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ABSTRACT 

APPLICATIONS OF HYDRODYNAMIC CAVITATION IN DAIRY 

MANUFACTURING: PROCESS DEVELOPMENT AND STANDARDIZATION 

JAE YOUNG SIM 

2020 

The phenomenon of hydrodynamic cavitation involves the formation, growth, and 

subsequent collapse of bubbles when a given liquid experienced a reduction of pressure 

below its vapor pressure. The presence of cavitation limits the performance and the safe 

operation of many machinery and pumps. However, innovation in the design of the 

hydrodynamic cavitation devices has offered promising applications in the food and dairy 

industry. Upon collapse of the cavities, the fluid experiences significant mechanical 

effects (shear and turbulence) as well as instantaneously elevation of the fluid 

temperature. All these effects can be put to work for mixing, dispersion, particle size 

reduction, disinfection, and emulsification. In this thesis, the feasibility of using a 

rotational cavitator for different unit operations was systematic evaluated. The feasibility 

of hydrodynamic cavitation was evaluated in terms of analysis of cavitation parameters, 

characterization of the increase in the fluid temperature, microbial efficiency, and 

emulsification of ice cream mix. The analysis of the cavitator revealed that the velocities 

generated inside the rotational cavitator are sufficiently high to induce cavitation within 

the fluid. The development of the cavitation was influenced by the flow rate, speed of the 

rotor, temperature, and fluid properties. The pressure at which cavitation would first 

appear was calculated as a function of the operating parameters. The increase in the 

temperature of the fluid was modeled, showing satisfactory correlation with the 
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experimental data. The increased in the temperature of the fluid due to cavitation was 

used to develope a process for assisting thermal pasteurization with the idea of reducing 

the log counts of thermoduric bacteria. The newly developed process can be operated 

within a wide range of processing conditions (50-300 L h-1, 600-3600 RPM, 70-85°C 

with residence time from 10-110 s). It was found a 3.5 log reduction of Bacillus 

coagulans by cavitation followed by thermal treatment, while thermal treatment along 

yielded a 2.77 log reduction. The hydrodynamic cavitation was applied during the 

manufacture of ice cream with the idea of reducing the concentration of stabilizers. 

Particle size of ice cream mix and rheology test was conducted to determine the influence 

of the stabilizer amounts in ice cream mix. Hydrodynamic cavitation itself reduced the 

particle size of cream and ice cream mix. Dynamic rheological measurements (strain and 

frequency sweeps) of ICM indicated increased product stability at a rotation speed of 

3600 RPM and flow of 100 L -1. However, the mechanical spectra were considerable 

different. Imparted viscosities at medium shear rates were at least 2-fold greater 

compared to formulations homogenized conventionally.  
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Chapter 1 

Introduction and objectives 

1.1. Significance of the research 

Consumers through social media have begun to redefine the desired attributes of food 

and dairy products. Nowadays, the assurance of microbial safety is no longer sufficient to 

meet the new standards of modern consumers. Instead, the perception among the 

consumers regarding “healthy” and “unhealthy” ingredients has driven the dairy industry 

to reformulate their existing portfolio of products with perceived healthy ingredients and 

free of unfamiliar compounds (Asioli et al., 2017).  

 

Around the globe, scientists and engineers have been developing and implementing 

emerging technologies in response to consumers' interest in healthy processed foods. 

High-pressure processing, high-pressure homogenization, pulsed electric fields, 

ultrasound, and cold-plasma are examples of such technologies. The advantages and 

disadvantages of these technologies have been reviewed comprehensibly elsewhere 

(Zhang et al., 2011; Balasubramaniam, Martínez-Monteagudo, & Gupta, 2015; Martínez-

Monteagudo, Yan, Balasubramaniam, 2017).  

 

Research concerning emerging technologies conducted in universities, national 

laboratories, and industries have shown several promises in the modification of physical 

and chemical properties of foods. All these developments have led to a number of 

applications, from pasteurization and extension of shelf-life to extraction of bioactive 

components. Nowadays, microbial safety can be achieved by creative combinations of 
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different lethal agents that result in a reduced impact on nutritional properties. However, 

the effect of such practices on the dispersion of the structural elements (particles, 

molecules, globules, droplets, aggregates, granules, etc.) has been somewhat overlooked. 

In this area, the work developed in this thesis aims at studying hydrodynamic cavitation 

(HC), a novel technology. HC consists of a stationary cylinder and a high-speed rotating 

inner cylinder with indentations (Carpenter et al., 2017). Due to the high-speed of the 

inner cylinder, cavities are formed and subsequently collapsed, releasing waves of energy 

(Milly et al., 2007; Milly et al., 2008). Depending on the conditions, the fluid experiences 

high shear, cavitation, and turbulence (Badve, Bhagat, & Pandit, 2015). Such mechanical 

effects are put to work for mixing, dispersion, particle size reduction, and emulsification. 

The specific objectives were to: 

 

- Perform engineering analysis of the hydrodynamic cavitation using selected 

cavitation parameters (Chapter 2). 

- Characterize the rise in temperature as a function of the processing 

conditions (Chapter 2). 

- Design and build the cavitation processing (Chapter 3). 

- Evaluate the inactivation of thermoduric microorganisms (Chapter 3). 

- Evaluate the effect of hydrodynamic cavitation on the particle size 

distribution of the ice-cream mix (Chapter 4). 

- Evaluate the effect of hydrodynamic cavitation on the rheological behavior 

of the ice-cream mix (Chapter 4). 
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Chapter 2.  

Analysis of the hydrodynamic cavitation  

2. 1. Introduction 

The term cavitation refers to the phenomenon of formation of cavities or bubbles 

within a liquid, their growth, and subsequent collapse when the pressure of the liquid is 

suddenly reduced below its vapor pressure (Carlton, 2012). The phenomenon of 

cavitation was first observed in 1894 through the damage on the propeller of sailing ships 

(Kim et al., 2019). Cavitation is responsible for issues such as erosion (Ahmed, 1998), 

noise, and vibration (Petkovšek & Dular, 2013), which may lead to malfunction of a 

number of machinery and pumps. Extensive research has been conducted on the 

fundamentals of cavitation in order to minimize the wear and damage in machinery 

(Ahmed, 1998; Petkovšek & Dular, 2013; Jian et al., 2015). In dairy manufacturing, the 

collapse of the bubbles on metal surfaces causes localized stresses of high amplitude, 

wearing the surfaces of homogenizer and pumps (Innings et al., 2011).  

 

The underlying physics of the formation of cavitation is based on the pressure-volume 

relationship of the van der Waals equation (Endo, 1994), which states that within the 

transition from liquid to vapor, there is an interphase where both phases coexist, which 

corresponds to the length of the spinodal line of stability of the liquid. Cavitation occurs 

only when enough nuclei become unstable and grow when subjected to a pressure 

reduction. The internal forces, produced by the partial pressures of the gas and vapor 

within the nucleus, must be balanced by the ambient pressure and the surface-tension 

pressure at the nucleus-liquid interface (Chahine, 1997). The growth of the cavity is 
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somewhat similar to the evaporation process, where latent heat is supplied from the 

surrounding. Concomitantly, the temperature of the liquid slightly drops, causing a drop 

of the vapor pressure of the liquid (Petkovšek & Dular, 2017). Collapsing mechanisms of 

cavitation bubbles have been reviewed elsewhere (van Wijngaarden, 2016). In general, 

the collapse of the cavitation bubbles occurs within a very short time span (milli- or 

micro-seconds), resulting in shockwaves that raise the liquid temperature.  

 

Cavitation is classified according to the method causing the drop in the vapor 

pressure of the liquid, ultrasonic cavitation (UC) and hydrodynamic cavitation. Arrojo & 

Benito (2008) comprehensively examined the differences between UC and HC. The 

pressure pulses derived from HC are quantitatively and qualitatively different from those 

obtained in UC. The application of sound waves of high-frequency (>20 kHz) results in 

the formation of bubbles, which forcibly collapse due to the contraction and expansion of 

the molecules. In UC, the operating frequency and intensity of the ultrasound determine 

the wave of the spreading pressure within a static liquid. Thus, the pressure pulse is 

readily controlled in a typical experiment involving ultrasound. Contrary, HC takes place 

by varying the cross-sectional area of the flow path, which drops the pressure of the fluid. 

The pulses of pressure experienced in HC are much more complex to characterize since it 

involves a moving liquid with changing velocity.  

 

Over the last decade, significant progress has been made in the fundamental 

understanding of the hydrodynamic cavitation (Gogate & Pandit, 2000; Gogate & Pandit, 

2005; Arrojo & Benito, 2008; Badve, Bhagat, & Pandit, 2015). In summary, the intensity 
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of HC is lower than the one experienced in UC, and the dynamics of HC depends on the 

flow conditions, flow rate, design and geometry of the experimental apparatus (Kumar & 

Pandit, 1999; Šarc et al., 2017; Badve, Bhagat, & Pandit, 2015). 

 

Recently, innovation in the design of the hydrodynamic cavitation devices has offered 

promising applications in the food and dairy industry, where the released energy during 

the cavitation is put to work for disinfection, hydrolysis, mixing, dispersion, 

emulsification, and particle size reduction. A number of HC devices has been developed 

based on venturi (Stoop, Bakker, & Kramer, 2015), swirling jet (Mancuso, Langone, & 

Andreottola, 2017), orifice plate (Habashi et al., 2016), rotor-stator (Patil et al., 2016), 

and two rotating disc systems (Petkovšek et al., 2013).  

 

Among the HC devices, the rotational device from SPX Flow Technology has shown 

to enhance drying efficiency of high solids (Li et al., 2018), improve the surface 

hydrophobicity of soy protein isolate (Li et al., 2020), and reduce the viscosity of 

concentrated protein solutions (Gregersen et al., 2019). The rotational HC from SPX 

Flow Technology is a fluid machine that consists of a stationary cylinder and a high-

speed rotating inner cylinder with indentations. A schematic representation of the 

rotational hydrodynamic cavitation apparatus is presented in Figure 1. The liquid inside 

the rotational HC is subjected to a constant change of the cross-sectional area due to the 

rotation, and consequently the molecules contract and expand periodically, resulting in a 

high cavitation intensity (Šarc et al., 2018). The majority of the research in relation to 

rotational HC have focused on identify potential applications, while the fundamental 
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understanding continues to be largely unknown. In this chapter, the rotational HC is 

analyzed in terms of cavitation parameters and thermal energy generated as a function of 

operating parameters (flow rate, speed of the rotor, and fluid properties).   

