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ABSTRACT 

SMALL RNAS: BIG ROLES IN WHITE MOLD INFECTING CROP PLANTS 

ACHAL NEUPANE 

2020 

In eukaryotes, small RNAs (sRNAs) are key regulators of RNA silencing which is 

also known as RNA interference (RNAi). RNAi is an essential mechanism known in 

plants, animals and fungi that regulates various biological activities, including defense 

against foreign nucleic acids and viruses. Fungal pathogens, such as Sclerotinia 

sclerotiorum, severely limit crop production in all parts of the world. Sclerotinia 

sclerotiorum cause white mold infection, affecting all dicotyledonous plants including 

many economically important field crops, vegetables, and floriculture. There does not 

exist known host resistance, and only limited chemical control can be achieved. Given 

the growing cost and environmental impacts of using fungicides to control these 

pathogens, an alternative method that exploits RNA silencing in fungi is warranted.  

The objectives of my research were: (i) to understand RNA-editing mechanism in 

virus derived small interferring RNAs (VsiRNAs), (ii) to discover mycoviruses from 

metatranscriptomic study of arbuscular mycorrhizal fungus Rhizophagus spp., and (iii) to 

characterize the antiviral roles of RNAi genes in S. sclerotiorum. This dissertation 

includes three chapters from my PhD research. In chapter 1, I have demonstrated that 

RNA editing mechanism is common in fungi, including S. sclerotiorum, Botrytis cinerea, 

and Fusarium graminearum, as well as in higher metazoans. My analysis showed that the 

virus-infected wild-type and RNAi mutant strains of S. sclerotiorum accumulate virus-

derived small RNAs with distinct patterns of internal and terminal modifications. Chapter 
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2 deals with the discovery of mycoviruses infecting arbuscular mycorrhizal fungus and 

their evolution with respect to their counterparts infecting pathogenic fungi. Finally, 

chapter 3 focuses on the characterization of RNAi genes in S. sclerotiorum. 

While RNA silencing in fungi is primarily involved in antiviral defense against 

foreign nucleic acids, pathogenic fungi also utilize RNA silencing mechanism to silence 

host defense genes in plants through the delivery of small RNA molecules as virulence 

effectors. Beginning with the discovery of RNA editing events, this study investigates the 

roles of RNAi genes in fungal pathogen S. sclerotiorum using various approaches in 

bioinformatics. 

The present study dissects the RNA silencing pathway in S. sclerotiorum by 

disrupting its key silencing genes using the split-marker recombination method in order 

to probe the contributions of these genes, specifically argonautes, to fungal virulence and 

viral defense mechanisms. Following gene disruption, mutants were studied for changes 

in phenotype, pathogenicity, viral susceptibility, and small RNA processing compared to 

the wild-type strain, DK3. Among the argonaute mutants, the Δagl-2 mutant had 

significantly slower growth and virulence prior to and following virus infection. 

Additional analyses indicated that the virus-infected wild-type strain accumulated virus-

derived small RNAS (vsiRNAs) with distinct patterns of internal and terminal nucleotide 

mismatches. Δdcl-1 mutant produced less vsiRNA compared to Δdcl-2 mutant and the 

wild type strain, suggesting the two dicers are not in the state of complete redundancy.  

An emerging area of interest is the use of external dsRNA-based pest control 

which will require detailed characterization of the RNA silencing pathways in S. 

sclerotiorum. In an attempt to investigate the utility of dsRNA-based pest control strategy 
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for white mold, we studied the roles of argonaute enzymes, agl-2 and agl-4, in small 

RNA metabolism in S. sclerotiorum. Our study has shown that RNA silencing deficient 

S. sclerotiorum show increased susceptibility to virus infection. Additionally, we also 

profiled different classes of small RNAs, including vsiRNAs, from different gene 

mutants to study viral susceptibility, internal modification, stability, and small RNA 

processing compared to wild-type strain, DK3, of S. sclerotiorum.  

Results from this study show that fungal pathogen S. sclerotiorum host robust 

RNA silencing mechanisms to defend against foreign nucleic acid and viruses and to 

facilitate fungal infection of host plants through trans-kingdom RNAi. These findings 

expand our overall understanding of S. sclerotiorum and has important implications for 

any current or future uses of dsRNA and mycoviruses as disease control agents. 
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CHAPTER ONE: RNA-EDITING OF VIRUS-DERIVED SMALL INTERFERING 
RNAS (VSIRNAS) 

 
Abstract 

RNA silencing, also known as RNA interference, is an essential mechanism in 

plants, animals and fungi that functions in gene regulation and defense against foreign 

nucleic acids. In fungi, RNA silencing has been shown to function primarily in defense 

against invasive nucleic acids. RNA-silencing- deficient fungi show increased 

susceptibility to virus infection. Although RNA-editing in plants and animals have been 

well studied, RNA-editing in fungi is a fairly new concept. Also, very little is known 

about the classes of RNA editing in virus-derived small interfering RNA (vsiRNA) which 

will teach us the nature of self-nonself recognition and ways to modulate RNA 

modification to control fungal infections. This study will help us understand 

evolutionarily conserved antiviral defense mechanism in S. sclerotiorum, and fungal 

pathogens in general. 

 
1.1 RNA silencing in Sclerotinia sclerotiorum 

RNA interference (RNAi) or RNA silencing is a mechanism essential to 

eukaryotes in regulating gene functions through transcriptional and posttranscriptional 

suppression of gene expression. RNAi was first discovered in 1998 (Fire et al., 1998) and 

since then it has been shown to play important roles in regulating gene expression 

involving mRNA degradation, inactivation of translation and chromatin remodeling 

(Nakayashiki et al., 2006).  RNA silencing requires dsRNA or hairpin RNAs processed 

into short 21-24nt long RNA molecules processed by RNase-III endonucleases (also 

known as dicers) (Baulcombe, 2002;Baulcombe, 2004). Depending on the source, these 
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small RNA molecules which can be either small interfering RNA (siRNA) or microRNA 

(miRNA), form a complex with Argonaute proteins known as RNA-induced silencing 

complexes (RISCs) that direct degradation or translational repression of complementary 

RNA sequences (Baulcombe, 2002;Baulcombe, 2004;Baulcombe, 2005;Bouche et al., 

2006;Dang et al., 2011).  

RNAi in fungi is an adaptive defense strategy by which invasive nucleic acids are 

inactivated or degraded. While RNA silencing in animals and plants is essential for 

survival of the organism, it has been shown that, in fungi, RNA silencing is vital only as 

part of the defense strategy, such as against virus infection (Segers et al., 2007). 

Nonetheless, studies have shown that filamentous fungi have diverse small RNA 

biogenesis pathways that are activated in response to different cellular processes for 

which some of the RNA silencing genes have more than one functions (Dang et al., 2011) 

while other could have redundant roles, particularly in antiviral processing of dsRNA or 

transgenes (Catalanotto et al., 2004;Wang et al., 2016a). Sclerotinia sclerotiorum (white 

mold fungus) is one of the major plant pathogens that could cause up to 100% loss in 

crop yield and is also known to affect a wide range of crop species (Heffer Link and 

Johnson, 2007). Studies have shown that RNA silencing is an important measure fungal 

pathogens take to defend against foreign nucleic acids (such as mycoviruses), and also to 

establish pathogenesis against host organisms (Amselem et al., 2011;Wang et al., 

2016a;Mochama et al., 2018). RNA silencing pathway involves various genes, such as 

argonaute, dicer and RNA-dependent-RNA-polymerase (RDRP) and their number in 

fungi differs even within the two species of same genera. For example, within the same 

genus, Ustilago maydis have RNA silencing genes while Ustilago hordei does not have 
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any RNA silencing genes (Laurie et al., 2012). RNA silencing in S. sclerotiorum is 

comprised of two argonautes genes (ago-2 and ago-4), two dicer genes (dcl-1 and dcl-2) 

and three RDRP genes (Laurie et al. (2012).). Our recent studies of gene disruption 

mutants of argonaute (Δagl-2 and Δagl-4) and dicer (Δdcl-1, Δdcl-2 and ΔΔdcl-1/2) 

showed different phenotypic, virulence, viral susceptibility and small RNA accumulation 

responses with and without virus infection (Mochama et al., 2018;Neupane et al., 2019). 

In double dicer mutants (ΔΔdcl-1/2), S. sclerotiorum showed reduced pigmentation, 

reduced sclerotial formation, reduced small RNA (sRNA) production, severe debilitation 

following virus infection and eliminated vsiRNA production while these changes were 

not seen in single dicer mutants (Mochama et al., 2018). Similarly, the argonaute-2 

mutant (Δagl-2) exhibited slower growth prior to virus infection, significantly smaller 

lesion size and greater debilitation under virus infection while argonaute-4 (Δagl-4) 

mutants did not exhibit phenotypic changes (Neupane et al., 2019). This also confirms 

that some RNA silencing genes in S. sclerotiorum have diverse and essential roles while 

other genes remain functionally redundant. 

1.2 Biogenesis of virus-derived small interfering RNAs (vsiRNAs) 

In eukaryotes, including in fungi, small RNAs are known as key players of RNA 

silencing that regulate various biological processes. Many of these silencing components 

involve processing of double-stranded RNAs (dsRNAs) that are often generated by host 

or virus related RNA-dependent RNA polymerases into 21-26 nucleotide sequences 

known as small interfering RNAs (siRNAs) (Hamilton and Baulcombe, 1999;Elbashir et 

al., 2001). Long precursor dsRNAs are then cleaved by a member of RNase III family of 

nucleases called dicer which specifically targets double-stranded RNAs (Bernstein et al., 
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2001). These dsRNA-processed small RNAs are repressor of gene expression that are 

common to RNA silencing in plants, higher metazoans and fungi (Baulcombe, 2002). 

These siRNAs are incorporated into argonaute proteins to form RNA-induced silencing 

complex (RISC) that guides through the target single-stranded RNAs of the 

corresponding dsRNA for post-transcriptional silencing (Zamore, 2001;Hock and 

Meister, 2008). In plants, shorter siRNAs (21-22 nucleotide long sequences) are more 

abundant and are primarily involved in the degradation of mRNAs while longer (24-26 

bases long) counterparts are involved in regulating DNA methylation and systemic 

silencing (Hamilton et al., 2002). The major contrast with miRNA to this class of small 

RNA is that miRNAs are generated from miRNA genes that generate a single-stranded 

RNA transcript with a stem-loop structure which is then recognized and processed by 

dicers (Bouche et al., 2006;Dang et al., 2011). Additionally, miRNAs can degrade mRNA 

targets that are nearly perfect complementary while siRNAs target fully complementary 

transcripts and are primarily part of defense mechanism (Dang et al., 2011).  

In plants, four subgroups of siRNAs have been reported, namely, trans-acting 

siRNAs (ta-siRNAs), heterochromatic-associated siRNAs (hc-siRNAs), natural antisense 

transcript siRNAs (nat-siRNAs), and virus-activated siRNAs (vasiRNAs) (Zhang et al., 

2015). Additionally, virus derived-small interfering RNAs (vsiRNAs) have also been 

found in various organisms that are generated in response to antiviral immunity against 

viral genomic RNA (Zhu and Guo, 2012). In plants, each dicer is responsible for 

generating vsiRNAs of specific sequence lengths, and only DCL2 and DCL4 are actively 

involved in processing majority of vsiRNAs after virus infection (Deleris et al., 2006;Zhu 

and Guo, 2012). Additionally, two different classes of vsiRNAs have been reported: the 
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primary vsiRNAs that are cleaved by dicer immediately after viral RNA triggers are 

detected, and secondary vsiRNAs generated from resulting viral fragments that are often 

processed into dsRNA by RNA-dependent RNA polymerase (RDRP) enzymes and then 

recognized and processed by dicers (Dunoyer et al., 2005;Wassenegger and Krczal, 

2006).  

In fungi, RNA silencing is particularly important in defense against viruses. As 

seen in Cryphonectria parasitica (a close relative of Neurospora crassa), infection with 

Cryphonectria hypovirus 1 (CHV1) reduces the virulence of the fungal host (Nuss, 2005) 

by utilizing papain-like protease (p29) which is a viral suppressor of RNA silencing in 

fungal and plant hosts (Suzuki et al., 2003). Generation of siRNAs is an important feature 

of RNA silencing reported in plants, animals (Zamore, 2002), and fungal species, such as 

N. crassa (Catalanotto et al., 2002), Magnaporthe oryzae (Kadotani et al., 2003), and 

Aspergillus nidulans (Hammond and Keller, 2005). Filamentous fungi host the 

replication of numerous mycoviruses with both dsRNA or plus-sense ssRNA genomes 

and some of which also have sequence similarities with viruses infecting plants (Pearson 

et al., 2009). In this regard, virus-derived small interfering RNAs (vsiRNAs) are 

associated with RNAi pathways directing antiviral immunity in fungi (Ding and Voinnet, 

2007;Aliyari and Ding, 2009). Biogenesis of vsiRNA in fungi is similar to that of 

endogenous small RNA that involves different RNAi proteins including dicers, 

argonautes, and RDRPs. The biogenesis of vsiRNA is becoming clearer through Next 

generation sequencing of small RNAs and bioinformatics analysis of different RNAi 

mutants. In this study, I will discuss some of our research findings on RNA-editing in 
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vsiRNAs based on the analysis of small RNA-seq, RNA-seq and degradome-seq data 

analysis.  

1.3 RNA-editing 

The concept of RNA-editing was first explored in mid-1980s to describe the 

mechanisms by which uridine is inserted into the mitochondrial cytochrome oxidase 

(cox) subunit II of trypanosomatid (Benne et al., 1986). Since then, RNA-editing has 

been a widely studied mechanism that governs several RNA processing events related to 

gene function, growth, defense and survival of organisms.  

One of the most common editing events include adenosine-to-inosine (A-to-I) 

modification mediated by adenosine deaminase protein family members (ADAR) acting 

on RNA. Inosine is known to be interpreted as guanosine by cellular machinery (Basilio 

et al., 1962). ADAR mediated RNA-editing acts on double-stranded RNA (dsRNA) even 

without perfect complementarity (Nishikura, 2010), and causes deamination of almost 

half of all adenosine residues with perfect complementarity (Polson and Bass, 1994). 

