South Dakota State University
Open PRAIRIE: Open Public Research Access Institutional

Repository and Information Exchange

Electronic Theses and Dissertations

1986

The Vector Processor

Ramachandra K. Manja

Follow this and additional works at: https://openprairie.sdstate.edu/etd

Recommended Citation

Manja, Ramachandra K., "The Vector Processor" (1986). Electronic Theses and Dissertations. 4407.
https://openprairie.sdstate.edu/etd/4407

This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research
Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses
and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional
Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/etd
https://openprairie.sdstate.edu/etd?utm_source=openprairie.sdstate.edu%2Fetd%2F4407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openprairie.sdstate.edu/etd/4407?utm_source=openprairie.sdstate.edu%2Fetd%2F4407&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:michael.biondo@sdstate.edu

THE VECTOR PROCESSOR

Ramachandra K. Manja

A thesis paper
in partial fulfillment of the requirements of the
Degree, Master of Science, Department of
Electrical Engineering
South Dakota State University

1986

B em A NS o S A I Em s B Ere cEvem O nEIe # A Eg PR A NS

THE VECTOR PROCESSOR

by

Ramachandra K. Manja

This thesis paper is approved as a <creditable and
independent investigation by a candidate for the degree,
Master of Science, and is acceptable for meeting the thesis
paper requirements for this degree. Acceptance of this
thesis paper does not imply that the conclusions reached by
candidate are necessarily the conclusions of the major
department.

Thesis Paper Advisor Date

Head, Electrical Engineering Date
Department

ACKNOWLEDGEMENTS

It is with immense pleasure that I acknowledge the
excellent guidance and suggestion of Dr. D. B. Miron,
Associate Professor of Electrical Engineering. I express
my sincere appreciation to Dr. V. G. Ellerbruch, Professor
and Head of Department of Electrical Engineering, for his
valuable review and encouragement. I must also thank
Mr. W. Mostad, Electrical Technician, Department of
Electrical Engineering, for his technical assistance. I am
thankful to Mrs. Mary Lou Michalewicz, Secretary to the
Department of Electrical Engineering, for her skillfull and
excellent typing of the manuscript.

Man ja

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION..........o.oooo.co'olo!oo!.o..ooo.oo- 1

II THE 8088 MICROPROCESSOR...ceceeeecccccoccccccsscnsns 6

A. Internal Architecture of the 8088....¢cc00c000e. 11

1. 8088 RegisSterSesecceccssscssscsscsccssscssscssss 11
2. Execution Unit and Bus Interface Unitee... 16
ITI THE 8087 MATH COPROCESSOR...cececeesceccsscssccssses 17

A. Math Coprocessor Pin DescriptionN.ceeeecececececsceess 19

B. Internal Architecture of the 8087 Math

COJrOCESSOf..-....--o--oo-.o.co-ooo-.c-o.--o-- 22

1. Control Unit............"........'....... 22
2. Numeric Execution Unit...ceceeccccccssceess 24
3. Status Word and Control Word Registers.... 25

C. Number System and Data TypeS.ceocscssccscsscse 29

D. Instruction Decoding and Instruction Set.eeee.. 32

Iv SYSTEM CLOCK AND BUS CYCLES.:.ccccceeccescescceees 37

A. 8284 Clock Generator/Driver..cceeoscescsssecssee 37

) T—ClOCk States-o.ooooo--oo-onocooooo-oo.oocool 41

Y StatUS Lines...-oooo.ocooooolotoooooooooaooooo 42

B
C
D. Read, Write and Instruction Fetch CyclesSeeeeo.. 45
E

. Ready and Queue Status LinesS..ccceseecccccscssss 48

VI

VII

VIII

VECTOR CONTROLLER-..o.ol.oooo.ooo.oo;

A.

B.

C.

The Scalar Mode.:eeeoesoosscoosonssos

The Vector Mode.ceeeoeoooecooscccccos

1506

2.

Serial Mode.oouuoooo.nooo.o.ooo

Parallel MOde..................

Vector InStructioNSeeescescccccsccss

VECTOR INSTRUCTIONS DECODER.:¢:eeeeeocss

Instruction Fetch Bus Cycle Monitor.

Data Enable Generator..cceeeseese

Data

Line Monitor for "DF"......

Clearing and Control..cceeececss

Subsequent Byte Decoder.........

SEQUENTIAL LOAD/STORE CONTROL...

A. Main
1.
2.

B. 87-1

c. 87-1

D. 87-2

E. 87-2

PARALLEL

A.

B.

C.

Controller..cceeeceeoesee

The Control BlocKkeeeooooo

T22 Clock Generator....

Ready Control.eeeececess

Queue Status Control..

Ready Control.eeeceocess

Queue Status Control..

EXECUTION CONTROL.....

Parallel Ready Control......

Parallel Queue Status Control...

A Generalized Control Circuit...

1.
2.

Serial Mode OperatioN..ee...

Parallel Mode Operation.....

53
55
56
56
57
58
61
63
66
70
73
76
80
84
84
85
90
92
94
97
102
103
106
110
110
113

IX ASSEMBLY LANGUAGE PROGRAM FORMAT FOR THE VECTOR
PROCESSOR. ccceeee® cecsccesssesssssenne 550060000000 LRks
X (010} (&) B0 IS S G5 55 56 00 600 0000 60 4000000006000 GO0 LLZAL)
APPENDIX A.iuccocccosscsctsocccosssssssoscsncssossssscsses 127
APPENDIX B.cececovecscecs cssscccsssssssssns ceccessscsscss 128

REFERENCES ® 00000000 00000000 e 0o 00 0 0 © 06006006000 000000 00 133

FIGURE

LIST OF FIGURES

The Vector Processor Block Diagram..
General System Configuration....s..e.
8088 CPU Pin Diagrameecececececscoscccss

System Mode SignalS.ceeececccscccccscse

Bus Status Codes and Commoand Signals.

8088 Functional Block Diagram.eccoecees

8088 RegisterSeeescecscsccccscsocsccscs
8087 Math Coprocessor Pin Diagram...
8087 Functional Block Diagram.ee.e..
Status Word Format..eeeceeesssccccscse
Control Word Format.eeeeecececscscans
Tag Word Format...oeeeecececossssessss
Data FormatSe.ceceeeesscecsssoscsscscs
Escape Instruction Forms.:eeeceeeoocss
(a)Non-memory Reference.ceeeeeeecoes
(b)Memory ReferenCe.ceeececccecccccs
8087 Coprocessor InstructionS.eeo..e.
(a)Arithmetic InstructionS.ceceecesoss
(b)Constant InstructionSeceecececscscse

(c)Processor Control Instructions...

8284 Clock Generator/Driver Block Diagram.......

8088 ClOCk waveformo..oto.co.lo.o..o.c.‘.oo..ool

10
12
15
18
23
26
28
28
31
33
33
33
35
35
35
35
38

39

6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

8088 and Coprocessor on the Local Bus Share

aCOIIlmOH 8284‘0o.o.o.o.oo.o..oo-.....oo.i'0’0

Status Line Activation And Termination....
Status CodesS..ccecccccccccccscccsscsssncss
Memory Read Bus Cycle.cececeeosccessaccscscscs
Memory Write Bus CycCle.iceeeeessssccconscsse
(a)Normally Ready SysteMeceeeeceesceccocsces
(b)Normally Not Ready System..ceeeececceces
Queue Status CodeSececceccceccoscscscnssascse
Vector Controller.cccceccecccccccocsccccccss
Available Escape InstructionNSeseeececececes
Vector Instructions Monitor Block Diagram.
Machine Code for Vector InstructionsS......
Instruction Fetch Bus Cycle Monitor.......
Timing WaveformsS..ceceeeveccccocscccssssncns
Data Enable Generator..sceceevcscscsccssccss
Timing Waveforms of DEG..ieeeeeeeeccccsnons
Hexadecimal Code for Vector Instructions..
Data Line Monitor for "DF"...iieeeeenconns
Timing WaveformsS.,.sceeeeessssscocccncnscsassssse
Clearing and Control Circuitececeeececcssses
Clearing and Control Timing Waveforms.....
Subsequent Byte Decoder.e.ceeceeccccccccscs

Vector Instructions Decoder Circuiteeeeees

Sequential LOAD/STORE Control Block Diagram.

40
42
44
47
47
50
50
51
54
99
62
64
65
65
68
69
71
72
72
74
75
77
79

81

7.2 Circuit of Control Block.isseeeeocessccccess
7.3 T22 Clock Generatoreeescseecccscscscsccscsccsasnsse
7.4 T22 Clock Generator WaveformS..eeeeoeoeee
7.5 87-1 Ready Control.:ceecsesccecccccsccascaes
7.6 87-1 Queue Status Control.:ceecececcoccccss
7.7 Timing WaveformSeececeoscoessssscscsossssnse
7.8 87-2 Ready Controliceceesccscscsscccscssnsase

7.9 87-2

7.10 87-2

Ready Control TimingSeeeeecesecscssces

Queue Status Controleeceecceccccccsccesnc

7.11 Timing WaveformsSeseeeeeceecccccocccscccccss
7.12 Sequential LOAD/STORE Control Circuit....
8.1 Parallel Execution Control Block Diagram,
8.2 Parallel Ready Control.ceeeecceescccscssscss
8.3 Parallel Queue Status Controleeeecececececees
8.4 Parallel Execution Control Circuit.......
8.5 Generalized Control Circuit.seeeesessssses
8.6 Generalized Control Timing Waveforms.....
9.1 Assembly Language Program.ccsececccsccsscss
9.2 Modified Assembly Language Programe..:.....
9.3 87-1 Ready and Queue Status Conditions
Flow Chartecsccccecccsccacssssssscosonsosnse
9.4 87-2 Ready and Queue Status Conditions
Flow Charteeeseecscscssseccsscsscssscscsssnse
10.1 8087 Math Coprocessor Speed Comparison..e....

86
88
89
91
93
93
95
96
99
99
100
104
105
107
109
111
112
116
118

120

121
125

CHAPTER I

INTRODUCTION

The Vector Processor is a device designed for the
purpose of economically achieving maximum speed in the
computer execution of a group of common scientific and
engineering calculations. In these operations, a variable
name represents a group of data items which may be thought
of as being arranged in a line. This is known as a vector.
Each element of the vector, the individual data item, may
be a number, a logical value, or a character. A vector's
elements must be all of the same type. A vector may have
meaning in its own right, or it may be part of an array, a
row or a column of elements. Manipulations and operations
with vectors have been used by mathematicians, scientists
and engineers for centuries in procedures for analysis and
design.

The general arrangement of the major elements of The
Vector Processor are shown in Figure 1.1. The IBM PC 1is
choosen as the General Purpose Processor and the Vector
Controller is designed to coordinate the activities of a
group of components called Math Coprocessors with that of
the IBM PC. Figure 1.2 shows the conventional architecture

containing the 8088 CPU and the 8087 Math Coprocessor. The

(?ENF%RQL 7 = VECTOR CONTROLLER
FURFOSE < -
FROCESSOR |
i
|
/\
\
/
\ |
|
{
p
|1
|
8087-1 80a7-& 8n87-3 |— —lao87-rn ||
|
I L i
Figure 1.1 The Vector Processor Block Diagram

— N
JC:m s |

8088 —

REAOY ™ 8282
aoORESS
LATCHES

o] neser STATUS ﬁ >
2.6y o3 TESY T8 -

< >
KQCTO Qs BusY

i .

oata

= = B

il

|
|
|
|
|
|
|
|
i
AEADY READY | I
8284A 8087 v ot |
o o | |
cLocx | |
GENERATOR ﬁ>
~Afd nesey STATUS | l
(1AL |
|
r L
[|
sYSTEM |
AEADY |
| |
b
' |
AQGT l
| neser .o A _f\u i :
8089 I I
neaoY orA I |
—] aLg oEN |— | '
A } 8288 | |
R srarus| } 1srarus |
'V E— sus lcomnnosl
CONTROLLER :>'
c
cue i I

| |
IsysTemI
| BUS

Figure 1.2 General System Configuration

two processors cooperate by sh=ring the buses and ignoring
each others instructions. The bus sharing is managed by
the interface signals.

The vector operations are done in the Math
Coprocessors (Figure 1.1), by 1loading the data elements
sequentially into the Math Coprocessors and executing an
instruction in parallel. The sequential and the parallel
operations are controlled by the Vector Controller which
recognizes the vector instructions. In the abscence of
instructions involving vector quantities, the Vector
Controller has one of the Math Coprocessors connected to
the General Purpose Processor as in the conventional
architecture of Figure 1.2, This allows for maximum speed
in executing ordinary arithmetic operations.

When a vector instruction appears, it is decoded by
the Vector Controller and appropriate action taken. The
effect of these actions is to 1load the elements of the
required vectors sequentially from Memory into the Math
Coprocessors, do the required operations simultaneously,
and then write the results out sequentially to Memory.
This simultaneous operation on a number of data elements is
the key to the speed of this processor.

The ensuing chapters describe the hardware and
software requirements for the design. Understanding of the

hardware design requires the knowledge of the architecture

of the 8088 and the 8087 processors. The next two
chapters, Chapter 1II and Chapter ITI, explain the
architecture of the 8088 CPU and the 8087 Math Coprocessor,
in brief. Chapter IV describes System Clock and Bus
Cycles giving an idea about timing requirements of the
system. Chapter V and the subsequent Chapters explain in
detail the hardware implementation of the Vector
Controller. Finally the software requirements are

described in Chapter IX, with Conclusions in Chapter X.

CHAPTER II

THE 8088 MICROPROCESSOR

The heart of the IBM PC 1is its 8/16-bit 8088
microprocessor. A microprocessor 1is a general purpose
processing unit built into a single integrated <circuit.
The 8088 was the first 8/16 -bit microprocessor introduced
by Intel Corporation. The 8088 1is enclosed in a 40-pin
dual-in-line package as shown in Figure 2.1 and requires a
+5V power supply.

