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DETECTION AND DESCRIPTION OF SULFONYLUREA 

HERBICIDE BREAKDOWN IN SOIL 

Abstract 

MARK A. PETERSON 

Corn ( Z ea mays L. ' Sakata TS 6 01 ) , grain sorghum 

[Sorghum bicolor ( L. )  Merr. ' S okota 8 4 4'] ,  and flax ( Linum 

us itati ss imum L. ' Culbert 7 9 ' )  were tested to determ ine 

suitabil ity for petri dish bioassays of chlorsul furon 

{2 -chloro-N-[[ ( 4 -methoxy-6 -methyl-1 , 3, 5-triaz in- 2 -yl ) 

amino]carbonyl]benzenesul fonamide} , metsul furon 

{ 2 -[[[[ ( 4 -methoxy-6-methyl- 1 , 3 , 5-tr iaz in-2 -yl ) amino] 

carbonyl]amino]sul fonyl-]benzoic acid} and chlor imuron 

{ 2 -[[ ( 4 -chloro-6 -methoxypyrimidine-2 -yl ) amino carbony l] 

aminosul fonyl]benz oic ac id , ethyl ester}. Sorghum was not 

an acceptabl e  bioassay spec ies. Corn had a signi f icant 

response to a l l  three herb ic ides. Flax was the best 

ind icator species in both soil types tested. 

The e ffects o f  herbicide concentrat ion, 

temperature , moisture , and pH on decomposition rate o f  

chl orsul furon and metsul furon were studied . Both 

chl orsul furon and metsul furon deviated from first-order 

kinetics. The Arrhenius equat ion was used to describe 

temperature influence and gave thermal activat ion values of 

2 1. 1  and 2 2.8 kcaljmole for chlorsul furon and metsul furon, 



respectively. Mo isture response was curvil inear for both 

compounds as was pH response. The influence o f  the factors 

examined in this work was almost identical for b oth 

herb icides. 
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INTRODUCTION 

Pers istence of pest icides in the environment is 

of concern to many people. Growers require pest icides 

which are effective for a long enough period of time to 

protect a crop for an entire growing season but whi ch will 

degrade to non-phytotoxic level s before a susceptibl e  crop 

is planted. The longer a pesticide pers ists in the 

environment the greater the poss ibil ity that it wi l l  be 

moved from its intended site of use and affect non-target 

organisms by such means as leaching or runo ff . 

The sul fonylurea herbicides are a relatively new 

group of compounds . As·a group , they are known for the ir 

ab il ity to control a wide variety of weeds at rates of  

less than 1 1  g aijha. They are soil act ive and can 

pers ist in soil at phytotoxic level s for a few weeks up to 

several years depending on the member involved and various 

edaphic and environmental factors . Chlorsul furon wa s the 

first sul fonylurea to be succes sfully developed and 

marketed. It controls a variety of broadleaf weeds and 

some important grasses in small gra ins { 3 4) . The 

pers istence of chlorsul furon in soils varies widely 

depending on locat ion and soil type . In northern states 

such as Idaho and North Dakota , 3 5  g aijha has caused 

substant ial injury to corn {Zea mays L.) planted 3 6  months 
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after appl ication ( 1 3 ,  4 4) .  On the other hand , 7 0  g a ijha 

in Virginia caused no inj ury to corn planted only 1 0  

months a fter appl ication ( 14) . A study in Kansas 

indicated no inj ury to gra in sorghum ( Sorghum bicolor L.) 

the year fol l owing postemergence appl ication of 0. 0 4  kg 

aijha on winter wheat ( 3 3 ) .  However ,  0.0 18 kg a ijha 

caused signi ficant injury to grain sorghum in Texas , 

poss ibly due to the so il type , the dry cl imate , or a 

combination o f  the two ( 5 1 ) .  In South Dakota , 

chlorsul furon can pers ist for more than one growing season 

to inj ure corn , fl ax , grain sorghum , soybeans , and 

sunflowers { 3 7 ) .  

Metsul furon is similar to chlorsul furon in 

select ivity and spectrum of weeds controlled , but may be 

less pers istent in soil  than chlorsul furon ( 1 ) . 

chlorimuron has recently been label ed for use on soybean s  

i n  southern port ions o f  the corn belt , but is o f  l imited 

use in northern areas due to carryover injury to corn 

( 1 1 ) . Thiameturon [ 3 - [ [ [ [ ( 4 -methoxy-6 -methyl- 1 , 3 , 5-tria­

z in-2 -yl ) amino]carbonyl]amino]sul fonyl]-2 -thiophenecarbox­

yl ic acid] has been test in cereals and is reported to be 

sa fe for use in areas where sensitive broadlea f crops are 

rotated with cereals ( 4 ) . 

S ince the sul fonylureas represent a range of  so il 

hal f-l ives they could become a very useful weed control 



tool. By choos ing the proper sul fonylurea herb ic ide or 

combination of sul fonylureas , a grower coul.d obtain weed 

control for one to several growing seasons with only one 

application. However , before this becomes a real ity , we 

must first be able to quantitatively predict levels o f  

sul fonylurea res idue a t  a given time under spec i fied 

edaphic and environmental conditions. 

3 

The obj ectives of  these studies were : 1) 

Establ ish a sens itive sul fonylurea bioassay. 2 ) Determine 

what kinetics law should be appl ied to chlorsul furon and 

metsul furon decompos ition in soil. 3 )  Determine the 

quantitative e f fects of soil temperature , mo isture , and pH 

on chlorsul furon and metsul furon decomposit ion in soil . 

4) Compare the rel at ive decomposition rates o f  

chlorsul furon and metsul furon. 
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REVIEW OF THE LITERATURE 

Herbic ide Bioassay 

Before a researcher can model the decomposition 

of a herbicide in the soil there must be a rel iabl e  method 

for the quantitative detection of the compound o f  

interest. Sul fonylurea herbicides are usual ly appl ied at 

rates below 1 1  g a ijha , resulting in soil res idues which 

must be measured in parts per bill ion. Chromatographic 

analys is at this l evel can be difficult ( 5 2 ) .  Certain 

plant spec ies can respond to these low soil res idue levels 

(8) . Bioassays may be the only practical detect ion method 

for these herbicides unt i l  new chromatographic procedures 

are discovered. 

Plants exhib it a variety of responses to 

herbicides depending on the species and mode of act ion of  

the part icul ar herbic ide involved. A bioassay must use a 

pl ant species which gives a gradual reaction in response 

to increas ing herbic ide rate . Common field and garden 

crops such as oats , corn , sorghum , soybeans , cucumbers , 

and sunflowers have been used for bioassays ( 7 , 1 0 ,  2 1 ,  3 1 ,  

4 1 )  . Weed spec ies are seldom used , probably due to the ir 

lesser genetic uni formity . 

