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ABSTRACT 

USE OF UNMANNED AERIAL SYSTEM (UAS) FOR HIGH THROUGHPUT 

EVALUATION OF FORAGE YIELD IN OAT BREEDING NURSERIES 

PRAKRITI SHARMA 

2020 

Current strategies for phenotyping (for traits like biomass) numerous breeding lines under 

field conditions demand significant investment in both time and labor. Unmanned aerial 

systems (UAS) can be used to collect vegetation indexes (VI) with high throughput and 

could provide an efficient way to predict forage yield in breeding nurseries with 

accuracy. The main objective of the study was to evaluate the use of VIs derived from 

UAV collected images for estimating crop biomass. For this study, forage trials 

consisting of 35 oat genotypes were carried out at three locations in 2018 and four 

locations in 2019. Unmanned aerial vehicles (UAV) equipped with multispectral and 

visible sensors were flown over experimental plots in Volga, South Shore, and Beresford, 

several times throughout the 2018 and 2019 growing seasons. Images were also collected 

in Pierre in 2019 just prior forage harvest. Fresh and dry biomass were collected on each 

plot at each location. Several VIs derived from the UAV collected pictures were 

significantly positively correlated with fresh and dry biomass for the locations Volga and 

Beresford (r=0.2-0.65). However, none of the VIs were significantly correlated with crop 

biomass in South Shore. Multiple linear regression models (MLR) were developed for 

each location to predict fresh and dry biomass using VIs, plant height, crown rust severity 

and chlorophyll content as explanatory variables. The best predictive models for dry 
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biomass prediction had a R-square value of 0.52 for Volga, 0.67 for Beresford and 0.25 

for South Shore. For fresh biomass prediction, selected models had a R-square values of 

0.83 for Volga, 0.9 for Beresford, and 0.44 for South Shore. Results from Beresford and 

Volga suggests that VIs derived from UAV collected could be useful for biomass 

prediction. Yet, multiple years of trial data would be necessary to further validate the 

potential use of UAV for estimating oat biomass.
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1. Introduction 

 

Oat (Avena sativa L.) is a small grain crop, used for direct grazing (Wheeler, 1981), 

silage, hay and grain production.  It is also a beneficial cool season cover crop for 

biomass production, weed control, erosion control and soil health (Suttie and Reynolds, 

2004).  In 2018, oats were planted over 290 thousand acres in South Dakota and only 95 

thousand acres were harvested for grain (https://www.nass.usda.gov). More than 50% of 

the oats being cultivated in South Dakota are grown for forage. 

In comparison to other annual forage crops, oat has a low production and management cost, 

it performs better in acidic soil conditions, and thrives in variable soil types 

(https://plantvillage.psu.edu/topics/oats/infos). Oat forage is also preferred over other 

annual forage crops because of its high palatability and dry matter content (Kim, Tinker, 

& Newell, 2014; McCartney, Fraser, & Ohama, 2008).  

Selection for forage yield requires breeding lines to be evaluated in multiple locations for 

several years. Forage yield is a complex trait controlled by many genes. In recent years, 

there have been advances in genome sequencing and other molecular technologies (for 

example; genomic selection, marker assisted selection) that have significantly improved 

selection procedure and reduced breeding cycle in different types of forage crops (Hayes, 

2013). However, for phenotyping forage yield, recent high throughput methodologies still 

require to be tested and validated for their robustness and cost effectiveness.   

Some of the methodologies that are being used for phenotypic assessment of forage yield 

are visual scoring, sample clipping and mowing of individual breeding plots. The visual 

scoring method is subjective. The biomass clipping is based on the collection of a small 

representative sample of the experimental unit which leads to relatively high error on the 

https://www.nass.usda.gov/
https://plantvillage.psu.edu/topics/oats/infos
https://onlinelibrary.wiley.com/doi/full/10.1111/jac.12318?casa_token=GeqYV7YQ7VQAAAAA%3A2rMwZD5JWEDg4Ns5xjJoUXmTaS7vKJkV8Q-ewT0cPFnz3CCjWX7vDzkBTQrP8UO-GjPn4pH0jNA-#jac12318-bib-0012
https://onlinelibrary.wiley.com/doi/full/10.1111/jac.12318?casa_token=GeqYV7YQ7VQAAAAA%3A2rMwZD5JWEDg4Ns5xjJoUXmTaS7vKJkV8Q-ewT0cPFnz3CCjWX7vDzkBTQrP8UO-GjPn4pH0jNA-#jac12318-bib-0016
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estimation of dry matter yield. The mowing procedure for evaluating forage yield consists 

of harvesting the plots, immediately weighing the biomass and then drying a sub-sample 

for dry matter yield measurement. These methods are labor intensive and time consuming. 

Remote sensing platforms like low altitude unmanned aerial systems (UAS) are becoming 

a common tool to increase the throughput of phenotypic data collection in plant breeding 

nurseries (Ballesteros et al., 2018; Bendig et al., 2013; Díaz-Varela et al., 2015). UAS are 

capable of rapid assessment of phenotypes in varietal trials with high spatial and temporal 

resolution (Shi et al., 2016). UAS platform can be equipped with different types of sensor. 

Visible and multispectral sensors are commonly used for phenotyping various agronomic 

traits including yield, disease resistance, ground cover, and biomass. 

Above ground biomass can be estimated using VIs. Plant greenness is measured based on 

reflectance in the near-infrared and visible wavelengths (Gitelson, 2004). The VIs are 

indicators of actual plant function as leaf or canopy reflectance is dependent on plant status. 

For example, green vegetation can absorb a large portion of the reflected light spectrum; 

this is because of the composition of leaf pigments i.e. chlorophyll and xanthophyll. The 

absorption  is directly correlated to the physiological state of plants (Jones and Vaughan, 

2010; Marcial-Pablo et al., 2019).  

Usually, plant biomass estimation is performed by the calculation of VIs in the near 

infrared regions (NIR) (Qi et al., 1994; Rouse Jr et al., 1974), which falls under 

wavelength ranging within 700 and 1300 nm. Spectral indices have been used for 

biomass prediction in field experiments for various crop species including maize (Zea 

mays L.) (Osborne et al., 2002; Teal et al., 2006) and wheat (Triticum spp.) (Babar et al., 

2007; Bellairs et al., 1996; Ferrio et al., 2005; Gutierrez et al., 2010; Royo et al., 2003). 
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One of the most commonly used indices is the normalized difference vegetation index 

(NDVI = (NIR-R)/(NIR+R)) (Calvao and Palmeirim, 2004; Tucker et al., 2001) ; where 

NIR refers to the reflected value in the near infrared region (800nm) and R refers to the 

reflected value in the red band region (680nm).  NDVI is useful for biomass estimation as 

it responds to variation in chlorophyll absorption in red spectra and multi scattering in 

NIR spectra causing high reflectance (Mutanga, 2004).  The NDVI has been used for the 

prediction of biomass and percentage of ground cover in winter forage crops (Prabhakara 

et al., 2015). However, the use of multiple indices is recommended for biomass 

prediction as different types of VIs are subject to different sensitivity depending on the 

amount of biomass and the stage of the crop. The NDVI, GNDVI, SAVI and G-R are 

more accurate for estimating the biomass at early crop stages (Prabhakara et al., 2015), 

while they get saturated at later stages (Mutanga and Skidmore, 2004; Thenkabail et al., 

2000) and TVI is useful for predicting canopy biomass at later stages (Chen et al., 2009).  

Many studies have developed regression models to predict biomass based on spectral 

reflectance data (Aparicio et al., 2000; Bendig et al., 2014; Brocks and Bareth, 2018). 

Aparicio et al. (2000) found that NDVI, SR (simple ratio) and PRI (photochemical 

reflectance index) collected from heading to maturity for durum wheat explained 52, 59 

and 39% of the variability in grain yield, respectively. Similarly, Bendig et al. (2014) 

developed regression models with a R-square value of 0.71 for biomass prediction (using 

RGB derived VIs and crop surface models) for barley subjected to different nitrogen 

treatments. Brocks and Bareth (2018) used exponential and simple linear regression models 

using crop surface models and RGB derived VIs for the prediction of dry biomass in barley 

(R square value: 0.59,0.77).  The use of UAV platforms to estimate biomass in oat breeding 
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nurseries could be an effective way to address the drawbacks of traditional phenotyping 

methods for estimating forage yield (Montes et al., 2011). Many breeding lines planted in 

micro-plots could be quickly evaluated for biomass production at an early stage of line 

development in a non-destructive manner. While several studies validated the performance 

of UAS for estimating several important agronomic traits in various crops, the use of UAS 

for estimating plant biomass in oats hasn’t been validated. The main objective of this study 

is to evaluate the use of VIs derived from UAV collected imagery to predict crop biomass 

in oat. To achieve these objectives, airborne images (from UAV) and oats dry and fresh 

biomass was collected from different locations in South Dakota. The predictive 

performance of various VIs derived from different sensor and with different VI extraction 

methods were compared in this study.  

  

 

2. Material and Methods  

2.1. Field experiments 

For this study, thirty-five oat genotypes, adapted to the Northern Great Plains, were 

grown at three locations in South Dakota [Volga (44.321994, -96.924565), South Shore 

(45.105087, -96.927985) and Beresford (43.080859, -96.776148)] in 2018 and 2019. In 

2019, an additional site located in central South Dakota was included [Pierre (44.367966, 

−100.336378)] (Figure1). The experimental design followed a randomized complete 

block design (RCBD) with three replications. The experimental units were approximately 

2.78 m2 for Volga, South Shore and Beresford and 6.03 m2 for Pierre. Row spacing was 

0.19 m. Oats were planted at a density of approximately 300 seeds per square meter and 
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at a depth of approximately 0.038 m. Homogeneous agronomic management was 

conducted at each site. The planting and harvesting dates for each location in 2018 and 

2019 are provided in Table 1.  