The 8088 is called an 8/16-bit processor as it has an
8-bit external data path, whereas, its internal bit 1is
16-bits wide. The 20-bit wide address bus enables it to
address up to one Mega byte of memory. It can also address
up to 64K of byte-wide input/output ports. The pins ADO
through AD7 serve as time multiplexed address and data bus.

The 8088 has two system modes of operation and can be
configured to operate in either of these two modes, viz,
the minimum system mode and the maximum system mode. By
applying logic 1 or O to the MN/MX input lead (pin 33), one
of the two required modes <can be selected. The minimum
mode systems are smaller and contain a single processor,
whereas the maximum system mode feature 1lets the 8088

coordinate the activities of other processors in the system

>
A

aoe []10
'Aos: 1
aoa[{12
a03[]13
a02[]14
aD1[]1s
apo[_]1e

Nmi[C]17

INTR[]18

CLK 19
GND 20

8088
CPU

40 Bvcc
39] A1S

38|] A16/53
a7] a17/54
36 ’:l A18/SS
as[] a19/s6
34[] sso
33 [] Mn/AR
32| J RO
‘31 JHoLo

30 HLDA

290 | WR

28]] 10/M
27 JOT/R
26| | OEN
s] ALE
22 [] iNTA
23 EI TEST
22|] READY

21] RESET

Figure 2.1

8088 CPU Pin Diagram

(HIGH)

(RQ/GT0)
(RQ/GT1)
(LOCK)

(S2)

(S1)

(S0)
(QS0)
(0S1)

like the 8087 Math Coprocessor, the 8089 Input/Output (I/0)
processor, etc. Figure 2.2 gives the pin descriptions of
the 8088 1in both minimum and maximum mode system
configuration.

As indicated in Figure 2.2, in the minimum system mode
of operation, the 8088 provides all the control signals
needed to implement the memory and the I/0 interfaces. For
the Vector Processor interface, the 8088 must be configured
in maximum system mode and hence requires that the MN/MX
input lead (pin 33) be tied low. In this mode the 8088
produces signals for implementing a Coprocessor or a
multiprocessor system environment. This mode also
facilitates the passing of bus control to other
Coprocessors through the RQ/GT 1lead. Looking at Fig 2.2,
it is shown that the 8088 does not directly provide all the
signals that are required to control the memory, I/0 and
interrupt interfaces. Instead, it generates three status
signals SO, S1 and S2 prior to the beginning of each
machine cycle or bus cycle. Each 3-bit status code
represents the type of bus cycle that 1is to follow. The
Vector Controller and the 8288 bus controller decode the
status information to identify the type of microprocessor
bus cycle. Figure 2.3 shows the decoded status signal and
also the command signals generated by the 8288 bus

controller.

Figure 2.2

(a)

(b)

(c)

Common Signals

Name Function Type
Bidirectional,
AD15-AD0 Address/Data Bus 3-State
A19/S6- Output,
A16/S3 Address/Status 3-State
— Bus High Enable/ Output,
BHE/S7 Status 3-State
R Minimum/Maximum
MN/MX Mode Control Input
Ts Output,
RO Read Control 3.State
TEST Wait On Test Control Input
READY Wait State Control Input
RESET System Reset Input
Non-Maskable
NMmI Interrupt Request Input
INTR Interrupt Request Input
CLK System Clock Input
Vce +5V Input
GND Ground

Minimum Mode Signals (MN/MX=Vcc)

Name Function Type
HOLD Hold Request Input
HLDA Hold Acknowledge Output
WR Write Control g_us'tpa‘:;'
MITO Memory/10 Control Sapot
Data Transmit/ Output,
2L Receive 3-State
SEN Output,
DEN Data Enable 3-State
Address Latch
ALE Enable Qutput
INTA Interrupt Acknowledge Output

Maximum Mode Signals (MN/MX =GND)

Name Function Type
RQ/GT1.0 R?cucees;;Géggth)lus Bidirectional
'WaTal” Bus Priority Lock Qutput,
LOCK Control 3-State
&5 _Tp Qutput,
S2-S0 Bus Cycle Status 3.State

Qs1. Qso Instruction Queue Output

Status

(a) Common Signals

(b) Minimum Mode Signals

(c) Maximum Mode Signals

Status Inputs

_ e o CPU Cycle 8288 Command
S2 St SO
0 0 0 Interrupt Acknowledge INTA
0 0 1 Read |/0O Port IORC
0 1 0 Write 1/0 Port IOWC, AIOWC
0 1 1 Halt None
1 0 0 Instruction Fetch MRDC
1 0 1 Read Memory MRDC
1 1 0 Write Memory MWTC, AMWC
1 1 1 Passive None
Figure 2.3 Bus Status Codes and Command Signals

0t

11

The maximum system mode 8088 also produces two more
signals known as Queue Status outputs QSO and QS1. This
2-bit Queue Status code informs the external processor 1like
the 8087 Math Coprocessor about the status of the
instruction queue that is maintained inside the processor
as shown in Figure 4.10. Thus QSO and QS1 allow external
tracking of the internal 8088 instruction queue.

RQ/GTO and RQ/GT1 of the maximum system mode provide a
- prioritized bus access for the external 8087 Coprocessor,

allowing it to become the bus master.

A. Internal Architecture of the 8088.

The processing unit of the 8088 microprocessor 1is
divided into two separate units known as the Execution Unit
(EU) and the Bus Interface Unit (BIU). Figure 2.4 shows
the internal architecture of the 8088 microprocessor with

all its internal registers.

1. 8088 Registers.

The 8088 <contains in all a total of 14 16-bit
registers which are user accessible (Figure 2.4).
These registers are usually grouped as a Instruction
pointer, four data registers, four pointer and index
registers, four segment registers and a status

register,

ADDRESS BUS
(20 BITS)

AH AL
BH 8L
CH cL
DH
GENERAL oo
REGISTERS sp ! DATA BUS
(8 BITS)
[
ol
cs
si
oS
s
ES
"»
INTERNAL
—— COMMUNICATIONS —
ALU DATA BUS REGISTERS BUS
— CONTROL :‘L‘;
- T 118 8ITS) T L0GIC
TEMPORARY REGISTERS

EV asus |
CONTROL l%
SYSTEM 8 8ITS)

INSTRUCTION
QUEVE
t]2]3]¢

2=

Figure 2.4

EXECUTION UNIT
(EV)

8US INTERFACE UNIT
(8iIv)

8088 Functional Block Diagram

¢l

13

The Instruction Pointer (IP) is a 16-bit register
that locates the next instruction to be executed in the
current code segment. The IP contains an offset value
which must be combined with the value of the code
segment register to form the 20-bit physical address of
the memory containing the instruction.

The data registers are the general purpose
registers and the four registers are referred to as:
AX, BX, CX, and DX. Each of these data registers can be
used as either 16-bit register or two 8-bit registers.

There are two Pointer registers and two Index
registers that are used for storing offset addresses of
memory locations relative to the segment registers.
The two pointer registers are the stack pointer (SP)
and the base pointer (BP). The stack pointer enables
access to a location in the stack segment of memory and
the base pointer allows access to data within the stack
segment.

The two Index registers - Source index register
(SI) and Destination Index Register (DI) are used to
store an offset address for a source operand and a
destination operand respectively.

The memory space of the 8088 is divided into

logical segments of 64K bytes each and the four segment

14

registers are wused to access these memory segments.

The four segment registers are:

CS - Code segment register
DS - Data segment register
SS - Stack segment register
ES - Extra segment register.

The code segment register is used to point to the
current code segment and the instructions are fetched
from the segment.

The data is stored in the memory space pointed to
by the data segment register. The stack segment
register identifies the current stack segment in memory
on the locations of which all the stack operations are
performed. Lastly, the current extra segment of memory
space is pointed to by the Extra segment register which
is also used for data storage.

Figure 2.5 shows these various registers of the
8088 except the Instruction pointer register. The
status register makes use of its 9 bits as 6 1-bit
status flags and 3 1-bit control flags as shown in
Figure 2.5. The status flags that indicate conditions
on execution of different instructions are: CF, PF, AF,

ZF, SF,and OF.

15 " 87 £ 0
b e AR . o Haccumuiaton
AN T AL
_ 8x
DATA I S TS b
GROUP cx
— — g — T — o — —{coumr
DX
= — -!— —y DATA

(a) General-Purpose Registers

STACK
POINTER

BASE
POINTER

SOURCE
INDEX

OESTINATION
INDEX

(b) Printer and Index Registers

Figure 2.5

CONTROL
FLAGS
A

STATVS
FLAGS

A

$
e SEouenT
oS Stament
ss A
i, SECHENT
(c) Segment Registers

@ CARRY

PARITY
AUXILIARY CARRY
ZERO

SN

OVERFLOW

INTERRUPT-ENABLE

DIRECTION

TRAP

(d) Status and Control Flags

8088 Registers

15

16

The three contrel flags that control certain
functions of the 8088 are: Trap flag (TF), Interrupt

flag (IF), and Direction flag(DF).

2. Execution Unit and Bus Interface Unit.

The Execution Unit (EU) and the Bus Interface Unit
(BIU) are the two divisions of the 8088 procesing unit
(Figure 2.4). The Execution Unit obtains an
instruction from the instruction queue maintained Dby
the Bus Interface Unit. The instructions are then
decoded and executed by the execution unit. While the
EU is executing an instruction, the Bus Interface Unit
will be fetching an instruction. The BIU forms a 4
byte instruction queue of these prefetched instructions
as shown in Figure 2.4, The two units can operate
independently of one another and hence operate in
parallel under most circumstances. If the EU requires
a data transfer, it requests the bus interface unit to
perform the read or write <cycles to memory or
Input/Output. The BIU then suspends the instruction
fetch and does the data transfer bus cycle for the EU
and continues with its instruction fetch ©bus <cycle.
The request for the ©bus cycle from the EU depends on
the instruction being executed and hence 1is an

asynchronous operation.

17

CHAPTER III

THE 8087 MATH COPROCESSOR

The 8087 Math Coprocessor operates 1in parallel with
the main 8088 CPU. The 8088 CPU acts as a host to this
‘8087 Numeric processor. The 8087 Numeric processor depends
on the host CPU for instruction fetch, read, and write Dbus
cycles. Hence, the name Coprocessor. The Coprocessor can
decode and execute on its own.

The 8087 Numeric processor, from here on referred to
as 8087 Math Coprocessor or simply Coprocessor, is enclosed
in a standard 40-pin dual-in-line package as shown 1in
Figure 3.1. It needs a single power supply of +5 volts.
The Coprocessor enhances the computational capability of
the CPU by being able to perform arithmetic and comparison
operations on various data types. The internal data path
of the Coprocessor is 64 bits wide and its registers can
handle 80-bit long data. This is four to five times larger
compared with the 16-bit length of the 8088 CPU itself. It
also has built-in transcendental functions such as Log and
Tangent functions. In effect, the Coprocessor increases

the number of registers and the instruction sets of the

Figure 3.1

ves 1
Are D14 E 2
a0]
a12:012[]
AH/OHC)
a0 |6

as09[]7
aeos[]s
ar01 [

as/06 [10 8087
as:08 (] 1 NODP
AMDA[: 2
n/o:C 19
a2:02 | 14
Al/Ovc 15
a0:0c] 16
wne (v
NC 1: 18
Cin : 9
vss (]

~

36
3

w

3
3
32

N

22

Fal

:] vee
A15/0158
g A16/S3
D AV7/S6
[] aresss

A19/S6

: BHE/S7

RO/GTY
INT

: RQ/GTO
[Inc
[Jne

] &2
s
50
[Jaso
:]osv
[susv
[} neaoy
) reser

NC =« NOCONNEC?

8087 Math Coprocessor Pin Diagram

18

19

host CPU and allows the computation of new and large data
types.

The Math Coprocessor has its own instruction set and
hence, can be invoked directly. In case of an error the
Coprocessor can interrupt the CPU and thus trap to a
user—-defined procedure. The Coprocessor shares the Clock
Generator and system bus interface components, such as bus
controller, latches, transceiver, etc with the 8088 CPU, as

shown on Figure 1.2.

A. Math Coprocessor Pin Description.

Table 3-1 shows a detailed pin description of the 8087
Coprocessor. Sixteen of the 40 pins are used for the
multiplexed addresse/data bus, ADO through AD1S5. Hence
this can work as a Coprocessor to an 8-bit or a 16-bit CPU.
BHE/S7 (pin 34) is used to determine this bus width of the
CPU. There are four more pins for Address Al16 to Al9 which
are time multiplexed with the status lines S3 to S6. The
power, ground, clock, and Reset pins are all connected
directly to the respective pins of the CPU and serve the
same purpose as for the CPU. When in operation, the Busy
pin is held high by the Coprocessor. Ready, Busy, Queue
status pins QSO, QS1 and status pins SO, S1, and S2 are of

special importance. These pin lines are the ones that are

Symbol

Type

Name and Function

AD15-AD0

[lle}

Address Data: These lines constitute the time multiplexed memory address (Ty) and data (T;.
T3. Tw. T4) bus. AO is analogous to BHE for the lower byte of the data bus. pins D7-D0. It is
LOW during T4 when a byte is to be transferred on the lower portion of the bus in memory
operations. Eight-bit oriented devicestied to thelower half of the bus would normally use AO
toconditionchip select functions. Theselinesare active HIGH. They are input/output lines for
8087 driven bus cycles and are inputs which the 8087 monitors when the 8086/8088 1s 1n
control of the bus. A15-A8 do not require an address latch in an iAPX 88/20. The 8087 will
supply an address for the T,-T4 period.

A19/S6.
A18/SS5,
A17/S4,
A16/S3

o]

Address Memory: During Ty these are the four most significant address lines
for memory operations. During memory operations. status information i1s available on
these lines during T2, T3, Tw. and T4. For 8087 controlled bus cycles. S6. S4. and S3
are reserved and currently one (HIGH), while S5 is always LOW. Theselines are inputs which
the 8087 monitors when the 8086/8088 is in control of the bus.