A major disadvantage of many bioassays is that 

they require long periods of time in order fpr the pl ants 
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to show a s igni ficant response to the herbicide. Sma l l  

pot bioassays util i z ing higher plants can require 3 to 4 

weeks before plant heights or weights are sufficiently 

di ft'erent to give an indication of herb ic ide 

concentration. S imi larly , visual symptoms may not be 

fully expressed for several weeks . A time saving 

approach which o ften works wel l  for herbicides which 

inhib it meristematic activity is the petri dish b ioassay . 

In most petri dish b ioassays , seeds of the test species 

are placed in sma l l  petri dishes containing anywhere 

between 2 0  and 1 5 0  g of soil or some other medium 

conta ining the herb icide. The petri dishes are then 

moistened and incubated for several days in a constant 

temperature chamber. At the end of the incubation period , 

seedl ing root or shoot growth is measured. This type of 

bioassay has been used successfully for a number o f  

herbicides ( 7 , 1 0 ,  2 4 , 2 6 , 3 5) .  I n  many instances ,  seeds 

are pregerminated and sorted for uni formity before being 

planted. Petri dish bioassays do not appear to work wel l 

for photosynthetic inhibitors . Brattain , et al , found the 

petri dish method to be relatively insensitive for 

measurement of atraz ine [ 6 -chloro-N-ethyl-N'- ( 1-methyl­

ethyl ) - 1 , 3 , 5-tria z ine-2 , 4 -diamine] soil res idues ( 7 ) . 

Most publ ished chlorsul furon bioassays have 

ut il ized corn as an indicator crop (3 , 4 ,  2 1 � 3 2 ) .  



However , . some of  the results have been extremely 

variable . Other plant sens itive plant spec ies should be 

tested to determ ine if a better sul fonylurea b ioassay can 

be developed. 

Chlorsul furon and Metsul furon Degradation in Soil 

6 

A number of  scientists have been interested in 

model ing pesticide fate in the environment . Model ing the 

fate of  pest icides in the so il usual ly cons iders the bas ic 

routes a pestic ide takes once it is in the soil. These 

ma in routes are sorption , leaching , · volat il ization , 

photodecompos ition and degradation ( 4 5 ) .  Sorption , 

leaching , volatil ization , and photodecompos ition can 

sometimes be estimated from the chemical properties of  a 

pestic ide. Degradation , however ,_ can not be so eas i ly 

estimated due to the complexity of the systems involved . 

This pathway col l ectively cons iders both biological and 

chemical means of breakdown with the relative importance 

of each depending on the pestic ide involved and on the 

soil environment. For example , herbicides such a s  

picloram ( 4 -amino-3 , 5 , 6-trichloro-2 -pyridinecarboxyl ic 

acid ) and the dinitroani l ines degrade mainly by microbial 

action ( 17 ,  2 0 ,  2 9 ) . In other pest icide famil ies 

non-b iological decomposition may play an import.ant role . 
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The triaz ine herbicides can be degraded by so il 

microorganisms , but much of  the initial loss of the 

molecule ' s  phytotoxic ity is due to an adsorption catalyzed 

hydrolys is to hydroxy anal ogs ( 5 ,  6 ,  2 8) .  

The most bas ic property o f  pestic ide 

decompos ition is the pattern of disappearance with t ime. 

Hamaker examined decompos ition kinetics in deta i l  and felt 

that the determination o f  a rate law was an important 

prerequis ite to quantitative model ing of a pest icide's 

pers istence ( 1 6) . First-order kinetics are o ften 

encountered or assumed to hold for most herb icides ( 4 5 ) .  

The equation for a first-order reaction is : 

dcjdt = Rate = kc 

where c = concentration , t  = time , and k is the rate 

constant. In this case a plot of the logarithm o f  

concentration against t ime gives a stra ight l ine with 

slope proportional to the rate constant. I f  t112 i s  

considered t o  b e  the hal f-l ife (time required for 5 0 %  

degradation) , i t  may b e  related to the rate constant by 

the fol l owing equation : 

tl/2 = 0. 6 9 3 2/k 
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In such.a s ituation herbic ide hal f-l ife is  independent o f  

initial concentrat ion. It has been proposed that s ince 

the concentration of a pesticide is sma l l  rel ative to 

other soi l  constituents , the concentration o f  the 

pesticide is the l imit ing factor in the decompos ition 

react ion and that first-order kineti�s should apply ( 5 3 ) . 

Hamaker disagreed with th is pos ition and indicated that 

such a genera l i z ation was not supported by experimental 

data ( 1 6 ) . Hurle and Walker cited numerous examples o f  

studies which indicated kinetic orders either greater or 

less than one ( 2 2 ) .  Rate laws other than first-order have 

been proposed ( 1 6 ,  2 2 ) .  One type is referred to as the 

power rate model and is described by the general i z ed 

equation : 

Rate = dcjdt = ken 

where c is concentration , k is a rate constant , and n is 

the order of the reaction. Another type is known as the 

hyperbol ic rate model and is described by the genera l i zed 

equation : 

Rate = dcjdt = ( k1c )  I ( k2 + c )  

where k1 i s  a maximum rate which i s  approached with 
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increasing concentration and k2 is a pseudoequ i l ibrium 

constant ( 1 6) .  Michael is-Menton kinetics are a form o f  

the hyperbol ic rate concept which are usually app l i ed t o  

enzyme systems in l iving organisms. S ince many pestic ide 

decompos ition react ions are thought to occur through 

microb ial enzyme systems , several researchers have appl ied 

this approach to pesticide model ing ( 17 ,  18 , 2 9 , 3 6) . 

While most pesticides are subj ect to act ion of 

microbial enzymes , some compounds may become an energy 

source for some portion of the soil microfl ora . O ften a 

portion of the microb ial population becomes adapted to 

using a particular pesticide as an energy source. In such 

cases , decompos ition may proceed slowly for a period o f  

time until the adapted microbes multiply t o  sign i f icant 

levels. This l ag phase is then fol lowed by a more rapid 

rate of decompos ition. The presence of a lag phase in the 

decompos ition pattern o f  a pesticide may make the kinet ics 

of the breakdown more complex. In one instance a 

combination o f  two first-order rate equations was used to 

describe the decompos ition of 2 , 4 -D [ ( 2 , 4 -dichlorophenoxy) 

acetic acid] in so i l  ( 3 6) .  

Soil  temperature can influence both chemical and 

biological degradation reactions. An often used 

relationship in the description of temperature e f fects is 



the Arrhenius equation : 

k = Ae-E/RT 

where k is the rate constant at temperature T ( degrees 

Kelvin) , R is the gas constant ( 1 . 9 8 6  cal deg-1  

mole1) ,  and E is the activation energy o f  the react ion . 