 

Figure 1. Schematic representation of the hydrodynamic cavitation: (a) assembly of the 

hydrodynamic cavitator, and (b) schematic view of the indentations inside the 

housing or stator cylinder. (1) product inlet; (2) housing; (3) rotor; (4) back 

plate; (5) shaft; (6) rotor; (7) product outlet; (8) indents; d1 distance between 

rotor and housing; d2 diameter of the indents; d3 distance between indents; and 

d4 length of indent. Drawings do not represent real scale. 

 

2. 2. Materials and methods 

Rotational hydrodynamic cavitation  

The rotational HC from SPX Flow Technology was used for the analysis of the 

hydrodynamic cavitation. The device consists of a stationary cylinder (housing) and an 

inner cylinder (rotor) with indentations. The inner cylinder rotates at relatively high 

speeds (up to 3600 RPM) driven by a mechanical shaft that is coupled to a motor (Figure 

1a). The inner cylinder consists of 88 indentations equidistantly located around the 

circumference, and they have cylindrical shaped dead-end bores (Figure 1b). A detailed 

description of the different hydrodynamic cavitation arrangements can be found 

elsewhere (League & Parker, 2009; Griggs, 2015). 
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Experimental setup 

The test facility of the rotational hydrodynamic cavitation is shown in Figure 2. The 

experimental setup mainly included a feeding tank (20 L), a positive displacement pump 

(Baldor-Reliance, Fort Smith, AR), a return line, a rotational HC (APV Cavitator, SPX 

Flow Technology, Crawley West Sussex, United Kingdom), a set of diaphragm valves 

(Type 3233, Burkert Fluid Control Systems, Huntersville, NC), a set of K-type 

thermocouples connected to a data logger (Omega Engineering Inc., Stamford, CT), a set 

of pressure transmitter (Type 405052, JUMO Process Control Inc., East Syracuse, NY), 

and an electromagnetic flow meter (Siemens MAG 5000, Flow Instruments, Nordborg, 

Denmark). The rotor was a solid cylinder attached to a gear assembly which was 

connected to a variable frequency drive that controlled the speed of rotation. The return 

line (number (3) in Figure 2) helps to maintain a constant inlet pressure of about 1.0 bar. 

The analysis of the rotational cavitator was carried out using tap water, and the whole 

system was operated under open-loop circuit, where the effluent was only treated once 

without recirculation. A data acquisition system (PowerFlex® 70, Allen-Bradley by 

Rockwell Automation, Omaha, NE) was used to record the inlet and outlet temperature 

and pressure.  

Figure 2. Schematic diagram of the rotational hydrodynamic cavitation setup. (1) feeding 

tank, (2) positive displacement pump, (3) manually operated diaphragm valve; 

(4) APV Cavitator; (5) electromagnetic flow meter; and (6) diaphragm valve.  
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Velocities within the rotational cavitator 

The hydrodynamic cavitation described in Figure 1 resembles that of high-speed 

homogenizer, where an impeller rotates inside a cage-like stator containing numerous 

indents. Three main velocities can be derived from the schematic presented in Figure 1, 

including the velocity at the gap (𝑣𝑔𝑎𝑝) between the rotor and stator, velocity at the 

surface of the rotor (𝑣𝑟), and the required velocity for cavitation (𝑣𝑐). The gap between 

the stator and the rotor is somewhat analogous to the throat of a venturi, where the liquid 

is forced to flow from the indentation through the gap with every turn of the rotor. Such 

analogy allows to calculate the velocity of the liquid at the moving through the 

indentation into the gap between the rotor and the stator (𝑣𝑔𝑎𝑝) using the corresponding 

flow number (𝑁𝑄) of the rotor proposed by Sano & Usui (1985).  

 

Equation (1) 

𝑁𝑄 = 1.3 ∙ (
𝐷𝑟
𝐷𝐻
)
−0.86

∙ (
𝑊𝑟
𝐷𝐻
)
0.82

∙ 𝑛𝑖𝑛𝑑
0.6  

 

Where 𝐷𝑟 is the diameter of the rotor, 𝐷𝐻 is the diameter of the housing or stator, 𝑊𝑟 is 

the width of the rotor, and 𝑛𝑖𝑛𝑑 is the number of indents. The resulting fluid velocity 

moving through the indentations into the gap between the rotor and the stator can be 

estimated by Equation (2). 

 

Equation (2) 

𝑣𝑔𝑎𝑝 =
𝑁𝑄 ∙ 𝑁𝑟 ∙ 𝐷𝑟

3

𝑛𝑖𝑛𝑑 ∙ 𝐻𝑖𝑛𝑑 ∙ 𝑊𝑖𝑛𝑑
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Where 𝑁𝑟 is the speed of the rotor, 𝐻𝑖𝑛𝑑 and 𝑊𝑖𝑛𝑑 are the height and width of the 

indentations within the rotor, respectively. The velocity of the liquid on the surface of 

rotor was calculated using the angular velocity (𝜔) (Equation (3)), while the cavitation 

velocity was obtained using Equation (4).  

 

Equation (3) 

𝑣𝑟 = 𝑟𝑟 ∙ 𝜔 

Equation (4) 

𝑣𝑐 = √
𝑝1 − 𝑝𝑣
1
2⁄ ∙ 𝜌

 

 

The flow regime within the rotational cavitator was characterized by the Reynolds 

number (𝑅𝑒), which depends on the speed of the rotor (𝑁𝑟) and geometry of the cavitator 

according to Equation (5) (Badve et al., 2015). 

 

Equation (5) 

𝑅𝑒 =
𝑁𝑟 ∙ 𝐺

2

4 ∙ 𝜇
 

 

Where 𝐺 is the gap width between the rotor and the stator, and 𝜇 is the kinematic 

viscosity.  
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Cavitation parameters 

The analysis of the HC was performed by the calculation of pressure coefficient (𝐶𝑝), 

minimum pressure coefficient (𝐶𝑝𝑚𝑖𝑛), cavitation appearance (𝑝𝑎𝑝𝑝), cavitation number 

(𝐶𝑣), cavitation inception (𝐶𝑖𝑛), and pressure ratio (𝑟). 

 

Equation (6) 

𝐶𝑝 =
𝑝1 − 𝑝2

1
2⁄ ∙ 𝜌 ∙ 𝑣𝑖𝑛𝑑

2
 

Equation (7) 

𝐶𝑝𝑚𝑖𝑛 =
𝑝𝑚𝑖𝑛 − 𝑝2
1
2⁄ ∙ 𝜌 ∙ 𝑣𝑖𝑛𝑑

2
 

Equation (8) 

𝑝𝑎𝑝𝑝 = 𝑝𝑣 +
1
2⁄ ∙ 𝜌 ∙ 𝑣𝑖𝑛𝑑

2 ∙ (−𝐶𝑝𝑚𝑖𝑛) 

Equation (9) 

𝐶𝑣 =
𝑝2 − 𝑝1

1
2⁄ ∙ 𝜌 ∙ 𝑣𝑖𝑛𝑑

2
 

Equation (10) 

𝐶𝑖𝑛 =
𝑝𝑎𝑝𝑝 − 𝑝𝑣
1
2⁄ ∙ 𝜌 ∙ 𝑣𝑖𝑛𝑑

2
 

Equation (11) 

𝑟 =
𝑝1
𝑝2
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Thermal energy due to hydrodynamic cavitation 

The heat generated or thermal energy (𝐻) due to hydrodynamic cavitation was 

quantified as the heat generation rate (𝐻̇), according to Equation (12) and Equation (13): 

 

Equation (12) 

𝐻̇ = 𝜌 ∙ 𝑄 ∙ 𝐶 ∙ ∆𝑇𝑐 

Equation (13) 

𝐻 = 𝐻̇ ∙ 𝑡 

 

where 𝜌 is the density of the liquid (kg m-3), 𝑄 is the flow rate (L h-1), 𝐶 is the heat 

capacity of the liquid (J kg-1 °C-1), ∆Tc is the temperature gradient generated due to 

cavitation (°C); 𝑡 is the time, which was arbitrarily set to 100 s. The increase in the 

product temperature due to cavitation was obtained by measuring the temperature before 

and after cavitation using K-type thermocouples connected to a data logger.  

 

Temperature increase due to cavitation 

A factorial design with three variables (flow rate, speed of the rotor, and total solids) 

at three levels for each variable (100, 200, and 300 L h-1, 2400, 3000, and 3600 RPM, and 

11, 24, and 36%, respectively) was used to studied the effect of variables on the product 

temperature. Skim milk was concentrated using a falling film evaporator located at the 

Davis Dairy Plant at South Dakota State University. Briefly, the skim milk was feed into 

the evaporator at 80°C, and after four-passes the skim milk was concentrated at 36 ± 2% 

total solids. The samples containing 24% of total solids were obtained by adding water 
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accordingly. The ∆Tc in water was also evaluated and used as a reference point. Each set 

of experiments consisted of 15 L of skim milk concentrate, and all experiments were 

performed in triplicate. The experimental data (∆Tc) were fitted into a polynomial 

equation through non-linear regression analysis using the software package Design-

Expert version 7.0 (Stat-Ease, Inc. Minneapolis, MN). All graphs were generated using 

Sigmaplot software V11 for Windows (SPSS Inc., Chicago, IL, USA). 

 

2.3. Results and discussion 

Analysis of fluid velocities 

Figure 3 shows the velocities considered for the analysis of the rotational cavitator. 

Overall, the speed of the rotor significantly influenced the magnitude of the velocity at 

the surface of the rotor, the velocity entering the gap, and the velocity required for 

cavitation. The surface and gap velocity increased linearly with increasing the rotation 

speed, reaching values up to 40 and 81 m s-1 at 3600 RPM, respectively. Badve et al. 

(2015) reported similar velocities at the surface of the rotor (18-30 m s-1) in a rotational 

cavitator (1800-2800 RPM). Contrary, the velocity at which cavitation would appear 

decreased from 14 to 12 m s1 with the rotation speed. The velocities generated inside the 

rotational cavitator (𝑣𝑔𝑎𝑝 and 𝑣𝑟) were sufficiently high to induce cavitation within the 

fluid. Interestingly, the velocities generated inside the cavitator were much higher than 

the velocity entering the cavitator that ranges from 0.17 to 1.0 m s-1, increasing with the 

flow rate. Thus, the contribution towards the development of cavitation of the velocity 

entering the stator is rather negligible, and the main factor affecting the development of 

cavitation is the speed of the rotor.  
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Figure 3. Effect of rotation speed on the gap, surface, and cavitation velocity. 𝑣𝑔𝑎𝑝 is the 

gap velocity; 𝑣𝑟 is the surface velocity generated by the rotor; and 𝑣𝑐 is the 

velocity at which cavitation would appear.  