BHE/S7

Vo

Bus High Enable: During T4 the bus high enable signal (BHE) should be used to enable data
onto the most significant haif of the data bus, pins D15-08. Eight-bit oriented devices tied to
the upper half of the bus would normally use BHE to condition chip select functions. BHE 1s
LOW during T4 for read and write cycles when abyte is to be transferred on the high portion of
the bus. The S7 status information is available during T,, T3, Tw, and T4. The signal is active
LOW. S7 is an input which the 8087 monitors during 8086/8088 controlled bus cycles.

§2.51.50

[/e]

Status: For 8087 driven bus cycles, these status lines are encoded as follows:

§2 S0
0 (LOW)
1 (HIGH)
1

(-]

X Unused

0 Unused

1 Read Memory

1 0 Write Memory

1 1 Passive

Status is driven active during T4, remains valid during Ty and T, and is returned to the
passive state (1. 1, 1) during T3 or during Ty when READY is HIGH. This status i1s used by the
8288 Bus Controller to generate all memory access control signals. Any change in 52.S1. or
S0 during T4 is used to indicate the beginning of a bus cycle. and the return to the passive
statein T3 or Ty isused toindicate the end of a buscycle. These signals are monitored by the
8087 when the 8086/8088 is in control of the bus.

~-ooxY

RQ/GTO

o

RequestGrant: This request/grant pinis used by the NPX to gain control of the local bus from

the CPU for operand transfers or on behalf ofanotherbus master. It must be connected to one

ofthetwoprocessorrequestgrant pins. The request grant sequence onthis pin is as follows:

1. A pulse one clock wide is passed to the CPU to indicate a local bus request by either the
8087 or the master connected to the 8087 RQ/GT1 pin.

2. The 8087 waits for the grant puise and when it is received will either initiate bus transfer
activity inthe ciock cycle following the grantor passthe grantouton the RQ/GT1 pinn this
clock if the initial request was for another bus master.

3. The 8087 will generate a release pulse to the CPU one clock cycle after the completion of
the last 8087 bus cycle or on receipt of the release puise from the bus master on RQ'GT1.

Table 3-1

8087 Math Coprocessor Pin Description

20

21

Symbol Type Name and Function

RQ/GT1 /O | RequestGrant: This request/grant pin is used by another local bus master to force the 8087 to
request the local bus. If the 8087 is not in control of the bus when the request is made the
request/grant sequence is passed through the 8087 on the RQ/GTO pin one cycle iater.
Subsequent grant and release pulses are also passed through the 8087 with a two and one
clock delay, respectively, for resynchronization. RO/GT1 has has an internal pullup resistor,
and so may be leftunconnected. If the 8087 has control of the bus the request/grantsequence
is as foliows:

1. A puise 1 CLK wide from another local bus master indicates a local bus request to the 8087
(pulse 1). .

2. During the 8087's next T or Ty a pulse 1 CLK wide from the 8087 to the requesting master
(puise 2) indicates that the. 8087 has allowed the locai bus to float and that it will enter the
“"RQ/GT acknowledge" state at the next CLK. The 8087's control unit is disconnected
logically from the local bus during “RQ/GT acknowledge.”

3. A puise 1 CLK wide from the requesting master indicates to the 8087 (pulse 3) that the
“RQ/GT" request is about to end and that the 8087 can reclaim the local bus at the next
CLK.

Each master-master exchange of the local bus is a sequence of 3 pulses. There must be one

dead CLK cycle after each bus exchange. Pulses are active LOW.

| Qsi, I |QS1, @S0: QS1 and QSO provide the 8087 with status to allow tracking of the CPU
Qso instruction queue.
Qas1 Qso

0 (LOW) 0 No Operation

[} 1 First Byte of Op Code from Queue
1 (HIGH) 0 Empty the Queue

1 1 Subsequent Byte from Queue

INT (o] Interrupt: This line is used to indicate that an unmasked exception has occurred during
numeric instruction execution when 8087 interrupts are enabled. This signal is typicaily
routed to an 8259A. INT is active HIGH.

BusYy o Busy: This signal indicates that the 8087 NEU is executing a numeric instruction. It is con-
nected to the CPU's TEST pin to provide synchronization. In the case of an unmasked
exception BUSY remains active until the exception is cleared. BUSY is active HIGH.

READY ! Ready: READY is the acknowledgment from the addressed memory device that it will
complete the data transfer. The RDY signal from memory is synchronized by the 8284A Clock
Generator to form READY. This signal is active HIGH.

RESET | Reset: RESETcauses the processor to immediately terminate its present activity. The signal
must be active HIGH for at least four clock cycles. RESET is internally synchronized.

CLK | Clock: The clock provides the basic timing for the processor and bus controller. it is asym-
metric with a 33% duty cycle to provide optimized internal timing.

Vee Power: V¢ is the +5V power supply pin.

GND Ground: GND are the ground pins.

Table 3-1 8087 Math Coprocessor Pin Description (continued)

22

either monitored or controlled by the Vector Controller and
are hence explained in detail in the next chapter.

The interrupt pin INT is an output pin wused to
interrupt the CPU in case of an exception. Usually this is
connected through an interrupt controller to the CPU. The
Request/Grant pin gives the Coprocessor the power to become
the bus master when needed. Through this pin the
Coprocessor requests the bus from the CPU and controls the
bus during certain operations. The Trelease of the bus to
the CPU is signalled through the same pin. The spare
Request/Grant pin is for the other processors on the system
to request the bus from the CPU through this pin of the

Coprocessor.

B. Internal Architecture of the 8087 Math Coprocessor.

The internal processing unit of the 8087 Math
Coprocessor is divided into two units, viz, the Control
Unit (CU) and the Numeric Execution Unit (NEU) as shown 1in
Figure 3.2. The Control Unit synchronizes the Coprocessor

activities with that of the CPU. It consists of exception

pointer, operands queue, addressing and Dbus tracking
circuitry and two 16-bit registers - Control Word and
Status Word. The Numeric Execution Unit executes the

numeric class of instructions. It is made up of eight

EXPONENT FRACTION
BuUS

: 8US
|

| CONTROL WORD | E:‘n‘:)%'f;?é' *I ’
|

STATUS WORD

INTERFACE

NEUINSTRUCTION

l
I
I
I
I
MICROCODE ARITHMETIC
CONTROL H MODULE |
UNIT
1y & j I
16 4
I
I
I
I
I
|

DATA
OlALA H BUFFER
| OPERANDS
QUEUE w }
TEMPORARY
I | REGISTERS
' 16
I ' ,.L -
| l m
| ; 6)
| A (S)
| G @
L~ REGISTERSTACK —
I I 3y @
ADDRESSING &
STATUS HI BUS TRACKING A @ |
(1)
EXCEPTION '
ADDRESS H POINTERS | o)
D
l _ J_ — 80 8ITS —

Figure 3.2 8087 Functional Block Diagram

1947

24

80-bit registers, tagword, exponent modulus, programmable

shifter, arithmetic module, and temporary registers.

1. Control Unit.

The Coprocessor's instructions are intermixed
with CPU instructions in a single instruction stream
fetched by the CPU. The Control Unit monitors the CPU
status lines and latches on to the instructions as it
is available on the data bus. Thus, the Control Unit
of the Coprocessor is able to maintain an identical
queue (operands queue of Figure 3.2) to that of the
instruction queue of the CPU (Figure 2.2). Note that
the Coprocessor is not capable of instruction fetching
without the help of the CPU. By monitoring the CPU's
queue status lines, the Control Unit is able to decode
instructions from the operands queue in synchronism
with the CPU. In effect, both the Coprocessor and the
CPU fetch and decode Aan instruction from the
instruction stream in parallel. The Control Unit
ignores all the instructions pertaining to the CPU and
executes the control class of Coprocessor
instructions. The numeric instructions are passed on

by the Control Unit to the Numeric Execution Unit.

25

2. Numeric Execution Unit.

Arithmetic, comparison, transcendental, constant
and data transfer instructions are executed by the
numeric execution unit. The 80-bit wide data path (64
fractional bits, 15 exponent bits and a sign bit) aids
in very high speed internal operand transfers
increasing the Coprocessor performance.

The eight registers residing in the Numeric
Execution Unit are 80 bits wide and are arranged 1in
the form of a stack. These registers can be used like
the conventional register of a CPU, for holding
constants, accumulation, etc. or in a stack mode with
operands pushed on and results popped off. In
conventional mode the registers are addressed
explicitly. While implicit addressing is used in the
stack mode, the register set can also be divided to
use a few in both modes.

Explicit register addressing 1is top-relative
while instruction using implicit addressing operate on
the register at the top of the stack pointed to by ST
(Stack Top) pointer. The subroutine parameter-passing
during subroutine programming is simplified because of
this stack type architecture and the top relative

addressing. The NEU, when executing an arithmetic

L‘:Ical (ST, lczbvlco[;[Ipe[usloizslos]%l

L

EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED)
INVALID OPERATION

DENORMALIZED OPERAND
ZERODIVIDE
OVERFLOW
UNDERFLOW
PRECISION
(RESERVED)
INTERRUPT REQUEST
CONDITION CODE"
STACK TOP POINTER(2
Busy

() See descriptions of pare. test, ine and
i codei

terp!

(2) ST vaives:
000 = register 0 is stack top
001 = register 1 is stack top
L]

.
111 = register 7 is stack top

instructi in ion $.7 for

Figure 3.3 Status Word Format

26

27

instruction will indicate the zero divide, overflow or

other exception through the Status Word register.

3. Status Word and Control Word Registers.

Status Word and Control Word are 16-bit registers
present in the Control Unit of the Coprocessor. The
Status Word indicates the overall conditions of the
Coprocessor. It can be examined by storing it into
memory using Coprocessor instruction. Figure 3.3
shows the Status Word format of the 16 different bits.
The first 5-bits are used as exception flags, which
are set on occurrence of exception during execution of
numeric instructions. These exceptions can then be
used to interrupt the CPU. The bits CO, Cl, C2 and C3
are together known as condition code which is used for
conditional branching wusually after a comparison
instruction. The rest of the fields are self
explanatory and are wused for functions indicated 1in
Figure 3.3.

The Status Word is a read only register. To mask
any of the interrupts arising due to the exception the
Control Word register should be used. Control Word is
again a 16-bit register that can be written to by
loading a word from memory wusing a Coprocessor

instruction. Figure 3.4 shows different fields of the

28

15

[== o PR

‘ |_ EXCEPTION MASKS (1 = EXCEPTION IS MASKED)
INVALID OPERATION
DENORMALIZED OPERAND
ZERODIVIDE

OVERFLOW

UNDERFLOW

PRECISION
(RESERVED)
INTERRUPT-ENABLE MASK(
PRECISION CONTROL(2)
ROUNDING CONTROL)
INFINITY CONTROL'®
(RESERVED)

M Interrupt-Enable Mask:
0 = Interrupts Enabled
1 = Interrupts Disabled (Masked)
(2) Precisi n Control:
00 = 24 bits
01 = (reserved)
10 = 53 bits
11 = 64 bits
(3) Rounding Control:
00 = Round to Nearest or Even
01 = Round Down (toward -=)
10 = Round Up (toward +=)
11 = Chop (Truncate Toward Zero)
(@ Infinity Control:
0 = Projective
1 = Affine

Figure 3.4 Control Word Format

15 7 0
[utl:m l TAG(®) l TAG(S) [TAG() I TA?(J)] TAG(2)] TAG(1) l TAG(0)

Tag values:
= Valid (Normal or Unnormal)
01 = Zero(True)

10 = Special (Not-A-Number, =. or Denormal)
11 = Empty

Figure 3.5 Tag Word Format

29

Control Word format wherein the first 5 bits can be
used to mask an exception. The fields PC, RC and IC
are used for precision control, rounding control, and
infinity control respectively. Different modes of
these fields are indicated in Figure 3.4.

The tagword register which is used under certain
circumstances, as shown in Figure 3.5 is 16 bits in
length, This register, residing in the Numeric
Execution Unit, is divided into eight fields. The tag
value indicates the conditions, shown in Figure 3.5,

of the eight registers in the stack.

C. Number System and Data Types

Ideally, it is desired that a processor be able to
operate on the entire real number system. But there is no
upper or lower limit to the magnitude of the number or to
the precision that these numbers can represent. Processors
must have fixed-size registers and memories. This results
in a limit to the system of numbers that can be represented
resulting in a set of finite and discrete numbers.

The range of numbers that the Coprocessor can handle

-307 308
is approximately +/- 4.19 x 10 to +/- 1.67 x 10 .
This range is for data and final results of <calculation

representation. The capacity of the Coprocessor to handle

this large range of numbers can be better appreciated when

30

compared with the range of the IBM 370, which is about
+/-0.54 x 10_78 to +/- 0.72 x 1076. The capability of the
8087 Math Coprocessor to operate on large floating point
numbers will be further enhanced in terms of speed, when

ten of these Coprocessors operate in parallel.

The internal format adopts a number system which

-4932
extends the range to about +/- 3.4 x 10 to +/- 1.2 x
4932
10 . This format is wused only for constants and
intermediate results internal to the Coprocessor. Thus,

the Math Coprocessor <can accommodate 18 digit numbers
(decimal equivalent) for data and final results and 19
digit numbers for constants and intermediate results.

Figure 3.6 shows the several data formats of the Math
Coprocessor, Seven numeric data types are recognized by
the Coprocessor. These data types are divided into three
classes.

1) Binary integers

2) Packed decimal integers and

3) Binary reals.

As indicated in Figure 3.6. the first three formats
are binary integer types, which are:

i) Word integer - 16 bits

ii) Short integer - 32 bits

iii) Long integer - 64 bits.