1 0  

In general , most pesticides degrade a t  a very low rate 

when temperatures are near 0 C ( 16 ,  2 2) .  At this 

temperature , b iological activity is low and free water for 

chemical hydrolys is react ions is l imited. As temperature 

increases degradation rates tend to increase. Breakdown 

· mechanisms involv ing microorganisms often exh ibit an 

opt imum temperature value which corresponds to the maximum 

growth rate o f  the population involved . S ince the 

Arrenhius equation does not provide for a temperature 

maximum , it may be inappropriate for describ ing 

temperature e ffects on decomposition when microbial 

breakdown is dominant . 

Soil moisture is another factor wh ich a f fects 

breakdown . Usual ly the relationship between so i l  moisture 

and degradation rate is described empirical ly due to a 

lack of a theoret ical bas is which is widely appl icable. 

In general , pesticide decomposition rates are slow in a i r  

dry s o i l  and steadi ly increase a s  soil mo isture l evel s 



increase to field capacity. The e ffect of anaerobic 

conditions which occur at saturation varies with the 

pesticide involved ( 1 6 ,  2 2) .  

11  

Alan Walker has constructed several pers istence 

model s  which combine temperature and mo isture e ffects on 

herb icide degradation ( 4 6 , 4 7 , 4 9) . One of his f irst 

publ ished model s  described the pers istence of napropamide 

[ N , N-diethyl-2- ( 1-naphthal enyloxy) propanamide] ( 4 6) . 

First-order kinet ics were used as . a bas is for his model . 

From laboratory mo isture and temperature experiments he 

described the e f fects of moisture and temperature on 

napropamide hal f- l i fe. He then used a computer program to 

s imulate soil mo isture and .temperature in a field 

s ituation and subsequently used these values to model the 

breakdown o f  napropamide. This model has also been 

appl ied to s imaz ine ( 6-chloro-N , N'-diethyl- 1 , 3 , 5  

-triaz ine-2 , 4-diamine) , atraz ine , propyz amide 

[ N- ( 1 , 1-dimethyl-propynyl) -3 , 5-dichlorobenzamide] , l inuron 

[ N'- ( 3 , 4-dichlorophenyl) -N-methoxy-N-methylurea] , 

triflural in [ 2 , 6-dinitro-N , N-dipropyl-4- ( trifluoromethyl ) 

benz enamine] , metribuz in [ 4-amino-6- ( 1 , 1-dimethylethyl) -3-

(methylthio) - 1 , 2 , 4-triaz in-5 ( 4H) -one] , and chlorsul furon 

( 4 7 , 4 9) .  In spite o f  their simpl icity and the fact that 

they do not account for diss ipation pathways such as 

adsorpt ion , volatil i z ation , and leaching , Walker has found 
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his models to be reasonably accurate for determining 

herb icide persistence in the field, depending on the soil 

type and herbic ide involved. But since his model s  do not 

include the e ffects o f  factors such as texture , organic 

matter , and pH , they may not be widely appl icab l e  to other 

so il types . 

The e ffects of soil factors such as pH , organic 

matter , and texture vary widely depending on the pestic ide 

involved . They are the most difficult factors to study 

due to the numerous interactions possible. It is a l so 

hard to obtain a range of values for a given soil  factor 

while keeping other soil properties constant. Walker and 

Thompson studied the decomposition of sima z ine , l inuron , 

and propyzamide in 1 8  soils  with a range of soil 

propert ies ( 4 8) . Us ing regression analys is , the authors 

attempted to determ ine the correlation between degradat ion 

rate and soil parameters such as organ ic matter content , 

clay content , pH , available P and K ,  and soil 

respiration. A signi ficant correlation between l inuron 

degradation and resp iration , organic matter ,  and clay 

content was discovered. S imaz ine decompos ition was 

related to pH , but the correlation was l ow ( r  = 0 . 57 ) . 

With propyzamide there was no signi ficant rel at ionship 

between degradat ion and any of the soil properties 

studied . In a simi lar study, Me ikl e et al . could only 
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account . for 2 7 %  o f  the variation in picl oram decompos it ion 

using a multipl e  regress ion equat ion which included soil 

temperature , moisture , organic matter ,  and pH ( 2 9 ) .  On 

the.other hand , a study of PCP ( pentachlorophenol ) 

degradat ion in ten different soils  was able to ·produce an 

equat ion which accounted for 6 8 %  of the variation in 

breakdown rates ( 2 7) .  One o f  the most extens ively studied 

soil factors is pH. The pH of a soil can affect the 

pesticide molecul e  and influence reactions involved in its 

breakdown. Adsorpt ion catalyzed decomposition o f  the 

triaz ine herbicides is an example of a breakdown react ion 

which is influenced by pH ( 5 ,  6 ,  12 , 2 8 ) .  Corbin and 

Upchurch found s ign i ficant pH effects on the decompos ition 

of dicamba ( 3 , 6 -dichloro-2 -methoxybenzoic acid) , 2 , 4 -D ,  

dalapon ( 2 , 2 -dichloropropanoic acid) , amitrole 

( 1H- 1 , 2 , 4 -triazol- 3 -amine) , vernolate ( S-propyl 

dipropylcarbamothioate) , diuron [ N ' - ( 3 , 4 -dichl orophenyl ) ­

N , N-dimethylurea] , chloramben ( 3 -amino-2 , 5 -dichloroben z o ic 

acid ) , picloram , tri flural in , isocil , and prometon 

(6 -methoxy-N , N'-bis ( 1-methylethyl) -1 , 3 , 5 -triaz ine-2 , 4 -

diamine] ( 12) . 

Prel iminary research indicates that a maj or 

mechanism o f  decompos it ion for the sul fonylurea herb icides 

is hydrolys is of the parent molecule into non-phytotoxic 

products with further breakdown by microorgan isms ( 5 0 ) . 
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Hydrolysis of sul fonylurea herbic ides is thought to be 

enhanced by high temperature , the presence o f  free 

moisture and low pH ( 3 4 , 4 9) .  Soil pH has been 

demonstrated to have a very significant affect on res idual 

chlorsul furon activity with a rap id increase in carryover 

potential as pH increases from 5.0 to 7.0 ( 15 ,  3 7) .  

Although hydrolys is appears to be a key step in 

the breakdown of sul fonylurea herbicides , a recent paper 

indicated that microb ial act ion makes a s ignificant 

contribut ion to chlorsul furon decompos ition in soil ( 2 5 ) . 

Under alkal ine soil conditions , chl orsul furon degrades 

10-12X faster in non-sterile soil than in sterile so il. 