 

Figure 4 shows the effect of the speed of the rotor and the volumetric flow rate on the 

Reynolds number. In general, the values of the Reynolds number display an exponential 

curvature with increasing the speed of the rotor. At 50 L h-1, the Reynolds number varied 

from 190 to 3,000 when the speed of the rotor increased from 600 and 3600 RPM. 

Similar behavior, but less pronounced, was observed in the Reynolds number at higher 

volumetric flow rates when the obtained Reynolds number was 2,368, 1,754, and 1536 at 

3,600 RPM for 100, 200, and 300 L h-1, respectively. The Reynolds number can be 

defined as the ratio of inertial forces to the viscous forces, and its numerical value is of 

technological interest for a number of applications, including thermal treatment, 

emulsification, dispersion, and mixing. Interestingly, the majority of the experimental 
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conditions resulted in fluid conditions under laminar regime (𝑅𝑒 < 2,000), while only 

few conditions (low values of volumetric flow rate and high values of speed of rotor) 

yielded fluid conditions under turbulent regime.   

Figure 4. Effect of the speed of the rotor and volumetric flow rate on the Reynolds 

number.  

 

Cavitation parameters 

A common feature during the study of the flow in a rotor-stator device is the inter-

relationship of the main operating variables (flow rate, pressure, and speed of the rotor). 

For instance, an increase in the upstream flow rate will result in an equal change of the 

inlet pressure, and an increase in the speed of the rotor equally change the outlet pressure. 

In an attempt to reduce the interrelationship of the operating variables, the pressure ratio 

(𝑟 =
𝑝1
𝑝2⁄ ) was selected for further analysis since it accounts for changes in the flow 
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rate, inlet pressure, speed of the rotor, and outlet pressure. Another relevant parameter for 

the analysis of the rotational cavitator is the pressure coefficient (𝐶𝑝), a non-dimensional 

coefficient that expresses the pressure induce by the fluid at a specific position relative to 

the upstream or inlet pressure. 𝐶𝑝 is only function of the geometry of the device for a 

given fluid. A graphical representation of these two dimensionless variables is given in 

Figure 5, where the pressure coefficient (𝐶𝑝) is plotted as a function of the pressure ratio 

(𝑟 =
𝑝1
𝑝2⁄ ).  

Figure 5. Effect of the pressure ratio (𝑟 =
𝑝1
𝑝2⁄ ) on the pressure coefficient Pressure 

coefficient (𝐶𝑝).  

 

The pressure ratio varied from 1.21 to 0.491 within the experimental domain. For 

simplicity, the pressure ratio has been divided into three regions corresponding to 𝑟 > 1, 
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𝑟 = 1, and 𝑟 < 1. The first scenario (𝑟 > 1) occurs when the outlet pressure is lower than 

the inlet pressure due to pressure losses within the cavitator, and it corresponds to the 

lower spectrum of the speed of the rotor, 600-1200 RPM. Values of pressure ratio equal 

to one take place when the inlet pressure and the outlet pressure are numerically equal. It 

is assumed that under such circumstances the phenomenon of cavitation has not yet 

developed. The final scenario (𝑟 < 1) occurs when the pressure generated due to the 

rotation is higher than the inlet pressure, and it results in the development of cavitation.  

 

Figure 5 also shows the 𝐶𝑝 varied from positive to negative values with decreasing 

the pressure ratio from 1.21 to 0.49. An interesting observation in the analysis of the 𝐶𝑝 is 

the transition point from positive to negative (arrow (1) in Figure 5). Positive values of 

the 𝐶𝑝 mean that the surface pressure which is generated by the rotor is higher than the 

static pressure (inlet pressure). The positive values of 𝐶𝑝 were obtained within the range 

of pressure ratio of 1.21-1.00. Arrow (1) (Figure 5) corresponds to 𝐶𝑝 of zero and 𝑟 = 1, 

and it means the existence of the static point (generated pressure becomes equal to the 

inlet pressure). As the pressure ratio become lower than one, the 𝐶𝑝 yielded negative 

values which indicates that the surface pressure generated by the rotor is much higher 

than the static or inlet pressure. For a given liquid flowing through a rotational cavitator, 

there will be a particular location at which the pressure is the minimum (pmin ≈ pv). Such 

relation is known as minimum pressure coefficient (𝐶𝑝𝑚𝑖𝑛), and it expressed by Equation 

(7). The value of 𝐶𝑝𝑚𝑖𝑛 helps to establish the minimum pressure needed at which the 

cavitation would first appear.  
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Figure 6 illustrates the different pressures involve in the analysis of the rotational 

cavitator: inlet pressure (𝑝1), outlet pressure (𝑝2), cavitation pressure (𝑝𝑎𝑝𝑝), and vapor 

pressure (𝑝𝑣). For illustration purpose, the y-axis is expressed in logarithmic scale. The 

inlet pressure was kept constant throughout the experiments (~104, 000 Pa), while the 

outlet pressure increased with the pressure ratio, which in turns depends on the speed of 

the rotor and the volumetric flow rate. The pressure at which cavitation would first 

appear also increased with the pressure ratio, suggesting that the appearance of the 

cavitation is only function of the velocity of the fluid for a given geometry, fluid density, 

and temperature.  

 

Figure 6. Distribution of pressures during the analysis of the rotational cavitation. 
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The development of the cavitation depends on a number of factors (flow rate, speed 

of the rotor, temperature, geometry of the device, and fluid properties), and it is 

commonly assumed that cavitation starts as soon as the pressure of the fluid falls below 

the vapor pressure. Figure 7 shows the effect of the Reynolds number on the cavitation 

phenomenon. The development of the cavitation was predicted using the dimensionless 

number known as cavitation number, 𝐶𝑣. The cavitation number decreased exponentially 

from 1.15 to 0.04 with decreasing the pressure ratio. Similarly, Balasundaram & 

Harrison, (2006a) achieved maximum disruption of cells using a 𝐶𝑣 of 0.125 within a 

hydrodynamic cavitation. An investigation on the optimization of the geometry for cell 

disruption by hydrodynamic cavitation showed an optimum 𝐶𝑣 between 0.18 to 0.14 

(Balasundaram & Harrison, 2011). Another investigation showed maximum disruption of 

brewers’ yeast when the 𝐶𝑣 was within the range of 0.17-0.09 (Balasundaram & Harrison, 

2006b). Badve et al. (2013) used a rotational cavitator for reducing the organic load of 

wastewater, and it was found that a 𝐶𝑣 of 0.40 effectively reduced the chemical oxygen 

demand. It is worth to mention that the development of cavitation and therefore its 

prediction depend on a number of factors (flow rate, geometry of the device, flow 

conditions, and others). Already, Šarc et al. (2017) pointed out that 𝐶𝑣 cannot be used as 

single parameter for the evaluating of cavitation effect.   

 

𝑇he 𝐶𝑣 relates the collapsing forces of the cavities to the initial forces required to 

form the bubbles (Balasundaram & Harrison, 2006a). Values of 𝐶𝑣 lower than one 

indicate that the inlet pressure (initial forces) is less than the velocity generated in the gap 

(collapsing forces), meaning that part of the excess energy is being utilized for the 
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generation of vapor pressure. Therefore, lower values of the 𝐶𝑣 are indicative of more 

energy is utilized for the cavitation process (Badve et al., 2013). Overall, the cavitation 

takes place when the cavitation number lies below 1.0 (Gogate & Pandit, 2000). 

However, the presence of dissolved gases and suspended particles enhance the nucleation 

process and impact the development of the cavitation. Moreover, the flow conditions 

strongly influence the development of cavitation (Figure 7). The cavitation number 

decreases gradually with increasing the Reynolds number. A closer inspection of the 

Reynolds number (Equation (5)) reveals that an increase in the Reynolds number also 

involves a reduction in the kinematic viscosity of the fluid due to the elevation of the 

fluid temperature. A less viscous fluid results in higher Reynolds number which causes 

stronger cavitation (Mohan, Yang, & Chou, 2014).   

Figure 7. Effect of Reynolds number and pressure ratio on the cavitation number. ● – 50; 

▀ – 100; ▲ – 200; and ▼ – 300 L h-1. Closed symbols correspond to Reynolds 

number; open symbols correspond to cavitation number.  
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The generated thermal energy due to cavitation as a function of the speed of the rotor 

is given Figure 8. The speed of the rotor expressed by RPM represents the physical 

constrains of the equipment, 0 ≤ 𝑆𝑝𝑒𝑒𝑑 ≤ 3600 𝑅𝑃𝑀. For instance, a value of zero of 

the speed of the rotor corresponds to no cavitation effect, while a speed of 3600 RPM 

indicates the maximum cavitation effect for a given flow rate. Overall, the thermal energy 

generated due to cavitation increased with the speed of the rotor in an exponential 

fashion, regardless of the flow rate.  

Figure 8. Thermal energy generated due to the rotational cavitator at different flow rates. 
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3600 RPM), reaching values up to 100-392 kJ. Kim et al. (2019) compared the thermal 

energy generated by a rotational device having an inner cylinder with and without 

indentations. These authors reported values of thermal energy between 29 and 126 kJ for 

the inner cylinder without indentations, and values of 326-803 kJ for the inner cylinder 

having indentations. The amount of energy generated in the absence of cavitation (inner 

cylinder without indentation) is negligible compared with that amount of thermal energy 

generated by rotational cavitation (cylinder with indentation). The energy released during 

the cavitation can be used as an indicator of the existence of cavitation. It is our 

assumption that the experimental measurement of ∆TC is an indicator of the presence of 

hydrodynamic cavitation. Thus, below the critical value (<1800 RPM) the cavitation 

effect is minimal and the cavitator mainly serves as a mixing device. Contrary, samples 

treated above the critical frequency experience cavitation effect judging by the increase in 

the temperature. Further experiments were conducted within speed of the rotor range of 

2400-3600 RPM.   

 

Modeling the temperature increase due to cavitation 

Figure 9 shows the increase in the fluid temperature due to hydrodynamic cavitation 

(∆TC) at different flow rates. Overall, the values of ∆TC increased with the speed of the 

rotor, being more notorious at lower flow rates (>100 L h-1). The highest ∆TC was 57.6 ± 

2.88 and 32.20 ± 1.61°C, followed by 16.90 ± 0.84 and 11.10 ± 0.55°C for 50, 100, 200, 

and 300 L h-1, respectively. A closer inspection of the relationship between ∆TC and 

speed of the rotor reveals the existence of a critical value below (arrow (1) in Figure 9) 

which the ∆TC is negligible, and above which the ∆TC becomes notorious. Hydrodynamic 
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cavitation involves the formation, growth, and collapse of vapor bubbles with the 

subsequent energy release in the form of shock waves (Badve et al., 2015). Most the 

release energy is adsorbed and redistributed within the liquid, while a small amount is 

lost through heat due to viscous forces. It is our assumption that the experimental 

measurement of ∆TC is an indicator of the presence of hydrodynamic cavitation. Thus, 

below the critical value (<1800 RPM) the cavitation effect is minimal and the cavitator 

mainly serves as a mixing device. Contrary, samples treated above the critical frequency 

experience cavitation effect judging by the increase in the temperature. Further 

experiments were conducted within speed of the rotor range of 2400-3600 RPM.   