 

2.2. Ground data collection 

Several phenotypic traits which could directly or indirectly affect forage yield were 

collected for this study. During the 2018 growing season, heading date, chlorophyll 

content, leaf-to-stem ratio, crown rust severity, forage visual rating and plant height were 

collected. Heading date was recorded for each of individual plot when 50% of the 

panicles were emerged.  Chlorophyll content was measured by using a Chlorophyll meter 

SPAD-502 Plus (Konica Minolta Sensing Singapore Pte Ltd). The device measures the 

optical density difference at two wavelengths with an accuracy of +/- 1.0 SPAD units. 

Measurements were performed on five plants on the first leaf beneath flag leaf.  Leaf-to-

stem ratio was evaluated on five plants per plot. After removing the roots and panicles, 

the stem and leaf were separated and placed in an oven set at 70 degree Celsius for one 

week. The dry weight was then collected, and the leaf-to-stem ratio calculated. Plant 

height was measured by placing a ruler in the plot and visually estimating the average 

height (from the ground surface to the tip of the panicles) of all plants in the experimental 

unit. In 2019, plant height, heading date and crown rust severity were collected. The 

forage visual rating was given in score of 1-9 depending on the vigor of each plot. 

When plants were between late milk and early dough, plots were harvested for forage. 

The plants were cut close to the soil surface with a Jari mower or a forage harvester 

depending on the location (Figure 2). The fresh weight of each plot was recorded 
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immediately after harvest. Harvested area was 1.67 square meter at Beresford, Volga, and 

South Shore in 2018; 2.78 square meter at Beresford, Volga, and South Shore in 2019; 

and 3.62 square meter in Pierre in 2019. For each plot, a sub-sample was collected and 

dried in an oven set at 70 degrees Celsius until the weight was stable (approximately a 

week). Dry matter content was calculated and used to measure dry matter yield for each 

plot.  

Dry mater content (%):  
𝐷𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡

𝐹𝑟𝑒𝑠ℎ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡
  * 100% 

Dry biomass: fresh weight * dry matter content   

 

2.3. Field spectroradiometer measurement  

The spectroradiometer measurements were collected for each plot at all locations in 2019 

except Pierre. The reflectance spectra were measured using CROPSCAN MSR16R 

(CROPSCAN Inc, MN 55906 USA) on July 8th in Beresford, July 16th in Volga, and July 

18th in South Shore. The CROPSCAN (CROPSCAN Inc., 2013) is a handheld 

multispectral radiometer which collects spectra between 460 nm and 1640 nm with 16 

distinct wave bands. The device consists of two sensors: one for incident light on top of 

the instrument and one beneath for reflected irradiance from the ground. These two 

measurements are used to calculate the percent reflectance for each wave band. The 

CROPSCAN was held approximately 0.5 m above the canopy level. The data was 

collected only in midday with adequate sun angle and minimum cloud coverage. 

Irradiance readings below 300 w/m2 were deleted to remove inaccuracy caused by cloud 

cover and insufficient signal-to-noise ratio.  
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2.4. Aerial Platform and Sensors 

The UAVs deployed were a DJI (Dà-Jiāng Innovations) Matrice 600 (SZ DJI Technology 

Co., Ltd, China) in 2018 and 2019, and a DJI Phantom 4 pro (SZ DJI Technology Co., 

Ltd, China) in 2019. The DJI Matrice 600 is a six-rotor flying platform, with a maximum 

takeoff weight of 15.1 kilograms. The DJI Phantom 4 Pro aircraft is a four-rotor flying 

platform weighing 1.388 kilogram. Both platforms have obstacle sensing technique that 

helps it to intelligently avoid obstacles during flight. In contrast to the DJI Phantom 4 

pro, the DJI Matrice has GPS (Global Positioning System) antenna incorporated in 

platform itself. 

Multispectral images were collected with two different types of sensors. In 2018, the DJI 

Matrice 600 was equipped with a Slantrange sensor (Slantrange, Inc., CA). In 2019, a 

Micasense sensor (MicaSense, Inc., WA) was used instead on that same platform. The 

RGB camera which is built-in the DJI Phantom 4 pro was used to collect visual images 

(Figure 3). The specifications for the three sensors used are provided in Table 2. 

 

2.5. UAV based data collection 

For UAV waypoint navigation and flights, autopilot system was applied using Drone 

Deploy (Drone Deploy, San Francisco, CA) software over AOI (Area of Interest). 

Drone deploy software was used for autonomous takeoff, flight and landing purpose, and 

for capturing consistent data over time. Each of the flight was performed at an altitude of 

80 ft and with front and side overlap of 80%. The flight was performed in either full 

sunny or full cloudy day condition with wind gust less than 12 miles per hour. 
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2.5.1 Flight dates for year 2018 and 2019 

Pictures were collected during multiple flights at each location (Table 3) in June and July 

(before harvest of biomass at late milk to early dough stage).  

2.5.2 Radiometric correction  

The Slantrange 2P sensor was equipped with ambient light calibration sensor which was 

responsible for correcting radiometric error in the raw images. The conversion of digital 

numbers in raw imageries to reflectance value was performed using Slant View software 

(see http://www.slantrange.com/slantview/). Radiometrically corrected multispectral 

mosaic images were used to generate various VIs. 

In 2019, the radiometric correction was performed using white tarps. Four white tarps 

were evenly spaced around each corner of each field. The reflectance value of the tarps 

was determined using the Cropscan sensor. The calibration panel was designed following 

the principles of radiometric calibration i.e. it was spectrally homogeneous, near 

Lambertian, horizontal, covered a range of reflectance values, and it covered an area 

many times larger than the pixel size of the sensors used (Smith and Milton, 1999). The 

four white tarps were used in the development of linear relationship between DN (Digital 

Number) and surface reflectance. The average DN of white tarps from drone imageries 

from all the flights were used to develop an equation for each band. The slope and 

intercept from this linear equation was later used to convert DN values from each band to 

reflectance. The DN values were converted to reflectance using the following equation: 

SR ij = Slope * DN ij  Intercept 

Where DN ij is the digital number for ith band at jth flight period and SR ij is the surface 

reflectance for ith band at jth flight period. 

http://www.slantrange.com/slantview/
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2.5.3 Ground Control Points  

 

In order to geo reference the imageries from different flights at the same location, ten 

ground control points (GCPs) were used across the field area. The GCP coordinates were 

measured with Magellan GPS device (Magellan Navigation Inc, San Dimas, California). 

These targets points were considered for all images taken during the growing season to 

increase accuracy and to overlay measurements taken at the multiple dates for a specific 

location (Figure 4). 

  

2.6 UAV data processing  

2.6.1 Image preprocessing 

The processing of raw images captured from UAV was done by using Pix 4D software 

(Pix4D Inc. San Francisco) to generate orthomosaic images in tiff format. After the initial 

processing assuring geoinformation, point cloud densification was done for defining the 

surface of the object and linking related 3D points in images (Figure 5). The orthomosaic 

images were generated with a spatial resolution of 0.58 cm per pixel for DJI phantom 4, 

0.7 cm per pixel in Micasense sensor, and 1.28 cm per pixel for Slantrange sensor. 

 

2.6.2 Spectral vegetation indices extraction 

The orthomosaic images were then processed using Arc GIS software (Version 10.7. 

Redlands, CA) to extract spectral indices.  They were first converted to float from raster 

format. Then, using raster calculator tool in the software, various vegetative indices were 

created. The shape file was created using the same software and used for the 
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identification of each breeding plot as an experimental unit. Finally, zonal statistics tools 

were used to derive vegetation indexes for each experimental unit (Figure 5). 

For multispectral images, several VIs was considered including the normalized difference 

vegetation index (NDVI), green normalized difference vegetation index (GNDVI), and 

triangular vegetation index (TVI). These VIs are well known for their correlation with 

biomass. The NDVI is used for prediction of green biomass and changes in vegetation 

state (Goswami et al., 2015). The GNDVI is sensitive to a wide range of chlorophyll-a 

concentration (0.3 – 45 g/cm2) and could be suitable predictor for biomass at late crop 

stages (Gitelson et al., 1997). The TVI is known for its reduced effect in asymptotic 

biomass saturation and was recommended for the estimation of biomass (Prabhakara et 

al., 2015). The TVI is based on hypothetical triangle in spectral area which links green 

peak reflectance, maximum chlorophyll absorption and shoulder of NIR band. The red-

edge triangulated vegetation index (RTVI) is another index that is used for biomass 

prediction using reflectance values in NIR, red edge and green spectral bands 

(Haboudane et al., 2004). The  red edge normalized difference vegetation index 

(RENDVI)  is used as a modification of the NDVI for estimating canopy foliage content 

(Gitelson, 2004) (Table 4). 

For RGB images, the indices considered included excess green, excess green minus red, 

normalized green-red differential index, and vegetiven. These were previously used as 

predictor variables for the estimation of biomass in barley (Li et al., 2016) and maize 

(Geipel et al., 2014; Marcial-Pablo et al., 2019) (Table 5).   
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2.7 Statistical analysis 

The relationships between VIs and ground collected data were evaluated using Pearson 

correlations with “Hmisc” package in R (R core Team 2017). Multiple linear regression 

models were developed to predict fresh and dry biomass using VIs, plant height, crown 

rust severity, chlorophyll content, leaf-to-stem ratio and heading date as predictor 

variables. Two-way ANOVA analysis was performed to see if there is variation in VIs 

across different genotypes. The regression analyses were performed using SAS studio 

software. The stepwise selection method was used to select the best predictors. Then, 

multicollinearity was evaluated by calculating variance inflation factors (VIF) for each 

selected variable. Variables with a VIF exceeding 10 were excluded to remove 

collinearity from the model. The models were compared based on their coefficient of 

determination (R-square) and root mean square error (RMSE). 