However , in so ils with relatively lower pH values chemical 

hydrolys is becomes dominant and the difference between 

sterile and non-sterile soil is less. Chlorsul furon i s  a 

weak organic ac id with a pka of 3.8 and exists in an 

anionic form at most so il pH values ( 4 2) .  There fore 

chl orsul furon does not adsorb well to clay mineral s  wh ich 

have a net negative charge but does adsorb to organic 

matter ( 3 0 ,  4 2 ) .  Adsorption to organic matter is pH 

dependent with increased adsorption at lower soil pH 

values ( 4 2) . The hal f-l ife of chlorsul furon decreases as 

soil temperature and mo isture increase . In one instance, 

chlorsul furon hal f-l i fe in a silty clay l oam soil with a 

pH of 7.7 decreased from 2 3 1.7 days at 10 C to 6 3  days at 
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40  c (4 3) . The same study showed increasing mo i sture 

content from 2 5  to 5 0 %  o f  field capacity caused the 

degradation rate to increase by 4 6 %. Est imates of 

chl orsul furon hal f-l ife in soil have ranged from 9 to 2 3 2  

days depending on soil type , temperature , and mo isture 

(4 3 , 4 9) .  

While a signi f icant amount of work concerning 

chl orsul furon fate in soil has been published , only a 

small  amount has been publ ished with regard to 

metsul furon. Metsul furon is  reported to be less 

persi stent than chlorsul furon (1) .  However , a recropping 

study in North Dakota compared metsul furon and 

chlorsul furon and concluded that carryover inj ury to eight 

dif ferent crops was s ignif icantly higher with metsul furon 

when both compounds were appl ied at the same rates ( 4 4) . 
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MATERIALS AND METHODS 

Sul fonylurea Bioassay 

Chlorsul furon Bioassay. Corn , gra in sorghum , 

and flax were tested for suitabil ity as chlorsul furon 

bioassay indi cators . Samples of surface horizon s  from two 

different soil  types were used. Chlorsul furon is h ighly 

active in the Great Bend soil (Udic Hapioborol l s ; 

fine-silty , mixed) and relat ively less active in the 

Brookings soil (Pachic Udic Haploborol l s ; fine- s ilty , 

mixed ) ( 3 7 ) .  The characteristics of these soil s  are 

presented in Table 1. The third so il l isted in Table 1 

was used in other experiments to be described l ater . 

Sand , s ilt , and clay contents were determined us ing the 

pipet method ( 3 ) .  Soil pH was measured in a 1 : 1 

soil:water suspen s ion with a glass electrode . S o i l  

organ ic matter was determined by a modified Wal kl ey-B lack 

procedure ( 2 3) . Moi sture content at 1/3 bar was 

determined us ing a pressure plate ( 3) . A 4 . 4 7 X 1 0 - 3 M 

solut ion (ai bas is ) of chl orsul furon was prepared us ing 

the 7 5% dry flowable formulation of the compound . This 

solut ion was then appl ied to each of the three soils at a 

rate of 1 ml of solution/ 1 0 0 0  g o f  soil to reach a soil  

concentration of 1 6  ppbw . The treated soil was mixed in a 

twin shel l  blender for 9 0  minutes . Lower copcentrations 



Table 1 �  Characteristics o f  surface (Ap) hori z ons used 
in bioassay and degradation studies. 

Organic 1/3 bar 
Soil sand S ilt Clay Matter Moisture pH 

---------------- ( %) -----------------

Brookings 19  5 1  3 0  3.5 2 8  5 . 3  

Great Bend 5 6 1  3 4  2.5 3 5 6 . 5  

Vienna 4 2  3 7  2 1  3.5 2 2  5 . 3  

17 
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of herb ic ide were made by diluting treated soil with 

untreated soil and mixing for 9 0  minutes . Concentrations 

used for these studies were 4 ,  2 ,  1 ,  0 . 5 ,  0 . 25 and 0 . 1 2 5  

ppbw . S eeds o f  the test crops were placed in 55 mm 

plast ic petri dishes and covered with 2 0  g o f  soil . Corn 

was pregerminated for 36 h at 3 0  c. One pregerminated 

corn seedl ing per dish was used . S ix ungerminated gra in 

sorghum seeds were used in the sorghum test and 12 

ungerminated flax seeds were used in the flax test . The 

planted dishes were then watered with a hand held squee z e  

bottle , placed i n  aluminum pans l ined with moist paper 

towels , covered with aluminum foil , and incubated for 5 

· days at 3 0  c .  For corn the length of the radicle was 

measured. For sorghum the l ength of the longest root for 

each of three representative seedl ings was measured . For 

flax the length of the ent ire see_dl ing for each of four 

representat ive seedl ings was measured . Representative 

seedl ings for sorghum and flax were chosen by discarding 

the longest and shortest seedlings in each dish and 

sel ecting seedl ings of medium length . Eight repl ications 

of each concentration were used and the experiment was 

repeated twice. The data were examined by use of the 

analys i s  of variance and regress ion analys is { 3 8 , 4 0 ) . 

Chlorimuron and Metsul furon Bioassay . In order 

to test suitabil ity of corn , flax , and grain sorghum cs 
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bioassay indicators for chlorimuron and metsul furon , three 

concentrations ( 0 , 0 . 25 ,  and 2 . 0 ppbw) of each of the two 

herbicides were prepared in a manner s imilar to that used 

for chlorsul furon . Bioassays were carried out using the 

same procedure as for chlorsul furon . The Great Bend soi l 

was used in these experiments . Mean root lengths for corn 

and sorghum , and mean seedl ing lengths for flax were 

compared using the analys is of variance and the 

Wal ler-Duncan K-rat io t-test with a K-ratio of 1 0 0  

(P=O.OS) ( 3 8) . 

Chl orsul furon and metsul furon degradat ion 

Surface soil from a Vienna loam series ( Udic 

Haploborol l s ; Fine loamy , mixed ) was used in a l l  

degradation experiments ( Table 1� . For the pH study the 

pH was adj usted to values of 6 . 2 ,  7 . 3 , and 7 . 8  by adding 

1 ,  4 ,  or 1 6  g of hydrated l ime per 1 0 0 0  g of soil . The 

amended soil was wetted to 6 6% of field capacity and 

ma intained at 3 0  c for 1 week before use to a l l ow the 

samples to reach pH equil ibrium . Fi fteen hundred g o f  

treated s o i l  placed i n  polyethylene bags . Herbicide 

concentration was 16 ppbw for the mo isture , temperature , 

and pH studies . Concentrations of 16 , 8 ,  and 4 ppbw were 

used in the kinetics study . Distilled water was added to 
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bring the samples t o  a soil moisture content o f  

approximately 9 0 %  o f  field capacity for the kinetics 

study , 66% for the temperature and pH studies , o r  9 0 , 6 6 , 

3 8 , or 1 1 %  for each treatment in the moisture study. The 

bags were kept at 5 C for 2 4  h to al low for adsorption 

equil ibrium a fter which time a basel ine sample ( t ime = 0 )  

o f  2 5 0  g was removed from each bag. These samples were 

allowed to air dry and the concentration of each herb ic ide 

was determined us ing the flax bioassay described 

previously . After sampl ing the bags were then weighed and 

placed in a constant temperature chamber at 3 0  c except in 

the temperature study in which case the bags were pl aced 

in separate temperature chambers at 5 ,  2 0 ,  3 0 , or 4 0  c .  