Figure 9. Temperature increase due to hydrodynamic cavitation as a function of speed of 

the rotor and flow rate.  
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The influence of total solids and flow rate on the ∆TC is shown in Figure 10. Overall, 

the ∆TC increased gradually with the total solids at a given flow rate and a speed of the 

rotor 3000-3600 RPM (Figure 10a-b). At 3600 RPM and 100 L h-1, the ∆TC increased 

from 33.32 ± 0.83 to 43.06 ± 0.73°C within the solids range of 0-36%. On the other hand, 

increasing the flow rate up to 300 L h-1 yields lower values of ∆TC compared to that 

obtained at 100 and 200 L h-1. Contrary, the ∆TC slightly increased with the total solids 

regardless of the flow rate (Figure 10c). These observations have been exemplified by 

Badve et al. (2015) who performed finite element simulations of water flowing inside the 

cavitator. These authors found that high flow rates generate parabolic velocity profiles 

within the cavitator that may form cavity cloud, a phenomenon that diminish the collapse 

of cavities and hence lowering the ∆TC. In an attempt to describe ∆TC as a function of 

total solids, flow rate, and speed of the rotor, ∆𝑇𝐶 = 𝑓( 𝑇𝑆, 𝐹𝑅, 𝑆𝑝), experimental data 

were fitted to a second order polynomial equation (Equation (14)):  

 

Equation (14) 

∆𝑇𝐶 = 𝑎 + 𝑏 ∙ 𝑇𝑆 + 𝑐 ∙ 𝐹𝑅 + 𝑑 ∙ 𝑆𝑝 + 𝑒 ∙ 𝑇𝑆 ∗ 𝐹𝑅 + 𝑓 ∙ 𝑇𝑆 ∙ 𝑆𝑝 + 𝑔 ∙ 𝐹𝑅 ∙ 𝑆𝑝 + ℎ ∙ 𝑇𝑆
2

+ 𝑖 ∙ 𝐹𝑅2 + 𝑗 ∙ 𝑆𝑝2 

 

where TS is the total solids of the skim milk concentrate (%); FR is the flow rate through 

the cavitator (L h-1); a-e are regression parameters with respect to TS and FR. The values 

of regression parameters and their fitting performance are shown in Table 1. The relation 

between predicted and experimental values of ∆TC showed a relative narrow predicted 

and confidence band (Figure 11).  
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Figure 10. Influence of total solids and flow rate on the temperature increase due to 

hydrodynamic cavitation. Speed pf the rotor of (a) 3600, (b) 3000, (c) 2400 

RPM, respectively. Initial product temperature 15 ± 1°C. 
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Figure 11. Linear relation between predicted and experimental ∆TC values. Continuous 

line represents 95% confidence band and discontinuous line represent 95% 

prediction band. 

 

Table 1. Polynomial regression coefficients used to predict the temperature increase due 

to cavitation in skim milk concentrate. Parameters were obtained from Equation 

(14) 

Parameter Value ± CI95% 

a 0.229 ± 0.011 

b -0.453 ± 0.044 

c 5.49x10-3 ± 2.23x10-4 

d 2.71x10-4 ± 9.31x10-6 

e -2.18x10-4 ± 2.41x10-5 

f 1.24x10-4 ± 1.14x10-5 

g -5.59x10-5 ± 6.71x10-6 

h 7.99x10-3 ± 7.83x10-4 

i 2.51x10-4 ± 2.47x10-5 

j 3.62x10-6 ± 3.21x10-7 

R2 0.981 

𝑅𝑎𝑑𝑗
2  0.979 

CI95% — 95% confidence interval; R2 — coefficient of determination;  

𝑅𝑎𝑑𝑗
2  – adjusted coefficient of determination 
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2.4. Conclusions 

The analysis of the cavitator reveals that the velocities generated inside the rotational 

cavitator are sufficiently high to induce cavitation within the fluid. The development of 

the cavitation was influenced by the flow rate, speed of the rotor, temperature, and fluid 

properties. The pressure at which cavitation would first appear was calculated as a 

function of the operating parameters. Moreover, the distribution of pressure within the 

cavitator was established as a function of operating parameters. The analysis of the 

cavitation parameters showed the existence of a threshold rotation speed (1200 RPM), 

exhibiting a significant correlation between fluid velocity, increase in the fluid 

temperature, and cavitation number. The increase in the temperature of the fluid was 

modeled, showing satisfactory correlation with the experimental data.  
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Chapter 3 

Application of Hydrodynamic Cavitation in Skim milk Concentrate: Process 

Characterization and Microbial Efficiency 

3.1. Introduction 

The global market of whole milk and skimmed milk powder has increased from about 

$27 million U.S. dollar in 2017 to over $30 million U.S. dollar in 2019, and it is projected 

to exceed $38 million by 2025 (Anonymous 2019). The manufacture of such powders 

involves a number of unit operations including separation, thermal treatment, 

evaporation, and drying. Specific details on the manufacture of milk powder can be found 

elsewhere (Walstra, Wouters, & Geurts, 2006).  

 

A key processing step during the manufacture of skimmed milk powder is the thermal 

treatment, where the combinations of temperature and time determine the functional 

properties of the powder. The intensity of the thermal treatment measured by the Whey 

Protein Nitrogen Index (WPNI) is used to classify the skimmed milk powders as low-heat 

(WPNI ≥6.0), medium-heat (WPNI 4.5-5.9), and high-heat powder (WPNI ≤1.5) 

(Sharma, Jana, & Chavan, 2012). Table 2 summarizes the classification of milk powders 

based on heat treatments. A powder classified as low-heat is typically obtained by a 

thermal treatment of 70°C for 15 s before evaporation. Low-heat powder is the most 

soluble form of milk powder, and it is used extensively in formulating bakery, 

confectionary, ice-cream, and infant formula. 
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Table 2. Classification of milk powder based on the applied thermal treatment. Adapted 

from Sharma, Jana, & Chavan, (2012). 

Powder 

classification 

Processing 

conditions 

Whey Protein 

Nitrogen Index  

Functional properties 

Low-heat 70°C/15 s ≥6.0 - Highly soluble  

Medium-heat 85°C/60 s 4.51-5.99 - Emulsification 

High-heat 120°C/120 min ≤1.50 - Heat stability, gelation 

Whey protein nitrogen index (mg undenatured protein per gram of powder) 

 

During the manufacture of low-heat powder, the thermal treatment is the highest 

temperature applied, and it is aimed at ensuring the microbiological quality of the final 

powder. However, thermoduric organisms are capable of surviving such thermal 

treatment (75°C for 15 s), and they can sporulate downstream. This has been exemplified 

by Reich et al. (2017), who identified thirteen thermophilic bacilli as the major 

contaminants of milk powders. More importantly, it was emphasized that High-

Temperature-Short-Time (HTST) pasteurization is not sufficient for producing low-spore 

powder. The presence of thermoduric bacteria in milk powders is an indication of poor 

hygienic protocols within the manufacturing plant (Burgess, Lindsay, & Flint, 2010). 

Moreover, thermoduric bacteria can produce proteolytic enzymes that results in the 

formation of off-flavor compounds.  

 

The rate at which the thermoduric bacteria sporulate has been investigated by Scott et 

al. (2007), who identified two main points of cell growth and sporulation during the 

manufacture of milk powders, namely the preheating sections and during the evaporation. 
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The temperature of these points typically varies between 45 to 75°C, which corresponds 

to the ideal temperature growth of thermophilic organisms. Indeed, Ali et al. (2013) 

reported between 2.1 and 4.8 log CFU g-1 of heat-resistant bacteria in commercial 

samples of skim milk powder. Similarly, Buehner, Anand, & Djira, (2015) reported 3.5 

log CFU g-1 of thermoduric bacteria in commercial samples of skim milk powder.  

 

Sterilization treatments such as Ultra-High-Temperature (UHT) pasteurization (130-

145°C for > 4s) and canning in retort (120°C for 30 min) destroy residual spoilage 

microorganisms and their spores. However, the principal limitation of UHT is the 

relatively slow mode of heat transfer (convection and conduction) during heating and 

holding, which often leads to many unintended adverse effects such as nutrient 

destruction, protein denaturation, and formation of toxins and off-flavor compounds (Hill 

& Smythe, 2012). Thus, the application of UHT results in the denaturation of whey 

proteins, and the resulting product cannot be classified as low-heat powder. Alternatively, 

the use of emerging technologies has gained a great deal of attention due to their ability 

to reduce the microbial load with reduced thermal damage. UV-irradiation, thermo-

sonification, and ultrasound are examples of such technologies aimed at producing low-

spore milk powders. Ansari, Ismail, & Farid, (2017) reduced 2 log CFU g-1 of Bacilus 

Subtilis spores in whole milk using an ultrasound treatment (1.1 W mL-1) combined with 

thermal energy, 100°C. Khanal et al. (2014) used skim and whole milk to study the effect 

of high intensity ultrasound combined with thermal energy on the inactivation of 

vegetative cells of spore forming Bacillus spp. These authors reported an inactivation of 

4.5 logs of B. coagulans by the application of ultrasound (80% amplitude for 10 min). In 
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summary, the inactivation of spore formers by means of ultrasound involves prolonged 

exposure time (> 5 min), which limits the applicability of ultrasound at industrial level.  

 

Another technological option recently explored is the thermal treatment of the 

concentrated milk between or after the evaporation (Wedel et al., 2018). Such approach is 

not a trivial task since aggregation of proteins may occur at high total solids, resulting in 

coagulation of the concentrated milk (Dumpler & Kulozik, 2016). Moreover, the 

published information regarding the thermal inactivation of thermoduric bacteria 

involved the glass capillary method, a procedure where the heat transfer limitations are 

neglected. In the case of concentrated milk; however, the thermal transfer within the 

liquid is not homogenous due to the induced aggregation and increased viscosity. 

Research on the inactivation of thermoduric bacteria in concentrated milk is scarce, and 

badly needed. A promising technology under development at South Dakota State 

University consists in combining the energy released by a rotational cavitator with 

thermal treatment to reduce the levels of thermoduric sporeformers. Therefore, the 

objective of this chapter is to develop an experimental rig for the reduction of 

thermoduric sporeformers in skim milk concentrate (SMC) by combining hydrodynamic 

cavitation and thermal treatment. 