 

 

3. Results and discussions 

3.1 Ground based dry and fresh biomass measurements  

Thirty-five oat genotypes were evaluated in forage trials at three locations in 2018 and 

four locations in 2019. The effect of growing environment and genotype on fresh and dry 

biomass was significant (Table 6 and 7).  The highest dry biomass was produced at South 

Shore with an average of 5.2 and 6.1 tons per acre in 2018 and 2019, respectively (Figure 

6 & 7). The lowest dry biomass was produced in Volga with an average of 2.2 and 4.1 

tons per acre, in 2018 and 2019, respectively (Figure 6 and 7). 



12 

 

 

Based on information extracted from the Agacis website, the temperature and 

precipitation averages at South Shore in 2018 were lower (40.5F, 21.4 inches) than at 

Beresford (45.3F, 36.7 inches) and Volga (42.7F, 33.9 inches). In 2019, the average 

temperature during the growing season (May-July) was 61.6F in South Shore, 66F in 

Beresford and 63F in Volga.  In 2019, precipitations during the growing season (May-

July) averaged 4.7 inches in South Shore, 3.9 inches in Volga and 4.7 inches in 

Beresford.  

Wet conditions favored the development of crown rust in all three locations.  

In 2018, the average crown rust severity was 15.9% in Volga and 44.3% in South Shore 

(Figure 8). In 2019, crown rust severity was least severe in South Shore. The average 

crown rust severity was 25 % in South Shore while it was 50% at the other two locations 

(Figure 9). Not all genotypes had the same level of susceptibility to crown rust. If we 

observe bar plot in figure 10, the topmost crown rust severity rated genotypes are selected 

for every location. Hayden and Rockford had highest average severity rate of 85 score in 

Volga. In Beresford as well, Rockford had the highest average severity rate of 95 score. 

From the bar plot of South Shore, SD170528 had highest severity rate of 65 score. Since, 

there was a negative correlation between fresh biomass and crown rust severity at 

Beresford (r = -0.59) and Volga (r = -0.4), it suggests that biomass was affected by crown 

rust at those two locations in 2019. The correlation between biomass and crown rust 

severity was however not significant in South Shore. (Table 6 and 7). 
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3.2 Relationships between biomass and other ground-based data  

The heading date had significant positive correlation with fresh biomass in Beresford (r 

=0.41), Volga (r = 0.47) and South Shore (r = 0.33) in 2018 (Table 6). In 2019, only 

Pierre had significant positive correlation value of 0.53 between fresh biomass and 

heading date (Table 7). In 2018, low but significant positive correlations were found 

between chlorophyll and fresh biomass in Beresford (r = 0.17) and Volga (r = 0.19) while 

for South Shore, leaf-to-stem ratio had the moderate positive correlation value of 0.4 with 

fresh biomass. In 2018, there was no significant correlation between crown rust and 

biomass at South Shore and Volga (Table 6). In 2019, crown rust severity had significant 

negative correlation with biomass for Beresford and Volga (Table 7). The plant height 

was not significantly correlated to fresh or dry biomass in 2018.  In 2019, plant height 

had significant positive correlation with fresh biomass in Beresford (r=0.44), Volga 

(r=0.35), Pierre (r=0.38) and South Shore (r=0.29). In 2018, the forage visual rating had 

significant positive correlation with fresh biomass in Beresford (R square = 0.41) and 

South Shore (R square = 0.27). In 2019, there was no significant correlation between 

biomass and visual forage rating score with biomass in South Shore. 

 

 

3.3 Estimation of broad-sense heritability, average and range for the forage and 

agronomic traits 

Broad-sense heritability estimates were calculated for dry and fresh biomass yield and for 

other agronomic parameters (plant height, heading date, chlorophyll measure, crown rust 

severity, etc.). For 2018 (Table 8), the broad-sense heritability estimate for fresh biomass 
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was 0.5 in South Shore, 0.43 in Beresford and 0.35 in Volga. For dry biomass, broad-

sense heritability was 0.24 in South Shore, 0.29 in Beresford and 0.03 in Volga. Heading 

date had the highest broad-sense heritability in Volga (H2 = 0.88) and Beresford (H2 = 

0.83). Crown rust severity had heritability estimate of 0.83 in Volga and 0.51 in South 

Shore.  In 2019, broad-sense heritability was relatively higher for fresh and dry biomass 

in Pierre (fresh: H2 = 0.62 and dry: H2 = 0.5) and in Beresford (fresh: H2 = 0.4 and dry: 

H2 = 0.55) compared to South Shore (fresh: H2 = 0.22 and dry: H2 = 0.35) and Volga 

(fresh: H2 = -0.03 and dry: H2 = -0.01). Heading date had the highest broad-sense 

heritability in Beresford (H2 = 0.86) and in Pierre (H2 = 0.89).  In South Shore, broad 

sense heritability for the crown rust severity was 0.8 which implies that crown rust 

resistance was mostly influenced by genetic factors (Table 9). 

 

3.4 Relationships between VIs and biomass  

Several VIs was derived from multispectral and visual images for each flight in each 

location (Table 10-14). Pearson correlation coefficients between biomass and the 

different VIs are shown in Table 10,11,12,13 &14 for Volga, Beresford, and South Shore 

in 2018 and 2019.    

 

3.4.1 Pearson correlation coefficients between VIs derived from Cropscan and biomass 

Multispectral reflectance measurements were collected with a Cropscan on the last flight 

date at each location (a day before or on the day of forage harvest). Among the VIs 

collected with the Cropscan, NDVI had the highest correlation with fresh biomass in 

Volga (r= 0.65) and Beresford (r = 0.75) (Table 6).  NDVI had also the highest 
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correlation with dry biomass in Volga (r = 0.48) and in Beresford (r=0.63). None of the 

VIs derived from the Cropscan were significantly correlated with fresh and dry biomass 

at South Shore (Table 10). 

 

3.4.2 Pearson correlation coefficients between VIs derived from UAV sensors and 

biomass 

Multispectral reflectance measurements were collected with Slantrange in 2018 and 

Micasense in 2019 at each location. Among the VIs collected with the Slantrange sensor, 

GNDVI had the highest correlation with fresh biomass in Volga (r = 0.5) and Beresford (r 

= 0.49). However, NDVI had the highest correlation with dry biomass in Volga (r = 0.48) 

and Beresford (r = 0.43). There was no significant correlation between VIs and biomass 

measurements in South Shore (Table 11).  

Among the VIs derived from the Micasense sensor (2019), GNDVI had highest 

correlation with fresh biomass at Volga (r = 0.49), Beresford (r = 0.7) and South Shore (r 

= 0.27). NDVI was most correlated with dry biomass in Volga (r = 0.35), Beresford (r = 

0.55) and South Shore (r = 0.2) (Table 12, 13 and 14). 

Among the VIs derived from the RGB sensor (2019), NGRDI had the highest correlation 

with fresh biomass at Volga (r = 0.41), Beresford (r = 0.61) and South Shore (r = 0.21). 

NGRDI had the highest correlation with dry biomass in Volga (r = 0.44), Beresford (r = 

0.49) and South Shore (r = 0.21) (Table 12, 13 and 14). 

In 2018, we had a limited number of flight operations. Consequently, it was difficult to 

identify the impact of crop development on the accuracy of biomass prediction. In 2019, 

however, the flights occurred at regular intervals from early vegetative stage till harvest 



16 

 

 

(June, July). The highest correlation coefficients between crop biomass and VIs occurred 

at different crop stage for different locations (Table 12, 13 and 14). In Beresford and 

Volga, the highest Pearson correlation values for multispectral derived VIs and RGB 

derived VIs were obtained for later flights conducted in July (July, 4th and 11th  in Volga, 

and July 8th and 12th in Beresford) when the majority of the genotypes were at the early 

dough to dough stage. But in South Shore, a few indices (TVI & RTVI) had significant 

correlation with biomass for the flight performed on June 25th where many genotypes 

were at heading stage. However, because the thirty-five genotypes had different maturity, 

not all plots were at the exact same growth stage when the imagery was collected during 

each flight.  

Overall, among the different types of sensors used in this study (multispectral spectral 

Cropscan, multispectral Micasense and RGB sensors), the VIs from the Cropscan had the 

highest correlation coefficients with biomass. Multispectral and RGB sensors had similar 

performance in term of correlation with biomass for Volga and Beresford. In South 

Shore, however, irrespective of sensor types, almost none of VIs were significantly 

correlated to biomass.  

 

3.5 Relationships between Cropscan and UAV derived vegetation indices 

The Pearson correlation coefficients were calculated between VIs from Micasense sensor 

and Cropscan for all locations. The reason behind this comparison was to validate the 

UAV derived data with broad range multispectral data derived from handheld Cropscan. 

The VIs extracted from the Micasense multispectral sensor had high correlation value (r 

= 0.6-0.78) with the VIs derived from Cropscan for Beresford.  For Volga, the correlation 
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coefficients ranged from 0.3 to 0.69. For South Shore, RENDVI collected with UAV was 

most correlated with Cropscan (r = 0.41) (Table 15). 