ADAR editing could be highly site selective when mediated by ADAR2 compared to 

more random editing by ADAR1 (Kallman et al., 2003). Site selective editing is 

determined also by the immediate structure and residues surrounding the editing sites. 

For example, for a purine (A or G) opposite to the editing site has negative affinity on 

both selectivity and efficiency because purines bases are comparatively larger than 

pyrimidines and could sterically interfere with the target (Wong et al., 2001;Kallman et 

al., 2003). ADAR mediated editing is common among cellular pre-mRNA, viral RNA 

and non-coding RNA-editing (Gerber and Keller, 2001). While ADAR mediated RNA-

editing is common in metazoans (and particularly in mammals) (Savva et al., 2012), it 
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has not been found in a variety of non-metazoan eukaryotes like plant and fungal species 

(Jin et al., 2009).  Although, yeasts and filamentous fungi lack the orthologs of ADAR, 

they still have A-to-I editing independent of ADAR enzymes. For example, A-to-I editing 

found in Fusarium graminearum seems to be independent of ADAR and have sequence 

preference and site selectivity for editing which is different from animals (Liu et al., 

2016).  

Similarly, prokaryotes do not have ADAR genes, but their evolutionarily more 

ancestral counterparts, transfer RNA (tRNA) adenosine deaminase (TadA) are 

responsible for tRNA specific modifications (Wolf et al., 2002). Orthologs of TadA in 

eukaryotes is known as adenosine deaminases acting on tRNAs (ADATs) and mediate 

deamination of A-to-I editing targeting tRNA anticodon (Gerber and Keller, 2001). 

Sequence homology analysis between the catalytic domains associated with ADARs and 

ADATs also indicates that the ADATs are ancestral to ADARs (Savva et al., 2012). This 

suggests that the ADAR-mediated RNA-editing mechanisms in higher metazoans and 

mammals are recently evolved from ADATs. In F. graminearum, out of three ADAT 

genes (FgTAD1, FgTAD2 and FgTAD3), only FgTAD2 and FgTAD3 contain 

cytidine/deoxycytidylate deaminase domain which suggests that only two of these genes 

are involved in A-to-I editing (Liu et al., 2016). Other filamentous fungi, such as 

Neurospora crassa, also seem to have novel RNA-editing that are independent of 

ADARs with stage-specific editing events at various sexual developmental stages (Liu et 

al., 2017), including editing of gene involved in fungal fruiting body development (Wang 

et al., 2014). Unlike in mammals, majority of these editing sites in N. crassa were found 

in coding regions altering amino acids, and since non-synonymous editing in N. crassa 
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are generally conserved, nearly 50% of these non-synonymous editing sites were also 

common to editing sites found in N. tetrasperma (Liu et al., 2017). Stage-specific A-to-I 

RNA-editing that regulates sexual reproduction is also common in F. verticillioides and 

perhaps many other Sordariomycetes (Sikhakolli et al., 2012;Liu et al., 2016). 

Another class of RNA-editing is mediated by “Apolipoprotein B mRNA-editing 

enzyme, catalytic polypeptide-like” family of enzymes (also known as activation-induced 

deaminase AID/APOBEC family) which mediates deamination of cytosine to uracil (C-

to-U) commonly affecting protein coding, ribosomal and tRNAs in different organisms 

(Mahendran et al., 1991;Navaratnam et al., 1998;Lerner et al., 2018). Among several 

members of APOBEC family, APOBEC1 was the first discovered enzyme which 

deaminates a certain cytosine residue in the sequence of apolipoprotein B (Apob) pre-

mRNA (Teng et al., 1993). This enzyme has been shown to mediate the C-to-U editing 

that modifies a CAA codon to a stop codon which produces a shorter form of the APOB 

protein known as APOB-48 (Navaratnam et al., 1993;Teng et al., 1993). All members of 

AID/APOBEC family are evolutionarily conserved, share same structural residues 

comprised on zinc-dependent deaminase, and involved in (except for APOBEC2 and 

APOBEC4) C-to-U deaminase activity on single-stranded DNA or RNA (Lerner et al., 

2018). APOBEC mediated deamination has been found in fungal species, Ganoderma 

lucidum (Zhu et al., 2014). Although most of the RNA-editing mechanisms in fungi is not 

as clear as in higher metazoans, their roles in fungal species could further elucidate the 

possible implications in fungal pathogen control strategy. 

In human, viral dsRNA replicative intermediates trigger the production of 

vsiRNA that are loaded into argonaute protein to degrade cognate viral RNA sequences 
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(Qiu et al., 2017). In severe acute respiratory syndrome coronavirus (SARS-CoV) study 

done in human, synthetic siRNAs are found to downregulate the expression of SARS-

CoV in a dose-dependent manner by targeting sequence-specific genes (Shi et al., 2005). 

Additionally, the thermodynamic stabilities of each strand of siRNA duplex (particularly 

for bases at the 5’ end) determine the structural symmetry of siRNAs eligible for 

assembly into RISC and therefore also determine the overall function of siRNA 

molecules (Khvorova et al., 2003;Schwarz et al., 2003). Functionally active siRNA 

duplexes have lower internal stability at the 5’-antisense terminal base pair end compared 

to nonfunctional duplexes (Shi et al., 2005). When inactive siRNA duplexes are mutated 

at 21 base position of the positive strand to unpair with the 5’ end of negative strand, they 

can downregulate the expression of cognate genes more efficiently (Shi et al., 2005). 

1.4 Materials and Methods 

1.4.1 Analysis of the Sequencing Data 

Sequenced small RNA-seq data for virus-infected S. sclerotiorum Δago-2, Δdcl-1 

and Δdcl-2 mutants were obtained from our previous studies (Mochama et al., 

2018;Neupane et al., 2019), including virus-infected wild-type controls from (Lee 

Marzano et al., 2018;Neupane et al., 2019). RNA-Seq libraries of five virus-infected S. 

sclerotiorum were obtained from our previous study (Lee Marzano et al., 2018); NCBI 

accession: SRR8305679. To investigate the prevalence of RNA-editing in other 

organisms infected with their viruses, we also analyzed small RNA-seq datasets from 

SRA database (https://www.ncbi.nlm.nih.gov/sra/) for Botrytis (Donaire and Ayllon, 

2017) under accessions: SRR3659825, SRR3659826, SRR3659827); Fusarium (Wang et 

al., 2016b) under accession: SRR3055827; mouse (Li et al., 2013) under accessions: 

SRR2175652,  SRR2175613, SRR2175618); and human (Qiu et al., 2017) under 
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accessions: SRR5593145, SRR5593146, SRR5593147 and SRR5593148). Adaptors from 

small RNA-seq data were trimmed using BBDuk tool available from BBTools (Bushnell, 

2014). ShortStack (Axtell, 2013) was used to identify loci producing sRNAs by 

clustering. The number of reads aligned to Sclerotinia sclerotiorum hypovirus 2 L 

(SsHV2-L)  genomes were computed using Bowtie (Langmead et al., 2009). RNA-

editing in small RNA reads were determined by allowing one mismatch for Bowtie 

(Langmead et al., 2009) alignment of 18-24 bases reads with SsHV2-L genome and 

further downstream analyses were performed using in-house Perl and R scripts. RNA-seq 

data were assembled using Trinity (Grabherr et al., 2011) to further validate the editing 

sites found in vsiRNAs from small RNA libraries of S. sclerotiorum. 

 

1.5 Results and Discussion 

1.5.1 Virus-derived small RNAs in Sclerotinia sclerotiorum 

A wide range of editing was found in virus-derived small RNA species of various 

lengths obtained from small RNA libraries of S. sclerotiorum infected with SsHV2-L. 

Different amounts of vsiRNAs were produced by gene disruption mutants and wild-type 

S. sclerotiorum infected with SsHV2-L: Δago-2 at 5.64% and 6.59%, Δdcl-1 at 2.77% 

and 3.97%, Δdcl-2 at 16.61% and 13.86% and wild-type at 7.43% and 5.15% of the total 

reads in each library (Table 1). Based on the percentages, vsiRNA production seems to be 

mediated more by DCL1 compared to DCL2. While strand-bias was not observed in 

wild-type samples, vsiRNAs in gene-disruption mutants had alignment bias towards 

either positive or negative strands. Single-base RNA modification was relatively higher 

in gene-disruption mutants (13 - 22% of vsiRNAs) compared to only ~5% of the 
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vsiRNAs in wild-type (Table1). Additionally, RNA modification in 22nt sequences was 

most abundant (followed by 23nt and 21nt sequences) for all libraries.      
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Table 1. Number of mismatches in virus-derived small interfering RNAs (vsiRNAs) 
produced by virus-infected gene-knockout mutants (Δago-2, Δdcl-1 and Δdcl-2) and 
wild-type (Vmicro) Sclerotinia sclerotiorum. Percentage (%) in brackets is the percent of 
total reads in each library. Number of mismatches (both internal and terminal) are shown 
under column “Mismatches”. Small RNA reads were aligned to Sclerotinia sclerotiorum 
hypovirus 2 L (SsHV2-L) genome. 

Samples 
Read 

Length 
Mismatches 

Total 

Mismatches 

(% of 

aligned 

reads) 

Aligned Reads 

Aligned 

Reads 

Unaligned 

Reads Positive Negative 

Δago-
2_SsHV2L 
(Replicate1) 

18 1229 

148101  
(22.31%) 

255301 
 (38.46%) 

408478 
(61.54%) 

663779  
(5.64%) 

11108069  
(94.36%) 

19 4112 

20 12420 

21 27232 

22 61841 

23 33280 

24 7987 

Δdcl-1 
_SsHV2L 

(Replicate1) 

18 1536 

51603  
(13.03%) 

238027  
(60.07%) 

158202 
(39.92%) 

396229 
(2.77%) 

13918611 
(97.23%) 

19 2502 

20 4846 

21 7578 

22 11055 

23 14015 

24 10071 

Δdcl-2 
_SsHV2L 

(Replicate1) 

18 6756 

779914 
(19.05%) 

1086244 
(26.54%) 

3005687 
(73.45%) 

4091931 
(16.61%) 

20541117 
(83.39%) 

19 19596 

20 53889 

21 132785 

22 347047 

23 186372 

24 33469 

Δago-
2_SsHV2L 
(Replicate2) 

18 1272 

160427 
(20.6%) 

280845 
(36.06%) 

497871 
(63.93%) 

778716 
(6.59%) 

11042345 
(93.41%) 

19 4251 

20 13901 

21 30055 

22 69720 

23 34929 

24 6299 

Δdcl-1 
_SsHV2L 

(Replicate2) 

18 949 

86603 
(17.97%) 

153947 
(31.95%) 

327873 
(68.04%) 

481820 
(3.97%) 

11661457 
(96.03%) 

19 2565 

20 7375 

21 16656 

22 39924 

23 16388 

24 2746 

18 3720 488546 
(18.92%) 

634071 
(24.56%) 

1946815 
(75.43%) 

2580886 
(13.86%) 

16034792 
(86.14%) 19 11203 
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Δdcl-2 
_SsHV2L 

(Replicate2) 

20 30577 

21 76081 

22 222558 

23 122516 

24 21891 

1Vmicro 
(Replicate1) 

18 1276 

145191 
(5.38%) 

1335881 
(49.52%) 

1361468 
(50.47%) 

2697349 
(7.43%) 

33582701 
(92.57%) 

19 3044 

20 9889 

21 26432 

22 66488 

23 30452 

24 7610 

2Vmicro 
(Replicate2) 

18 828 

81277 
(5.13%) 

790405 
(49.89%) 

793766 
(50.10%) 

1584171 
(5.15%) 

29192922 
(94.85%) 

19 1931 

20 5475 

21 14660 

22 34691 

23 18575 

24 5117 

 
  

Both internal and terminal modifications were found in vsiRNAs produced by S. 

sclerotinia (Table 2 and Figure 1).   
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These modifications were primarily A-to-G at the 7th base of 18 bases long 

sequences,  G-to-A at the 9th base of 23 bases long sequence, G-to-A at the 11th base of 

22 bases long sequences along with the abundance of terminal modifications (Figure 1). 

These modifications were found in both replicates of our small RNA-seq data (Figure 1). 

Since these modifications are in relatively higher rates (Table 1), we think that these 

presumed edit sites in vsiRNAs are not the result of inherent sequencing error (NGS has 

error rates of <1% (Salk et al., 2018)). Additionally, half of these site-specific 

mismatches in small RNA sequences (Figure 2) were also present in full-length viral 

mRNA sequences assembled from RNA-seq data (Figure 3). Notably, these mismatches 

occur at relatively higher coverage regions (Figure 1). Specifically, loci editing A-to-G 

(transition) at 9048, 10967 and 14217; G-to-A (transition) at 2514, 4426 and 10848; G-

to-C (transversion) at 4676 base positions. This suggests that there are some functional 

significance associated with the higher rates of small RNA production and subsequent 

modifications that are taking place at these loci. Most of these modifications occurring at 

higher coverage loci are also present in mRNA sequences (Figure 3) which suggest that 

these RNA modifications are the result of dsRNA editing. The most prevalent editing 

observed in this study was A-to-I editing which in higher metazoans is mediated by 

ADAR in dsRNA substrates (Savva et al., 2012). Although the exact mechanism for the 

occurrence of these mismatches in viral mRNA is not known, ADAR mediated RNA-

editing is also common in both DNA and RNA viruses further ensuing proviral or 

antiviral effects (Gelinas et al., 2011). Additionally, during transcription of several RNA 

viruses, mRNAs are also subject to nucleotide(s) insertion unspecified by the viral 

genomes (Brennicke et al., 1999).   
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Table 2. Single base modification in 21-24 bases vsiRNA sequences produced by virus-infected gene-knockout mutants 
(Δago-2, Δdcl-1 and Δdcl-2) and wild-type (Vmicro) Sclerotinia sclerotiorum. Total mismatches for 12 possible nucleotide 
modifications are shown. Changes from reference bases to alternate bases are indicated by dot (.). Values within brackets are 
internal mismatches found in sequences of a given read size. 