 

3.2. Materials and methods 

Process diagram 

The experiments were conducted using a pilot scale APV cavitator (SPX Flow 

Technology, Crawly West Sussex, United Kingdom) coupled with a custom fabricated 
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thermal treatment (Figure 12). The system consists of a feed tank, positive displacement 

pump, APV cavitator, plate heat exchanger, holding tube, and cooling system. A holding 

tube section with adjustable lengths was locally fabricated and it is capable of operating 

at different combinations of flow rate (100-600 L h-1) and holding time (6-70 s). The 

holding tube section was experimentally validated using the salt conductivity method. 

The holding tube assembly consisted of three sections of 0.9 m made of stainless steel 

connected by six elbows of 180°. An inclination of ¼ inch per ft was provided, as 

specified by FDA regulations. The experimental rig combined hydrodynamic cavitation 

coupled with thermal processing. The sample temperature in different processing steps 

(feed tank, after cavitation, before and after holding tube, and cooling) were monitored 

during experiments using K-type thermocouples connected to a data logger (Omega 

Engineering Inc., Stamford, CT). Heat losses within the holding tube were minimized by 

insulated using plumbing foam. The flow rate was measured using a flow meter (GPI A1, 

Instrumart Inc., South Burlington, VT). 

 

Skim milk concentrate (SMC)  

The microbial efficiency of the hydrodynamic cavitation was evaluated in 

reconstituted skim milk concentrate (34-36% total solids). Nonfat dry milk was dissolved 

in deionized for 30 min at 50-60°C under constant agitation. The reconstituted skim milk 

concentrate was cooled at room temperature and the total solids was measured with a 

diffractometer. Samples were stored overnight before the microbial analysis. 
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Figure 12. Flow diagram of the experimental apparatus: T1 – temperature of untreated product; T2 – product inlet temperature prior to 

cavitation; T3 – temperature rise due to cavitation; T4 – product temperature after heat exchanger; T5 – product temperature 

after holding tube; and T6 - product temperature after cooling heat exchanger; p1 and p2 – inlet and outlet pressure, 

respectively. (1) Feeding tank; (2) positive displacement pump; (3) flow regulator valve; (4) hydrodynamic cavitator; (5) 

hydraulic rotor; (6) sampling port; (7) flow meter; (8) plate heat exchanger; (9) holding tube; (10) cooling system; (11) 

semi-aseptic tank.  
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Preparation of Bacillus coagulans 

A suspension of vegetative cells of Bacillus coagulans (ATCC 12245) was prepared 

as described by Khanal et al. (2014). Briefly, B. coagulans was grown in Brain Heart 

Infusion (Difco, Becton, Dickinson and Company, Sparks, NV, USA) for 8 h at 37°C 

under aerobic conditions. After the incubation, the solution was centrifuged at 4500 x g 

for 30 min using a Avanti JE centrifuge (Beckman Coutler Inc., CA, USA). The precipate 

was re-suspended in phosphate buffer saline (pH 7.4), and transferred into cryogenic 

vials. The vials were stored at -75°C using an ultralow deep freezer (NuAire Inc., 

Plymouth, MN, USA) until further use.  

 

Inoculation and treatments 

Ten liters of reconstituted skim milk concentrate were inoculated by adding 10 mL of 

the suspension of vegative cells of B. coagulans, yielding an approximate final 

concentration of 4.5 log CFU mL-1. Nine time-temperature combinations were used to 

evaluate the microbial efficiency of the hydrodynamic cavitation coupled with thermal 

treatment in skim milk concentrate (75°C/15 s, 75°C/76 s, 75°C/106 s, 80°C/14 s, 

80°C/26 s, 80°C/48 s, 85°C/14 s, 85°C/26 s, and 85°C/48 s) using a fixed flow rate of 

100 L h-1 and a cavitation frequency of 3600 RPM. The selected processing conditions 

correspond to typical conditions used during the manufacture of skim milk powder. 

Before pumping the inoculated skim milk concentrate, the whole unit was run with a 

carboxymethylcellulose solution of the same apparent viscosity than the skim milk 

concentrate. The solution flowed until the desired flow rate and temperature were 

reached. Then, 10 L of skim milk concentrate ware introduced and the first 1 L of treated 
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product was discarded. Afterward, the samples of 500 mL were collected in pre-sterilized 

polypropylene tubes (Fisher, Rochester, USA). Three different treatments were 

performed to evaluate the microbial efficiency of the experimental rig, 1) hydrodynamic 

cavitation, 2) hydrodynamic cavitation followed by thermal treatment, and 3) thermal 

treatment. For the cavitation treatment, samples were obtained from the sampling port 

valve ((6) in Figure 12) located after the cavitator. Samples obtained at the end of the 

process ((11) in Figure 12) were considered for the hydrodynamic cavitation followed 

thermal treatment. In the case of the thermal treatment, samples were obtained at the end 

of the process with bypass the cavitator.   

 

Enumeration of microorganisms  

The viable cells of B. coagulans after treatments were enumerated on brain heart 

infusion agar. Series of dilutions were prepared by using phosphate buffer saline solution 

and plate with tryptic soy agar (0.015% tryptone, 0.005% soy tone, 0.0055 % sodium 

chloride, 0.015% agar, pH 7.3 ± 0.2). All plates were incubated at 37°C for 48 hours to 

enumerate total viable cells. After incubation, total colony forming units were 

enumerated according to Equation (15).  

 

Equation (15) 

𝑁(𝐶𝐹𝑈 𝑚𝐿−1) =∑
𝐶

{(𝑛1 × 1) + (𝑛2 × 0.1)} ∙ 𝑑
 

 

Where, 𝑁 is number of colonies per mL or g of product, ∑𝐶 is Sum of all colonies on 

all plates counted, 𝑛1 is number of plates in next higher dilution counted, 𝑛2 is number of 
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plates in next higher dilution counted and d is dilution from which the first counts were 

obtained. 

 

Decimal reduction time (D-values) 

The thermal death time concept was used to calculate the decimal reduction time for 

of the B. coagulans (ACCT 12245) in skim milk concentrate. The decimal reduction time 

(D-values) is the time needed for a 90% reduction (1 log cycle), and it assumes that a 

first-order kinetic model describes the inactivation of the given microorganism. Thus, the 

kinetic model for the inactivation of B. coagulans follows a first-order behavior 

according to Equation (16). 

 

Equation (16) 

ln𝑁𝑡 = ln𝑁𝑜 − 𝑘 ∙ 𝑡 

 

Where 𝑁𝑡 is the number of microorganism at a given time, 𝑁𝑜 is the initial number of 

microorganisms, 𝑘 is the first-order rate constant (s-1), and 𝑡 is the holding time (s). 

Equation (16) was further rearranged into:    

 

Equation (17) 

𝑙𝑜𝑔 (
𝑁𝑡
𝑁𝑜
) = log 𝑆(𝑡) − 𝑡 ∙ 𝐷 
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where 𝐷 is the decimal reduction time (𝐷 =
2.303

𝑘
) and it is a reciprocal first-order rate 

constant. The 𝐷 values at three different temperatures (75, 80, and 85°C) were obtained 

from the semi-logarithmic curve (log 𝑆(𝑡) vs time) by non-linear regression analysis. 

Solver option in Excel Microsoft was used to perform the non-linear regression analysis, 

and the graphs were plotted using Sigmaplot software V11 for Windows (SPSS Inc., 

Chicago, IL, USA). 

 

Statistical analysis 

The statistical analysis was performed by the one-way analysis of the variance 

(ANOVA), and the least significant difference (LSD), in which a significant level was set 

at 0.05. The LSD values were calculated using Tukey’s post hoc test, and all calculations 

were performed using the Statistical Package for R programing. 

 

3.3. Results and discussion 

Temperature history  

Figure 13 shows a representative temperature history of SMC as it flows through the 

different component of the experimental rig (Figure 12). Two different process are 

illustrated: i) a typical HTST, and ii) a cavitation assisted HTST. In both cases, the 

process starts in the feeding tank where the temperature of the SMC varied from 10 to 

12°C. The SMC flows through the rotational cavitator, where the temperature increased 

from 10-12 to 52-53°C due to energy released by the cavitation phenomenon.  
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Figure 13. Representative temperature history of skim milk concentrate flowing through 

the different component of the experimental rig. The temperature values 

correspond to skim milk concentrate (34-36% total solids) flowing at 100 L h-

1, and cavitated at 3600 RPM. (1) temperature at the feeding tank; (2) inlet 

temperature of the cavitator; (3) outlet temperature of the cavitator; (4) 

temperature at the beginning of the holding tube; (5) temperature at the end of 

the holding tube; and (6) temperature after cooling.   

 

The magnitude of such increment depends on the speed of the rotor and flow rate. 

Subsequently, the SMC is further heated at the target temperature (70-85°C) using a plate 

heat exchanger before entering the holding tube. The holding tube consists of different 

sections that can be adjusted to provide three different residence times (14-106 s) at a 

constant flow rate (100 L h-1). The residence time was calculated using the salt test. 

Importantly, the temperature of the SMC remains unchanged between the beginning and 

end of the holding tube, regardless of the length. Knowledge of the residence time of the 

fasted moving particle in the holding tube is a critical parameter for further validation 

since the Food and Drug Administration (FDA) only credits heat treatment experienced 
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in the holding tube. After the corresponding residence time, the SMC is cooled down to 

<10°C using a tubular heat exchanger. Interestingly, the experimental rig can be 

manipulated to generate processing conditions similar to those obtained by conventional 

thermal treatment (70-85°C with residence time of 14-106 s) by suitable choice of initial 

temperature, speed of rotor, and flow rate. A detailed explanation of the temperature 

history within the experimental rig not only facilities the interpretation of the 

experimental findings but also stablish the foundations for further scaling-up.   

 

Effect of residence time on the inactivation of B. coagulans   

The thermal resistance of B.coagulans (ACCT 12245) in SMC was monitored at 

different points within the experimental rig, including after inoculation (feeding tank), 

after cavitation (3600 RPM at 100 L h-1), after HTST (75-85°C for 14-106 s), and after 

hydrodynamic cavitation followed by HTST. Figure 14 shows the log counts at different 

points within the experimental rig as well as the effect of residence time on the survivors 

of B.coagulans. For all treatments, the survivors of B.coagulans after cavitation were not 

significantly different in comparison with the inoculated sample (4.39 ± 0.41 and 4.75 ± 

0.16 log CFU mL-1). This observation is in agreement with the results reported elsewhere 

(Bawa, 2016), where significant reduction of Bacillus coagulans was observed after 

multiple passes in the rotational cavitator.  