 

3.6 Vegetation index time series for each location 

3.6.1 Multispectral VI time series (Micasense) 

Change in VIs throughout the growing season were evaluated by plotting average VI by 

flight date in each environment. This time series analysis was performed for NDVI and 

TVI index to check for the possibility of saturation of indices (Table 10,11,12) in different 

environmental conditions. 

Changes in average NDVI and TVI (derived from imageries collected with the Micasense 

sensor) during 2019 growing season are presented for each location in Figure 11 (a, b, and 

c). For Volga (Figure 11b) and Beresford (Figure 11a), the average NDVI was highest for 

the last flight date (July 12th in Beresford, July 11th in Volga). For Beresford, the NDVI 

and TVI collected on the last flight (July 12th) were able to best predict fresh biomass with 

R-square values of 0.47 and 0.45 respectively.  For Volga, the NDVI collected on July 4th 

were best at predicting fresh biomass with R-square value of 0.26. Whereas, for TVI 

collected at 25th June flight was best to predict biomass at Volga with R square value of 

0.24.  

At South Shore (Figure 11c) however, NDVI reached a maximum on June 25th (boot stage). 

After that, the vegetation index average values decreased with time. A similar trend was 

observed for coefficient of determination value obtained for NDVI with fresh biomass. For 

TVI, in other hand, the three flights taken after June 25th had similar average index values. 
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Also, the average TVI from thirty-five genotypes from imagery collected on June 25th, at 

boot stage and on July 19th at dough stage were nearly similar. Although, the coefficient of 

determination for NDVI & TVI with fresh biomass peaked 25th June and was diminishing 

at later flights.  

3.6.2 Visual VI time series (RGB sensor) 

 

Changes in average NGRDI and VEG (derived from imageries collected with the RGB 

sensor) during the 2019 growing season are presented for each location in Figure 12 (d, e, 

f). For Volga and Beresford, the average NGRDI was highest at the second to last flight 

date (July 8th in Beresford, July 11th in Volga). For South Shore, both NGRDI and VEG 

reached at maximum on July 11th. For Beresford, NGRDI and VEG collected on July 8th 

were able to best predict fresh biomass with R-square values of 0.5 and 0.34, 

respectively. However, for South Shore, NGRDI and VEG from flights conducted after 

June 16th couldn’t predict fresh biomass.  

One of the possible reasons behind the indices not being able to predict biomass is that they 

might have been subjected to saturation when the biomass reached a certain threshold 

value. Index saturation has been reported previously in different studies. (Prabhakara et al., 

2015) reported that VIs was not able to detect the amount of biomass when there was a 

high vegetation for barley and rye. In their study, NDVI, GNDVI, G-R (Green-Red 

vegetation index) saturated after reaching a value of approximately 0.8 and were only 

related to biomass under ~1500kg/ha beyond which an increase in biomass did not increase 

vegetative index value. Index saturation was also reported by Mutanga and Skidmore 

(2004), where they used narrow band vegetation indices like Modified Normalized 

Difference Vegetation Index (MNDVI), SR and TVI to estimate biomass of Cenchrus 
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ciliaris. In their study, the standard NDVI showed strong chlorophyll absorption in the red 

region and near infrared band had lower R square value of 0.26. The SR, MNDVI and TVI 

were more strongly correlated with biomass (average R-square values of 0.80,0.77 and 

0.77 for SR, MNDVI, and TVI, respectively). Also, in a study done by Hanna et al. (1999), 

where near-infrared, green and red wavelength bands were used to predict biomass in 

pasture grasses in the range of 70 to 4000 kg/ha; NDVI was found to be saturated at 

moderate pasture densities.  In our case, average dry biomass was 9,000 kg/ha at the 

location with the lowest biomass production (Volga) and 13,000 kg/ha at the location with 

the highest biomass production (South Shore). Therefore, the three sites had biomass 

higher than the threshold for saturation reported in previous studies.  

Another possible cause to explain why VIs were poorly correlated to biomass in South 

Shore could be nature of the vegetation indices which depend on leaf greenness. The 

indicator of plant performance in remote sensing is leaf color. This is determined by every 

genotype with its specific properties like development of chlorophyll, leaf morphological 

and surface structure etc. These factors are highly affected by environmental stresses and 

plant nutrition status. In our case, South Shore location having higher moisture and lower 

temperature might have also affected the biomass production in different genotypes.  The 

presence of dew on the canopies at the time of flight could affect the spectral reflectance 

measurements and result in inaccurate vegetation indices.  Pinter et al. (1986) in their study 

on the effect of dew on canopy reflectance found that moderate to high dew levels enhanced 

reflectance in visible wavelengths by 40–60%, and decreased reflectance in wavelengths 

between 1.15 and 2.35 μm (NIR) by 25–60% in wheat cultivars. Also, for all the locations 

used in the study were experimentally set up with 35 different genotypes with different 
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maturity times. The heading stage for all 105 plots in Beresford occurred within 9 days 

interval, in Volga within 6 days interval and in South Shore within 9 days interval. 

Therefore, plots had different maturity stage on the day of harvest. There is an evidence 

that the vegetation indices like NDVI are limited to environmental condition and crop 

stages (Aparicio et al., 2000). Future studies should include soil moisture status, weather 

information, crop stage for each genotype and other environmental factors in order to 

investigate failure of VIs to predict biomass.   

 

 

3.7 Development of models for oat biomass prediction 

The main objective of the study was to estimate fresh and dry biomass using UAV-based 

VIs. Because chlorophyll content, heading date, plant height, and crown rust severity 

were sometimes related to oat biomass (Table 6 and 7), those variables were also 

considered as independent variables to determine if they could improve models for 

biomass prediction.  

3.7.1 Biomass prediction models using VIs from Slantrange sensor 

 

Multiple linear regression models for fresh and dry biomass prediction in 2018 were 

developed using VIs derived from Slantrange sensor along with several agronomic traits 

as predictor variables (Table 16 and 17). For dry biomass prediction, models developed 

with GNDVI and TVI had the best fit for Volga (R-square = 0.35) and Beresford (R-

square = 0.3).  For South Shore, none of the VIs were able to predict dry biomass.  

For estimating fresh biomass, models developed using VIs only had better fit than models 

developed using agronomic traits only for Volga and Beresford. The models developed 
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with GNDVI and NDVI had the best fit for Volga (R-square = 0.5) and Beresford (R-

square = 0.42). None of the VIs were able to predict fresh biomass for South Shore. 

(Table 16 and 17). Models developed using VI derived from imagery collected with the 

Slantrange sensor had best models with R-square value of 0.35 for dry biomass prediction 

and 0.5 for fresh biomass prediction. These models have a low predictability for biomass 

estimation. 

3.7.2 Biomass prediction models using VIs from Micasense sensor 

 

Multiple linear regression analysis was done using VIs derived from Micasense sensor as 

predictor variables for estimating biomass. Prediction models for dry biomass with the 

best fit had a R-square of 0.58 for Volga, 0.54 for Beresford, 0.22 for South Shore, and 

0.17 for Pierre (Table 18). 

For fresh biomass (Table 19), the best models had R-square values of 0.6 in Volga, 0.84 

in Beresford, 0.2 in South Shore and 0.51 in Pierre. 

In all cases, models developed using VIs as predictors variables had higher R-squares and 

lower RMSE values than models developed using agronomic parameters as predictor 

variables.  

3.7.3 Biomass prediction models using VIs from RGB sensor 

 

Prediction models developed for biomass using VIs derived from the RGB sensor are listed 

in Table 18 and 19. The best MLR models for dry biomass prediction had R-square values 

0.54 for Volga, 0.49 for Beresford and 0.12 for South Shore. (Geipel et al., 2014; Li et al., 

2016) reported a stepwise linear regression model for dry biomass prediction with a R-

square value of 0.64 when using NGRDI and EXG from RGB sensor and canopy height as 
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predictor variables. For fresh biomass (Table 19), the best models had R-square values of 

0.75 for Volga, 0.73 for Beresford, 0.16 for South Shore. The VIs derived from imagery 

collected with the RGB sensor were better at predicting biomass than the agronomic data. 

The advantage of using RGB-based sensor is that imageries have a higher resolution in 

comparison to those collected with multispectral sensors. The higher resolution helps in 

visualizing and sorting vegetative and non-vegetative structures (Li et al., 2016). On the 

other hand, the multispectral sensors  have the advantage of having wider wave length 

enabling to detect NIR spectral information. This has been shown to help in differentiating 

panicle biomass and green vegetation biomass (Cen et al., 2019).  

In this study, both sensor types (Multispectral Micasense and RGB) led to the development 

of models with similar level of predictability (when comparing R-square and RMSE error). 

Similar results were found in a study done by Zou et al. (2017), where significant 

differences between VIs from multispectral (R square = 0.76) and RGB sensor (R-square 

= 0.73) was not found for estimating yield in rice. Li et al. (2016) used stepwise linear 

regression with RGB based VIs, mean canopy height, ninety percentile of canopy height, 

and coefficient of variation of standard and mean canopy height as predictor variables for 

estimating aboveground biomass of maize. Their best model was able to predict above 

ground biomass with a R-square of 0.64. Their result is like our regression models using 

RGB based VIs and other variables; the best models for fresh biomass prediction had a R-

square of 0.73 for Beresford and 0.75 for Volga. One of the studies developed regression 

models for above ground biomass in wheat using RNDVI, GNDVI, SR and WI (Water 

Index) as predictor variables. Their models accounted for 79, 85, 93 and 87 % of the 

variation in the aboveground biomass yield of wheat (Grain, 2014). In our case, prediction 
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models based on VIs from multispectral sensors explained 60% and 84% of the total 

variation in fresh biomass in Volga and Beresford. However, neither the VIs from 

multispectral sensor nor the VIs from the RGB sensorswere not able to give accurate 

biomass estimation for South Shore (only 20% of variation in fresh biomass was 

explained). 