Further samples were removed for bioassay 5 ,  1 5 , 3 5 ,  and 

7 5  days after the 0 day sample. Soil moisture content was 

periodical ly checked by reweighing and adding suf f ic ient 

deionized water to the bags to bring them back to the 

recorded weight. Al l degradation experiments were 

conducted in a randomized complete block des ign with 

treatments blocked by time and 5 replications. 

Analys is. Three different rate laws were 

appl ied to the data for each herbicide : a hyperbol ic 

rate law ,  a power rate law , and a first order rate law. 

The equations for each rate law along with the 

corresponding integrated forms are shown in Table 2. The 
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method o f  Hamaker was used to test for fit to hyperbol ic 

kinetics ( 1 6 ) . Over relatively short time spans f i rst 

order kinetics can be appl ied to decompos ition. The rate 

constant for a first order reaction can derived from a 

l inear regression o f  the logarithm of the concentration 

and time , with time as the independent variable . The 

product of this first order rate constant and the initial 

concentration o f  herb icide will equal the cal cul ated rate 

of decomposition at time zero. Hyperbol ic kinet ics can be 

inverted to give the fol lowing l inear form : 

Linear regress ion o f  the calculated initial rates for 

several initial concentrations wil l  give est imates for the 

values of k2;k1 and 1/k1 which c�n then be solved 

for the values of kl and k2 .  The coe fficient o f  

determination for the l inear regression ( r2 ) can b e  used 

to indicate how wel l  the data fit hyperbol ic kinetics . 

The power rate model was tested by us ing a non- l inear 

regress ion technique ( 3 9) in conj unction with the 

integrated form of the power rate equation. Values of the 

order of the reaction were determined for chlorsul furon 

and metsul furon. First order kinetics were tested by 

us ing regress ion analys is in conj unction with the 
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integrated form o f  the first order rate equation . 

The influence of temperature , moisture , and pH on 

chlorsul furon and metsul furon degradation were determined 

by 6alculating the rate constant ( k) · value at each level . 

Equations describ ing the effect of each variable on the 

rate constant were determined us ing non-l inear 

regression . The Arrhenius equation was used to express 

the relationship between degradation rate and soi l  

temperature . Rel at ionships between chlorsul furon and 

metsul furon degradation and mo isture and pH were f itted 

empirica l ly using regress ion analys is . 



Table 2 .  Rate law equations1• 

Rate Law Integrated Form 

Hyperbolic : 

Power : 

dC/dt=kCn C= [ ( n-l) kt + co 1-n]l/ l -n 

First-Order : 

dC/dt=kC log ( Co/C) = kt 

23 

1c = Concentration at time t ;  Co = initial concentration ; 
k1 , k2 , and k are rate constants . 
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RESULTS AND DISCUSSION 

Sul fonylurea bioassay 

Figure 1 il lustrates the response o f  grain 

sorghum to increas ing rates of chlorsul furon . For both 

soil types there was no significant decrease in the l ength 

of sorghum roots from additions o f  chlorsul furon . This is 

surpris ing in l ight of the fact that grain sorghum is 

sensitive to chlorsul furon in the field ( 13 , 3 7) .  

Cons iderable inj ury was not iced when grain sorghum was 

planted where chlorsul furon had been previously appl ied at 

the same s ite where the· Great Bend soil was coll ected 

( 3 7) . Grain sorghum has also been success fu l ly used as .a 

bioassay crop for chlorsul furon in smal l pot bioassays 

( 1 5) .  It may be that chlorsul furon does not act on 

primary root growth in grain sorghum but works mainly on 

shoot meristem tissue . The petri dish bioassay tested 

here was conducted in the dark and did not a l l ow shoots to 

develop normally . 

Corn radicle length did decrease signi ficantly 

with increas ing chl orsul furon rate ( Figure 2) . Thi s  

ef fect was observed i n  both soil types , however the nature 

of the response differed between the two soil types . 

Chlorsul furon was much less active in the Brookings soil 



100 

90 

80 

70 

..¥ 60 
u • s:. 
0 50 
� 0 
• aiO 

30 

20 

10 

0 
0 0.2 

+ 

0.4 0.6 

o Great Bend 

0.8 1 1.2 
Log(Rate*! 0) 

Brookings 

1.ai 1.6 

Figure 1. Effect of chlorsulfuron on grain sorghum root. length. Data 
points correspond to 0.125, 0.25, 0.50, loO, 2.0, and 4.0 ppbw 
of chlorsulfuron. No significant differences·were determined 
at the 0.05 significance level for either soil type. N 

U1 



100 

90 

80 

70 

Jl, 60 
u • &. 
0 so 
.... 0 
� 40 

30 

20 

10 

0 

I 
0 0.2 o . ..c. 0.6 

c Great Bend 

I 

0.8 1 1.2 
Log{Rate*! 0) 

Brookings 

1 .• 1.6 

Figure 2o Effect of chlorsulfuron on corn radicle length. Data points 
c6rrespond to 0. 125, 0.25, 0. 50, 1. 0, 2.0, and 4.0 ppbw of 
chlorsulfuron. Vertical bars represent LSD values at the 0. 05 
significance level for each soil type. 

N 
Q\ 



2 7  

than i n  the Great Bend soil . Radicle length reduction was 

incons istent in the Brookings soil when chl orsul furon 

concentration was l ess than 0 . 5 ppb . The response in the 

Great Bend soil was more cons istent . A steep drop in corn 

radicle length between 0. 125 and 0 . 25 ppb was fol l owed by 

a more gradual decrease up to the 4 . 0  ppb level. This 

curve is also closer to be ing l inear than the curve for 

the Brookings soil. The difference between the two soils  

is probably due to the lower pH and higher organic matter 

content of the Brookings soil. Chlorsul furon adsorption 

to soil increases as pH decreases ( 4 2 ) .  This would cause 

less chlorsul furon to be ava ilable for plant uptake in the 

Brookings soil. Hs iao and Smith also found the corn root 

bioassay for chlorsul furon to be variable and 

non-reproducible in soils with high organic matter 

contents and relatively low soil pH ( 2 1 )  . Values of r2 

for l inear and quadratic regress ions ( Table 3 )  were 0 . 6 0 

and 0 . 67 ,  respectively , in the Brookings soil and were 

0 . 62 and 0 . 6 9 ,  respectively , in the Great Bend soil. 