 

For HTST at 75°C (Figure 14a), a gradual reduction of the survivors was observed as 

the residence time was prolonged, reaching values of 2.1 ± 0.01, 1.68 ± 0.11, and 1.32 ± 

0.01 log CFU mL-1 after 48, 76, and 106 s, respectively. Similar trend was observed in 
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the survivors after cavitation+HTST, where the final counts were 1.90 ± 0.01, 1.31 ± 

0.11, and 1.10 ± 0.01 log CFU mL-1 after 48, 76, and 106 s, respectively. At 80°C 

(Figure 14b), the survivors decreased with the residence time, obtaining survivors values 

of 2.60 ± 0.05, 1.58 ± 0.15, 1.46 ± 0.11 log CFU mL-1 after 14, 26, and 48 s, respectively. 

The survivors when cavitation was followed by HTST at 80°C were 2.50 ± 0.13, 1.46 ± 

0.07, 1.44 ± 0.11 log CFU mL-1 after 14, 26, and 48 s, respectively. In the case of 85°C 

(Figure 14c), the obtained survivors were 3.36 ± 0.03, 2.77 ± 0.03, 2.54 ± 0.02, and 2.03 

± 0.04 log CFU mL-1 after 14, 26, 38, and 48 s, respectively. Similar trend was observed 

in the survivors after cavitation+HTST, where the final counts were 2.82 ± 0.07, 2.36 ± 

0.01, 2.06 ± 0.01, 1.81 ± 0.03 log CFU mL-1 after 14, 26, 38, and 48 s, respectively. 

 

A 3.65 log reduction was obtained by cavitation-thermal treatment (75°C), while 

HTST along yielded a 3.06 log reduction. Contrary, the reduction values at 80°C were 

3.01 and 3.42 log for HTST and cavitation followed by HTST, respectively. Finally, the 

reduction at 85°C was 2.10 and 2.34 log for HTST and cavitation followed by HTST, 

respectively. At 75°C, the combined effect of hydrodynamic cavitation and thermal 

treatment on the reduction of B.coagulans in skim milk concentrate is thought to be 

synergistic. However, this interpretation must be applied cautiously because the reduction 

of B.coagulans is affected by the initial counts of the powder used to formulate the milk 

concentrate (discontinuous line in Figure 14), and the resulting log reduction might not 

represent the actual lethality of the process.  
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Figure 14. Survival of B.coagulans (ACCT 12245) in skim milk concentrate (34-36% 

total solids) at different points within the experimental rig: after inoculation 

(feeding tank), after cavitation (3600 RPM), and at: (a) 75, (b) 80, and (c) 

85°C. The entire process was performed at 100 L h-1. The discontinuous line 

represents the initial microbial load of the powder. Mean ± standard deviation 

within each column with different letters (a–e) are significantly different (p < 

0.05) according to Tukey test.  
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Thermal resistance   

Figure 15 shows the survival curves for of B.coagulans in skim milk concentrate (34-

36% total solids). For both processes (HTST and cavitation followed by HTST), visual 

inspection of the survival curves indicates that the fits obtained are fairly reasonable, and 

it also evident that the first-order model can be used to represent the kinetics.   

Figure 15. Survivor curves of B.coagulans (ACCT 12245) in skim milk concentrate (34-

36% total solids) at different temperatures: (a) Hight-Temperature-Short-Time 

(HTST) and (b) Cavitation followed by Hight-Temperature-Short-Time 

(HTST).  
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The experimental data presented in Figure 15 were fitted using Equation (17) to 

obtain the associated 𝐷 values. Table 3 summarizes the 𝐷 values for B.coagulans at 

different temperatures obtained after HTST and cavitation followed by HTST.  

 

Table 3. Decimal reduction values for B.coagulans (ACCT 12245) in skim milk 

concentrate (34-36% total solids) at different temperature.  

Temperature HTST Cavitation+HTST 

𝑫 ± 95%CI 𝑹  𝑫 ± 95%CI 𝑹  

75°C 470 ± 66 s 0.981 375 ± 62 s 0.977 

80°C 121 ± 10 s 0.997 125 ± 10 s 0.998 

85°C 315 ± 38 s 0.981 320 ± 42 s 0.977 
𝐷 — Decimal time reduction (s); 95% CI — 95% confidence interval; R2 — coefficient 

of determination 

 

The calculated 𝐷 values were much higher than their respective 95% confidence 

interval, meaning that these parameters can be used for prediction. Moreover, the R2 

values (>0.970, Table 3) indicate that the first-order model can mathematically represent 

the inactivation of B.coagulans within the tested conditions. A closer inspection of the 𝐷 

values reported in Table 3 reveals that only those values obtained at 75°C showed 

differences between the processes. For instance, the D value for process that combines 

cavitation and HTST was lower than that obtained for HTST alone (375 ± 62 and 470 ± 

66 s, respectively). Contrary, the 𝐷 values obtained at 80 and 85°C were similar in 

magnitude between the two processes (Table 3). Another relevant observation is that 

increasing the temperature from 75 to 80°C showed a considerable reduction in the D 

value, from 470-375 to 120-125 s. This observation is not surprising since increasing the 

temperature produces higher inactivation rates, according to the first-order kinetics. 

However, an increment of 2.5-folds in the calculated D values was observed when the 
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temperature increased up to 85°C. A possible explanation for such a behavior is the high 

initial counts found in the powder used for the preparation of skim milk concentrate. 

Indeed, the powder used for the experiments conducted at 85°C contained 2.94 ± 0.82 log 

CFU mL-1. In closing, the calculated D values can provide useful information regarding 

the inactivation kinetic. However, the magnitude and their interpretation should be 

considered cautiously because of the relatively high number of bacteria in the initial 

powder. 

 

3.4. Conclusions 

A process that combines cavitation and thermal treatment was developed and further 

characterized. The newly developed process can be operated within a wide range of 

processing conditions (50-300 L h-1, 600-3600 RPM, 70-85°C with residence time from 

10-110 s). A 3.5 log reduction was obtained by cavitation followed by thermal treatment, 

while thermal treatment along yielded a 2.77 log reduction. Contrary, individual 

cavitation did not produce any significant reduction. The outcomes of this chapter present 

opportunities for utilizing cavitation in combination with thermal treatment for 

inactivating thermoduric sporeformers with a single pass. 
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Chapter 4 

Hydrodynamic cavitation: Process opportunities for ice cream formulations  

4.1 Introduction 

One of the primary focus of the dairy industry is to provide innovative products with 

natural ingredients by avoiding artificial ingredients or synthetic chemicals. Nowadays, 

numerous consumers read the lists of ingredients of a given product before they purchase. 

More importantly, these consumers are willing to pay more for food products that they 

perceived as natural, familiar, simple, and minimally processed. This is a worldwide 

movement that is driving many manufacturers to reformulate their original products 

without compromising on flavor, texture, mouthfeel, and functional properties (Asioli et 

al., 2017). As a result, there is a proliferation of clean label products already in the 

market; however, it has also challenged dairy manufactures to explore alternative 

technologies in order to maintain the desire attributes of foods formulated with fewer 

ingredients. 

 

Nowadays, the ideal food product of modern consumers would be formulated with 

perceived healthy ingredients and free of additives. Interestingly, dairy processors have 

developed a variety of low-fat and low-sugar ice-cream and frozen novelty products, 

partially addressing the demand for healthy products. Contrary, the removal of 

undesirable ingredients such as stabilizers from ice-cream is a major challenge from a 

technological point of view. Industrially, the characteristic flavor, body, and texture of 

ice-cream is obtained using a variety of processing ingredients/aids (Wahlgren et al., 
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2015). Specific details on the manufacture of ice-cream can be found elsewhere (Goff, 

2016).  

 

During the manufacture of ice-cream, emulsification and subsequent dispersion of fat 

droplets within the continuous phase are key processing steps (Walstra, 1993). Such a 

fine dispersion is kinetically active due to colloidal and hydrodynamic interactions 

leading to inter-droplet collisions which may results in the formation of larger droplets 

(McClements, 2004). This is known as coalescence and it is avoided by the addition of 

water-soluble polymers, called stabilizers. The phenomenon of coalescence has been 

extensively reviewed elsewhere (Lee et al., 2013; Jafari et al., 2008; Håkansson & 

Hounslow, 2013). In general, making stable colloidal dispersions requires use of high 

concentration of surfactants and/or high input of mechanical energy (Martínez-

Monteagudo et al., 2017).  

 

In the last decade, consumers oriented with health and wellness life style have 

perceived synthetic emulsifier agents (stabilizers and thickeners) as undesirable 

ingredients. Thus, dairy processors are interested in identifying cost-effective 

technological solutions that improve emulsification and potentially minimize the use of 

stabilizers. Stabilizers play an essential role in the behavior of ice cream (Goff, 2016). 

Guar gum, carboxymethyl cellulose, xanthan gum, sodium alginate, and carrageenan are 

example of stabilizers commonly used for the manufacture of ice-cream. Each ingredient 

has its own properties, and combinations of two or more stabilizers are used to enhance 

their overall efficacy. Stabilizers improve emulsion stability to prevent serum separation 
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and the creaming of fat, stabilize the air bubbles, aid in the suspension of liquid flavor, 

reduce the growth of lactose crystals, and prevent the migration of free water (Chang & 

Hartel, 2002). Reducing the concentration of stabilizers can generate undesirable melting 

properties as well as create a heavy and chewy body. Although stabilizers are key 

ingredients in ice cream production, some stabilizers have been chemically derivatized to 

improve their solubility in water, which does not meet consumers’ demands for natural 

and clean ingredients. Often when such target ingredients are simply removed from the 

formulation, it adversely affects the organoleptic properties of the product, texture and 

appeal. 

 

Researcher and dairy manufacturers are actively exploring alternatives for reducing 

the concentration of stabilizers. Strategies currently used are:  

 

1) Optimization of the existed formulations. 

2) Substitution of synthetic additives.  

3) Application of emerging technological approaches.   

 

Optimization consists of a gradually removal from the formulation until no significant 

change is perceived by a group of sensory panelists. This strategy has limited success 

since such compounds are not entirely removed from the formulation. Substitution 

involves the use of other chemicals, and often requires relatively large concentrations. On 

the other hand, the application of emerging technologies has been an active area of 

research. Examples of such technologies are high pressure processing, pulsed electric 
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fields (PEF), ultrasound, and hydrodynamic cavitation. In this chapter, the feasibility of 

using hydrodynamic cavitation for improving the emulsification of ice-cream mix was 

evaluated. The feasibility was judged in terms of particle size and rheology 

measurements (strain sweep, frequency sweep, and flow curve of the ice-cream mix). 