The performance of VIs from RGB and multispectral sensors in predicting biomass varied 

with the location and the type of biomass (fresh or dry). In Beresford, NDVI from the 

multispectral sensor resulted in higher coefficient of determination values for biomass 

prediction compared to NGRDI from RGB sensor (Figure 13 a). For Volga, NGRDI 

derived from the RGB sensor had higher coefficient of determination values for biomass 

prediction than NDVI derived the from multispectral sensor (Figure 13 b). Whereas for 

South Shore, VIs from either sensor resulted in non-significant coefficient of determination 

value (R-square <0.1). 

 

 

3.8 Comparison of VIs extraction methods (average region of interest versus pixel 

classification) 

For the analyses reported in previous sections, VIs extraction through Arc GIS was done 

by selecting the region of interest (ROI) for each experimental plot. Average spectral 

reflectance of each band was calculated using all the pixels that fell within the ROI. 

However, pixels in the ROI included shadows, background soil, and panicles (after 

heading), which could affect the overall VIs values. Since, spectral indices are very 
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sensitive to green living vegetation, it is essential to select pixels with high NIR 

reflectance as a representative of green pixels from ROI.  

Several studies (Booth et. al 2006, Patrignani et. al 2015) used pixel classification to 

enhance the accuracy of UAV based data to differentiate canopy and non-canopy area. 

Booth et.al (2006) used single pixel sample point method to differentiate shrub and grass 

species from other background pixels. Patrignani et. al (2015), used Canopeo (automatic 

color threshold classification in MATLAB (The Mathworks, Inc., Natick, MA, USA) 

which classified pixels to canopy and non-canopy categories in various crops (turf, corn, 

sorghum, etc.). Schirrmann et.al (2016), in his research to estimate biomass in wheat, 

found that K-mean clustering algorithm is a faster method for pixel classification and 

more accurate when applied to clustering based on spectral reflectance of NIR rather than 

VIs like NDVI. 

For our study, MATLAB was used for K-mean clustering procedure using stacked 

mosaic images to create 6 cluster classes. This differentiation of cluster is based on the 

color feature of the image. Based on higher NIR reflectance, cluster types with green 

pixels were identified. A binary vegetation image was created after masking non canopy 

type cluster class. Then DN values for that cluster was extracted for all bands (NIR, red 

edge, red, green and blue) and converted to surface reflectance using calibration method. 

This was done for 2019 imageries collected with the Micasense sensor and the same 

vegetation indices (NDVI, GNDVI, RENDVI, TVI & RTVI) were re-extracted. 
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3.8.1 Pearson correlation coefficient between VIs and biomass measure 

 

In comparison with the standard method of deriving VIs using all pixels in the ROI, pixel 

classification resulted in VIs more highly correlated with biomass in certain cases. For 

the last flight in Beresford, the correlation between fresh biomass and NDVI was r = 0.69 

for the average pixel method and r = 0.71 after pixel classification. For the last flight in 

Volga, the correlation between fresh biomass and NDVI was r = 0.47 for the average 

pixel method and r = 0.74 after pixel classification. 

Similarly, for the last flight in Beresford, the correlation between dry biomass and NDVI 

was r = 0.55 for the average pixel method and r = 0.56 after pixel classification. For the 

last flight in Volga, the correlation between dry biomass and NDVI was r = 0.35 for the 

average pixel method and r = 0.55 after pixel classification. 

 The two methodologies gave similar results for Beresford. For Volga, however, the pixel 

classification method resulted in higher correlation between biomass and certain VIs. 

Also, it is important to note that the changes in correlation coefficient values are 

inconsistent depending on the vegetation index (Figure 14a).  GNDVI was the most 

correlated to fresh biomass prediction in Volga with the average pixel under ROI method, 

whereas NDVI was the most highly correlated with fresh biomass at that location with 

the pixel classification method. For that same location, the correlation between dry 

biomass and RENDVI was drastically increased when the pixel classification method was 

used in comparison to the average pixel method. 
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No differences were observed between the two methods for South Shore. In both cases 

hardly any vegetation index appeared to have significant correlation to biomass.  The 

RENDVI vegetation index had correlation of 0.31 with fresh biomass and GNDVI had 

correlation of 0.27 with dry biomass for pixel classification method. (Figure 14 a & b). 

 

 

3.8.2 Development of prediction models for oat biomass using VIs derived from the 

Micasense sensor (Pixel classification method) 

Table 20 lists the MLR models developed with VIs extracted using the pixel 

classification method (Micasense sensor). The best models for dry biomass prediction 

had a R-square value of 0.52 in Volga, 0.67 in Beresford and 0.25 in South Shore. For 

fresh biomass prediction, selected models had a R-square values of 0.83 in Volga, 0.9 in 

Beresford, and 0.44 in South Shore.  

Overall models developed using VIs derived through pixel classification had a better fit 

for predicting fresh biomass than models developed using VIs derived through the 

average pixel under ROI method .For all locations, predictive models for fresh biomass 

derived using only VIs derived using the pixel classification method had R-square values 

higher  than models based on VIs derived using the average pixel under ROI method 

(Table 21).  

Nevertheless, the results were different for dry biomass. For dry biomass prediction in 

Volga, using the pixel classification method resulted in a model with a R-square value of 

0.48 while the average pixel under ROI method resulted in a model with a R-square value 
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of 0.56. The relative performance of these methods for VI extraction depended on the 

location. 

Myneni and Williams (1994), when considering different planophile and erectophile 

species, reported that NDVI was unaffected by pixel heterogeneity for estimating canopy 

vigor based on biomass and color. Similarly, to our study, Tremblay et al. 2014 reported 

that the use of the pixel classification method barely increased the correlation between 

fresh biomass and leaf area index in corn as well as between fresh biomass and soil 

adjusted vegetation index (SAVI) using multispectral imagery derived from UAV. 

 

 

 

4. Conclusion 

 

The purpose of the study was to estimate oat biomass using VIs derived from high 

resolution imageries. Differences in growing conditions between the three locations   

resulted in significant variation in oat biomass production. In Beresford, where 

susceptible cultivars were affected by severe crown rust infections, a significant negative 

correlation between crown rust severity and biomass was observed.  

The VIs derived from multispectral and RGB sensors were found to be positively 

correlated to fresh and dry biomass in Volga and Beresford. However, the strength of the 

correlation between vegetation indices and oat biomass were dependent on the 

environmental conditions. The VIs was more highly correlated with fresh biomass than 

with dry biomass. In South Shore, very few UAV derived VIs was significantly 

correlated with biomass. The different sensors types (Micasense, RGB, Cropscan) gave 

similar results for South Shore. There could be several reasons behind the failure of VIs 
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to predict oat biomass at this location which needs to be further investigated in future 

studies. 

Several predictive models for estimating biomass were developed using VIs from UAV 

imagery. Including agronomic parameters (such as crown rust severity rating, plant 

height, etc.) in the predictive models didn’t improve model fit as compared to models 

developed using VIs only. This suggests that UAV imagery derived data could be used as 

a potential measure to estimate oat biomass in oat forage breeding program. 

Two different methodologies for VI extraction were compared i.e. pixel classification 

method and average pixel value under ROI method. The pixel classification method was 

applied using K-mean cluster algorithm. The differences between correlation coefficient 

value derived from VIs and biomass from pixel classification method and pixel under 

ROI method was inconsistent comparing to locations. For Volga, VIs derived using the 

pixel classification method had much higher correlation coefficient value with biomass 

compared to average pixel under the ROI method. However, in South Shore and 

Beresford, the results were similar for both methods. The inconsistent results observed 

depending on the location suggests that additional years of data would be necessary to 

further evaluate the potential use of UAV for estimating oat biomass. 
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      FIGURES  

 

 

 

Figure 1: Experimental sites in 2019 (South Shore, Volga, Beresford and Pierre) and 

2018 (South Shore, Volga, Beresford). 
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Figure 2: Fresh biomass harvest with forage harvester in Beresford in 2019. 

 

 

 

  

 

 

 

Figure 3: Sensors used: Slantrange 2P, Micasense redege and Phantom 4 pro RGB 

camera (from left to right). 
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Figure 4: Ground control points taken in the field at Beresford.  

 
 

 

Figure 5: Workflow chart for UAV data processing.  
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Figure 6: Boxplot representing fresh and dry biomass yield (ton per acre) for 35 oat 

genotypes evaluated at three locations in 2018. 

 

 

 

South Shore                       Beresford                         Volga 
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Figure 7: Boxplot representing fresh and dry biomass yield (ton per acre) for 35 oat 

genotypes evaluated at four locations in 2019. 

 

 

 

Figure 8: Boxplot representing the distribution of crown rust severity for 35 oat 

genotypes evaluated at two locations in 2018. 

 

Figure 9: Boxplot representing the distribution of crown rust severity for 35 oat 

genotypes evaluated at three locations in 2019. 
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Location: Beresford 

Location: Volga 
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Figure 10: Bar plot representing the distribution of 14 genotypes selected based on 

highest crown rust severity rate in 2019. 