Flax response to chlorsul furon was similar in 

both soils ( figure 3 ) .  However , seedl ing lengths were 

greater in the Brookings soil. The effect of increas ing 

chlorsul furon rate on flax seedl ing length was more l inear 

than with corn . Values of r2 ( Table 3 )  were the same 

for l inear and quadratic regress ions in the Brookings soil 
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Table 3 '. Linear and quadratic regression coe ffic ients for 
chlorsul furon e ffects on corn and flax growth. 

Crop S o i l  Regression1 A B1 B2 r2 

Corn Brookings Linear 1 0 4  - 18.7 0. 6 0  
Quadratic 8 9  6.2 - 6.4 0. 67  

Great Bend Linear 6 2  - 13.4 0. 62  
Quadratic 7 3  - 3 1.1 4.5 0. 69 

Flax Brookings Linear 9 7  . - 1 1.0 0. 6 3  
Quadratic 9 4  - 6.7 - 1. 1  0. 6 3  

Great Bend Linear 8 8  - 1 6.4 0.7 2  
Quadratic 8 1  -4.2 -3.1 0. 7 5  

1General equat ion forms are: 

y = A +  B1*X ( Linear) 

y = A +  B1*X + B2*X2 ( Quadratic) 

where Y = radicle length o f  corn or seedl ing l ength o f  
flax ,  and X = the natural log o f  the chl orsul furon 
concentrat ion in ppb. 
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(0 . 6 3) � Quadrat ic regress ion of the response in the Great 

Bend soil resulted in a r2 value of 0 . 75 as opposed to 

0 . 72 for the l inear regression .  There was no d i fference 

between the seedl ing lengths at 0 . 125 and 0 . 25 ppb in the 

Brookings soi l . S ince the response to chlorsul furon was 

l inear in both soil types , flax appears to be the best 

bioassay indicator of the three crops tested in these 

studies . 

Flax is also a satis factory bioassay crop for 

other sul fonylurea herbicides as wel l . Table 4 conta ins 

the means of the root or shoot lengths that correspond to 

rates of o, 0 . 25 ,  and 2 . 0 ppb of chlorimuron and 

metsul furon . Means o f  seedl ing length o f  flax were 

signi ficantly dif ferent at all three rates of each 

compound . Corn radicle lengths were al so dif ferent at al l 

three rates of each compound . Mean root lengths o f  

sorghum were d i f ferent for a l l  three rates o f  

metsul furon . However , sorghum root lengths could not 

separate the 0 . 25 ppb rate of chlorimuron from the o.o 

rate . Al l of these tests were conducted us ing the Great 

Bend soil and the results probably represent a better 

response than would have been seen in the Brookings soil . 

The results o f  these experiments indicate that a 

petri dish bioassay can be a rapid , rel iabl� means o f  

detecting sul fonylurea herbicides i n  soil . E ither corn or 



Tabl e 4. E ffect o f  metsul furon and chlorimuron on corn 
fl ax ,  and grain sorghum . 

Crop! Rate Metsul furon Chlorimuron 

( ppb) -------------- (mm) ----------------

Corn 0. 0 . 160  a 1 6 0  a 
0.25 13 2 b 1 2 0 b 
2. 0  7 1  c 6 8  c 

Flax 0. 0 12 3 a 1 2 8 a 
0.25 95 b 1 0 0  b 
2.0 57 c 67  c 

Sorghum 0.0 2 95 a 2 9 0  a 
0.25 2 7 3  b 2 7 3  a 
2. 0  25 1 c 2 4 8  b 

1Radicle lengths for corn and sorghum . Total seedl ing 
length for flax . 

3 1  
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flax can be used while grain sorghum does not provide 

sat is factory results with this type of bioassay . Flax 

appears to be a better bioassay crop than corn due to its 

more l inear response .  

Chlorsul furon and metsul furon degradation 

Logarithmic plots of the decompos ition o f  three 

initial starting concentrations of chlorsul furon and 

metsul furon are shown in Figures 4 and 5 .  Measured 

starting concentrat ions averaged over the 5 rep l icat ions 

were 3 . 0 6 ,  6 . 85 ,  and 11 . 95 ppb for chlorsul furon , and 

4 . 0 9 ,  7 . 4 7 ,  and 12.7 8 ppb for metsul furon . The d i fference 

between these and the appl ication concentrations of 4 ,  8 ,  

and 16 ppb is probably due to adsoption during the 2 4 h 

equil ibrium period . I f  first-order kinetics are assumed , 

the hal f-l i fe ( t112) of the two compounds can be 

calcul ated by the fol lowing formula : 

t1/2 = 0 . 6 9 3 2/k 

in which k is the first order rate constant. The 

first-order hal f-l i fe for chlorsul furon in this work is 

15.4 days in a loam soil with a pH of 5. 3 ma inta ined at 

9 0% of field capacity and 3 0  C. The first-order hal f-l i fe 
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for metsul furon under these same conditions i s  14 . 2  d .  

The value for chlorsul furon hal f- l i fe i s  s imilar t o  the 

13 . 3  days hal f-l i fe determined by Fredrickson and Shea for 

a silty clay loam with a pH of 5 . 6 maintained under 

similar conditions ( 15) . 

Linear regress ion analysis produced coe ffic ients 

of determination for the l ineari zed form of the hyperbol ic 

rate model of 0.9 4  for chlorsul furon and 0 . 8 8 for 

metsul furon . Values of k1 and k2 were calculated to 

be -4 . 12 and -63. 6 6 , respectively , for chlorsul furon and 

-5.7723 and -85 . 3 8 7 , respectively, for metsul furon . These 

values subst ituted into the hyperbol ic rate equation 

produce the top curves shown in Figures 6 and 7. Both 

curves indicate that the decomposition of either o f  these 

two compounds does not fit standard Michael is -Menten 

kinetics since the react ion rate does not level o f f  at 

high concentrations . Negative rate constant values are 

not logical in pestic ide kinet ics model s .  The fact that 

chemical hydrolys is of the sul fonylureas plays an 

important part in the ir decompos ition probably precludes 

the use of class ical Michael is-Menten type kinetics . 

Ne ither hyperbol ic curve is characteristic of a purely 

biological reaction. 

Non-l inear regression of the data using the 

integrated form of the power rate model produced reaction 
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orders o f  1. 14 + 0.2 for chlorsul furon and 1.0 8  + 0. 1 8  for 

metsul furon . These values substituted into the power rate 

equat ion produce the center curves shown in F igures 6 and 

7. In both cases the 9 5% confidence l im its include the 

value 1 . 0. This indicates that the kinet ics o f  

chlorsul furon and metsul furon degradation i n  soil  may not 

differ sign i ficantly from first-order which is represented 

by the lower l ines in Figures 6 and 7 .  Other research has 

concluded that chlorsul furon degradation fol lows 

first-order kinetics ( 1 ,  1 5 , 4 3) . However ,  in these cases 

the authors were using starting concentrations which were 

· several orders of magn itude above concentrations which 

would be found in f ield s ituat ions after appl icat ion of 

standard rates o f  the herb icide . This may cause the 

degradation to appear to be first-order . 