Samples 
Read 

size 
A.T A.G A.C C.T C.G C.A G.T G.A G.C T.A T.G T.C 

Ago2_SsHV2L 
(Replicate1) 

18 
88 

(39) 
270 
(62) 

38 
(20) 

163 
(138) 

7 
(5) 

55 
(43) 

97 
(87) 

249 
(154) 

37 
(9) 

49 
(31) 

36 
(8) 

140 
(35) 

19 
273 

(166) 
929 

(277) 
82 

(57) 
655 

(560) 
30 

(29) 
262 

(229) 
237 

(217) 
802 

(469) 
70 

(30) 
197 

(133) 
109 
(22) 

466 
(115) 

20 
804 

(628) 
2830 
(606) 

188 
(102) 

1870 
(1564) 

90 
(74) 

771 
(668) 

1077 
(1036) 

2429 
(1458) 

172 
(89) 

640 
(429) 

257 
(71) 

1292 
(393) 

21 
1969 

(1608) 
6703 

(1472) 
394 

(238) 
3555 

(2957) 
173 

(127) 
1663 

(1345) 
1961 

(1790) 
4738 

(2634) 
490 

(210) 
1715 

(1208) 
694 

(190) 
3177 
(971) 

22 
3496 

(2789) 
19039 
(3369) 

850 
(511) 

6967 
(5606) 

285 
(214) 

2630 
(1974) 

3079 
(2762) 

10913 
(4086) 

872 
(231) 

4011 
(1973) 

1698 
(376) 

8001 
(2851) 

23 
1636 

(1239) 
9359 

(1378) 
471 

(274) 
3814 

(2939) 
163 

(102) 
1384 

(1082) 
1546 

(1369) 
6539 

(2803) 
676 

(142) 
2050 

(1083) 
727 

(230) 
4915 

(1278) 

24 
687 

(542) 
1932 
(480) 

150 
(98) 

821 
(608) 

29 
(16) 

353 
(299) 

568 
(506) 

1532 
(1090) 

116 
(62) 

448 
(204) 

189 
(51) 

1162 
(238) 

Dcl1_SsHV2L 
(Replicate1) 

18 
57 

(30) 
317 
(88) 

49 
(24) 

226 
(171) 

17 
(7) 

63 
(53) 

47 
(39) 

256 
(181) 

42 
(23) 

75 
(44) 

84 
(26) 

303 
(152) 

19 
134 
(97) 

531 
(136) 

75 
(23) 

359 
(279) 

22 
(11) 

134 
(119) 

111 
(96) 

374 
(242) 

67 
(38) 

127 
(89) 

122 
(55) 

446 
(223) 

20 
282 

(238) 
919 

(246) 
113 
(60) 

646 
(513) 

35 
(29) 

333 
(300) 

510 
(493) 

821 
(578) 

139 
(80) 

281 
(204) 

179 
(74) 

588 
(296) 

21 
533 

(451) 
1377 
(370) 

198 
(100) 

975 
(755) 

87 
(66) 

620 
(543) 

631 
(564) 

1199 
(834) 

166 
(72) 

598 
(472) 

272 
(124) 

922 
(438) 

22 
919 

(770) 
2252 
(574) 

302 
(148) 

1378 
(1006) 

100 
(71) 

743 
(670) 

785 
(718) 

1645 
(1041) 

250 
(103) 

933 
(748) 

451 
(166) 

1297 
(548) 
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23 
903 

(749) 
3043 
(661) 

312 
(157) 

1731 
(1301) 

108 
(77) 

841 
(734) 

1065 
(998) 

2236 
(1382) 

315 
(98) 

1054 
(823) 

469 
(176) 

1938 
(766) 

24 
809 

(670) 
1998 
(484) 

260 
(117) 

1214 
(856) 

95 
(67) 

667 
(615) 

847 
(786) 

1642 
(1109) 

185 
(71) 

630 
(466) 

325 
(98) 

1399 
(510) 

Dcl2_SsHV2L 
(Replicate1) 

18 
452 

(357) 
1619 
(422) 

250 
(68) 

1078 
(784) 

68 
(51) 

251 
(197) 

425 
(399) 

1344 
(720) 

89 
(57) 

221 
(124) 

169 
(28) 

790 
(200) 

19 
1548 

(1303) 
4441 

(1200) 
579 

(184) 
3355 

(2528) 
186 

(135) 
907 

(786) 
1226 

(1118) 
3790 

(2112) 
333 

(166) 
663 

(433) 
417 
(94) 

2151 
(540) 

20 
2866 

(2233) 
11950 
(2697) 

1404 
(457) 

8431 
(6391) 

419 
(297) 

2808 
(2459) 

4405 
(4107) 

11121 
(6269) 

825 
(310) 

2215 
(1579) 

1237 
(250) 

6208 
(1270) 

21 
7174 

(5624) 
33212 
(8066) 

4898 
(1248) 

17587 
(12796) 

910 
(634) 

5594 
(4669) 

7460 
(6639) 

28736 
(11822) 

2343 
(1076) 

5749 
(3870) 

3595 
(669) 

15527 
(3512) 

22 
16009 

(11748) 
107800 
(18951) 

9557 
(2877) 

44379 
(30830) 

2045 
(1354) 

10885 
(8695) 

17123 
(15415) 

59800 
(26433) 

6639 
(1351) 

11933 
(7761) 

12626 
(1625) 

48251 
(12479) 

23 
9255 

(6743) 
50138 

(11707) 
5092 

(2027) 
24273 

(16392) 
1065 
(662) 

5826 
(4438) 

8963 
(7882) 

37827 
(17074) 

5949 
(853) 

6284 
(3544) 

3526 
(880) 

28174 
(5572) 

24 
2575 

(1868) 
8385 

(2150) 
1050 
(572) 

3690 
(2258) 

253 
(143) 

992 
(773) 

2071 
(1760) 

6561 
(4726) 

591 
(305) 

1039 
(551) 

879 
(185) 

5383 
(673) 

Ago2_SsHV2L 
(Replicate2) 

18 
102 
(61) 

296 
(64) 

21 
(2) 

166 
(131) 

5 
(4) 

53 
(36) 

88 
(81) 

262 
(154) 

34 
(5) 

62 
(42) 

40 
(12) 

143 
(40) 

19 
321 

(215) 
857 

(258) 
90 

(30) 
655 

(550) 
32 

(23) 
295 

(258) 
264 

(256) 
813 

(491) 
127 
(51) 

226 
(147) 

127 
(35) 

444 
(86) 

20 
915 

(751) 
2766 
(541) 

202 
(78) 

2106 
(1678) 

80 
(66) 

957 
(818) 

1311 
(1241) 

2768 
(1624) 

311 
(87) 

828 
(589) 

311 
(64) 

1346 
(344) 

21 
2273 

(1876) 
6394 

(1409) 
451 

(173) 
3885 

(3148) 
162 

(108) 
2118 

(1743) 
2571 

(2336) 
5403 

(2952) 
720 

(270) 
2153 

(1620) 
724 

(154) 
3201 
(935) 

22 
4916 

(3954) 
18645 
(2960) 

860 
(349) 

7772 
(5955) 

333 
(239) 

3449 
(2557) 

4538 
(4086) 

12114 
(5036) 

1577 
(279) 

5006 
(2709) 

1977 
(308) 

8533 
(2427) 

23 
2015 

(1583) 
8601 

(1275) 
482 

(230) 
4042 

(3049) 
171 

(107) 
1825 

(1481) 
2019 

(1794) 
7076 

(3147) 
1026 
(198) 

2351 
(1359) 

596 
(147) 

4725 
(1029) 
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24 
671 

(560) 
1122 
(266) 

107 
(49) 

719 
(537) 

54 
(38) 

291 
(236) 

540 
(476) 

1323 
(953) 

171 
(71) 

381 
(225) 

111 
(29) 

809 
(121) 

Dcl1_SsHV2L 
(Replicate2) 

18 
40 

(29) 
293 
(65) 

31 
(6) 

158 
(89) 

6 
(4) 

34 
(29) 

38 
(32) 

173 
(109) 

15 
(13) 

30 
(13) 

19 
(2) 

112 
(43) 

19 
109 
(85) 

692 
(171) 

88 
(18) 

365 
(269) 

26 
(19) 

135 
(99) 

116 
(105) 

471 
(268) 

56 
(38) 

104 
(57) 

48 
(18) 

355 
(80) 

20 
360 

(281) 
1866 
(376) 

193 
(29) 

1105 
(815) 

55 
(42) 

338 
(272) 

522 
(485) 

1454 
(820) 

119 
(44) 

291 
(204) 

148 
(33) 

924 
(215) 

21 
900 

(707) 
4792 
(955) 

689 
(87) 

2013 
(1375) 

83 
(53) 

761 
(601) 

925 
(824) 

3031 
(1419) 

308 
(140) 

740 
(504) 

410 
(73) 

2004 
(576) 

22 
1844 

(1436) 
14196 
(1935) 

994 
(213) 

4028 
(2653) 

143 
(95) 

1118 
(828) 

1988 
(1790) 

6378 
(2589) 

819 
(186) 

1570 
(935) 

1427 
(151) 

5419 
(1427) 

23 
700 

(495) 
4190 
(765) 

456 
(145) 

1875 
(1241) 

89 
(49) 

540 
(416) 

789 
(702) 

3719 
(1365) 

510 
(113) 

630 
(311) 

234 
(62) 

2656 
(538) 

24 
192 

(146) 
625 

(184) 
104 
(28) 

282 
(172) 

14 
(8) 

93 
(68) 

150 
(127) 

607 
(437) 

80 
(41) 

94 
(51) 

52 
(20) 

453 
(81) 

Dcl2_SsHV2L 
(Replicate2) 

18 
178 

(136) 
1068 
(257) 

121 
(34) 

547 
(384) 

29 
(24) 

106 
(82) 

224 
(197) 

800 
(437) 

35 
(20) 

115 
(64) 

77 
(24) 

420 
(118) 

19 
713 

(586) 
2896 
(799) 

363 
(126) 

1675 
(1259) 

98 
(80) 

533 
(461) 

649 
(598) 

2322 
(1266) 

216 
(123) 

347 
(263) 

233 
(45) 

1158 
(278) 

20 
1582 

(1266) 
7133 

(1570) 
739 

(233) 
4731 

(3648) 
301 

(224) 
1515 

(1328) 
2297 

(2165) 
6511 

(3604) 
555 

(154) 
1203 
(879) 

606 
(153) 

3404 
(715) 

21 
3854 

(3141) 
20138 
(4938) 

2681 
(617) 

9848 
(7206) 

532 
(405) 

3298 
(2804) 

4236 
(3782) 

16911 
(6527) 

1493 
(651) 

3054 
(2154) 

1591 
(319) 

8445 
(1911) 

22 
10150 
(7704) 

73942 
(11991) 

4818 
(1526) 

26779 
(19032) 

1328 
(949) 

6472 
(5195) 

11839 
(10809) 

39107 
(16088) 

4506 
(967) 

7259 
(4896) 

7163 
(907) 

29195 
(7922) 

23 
6058 

(4582) 
35421 
(7840) 

3020 
(1181) 

15384 
(10485) 

729 
(459) 

3695 
(2935) 

6037 
(5411) 

24761 
(10862) 

4339 
(590) 

3675 
(2110) 

1839 
(524) 

17558 
(3419) 

24 
1395 

(1035) 
5774 

(1592) 
595 

(297) 
2499 

(1494) 
190 

(104) 
726 

(555) 
1283 

(1098) 
4527 

(3415) 
368 

(197) 
515 

(251) 
489 
(82) 

3530 
(393) 
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1Vmicro-type 
(Replicate1) 

18 
86 

(68) 
200 
(27) 

44 
(24) 

95 
(45) 

24 
(8) 

124 
(82) 

136 
(115) 

124 
(57) 

114 
(33) 

88 
(56) 

111 
(24) 

130 
(28) 

19 
257 

(213) 
559 
(43) 

103 
(49) 

229 
(152) 

47 
(16) 

280 
(224) 

256 
(197) 

255 
(123) 

216 
(97) 

280 
(220) 

246 
(55) 

316 
(54) 

20 
635 

(498) 
1596 
(197) 

194 
(88) 

656 
(404) 

99 
(41) 

767 
(559) 

727 
(604) 

795 
(390) 

434 
(72) 

610 
(441) 

1647 
(90) 

1729 
(137) 

21 
1328 

(1016) 
5895 
(276) 

689 
(419) 

1531 
(724) 

246 
(69) 

1777 
(846) 

1575 
(1087) 

3152 
(1111) 

1075 
(213) 

1727 
(1114) 

4500 
(483) 

2937 
(551) 

22 
2369 

(1571) 
11959 
(892) 

1306 
(570) 

2936 
(1136) 

558 
(95) 

3330 
(1319) 

2450 
(1430) 

5265 
(1062) 

2574 
(281) 

3579 
(1898) 

5267 
(804) 

24895 
(1136) 

23 
1334 
(950) 

4210 
(326) 

983 
(450) 

1552 
(645) 

359 
(55) 

1713 
(815) 

1637 
(1048) 

9947 
(886) 

1623 
(190) 

2148 
(1130) 

2216 
(273) 

2730 
(473) 

24 
601 

(504) 
813 

(105) 
373 

(125) 
521 

(349) 
120 
(46) 

515 
(394) 

771 
(636) 

1844 
(1019) 

627 
(91) 

515 
(403) 

511 
(149) 

399 
(121) 

2Vmicro 
(Replicate2) 

18 
52 

(43) 
163 
(15) 

21 
(12) 

48 
(24) 

6 
(2) 

98 
(63) 

67 
(46) 

83 
(40) 

108 
(69) 

47 
(32) 

68 
(8) 

67 
(14) 

19 
163 

(152) 
389 
(26) 

56 
(20) 

138 
(94) 

25 
(13) 

168 
(133) 

163 
(130) 

155 
(93) 