 

4.2 Materials and Methods 

Preparation of ice cream mix preparation 

An ICM of industrial interest was used to assess the feasibility of HC for reducing the 

concentration of stabilizers. The formulation of ICM consisted of 38.4% of raw cream 

(Davis Dairy Plant at South Dakota State University, Brookings, SD), 37.1% of skim 

milk (Davis Dairy Plant), 6.1% of non-fat dry milk (Continental Dairy Facilities, LLC, 

Coopersville, MI), 14.8 of granulated sugar (United Sugar Corp., Minneapolis, MN), 

3.3% of dry corn syrup (Cerestar USA, Inc., Hammond, IN), and 0.28% of blend of 

stabilizers (Continental Colloids, Inc., West Chicago, IL). The blend of stabilizers 

consisted of guar gum, locust bean gum, carrageenan, polysorbate 80, and mono- and 

diglycerides. The dry ingredients were dissolved in skim milk, and blended using an 

industrial blender (Breddo likwifier, Kansas City, MO) operated at 1,755 RPM for 15min 

at room temperature.  

 

Processing treatments  

Three sets of experiments were performed to select the processing conditions of the 

rotational cavitation. Study 1 consisted on the evaluation of HC on the particle size of 

raw cream. Fresh cream (36-38% fat) obtained from the Davis Dairy Plant (Brookings, 



56 

 

 

SD) was adjusted with skim milk to obtain a final concentration of 13%, which represents 

the fat content found in the ICM. The adjusted cream was stored overnight at 4°C before 

further treatment. Then, the cream was treated at nine different rotor speed-flow rate 

combinations (2400-3600 rpm and 50-200 L h-1) using a rotational HC from SPX Flow 

Technology, previously described in chapter 2. In study 2, the ICM was treated at five 

different rotor speed-flow rate combinations (2400-3600 RPM and 100-200 L h-1). At the 

end of the treatment, the samples were analyzed for particle size and rheological 

behavior. An ICM was manufactured with conventional homogenization and heat 

treatment (HTST, 75°C for 15 s), and it was used as a control. Study 3 evaluated the 

combined effect of HC on the properties of ICM formulated with reduced stabilizers 

(0.28, 0.21, 0.14, and 0%). Each experimental run cosisted of 10 L of ICM. All 

experiments were performed in triplicate. The statistical analysis was conducted using 

Sigmaplot software V11 for windows (SPSS Inc., Chicago, IL, USA). 

 

Particle size distribution  

The distribution of particles was determined by laser diffraction method using a 

Horiba LA-920 static light (Horiba Scientific, Kyoto, Japan). Deionized water was used 

as the diluent, and the relative refractive index was set at 1.14, calculated as the refractive 

index of the particle (1.52 for milk fat) divided by the refractive index of the diluent (1.33 

for water). Drops of either cream or ICM was added into the chamber until transmittance 

equilibrated between 70 and 95%. The temperature was maintained between 40 and 45°C 

to ensure the milk fat was in a liquid state. For each sample, size distribution was 

obtained in percentage of volume as function of droplet diameter in the range of 0.01-
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4500 μm. The size distribution histogram was analyzed with polydisperse analysis to 

calculate mean droplet diameter and percentiles. 

 

Dynamic rheological measurement 

The dynamic rheological behavior of the treated samples was analyzed in an MCR92 

rotational rheometer (Anton Paar USA, Inc. Vernon Hills, IL) equipped with cup-bob 

configuration (60 mm bob and 120 mm cup geometry). Samples were tested at 4°C, and 

37 data point were collected. The rheological behavior of the ICM was determined by the 

strain sweep and frequency sweeps. The strain sweep was first conducted in order to 

determine the linear viscoelastic (LVE) region. Then, the frequency sweep was 

performed at a constant shear strain, a value within the LVE region, with a frequency 

range of 0.1 to 10 Hz. The complex shear module (G*) was acquired using the rheometer 

software, while the storage module (G') and the loss module (G'') were calculated 

according to Equation (18) and (19). 

Equation (18) 

𝐺′ = 𝐺∗ ∙ cos 𝛿 

Equation (19) 

𝐺" = 𝐺∗ ∙ sin 𝛿 

 

Steady shear measurements  

The flow curve of the ICM was determined in an MCR92 rotational rheometer 

(Anton Paar USA). The measurements were carried out in the shear rate range of 1- 100s-
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1 at 4℃. The Ostwald de Waele model was used to determine flow behaviors of the 

sample, according to Equation (20).  

 

Equation (20) 

𝜎 = 𝐾 ∙ 𝛾̇𝑛 

 

Where 𝜎 is shear stress, 𝐾 is the consistency coefficient, 𝛾̇ is the shear rate, and n is the 

flow behavior index. 

 

4.3 Results and Discussions 

Study 1: Effect of cavitation on particle size distribution on raw cream 

Figure16 shows the effect of HC on the particle size distribution of raw cream (13% 

fat). The untreated cream showed two distinguishable peaks of different broadness that 

spanned from 200 to 70 μm and 17 to 2 μm, respectively. The peak associated to larger 

particles accounted for about 27% of the total particles in raw cream, while the smaller 

peak accounted for the remaining 73%. Such a bimodal distribution of particles for 

untreated cream is not surprising. Similarly, Amador-Espejo et al. (2014) reported a 

bimodal distribution for untreated milk. In general, the application of hydrodynamic 

cavitation shifted the distribution of particles towards a single peak of different 

broadness. The spanned of each peak showed to be dependent of the speed of the rotor.  
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Figure 16. Effect of speed of the rotor on the particle size distribution of raw cream (13% 

fat): (a) 2400 RPM; (b) 3000 RPM; and (c) 3600 RPM.  
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At a speed of the rotor of 2400 RPM (Figure 16a), the peak spanned from 1.5 to 77, 

1.7 to 13, and 1.5 to 11 μm for 50, 100, and 200 L h-1, respectively. Similar behavior was 

observed when the speed of the rotor increased to 3000 RPM (Figure 16b), where the 

peak spanned from 1.7 to 26, 1.7 to 13, and 1.5 to 10 μm for 50, 100, and 200 L h-1, 

respectively. Further increase of the speed of the rotor did not significantly change the 

broadness of the peak. For instance, at 3600 RPM (Figure 16c), the distribution of 

particles spanned from 1.7 to 13, 2 to 17, and 1.7 to 13 μm for 50, 100, and 200 L h-1, 

respectively. The information presented in Figure 16 suggests that the application of 

hydrodynamic cavitation at 3000-3600 RPM resulted in similar distribution of particles 

regardless of the flow rate.  

 

Study 2: Effect of cavitation on ice cream mix  

Figure 17 illustrates the effect of hydrodynamic cavitation on the particle size 

distribution of the ice cream mix. For comparison, the particle size distribution of ice 

cream mix conventionally homogenized (two-stage homogenization in a Gaulin type 

homogenizer) is included in Figure 17, and it was denominated as commercial sample. 

The lowest distribution of particles was obtained in the commercial ICM, where two 

overlapped peaks were observed, spanning from about 10 to 0.1 μm. Both peaks showed 

a maximum size at about 6% of volume distribution (0.17 and 0.51 μm, respectively). In 

the case of ICM treated with cavitation, the curves showed a single peak of similar 

broadness that ranges from 45.6 to 1.4, 17.3 to 1.3, 14.5 to 1.2, 17.4 to 1.5 μm for 2400 

RPM at 100 L h-1, 3000 RPM at 100 L h-1, 3600 RPM at 100 L h-1, and 3600 RPM at 200 

L h-1, respectively. In addition, the cavitated samples yielded at maximum size between 
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10-11% of volume distribution at 3.3-5.8 μm. Interestingly, the largest particle size 

distribution was obtained at 3000 RPM with 100 L h-1. For the cream, this process 

condition allowed ice cream mix to reduce the fat globule size, however, it increased the 

particle size in the ice cream mix processing. The particle size distribution plays a major 

role during the manufacture of ice cream. Previous studies reported that the size of the fat 

globule and its distribution affected the melting rate of frozen desserts (Muse & Hartel, 

2004). Muse & Hartel (2004) reported that when fat globule size was below a median 

value of 0.85 μm.  

Figure 17. Particle size distribution of ice cream mix treated with hydrodynamic 

cavitation. 
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Figure 18 show the storage module (𝐺′) as a function of strain amplitude for different 

samples of ice cream mixes. The strain sweep of ICM mixes was performed to determine 

the linear viscoelastic region (LVR), where 𝐺′ was constant with increasing strain. The 

LVR indicates the range of shear strain at which the test sample behave without 

destruction of its structure. Outside the LVR, the test samples structure starts to disrupt, 

and the values of 𝐺′ decreases with increasing strain. The 𝐺′ represents the elastic 

properties of the products that can be seen as solid-state behavior, while 𝐺" represents the 

viscous properties of the sample, which can be seen as liquid-state behavior of products 

were also obtained from strain sweep test.  

Figure 18. Strain sweep of different ice cream mixes. Frequency = 10 rad s-1. Open 

symbols correspond to storage module (𝐺′), and closed symbols represent loss 

module (𝐺"). 
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The commercial ICM showed a viscoelastic region within the range of 0.1 to 7%, 

where G’>G’’. This observation indicates that within the LVE region, the commercial 

ICM behaved like gel-like or structured solid, known as viscoelastic solid material. On 

the other hand, ICM treated with cavitation displayed a behavior where G’>G’’. An 

interpretation of such observation is the sample consisted of different structures in which 

the particles are connected through chemical bonds (Hesarinejad et al., 2014). Figure 18 

also shows the yield point and flow point. The yield point also known as the end of the 

LVR region and solid structure (G’) starts to deform. The flow point is the value of shear 

stress at the cross over point (G’=G’’) at which the sample behaves like liquid. Overall, 

viscoelastic liquids are mainly consisted of unlined individual molecules without 

chemically crosslinked. The commercial ICM displayed a yield point and a flow point at 

shear strain of approximately 6%. On the other hand, the samples treated with HC 

displayed a fluid state across the entire deformation range. The cavitated ICM displayed 

the ability to flow from 0.1% shear strain, and their respective yield point was obtained 

from shear strain at approximately 5%.  

 

The information obtained from the strain sweep analysis was further used to define 

the limits of the viscoelastic region and determine the mechanical spectra of the ICM. 