WORD INTEGER

SHORT INTEGER

LONG INTEGER

PACKED DECIMAL

SHORT REAL

LONG REAL

TEMPORARY REAL

<—— INCREASING SIGNIFICANCE

(TWO'S
S| MAGNITUDE COMPLEMENT)
15 0
(TWO'S
s MAGNITUDE COMPLEMENT)
3
(TWO'S
s MAGNITUDE COMPLEMENT)
63
s 4 MAGNITUDE
d”ld‘ﬁld‘sld'“ld”Ld'?Ld” 1 910, do N dg , d7 ; d6 , ds | dy ,dy , dy, d, Ldo
79 72 0
BIASED
S| exPONENT SIGNIFICAND
N 23
Ia
BIASED
s 7 ngPONENT S'GN,'H,C,AND]
63 52 '
Ia
BIASED
s EXPONENT TL SIGNIFICAND
79 64 635 0

NOTES:
S = Signbit(0=positive, 1 =negative)
9n = Decimal digit (two per byte)

X
[}

= Bitshave no significance: 8087 ignores when loading, zeros when storing.

= Position of implicit binary point
= Integer bit of significand: stored in temporary real. implicit in short and long real
Exponent Bias (normalized values):
Short Real: 127 (7FH)

Long Real: 1023 (3FFH)
Temporary Real: 16383 (3FFFH)

31

Figure 3.6

Data Formats

32

The most significant bit of all the types is a sign
bit. Packed decimal format uses 73 bits to represent an 18
digit decimal number. There are three types of real
formats:

i) Short real

ii) Long real

iii) Temporary real.
Only the first two are available for data and final results
representation. The temporary real format is wused 1in
internal operations only, for increasing the accuracy of

the intermediate results.

D. Instruction Decoding and Instruction Set.

The instruction set of the 8087 Coprocessor is made up
of 69 different instructions. These instructions are
intermixed with the CPU instructions and appear as ESCAPE
instructions to the CPU. Hence all the Coprocessor
instructions will <contain an Escape code that forms the
five most significant Dbits. A few -examples of the
Coprocessor instructions starting with the Escape code,
11011, are shown on Figure 3.7.

As mentioned earlier, both the CPU and the Coprocessor
fetch and decode an instruction simultaneously. However,

there lies a difference in the method of execution. The

MOD RIM _ 16-bit direct displacement
LN R L LN LN T T N (N T L UL O T T I Y O IO Y O I O
s ha W3 h2 Ny o e Yol g 1§ g 13 13 g g "Dyg Dyq D43 Dy3 Dyy Dyg Dy Dy D, Dy Dy Dy Dy D; Dy Dy
MOD AM 16-bit displacement

L LN RN L

LY N T T I

| N I T I | I I I |

s ha Y3 ha Iy o o 1

VIO YY)

I lg g I I3 13 4§ g
MOD AM
ol WL I O I I

045 Dya D1y D13 D4y Do Dy Dy O; Dy D5 D4 D3 D Oy DO
8-bit displacement
I I I Y

e ha ha ha 'y ho Yo

TP oYy

Iy g |‘ |’ ‘, .2 " lo
MOD RIM
010p 1 1111

s ha M3 Y12 1y o 9 e

| 1111 9]

T PO PR PR PR P PR ™

Op Dg Dg D4y D3 D; Dy Dy

(a)

L L

"15 e 3 M2 M1 ho Yo s

Figure 3.7

(a) Non-memory

Reference and

(b) Memory Reference Escape Instruction Forms

€

34

Control Unit of the Coprocessor will ignore all the CPU
instructions or the instructions that do not match the
Escape code. On the other hand, the instructions
containing the Escape code will be neglected by the CPU.

If the Coprocessor requires loading or storing of an
operand, i.e., a memory access, then the CPU aids the
Coprocessor by initiating a dummy read cycle. The
requirement of a dummy read cycle will be indicated to the
CPU through the MOD bits (Figure 3.7) of the Coprocessor
ESCAPE instruction. The Control Unit of the Coprocessor
will capture and save the address placed on the bus by the
CPU dummy read bus cycle. In addition, for a 1load
instruction the Control Unit also captures the data word
when it becomes available on the data bus. The CPU ignores
the data obtained from the dummy Read cycle. The Read
cycle might also result in the Coprocessor becoming the bus
master. The Coprocessor can become the bus master by
requesting the bus from the CPU, wusing the request/grant
protocol during two occasions:

1) the data to be read is longer than one word

2) it is ready to perform store operation.

Moving a step above the machine language in Assembly
language level, all the Coprocessor instructions are
preceded by an alphabet ‘F' (Figure 3-2) indicating an

ESCAPE instruction to the assembler. The Assembly Language

35

Addition
FADD Add real
FADDP Addreal and pop
FIADD Integer add
Subtraction FINIT/FNINIT Initialize processor
FSUB Subtract real FDISI/FNDISI Disable interrupts
FSUBP Subtract real and pop FENI/FNENI Enable interrupts
FISuB Integer subtract
FSUBR Subtract real reversed FLDCW Load control word
ESUBRP _ Sublractrealireversediand pop FSTCW/FNSTCW | Store control word
FISUBR Integer subtract reversed
FSTSW/FNSTSW Store status word
Multiplication FCLEX/FNCLEX | Clear exceptions
FMUL Multiply real FSTENV/FNSTENV | Store environment
FMULP Multiply real and pop)
| FIMUL Integer multiply FLDENV Load environment
FSAVE/FNSAVE Save state
Division
FRSTOR Restore state
FDIV Divide real)
FDIVP Divide real and pop FINCSTP Increment stack pointer
FIDIV Integer divide FDECSTP Decrement stack pointer
FDIVR Divide real reversed]
FOIVRP Divide real reversed and pop FFREE Free register
FIDIVR Integer divide reversed FNOP No operation
Other Operations FWAIT CPU wait

FSQRT Squareroot
FSCALE Scale (c) Processor Control Instructions
FPREM Partial remainder

FRNDINT Round to integer

FXTRACT Extract exponent and significand
FABS Absolute value

&S Change sign

(a) Arithmetic Instructions

FLDZ Load +0.0

FLD1 Load +1.0
FLDPI Load n

FLOL2T Load l0g,10
FLDL2E Loadlog,e
FLDLG2 Load log,,2
FLDLN2 Load log,2 J

(b) Constant Instructions

Figure 3.8 8087 Coprocessor Instructions

36

instruction set of the 8087 Coprocessor is divided into six
functional groups:

1) Data Transfer

2) Arithmetic

3) Comparison

4) Transcendental

5) Constants, and

6) Processor Control.
Instructions falling into some of these categories are
shown on Figure 3.8. The figure does not indicate the
operands required for these instructions. Typically a
Coprocessor instruction contains one or two operands as
inputs to operate on and produces a result as an output.
Operands of some of the instructions are implied and hence
need not be specified. The implicit operand is the top
stack element. Lastly, some instruction allows the coding
of their operand in more than one way. For example, a
multiply instruction may be written in any of the following
ways:

FMUL
FMUL source

FMUL destination, source.

37

CHAPTER IV

SYSTEM CLOCK AND BUS CYCLES

A. 8284 Clock Generator/Driver.

The Vector Controller derives its clock from the 8284
clock generator and driver. The same clock generator
provides the clock signal for the 8088 microprocessor and
8087 Coprocessor that serves as the system clock. The 8284
Clock Generator/Driver block diagram and the clock waveform
with the timing requirements for the 8088 microprocessor
are shown in Figures 4.1 and 4.2, respectively.

The inputs like AEN. RES, RDY1l, etc. are provided for
hardware reset interface and for insertion of Wait states
in the bus cycle. A clock crystal that can oscillate at
three times the CPU frequency must be connected between X1
and X2 inputs. The «clock signal with fast rise and fall
times of 10ns maximum, is required for the 8088 CPU.

The IBM PC runs at 4.77 MHz and hence the Vector
Controller, which becomes an integral part of the IBM-PC is
run at the same clock speed. Figure 4.3 shows CPU and
Coprocessor sharing a common 8284. The Coprocessors of the
Vector Processor, also share the same 8284 generated clock

and hence the clock output should be buffered for proper

RES b ' D
Q |— RESET

ICK

X1

| x7aL
OSCILLATOR
o [— _ = 05C

FIC {)o-D—]_
+3 +2 |—rpcLk
F | swc | | SYNC
CSYNC ‘ |
[0y ¢ pe—— - NG I
| >—> CLK
RENT —[>o—) |— L~
ADY2 —— 7 |
CK! cKi

AENZ -—Do—r D Q) o0 a |- reaoy
FF1 '_‘_D— FF2

8284 Clock Generator/Driver Functional Diagram

Figure 4.1

8¢

IR

| L

—p| |[t— 10ne MAX —p{ |<@— 10 ne MAX

T
(2222222

110.33 MIN —»|[

I

KAILLIIIIAIIIIIII Y,
200 ns MIN
<3
800 ne MAX >

Figure 4.2 8088 Clock Waveform

6€

8284

CLK |

READY

Figure 4.3

MULTIPLEXED DUS

RQ/GT

ep .
PROCESSOR [\ -

8088 and Coprocessor on the Local Bus
share a Common 8284

0P

41

drive currcnt. Due to the fast transition and high drive
of the 8284 clock output, it is necessary to put a 100 ohm

resistor in series with the clock.

B. T-Clock States.

A detailed discussion of the bus cycle, Status 1lines,
Queue Status lines and Ready 1line are presented in this
section in order to enable the reader to understand the
following chapters. A knowledge of these signals will be
assumed in the succeeding chapters,

A bus <cycle, consisting of 4 or more <clocks, is a
cycle initiated by the bus controller 8288, wusing the
Status lines SO, S1, and S2 of the CPU. A bus cycle starts
with clock designated Tl and ends with T4. From Tl to T4
there will be a minimum of four or more clocks. The four
clock states are called T1, T2, T3 and T4. If there are
more than four clocks, they are termed Wait states. Figure
4.4 shows two bus cycles; one with four clocks between TI1
and T4 and a second one with five clocks. The clock
between T3 and T4 of the second bus cycle is the Wait state
clock. During Tl, the address is put on the address/data
bus and is indicated through the address latch enable (see
ALE of Figure 4.4) pulse to the external «circuitry.
Remember that the 8088 CPU and the Coprocessor have a

time-multiplexed address/data bus. Which means that both

GOES INACTIVE IN THE STATE

P \

' JUST PRIOR TO T,
ALE /\
\

A —]

READY
WAIT
Figure 4.4 Status Line Activation and Termination

Ay

43

the address and the data are presented on the same bus
separated by a time period.

During the T2 clock the address is removed and the bus
floats. For a write command the data will be put on the
bus during this T2 clock. During T3 or the clock before T4
(if there are any wait-states) the data is put on the
address/data bus. Thus, the address and data are

time-multiplexed by one or more clock cycles.

C. Status Lines.

The Status 1lines tells the 8288 controller when to
start a bus cycle, what type of command to issue and when
to terminate the bus cycle. To indicate the beginning of a
bus cycle the CPU drives the Status lines from the passive
state, SO, S1, S2 = 0, to one of the seven possible command
codes as shown on Figure 4.5. The Status 1lines, as
indicated in Figure 4.4 are driven active on the rising
edge of the clock during T4 of the previous bus cycle or an
idle cycle.

An idle cycle Tl is a clock indicating no current bus
activity. Idle clock occurs if no bus cycles are required
and if the instruction Queue is full. This idle state is
one clock period 1long and any number of them can be

inserted between bus cycles.

FER TYPES OF BUS CYCLE
0| 0| O | Interrupt Acknowledge
0101 1| Readl/O

0| 1] 0| Writel/O

0| 1 1] HALT

11 0 | 0 | Instruction Fetch

1101 1 | Read Memory

1111 0| Write Memory

1 1 1 | Passive; no buscycle

Figure 4.5 Status Codes

12

45

The Status becomes inactive just before T4 (see Figure
4.4) calling for the termination of the bus cycle. During
T4 the current bus cycle ends and the Status for the next
bus cycle will be set.

The Status lines are used to decode the T-states, in
the design of the Vector Controller. The Vector Controller
decodes two of these T-clocks. They are T2 clock and the
clock just prior to the T4 clock, which might be either T3
or a Wait state clock. The T2 is for the synchronization
of the Control of Ready 1lines to the 8087 Coprocessors.
The clock prior to the T4, tells the Vector Controller of
the presence of data on the bus during vector instruction
decoding.

The Status lines connected from the 8088 CPU to the
8087 Coprocessor are bidirectional signals. Under normal
conditions, when the CPU is in <control of the bus, the
Status codes are established by the CPU and decoded by the
8288 bus controller and the 8087 Coprocessor. But, during
a write bus <cycle or a 1long read cycle, when the
Coprocessor is the bus master, the Status codes are put out

by the Coprocessor and decoded by the 8288 bus controller.

46

D. Read, Write and Instruction Fetch Cycles.

Read, write and instruction fetch bus cycles are three

out of seven possible bus <cycles. The seven bus cycles

are:

1. Read memory

2. Read input/output

3. Instruction fetch

4, Write memory

S. Write input/output

6. Interrupt acknowledge, and

7. Halt.

The timing diagram of the first five bus cycles are
pretty much the same except for one or two signal

variations. The timing for memory read bus cycle is shown
in Figure 4.6. M/I0 signal differentiates between the
memory read and read I/0 bus cycles. With no other changes
in the signal timing. The bus <cycle for the instruction
fetch is similar to that of the read memory bus cycle. The
two cycles are differentiated through the Status codes
shown on Figure 4.5.

The write bus <cycle timing, shown in Figure 4.7 1is
similar to the read cycle in Figure 4.6. The difference
lies in the data transmit/receive (DT/R) signal, which is
switched to logic 1 for a write cycle. Logic 1 on the DT/R

line signals the memory or I/0 that the data is going to be

ONE BUS CYCLE

r n 7 \F] T
S) e B o U e B o

A19/Sq-A19/S3
ano BHE/S? H AooRess. SRE ouT x STATUS OUT

)

N b

IHL

wig x LOW = 1/O READ. HIGH = MEMORY READ
o \
—_——-
ovR \ 1
- b Vi

-_———

Figure 4.6 Memory Read Bus Cycle

ONE BUS CYCLE
r T J T2 J T
cix

A19/Sq- A1g/83
hod s aooness. BRE out L STATUS OUT

ADy5-ADg Hnonu our —X OATA OUT

i x LOW = /0 WRITE. HIGH = MEMORY WRITE
wn =
ok /’
-

Figure 4.7 Memory Write Bus Cycle

47

48

transferred from the processor over the bus. On the other
hand, a 1logic O on the DT/R 1line is a request by the
processor for the data from memory or I/O.