191 
(135) 

188 
(141) 

134 
(13) 

161 
(25) 

20 
420 

(340) 
918 
(80) 

111 
(53) 

371 
(235) 

54 
(22) 

468 
(361) 

467 
(401) 

452 
(251) 

228 
(44) 

417 
(305) 

713 
(67) 

856 
(64) 

21 
899 

(730) 
3018 
(141) 

342 
(179) 

883 
(503) 

118 
(36) 

1035 
(553) 

926 
(703) 

1535 
(586) 

629 
(145) 

1318 
(862) 

2562 
(214) 

1395 
(216) 

22 
1561 

(1115) 
6293 
(453) 

715 
(278) 

1813 
(758) 

340 
(58) 

2264 
(901) 

1587 
(983) 

2885 
(687) 

1631 
(247) 

2362 
(1250) 

3182 
(392) 

10058 
(620) 

23 
1026 
(802) 

3108 
(261) 

626 
(283) 

1062 
(447) 

245 
(45) 

1318 
(642) 

1070 
(680) 

4556 
(612) 

1055 
(185) 

1490 
(791) 

1479 
(170) 

1540 
(223) 

24 
356 

(294) 
524 
(61) 

242 
(57) 

323 
(231) 

90 
(38) 

380 
(271) 

505 
(414) 

1140 
(746) 

463 
(81) 

424 
(333) 

363 
(112) 

307 
(86) 
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Figure 1. Internal and terminal mismatches in vsiRNAs from both replicates, (A) 
replicate1 and (B) replicate2 of small RNA-seq datasets of Sclerotinia sclerotiorum. 
Mismatches (%) is the percentage of total RNA-editing events in each library. 
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Figure 2. Single Nucleotide Polymorphism (SNP) sites in small RNA libraries. Small 
RNA reads were aligned to Sclerotinia sclerotiorum hypovirus 2 L (SsHV2-L) genome. 
Coverage represents the total number of reads and variant frequency represents the 
percentage of mismatches present at any given base position. Variant sites with more than 
20X coverage and 20% frequency are shown. Internal ticks (blue-colored) on X-axis 
represent the SNP sites that are present in both small RNA and RNA-seq libraries. 
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Figure 3. Single Nucleotide Polymorphism (SNP) sites from five RNA-seq libraries of 
wild-type Sclerotinia sclerotiorum infected with Sclerotinia sclerotiorum hypovirus 2 L 
(SsHV2-L) virus. Full-length, assembled contigs were aligned to the virus genome. 
Internal ticks (blue-colored) on X-axis represent the SNP sites that are present in both 
small RNA and RNA-seq libraries.  
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1.5.2 Virus-derived small RNAs in other fungi: Botrytis cinerea and Fusarium 

graminearum 

 

Small RNA data from closely related fungal species, such as Botrytis and 

Fusarium spp. were also analyzed from publicly available datasets. In B. cinerea, similar 

modification of vsiRNA sequences were observed. Botrytis cinerea isolates, Pi285.8 

(infected with Narnavirus and Mitovirus), v446 (infected with unclassified viruses) and 

v448 (infected with Mitovirus, Flexivirus and unclassified viruses) all showed similar 

patterns of RNA-editing with both internal and terminal modifications (Table 3). Apart 

from terminal modifications, several internal edit sites were found in B. cinerea 

modifying A-to-C at 1st, 8th, and 15th base of 21 bases; and T-to-A and T-to-G at the 1st 

base of 21 bases long vsiRNAs (Figure 4A-C).  

RNA-editing with both internal and terminal modifications were also present in a 

model filamentous fungus, F. graminearum. While terminal modifications were present 

in all sequence size, internal modifications in F. graminearum were primarily found in 22 

bases long vsiRNAs, specifically for T-to-C change at the 8th and 13th bases; and C-to-G 

change at 10th base (Figure 4D). Additionally, these three fungal species compared in 

this study showed prevalence for size-specific internal modifications of vsiRNA: S. 

sclerotiorum in 18, 22 and 23 bases long sequences, B. cinerea in 21 bases long 

sequences and F. graminearum primarily in 22 bases long sequences. 

Another interesting aspect to consider is the abundance of vsiRNAs production in 

each of these species. For example, vsiRNAs produced (in terms of percentage) by S. 

sclerotiorum and F. graminearum is relatively higher than B. cinerea (Table 1 and Table 

3). One hypothesis to support this difference is that the biogenesis of vsiRNAs is directly 

correlated with the host susceptibility, virus suppressor of RNA silencing (VSR) activity, 
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and pathogenicity of each infecting virus. This is well illustrated in plants. Under limiting 

environmental conditions such as low temperature, pathways involved in vsiRNAs 

production is hindered, and consequently the RNA silencing defense machinery is 

disrupted (Szittya et al., 2003). As a result, viruses lacking in VSR activity can infect 

plants only in low temperatures (Szittya et al., 2003).  
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Table 3. Incidence of RNA-editing in 21-24 bases vsiRNA sequences produced by virus-infected Botrytis, Fusarium, human 
and mouse samples. Total vsiRNAs, mismatches and mismatch % (of total vsiRNAs) are shown.  

Organism 
Isolates/ 

Cell lines 
Infection 

VsiRNAs 

(% of library) 

SRA 

(accessions) 

Mismatches 

Terminal Internal Total 
Terminal 

% 

Internal 

% 

Total 

% 

Botrytis 

cinerea 

Pi285.8 numerous 
635951 
(5.07%) 

SRR3659825 12324 18177 30501 1.94 2.86 4.80 

V446 numerous 
229493 
(2.47%) 

SRR3659826 4395 7861 12256 1.92 3.43 5.34 

V448 numerous 
868052 
(7.16%) 

SRR3659827 25324 33033 58357 2.92 3.81 6.72 

Fusarium 

graminearum 
 HV1 

2418724 
(21.11%) 

SRR3055827 77862 288669 366531 3.22 11.93 15.15 

Human 

293T cells 
Enterovirus 
(HEV71)-WT 

65833 
(0.23%) 

SRR5593145 1862 1613 3475 2.83 2.45 5.28 

293T cells 
Enterovirus 
(HEV71)-D23A  

1081903 
(3.58%) 

SRR5593146 112217 74690 186907 10.37 6.90 17.28 

293T cells 
Enterovirus 
(HEV71)-D23A  

1339758 
(5.27%) 

SRR5593147 163117 90336 253453 12.18 6.74 18.92 

Dicer-
deficient 
293T 

Enterovirus 
(HEV71)-D23A  

4318 
(0.01%) 

SRR5593148 100 122 222 2.32 2.83 5.14 

Mouse 

BALB/c 
Nodamura 

(2dp1) 
59387 
(0.40%) 

SRR2175652 17549 7357 24906 29.55 12.39 41.94 

BALB/c  
Nodamura 

(1dpi) 
15199 
(0.11%) 

SRR2175613 1057 1718 2775 6.95 11.30 18.26 

BALB/c  
Nodamura 

(4dpi) 
2134229 
(15.37%) 

SRR2175618 20331 227659 247990 0.95 10.67 11.62 
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Figure 4. Internal and terminal mismatches in vsiRNA produced by three isolates, 
(A.)Pi285.8 (infected with Narnavirus and Mitovirus), (B.) v446 (infected with 
unclassified viruses) and (C.) v448 (infected with Mitovirus, Flexivirus and unclassified 
viruses) of Botrytis cinerea. (D.) Internal and terminal mismatches in vsiRNA produced 
by Fusarium graminearum infected with Fusarium graminearum hypovirus 1 (FgHV1). 
Mismatches % is the percentage of total RNA-editing events in each library. 

 

1.5.3 Virus-derived small RNAs in mouse and human 

To further investigate the prevalence of editing events in vsiRNAs produced by 

higher metazoans, mouse and human small RNA-seq data were analyzed. In mammals, 

biogenesis of vsiRNA is associated with the antiviral immunity (Qiu et al., 2017).  

Human data (Qiu et al., 2017) analyzed in this study also show clear role of dicer in 

antiviral immunity through biogenesis of vsiRNAs (Table 3). Human enterovirus 71 

(HEV71) 3A protein is a viral suppressor of RNAi and viral infection with HEV 71 is 

affected with the biogenesis of vsiRNAs (Qiu et al., 2017). Biogenesis of vsiRNAs is 

inhibited in no-dicer cell lines even when infected with VSR deficient HEV71 (Table 3). 

In mouse, virus-derived small RNAs were produced in relatively low number until 4 days 

post inoculation (dpi) with Nodamura virus (Table 3). Although both internal and 

terminal modifications were found in mouse vsiRNAs, only terminal modifications were 

found in vsiRNAs from human (Figure 5). In mouse, C-to-A and G-to-T internal 

modifications were found at the 1st and 4th bases of 21, 22 and 23 nucleotide long 

sequences. 
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Figure 5. (A-C.) Internal and terminal mismatches in vsiRNA produced by mouse 
(BALB/c). (D.) Internal and terminal mismatches in vsiRNA produced by human 293T 
cells infected with Enterovirus (details in Table 3). Mismatches % is the percentage of 
total RNA-editing events in each library. 

 
Considering the abundance of both internal and terminal mismatches in vsiRNAs, 

there is a possibility of several independently established mechanisms of RNA-editing 

associated with vsiRNAs and viral mRNAs. Since RNA-editing is an evolutionarily 

conserved mechanism, cross-species study of these editing sites and elucidating their 

biological roles are important to better understand antiviral RNA silencing and the 

exploration as antiviral therapeutics. 
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CHAPTER TWO: METATRANSCRIPTOMIC ANALYSIS AND IN SILICO 
APPROACH IDENTIFIED MYCOVIRUSES IN THE ARBUSCULAR 

MYCORRHIZAL FUNGUS RHIZOPHAGUS SPP. 

 

This chapter has been published in the journal Viruses:  

Neupane, A., Feng, C., Feng, J., Kafle, A., Bucking, H., and Lee Marzano, S.Y. (2018). 
Metatranscriptomic Analysis and In Silico Approach Identified Mycoviruses in the 
Arbuscular Mycorrhizal Fungus Rhizophagus spp. Viruses 10 

 

Abstract  

Arbuscular mycorrhizal fungi (AMF), including Rhizophagus spp., can play 

important roles in nutrient cycling of the rhizosphere. However, the effect of virus infection 

on AMF’s role in nutrient cycling cannot be determined without first knowing the diversity 

of the mycoviruses in AMF. Therefore, in this study, we sequenced the R. irregularis 

isolate-09 due to its previously demonstrated high efficiency in increasing the N/P uptake 

of the plant. We identified one novel mitovirus contig of 3685 bp, further confirmed by 

reverse transcription-PCR. Also, publicly available Rhizophagus spp. RNA-Seq data were 

analyzed to recover five partial virus sequences from family Narnaviridae, among which 

four were from R. diaphanum MUCL-43196 and one was from R. irregularis strain-C2 

that was similar to members of the Mitovirus genus. These contigs coded genomes larger 

than the regular mitoviruses infecting pathogenic fungi and can be translated by either a 

mitochondrial translation code or a cytoplasmic translation code, which was also reported 

in previously found mitoviruses infecting mycorrhizae. The five newly identified virus 

sequences are comprised of functionally conserved RdRp motifs and formed two separate 

subclades with mitoviruses infecting Gigaspora margarita and Rhizophagus clarus, further 
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supporting virus-host co-evolution theory. This study expands our understanding of virus 

diversity. Even though AMF is notably hard to investigate due to its biotrophic nature, this 

study demonstrates the utility of whole root metatranscriptome. 

Keywords: Mycorrhizal fungi; mycovirus; mitovirus; Rhizophagus 

2.1 Introduction 

About eighty percent of land plants form symbiotic relationships with arbuscular 

mycorrhizal (AM) fungi [1], where obligate mutualistic fungi colonize plant roots for their 

spores to germinate and form hyphae. Examples of endophytic fungi, including AM fungi, 

have been shown to help control fungal pathogens [2], resist drought and salinity [3,4], and 

affect the overall fitness (growth, survival, etc.) of vascular plant families [5,6]. However, 

it is not well known whether multipartite plant-AM fungi-virus interactions may play a role 

in the plant’s adaptation to biotic and abiotic stresses. Specifically, it remains unclear how 

AM fungi infections can alter patterns of plant gene expression, or whether superimposed 

viral infections would have cascading effects on the plant gene expression. 

As AM fungi play important roles in carbon/nitrogen/phosphate cycling and compete 

with pathogens for ecological niches, there is emerging interest in discovering whether they 

harbor viruses through next generation sequencing [7,8]. It is necessary to recover the virus 

sequences associated with these fungi before further determining the effect of viral 

infections on hyphal growth and nutrient uptake of the host plant. Other endophytic fungi 

forming mutualistic symbiotic relationships with land plants have been shown to harbor 

viruses and confer heat tolerance when infected by virus(es) [9]. However, the prevalence 

and effects of virus infection on AM fungi are largely unknown, and the roles they play in 

the context of carbon/nutrient cycling are still ambiguous. Additionally, the virome of AM 
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fungi is difficult to study partly because of its obligate nature of biotrophic reproduction 

that requires a large number of hyphae [8] or spores [10].  

Likely not mutually exclusive, “virus-host ancient coevolution theory” is one of two 

hypotheses that have been proposed for mycovirus origin [11], with the other hypothesis 

suggesting that plant viruses are the origin of mycoviruses [12]. The Narnaviridae family 

of mycovirus is comprised of two genera, namely Narnavirus and Mitovirus, and include 

some of the simplest RNA viruses ever identified [13]. Narnaviruses are known to be 

localized in the cytosol, expressed using standard genetic code [13] and likely evolved from 

a RNA bacteriophage [14]. Mitoviruses, meanwhile, are known to be found primarily in 

mitochondria of the fungal host, translated using mold mitochondrial genetic code, and are 

believed to have evolved as endosymbiont of alphaproteobacteria [13]. Additionally, 

Narnaviradae RdRps are closely related to leviviruses, viruses of bacteria and 

ourmiaviruses of plants [13-15]. 