Frequency sweep plots are commonly used to characterize the mechanical spectra of 

emulsified foods (Steffe, 1996). Frequency sweep test of ICM sample was carried out at 

0.5% shear strain which correspond within the viscoelastic region (Figure 19).  
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Figure 19. Frequency sweep analysis for ice cream mixes: (a) cavitated samples, and (b) 

commercial ice cream mix. Strain = 0.5%. Open symbols correspond to 

storage module (𝐺′), and closed symbols represent loss module (𝐺"). 
  



65 

 

 

Figure 19a shows the storage module (𝐺′) and loss module (𝐺") as a function of 

frequency for ice cream mixes treated with hydrodynamic cavitation. The mechanical 

spectra of ICM treated with hydrodynamic cavitation showed that the G'' was higher than 

G' within the frequency range of 0.1 to 10Hz. These results indicated that ICM samples 

are susceptible to segregation and particle sedimentation over a long-term storage. Long 

term storage behavior of dispersed systems can be was evaluated through the mechanical 

spectra at the lower frequency range (Steffe, 1996). The commercial ICM had a typical 

behavior of dilute solution, where G’ and G” slightly increased with the frequency and 

G” was higher than G’ from 0.1 to 1.6 rad s-1, meaning that the viscous behavior 

dominates (Paraskevopoulou et al., 2013). Another interpretation of such observation is 

that the ICM showed physical stability.  

 

The shear stress and shear rate of the different ice cream mixes are shown in Figure 

20. All curves showed shear thinning behavior, which is a typical behavior for ice cream 

mix (Kuş et al., 2005; Goff et al., 1994). At a lower shear rate, the molecules are spread 

out without any order, which resulted in higher viscosity and lower shear stress. 

However, increased shear rate arranged the molecules in systematic way and this led to 

decreases in viscosity and higher shear stress. ICM sample treated with cavitation 

obtained higher apparent viscosity than reference ICM sample. Samples containing larger 

molecules tend to have a higher viscosity. The large molecules have stronger 

intermolecular forces attracting them to one another, and there is a greater strength that 

hinders molecular flow, which results in more viscous products (Pon et al., 2015). 
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Overall, the cavitation treatment significantly increased the viscosity of the ice cream 

mix, and the highest viscosity was obtained at 3600 rpm with 100Lh-1.  

Figure 20. Flow curve of ice cream mix at different processing conditions. 

 

Study 3: reduction of stabilizer 

The dynamic rheological measurements (strain and frequency sweeps) of ICM 

indicated increased product stability with rotation speed of 3600 RPM at a flow of 100 L -

1. However, the HC also induced significant changes in the mechanical spectra of the 

ICM. Thus, the processing conditions of 3600 RPM at a flow of 100 L -1 was chosen to 

evaluate the feasibility of reducing the concentration stabilizers. The blend of stabilizers 

was reduced in the ICM by adding 0.28 (full formulation), 0.21, 0.14, and 0% of the 

blend. t 
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Figure 21 shows the particle size distribution of ICM with reduced stabilizer. For 

comparison the particle size distribution of the ICM conventionally manufactured was 

included (two-stage homogenization). The removal of stabilizer consistent and systematic 

shift the distribution of particles towards a bimodal distribution, where two peaks of 

similar broadness were obtained and they spanned from 652 to 120 μm and from 15 to 1 

μm, respectively. Contrary, the ICM added with stabilizers (0.28%) displayed a single 

distribution peak of particles. Stabilizers are added to ice cream mix to increase the 

viscosity, prevent separation, delay the growth of crystals. All these functions are closely 

related to the particle size induced during the handling of the mix.  

Figure 21. Particle size distribution of ice cream mix formulated with reduced stabilizer. 

Cavitated samples were treated at 3600 RPM at 100 L h-1. 
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Figure 22 shows the strain sweep for the ice cream mix formulated with reduced 

stabilizer and treated at 3600 RPM at 100 L h-1. All the ICM samples were obtained 

higher G’ value than G’’ through the shear strain 0.1 to 100%. This indicated that ICM 

behaved like a viscoelastic liquid, and the flow point started from shear strain 0.1%.  

Figure 22. Strain sweep analysis of ice cream mix formulated with reduced stabilizer. Ice 

cream mixes were manufactured at 3600 RPM at 100 L h-1. Frequency  = 10 

rad s-1. Open symbols correspond to storage module (𝐺′), and closed symbols 

represent loss module (𝐺"). 

 

The ICM with 0% stabilizer showed as the ideally viscous behavior and phase shift 

angle (𝛿) was obtained 90◦ with G’ is close to 0. This observation indicates that no elastic 

portion existed in the ICM. When the phase shift angle was obtained between 45 to 90◦, 

the sample is viscoelastic liquid and when the value is close to 90◦, the sample has more 
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viscous behavior. When the phase shift angle was obtained between 0 to 45◦, the sample 

is viscoelastic solids and then the value is close to 0◦, the sample becomes to behave 

ideally elastic behavior without viscous portion. The ICM added with 0.21% stabilizer 

was obtained phase shift angle from 68 to 84◦, and ICM with 0.14% stabilizer was 

obtained phase shift angle from 77 to 90◦, ICM with 0.28% stabilizer had 55 to 70◦. The 

results indicated that by reducing the stabilizer amount ICM behave like ideally viscous 

product by losing elastic portion. 

 

Figure 23 shows the mechanical spectra of the ICM formulated with reduced 

stabilizer. All the ICM samples showed G”>G’ under the measuring conditions from 0.1 

to 10Hz. Higher G’ value was obtained from ICM with 0.28% stabilizer. G’ value 

decreased when stabilizer amount was decreased in ICM samples. The results indicated 

that reducing the stabilizer amount resulted in lowering stiffness of ICM sample and 

allowed more viscos portion by losing its elastic portion.  

 

The viscosity obtained for ICM formulated with reduced stabilizer is given in Figure 

24. In order to understand ICM viscosity from different processing condition, viscosity 

was measure at shear rate of 1, 13, and 100 s-1. Shear rate 1 indicates that the product is in 

the rest status, and shear rate 13 s-1 represent the condition when products flow through 

the processing pipe-line and 100 s-1 indicates that the products encounter the centrifugal 

pump condition. Higher viscosity was obtained from ICM with 0.28% stabilizer and low 

viscosity was obtained with ICM with 0% stabilizer from each shear rate.  
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Figure 23. Mechanical spectra of the ice cream mix formulated with reduced stabilizer. 

Samples were manufactured at 3600 RPM at 100 L h-1. Strain  = 0.5%. Open 

symbols correspond to storage module (𝐺′), and closed symbols represent loss 

module (𝐺"). 
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The results indicate that viscosity be proportionate to stabilizer amount. This 

increased viscosity could have influenced by decreased whipping abilities. The previous 

study in whipped creams demonstrate that use of whipped cream resulted in increased 

viscosities by leading to lower overruns impact but higher stability (Goff et al., 1994). 

High viscosity systems allowed to foam stability but not favor foaming capacity.  

Figure 24. Changes in the viscosity of ice cream mix formulated with reduced stabilizer. 

The cavitated samples were manufactured at 3600 RPM at 100 L h-1. (1) mix 

formulated with 0.28% of stabilizer; (2) commercial mix with 0.28%; (3) mix 

formulated with 0.21% of stabilizer; (4) mix formulated with 0.14% of 

stabilizer; and (5) mix formulated with 0% of stabilizer.  

 

The application of HC significantly increased the viscosity of the mix, and such 

changes were more notorious at low shear spectrum. For instance, in the low shear 

spectrum (1 s-1), HC yielded an increase in the viscosity up to 1.6-fold. Contrary, at 
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higher shear rates (up to 13 s-1), the increase in viscosity was even more pronounced, up 

to 2.41-fold. These observations exemplify the complexity of interactions between 

different ingredients during HC. This is an important consideration in relation to process 

engineering since changes in the viscosity might alter the processing conditions as well as 

the final quality of the product.  

 

4.4. Conclusion 

Hydrodynamic cavitation was applied for the clean label approach in ice cream mix. 

Particle size of ice cream mix and rheology test was conducted to determine the influence 

of the stabilizer amounts in ice cream mix. Hydrodynamic cavitation itself reduced the 

particle size of cream and ice cream mix. Dynamic rheological measurements (strain and 

frequency sweeps) of ICM indicated increased product stability with rotation speed of 

3600 RPM and a flow of 100 L -1. However, the mechanical spectra were considerable 

different. Imparted viscosities at medium shear rates were at least 2-fold greater 

compared to formulations homogenized conventionally.  
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Chapter 5 

Overall conclusions and recommendations   

5.1. Overall conclusions  

The application of hydrodynamic cavitation for dairy manufacturing is now a 

commercial reality. Today, the applicability of hydrodynamic cavitation in dairy 

manufacturing include microbial inactivation, mixing, dispersion, emulsification, and 

particle size reduction. Intelligent combination of flow rate, speed of rotor, and food 

formulation offer potential in terms of improving functionality and quality.  

The technological solution developed in part through this research can help US 

equipment vendors to design and commercialize advanced pasteurization concepts that can 

be used for producing shelf stable and/or extended shelf life products. The study can also 

help US manufacturers remain competitive in the global market place.  

 

 

5.2. Recommendations  

Recently, there is an increasing growing interest in the development of new 

technologies r not only for the preservation of foods but also to improve the final quality. 

Currently, there is only limited efforts in investing the effects of cavitation on product 

quality. The emerging nature of the hydrodynamic cavitation makes very difficult to 

compare results from the different studies generated using different configurations. 

Research efforts are needed to determine the role and their relationship of the mechanical 

forces acting on a given configuration on the quality, nutrition, and microbial safety. The 

analysis of the cavitation parameters needs to be studied in more depth through 
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computational fluid dynamics. Concomitantly, the development of models for simulating 

cavitating flow should be validated with experimental observation, such as visualization 

of cavitation bubbles within a flow and acoustical measurements.   

 

Research efforts must be directed towards the inactivation kinetics of thermoduric 

bacteria. Further development of the hydrodynamic cavitation should also include other 

microorganisms. The residence time distribution of different fluids needs careful 

characterization as well as the evaluation of process uniformity. The processing 

conditions at which a desirable log reduction level has been achieved need to be 

correlated with quality parameters, such as Whey Protein Nitrogen Index (WPNI). The 

functional properties of the resulting powder need to be evaluated to further evaluate the 

feasibility of the hydrodynamic cavitation.  

 

Hydrodynamic cavitation can be used to perform emulsification of ice cream mix. 

The ice cream mix treated with cavitation displayed higher viscosity, and the impact of 

freezing on a viscous mix needs further evaluation. The understanding of the changes 

induced by cavitation on the ice cream mix will help to determine the freezing conditions, 

and the resulting ice cream should be evaluated using a battery of tests, including 

composition, rheological properties, microstructure, particle size, hardness, and melting 

rate. 
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