The Figures 4.6 and 4.7 show only four cycles for one
bus cycle. The length of the bus cycle can be increased by
inserting Wait Status. Any number of Wait Status can be
inserted between T3 and T4 <clocks. The Wait states are
required during several events, for instance slow memory.
A bus cycle may be extended by switching READY input to
logic O, upon which Wait states are added between ©periods
T3 and T4. The processor remains in the Wait state until

READY is returned back to logic 1.

E. Ready and Queue Status Lines.

In the IBM Personal Computer system, the Ready inputs
for the 8088 microprocessor and the 8087 Coprocessor are
supplied by the Ready output of the 8284 clock generator
circuit. The Vector Controller deviates from this
connection, instead the Ready input of the 8087 Math
Coprocessors are controlled by a combinatorial logic
circuit synchronized with the system clock.

The Vector Controller uses the Ready input to force
the Coprocessors into Wait state. For this the Ready
signal must be inactive (low) by the end of T2. To

activate the Coprocessor the Ready must switch to logic 1

49

within a specified setup time prior to the positive
transition during T3. Hence, the Ready implementation
takes two approaches in the design of Vector Controller:

1) normally Ready system (the CPU and the first 8087
Coprocessor),

2) normally not Ready system (the remaining nine 8087
Coprocessors)

Figure 4.8 (a) and (b), shows the setup and hold time
réquirements of both the above mentioned systems.

The Ready input must be disabled within 8 ns after the
end of T2 to force the Coprocessor into Wait state (see
Figure 4.8(a)). Also as indicated in Figure 4.8(b), to
avoid Wait states, Ready must be active 119 ns prior to the
positive 1lock transition during T3. Therefore, to
guarantee the insertion of Wait states and the transition
of the Coprocessor into active state, the Vector Controller
synchronizes the logic required to control the Ready signal
with the T2 clock of the bus cycle.

Other signals controlled by the Vector Controller are
the Queue Status inputs of the Coprocessors. Recall that
the Queue Status, QSO and QS1 are the outputs of the
maximum mode 8088 CPU. QSO and QS1 together form a 2-bit
Status code. This code, emitted by the CPU informs the
Coprocessors about the conditions of the instruction Queue

as shown in Figure 4.9.

CLOCK

+— T — Ty —e— Ty — > — Ty — > te— Ty —

50

8088 READY

READY INACTIVE 8 ns MAX.—J

| L uoul.o TIME 30 ns

. I L_ 119 ns TO GUARANTEE THE

NEXTCYCLEIS T,

Figure 4.8 (a) Normally Ready System Inserting a Wait State

L—T,—><—1’2—>

[Ty —>|— Ty —>

CLOCK

8086 READY

— ACTIVE READY SETUP 119 ns

Figure 4.8 (b) Normall

—> HOLD TIME 30 ns

y Not Ready System

51

QS1 [QSO Queue Status
0 (low) 0 [No Operation. During the last
| clock cycle, nothing was taken
from the queue.
0 1 |First Byte. The byte taken from the
| queue was the first byte of the
instruction.
1(high) | 0 [Queue Empty. The queue has

been reinitialized as a result of the
execution of atransferinstruction.

Subsequent Byte. The byte taken
from the queue was a subsequent
byte of the instruction.

Figure 4.9 Queue Status Codes

52

An instruction may be one or more bytes long. The
Queue Status 1lines indicate the first byte of an
instruction, removed from the Queue, through the code QSO
QS1 = 10. The subsequent bytes of that instruction are
coded as 11. The code QSO QS1 = 01 indicates that the Queue
is emptied. This code 1is output on decoding of an
instruction resulting in a fresh instruction fetch starting
from a new location: (example: a JUMP instruction). The
reinitialization code (empty Queue) is used to recognize
vector instructions. The design of the Vector Controller
requires that a vector instruction be preceded by an
emptying of the Queue instruction.

Finally, QSO QS1 = 00 is a no operation code meaning,
no current instruction Queue activity. The Vector
Controller drives the Queue Status inputs low when the
Coprocessors are in Wait state. The active state
Coprocessors are allowed to receive the Queue Status
information. At one stage, even the active state
Coprocessors Queue Status 1lines are held 1low. This
technique aids in advance storing of an instruction into
the operands Queue of the Coprocessors and execution of it
at a later time by activating the Queue Status lines.

The transition of the Queue Status lines to low state
and back to active state are synchronized with the

instruction Queue activities by the Vector Controller.

53

CHAPTER V

VECTOR CONTROLLER

The Vector Controller (VC) is a. circrit designed to
control the activities of the Vector Processor in vector
mode., It provides the necessary interfacing signals for
the IBM PC. The Vector Controller also coordinates the
activities of the Coprocessors with that of the 8088 CPU.
The block diagram of the Vector Controller is as shown in
Figure 5.1. The three main functional wunits forming the
Vector Controller are:

1) Vector Instructions Decoder

2) Sequential LOAD/STORE Control, and

3) Parallel Execution Control.

Hardware implementations of .each of the above three
functions are discussed in detail in the subsequent
chapters.

The Data lines, Status lines and Queue status lines of
the 8088 CPU serve as inputs to the VC. The output of the
VC controls the Ready and the Queue status lines of all the
8087 Math Coprocessors.

The Vector Controller permits a programmer to enter a
vector mode or return to scalar mode through vector

instuctions. The vector instructions are intermixed with

A/D Lirne

<

Ready

VECTOR SEQUENTIAL
INSTRUCTIONS = LOAD/STORE
DECODER CONTROL
FARALLEL
EXECUTION
CONTROL
Figure 5.1 Vector Controller

8087
Ready
Controls

8087
Queuwe
Status
Controls

¥S

55

8088 CPU and 8087 Conrocessor instructions. The VC ignores
CPU and Coprocessor instructions, decodes vector
instructions and takes necessary actions depending on the
type of instruction. The Vector Processor has two Dbasic
modes of operation:

1) the scalar mode, and

2) the vector mode.

A. The Scalar Mode.

In the scalar mode of operation the Vector Controller
deactivates all the 8087 Math Coprocessors, except the
first one. The first 8087 Coprocessor operates in parallel
with the 8088 CPU. This is also the power up condition.
That is, when the power supply is turned on for the IBM PC
the presence of the Vector Controller will not be felt.
Hence, the scalar mode is also the normal mode of operation
without the intervention of the Vector Controller.

In the scalar mode of operation, the Vector Controller
pulls low the Ready lines of all the Coprocessors except
the first one. This forces the Coprocessors to enter the
Wait state. Queue status lines QSO and QS1, are held at
logic O. Recall the QSO QS1 = 00 is a no operation

indication to the Coprocessors. In the Wait state, status

56

codes are ignored by the Coprocessors and hence are not
controlled.

The Vector Controller monitors the Queue Status code
emitted by the CPU for a reinitialization code. Every time
the queue is emptied and a fresh instruction fetched, the
VC decodes this instruction. If the instruction is a vector
instruction then the processor enters a vector mode, other
wise the instruction is neglected. From the above
discussion, one can see that a vector instruction should be
preceded by an empty-the-queue instruction resulting in
reinitialization of the instruction queue.

This approach is the result of asynchronous operation
between the CU and the BIU of the 8088 CPU discussed
earlier. This makes a designer unable to track the first

byte of an instruction while being fetched.

B. The Vector Mode.

Depending on the type of vector instruction, one of
the two vector modes can be entered: (1) Serial mode,

or 2) Parallel mode.

1. Serial Mode.

In serial mode the Vector Controller activates the
8087 Coprocessors in series. The first 8087

instruction following the serial mode vector

57

instruction is fed to all the Coprocessors in parallel.
None of the 8087 Coprocessor instructions are greater
than four bytes long, which eliminates the risk of
instruction queue overflow.

After loading the instructions in parallel, all
but the first Coprocessor are forced into Wait state.
Note that, even though this 1is a serial mode by name,
in reality the Coprocessors do enter parallel mode for
a short duration during instruction loading. The first
8087 Coprocessor executes the instruction and indicates
the end of operation through the Busy line. The Vector
Controller then activates the next Coprocessor and
forces the first Coprocessor into Wait state. At the
end of execution by the second Coprocessor, the third
one is activated and the second Coprocessor is pushed
into the Wait state. This process continues, with the
succeeding Coprocessors being activated and the
preceding forced into Wait state until terminated by a
vector instruction. On termination of the serial mode,
the system returns to scalar mode.

Serial mode is used to LOAD or STORE different
numbers into the Coprocessors in series, on which the
operations are to be executed in parallel. All the
activities 1in serial mode are <controlled by the

Sequential LOAD/STORE Control unit.

58

2. Parallel Mode.

After loading the data to be operated on into the
required number of Coprocessors, the parallel mode 1is
entered through a vector instruction. In parallel mode
all the Coprocessors are activated simultaneously. Any
8087 Coprocessor instruction, in parallel mode, will be
executed by all the Coprocessors at the same time. The
time saved or the speed of the Vector Processor is
directly proportional to the number of operations
executed in parallel.

All the activities in parallel mode are controlled
by the Parallel Execution Control Unit. The parallel
mode is terminated with a vector instruction that
returns the system back to scalar mode. The results of
the operations from the Coprocessors are stored into

memory using serial mode operation.

C. Vector Instructions.

A vector instruction must be an Escape instruction to
the 8088 CPU and should be ignored by the 8087 Coprocessor.
Fortunately, there are several of these Escape instructions
that are left unused by the 8087 Coprocessor. Figure 5.2(a)
shows the available Escape instructions that can be used as

vector instructions.

11110[111

llL!'l‘lllLll

e e k3 M2 My Mo W s h e s a3 2 h o

4o !g g Is 15 13 12 11 1o Available codes
o01010001 1
o0101001-— 2
*001010 1=~ 4
o0110001-— 2
o0110011-— 2
oo011011 11 1
001110101 1
oo01111011 1
oo0111 11 1-— 2
o11100101 1
o11100 11— 2
o111 0 1 —=—=-—]
01111 —=c—=c—=-= 16
1011 —=——==-— 32
111100001 1
111100010 1
1111001 —-— 4
111101 —=—=-— 8
11111 === 16
105 total

Available Non-Memory Reference E-capse Instructions

11 11

Figure 5.2

(a)

| ——— - 16

(b)

(a) Avilable Escape Instructions
(b) Selected Vector Instructions

59

60

Out of the 105 instructions shown on Figure 5.2(a),
only 16 of these are chosen to operate as vector
instructions and are shown on Figure 5.2(b). The MOD bits
of these instructions are 11 indicating a non-memory
reference Escape instruction. This means that the CPU does
not initiate a dummy read cycle on execution of these
instructions. Instead the CPU just neglects these
non-memory reference Escape instuctions and proceeds with
the following instructions. In effect, these 15 vector
instuctions will be ignored by both the 8088 CPU and the
8087 Coprocessor, but must be recognized by the Vector
Controller. So then, the first step in the design of the
Vector Controller is a circuit to decode these sixteen

vector instructions.

61

CHAPTER VI

VECTOR INSTRUCTIONS DECODER

The Vector Instructions Decoder (VID), as the name
explains, is a decoding circuit that recognizes the vector
instructions. This «circuit monitors the data 1lines on
which the instructions are available and decodes the 16
vector instructions of the Vector Processor.

The Vector Instructions Decoder circuit can be divided
into five distinct blocks as shown in Figure 6.1. They
are:

(1) Instruction Fetch Bus Cycle Monitor

(2) Data Enable Signal Generator

(3) Data Line Monitor for 'DF'

(4) Clearing and Control, and

"(5) Subsequent Byte Decoder.

Whenever the instruction queue 1is emptied, the
Instruction Fetch Bus Cycle Monitor circuit is activated.
This allows the Data Enable Signal Generator block to
decode the T3 clock or the «clock just prior to the T4
clock. The Data Line Monitor for DF block checks the data
line to see if the instruction begins with 'DF'- the
hexadecimal code. If it does not, then the Clearing and

Control block reinitializes the whole VID circuit to the

8088
Q-STATUS LINES

"INSTRUCTION
FETCH' DATA ENABLE
MACHINE CYCLE SIGNAL
MONITOR GENERATOR
y
CLEARING
AND
CONTROL
Y ﬂf
W
DATA LINE VECTOR
MONITOR INSTRUCTION SET
FOR 'DF' DECODER
b T I
DATA LINES VECTOR INSTRUCTIONS

Figure 6.1 Vector Instructions Monitor Block Diagram

62

63

origiral state. However, if the instruction begins with
DF, the Subsequent Byte Decoder block checks for the
following byte and decodes it if it is one of the 16 vector
instructions. The original conditions are restored again
by the Clearing and Control block, after decoding. The
machine code of the 16 vector instructions are shown in

Figure 6.2.