Though the power rate model produces a value 

close to 1 ,  the use of the power rate model does provide a 

better fit to the data than first-order kinetics . A power 

rate mode l appl ied to either chlorsul furon or metsul furon 

degradation gives an r2 value of 0 . 9 8 .  First-order 

kinet ics produce r2 values of 0 . 9 2 for chlorsul furon and 

0 . 9 3 for metsul furon . Due to this improvement in f it with 

the power rate model it wil l  be used as bas is for further 

description of chlorsul furon and metsul furon degradat ion . 

The kinet ics studies were conducted at a soil pH o f  5. 3 in 
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order t o  achieve a large amount of decompos ition over the 

75 days period o f  the experiment . This aided in the 

mathematical description of the decompos ition process .  It 

has been determined that chlorsul furon degradation occurs 

by chemical hydrolys is and metabol ism by soil 

microorganisms and that the balance between these two 

pathways is determined in large part by the soil pH ( 2 5 ) . 

Due to this two-part degradation scheme it i s  poss ible 

that the rate law may change as  pH changes .  Further 

kinetics experiments should be conducted at h igher pH 

levels in order to get analys is of rate laws over a wider 

range o f  conditions . · However ,  results from thi s  work 

indicate that first order kinetics may be an over 

s impl i fication of sul fonylurea decompos ition . The 

calculation of a rate law from one soil type and 

appl ication of that rate law to other soil types i s  a 

better approach than to s imply assume that first o rder 

kinet ics appl ies to all situations . 

Using the power rate model , the degradation o f  

chlorsul furon o r  metsul furon can b e  described b y  the 

general equation : 

rate = ken 

where n = 1 . 14 for chl orsul furon and n = 1 . 0 8 for 
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metsul furon. The rate constant , k ,  is a function o f  

various environmental and soil factors. Temperature and 

moisture a ffect a l l  chemical and biological reactions , and 

therefore have a strong influence on the decompos ition o f  

herb icides. The Arrhenius curves and equations for the 

two herbicides are shown in Figure 8. This type o f  

equation f its the data wel l  with r2. values o f  0.9 8  for 

chlorsul furon and 0.9 6  for metsul furon. The curves are 

almost ident ical indicating that the temperature e ffect is 

the same for both herb icides. Activation energy ( E) 

values are 2 1. 1  kcaljmole for chlorsul furon and 2 2 . 8  

kcaljmol e  for metsul furon. The value calculated for 

chlorsul furon is larger than the 15.9 kcal determined by 

Walker and Brown ( 4 9) .  This may be due to the fact that 

first-order kinetics were assum�d in that work. 

Thirunarayanan et al. determined E values for 

chlorsul furon o f  8. 1 at 10 c ,  9.4 at 2 0  c and 4.9 at 3 0  c 

( 4 3) .  In their analys is they did not include the early 

portions of the decompos ition data which lowered the 

apparent values of E .  The E values determined in this 

work are similar to the E values determined for the 

atraz ine ( 9 , 1 9) . Activation energy values in this range 

are considered to be indicative of degradation which is 

governed more by chemical reactions rather than 

microbiological processes. 
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The e ffect o f  soil moisture content on 

chlorsul furon and metsul furon degradation is shown in 

Figure 9 .  Values for r2 were 0.9 6  for chlorsul furon and 

0.9 0  for metsul furon. This type of equation has been used 

previous ly to describe mo isture effects on herb icide 

breakdown ( 4 6 ,  4 9) .  For both herbicides the value o f  k 

increases with increasing moisture content from 1 1 %  of 

field capacity up to 9 0 % of field capac ity. The response 

is  almost identical for both herbicides up to 

approximately 5 0 % of field capacity. Above that point the 

chlorsul furon rate constant begins to level o f f  whi l e  the 

metsul furon rate constant continues to increase at the 

same rate � S ince moisture contents above field capac ity 

were not used in this study one cannot determine the 

effect of saturation on decomposition rate. The change 

from an aerob ic to an anaerobic environment signi ficantly 

alters the nature of soil reactions both chemical and 

biological. 

Figure 10 shows the e ffect of soil pH on 

chlorsul furon and metsul furon degradation as determined by 

these experiments . A quadratic equation satis factorily 

describes the relationship between pH and the rate 

constant for both herb ic ides . Values of r2 are 0.9 1  for 

chlorsul furon and 0.9 6  for metsul furon . The change in the 

rate constant between a pH of 5 . 3  and 7 . 3  is rap id. Above 
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this pH the rate constant l evel s off . · This  type o f  

response is  l ogical i n  l ight of other studies which 

4 5  

. indicate that chlorsul furon decomposition proceeds more 

rapidly at l ower pH values than at high pH values ( 1 ,  1 5 , 

2 5 ) . Previous field research indicates that chlorsul furon 

carryover increases rapidly between pH values o f  5. 0 and 

6 . 5  l evel ing o f f  a fter that point ( 3 7) . 

In these studies the effects o f  temperature , 

mo isture , and pH were almost identical for chl orsul furon 

and metsul furon. Only at mo isture contents above 5 0 %  o f  

field capacity did metsul furon appear t o  degrade s l ightly 

faster than chl orsul furon . The kinetics experiment was 

conducted at 9 0 % of field capacity and did indicate a 

first-order hal f-l i fe for metsul furon which was s l ightly 

shorter than that of chlorsul furon . Field studies 

conducted by Ulrich and Mi l l er indicate similar to 

sl ightly higher carryover inj ury with metsul furon when the 

two herb icides are appl ied at the same rate ( 4 4) . On the 

other hand , Anderson concluded that metsul furon degrades 

faster than chl orsul furon in laboratory experiments ( 1) . 

It is possible that other factors such as soi l  organic 

matter may influence chlorsul furon and metsul furon 

dif ferently and poss ibly cause metsul furon to degrade more 

rapidly than chlorsul furon in some s ituations . 

S imple multiple regression equat ions were 
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constructed from these data in a manner s imilar t o  that 

done previously for p icloram ( 2 9) .  The bas ic equation was 

of the form : 

k = A +  Bl ( Xl) + B2 ( X2) + B3 ( X3) 

where k is the rate constant ; Xl , X2 , and X3 represent the 

functions determined for temperature , mo isture , and pH for 

each herbic ide ; Bl , B2 , and B3 are regress ion 

coe ffic ients ; and A is the intercept . This  procedure 

produced equations with R2 values o f  0 . 9 6 for 

chlorsul furon and 0.8 8  for metsul furon. Rate constants 

determined from these equations can then be entered into 

the integrated form of the power rate law and herbicide 

concentration can be determined for a given initial 

concentrat ion and time period . Table 4 shows 

concentrations calculated to occur after 7 5  days o f  

decompos ition under the various temperature , moi sture , and 

pH level s used in these experiments . The values 

determined by the bioassay are also presented for 

comparison. In all  cases , the multiple regression 

equat ions tend to underestimate the actual concentration . 