 

 

 

 

 

 

 

 

Location: South Shore 
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Figure 11: Average NDVI and TVI values derived from imagery collected with a UAV 

equipped with a Micasense sensor at various dates during the 2019 growing season and 

coefficient of determination value (R-square) for fresh biomass prediction for 35 oat 

genotypes grown in Beresford (a), Volga (b) and South Shore (c). 
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Figure 12: Average NGRDI and VEG values derived from imagery collected with a UAV 

equipped with a RGB sensor at various dates during the 2019 growing season and 

coefficient of determination value (R-square) for fresh biomass prediction for 35 oat 

genotypes grown in Beresford (d), Volga (e) and South Shore (f) 
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a. Beresford 
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c. South Shore 

b. Volga 
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Figure 13 a, b, c: Scatterplots of VI (derived from the last flight) by dry and fresh 

biomass for each sensor types and each location in 2019. 

 

 

Figure 14: Comparison of pixel under ROI (ROI) and Pixel Classification method (PC) 

considering correlation coefficient for last flight derived VIs from Micasense with fresh 

biomass (a) and dry biomass (b). 
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TABLES  

 

Table 1: Planting and harvesting dates of the oat forage trials conducted at three locations 

in 2018 and four locations in 2019. 

Year Operation Beresford Volga South 

Shore  

Pierre 

2018 Planting 4/27 4/30 5/15 - 

Harvest 7/3 7/2 7/15 - 

2019 Planting 4/26 5/14 5/7 4/9 

Harvest 7/11 7/18 7/19 7/2 
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Table 2: Sensors specification. 

Year Sensor                  
Platform 

(UAV) 

Sensor 

resolution 

(MP) 

Focal length  
Center 

Wavelength  

Wavelength 

bandwidth 

          
NIR 

(850nm) 
NIR(50nm) 

2018 

Slantrange 

DJI 

Matrice 

600 

12 MP 0.012m 

Green (550 

nm) 

Green (40 

nm) 

(Multispectral) 
Red (650 

nm) 
Red (40 nm) 

  
Red edge 

(710 nm) 

Red edge 

(20 nm) 

2019 

Micasense 

DJI 

Matrice 

600 

3.2 MP 

per EO 

band at 

400 ft 

AGL 

0.008m 

(multispectral) 

0.0017m 

(thermal) 

Blue (475 

nm) 

Blue (20 

nm) 

(Multispectral) 
Green (560 

nm) 

Green (20 

nm) 

  
Red (668 

nm) 
Red (10 nm) 

  
Red edge 

(717 nm) 

Red edge 

(10 nm) 

  
Near-IR 

(840 nm) 

Near-IR (40 

nm) 

2019 DJI 4K 

camera 

(1” 

CMOS) 

DJI 

Phantom 

4 Pro 

20.1 MP 0.0027 m 

Blue Blue 

(RGB) Green Green 

  Red Red 
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Table 3. Flight dates and sensors used for collecting imagery of the oat forage trials with 

an unmanned aerial vehicle at each testing site in 2018 and 2019. 
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Table 4. Vegetation indices derived from multispectral sensors 

Vegetative Index Source Abbreviation Mathematical formula from 

SR 

Normalized Differential 

Vegetation Index 

(Rouse et 

al. 1974) 

NDVI  (NIR-R)/(NIR+R) 

Green Normalized Differential 

Vegetation Index 

(Moges et 

al. (2004) 

GNDVI (NIR-G)/(NIR+G) 

Triangular Vegetation index (Broge and 

Leblanc 

(2000)) 

TVI 0.5*(120*(NIR-G)-200*(R-G)) 

Normalized Differential Red 

edge Index 

(Gitelson 

and 

Merzlyak 

,1994)  

RENDVI (NIR-RE)/(NIR+RE) 

Red edge Triangular Vegetation 

Index 

(Pf Chen, 

2010) 

RTVI 100*(NIR-RE)-10*(NIR-G) 

 

 

 

 

 

 

 

https://www.sciencedirect.com/science/article/pii/S0303243415000525
https://www.sciencedirect.com/science/article/pii/S0303243415000525
https://www.sciencedirect.com/science/article/pii/S0303243415000525
https://www.sciencedirect.com/science/article/pii/S0303243415000525
https://www.sciencedirect.com/science/article/pii/S0303243415000525
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Table 5: Vegetation indices derived from visual sensors 

Vegetative index Source Abbreviation Mathematical formula from 

spectral reflectance 

Normalized Green Red 

Differential Index 

(Gitelson et 

al. 2002) 

NGRDI  (R-G)/(R+G) 

Excess green  (Woebbecke 

et al 1995) 

EXG 2G-R-B 

Excess green minus excess red (Camargo 

,Neto , 2014) 

EXGR EXG-1.4R-G 

Vegetetiven (Hague,Tillett 

and Wheeler, 

2006) 

VEG G/RaB1-a with a = 0.667 

Combination (Guijarro et 

al., 2011) 

COM 0.25 EXG+0.3 EXGR+0.33 

CIVE+0.12 VEG 

 

 

 

 

 

 

 

 

 



49 

 

 

 

Table 6: The Pearson correlation coefficient value derived from dry and fresh biomass 

versus independent variables for 2018 

Highlighted numbers in the table are significant at 95% CI. 

 

 

 

 

Table 7: The Pearson correlation coefficient value derived from dry and fresh biomass 

versus independent variables for 2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Location 
Biomass   

Chlorophyll 

content 
Leaf to stem ratio 

Heading 

date 

Crown rust 

severity 

Plant height Forage 

rating 

Beresford fresh 0.17 0.05 0.41 NA NA     0.41 

  dry 0.26 0.11 0.05 NA NA     0.05 

Volga fresh 0.19 0 0.47 -0.1 0.18           NA 

  dry 0.16 0.03 0.03 -0.07 0.1       NA 

South Shore fresh 0.09 0.4 0.33 0.06 0.14        0.27 

  dry 0.12 0.28 0.06 0.06 0.10 0.15 

Location Biomass   Plant height 
Crown rust 

severity 

Heading 

        date  

Forage 

rating 

Beresford fresh 0.44 -0.59 0.19 NA 

  dry 0.38 -0.48 0.16 NA 

Volga fresh 0.35 -0.4 0.11 NA 

  dry 0.15 -0.32 -0.001 NA 

South shore fresh 0.29 0.06 0.03 -0.03 

  dry 0.24 0.09 0.01 -0.04 

Pierre fresh 0.38 NA 0.53 NA 

  dry 0.28 NA 0.08 NA 

Highlighted numbers in the table are significant at 95% CI 
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Table 8: The table representing the range, mean and heritability of forage and agronomic 

traits in different location for year 2018. 

 
 
 

 

 

 

Table 9: The table representing the range, mean and heritability of forage and agronomic 

traits in different location for year 2019. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Volga Beresford South Shore 

  Range Mean Heritability Range Mean Heritability Range Mean Heritability 

Fresh biomass 3.6 6.92 0.35 10 16.5 0.43 10.5 17.55 0.5 

Dry biomass 1 2.46 0.03 2.1 4.09 0.29 2.8 5.24 0.24 

Heading date (HD) 9 167.3 0.88 15 169.9 0.83 12 184.1 0.21 

Chlorophyll 20.12 50.68 0.17 14.28 53.09 0.42 13.22 46.4 0.34 

Leaf to stem ratio 0.43 0.46 0.25 NA NA  NA 0.19 0.33 0.41 

Plant Height 23 35.29 0.40  NA NA  NA 13 47.28 0.72 

Crown Rust Rate 55 15.19 0.83 NA NA  NA 85 44.43 0.51 

 

 

Range Mean
Herita

bility
Range Mean

Heritab

ility
Range Mean Heritability Range Mean Heritability

Fresh biomass 5.6 14.1 0.44 11.7 13.89 0.44 11.8 19.49 0.16 7.4 17.74 0.62

Dry biomass 1.67 4.17 0.34 4.5 4.75 0.55 4.46 6.15 0.29 2.02 4.89 0.5

Heading date 8 187 0.79 9 179.7 0.86 9 185.6 0.57 9 173.3 0.89

Plant Height 13 41.1 0.52 16 43.6 0.64 19 47.25 0.48 13 40.99 0.77

Crown rust severity 75 43.5 0.9 80 50.78 0.72 65 28.9 0.85 NA NA  NA

Ligule height 15 31.8 0.89 15 31.55 0.63 13 35.09 0.57 16 29.8 0.35

South Shore Pierre Volga Beresford
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Table 10: Pearson correlation coefficient between VIs from Cropscan sensor and fresh 

and dry biomass for 35 oat genotypes evaluated at three locations in 2019. 

 

 

 

 

 

 

 

 

 

Table 11: Pearson correlation coefficient between VIs derived from the Slantrange sensor 

and fresh and dry biomass for 35 oat genotypes evaluated at three locations in 2018. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: Highlighted numbers in the table are significant at 95% CI. 

Abbreviated forms; 
NDVI: Normalized Differential Vegetation Index 

GNDVI: Green Normalized Vegetation Differential Index 

RENDVI: Red Edge Normalized Vegetation Differential Index 
TVI: Triangular Vegetation Index 

RTVI: Red edge Triangular Vegetation Index  

 

Biomass 

Type Fresh Biomass Dry Biomass 

  NDVI GNDVI RENDVI TVI RTVI NDVI GNDVI RENDVI TVI RTVI 

Beresford 0.78 0.6 0.65 0.65 0.71 0.63 0.48 0.55 0.57 0.62 

Volga 0.56 0.46 0.54 0.49 0.55 0.48 0.41 0.4 0.38 0.43 

South Shore 0.02 0.01 -0.05 -0.17 -0.16 0 0 -0.05 -0.17 -0.16 

 

 
Note: Highlighted numbers in the table are significant at 95% CI. 