A. Instruction Fetch Bus Cycle Monitor.

As has been mentioned earlier, a vector instruction
must be preceded by an instruction that reinitializes the
instruction queue. For this reason a jump (JMP)
instruction is used before any vector instructions.,
Jumping is done to the very next location containing the
vector instruction. The result of a jump instruction 1is
that the queue 1is emptied and - a fresh instruction 1is
fetched which may be the first byte of a vector
instruction. The following example shows a sémple format

containing a vector instruction

ADDRESS ASSEMBLY

LOCATION INSTRUCTION

0200

0201 JMP NEXT ; Reinitializes the queue
0202 NEXT VECTOR-OP ; a vector instruction
0204 WAIT

0205

0206

MOD
IlSlIlAlIlB‘IlZ'Ill|IlO|I9 |I8 17 |16 \15 llal

1 1 0 1 1 1 i 1 | 1 1 1

(]
w
b
H
[\]
=
—
=
(@]

R EEEE-EEO00000000
HHEHEPRPOOOOHHFHHFHPFOOOO
HHOOHHFOOHKFOOHRRFROO
HOHOHOHFHOFROH,HOHOR—O

Figure 6.2 Machine Code for Vector Instructions

65

S
QSy {>° Qs S

Qs, B)
S

PR)

Qﬂ

CLR 31
CLR{ - Tﬁ
7~
Figure €.3 Instruction Fetch Bus cycle Monitor
T i Ty Ty T3
CLK

s / \

Figure 6&.4 Timing Waveform

66

The address 1location 1is pointed to by the instruction
pointer and is available on the address/data bus during TIl.
The instructions are available on the same bus during the
clock just prior to T4 of an instruction fetch bus cycle.

The logic circuit for the Instruction Fetch Bus Cycle
Monitor is shown in Figure 6.3. The inputs to the <circuit
shown are Queue Status lines QS0,QS1, status lines SO, S1,
and S2 from the 8088 CPU and clear signal (CLR) from the
Clearing and Control block.

On reinitialization of the instruction queue, the
Queue Status lines trigger the flip flop shown to a high
state (Qll = 1). This enables the monitoring of the status
lines for an instruction fetch bus <cycle. The outputs S
and S serve as inputs to the Clearing and Control, and Data
enable generator blocks respectively. The Status signal S
transits to a high state during a Read bus cycle.

The timing diagram of the <circuit is shown in Figure
6.4. As indicated in the timing diagram, signal Qs,
switches to low state on empty the queue signal from the
Queue Status 1lines. The 1low state of Qs is one clock
period long and this low transition of Qs triggers Ql1 into
high state. Ql1l remains at logic 1 until cleared by CLRI1.

The Status signal S becomes active at the end of the
idle clock state Tl and transits to 1low state during the

clock prior to T4. This activities of the Status signal S,

67

helps in data enable clock generation. The input to OR
gate from the Sequential LOAD/STORE Control circuit is for

status lines monitoring for that circuit.

B. Data Enable Generator.

The Data enable generator decodes the T3 clock or the
clock just prior to the T4 clock. During this clock the
data (instruction) is on the address/data bus, enabling the
Data monitoring circuit to check for vector instruction.

Figure 6.5 shows the <circuit of the Data Enable
Generator. Signal S is the input to this circuit from the
Instruction Fetch Monitoring block. The output T31 is the
decoded clock which serves as input to the Data Monitoring
circuit. Another output CL1 is fed to the Clearing and
Control block.

The timing waveforms at different points of the
circuit are as shown in Figure 6.6. As indicated by the
timing waveform, Q21 (D-flip-flop) is switched to logic 1
by a high to 1low transition of the status S during an
instruction fetch bus cycle following the queue
reinitialization. The S signal becomes high during the
clock just prior to T4 enabling T31 as the output. The
data enable clock, T31, triggers a D-flip-flop Q22 to a
high state. During the low state of T4, logic 1 on Q22

allows the transition of CL1 into high state. Clearing of

Y

ClLK__ s
_ - —
S 7 }) Il>c)

PR o .

21 ﬂo22
C'T-,R CTR
[>
)
.

Y

CLy

Figure 6.5 Data Enable Generator (DEG)

89

69

swiojsaepm Sutwr] 930

9*9 2in31yg

N2 NV NV A VA WV WV

1

1

70

Q21 by CL1 forces Q22 and CL1 4into 1low state, thus
restoring initial conditions. If the first byte of the
decoded instruction is a vector instruction, (indicated by
the Data Line Monitor for "DF" block), then T31 of the
following bus cycle is decoded. This T31 serves as input

to the Subsequent Byte Decoder block.

C. Data Line Monitor for "DF",

As the name indicates, the Data Line Monitor for "DF"
block monitors the data lines and checks the first byte of
an instruction, following the reinitialization code, for
"DF" (DF the hexadecimal code for first byte of a vector
instruction). Figure 6.7 gives the hexadecimal codes for
the 16 vector instructions. Observe that the first byte of
all these instructions start with the hexadecimal code DF.
This is why the first byte of the instruction is checked to
see if it matches with the code DF.

Figure 6.8 shows the circuit of the Data Line Monitor
for "DF" block. The 4inputs to the <circuit are eight
address/data lines from the CPU, Ql, and CLR2 from the
Clearing and Control block, and T31 clock from Data Enable
Generator.

Looking at the timing waveforms in Figure 6.9, the

preset input F transits to a low state, if during T31 clock

FIRST SUBSEQUENT

BYTE BYTE
DF FO
DF F1
DF F2
DF F3
DF F4
DF F5
DF F6
DF F7
DF F8
DF F9
DF FA
DF FB
DF FC
DF FD
DF FE
DF FF

Figure 6.7 Hexadecimal Code for Vector Instructions

j=l=l=ReleclcRole)
NP~ G

Figure 6.8

Data Line Monitor for "DF"

72

/

Figure 6.9

Timing Waveforms

73

the data on address/data line is DF. This low transition
of F triggers the output Ql2 into high state. The outputs
Ql2 and Ql2 of this data monitoring circuit serve as inputs
to the Subsequent Byte Decoder and Clearing and Control
blocks respectively.

The logic 1 on Ql2 is an indication of the possibility
of the instruction being a vector instruction. This can be
confirmed only after decoding the subsequent byte. At the
end of decoding of the subsequent byte the CLR2 input from
the Clearing and Control clears the flip-flop, forcing Q12

into low state.

D. Clearing and Control.

Clearing and Control provides the clear inputs
required by the other blocks and controls the overall
operations of the unit. The logic circuit needed is shown
in Figure 6.10., The inputs to the circuit, as shown in the
Figure, are status S and CL1 4inputs from Data Enable
Generator, and the Q12 signal from Data Line Monitor for
"DF" block. A two bit <counter counts the number of bus
cycles and aids in generation of the CLR1 and the CLR2
outputs. These outputs clear the flip-flops of the other
blocks at appropriate times depending on whether or not a

vector instruction is found.

S—r—0

y

| -

> CLR1

Figure 6.10 Clearing and Control Circuit

>—CLRy

vl

DF : |
CLR 7 an
.' Ni’; DF
CLR No DF
2 ~' /T
DF
Figure 6.11 Clearing and Control Timing Waveforms

SL

76

Figure 6.11 shows the timing waveform with respect to
the main clock signal. The Ql (counter) is triggered low by
the Status input S during its transition into the high
state (Figure shows trigger on negative slope). The output
CLR1 low is generated at the beginning of the T4 clock of
the first bus cycle only if DF is not found.

The input Ql2 tells whether or not the first byte of a
vector instruction DF was found. However, if the first
decoded byte is DF then CLR1 transits into low state along
with CLR2 during T4 of the second bus cycle. Thus all the
blocks return to initial state at the end of the first
instruction fetch bus cycle, if "DF" is not found,
otherwise they will resume initial state only at the end of
the subsequent bus cycle. The output Ql serves as input to

the Subsequent Byte Decoder block.

E. Subsequent Byte Decoder.

The Subsequent Byte Decoder circuit decodes the second
byte of a vector instruction. The required logic <circuit
is shown in Figure 6.12, The inputs to the circuit are
eight address/data lines from the CPU, Ql2 from the Data
Monitoring circuit, Ql from the Clearing and Control block,
and T31 from the Data Enable Generator.

The input Ql2 indicates the successful decoding of the

first byte of a vector instruction. If so, then the

Y

v

Figure 6.12

<<

FE

Subsequent Byte Decoder

FF

LL

78

Subsequent Byte Decoder monitors the address/data lines for
the second byte of the same instruction. The T31 input
indicates the presence of the instruction on the
address/data line during the second instruction fetch bus
cycle.

Looking back at Figure 6.7, it can be observed that
the most significant nibble of the second byte of all the
vector instructions is a hexadecimal code F. Hence the
data lines, D4 to D7 are checked for this code F. A 4 x 16
decoder is wused to decode the 1least significant nibble,
which can be one of O through F codes. Thus, during T31 of
the second bus cycle, the Subsequent Byte Decoder decodes
the second byte of a vector instruction. The decoded
output, which is one of the 16 vector instruction, is
indicated by a logic O on the appropriate output pin of the
74L151 decoder. Thus the decoded instruction will be one
of the 16 vector instructions DF FO through DF FF.

Figure 6.13 shows the complete circuit diagram of the
Vector Instructions Decoder unit. Refer to Appendix A for
IC numbers and other details,

Address, data, status codes, Queue Status codes, and
conditions of different control points at each clock pulse
can be observed using the Tektronix 7D02 logic analyzer
coupled with 7602 oscilloscope. Refer to Appendix B for an

explanation.

30

Figure 6.13

Vector Instructions Decoder Circuit

0] 0 - FO
I b— ———1 - F1
Pr o—{ 2° —: - ©
(Y —
Q, 1 a4 16 4 - F4
! neconer [——96 - F6
t 10 74 “°§} — '
D, ———f 154 [—?-F9
3 gy o8 - 8
~
e 10 Dy — ——D0 - FD
T ——F - FF
Clk
I H %
Pr , Pr
Qll‘
74 74
L_l 011
f_"’ Cir 11 Cir
o
qQ,
ik 10 [11 00
Q|
) l
Clr
[

6L

80

CHAPTER VII

SEQUENTIAL LOAD/STORE CONTROL

The Sequential LOAD/STORE Control wunit controls the
operations of the Vector Processor in serial mode. Serial
mode operation requires that the Math Coprocessors be
activated one at a time. This allows the loading or storing
of a different number into or out of each Coprocessor.
Serial mode also requires parallel loading of a LOAD/STORE
instruction into the Coprocessors.

Serial mode <can be entered through the Sequential
LOAD/STORE Controller by the wuse of a vector instruction.
As discussed in the previous chapter, there are 16 vector
instructions that are output by the Vector Instruction
Decoder. Two out of these 16 instructions are wused to
control the operations of Sequential LOAD/STORE Control.
The vector instruction DF FF (hexadecimal) code is used to
enter the serial mode and DF FE to return to scalar or
normal mode.

The Sequential LOAD/STORE Control unit is divided into

five functional blocks:

(1) Main Controller

(2) 87-1 Ready Control

8088
BUSY READY

||

87-1
READY
CONTROLLER

READY-87-1

! T

Q-STATUS-88

L |

87-1
Q-STATUS
CONTROLLER

Vo

Q-STATUS-87-1

Se —
S, —

S, ——)

CONTROLLER
AND

Ta2 CLOCK
GENERATOR

e——VID

8088
BUSY READY

I

v

87-2
READY
CONTROLLER

!

READY-87-2

Figure 7.1

Q-STATUS-88

L]

87-2
Q-STATUS
CONTROLLER

l

Q-STATUS-87-2

Sequential LOAD/STORE Control Circuit

82

(3) 87-1 Queue Status Control
(4) 87-2 Ready Control, and

(5) 87-2 Queue Status Control.

The Ready and Queue Status Controls of 87-2 (second
8087 Coprocessor) are repeated for the remaining
Coprocessors with minor changes.

The Main Controller ©block controls the operation of
"the remaining blocks and synchronizes all the activities
with the T2 clock of the CPU bus cycle. The control output
Cl of the Main Controller is held low when the system is in
scalar mode.

The 87-1 Ready Control maintains the Ready input to
the first 8087 Coprocessor high at all times except 1in
serial mode. In the serial mode of operation the Ready
line is pulled 1low at the end of execution of the first
instruction. The 87-1 Queue Status Control also follows a
similar pattern.

The 87-2 Ready Controller keeps the Ready input to the
second 8087 Coprocessor at logic O in scalar mode. Ready
is allowed to receive R-88 (Ready output from the 8284
Clock Generator) in serial mode during parallel loading of
a LOAD/STORE instruction and during execution of the loaded

instruction. The 87-2 Queue Status Control activates the

83
Queue Status 1lines of the second 8087 Coprocessor only

during instruction execution.

The above procedure can be better understood with the

following Assembly instruction format sample:

ADDRESS INSTRUCTION

0300

0301

0302 JMP NEXT1 3

0304 NEXT1 FVECTOR-SQ s;enter serial mode.

0306 FLOAD XXX ;87-1 active

0308 WAIT ;87-2 active during fetching.
0309 FLOAD XXX ;387-1 Wait state, 87-2 active
030B WAIT

030C JMP NEXT2

030E NEXT2 FSCALAR ;return to scalar mode

0310

Note: XXX - any 8087 address mode.
The first FLOAD instruction following the vector
instruction is 1loaded in parallel to all the 8087
Coprocessors (only two 8087 Coprocessors are shown in the

above example). Remember, that the instruction fetch time

84

is different from the instruction execution time. The
loaded instruction will remain in the instruction queue of
the Coprocessors until the Queue Status lines of the
respective Coprocessors are activated. Refer to flow chart
on Figure 9.3, of Chapter IX for Ready line and Queue
Status lines conditions at each step during an Assembly
language program execution.

Recall that all instructions in Assembly beginning
‘with alphabet :F: are Escape instructions to the CPU.
Hence, FLOAD is an Escape instruction ignored by the CPU.
The Assembly instruction format example shown has only two
FLOAD instructions. The number of FLOAD instruction can be
varied depending on the number of Coprocessors required to
be loaded. The first WAIT instruction following the vector
instruction is used to terminate the parallel loading of

instruction in serial mode.

A. Main Controllér

The Main Controller block of the Sequential LOAD/STORE
Control unit, controls and coordinates the activities of
the remaining blocks. It generates a T22 clock that helps
in synchronization of all operations with the T2 clock of
the CPU bus cycle. For convenience the Main Controller is
divided into two separate blocks: (1) the Control Block and

(2) the T2 Clock Generator Block.