Typical mitoviruses have < 3 kb genomes and have been detected in both fungi and 

plants [16], and either exist endogenously in plant genomes or freely replicate in 

mitochondria as genuine viruses. Endogenous mitovirus sequences may or may not be 

transcribed actively [17]. However, mitoviruses detected from mycorrhizal fungi generally 

have genome sizes greater than 3 kb, and the coding regions can be either translated by a 

cytosolic/nuclear genetic codon usage table or a mitochondrial table [7,18].  

We recently screened soybean leaf-associated viromes and identified 23 nearly full-

length mycoviral genomes using RNA-Seq of total RNA even when the plant sequences 

were present [19]. In order to understand the effects of a tritrophic relationship among 

plant-AM fungi-virus interactions on soil processes, root-associated viromes should be 
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profiled. Differences in phosphate and nitrogen uptake of AMF were observed even within 

the same species [20], suggesting that besides genetic variability, there could be microbes, 

including mycoviruses, hosted by AMF that affect their functions. Notably, Ikeda et al. 

[21] determined that AM fungi infected by the virus, GRF1V-M, produced two-fold fewer 

spores compared to the virus-free culture line of Rhizophagus spp. strain RF1, and was less 

efficient in promoting plant growth. Therefore, in this study, we aimed to discover and 

characterize new mycoviruses infecting AM fungi with combined approaches. We used a 

culture-independent metatranscriptomics approach to detect viruses infecting Rhizophagus 

spp., and by reanalyzing data from other Rhizophagus spp. available as SRR data from the 

NCBI database (https://www.ncbi.nlm.nih.gov/sra). As Medicago truncatula is a host plant 

for Rhizophagus spp., we performed metatranscriptome RNA-Seq on M. truncatula roots 

directly to screen for mycoviruses. This research could provide insight on virus evolution 

and may help researchers form hypotheses to study the mechanisms of the varying 

functions from isolates/species of AMF that affect their biofertilizer potential.   

2.2. Materials and Methods  

2.2.1. Plant and fungal material.  

Medicago truncatula (A17) seeds were surface sterilized with concentrated H2SO4, 

rinsed with autoclaved distilled water, and kept at 4oC overnight. The seeds were then 

pregerminated on moist filter paper for 7 days until fully grown cotyledons were 

developed. We transferred the seedlings into pots containing 250 mL of an autoclaved soil 

substrate mixture of 40% sand, 20% perlite, 20% vermiculite, and 20% soil (v:v:v:v; 4.81 

mg/kg Pi after Olsen extraction, 10 mg/kg NH4
+, 34.40 mg/kg NO3

-, pH 8.26). At 

transplanting, each seedling was inoculated with 0.4 g mycorrhizal root material and ~500 

spores of Rhizophagus irregularis N.C. Schenck & G.S. Sm. (isolate 09 collected from 
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Southwest Spain by Mycovitro S.L. Biotechnología ecológica, Granada, Spain). The roots 

and the fungal inoculum were produced in axenic Ri T-DNA transformed carrot (Daucus 

carota clone DCI) root organ cultures in Petri dishes filled with mineral medium [22]. After 

approximately eight weeks, the spores were isolated by blending the medium in 10 mM 

citrate buffer (pH 6.0).  

The plants were grown in a growth chamber with a 25°C/20°C day and night cycle, 

30% humidity, and a photosynthetic active radiation of 225 μmol m-2 s-1,and watered when 

necessary. After seven weeks, the plants were harvested and mycorrhizal root material was 

frozen in liquid nitrogen and stored at -80°C until RNA extraction. To quantify the 

mycorrhizal colonization, some roots were cleared with 10% KOH solution at 80oC for 30 

min, rinsed with water, and stained with 5% ink at 80oC for 15 min [23]. We analyzed a 

minimum of 100 root segments to determine the percentage of AM root colonization by 

using the gridline intersection method [24].  

2.2.2. High-throughput sequencing.  

Approximately 150 mg of root tissue was ground in liquid nitrogen, and total RNA 

was extracted using the Qiagen RNeasy Plant Mini Kit (Valencia, CA, USA). RNA 

samples were treated with DNase I, evaluated for integrity by agarose gel electrophoresis, 

and rRNAs were removed by the Ribo-Zero Plant Kit (Illumina, San Diego, CA, USA), 

and used as templates to construct the library with a ScriptSeq RNA sample preparation kit 

(Illumina, San Diego, CA, USA). The library was submitted to the W. M. Keck Center, 

University of Illinois for quality check and cleanup and sequenced on an Illumina HiSeq 

4000 for 100 bp paired-end reads.  

2.2.3. Sequence analysis.  
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Sequence reads from the above sequencing run, as well as publicly available data 

(published by Tisserant et al., 2013 [25]) under SRX312982 (Rhizophagus diaphanum 

MUCL 43196; previously Glomus diaphanum [26]), SRX375378 (Rhizophagus 

irregularis DAOM-197198; previously Glomus intraradices or Rhizophagus intraradices 

[25,26]) and SRX312214 (Rhizophagus irregularis C2) were retrieved from the NCBI 

database and the paired-end sequence reads (100 nt in length) were trimmed by BBMap 

tools (https://sourceforge.net/projects/bbmap) and assembled into contigs using the 

TRINITY de novo transcriptome assembler [27]. Contigs with significant similarity to viral 

amino acid sequences were identified using USEARCH ublast option [28] with a parameter 

e-value of 0.0001 and compared to a custom database containing Rhizophagus irregularis 

and viral amino acid sequences from GenBank using BLASTX [29]. The nucleotide 

sequences of all suspected mycovirus contigs were compared with the NCBI nr database 

using BLASTX [29] to exclude misidentified sequences. The number of reads aligning to 

different target sequences was calculated using Bowtie [30]. Predicted amino acid 

sequences were aligned using ClustalW [31]. Aligned protein sequences were used to 

reconstruct a maximum likelihood tree with the model WAG + G + I + F using Mega 

(Molecular Evolutionary Genetics Analysis) version 7.0 software [32]. Statistical support 

for this analysis was computed based on 100 nonparametric bootstrap replicates. The 

MEME suite 5.0.1 was used to compare the motifs [33]. The viral sequences were 

submitted to the GenBank database under the following accession numbers: RdMV1, 

MH732931; RdMV2, MH732930; RdMV3, MK156099; RdMV4, MK156100; RirMV1 

and MH732933. 

2.2.4. Reverse-transcription PCR (RT-PCR).  
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To confirm that the RirMV1 sequence detected was not an artifact and indeed derived 

from the Medicago root material, RT-PCR amplified a 3.4 kb amplicon from the RNA 

extract after DNase treatment by the virus-specific primers, RirMV1-197F (5’-

CACCTATGAGCCCGGTTAAA-3’) and RirMV1-3409R (5’-

GGAGAATCGTCCTTCCTTCC-3’). For the nested PCR the primers RirMV-197F and 

RirMV1-3228R (5’-ACCTTTCCAGGGGAGACCTA-3’) were used. The nested 

amplicon was submitted for Sanger sequencing to confirm the identity after ExoSap-IT 

cleanup (Thermofisher, Waltham, MA, USA). Additionally, to confirm that the viral 

sequence is not from the Medicago host, reverse transcription of cDNA was made by using 

Maxima H Minus Reverse Transcriptase (Thermo Scientific, Waltham, MA, USA) at 50 

oC for 30 min followed by 85 oC for 5 min inactivation. Then PCR was performed using 

RirMV1-197F and RirMV1-3228R primer set and Phire Plant Direct PCR Kit (Thermo 

Scientific, Waltham, MA, USA). 

 

2.2.5 Rapid amplification of cDNA ends (RACE). 

To complete the genome sequence of RirMV1, the 5’- and 3’- terminal sequences were 

determined using the FirstChoice RLM-RACE (rapid amplification of cDNA ends) kit 

(Life Technologies). Primers 336R (5’-AGAGCGGTCGCTTCTGTCTA-3’) and 216R 

(5’-TTTAACCGGGCTCATAGGTG-3’) were used for 5’-RACE as outer and inner 

primers, respectively. Primers 3210F (5’-TAGGTCTCCCCTGGAAAGGT-3’) and 3347F 

(5’-CGACCTCTGGAGGTTGAAAG-3’) were used for 3’-RACE as outer and inner 

primers, respectively. 

2.3. Results 
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2.3.1. Mycoviruses in the metatranscriptome of Rhizophagus irregularis inoculated 

roots 

After colonization of R. irregularis was confirmed by microscopy (Figure S1), 

sequencing of the mycorrhizal Medicago truncatula roots on the Illumina HiSeq4000 

platform resulted in a total of 85 million paired-end reads, yielding 12.1 GB of sequence 

information. The data were submitted to the SRA database at NCBI (accession number: 

SRX4679168). In this data set, we identified one viral contig (RirMV1). To confirm the 

viral contig assembled from the short reads, RirMV1-3409R primed cDNA was used as a 

PCR template to amplify most of the viral contig. The primers RirMV1-197F and RirMV1-

3409R amplified multiple bands, and among them there was a faint 3 kb band (not shown). 

The 3 kb band was subsequently excised, and the gel was purified. Nested PCR using 

RirMV1-197F and RirMV1-3228R resulted in a clear band of 3 kb (Figure 1A). Sanger 

sequencing using the same primer set confirmed the band as RirMV1 cDNA amplicon. 

PCR attempts to amplify RirMV1 directly from the DNA of the R. irregularis strain 09 

infected Medicago roots were not successful, indicating that the viral transcript was not 

derived from virus segments integrated into the host genome that are actively expressed. 

Instead they are from the genuine virus (Figure 1B). We also attempted to amplify a smaller 

target using viral-specific primers 197F and 336R for 140 bp amplicon and ran a 1.5% gel 

to confirm that there was no amplification, leading to the same conclusion that the viral 

sequence was not from Medicago, which confirms that R. irregularis is the host of the 

virus. Additionally, we also attempted RACE amplification of RirMV1 contig, but failed 

to extend the contig. 
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Figure 1. (A) Agarose gel electrophoresis of the RT-PCR product showing a ~3 kb 
nested PCR amplicon that was confirmed by Sanger sequencing as cDNA amplicon of 
RirMV1. Left lane: 1 kb ladder. Right Lane: RirMV1 amplicon of the predicted size 
of 3 kb and (B) Agarose gel electrophoresis of the RT-PCR product showing no 
amplification, suggesting the viral contig of RNA-Seq was not originated from 
Medicago root without R. irregularis strain 09 infection. Left to right lanes: 1 kb 
Ladder, viral primers, plant primers. 

2.3.2. Mycoviruses in the transcriptomes of Rhizophagus spp. 

To identify mycoviruses in Rhizophagus spp., we first reanalyzed the publicly 

available RNA-Seq data sets of R. irregularis strain-C2 (SRX312214), R. irregularis 

DAOM-197198 (SRX375378) and R. diaphanum MUCL 43196 (SRX312982). No viruses 

could be identified in the available Rhizophagus irregularis DAOM-197198 transcriptome, 

but we found multiple novel mycoviruses in the transcriptome of R. diaphanum MUCL 

43196 (Rhizophagus diaphanum mitovirus 1 - RdMV1, 3,554 nt long; Rhizophagus 

diaphanum mitovirus 2 - RdMV2, 4,382 nt long; Rhizophagus diaphanum mitovirus 3 – 

RdMV3, 3,652 nt long and Rhizophagus diaphanum mitovirus 4 – RdMV4, 3,443 nt long) 

that had similarity to members of the Mitovirus genus (Table 1).  

Overall, RirMV1 had 41,322 reads and a 0.10% alignment with the sequencing run of 

the colonized Medicago roots. Among the total reads for SRX312982 from R. diaphanum, 

1,475 read-counts aligned to RdMV1 (0.0015%), 3,649 to RdMV2 (0.0036%), 2350 to 

(A) (B)

3kb

1kb

3kb

500bp
300bp
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RdMV3 (0.0023%), and 462 to RdMV4 (0.00045%), see Table 1. The NCBI BLAST 

results indicate that these contigs are putatively similar in function to previously identified 

RNA-dependent RNA polymerase of mitoviruses. 
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Table 1. Identified mycovirus-like sequences, contig lengths, and their putative 
functions are shown in the table below, including the data source from which the virus 
sequence was recovered. These new contigs were identified as mitoviruses (MV) and 
were recovered from two different fungal hosts (Rd, Rhizophagus diaphanum; Rir, 
Rhizophagus irregularis). 

Contig 
name 

Data 
source 

Contig 
length 
(nt) 

Read 
counts 

NCBI 
accession 

Amino 
acid 
Identity 
(%) 

Putative 
function (most 
similar virus) 

RdMV1 SRX312982 

(Rhizophagu

s diaphanum 

MUCL 
43196) 

3554 1,475 MH732931 32 RNA-
dependent 
RNA 
polymerase 
[Rhizoctonia 
solani 
mitovirus 12] 

RdMV2 SRX312982 

(Rhizophagu

s diaphanum 

MUCL 
43196 

 

4382 3,649 MH732930 28 RNA-
dependent 
RNA 
polymerase 
[Gigaspora 
margarita 
mitovirus 2] 

RdMV3 SRX312982 

(Rhizophagu

s diaphanum 

MUCL 
43196 

3652 2350 MK156099 36 RNA-directed 
RNA 
polymerase 
[Rhizophagus 
sp. RF1 
mitovirus] 

RdMV4 SRX312982 

(Rhizophagu

s diaphanum 

MUCL 
43196 

3443 462 MK156100 30 RNA-
dependent 
RNA 
polymerase 
[Rhizoctonia 
mitovirus 1] 

RirMV1 Sequenced 

transcriptom
e (submitted 
under 
accession: 
SRX4679168
) 

3685 41,322 MH732933 31 RNA-
dependent 
RNA 
polymerase 
[Rhizoctonia 
solani 
mitovirus 12] 
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2.3.3. Phylogenetic analysis and the characterization of conserved RdRp region of 

mitoviruses 

To identify the evolutionary lineages among the identified mitoviruses, we analyzed 

the protein sequences of mitoviruses to reconstruct the phylogenetic tree (Figure 2). While 

there was no virus found in SRX375378 and SRX312214, there were four partial genome 

sequences identified from SRX312982 publicly available data similar to viruses from the 

family Narnaviridae. Two of these sequences (RdMV1 and RdMV2) formed a separate 

clade with RirMV1 and previously identified mitoviruses from Gigaspora margarita 

(GmMV2, GmMV3, and GmMV4). The other two contigs (RdMV3 and RdMV4) were 

phylogenetically similar to the mitovirus infecting Rhizophagus clarus (RcMV1) (Figure 

2). We also compared the genome structure of identified mitoviruses to see if the RdRp 

region is uniformly conserved (Figure 3). To confirm the presence of functionally 

conserved motifs of RNA-dependent RNA polymerase (RdRp) in identified viruses, we 

further analyzed and compared six RdRp motifs (A–F) with other mitoviruses of 

pathogenic fungi in the NCBI database (Figure 4). Three of these motifs (A–C) are among 

the most conserved motifs of RdRp and include residues involved in catalytic activation 

and dNTP/rNTP recognition (discussed in detail below) by RdRp [34,35]. Noticeable 

differences in the amino acid sequence include a histidine in the mitoviruses of 

Rhizophagus spp. instead of a serine at residue 325 and a glutamic acid instead of an 

aspartic acid at residue 329 within the RdRp motif F. 

