX,AX

JBE DFT_RTN_2
MOV CX,AX

SUB DI,DX

ADD SI,DX

ADD BX,DX

ADD BP, DX
LooP DFT_RTN_2
SUB AX,NUM_PROC
CMP AX,O

JG DFT_RTN_1
JMP DFT_D_2
DB ODFh, OFEh
A-5 (continue)

Figure

94

;Parallel mode

;ST(7)=1
;ST(7)=-1 (/2)
;Set next addresses

;Load X (k)
;sequentially

;Load X(n-k)

’

;Real #

;Imaginary #

;Set next address

;Set next addresses

;Dummy Jjump

;Scalar mode

b, LI
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POP DI ;Restore the
POP SI ;registers

- POP DX
POP CX
POP BX
POP AX
POP BP o m -
RET 8

DFT ENDP

.DATA

EXTRN NUM_PROC: WORD

.STACK
END

Figure A-5 (continue)



.8087
.MODEL MEDIUM
.CODE

PUBLIC SEQ_LD_2

PROC

Input parameters :

Reads : NUM_PROC,
PUSH
PUSH
PUSH
PUSH
PUSH

JMP
S2_LD D1:
DB

Ne Ne Ne Ne N

XOR
MOV
MOV
CMP
JBE
MOV
MOV
S_2_LD_1:
FILD
ADD
LOOP
OR
JZ
MOV
SUB
S_2_LD_2:
FLD1
LOOP
S_2 LD_3:

~

: JMP
S2_LD_D2:
DB
JMP
S2_LD_D3:

Ne Ne Ne Ne e N

DB

Figure A-6

AX
BX
data

FAR

= index of data
AX

BX

CX

DX

SI

S2_LD_D1
ODFh, OFFh
DX, DX
CX,NUM_PROC
SI,CX

CX, AX

S_2 LD 1
.CX,AX

DX,1

WORD PTR [BX]
S_2 LD_1
DX, DX

S_2 LD_3
CX,SsI

CX,AX

S_2 LD_2
S2_LD_D2
ODFh, OFEh
S2_LD_D3
ODFh,OFDh

SEQ program listing
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This procedure loads 2-byte data sequentially.
# of data to be processed

;Dummy Jjump
;Sequential mode
;IE AX < # of
;processors then
;CX=AX else

;CX=# or processors
;DX : Flag

;Load data
;sequentially

;Load dummy 1 to
;other processors.
;Dummy jump

;Scalar mode
;Dummy Jjump

;Parallel mode

D NLI A4



POP
POP
POP
POP
POP
RET
SEQ_LD_2

ENDP

PUBLIC

PROC

SI
DX
CX
BX
AX

SEQ_ST_2

FAR

97

;Restore the
;registers

This procedure stores

eads :
rites :

NUM_PROC

14
’
; Input parameters :
’
’
S data

= 2

“

; DB

MOV

CMP

JBE

MOV
S_2 ST 1:

FISTP

ADD
LOOP
H
H JMP
;S2_ST_D2:
H DB
F JMP
;S2_ST_D3:
A DB
H
POP
POP
popP
RET

SEQ_ST_2 ENDP

AX
BX

PUBLIC

Figure A-6

2-byte data sequentially.
# of data to be processed

index of data

AX
BX
CX

S2_ST D1
ODFh, OFFh
CX,NUM_PROC
CX, AX
S_2_ST_1

CX, AX

WORD PTR [BX]
BX, 2

S_2 ST 1
S2_ST_D2

ODFh, OFEh
S2_ST_D3

ODFh, OFDh
cX

BX
AX

SEQ_LD_4

(continue)

We Ne Ne Ns Ve N

;
;Save the registers

;Dummy Jjump
;Sequential mode

;IE AX<K# of
;processors then
;CX = AX else

;CX=% of processors

;Store data
;sequentially

;Dummy jump

;Scalar mode
;Dummy Jjump

;Parallel mode

;Restore the
s;registers

L
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SEQ_LD_4 PROC FAR
F 2t e e i S S S S
; This procedure loads 4-byte data sequentially. :
; Input parameters : AX = # of data to be processed ;
] BX = index of data H
; Reads : NUM_PROC, data F
N e e e e ’
PUSH AX ;Save the registers
PUSH BX
PUSH CX
PUSH DX
PUSH SI jmmmmmmm—m
’
H JMP S4_LD_D1 ;Dummy Jjump
;S4_LD _D1:
s DB ODFh, OFFh ;Sequential mode
’
XOR DX, DX ;DX : flag
MOV CX,NUM_PROC ;If AX < # of
MOV SI,CX s;processors then
CMP CX,AX ;CX = AX else
JBE S_4 LD_1 ;CX=# of processors
MOV CX,AX
MOV DX, 1 e e
S_4_LD_1:
FLD DWORD PTR [BX] ;Load data
ADD BX, 4 ;sequentially
LooP S_4_LD_1 jo————————mmm—mme-
OR DX, DX
JZ S_4_LD_3
MOV CX,SI
SUB CX,AX
S_4_LD_2:
FLD1 ;Load dummy 1 to
LOooOP S_4_LD_2 ;other processors
S_4_LD_3:
; JMP S4_LD_D2 ;Dummy Jjump
;S4_LD_D2:
; DB ODFh, OFEh ;Scalar mode
; JMP S4_LD_D3 ;Dummy Jjump
;S84 _ LD _D3:
; DB ODFh,OFDh ;Parallel mode
’ POP SI ;Restore the
POP DX s;registers
POP CX
POP BX

Figure A-6

(continue)




POP
RET

SEQ_LD_14 ENDP

PUBLIC
PROC

14

; This procedure stores
; Input parameters : AX
; BX
; Reads :
; Writes :

NUM_PROC
data

S4_ST_D1:
DB

Ne Ne Ne Ne N

MOV
CMP
JBE
MOV
S 4 ST _1:
FSTP
ADD
LOOP
;
H JMP
;S4_ST_D2:
b DB
A JMP
;S4_ST_D3:
H DB
’
POP
POP
POP
RET
SEQ_ST_4 ENDP
.DATA
EXTRN

END

Figure A-6

AX jo——m

SEQ_ST_4

4-byte data sequentially.

H

H
= # of data to be processed ;
= index of data H

;

H

14
AX ;Save the registers
BX
CX R
S4_ST_D1 ;Dummy Jjump
ODFh,OFFh ;Sequential mode
CX,NUM_PROC ;IfE AX < # of
CX,AX ;processors then
S_4 ST 1 ;CX=AX else # of
CX,AX ;CX=# of processors
DWORD PTR [BX] ;Store data
BX, 4 ;sequentially
S_4_8ST_1 jemmm e
S4_ST_D2 ;Dummy Jjump
ODFh,OFEh ;Scalar mode
S4_ST_D3 ;Dummy jump
ODFh, OFDh ;Parallel mode
CX ;Restore the
BX sregisters
AX R ocooc Bt Bt Bttt Bt
NUM_PROC:WORD

(continue)
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