Abbreviated forms; 
NDVI: Normalized Differential Vegetation Index 

GNDVI: Green Normalized Vegetation Differential Index 

RENDVI: Red Edge Normalized Vegetation Differential Index 
TVI: Triangular Vegetation Index 

RTVI: Red edge Triangular Vegetation Index  

 

 

Biomass Type Fresh Biomass Dry Biomass 

  NDVI GNDVI RENDVI TVI NDVI GNDVI RENDVI TVI 

Beresford                 

15-Jun 0.38 0.49 0.37 0.14 0.43 0.36 0.43 0.22 

22-Jun 0.3 0.31 0.34 0.035 0.28 0.1 0.23 0.06 

26-Jun 0.18 0.21 0.1 0.31 0.14 0.17 0.12 0.09 

Volga                 

12-Jun 0.45 0.41 0.2 0.1 0.48 0.56 0.27 0.12 

21-Jun 0.55 0.5 0.32 0.48 0.46 0.48 0.37 0.43 

South Shore                 

20-Jun 0.07 0.09 0.08 0.12 0 0 0.07 0.06 

12-Jun -0.04 0 0.08 0.08 0 0 0 0.08 
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Table 12: Pearson correlation coefficient between VIs derived from Micasense and RGB 

sensor and fresh/dry biomass for 35 different oat genotypes in Volga 2019. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biomass 

Type Fresh Biomass Dry Biomass 

Flights NDVI GNDVI RENDVI TVI RTVI NDVI GNDVI RENDVI TVI RTVI 

13-Jun 0.46 0.38 0.38 0.44 0.43 0.36 0.33 0.23 0.35 0.47 

25-Jun 0.46 0.32 0.47 0.55 0.41 0.29 0.21 0.29 0.39 0.29 

4-Jul 0.52 0.43 0.36 0.44 0.47 0.37 0.33 0.17 0.35 0.42 

11-Jul 0.47 0.49 0.29 0.38 0.47 0.35 0.34 0.18 0.3 0.38 

  NGRDI EXG EXGRR VEG COM NGRDI EXG EXGRR VEG COM 

13-Jun 0.07 0.15 0.32 0.12 0.31 0.02 0.1 0.17 0.04 0.17 

25-Jun 0.26 0.04 0.18 0.15 0.17 0.07 0.05 0.1 0.02 0.06 

4-Jul 0.52 0.3 0.21 0.47 0.26 0.46 0.2 0.21 0.47 0.25 

11-Jul 0.54 0.05 0.35 0.39 0.35 0.33 0.03 0.2 0.26 0.18 

18-Jul 0.49 0.11 0.34 0.35 0.34 0.44 0.03 0.38 0.36 0.37 

Note: Highlighted numbers in the table are significant at 95% CI. 

Abbreviated forms; 

NDVI: Normalized Differential Vegetation Index 
GNDVI: Green Normalized Vegetation Differential Index 

RENDVI: Red Edge Normalized Vegetation Differential Index 

TVI: Triangular Vegetation Index 
RTVI: Red edge Triangular Vegetation Index  

NGRDI: Normalized Green Red Differential Index 

EXG:  Excess Green  

EXGR: Excess Green minus Red 

VEG:  Vegetiven 
COM: Combination 
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Table 13: Pearson Correlation coefficient VIs derived from Micasense and RGB sensor 

and fresh/dry biomass for 35 different oat genotypes in Beresford 2019. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: Highlighted numbers in the table are significant at 95% CI. 

Abbreviated forms; 

NDVI: Normalized Differential Vegetation Index 
GNDVI: Green Normalized Vegetation Differential Index 

RENDVI: Red Edge Normalized Vegetation Differential Index 

TVI: Triangular Vegetation Index 
RTVI: Red edge Triangular Vegetation Index  

NGRDI: Normalized Green Red Differential Index 

EXG:  Excess Green  
EXGR: Excess Green minus Red 

VEG:  Vegetiven 

COM: Combination 

Biomass 

Type

NDVI GNDVI RENDVI TVI RTVI NDVI GNDVI RENDVI TVI RTVI

14-Jun 0.37 0.27 0.22 0.35 0.38 0.23 0.21 0.25 0.18 0.32

24-Jun 0.49 0.44 0.33 0.46 0.4 0.35 0.29 0.19 0.32 0.22

8-Jul 0.65 0.55 0.5 0.4 0.6 0.51 0.44 0.4 0.3 0.47

12-Jul 0.69 0.7 0.6 0.67 0.65 0.55 0.52 0.47 0.51 0.51

NGRDI EXG EXGRR VEG COM NGRDI EXG EXGRR VEG COM

14-Jun 0.52 0.43 0.49 0.5 0.48 0.35 0.3 0.34 0.33 0.33

24-Jun 0.58 0.22 0.33 0.49 0.36 0.46 0.16 0.3 0.4 0.32

8-Jul 0.71 0.15 0.63 0.59 0.64 0.55 0.15 0.46 0.43 0.47

12-Jul 0.61 0.4 0.53 0.53 0.56 0.49 0.39 0.42 0.45 0.45

Fresh Biomass Dry Biomass
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Table 14: Pearson correlation coefficient VIs derived from Micasense and RGB sensor 

and fresh/dry biomass for 35 different oat genotypes in South Shore 2019. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

 

Highlighted numbers in the table are significant at 95% CI. 

 
Note: Highlighted numbers in the table are significant at 95% CI. 
Abbreviated forms; 

NDVI: Normalized Differential Vegetation Index 

GNDVI: Green Normalized Vegetation Differential Index 
RENDVI: Red Edge Normalized Vegetation Differential Index 

TVI: Triangular Vegetation Index 

RTVI: Red edge Triangular Vegetation Index  
NGRDI: Normalized Green Red Differential Index 

EXG:  Excess Green  

EXGR: Excess Green minus Red 
VEG:  Vegetiven 

COM: Combination 

 

 

 

 

 

 

 

 

 

 

 

 

Biomass 

Type Fresh Biomass Dry Biomass 

  NDVI GNDVI TVI RTVI RENDVI NDVI GNDVI TVI RTVI RENDVI 

16-Jun -0.11 -0.16 0.15 0.07 0 -0.14 -0.16 0.1 0.09 0 

25-Jun 0.03 -0.4 0.41 -0.14 -0.31 -0.08 -0.37 0.35 -0.14 -0.29 

6-Jul -0.07 -0.08 0.05 0.03 -0.09 -0.09 -0.1 0.03 -0.05 -0.09 

11-Jul -0.18 0.17 -0.13 0.19 0.22 -0.12 0.23 -0.01 0.25 0.27 

18-Jul 0.19 0.16 0.1 0.19 0.19 0.18 0.15 0.11 0.16 0.15 

19-Jul 0.2 0.27 0.14 0.19 0.18 0.2 0.27 0.18 0.15 0.14 

  NGRDI EXG EXGR VEG COM NGRDI EXG EXGR VEG COM 

31-May 0.1 0.02 -0.006 0.03 -0.06 0.09 0.016 -0.03 0.02 -0.031 

16-Jun 0.06 0.33 0.35 0.14 0.093 0.04 0.25 0.2 0.075 0.118 

25-Jun -0.03 0.3 0.21 0.026 -0.18 0.06 0.22 0.19 0 -0.17 

6-Jul 0.22 0.007 0.048 -0.02 0.06 0.14 0.08 0.003 -0.4 0.003 

11-Jul 0.14 0.011 -0.08 -0.1 -0.1 0.18 -0.03 -0.02 -0.08 -0.04 

19-Jul 0.21 0.023 0.168 0.124 0.166 0.21 0.042 0.22 0.2 0.23 
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Table 15: Pearson correlation coefficient between VIs from UAV (sensor Mica sense) 

and VIs from Crop scan in all location for 2019. 

  Beresford Volga   South Shore 

NDVI 0.78 0.37 0.21 

GNDVI 0.67 0.29 0.36 

RENDVI 0.6 0.45 0.41 

TVI 0.62 0.63 0.27 

RTVI 0.65 0.69 0.14 
Note: Highlighted numbers in the table are significant at 95% CI. 
Abbreviated forms; 

NDVI: Normalized Differential Vegetation Index 

GNDVI: Green Normalized Vegetation Differential Index 
RENDVI: Red Edge Normalized Vegetation Differential Index 

TVI: Triangular Vegetation Index 

RTVI: Red edge Triangular Vegetation Index  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 

 

 

 

Table 16: Prediction models for dry biomass harvested from 35 different oat genotypes 

using VI derived from the Slantrange sensor and agronomic characteristics as predictor 

variables for 2018. All the model selected on 95%confidence interval and the models not 

significant are represented as NS 

 
Note: Highlighted numbers in the table are significant at 95% CI. 

Abbreviated forms; 
NDVI: Normalized Differential Vegetation Index 

GNDVI: Green Normalized Vegetation Differential Index 

RENDVI: Red Edge Normalized Vegetation Differential Index 
TVI: Triangular Vegetation Index 

RTVI: Red edge Triangular Vegetation Index  

HT: Plant height 
NS: Non-significant 

 

 

 

 

    Sensor Type: Slantrange     

Biomass Type: Dry      

  Variables     R-square RMSE 

Vegetation Indexes only             

Volga June 12 (GNDVI), June 21 (TVI) 0.32 0.16 

Beresford June 15 (NDVI) June 22(GNDVI) 0.24 0.36 

South Shore _ NS  NS 

Agronomic characteristics only             

Volga Chlorophyll 0.03 0.2 

Beresford Chlorophyll 0.05 0.4 

South Shore HT, Leaf to Stem ratio 0.09 0.48 

Combination of VI and agronomic 

characteristics             

Volga Chlorophyll, June 12 (GNDVI), June 21 (TVI) 0.35 0.16 

Beresford Chlorophyll, June 15 (NDVI) June 22(GNDVI) 0.3 0.35 

South Shore HT, Leaf to Stem ratio 0.09 0.48 



57 

 

 

Table 17:  Prediction models for fresh biomass harvested from 35 different oat genotypes 

using VI derived from the Slantrange sensor and agronomic characteristics as predictor 

variables for 2018. All the model selected on 95%confidence interval and the models not 

significant are represented as NS 

Note: Highlighted numbers in the table are significant at 95% CI. 