85

1. The Control Block.

The Control Block produces two control signals
that control all other blocks. The required inputs,
the circuit and the control outputs produced, are
shown in Figure 7.2. The inputs are address/data
lines from the CPU, T31, V1 (goes low on 'DF FF') and
V2 (goes low on 'DF FE') from the Vector Instructions
Decoder Unit and T22 from T22 Clock Generator block.
The outputs are Cl, Cl and SM1 signals.

Input V1 triggers Q31 (D-flip-flop) to high state
on reception of the vector instruction "DF FF"
(hexadecimal). High state of Q31 allows the
monitoring of data lines for 9B (hexadecimal code of a
WAIT instruction). T31, the decoded <clock from the
Data Enable Generator block of the Vector Instructions
Decoder wunit, indicates when the instruction is
available on the address/data lines.

On reception of the WAIT (9B) instruction the
counter triggers Cl (Q32) of the D-flip-flop to high
state. The transition of Cl to high state indicates
the end of the first 8087 Coprocessor instruction
following the vector instruction.

The vector instruction DF FF causes low
transition of V2 which triggers Q42 to a high state.

Logic 1 on Q42 enables the T22 clock which clears all

Figure 7.2

"

.|;_|

CLK

Circuit for Control Block

=—SM

98

87

the flip flops and thus returns the system back to

scalar mode.

2., T22 Clock Generator

The T22 Clock Generator decodes the T2 clock of
the CPU bus cycle. This decoded clock, called T22, is
used to synchronize the activities of Ready 1line
controllers so as to satisfy setup time and hold time

requirements of the Ready input.

The logic circuit of the T22 Clock Generator is
shown in Figure 7.3. As 1indicted in the Figure, the
inputs to the circuit are the status lines SO, S1, S2
from the 8088 CPU, clock input CLK from the 8284 Clock
Generator and T31 from the Vector Instructions Decoder
unit. The output is the decoded T2 clock of the CPU
bus cycle, T22,

The circuit operation can be explained with the
help of the timing waveforms shown in Figure 7.4. The
transition of status 1lines from passive state to
active state drives Tc low, allowing <clock input to
the counter. Outputs from the counter are fed to a
decoder T12, T22, and T32 are the outputs of the

decoder.

S R mn—
B
? } _L_ Ro Qz Qs O
J
CLK O
R% [‘D C B A
D Qe — L42
13 12
CLK D
T -
1 .

Figure 7.3 T.. Clock Generator

[l

88

89

X1
il

SWADJIABM A0 FRLAUIE) HIDTD L ey aunbry
/ / —
4
NN)
\EN
\ ‘ 4
\ /
N 7l £ 2 M I

%)
)

2,

4

AT

90

High to low transition of Tc triggers T12 which
returns to high state when triggered by the falling
edge of the Tl <clock. T12 in turn drives T22 1low
which is the required clock output. The low state of
T22 ends when triggered by the falling edge of the T2
clock.

The T32 output of the decoder is used to clear
the counter through Ro input, which results in
termination of T32 itself. Q61 D-flip-flop triggered
high by T31, enables the <clock input to the counter.
The <clock input to the counter 1is disabled on
transition of Q61 to 1low state, triggered on the

positive edge of T22 clock.

B. 87-1 Ready Control.

87-1 Ready Control is a logic <circuit that controls
the Ready input of the first 8087 Coprocessor (87-1). The
8087 Coprocessor can be activated or forced into Wait state
by controlling its Ready input.Figure 7.5 shows the 1logic
circuit of the 87-1 Ready Control, required to implement
the Ready logic.

The inputs to the 87-1 Ready Control circuit are: C1
from the Main Controller block, R-88, the Ready output of
the 8284 Clock Generator, and Bl the Busy line output from

the 87-1 Coprocessor. The output of the 87-1 Ready Control

91

AQvy

1-L3

Asng

Toajuoy Kpeay [-/8 G°L @Indryg

()

33-

92

circuit drives the Ready input of the 87-1 Coprocessor. In
scalar mode, logic O on Cl keeps the 87-1 in active state.
The only time when the 87-1 is forced into Wait state 1is
during serial mode operation. In serial mode, Cl switches
to high state right after the parallel loading of the first
instruction following the vector instruction. At this
instant, Busy output Bl of the 87-1 will be high indicating
the execution of the first LOAD/STORE instruction. At the
‘end of execution, the Busy line Bl goes low which switches
the Ready input of 87-1 to 1logic O. A 1logic O on Ready
input pushes the the 87-1 to Wait state. The 87-1
Coprocessor remains in Wait state wunit Cl goes low. Upon
transition of Cl to low state, Ready is set equal to R-88

activating the 87-1 Coprocessor,

C. 87-1 Queue Status Control.

87-1 Queue Status Control block controls the Queue
Status lines QSO and QS1 of the 87-1 Coprocessor. QSO and
QS1 are Queue Status information output by the 8088 CPU.
QSO QS1 = 00 indicates no operation. Refer back to Figure
4.10 for Queue Status codes. Queue status inputs to the
87-1 are held low when it is in Wait state. Active state
87-1 is allowed to receive Queue Status information from

QSO and QS1 lines of the CPU.

93

871
Q SO {>.: H QSO'I
R
) QSr1
QS —

Figure 7.6 87-1 Queue Status Control

-0 \ a—

QS{1

Figure 7.7 Timing Waveforms

94

Figure 7.6 shows the 87-1 Queue Status Control
circuit. The inputs to the circuit are QSO and QS1 from
the CPU, Busy input Bl from the 87-1 and control input Cl1
from the Main Controller block.

Figure 7.7 shows the timing diagram for the «circuit.
As indicated in the timing diagram QSO-1 and QS1-1 are
active until Cl1 and Bl both switch to logic 1. Cl1 and Bl
switch to 1logic 1 only in serial mode right after the
"execution of the first Coprocessor instruction. Queue
status lines QSO-1 and QS1-1 are held low until Cl switches
back to logic O. However, reinitialization code QS0QS1 =
01 are allowed even when 87-1 is in Wait state. This helps
to clear the instruction queue before switching back to
scalar mode. Thus the Queue Status lines QSO-1 and QS1-1
of the 87-1 Coprocessor, will be in active state in scalar
mode, becomes inactive in serial mode after the execution
of the first 8087 Coprocessor instruction and returns back

to active state on termination of serial mode.

D. 87-2 Ready Control.

The Ready input of the second 8087 Coprocessor (87-2)
is controlled by the 87-2 Ready Control block. Unlike the
first 8087 Coprocessor (87-1) the second 8087 (87-2) will
be deactivated in the normal mode (scalar mode). The 87-2

Coprocessor is activated only in vector mode.

e e BUSY

s 87-2

Pa== 31
READY
K-88 | Do

Figure 7.8 87-2 Ready Control

G6

96

s8utwt] To1lu0) Apeay z-.8

6°, 2an31y

—

\

88 -Y

97

The required circuit for the 87-2 Ready Control is as
shown in Figure 7.8. Control input Cl, R-88 input from
8284 Clock Generator, Bl from 87-1 and SPl from parallel
execution control unit are the inputs to this circuit. The
Busy line B2 of 87-2 also serves as an input.

Inputs SP1 and C1 will be at logic O in scalar mode.
This low state of SPl and Cl maintains Ready input to 87-2
at logic O which forces 87-2 into Wait state. When serial
"mode is entered through the vector instruction, SP1 changes
to logic 1 which sets the Ready input of the 87-2 equal to
R-88.

Figure 7.9 shows the timing sequence that follow after
the switching of SP1 to 1logic 1. As indicated in the
timing diagram, the Ready line of 87-2 follows SPl1 to high
state. This switching Ready line is synchronized with the
first instruction fetch <cycle right after the vector
instruction., Thus 87-2 is able to receive the instruction.
At the end of the first instruction fetch, <control Cl
changes from low to high state forcing 87-2 Ready to 1logic
O. The 87-2 Coprocessor 1is activated again after the
execution of the first instruction by the 87-1 Coprocessor.
The completion of execution is indicated through the Busy
line Bl, upon which the 87-2 is activated again.

As shown in the timing diagram, (Figure 7.9), Ready

input remains high wuntil the end of execution, indicated

98

through Busy 1line B2. At the end of execution, B2 is
pulled low by the 87-2, which causes the Ready line to
switch to 1logic 0, forcing 87-2 Coprocessor into Wait
state.

The Busy line B2 of the second 8087 Coprocessor (87-2)
can be used to invoke the next (third) 8087 Coprocessor
(87-3) into active state. The control circuit required is
very similar, with minor changes and is discussed in the

" next chapter.

E. 87-2 Queue Status Control.

The Queue Status 1lines QS0-2 and QS1-2 of the 87-2
Coprocessor is controlled wusing the 87-2 Queue Status
Control circuit. This control circuit allows the 87-2
Coprocessor to receive Queue Status information from the
8088 CPU, when in active state. In the Wait state the 87-2
Coprocessor Queue Status inputs are held 1low by the 87-2
Queue Status Control. QSO QS1 = 00 indicates no operation
with the instruction queue. However, the reinitialize code
QS0QS1 = 01 is allowed at all times.

The circuit of the 87-2 Queue Status Control is as
shown in Figure 7.10. The inputs to the circuit, as shown
in Figure 7.10 are: SM2 from the 87-2 Ready Control
block, PM2 from the Parallel Execution Control unit, and

Cl, Bl, QSO and QSI1.

O
G— PMy] J———Q552
SMy—_ -] -
B

I ——

87-2

| O ——asi-2

S
< QS ——

Figure 7.10 87-2 Queue Status Control

99

Figure 7-11 Timing Waveforms

—{ >— BUSY

0. —
- Pr R-88 —
D) i | I Q 08 } READY
0, __DD_M 93-1 g, 74 D" 00) 87-1
D, - Ra(l) B Clk
gs . QS 0S¢t
) 0%s— 10 ¢ —— 05%—
Pr
Dy s %
=111 74
QS, —
o [y SS DS
16 Cly %
]

BUSY

-

D

S | C

g F’I‘Q3I ; Pr % -
E ' ' 87-2
74 R-88 10

READY
10
Clr SomZ Q-2

o A
R o,

Figure 7.12

Sequential LOAD/STORE Control Circuit

001

101

The timing waveforms for the circuit, shown in Figure
7.11, indicates the timing sequence after the switching of
Cl to high state. In scalar mode <control Cl will be a
logic 0. C1 changes from low to high state in serial mode
at the end of the first instruction loading of all the
Coprocessors in parallel.

As can be seen from the timing diagram, the Queue
Status lines, QSO0-2 and QS1-2 are activated upon
completion of instruction execution by the first
Coprocessor. The 87-2 Coprocessor receives Queue Status
information from the CPU until SM2 changes to low state.
Signal SM2 goes to low state upon completion of execution
by the second 8087 Coprocessor. Thus the Queue Status
lines QS0-2 and QS1-2 of the 87-2 are activated in serial
mode during execution of an instruction by the 87-2
Coprocessor.

Figure 7.12 shows the overall circuit diagram of the
Sequential LOAD/STORE Control wunit. Refer to Appendix A
for IC numbers and refer to the TTL Data book for IC pin

numbers.

102

CHAPTER VIII

PARALLEL EXECUTION CONTROL

The Parallel Execution Control wunit controls the
operations of the vector processor in parallel mode. The
data to be operated on are first loaded into the required
number of Coprocessors using the Sequential LOAD/STORE
Control unit, as explained in the previous chapter. The
Parallel Execution unit, activated through a vector
instruction, then allows the execution of 8087 Coprocessor
instructions on these data in parallel.

The vector instruction DF FD (hexadecimal code) is used
to activate the Parallel Execution Control wunit. The
system remains in the parallel mode until terminated by a
vector instruction (DF FE) that returns the system back to
scalar mode. In parallel mode, the Parallel Execution
Control unit activates the Ready input and the Queue Status
inputs of all the 8087 Coprocessors. Hence any 8087
instructions following thereon will be executed by all the
Coprocessors. Any number of CPU instructions <can be
intermixed with the 8087 instruction in parallel mode. The
only instructions that can not (should not) be wused in
parallel mode are the 8087 STORE instructions and the

serial mode vector instruction.

103

Figure 8.1 shows the block diagram of the Parallel
Execution Control, containing two control ©blocks: (1)
Parallel Ready Control, and (2) Parallel Queue Status
Control. On reception of a parallel mode vector
instruction the Parallel Execution Control drives the Ready
input of all the Coprocessors to logic 1, which activates

the Coprocessor.

At the same instant the Parallel Queue Status Control

activates the Queue Status inputs of the Coprocessors.

A. Parallel Ready Control.

Hardware circuitry required to implement the parallel
Ready control logic is shown in Figure 8.2, The <circuit
shown is provided with inputs, V3 (goes low on 'DF FD')
from the Vector Instruction Decoder, SM1, Q41 and T22 from
the Sequential LOAD/STORE Control Unit and R-88 from the
8284 Clock Generator. The output of this circuit controls
the Ready input of the 87-2 Coprocessor. The <circuitry
required to control the remaining Coprocessors is discussed
at the end of the chapter.

The control actions of the Parallel Execution Control
circuit begins with a vector instruction that drives V2

input low. The V3 low triggers Q71 (PM1) to high state

8088

[y 13
08, 08

Ready—88

V.,
(VTD)

Ty
(T.. Clock"Bernerator)
—

Conmtrol and
Clear Irnputs

Figure 8.1

PARALLEL
READY
CONTROL

S

PARALLEL
QUEUE STATUS
CONTROL

8087
————> Ready
Contriols

8087
———> Queune Status
Contraols

Parallel Execution Control Block Diagram

v01

READY

87-2

Cy
Vb——4>—~— SPA3 >
PR—"
Qn—1 PMj
L_Q%BJ
+Vee

O/.I > _—D——l

L

ol

CLK

Figure 8.2 Parallel Ready Control

Qa1

Con
&

>—SP

6ot

106

which in turn triggers Q31 high during the T22 clock. Q31
enables R-88 input to the Ready line which pulls the 87-2
Coprocessor to active state. It will ©be seen later that
the same Q31 (SP1l) output is used to activate the other
Coprocessors in the sytem.