The RdRps can be translated using either a cytosolic or mitochondrial code. The 

complete coding RdRp was 811 aa long for RirMV1, compared to the average of ~700 aa 

for the most closely related mitoviruses infecting Sclerotinia sclerotiorum. RdMV1 and 

RirMV1 have nearly identical lengths of RdRp, these being 812 aa and 811 aa, respectively. 
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Figure 2 Maximum likelihood tree (with bootstrap consensus) depicting the 
relationships of the predicted amino acid sequences of RNA-dependent RNA 
polymerase (RdRp) of the Rhizophagus mitoviruses, and other confirmed and 
proposed members of the Narnaviridae. Predicted RdRp amino acid sequences 
were aligned with ClustalW [31], and the phylogenetic tree was inferred using 
Mega 7.0 software [32]. Branch lengths are scaled to the expected underlying 
number of amino acid substitutions per site. The Saccharomyces 20S RNA 
narnavirus RdRp amino acid sequence was used as an outgroup to root the tree. 
Five newly identified mitoviruses (in bold) formed two separate monophyletic 
clusters between the Rhizophagus-associated mitoviruses. The following 
abbreviations were used for the Mitovirus (MV) sequences: Sc, Saccharomyces 

cerevisiae; Gm, Gigaspora margarita; Rd, Rhizophagus diaphanum; Rc, 
Rhizophagus clarus; Sc, Sclerotinia sclerotiorum; Rir, Rhizophagus irregularis; 

Ta, Tuber aestivum; Te, Tuber excavatum. 
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Figure 3 The genome organization of Rhizophagus spp. mitoviruses. The 
comparisons are of the organizations of RdMV1, RdMV2, RdMV3, RdMV4 
and RirMV1. RdRp coding regions are labeled in blue (see also Table 1). 
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Figure 4 Conserved motifs identified in the RdRp domain of the genus Mitovirus 
based on the multiple sequence alignment of the amino acid sequences. Similar to the 
other mitoviruses, six conserved motifs were found. These conserved regions were 
labeled A-F as RdRp associated motifs described previously [36]. 

 

2.4. Discussion 



50 
 

Our own studies revealed a high intraspecific diversity in the growth and nutrient 

uptake benefits after colonization with different AM isolates [37]. As we report the 

identification of mycoviruses in a lab culture and in silico from Rhizophagus spp., it would 

be interesting to determine whether mitoviruses play any role in the variability of these 

responses. In this study, we identified a novel mitovirus from the sequenced transcriptome 

of R. irregularis and confirmed the presence of RT-PCR amplicon of 3kb with gel 

electrophoresis (Figure 1A). Additionally, Agarose gel electrophoresis of the RT-PCR 

product from the non-mycorrhizal Medicago root without Rhizophagus infection showed 

no amplification of viral contig, suggesting the newly identified viral contig (RirMV1) was 

not from the plant, but from R. irregularis (Figure 1B). We also identified four novel 

mitoviruses: RdMV1, RdMV2, RdMV3 and RdMV4 from R. diaphanum from the publicly 

available SRA database in NCBI (Table 1).  

After the viral contigs were assembled, RT-PCR was used to verify the presence of 

any putative viral sequence. Also, it is necessary to rule out the possibility that the putative 

mycovirus genomes identified in this study could have been derived from mycoviruses 

integrated into the AMF genome. Oligonucleotide primers specific to the putative viral 

sequences need to be used to amplify the sequences using fungal genomic DNA as the 

template. The infection of these viruses could have resulted in beneficial/neutral effects on 

the host as they were selected to be sequenced without regards to apparent abnormal 

growth. These novel viral sequences may be used to establish Koch’s postulates in future 

studies and to provide bases for mechanisms responsible in different nutrient uptake and 

plant biomass responses.  
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Using a mitochondrial translation table, the amino acid sequences of the three of five 

predicted mitovirus-like contigs clustered with mitoviruses of filamentous fungi, and 

constituted two distinct subclades along with mitoviruses infecting G. margarita (Figure 

2). Our analysis showed that RdMV3 and RdMV4 are closely related to Rhizophagus 

clarus mitovirus 1-RF1 (RcMV1; AB558120) which is closely related to another mitovirus 

that was found in the ectomycorrhizal fungus Tuber excavatum (TeMV1; AEP83726.1). 

Their corresponding fungal hosts are all AM fungi and these mitoviruses all have distinctly 

longer RdRps than other mitoviruses that use mitochondrial translation code only. Similar 

to what was reported by Ikeda et al. [21], we found that the largest ORF of the two 

mitoviruses can also be predicted by applying the universal genetic code. Generally, 

functional translation of RdRp in mitoviruses involves activation of a mitochondrial 

genetic code [38], and as a result, tryptophan residues in mitoviruses (such as TeMV, 

CpMV, and HmMV1-18) are coded either by a UGA (which in universal genetic code 

means termination) or a UGG codon [7]. Recently identified mitoviruses from AMF, 

including RcMV1-RF1 [7] and the mitoviruses identified in G. margarita [10], all use the 

UGG codon for tryptophan which is compatible with both cytoplasmic and mitochondrial 

translation. All five novel mitoviruses identified from our study were found to use UGG 

for tryptophan. Interestingly, Nibert (2017) provided sequence-based explanation of this 

subgroup of mitoviruses using UGG instead of UGA for tryptophan in mitochondria, which 

is likely due to the mitochondrial codon of UGA for tryptophan in the respective fungal 

hosts that is correspondingly rare. Therefore, Nibert (2017) speculated that this unique 

group of mitoviruses do not actually replicate in cytosol [39].  
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Our results support the virus-host coevolution theory for the origin of these 

mitoviruses infecting nonpathogenic AMF fungi because the viruses they harbor do not 

cluster with mitoviruses from pathogenic fungi. First, amino acid sizes for the RdRps are 

very similar between the three viruses, RirMV1, RdMV1 and RdMV3, and the RdRp 

motifs are highly conserved between them (Figure 3). Besides the conserved motifs I to IV 

identified in Kitahara et al. [7] and Gorbalenya et al. [34], we also identified the motifs D 

and E (Figure 4) as shown in Bartholomaus et al. (2016) [36]. Out of these six motifs, A, 

B and C are among the most conserved structural motifs of the palm subdomain of RdRp 

with active catalytic sites [34]. Motif A (DX5D) contains two aspartic acid residues 

separated by any five amino acids, while motif C contains two aspartic acid residues, 

consecutively. These residues are known to form divalent bonds between Mg2+ ions and/or 

Mn2+ ions for catalytic activation of the domain [34]. Similarly, motif B is known to form 

a long and conserved alpha-helix sequence with an asparagine residue which is 

indispensable for discriminating dNTPs and rNTPs that determine whether DNA or RNA 

is produced [35]. Although these motifs are known to be required for polymerase activity, 

the other three motifs (D, E and F) are not well studied in terms of their function. 

Experiments to assess the impacts of viral infection on fungal colonization and 

sporulation and on the ability of virus-infected fungal isolates to affect nutrient cycling in 

host crops can be done by using virus-induced gene silencing (VIGS) approaches to 

knockdown the expression of viral transcripts. VIGS systems have been successfully 

applied in R. clarus to study fungal gene functions [40], which could be modified to instead 

silence RirMV1 using Nicotiana benthamiana as the plant host to deliver the silencing 

construct through the Cucumber mosaic virus Y strain based VIGS system [41]. The 
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silencing effect will be effective if RirMV1 replicates in the cytoplasm as well, but will be 

ineffective if it replicates only in mitochondria since the RNA silencing machinery is not 

present in mitochondria and the double-layered membrane is a barrier. This may also 

resolve the long-standing question of whether mitoviruses in AMF replicate in the 

cytoplasm, which can shed light on the evolution of capsidless positive-strand RNA 

viruses. 

Supplementary Materials 

The following are available online at https://www.mdpi.com/1999-4915/10/12/707/s1, 

Figure S1: Stain of cross-section of the roots to confirm the AM fungal infection showing 

the (A) density of arbuscules as the small oval-shaped objects and (B) close-up view of 

hyphae and connected arbuscules. 
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CHAPTER THREE: ROLES OF ARGONAUTES AND DICERS ON SCLEROTINIA 

SCLEROTIORUM ANTIVIRAL RNA SILENCING 

 
 
This chapter has been published in the journal Frontiers in Plant Science:  
 
Neupane, A., Feng, C., Mochama, P.K., Saleem, H., and Lee Marzano, S.Y. (2019). 
Roles of Argonautes and Dicers on Sclerotinia sclerotiorum Antiviral RNA Silencing. 
Front Plant Sci 10, 976. 
 
Abstract 

RNA silencing or RNA interference (RNAi) is an essential mechanism in animals, 

fungi, and plants that functions in gene regulation and defense against foreign nucleic 

acids. In fungi, RNA silencing has been shown to function primarily in defense against 

invasive nucleic acids. We previously determined that mycoviruses are triggers and 

targets of RNA silencing in Sclerotinia sclerotiorum. However, recent progresses in 

RNAi or dsRNA-based pest control requires more detailed characterization of the RNA 

silencing pathways in S. sclerotiorum to investigate the utility of dsRNA-based strategy 

for white mold control. This study elucidates the roles of argonaute enzymes, agl-2 and 

agl-4, in small RNA metabolism in S. sclerotiorum. Gene disruption mutants of agl-2 and 

agl-4 were compared for changes in phenotype, virulence, viral susceptibility, and small 

RNA profiles. The ∆agl-2 mutant but not the ∆agl-4 mutant had significantly slower 

growth and virulence prior to virus infection. Similarly, the ∆agl-2 mutant but not the 

∆agl-4 mutant, showed greater debilitation under virus infection compared to uninfected 

strains. The responses were confirmed in complementation studies and revealed the 

antiviral role of agl-2. Gene disruption mutants of agl-2, agl-4, Dicer-like (dcl)-1 and dcl-

2 did not change the stability of the most abundant endogenous small RNAs, which 

suggests the existence of alternative enzymes/pathways for small RNA biogenesis in S. 
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sclerotiorum. Furthermore, in vitro synthesized dsRNA targeting agl-2 showed a 

significantly reduced average lesion diameter (P<0.05) on canola leaves with agl-2 down-

regulated compared to controls. This is the first report describing the effectiveness of 

RNA pesticides targeting S. sclerotiorum RNA silencing pathway for the control of the 

economically important pathogen. 

Keywords: RNA pesticide, Argonautes, dicers, mycovirus, Sclerotinia sclerotiorum, 

RNA silencing, tRNA halves 

3.1 Introduction 

RNA silencing is a transcriptional and post-transcriptional suppression of gene 

expression. One of the roles that RNA silencing plays has long been identified as an 

adaptive defense mechanism against foreign nucleic acids, including viruses in animals, 

fungi, and plants (Waterhouse et al., 2001;Baulcombe, 2004;2005). Unlike in animals and 

plants, the evolved RNA silencing in fungi to date has demonstrated that it is almost 

dispensable for endogenous gene regulation because gene disruption mutants often grow 

just fine. Instead, only when the mutants of RNA silencing genes are under virus 

infection, the antiviral role of those genes play then become evident (Segers et al., 

2007;Zhang et al., 2014;Yu et al., 2018). However, studies of Neurospora crassa and 

other filamentous fungi have revealed diverse small RNA biogenesis pathways, 

suggesting that fungi adapt RNAi silencing pathways for several cellular processes with 

some of the RNA silencing genes playing dual roles (reviewed in (Dang et al., 2011)). On 

the other hand, fungal RNA silencing genes can also have redundant functions, such as 

antiviral, processing of dsRNA or transgenes (Catalanotto et al., 2004;Wang et al., 

2016;Yu et al., 2018).   
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Sclerotinia sclerotiorum is a devastating plant fungal pathogen that causes up to 

100% yield losses in crop production affecting a wide array of crops (Heffer Link and 

Johnson, 2007). Recent studies demonstrated that cross-kingdom RNA silencing can be 

blocked to control Botrytis cinerea which is a closely related to S. sclerotiorum 

(Amselem et al., 2011). The virulence of B. cinerea can be greatly suppressed by 

silencing both B. cinerea Dicers at the same time (Wang et al., 2016). A similar 

observation was made in S. sclerotiorum following simultaneous disruption of both its 

Dicers to result in reduced pathogenicity (Mochama et al., 2018). Therefore, RNA 

silencing pathway has great potential to be manipulated to control fungal pathogens. As 

Sclerotinia sclerotiorum has two predicted Argonautes (GenBank accession numbers 

Ss1G_00334 and Ss1G_11723), it is intriguing whether corresponding argonaute genes 

affect S. sclerotiorum virulence and whether it could add to the tool box of disease 

control with other novel strategies.  