Abbreviated forms; 
NDVI: Normalized Differential Vegetation Index 

GNDVI: Green Normalized Vegetation Differential Index 

RENDVI: Red Edge Normalized Vegetation Differential Index 
TVI: Triangular Vegetation Index 

RTVI: Red edge Triangular Vegetation Index  
HT: Plant height 

NS: Nonsignificant 

 

 

 

 

 

 

 

 

 

    Sensor Type: Slantrange     

Biomass Type: Fresh      

  Variables     
R-

square RMSE 

Vegetation Indexes only             

Volga  June 12 (GNDVI), June 21 (NDVI) 0.36 0.57 

Beresford , June 15 (NDVI) June 22(GNDVI), June 26 (TVI) 0.35 1.44 

South Shore -  NS   NS 

Agronomic characteristics only             

Volga HD, Chlorophyll 0.28 0.61 

Beresford HD, Chlorophyll 0.14 1.96 

South Shore HD, HT, Leaf to Stem ratio 0.23 1.85 

Combination of VI and 

agronomic characteristics             

Volga 
Chlorophyll, HD, Leaf to Stem ratio, June 12 (GNDVI) 

June 21 (NDVI) 0.5 0.51 

Beresford HD, Chlorophyll, June 15 (NDVI) June 22(GNDVI) 0.42 1.37 

South Shore HD, HT, Leaf to Stem ratio 0.23 1.85 
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Table 18: Prediction models for dry biomass harvested from 35 different oat genotypes 

using VI derived from the Micasense and RGB sensor and agronomic characteristics as 

predictor variables for 2019. All the model selected on 95%confidence interval and the 

models not significant are represented as NS 
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Table 19: Prediction models for fresh biomass harvested from 35 different oat genotypes 

using VI derived from the Micasense and RGB sensor and agronomic characteristics as 

predictor variables for 2019. All the model selected on 95%confidence interval and the 

models not significant are represented as NS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N
o
te

: 
H

ig
h
li

g
h
te

d
 n

u
m

b
e
rs

 i
n
 t

h
e 

ta
b

le
 a

re
 s

ig
n

if
ic

an
t 

at
 9

5
%

 C
I.

 

A
b
b
re

v
ia

te
d
 f

o
rm

s;
 

N
D

V
I:

 N
o
rm

al
iz

ed
 D

if
fe

re
n
ti

al
 V

eg
et

at
io

n
 I

n
d

ex
 

G
N

D
V

I:
 G

re
en

 N
o

rm
al

iz
ed

 V
eg

et
at

io
n

 D
if

fe
re

n
ti

al
 I

n
d

ex
 

R
E

N
D

V
I:

 R
ed

 E
d
g
e 

N
o
rm

al
iz

ed
 V

eg
et

at
io

n
 D

if
fe

re
n

ti
al

 I
n

d
ex

 

T
V

I:
 T

ri
an

g
u
la

r 
V

eg
et

at
io

n
 I

n
d
ex

 

R
T

V
I:

 R
ed

 e
d
g
e 

T
ri

an
g
u
la

r 
V

eg
et

at
io

n
 I

n
d

ex
  

N
G

R
D

I:
 N

o
rm

al
iz

ed
 G

re
en

 R
ed

 D
if

fe
re

n
ti

al
 I

n
d

ex
 

E
X

G
: 

 E
x
ce

ss
 G

re
en

  

E
X

G
R

: 
E

x
ce

ss
 G

re
en

 m
in

u
s 

R
ed

 

V
E

G
: 

 V
eg

et
iv

en
 

C
O

M
: 

C
o
m

b
in

at
io

n
 

H
T

: 
P

la
n
t 

H
ei

g
h
t 

C
R

: 
C

ro
w

n
 R

u
st

 

H
T

_
li

g
u
le

: 
P

la
n

t 
h
ei

g
h
t 

li
g
u
le

 

 



60 

 

 

Table 20: Pearson correlation between VI derived using the pixel classification method 

from imagery collected with the Micasense sensor and biomass for 35 oat genotypes in 

2019.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beresford 

2019                     

Biomass 

Type Fresh Biomass Dry Biomass 

  NDVI GNDVI RENDVI TVI RTVI NDVI GNDVI RENDVI TVI RTVI 

14-Jun 0.5 0.35 0.34 0.44 0.28 0.34 0.21 0.22 0.3 0.1 

24-Jun 0.67 0.52 0.47 0.48 0.58 0.51 0.41 0.35 0.36 0.44 

8-Jul 0.65 0.48 0.4 0.33 0.35 0.54 0.35 0.43 0.32 0.28 

12-Jul 0.71 0.75 0.6 0.65 0.62 0.56 0.54 0.49 0.45 0.49 

                      

Volga 

2019                     

Biomass 

Type Fresh Biomass Dry Biomass 

  NDVI GNDVI RENDVI TVI RTVI NDVI GNDVI RENDVI TVI RTVI 

13-Jun 0.28 0.25 0.33 0.24 0.32 0.2 0.22 0.37 0.19 0.37 

25-Jun 0.42 0.27 0.22 0.48 0.22 0.2 0.13 0.1 0.24 0.15 

4-Jul 0.66 0.52 0.48 0.47 0.37 0.4 0.35 0.32 0.35 0.31 

11-Jul 0.74 0.63 0.68 0.56 0.6 0.55 0.45 0.57 0.43 0.46 

                      
South 

Shore 

2019                     

Biomass 

Type Fresh Biomass Dry Biomass 

  NDVI GNDVI RENDVI TVI RTVI NDVI GNDVI RENDVI TVI RTVI 

16-Jun -0.02 -0.19 -0.19 0.17 -0.2 -0.09 -0.18 -0.17 0.1 -0.19 

25-Jun -0.37 -0.4 -0.3 0.44 -0.31 -0.33 -0.42 -0.33 0.35 -0.28 

6-Jul 0.12 0.08 0.1 0.17 0.12 0.11 0.07 0.12 0.13 0.07 

18-Jul 0.32 0.2 0.31 0.2 0.32 0.14 0.27 0.17 0.18 0.17 
Note: Highlighted numbers in the table are significant at 95% CI. 
Abbreviated forms; 

NDVI: Normalized Differential Vegetation Index 

GNDVI: Green Normalized Vegetation Differential Index 
RENDVI: Red Edge Normalized Vegetation Differential Index 

TVI: Triangular Vegetation Index 

RTVI: Red edge Triangular Vegetation Index  
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 Table 21: Prediction models for fresh and dry biomass harvested from 35 different oat 

genotypes using pixel classification method (for Micasense) derived VIs and agronomic 

characteristics as predictor variables for 2019. All the model selected on 95%confidence 

interval and the models not significant are represented as NS 

    Micasense: Pixel classification method     
Biomass Type: Dry      

  Variables     

R-

square RMSE 

Vegetation Indexes only             

Volga June 13 (GNDVI, RTVI), July 4 (RTVI, TVI), July 11 (RENDVI) 0.48 0.24 

Beresford June 14 (GNDVI, RENDVI) July 8 (NDVI, RENDVI), July 12(NDVI) 0.64 0.54 

South Shore June 25 (GNDVI, RTVI), July 6 (TVI) 0.25 0.63 

              

              

Combination of VI and 

agronomic characteristics             

Volga CR, June 13 (GNDVI, RTVI), July 4 (RTVI), July 11 (RENDVI, NDVI) 0.52 0.22 

Beresford HT, June 14 (GNDVI, RENDVI) July 8 (NDVI, RENDVI), July 12(NDVI) 0.67 0.52 

South Shore June 25 (GNDVI, RTVI), July 6 (TVI) 0.25 0.63 

  

Biomass Type: Fresh      

  Variables     R-square RMSE 

Vegetation Indexes only             

Volga 
June 13 (GNDVI, TVI, RTVI), June 25 (NDVI), July 4(NDVI), 

July 11(NDVI),  0.74 0.63 

Beresford 
 June 14(RENDVI, TVI), June 24(TVI), July 8 (NDVI, RENDVI) 

July 12(NDVI) 0.87 0.84 

South Shore 
June 16(TVI, RTVI), June 25 (NDVI, GNDVI, RTVI), July 6 

(TVI) 0.44 1.62 

              

              

Combination of VI and agronomic 

characteristics             

Volga 
CR, June 13 (GNDVI, TVI, RTVI), June 25 (NDVI), July 

11(TVI, RTVI, RENDVI) 0.83 0.54 

Beresford 
HT, HT_Ligule, June 14(RENDVI), June 24(NDVI, RENDVI), 

July 8 (NDVI, TVI) July 12(NDVI) 0.9 0.77 

South Shore 
June 16(TVI, RTVI), June 25 (NDVI, GNDVI, RTVI), July 6 

(TVI) 0.44 1.62 

Note: Highlighted numbers in the table are significant at 95% CI. 

Abbreviated forms; 
NDVI: Normalized Differential Vegetation Index 

GNDVI: Green Normalized Vegetation Differential Index 

RENDVI: Red Edge Normalized Vegetation Differential Index 
TVI: Triangular Vegetation Index 

RTVI: Red edge Triangular Vegetation Index  

HT: Plant height 
NS: Nonsignificant 
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