The difference is particularly large for metsul furon at 

low temperatures and high pH level s .  This demonstrates 

that such equat ions are probably unsat is factory for 



Table 5 .  Comparison of actual and predicted concentra­
tions of chlorsul furon and metsul furon a fter 7 5  days of 
decomposition. 

4 7  

Temp Moist pH 
Chlorsul furon 

Actual Pred . a 
Metsul furon

b Actual Pred . 

( %) ------------- ( ppb) -------------

5 
2 0  
3 0  
4 0  
3 0  
3 0  
3 0  
3 0  
3 0  
3 0  
3 0  
3 0  

6 6  
6 6  
6 6  
6 6  
1 1  

. 3 8  
6 6  
9 0  
6 6  
6 6  
6 6  
6 6  

5 . 3  
5 . 3  
5 . 3  
5 . 3  
5 . 3  
5 . 3  
5 . 3  
5 . 3  
5 . 3  
6 . 2 · 
7 . 3  
7 . 8  

1 1 . 7 1 
3 . 8 1 
0 . 5 6 
0 . 4 9 
4 . 9 6 
1 . 12 
0 . 4 9 
0 . 3 5 
0 . 5 1 
0 .- 9 9 
7 . 5 8 

1 0 . 1 1 

8 . 8 3 
2 . 0 0 
0 . 1 1 

. 0 0 
3 . 6 1 
0 . 4 7 
0 . 1 1 
0 . 0 4 
0 . 1 1 
0 . 9 4 
5 . 4 8 
6 . 7 6 

1 2 . 4 9 
3 . 54 
0 . 7 8 
0 . 3 4 
7 . 3 7 
1 . 5 5 
0 . 54 
0 . 5 2 
0 . 5 0 
0 . 5 1 
7 . 8 6 

1 0 . 8 4 

3 . 4 4 
1 . 19 
0 . 0 8 

.o o 
4 . 5 3 
0 . 5 1 
0 . 0 8 
0 . 0 2 
0 . 0 8 
0 . 5 7 
3 . 4 5 
5 . 5 8 

aconcentration = [ 15 - 0 • 14 + 0 . 1 4 * k * 75 1 -7 • 14  

k = 0 . 4 4 + ( 9 . 5 2 * 1 0 13  * 2 . 7 2 - 1 0 5 9 8  I Temp + 2 7 3 ) + 
0 . 0 0 2  * Moist0

• 8 4  - 0 � 14 * pH + 0 . 0 09 * pH2 

R2= 0 . 9 6 

bconcentration = [ 1 3 - 0 • 0 8  + 0 . 0 8 * k * 7 5 1 - 1 2 · 5 

k = 0 . 3 3 + ( 1 . 64 * 1 0 15 * 2 . 1 2 - 1 149 7 I Temp + 2 7 3) + 
0 . 0 0 1  * Moist0 • 9 9  - 0 . 1 1 * pH + 0 . 0 0 6  * pH2 

R2= 0 . 8 8 
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predict ing herbicide pers istence in soil. Equations of 

this type a ssume s impl e  additivity between factors and do 

not take interactions between factors into account. The 

mathematical relat ionships determined in this paper 

provide the basis for comprehens ive model s  o f  

chlorsul furon and metsul furon decompos ition i n  f ield 

s ituations. In order to construct useful model s  o f  

chlorsul furon o r  metsul furon . decompos ition further work 

needs to be done to define interactions between factors 

such as temperature , moisture , and pH . The influence of 

soi l  organic matter and its interaction with other soil 

factors should also be examined . 
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SUMMARY 

Corn and flax were both satisfactory b ioassay 

ind icator species for chlorsul furon , chlorimuron and 

metsul furon. Flax response to chlorsul furon was more 

l inear and cons istent between soil types than was the corn 

response. Therefore , flax is the best suited b ioassay 

indicator o f  the three species tested. 

The e ffect of herb icide concentrat ion on 

chlorsul furon and metsul furon degradation in soil  deviated 

from first-order. Hyperbol ic kinetics did not provide a 

l ogical fit to the decomposition data. Fitting the power 

rate kinetics law to the data determined that the order of 

the degradation reaction was 1. 14 for chl orsul furon and 

1.0 8  for metsul furon. Of the three rate laws tested , the 

power rate model produced the best fit ( r2 
= . 9 8) to the 

decompos it ion data for chlorsul furon and metsul furon . 

Soil  temperature , moisture , and pH a l l  had a 

signi ficant influence on the decomposition �ate o f  

chlorsul furon and metsul furon . As temperature increased , 

the rate constant for either herbic ide increased rap idly . 

The Arrhenius equation fit the temperature data wel l  ( 

r2 
= 0.9 8  and 0.9 6  for chlorsul furon and metsul furon , 

respect ively) . Thermal activation energies for the two 

herbicides were 2 1 . 1 kcaljmole for chlorsul furon and 2 2 . 8  
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kcaljmol e  for metsul furon . Increas ing so i l  moisture 

content from 1 1 %  to 9 0 %  of field capacity increased the 

rate constant for both herb icides although the e ffect was 

not as pronounced as the temperature effect . A s impl e  

power function adequately described the moisture e ffect on 

the rate constant for chlorsul furon and metsul furon ( r2 

= 0 . 9 6 and 0 . 9 0 respectively) . Rate constants for 

metsul furon were sl ightly higher than chlorsul furon rate 

constants when soil mo isture content was above 5 0 %  o f  

field capac ity . Soil pH effect on decompos it ion was 

pronounced for both herbicides . A quadratic equat ion 

satis factorily describe the effect in both cases ( r2 
= 

0.9 1  for chl orsul furon and 0.9 6 for metsul furon) . Rate 

constants for both herb icides dropped o f f  rap idly as pH 

increased from 5.3 to 7.3 at which po int they l evel ed 

off . 

Multiple regression analys is rel ating 

chlorsul furon and metsul furon rate constants to soil  

temperature , moisture , and pH simultaneously produced 

equations that gave satis factory r2 values ( 0 . 9 6 for 

chlorsul furon and 0 . 8 8 for metsul furon) but consi stently 

underestimated the decompos ition rates for both 

compounds . This points out the deficienc ies in us ing a 

s imple l inear additive model in the descript ion o f  

herbicide breakdown i n  soil . Further research wi l l  be 
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required i n  order to define interactions between factors 

such as temperature , moisture and pH. However ,  the 

quantitative rel at ionships described in thi s  work wil l  

provide a bas i s  for further research which may l ead to 

predictive model s  of chlorsul furon and metsul furon fate in 

the environment . 
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