The Argonaute protein family constitutes four domains, N-terminal domain, Mid 

domain, and RNA-binding domains known as PAZ domains, and slicer domains known 

as PIWI domains (Poulsen et al., 2013). Argonaute proteins stabilize small dsRNA 

molecules produced by Dicer proteins to form RNA-induced silencing complexes (RISC) 

which are involved in post-transcriptional gene silencing or RNA-induced transcriptional 

silencing complexes involved in transcriptional gene silencing including chromatin 

modification in animals, plants, and insects (Irvine et al., 2006). When small dsRNA 

molecules produced by Dicers are incorporated into these effector complexes, one strand 

of the RNA molecule is removed and the remaining strand guides the complex to 
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complementary RNA sequences which are subsequently cleaved by the Argonaute RNase 

H-like activity (Qihong et al., 2009).  

Argonaute homologs have been identified in various fungi and they differ in 

function and number. The basal fungus, Mucor circinelloides, has three argonaute genes 

while Cryphonectria parasitica has four argonaute genes and Colletotrichum 

higginsianum has two (Qihong et al., 2009;Trieu et al., 2015;Campo et al., 2016b). QDE-

2 is a fungal argonaute homolog in N. crassa involved in quelling- the silencing of 

repetitive sequences such as transgenes (Fulci and Macino, 2007). In N. crassa, a 

separate silencing pathway called meiotic silencing of unpaired DNA (MSUD) has been 

characterized, and N. crassa RNA silencing components not involved in quelling have 

been shown to be involved in this pathway (Fulci and Macino, 2007). Similarly, in other 

fungi, not all components of the RNA silencing machinery are involved in RNA silencing 

mediated viral defense mechanisms. In Fusarium graminearum, only one of two 

argonaute genes, FgAgo1, is important in RNA silencing of viral nucleic acids (Yu et al., 

2018) while in C. parasitica only agl-2 is required for antiviral RNA silencing, and in C. 

higginsianum, agl-1 but not agl-2 is essential for antiviral RNA silencing (Qihong et al., 

2009;Trieu et al., 2015;Campo et al., 2016a;Campo et al., 2016b). The primary functions 

of the other gene homologs have not been fully characterized. As S. sclerotiorum are 

predicted to have two argonaute genes, agl-2 and agl-4, it presents a potential strategy to 

impede the proper small RNA processing after characterizing the roles of argonautes in S. 

sclerotiorum. 

The goals of this study were to determine the function of argonaute genes in 

endogenous small RNA processing and defending virus infection in S. sclerotiorum, and 
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as a proof of concept, to demonstrate a control strategy from silencing a specific 

argonaute gene. To achieve them, we made gene displacement mutants of argonaute 

genes in this study and transfected S. sclerotiorum with a RNA virus (SsHV2-L) and 

compared the changes in morphology and pathogenicity. Gene displacement mutants 

revealed that only agl-2 is important in vegetative growth, as well as antiviral defense, 

whereas the biological function of agl-4 remains unknown. We further established the 

application of dsRNA externally targeting agl-2 as an RNA pesticide to slow the 

infection in a dose-dependent manner.  

3.2 Materials and Methods 

3.2.1 Fungal Culture Strains and Conditions 

The wild type strain, DK3, of S. sclerotiorum was grown on potato dextrose agar 

(PDA) (Sigma) at 20-22‐. The gene displaced mutants of ∆agl-2 and ∆agl-4 strains were 

grown on PDA amended with hygromycin B (Alfa Aesar) at 100 µg/mL as selection. 

Dicer mutants were produced in our previous study (Mochama et al., 2018). 

3.2.2 Gene Disruption of agl-2 and agl-4 

 Sclerotinia sclerotiorum argonaute-like genes were predicted based on homology 

to those identified in N. crassa (Laurie et al., 2012). Published sequences of Ss1G_00334 

and Ss1G_11723 in the GenBank (NCBI) are the putative argonaute genes coding for 

QDE-2/AGO-2 and SMS-2/AGO-4 in N. crassa, respectively (Figure 1). Argonaute 

genes were displaced by the hygromycin phosphotransferase gene (hph) using the split-

marker homologous recombination cassettes as described before (Mochama et al., 2018). 

To generate the Δagl-2 gene displacement mutant, a 1.5 kb 5’ flanking arm of agl-2 was 

PCR-amplified by primers F1-AGO2 and F2-AGO2 and a 1.5kb 3’ flanking arm of agl-2 

was PCR-amplified by primers F3-AGO2 and F4-AGO2. The hph gene was amplified 
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from pCSN43 (Fungal Genetics Stock Center) using primers PtrpC – HY and YG – TrpC 

to give two amplicons (1.2kb and 1.3kb) each containing part of the hph marker gene 

with an overlap (Table 1). The 5’- flank of the ∆agl-2 gene was then connected to the 

partial hph amplicon containing PtrpC and the 3’ flank was connected to the hph 

amplicon containing TtrpC using the overlap extension PCR method. Eventually, an agl-

2 gene deletion construct that included 1kb of identical sequence to the 5’ flanking arm of 

the gene and 812bp of the 3’ flanking arm sequence was derived. A similar procedure 

was used to generate the Agl-4 deletion construct with 805bp of sequence identical to the 

5’ flanking arm and 1.1kb of the 3’ flanking arm of agl-4. 

 

 

Figure 1. Phylogenetic analysis (Maximum Likelihood tree) of agl-2 and agl-4 

genes depicting the relationships between the protein sequences from S. sclerotiorum (in 

bold), along with their orthologs in B. cinerea, S. borealis, N. crassa and A. thaliana. The 

Toxoplasma gondii agl-1 amino acid sequence was used as an outgroup. Bootstrap 

consensus was calculated based on 100 bootstrap replicates using Mega 7.0 (Kumar et al., 

2016).   
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Table 1. Primer used in this study. 

Primer Name Sequence Note 

F1-AGO2 TGGTGAATTGTGAGTTGAATGGTG agl-2 KO 

F2-AGO2 ACCCAATTCGCCCTATAGTGAGTCGTGCTG

CTGGATCAAAAGACAT 

agl-2 KO 

F3-AGO2 AAGCCTACAGGACACACATTCATCGTAGGT

ACCTGGTCATACCTTCCGCAT 

agl-2 KO 

F4-AGO2 CAGGTCCAAGTCCTGTCCAC agl-2 KO 

YG-F CGTTGCAAGACCTGCCTGAA Both KO 

PtrpC-F ACGACTCACTATAGGGCGAATTGGGT Both KO 

TtrpC-R TACCTACGATGAATGTGTGTCCTGTAGGCTT Both KO 

HY-R GGATGCCTCCGCTCGAAGTA Both KO 

F1-AGO2-

nested 

GTTTGCAACAATCGCAGGTG agl-2 KO 

F4-AGO2-

nested 

TCTCCAACCAGCTACCGATG agl-2 KO 

F1-AGO4 TTTGGTCCAGGCCTTGGTTT agl-4 KO 

F1-AGO4-

nested 

TTTTCACAACGGGTTTGGGC agl-4 KO 

F2-AGO4 ACCCAATTCGCCCTATAGTGAGTCGTGAGC

CATTAGCTTGGATATTCGCA 

agl-4 KO 
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3.2.3 Fungal transformation 

PEG-mediated transformation method was used to transfer the gene deletion 

cassettes into S. Sclerotiorum DK3 protoplasts as described before (Mochama et al., 

2018). Fungal DNA was extracted from mycelia and PCR-amplified by the use of 

primers- F1 and F4, F1 and HYR, and YG2 and F4 to ascertain that argonaute genes were 

each displaced by the hph gene, confirmed by Sanger sequencing. Because S. 

sclerotiorum does not produce conidia, repeated hyphal tipping and nested PCR were 

necessary to derive a monokaryotic line of each targeted gene disruption to avoid mixed 

results from heterokaryotic mutants.  

3.2.4 Complementation 

To complement agl-2, protoplasts from the Δagl-2 strain was transformed with a 

bialaphos plasmid (pBARKS-1) cloned to express the full agl-2 gene flanked by 2.8 kb of 

5’-upstream and 1.5 kb of 3’-downstream sequences to include the corresponding 

promoter and terminator. The agl-2 gene and flanking arms were amplified from the 

DNA extract of DK3 using primers F1-COMP-AGO2 and F4-COMP-AGO2 (Table 1) 

and inserted into the NotI and BamHI sites of pBARK-1 downstream to PTrpC and 

bialaphos resistance gene, bla1. Protoplasts and PEG-mediated transformation were the 

same as described earlier, except that the regeneration media was now supplemented with 

bialaphos at 10 µg/mL for selection. Multiple transformants were selected and hyphal-

tipped several times to fresh PDA plates amended with bialaphos. PCR amplification 

using agl-2 specific primers confirmed the ectopic integration of the gene, and then four 

transformants were compared for the morphology on PDA between the virus-free and 

SsHV2-L virus-infected complemented strains. 

3.2.5 Phenotypic characterization of gene deletion mutants 
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At least 5 replications each of DK3, Δagl-2, and Δagl-4 cultures with or without 

SsHV2 infections were compared for the phenotypes. Hyphal diameter was measured 

daily as described before (Mochama et al., 2018). A 5-mm plug was placed on the a 

freshly cut canola leaf. More than 3 replicates of the leaves were inoculated on moist 

paper towels in covered petri dishes kept on a lab bench at room temperature. Hyphal 

area was measured daily at 24h, 48h and 72h post inoculation. 

3.2.6 In vitro dsRNA synthesis, inoculation, and confirmation of silencing by RT-

qPCR 

PCR amplification of the agl-2 target was performed using gene-specific primers 

with T7 promoter sequence added on both the forward primer and the reverse primer. 

Primers Ss-Ago2-T7p-1898F and Ss-Ago2-T7p-2065R were used (Table 1). dsRNAs 

were synthesized using MEGAscript T7 Transcription kit (Invitrogen) following the 

manufacturer’s procedure. To compare the suppressing effect of dsRNA on fungal 

pathogenicity, a 2-day actively-growing plug in 3-mm diameter taken from the margin of 

a colony of S. sclerotiorum DK3 was placed on each canola leaf. 6 replications each of 

different doses of abovementioned dsRNA at 200, 400, and 800 ng was pipetted to 

surround an agar plug in the volume of 20 μl, taking reference from the dosage of 800 

ng/20 μl published by Wang et al (Wang et al., 2016). As controls, the same volume of 

water, as well as dsRNA targeting agl-4 were pipetted to surround the agar plug on 

canola leaves. dsRNA targeting agl-4 was produced the same way as that targeting agl-2 

but with primers Ss-Ago4-T7p-F and Ss-Ago4-T7p-R. The lesion was measured length 

wise and at right angle across again to obtain an average for a representative diameter 

two days post inoculation. The data was statistically analyzed using paired t-test; and 



66 

using one-way ANOVA (for three or more samples), and when significant effect was 

determined, Tukey’s HSD test was performed to compare all pairs of means. 

Only the lesions from 200 ng and 400 ng/20 μl were cut out to extract for total 

RNA using RNeasy Plant Mini Kit (Qiagen) since 800 ng/20 μl treatment does not 

produce lesions. RT-qPCR was performed to confirm the silencing of agl-2 gene in a 

dose-response manner using Luna Universal One-Step RT-qPCR Kit (NEB) following 

the manufacturer’s protocol. The comparative CT method (ΔΔCT method) was used to 

analyze the data. The expression levels of agl-2 and an endogenous control (actin) were 

evaluated with three biological replicates and four technical replicates each. The 

statistical significance of observed fold-difference was analyzed by ANOVA and Tukey’s 

test for pair-wise means separation.  

3.2.7 Small RNA Libraries Preparation and Analysis of the Sequencing Results 

MirVana miRNA Isolation kit (ThermoFisher Scientific) was used to extract 

small RNAs from 4-day-old mycelia. NEBNext small RNA Library Kit (NEB, Ipswich, 

MA, USA) was used to construct the libraries for sequencing. The libraries were 

barcoded, pooled in a single lane for 50-nt single-end reads sequencing on an HiSeq4000 

at the Roy J. Carver Biotechnology Center, UIUC. Three replicates of samples from 

SsHV2-L virus-infected DK3 as well as four replicates (two virus-infected and two virus-

free mutants) each of ∆dcl-1, ∆dcl-2, ∆agl-2 and ∆agl-4 samples were sequenced. 

Adaptors were trimmed by BBMap tools (Bushnell, 2014). ShortStack (Axtell, 2013) was 

used to identify loci producing sRNAs by clustering. The number of reads aligned to S. 

sclerotiorum and SsHV2-L  genomes were computed using bowtie (Langmead et al., 

2009), and further downstream analysis were performed using in-house Perl and R 

scripts. tRNA encoding genes were predicted by tRNAscan-SE (Lowe and Chan, 2016). 



67 

3.3 Results 

3.3.1 Disruption Mutants of Argonaute-like Genes were Generated 

Argonaute-like genes were disrupted directly from wild-type strain DK3 using the 

same approach as described before (Mochama et al., 2018). Disruption was screened by 

PCR amplification using F1 and F4 primers and DNA extracts from multiple 

transformants as the templates to rule out ectopic integration of the hph gene. Sanger 

sequencing of the PCR amplicons confirmed the integration. Once a monokaryotic 

mutation was obtained by hyphal-tipping and confirmed by PCR that the target genes 

were completely deleted, further characterizations of the mutants were carried out.   

3.3.2 Effect of Argonaute-like Genes Disruption on Phenotype 

The colony morphology including the growth rate and the size of the sclerotia of 

the argonaute mutants and the wild-type strain DK3 on PDA were compared. Single 

mutant Δagl-4 and DK3 exhibited similar growth rates, whereas the Δagl-2 gene 

displacement mutant exhibited significantly slower growth at 24 hours measured by the 

diameters of hyphal growth (P<0.05) (Figure 2A). As shown in Figure 3, at 4 days post-

inoculation (dpi) (Figure 3A), no change in growth rate was observed in Δagl-4, whereas 

Δagl-2 mutant shows a slower growth and a reduction in the size of sclerotia produced 

(Figure 4). After multiple times of hyphal-tipping, four agl-2 complemented 

transformants were assayed. The complemented strains exhibited a reversal of phenotype 

in antiviral defense (Figure 3B).  
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Figure 2. Average hyphal diameter of S. sclerotiorum wild type and argonaute gene 
disruption mutants (∆agl-2 and ∆agl-4) grown (A) on PDA for 1 dpi, and (B) on detached 
canola leaves 2 dpi.  

 

 

 

 

Figure 3. Colony morphology of virus-free and virus-infected gene deletion mutants. 
(Top row) Virus-free DK3, ∆agl-2 and ∆agl-4. (Bottom row) wild-type and mutant 
strains infected with hypovirus SsHV2-L. Cultures were grown for (A) 4 days on PDA. 
The virus-infected agl-2 mutant displays significantly slower growth and altered colony 
morphology. (B) Comparison of the complemented strains with and without virus 
infection (P>0.05). 
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Figure 4. Comparison of sclerotial morphology in wild-type DK3 and mutant strains, 
∆agl-2 and ∆agl-4. The ∆agl-2 mutant produces smaller sclerotia on average. 
 

3.3.3 Effects of Argonaute-like Gene Disruptions on S. sclerotiorum Pathogenicity 

The virulence of S. sclerotiorum argonaute mutants was evaluated by inoculating 

detached leaves with agar plugs of mycelia. Lesion size data was collected at 1, 2, and 3 

dpi showed that no difference in the lesion size produced by the mutant Δagl-4, but a 

significantly smaller lesion produced by Δagl-2 mutant compared to those produced by 

DK3 (Figures 2B, 5) (P<0.05).  
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Figure 5. Virulence assays on detached canola. Plugs were taken from the edge of 
actively growing DK3, ∆agl-2 and ∆agl-4 cultures and inoculated onto detached leaves. 
Lesion size was measured (A) 2 dpi; (B) 3 dpi. 

 

3.3.4 Effects of Argonaute Gene on antiviral defense 

 To examine the effect of viral infection on strains containing null-mutations of 

agl-2 and agl-4, mutants were transfected through hyphal fusion with SsHV2-L infected 

mycelia. As shown in Figure 3, no significant differences were observed in growth and 

morphology in the agl-4 mutant infected with the mycovirus compared to virus-infected 

DK3, whereas the agl-2 mutant showed a significantly debilitated growth (Figures 3, 5) 

(P<0.05). 

3.3.5 In vitro synthesized dsRNA targeting agl-2 shows reduced virulence of S. 

sclerotiorum 

 Once we determined that agl-2 plays an important role in endogenous small RNA 

processing, exemplified by a debilitated growth even without virus infection, the agl-2 

was then targeted using in vitro synthesized dsRNA constructs in order to disrupt the 

fungal small RNA processing. RT-qPCR confirmed that agl-2 was silenced at the level of 

800 ng in 20 μl volume but not at the lower doses of 200 or 400 ng (Figure 6A). As 

shown in Figure 6B-D, strains in which in vitro 800 ng of dsRNA was applied externally 
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to target agl-2 exhibited a slower spread on canola leaves up to three days post infection 

compared to lower doses at 200 ng and 400 ng applied or the targeting of agl-4 by the 

corresponding dsRNA (Supplemental data).  

 

Figure 6. Effects of external RNA pesticide on inhibiting S. sclerotiorum from causing 
lesions on canola leaves comparing dsRNA targeting agl-2 at 800 ng/20 μl, 400 ng/20 μl, 
200 ng/20 μl, dsRNA targeting agl-4 at 800 ng/20 μl as control (from left to right), 
confirmed by RT-qPCR to with reduced expression levels of agl-2 at 200 ng, and 400 ng, 
and lesion comparison at (B) 36 (C) 48, and (D) 72 hours post inoculation. 
 

3.3.6 Profiles of sRNAs in distinct S. sclerotiorum strains 

The raw sequence reads were uploaded to NCBI SRA database under accessions 

SRR8844548 (WT-1), SRR8844549 (WT-2), SRR8785208 (WT-3), SRR8785205 

(∆dcl1-1), SRR8785204 (∆dcl1-2), SAMN12129781 (∆dcl1-VF1), SAMN12129782 
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(∆dcl1-VF2), SRR8785203 (∆dcl2-1), SRR8785202 (∆dcl2-2), SAMN12129783 (∆dcl2-

VF1), SAMN12129784 (∆dcl2-VF2), SRR8785201 (∆agl2-1), SRR8785200 (∆agl2-2), 

SAMN12129777 (∆agl2-VF1), SAMN12129778 (∆agl2-VF2), SRR8785199 (∆agl4-1), 

SRR8785198 (∆agl4-2), SAMN12129779 (∆agl4-VF1) and SAMN12129780 (∆agl4-

VF2). Table 2 summarized the numbers of aligned small RNA sequence reads from the 

mutants and the WT sample that passed the ShortStack filtering parameters to allow the 

clustered reads for downstream analysis.   

  



73 

Table 2. Numbers of aligning small RNA sequence reads from hypovirus-transfected wild type and mutants of Sclerotinia 

sclerotiorum. 

 Read counts Percent of aligned reads 

Samples Filtered read 
IGR (% of tRNA 
derived small RNA) CDS Retrotransposons Mitochondria rRNA Other 

Ago2_SsHV2L_1 6510462 46.4 (42.7%) 10.6 3.3 5.7 5.6 28.5 

Ago2_SsHV2L_2 6599083 46.7 (46.73%) 9.3 2.9 5.6 5.8 29.7 

Ago2_VF_1 5895665 48.4 (31.46%) 12.7 4.4 5.6 4.3 24.6 

Ago2_VF_2 5646987 49.1 (32.7%) 13.5 4.8 5.2 3.9 23.5 

Ago4_SsHV2L_1 15140898 58.1 (68.9%) 5.9 2.2 2.8 1.9 29.1 

Ago4_SsHV2L_2 8083962 49.4 (56.8%) 8.2 3.0 4.5 8.0 26.9 

Ago4_VF_1 18251848 80.1 (78.6%) 3.9 0.5 1.6 4.2 9.7 

Ago4_VF_2 13039613 83.0 (80.6%) 3.5 0.5 1.8 2.8 8.4 

Dcl1_SsHV2L_1 6932872 32.9 (77.6%) 2.2 0.2 1.7 24.9 38.1 

Dcl1_SsHV2L_2 7040569 52.5 (62.7%) 5.3 2.3 2.6 9.2 28.1 

Dcl1_VF1 9213301 50.4 (57.8%) 6.3 1.5 4.5 8.0 29.4 

Dcl1_VF2 9087471 32.7 (28.6%) 5.6 0.9 4.2 19.8 36.8 

Dcl2_SsHV2L_1 14427517 43.6 (62.5%) 5.6 2.3 4.6 4.9 38.9 

Dcl2_SsHV2L_2 11097593 43.2 (59.2%) 6.7 3.0 4.2 5.5 37.3 

Dcl2_VF1 17041328 40.6 (35.4%) 9.8 3.4 4.7 6.7 34.7 

Dcl2_VF2 13619703 50.0 (59.2%) 5.6 1.8 4.7 7.2 30.8 

WTDK3_SsHV2L_1 15565013 63.7 (76.0%) 5.1 1.7 3.1 3.4 23 

WTDK3_SsHV2L_2 14313982 39.2 (41.4%) 9.4 4.4 2.8 1.2 43 

WTDK3_SsHV2L_3 14553278 40.8 (25.4%) 11.6 4.5 8.5 2.8 31.8 
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A major portion of endogenous small RNAs were found to represent the same 

small RNAs identified from our previous study (Lee Marzano et al., 2018), 

predominantly tRNA halves (tRFs): tRF5-Glu(GAA), 5’-

TCCGAATTAGTGTAGGGGTTAACATAACTC-3’, and tRF5-Asp(GAC), 5’-

TCTTTGATGGTCTAACGGTCATGATTTCC-3’, derived from tRNAs delivering 

glutamic acid and aspartic acid at 1.1 and 1.3% of total filtered reads in average, 

respectively. Homologs of the abovementioned two tRFs range in size from 29-35 bases 

with a major peak at 33 nt as TCTTTGATGGTCTAACGGTCATGATTTCCGTCC 

(Figures 7A-D) (underlined are the bases when expanding the size of small RNAs up to 

34 nt long).  tRF5-Glu(GAA) is predicted to be produced from SS1G_14562 and 

SS1G_14600 on chromosomes 7 and 4, respectively, whereas tRF5-Asp(GAC) is 

produced from SS1G_14527 on chromosome 14. The clustering result showed that these 

two small RNAs were mapped solely to intergenic regions. The BLASTn search 

(Altschul et al., 1990) indicates their homology to specific loci on chromosomes 4, 7, 14 

and 16 for tRF5-Glu(GAA), and on chromosomes 1, 5, 11, 12, and 14 for tRF5-

Asp(GAC). These small RNAs and their homologs are derived from mature tRNAs and 

contribute to the major peak at 29 or 33 nt. Compared to the wild type (Figure 7 A), the 

productions of the two species were not affected by either single dicer mutations (Figures 

7 B, C), nor double dicer mutations (Figure 7 D) (Mochama et al., 2018), and the stability 

of these small RNAs were not drastically affected by argonaute mutations (Figures 7 E, 

F). Therefore, the reanalyzed data of double dicer mutant (previously published in 

(Mochama et al., 2018)) revealed that these tRFs were not produced by either dicer. 
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Figure 7. tRNA-derived Small RNAs profiled for their size distribution in (A) wild type 
strain DK3; (B) ∆dcl-1; (C) ∆dcl-2; (D) ∆dcl-1/dcl-2; (E) ∆agl-2; (F) ∆agl-4.  
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3.4 Discussion 

Studies conducted on a number of fungal species have uncovered robust RNA 

silencing mechanisms with important roles in fungal antiviral defense. Similarly, this 

study elucidates the RNA silencing mechanisms in S. sclerotiorum and establishes the 

significant roles played by Argonaute-like genes in this devastating plant pathogenic 

fungus. Primarily, these findings clearly demonstrate that while the wild-type strain 

displayed reduced virulence following SsHV2-L virus infection (Marzano et al., 2015), 

RNA-silencing-deficient mutants (specifically ∆agl-2 mutant in this study, and 

previously reported ∆dcl-1/dcl-2 double mutant (Mochama et al., 2018)) displayed an 

even more significantly debilitated growth and reduced virulence under virus infection.  

The slower growth of ∆agl-2 without virus infection also suggested that agl-2 

contributes to cellular gene regulation through the prevention of RISC formation with 

endogenous small RNAs. Specifically, we found that the deletion of agl-2 gene but not 

agl-4 resulted in compromised growth and virulence prior to virus infection, suggesting 

the contributions made by agl-2 to physiological and developmental processes. The agl-2 

mutant exhibited slower growth, smaller sclerotia, and reduced virulence. Therefore, the 

changes observed in the agl-2 mutant may be attributed to a significant reduction in small 

RNA loading and stabilization of endogenous small RNAs. As expected, size distribution 

of small RNAs is not greatly affected upon the deletions of agl-2 or agl-4 genes when the 

Dicers are functional.  

The great debilitation observed in the ∆agl-2 mutant caused by virus infection was 

not detected in the virus-infected ∆agl-4. This suggests that the AGL-2 protein is solely 

responsible for incorporating vsiRNAs into the RISC complex as part of the viral RNA 
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silencing mechanism leading to the silencing of viral RNA. Argonaute proteins have been 

shown to associate with vsiRNAs in plants to target complementary viral mRNAs and in 

some cases host genes as well (Mengji et al., 2014;Carbonell and Carrington, 2015). 

miRNA-like molecules with possible gene regulation functions have been found to 

associate with fungal Argonaute proteins like the QDE-2 protein in N. crassa (Lee et al., 

2010). Our study suggests that AGL-2 protein in S. sclerotiorum may also contribute to 

endogenous gene regulation. While AGL-4 protein’s function remains unknown, it is 

likely to play important roles including miRNA degradation (Sheu-Gruttadauria et al., 

2019). Moreover, as single argonaute mutants do not have drastic changes in small RNA 

stability, this suggests possible functional redundancy in the two Argonautes. 

Single gene disruption mutants of dcl-1, dcl-2, agl-2, agl-4, and double dicer 

mutants of dcl-1/dcl-2 did not alter the accumulation of tRFs, which suggests the existence 

of alternative enzymes or pathways for the biogenesis of this class of small RNA in S. 

sclerotiorum. Other endonucleases exist in S. sclerotiorum, such as RNaseL-like 

endonucleases that share similarities with yeast Ire1p proteins which are said to be involved 

in fungal mRNA splicing (Dong et al., 2001). Another endonuclease, Rny1 in yeast, is a 

ribonuclease T2-like precursor, and disruption of Rny1 lead to usually large cells that are 

temperature-sensitive for growth in yeast (MacIntosh et al., 2001). Also, the sizes of small 

RNA for tRFs were much larger than the dicer-processed ~22 nt ones, supporting the 

speculation of different endonuclease(s) in action. Therefore, generating Rny1 and RNase 

L mutants to assess any disruption in the fungal growth and development and most 

importantly quantify the changes in the levels of tRFs will answer the pending questions 

brought up by this study. Moreover, the biological function of this under-characterized 
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class of small RNA in this major pathogen of all dicots demands further study. Questions 

such as whether tRFs are induced by virus infection or simply a stress response, whether 

they target the IGRs as Blastn results suggested, or whether tRFs can be manipulated to 

debilitate S. sclerotiorum remain to be answered in the future.  

The results derived from this study pave the way for the development of new control 

strategies that exploit RNA silencing mechanisms. The external RNA pesticide 

developed suggests the occurrence of external uptake of RNA in S. sclerotiorum. 

Furthermore, host-induced gene silencing (HIGS), virus-induced gene silencing (VIGS) 

approaches or heterologous expression of dsRNA sprays (spray-induced gene silencing) 

targeting agl-2 in S. sclerotiorum are expected to be effective in reducing the virulence, 

adding to the tool box of disease control.  
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