In parallel mode, with Ready input high, the
Coprocessors execute all the 8087 instructions. The
parallel mode 1is terminated through the same vector
instruction that was used to terminate the serial mode
operation. The vector instruction DF FE causes the 1low
transition of SM1, a signal synchronized with T22,. The
SM1 low signal clears PM1 and Q31 (D-flip-flop) which in
turn forces the Coprocessors into Wait state. The inputs
Cl and SM2 shown in Figure 8.2 are serial mode controls and

do not interfere with the parallel mode signals.

B. Parallel Queue Status Control.

The Parallel Queue Status Control follows a logic
similar to the Parallel Ready Control <circuit. The
difference lies in the termination timing of Queue Status
activity, compared to that of the Ready input. Figure 8.3
shows the 1logic circuit required for the parallel Queue
Status control implementaton. For the circuit to operate,

it needs QSO and QS1, the Queue Status inputs from the CPU,

Qng
87-2

QSy-2

— QS-—%———\L;
0= SP3—iD 0 ,
QS]—)‘"}
QS)
. QS
PR
0521
CTR
SR) —PM»
PMy——
Figure 8.3 Parallel Queue Status Control

JAV

108

SP1 from the Sequential LOAD/STORE Control. and PM1 from
the Parallel Ready Control block.

As explained for the Parallel Ready Control circuit,
the input signal PM1 is triggered high by the vector
instruction. The high state of PMl allows the QSO0-2 and
QS1-2 inputs of the 87-2 to receive Queue Status
information from the QSO and QS1 Queue Status lines of the
CPU. In scalar mode PMl is held low and hence the QS0-2
and QS1-2 status lines are held with low inputs which
indicate "no operation" to the 87-2 Coprocessor.

The Queue Status lines of 87-2 are switched to logic O
through an empty-the-queue instruction. The vector
instruction that terminates the parallel mode will be
preceded by an empty-the-queue instruction, for reasons
explained earlier. This reinitialization code QS0QS1 = Ol
is used to terminate the Queue Status information to the
87-2 Coprocessor. The reason for such a logic is that the
vector instruction that terminates the parallel mode is an
ESCAPE instruction. Any Escape instruction is decoded by
the 8087 Coprocessor before neglecting. This decoding
process coincides with the logic O transition of the Ready
line, forcing the Coprocessor into Wait state. The Wait
state Coprocessor remains in the Busy state that results in
crashing of the system at a later stage. The deactivation

of the Queue Status prevents the Coprocessor from executing

13

DECODER

16

Py

74

Ciy

32
T } 74q,

READY

$2 0S-2

Py

74 Tz

Cly

Figure 8.4

Parallel Execution Control Circuit

601

110

the vector instruction (DF FE). Figure 8.4 shows the

overall circuit of the Parallel Execution Control Unit.

C. A Genralized Control Circuit.

All the control circuits discussed so far were only for
the first two 8087 Math Coprocessors. This is because the
control circuit required for the remaining Coprocessors is
almost the same as that of the one discussed for the 87-2
Coprocessor, except one or two input changes. The number
of 8087 Coprocessors in the system, however, depends on
various factors discussed in the concluding chapter.

A Generalized Control Circuit for the remaining 8087
Coprocessors is shown in Figure 8.5. The circuit shown
controls the Ready and the Queue Status inputs of an 8087
Coprocessor. The input signal Pn-1 and Bn of the 87-n
Coprocessor (where n = 3,4,..¢....(say) 10), indicates the
initiation and termination of 8087 Coprocessor activity
respectively in serial mode. In scalar mode, like the 87-2
Coprocessor, all the remaining Coprocessors will be in the

Wait state.

1. Serial Mode Operation.

In Serial mode, referring to Figure 8.4, with all
other signals remaining the same, the input signal Pn-1

goes high at the end of the execution by the preceding

PR
Qn :> Fn
__CLR |
E—
Figure 8.5 Generalized Control Circuit

111

o

n-1

QSp-n
GSy-n

112

Figure 8.6

Generalized Control Timing Waveforms

113

8087 Coprocessor. The Busy signal Bn will be high when
the Coprocessor is in operation. The high state of
Pn-1 which forces the 87-(n-1) Coprocessor into Wait
state also activates the 87-n Coprocessor.
Both the Ready and the Queue Status inputs of the

87-n Coprocessor are activated. The 87-n will remain
in active state, until the end of the LOAD/STORE
instruction, indicated through the Busy signal Bn. At
the end of the execution Bn is pulled low which drives
signal Pn low.

The Pn 1low signal causes the 1low transition of
Ready and Queue Status signals, forcing the 87-n
Coprocessor into Wait state. Figure 8.6 shows the

timing waveform for the circuit in serial mode.

2. Parallel Mode Operation,

In parallel mode the signal SP1 high activates all

the 8087 Coprocessors in the system, including 87-2.

The termination of parallel mode Ready input occurs

through the same signal SPl1 going low, whereas the

Queue Status 1lines are terminated a 1little earlier
through the Q52 signal.

This chapter concludes the discussion of the hardware

implementation of the Vector Controller that converts an

IBM PC into The Vector Processor.

114

CHAPTER IX

ASSEMBLY LANGUAGE PROGRAM FORMAT

FOR THE VECTOR PROCESSOR

The Vector Processor has its own insturction set
containing sixteen vector instructions. At present The
Vector Processor makes use of only three instructions out
of these sixteen instructions. The remaining thirteen
instructions are reserved for future wuse as vector
instructions. The hexadecimal <code of the three wused

vector instructions are :

1) DF FD - Parallel mode
2) DF FE -~ Scalar mode
3) DF FF - Serial mode

In Assembly language, these are named by Dr.Miron as -

FVECTOR-SQ (DF FF)
FSCALAR (DF FE)
FVECTOR-OP (DF FD)

Under normal conditions, The Vector Processor will be
in scalar mode. The vector environment is entered through
FVECTOR-SQ instruction wupon which the system assumes
serial mode. A series of FLOAD Coprocessor instructions
follows the serial mode vector instruction. After 1loading

the data elements into the required number of Coprocessors

115

the system should return back to scalar mode. This resets
the Vector Controller either for parallel mode or a new
sequential operation.

The FVECTOR-OP instruction is wused to get into
parallel mode. This is followed by Coprocessor
instructions to operate on the data elements previously
loaded. In parallel mode, any of the 8087 Coprocessor
instructions may be wused (except the FSTORE instruction)
and these instructions are executed by all the Coprocessors
simultaneously. The parallel mode 1is terminated through
the FSCALAR instruction wupon which the scalar mode 1is
resumed.

The results of parallel mode operation are stored back
into memory using an FVECTOR-SQ instruction followed by a
series of Coprocessor STORE instructions.

The functions of these three instructions can be
better understood with an example. Figure 9.1 shows the
Assembly Language Program Format using vector instructions
to perform the addition of three pairs of data elemtnts.
As shown 1in Figure 9.1 the program starts with a jump
instruction, followed by the FVECTOR-SQ. The three
consecutive FLOAD instructions enables the loading of the
first three data elements into the first three Math
Coprocessors respectively. The second set of data element

is fed by repeating the same set of instructions or by

NEXT2

NEXT3

NEXT4

NEXTS

NEXT6

NEXT7

NEXTS8

JMP NEXT1
FVECTOR-SQ
FLD XXX
WAIT

FLD XXX
WAIT

FLD XXX
WAIT

JMP NEXT2
FSCALAR
JMP NEXT3
FVECTOR-SQ
FLD XXX
WAIT

FLD XXX
WAIT

FLD XXX
WAIT

JMP NEXT4
FSCALAR
JMP NEXTS
FVECTOR-OP
FADD

JMP NEXT6
FSCALAR
JMP NEXT7
FVECTOR-SQ
FST XXX
WAIT

FST XXX
WAIT

FST XXX
WAIT

JMP NEXTS8
FSCALAR
END

116

ASSEMBLY LANGUAGE PROGRAM FORMAT FOR ADDING THREE
PAIRS OF DATA ELEMENTS

;clear the queue.

;serial load vector instruction.
scoprocessor load instructions
s;to load the first three
jcoprocessors.

;XXX - indicates any of the
savialble addressing modes

|}
’
sreturn to scalar mode.

.
H

;enter serial mode for loading
;second set of data elements.

back to scalar mode

we we we we we we we we

;enter parallel mode

s;add instruction executed by all
;the three coprocessors.
;jterminate parallel mode.

s;serial mode instruction for
;storing the results of add
;operation, from the three

jcoprocessors, sequentially.

9

return to scalar mode

we we we we we

Figure 9.1

117

changing the address and wusing a loop.The FSCALAR
instruction brings back the Vector Processor into scalar
mode, and resets the Vector Controller.

The FVECTOR-OP instruction activates all the
Coprocessors simultaneously and hence the following FADD
instruction will ©be executed by all the Coprocessors.
Again the system returns to scalar mode with the FSCALAR
instruction. The result of the FADD operation is stored
back into the memory using FSTORE instruction. The storing
is done sequentially using FVECTOR-SQ followed by three
FSTORE instructions.

The number of operations executed in parallel mode
also contributes to the 1inscrease 1in speed of systenm
operation. The operation of The Vector Processor can be
better appreciated through the program on Figure 9.2. This

Assembly Language Program evaluates the following function:

VTAN (A + C)

for a four pair of data elements. As shown in the program ,
the FVECTOR-OP is followed by three 8087 Math Coprocessor
instructions which will be executed by all the Coprocessors
in parallel. This parallel operation saves the fetching,
decoding,and execution time of the four instructions and

hence increases the system speed, approximately by three

118

; ASSEMBLY LANGUAGE PROGRAM FORMAT FOR FINDING
; FUNCTION \|TAN (A + C) OF FOUR SETS OF NUMBERS

NEXT1

NEXT2

NEXT3

NEXT4

NEXTS

MEXT6

JMP NEXTI1
FVECTOR-SQ
FLD BX
WAIT

FLD BX+02
WAIT

FLD BX+04
WAIT

FLD BX+06
WAIT

JMP NEXT2
FSCALAR
JMP NEXT3
FVECTOR-OP
FLD CONSTANT
WAIT

FADD

WAIT

FTAN

WAIT

FSQ

WAIT

JMP NEXT4
FSCALAR
JMP NEXTS
FVECTOR-SQ
FST BX+08
WAIT

FST BX+0A
WAIT

FST BX+0C
WAIT

FST BX+OE
WAIT

JMP NEXT6
FSCALAR
END

3
9

;serial mode vector instruction.
;load the first four Coprocessors
;by incrementing register BX and
sloading from the location pointed
;to by this register.

we we we we we w

send loading.

;parallel mode vector instruction
s;load the constant into all the
;jcoprocessors.

s;add the constant with the data
sloaded in serial mode.

;find the Tangent of the result.

9
;find the square root of the

;Tangent function.

3
9

;jterminate parallel mode.

.
’

;enter serial mode.

;store the result sequentially
;into the memory location
;pointed to by the register BX.

® v we we we we we W

return to scalar mode.

-

Figure 9.2

119

times. The load 4instruction in parallel mode is used to
load a constant into all the Coprocessors.

Thus any Assembly Language Program will have to use
the the three vector instructions for vector or parallel
operations to get into and out of vector mode.

The Logical operation of the hardware part during
these program execution will be as shown in the flow chart
on Figure 9.3 and 9.4. The first flow chart on Figure 9.3
gives the <conditions of the Ready and the Queue status
lines of the first 8087 Math Coprocessor, which are
controlled depending on the type of vector instruction.

Figure 9.4 shows the flow chart that gives the
conditions of the Ready and the Queue status lines of the
second Math Coprocessor (87-2). This flow chart also
represents the conditions of the 3rd, 4th, or the 'n'th
Coprocessor, except that the BUSY 1line of the n-1
Coprocessor serves as the input to the nth Coprocessor
instead of the first coprocessor as shown in the
Figure.Therefore these two flow charts, Figure 9.3 and 9.4
summarize the overall hardware and the software design

concept of The Vector Processor.

Figure 9.3

IS
THE
NSTRUCTI
DF-FF

EXECUTE

THE FIRST
FOLLOWING
INSTRUCTION

== o

—<
nonoan
aOoo

[%2]
'

—
o0 0
m

LA

EE \svuc 3%
'\F/

YES
O

INITIAL CONDITIONS OF THE 8087-1

WAIT FOR VECTOR SERIAL LOAD/STORE
INSTRUCTION

EXECUTE THE FIRST LOAD/STORE
INSTRUCTION

WAIT UNTIL THE LOADING/STORING
IS OVER

ENTER WAIT STATE

87-1 Ready and Queue Status Conditions Flow

120

Chart

(START)

87-2

READY=0
QS%-2 =
Q5-2 =0

IS
THE
INSTRUCTI
OF-FF

87-2
READY=1

Is
IT
98?

87-2
READY=0

INITIAL CONDITIONS OF 87-2;
IN WAIT STATE

WAIT FOR VECTOR SERIAL LOAD/STORE
INSTRUCTION

RECEIVE THE LOAD/STORE INSTRUCTION

9B - THE WAIT INSTRUCTION INDICATES
THE END OF LOAD/STORE INSTRUCTION

87-2 BACK TO WAIT MODE

87-2 YAITS UNTIL 87-1 FIMISHES
LOAD/stoORE

121

Figure 9.4 87-2 Ready and Queue Status Conditions Flow Chart

122

87-2
READY=1 - EXECUTE THE LOAD/STORE INSTRUCTION
0%-2=0%
Q5-2=Q%

BUSY-2=0? - WAIT UNTIL THE END OF LOAD/STORE

Figure 9.4 87-2 Ready and Queue Status Conditions

Flow Chart (continued)

123

CHAPTER X

CONCLUSION

This paper provides the hardware and the software
dwsign necessary to convert a General Purpose Computer into
The Vector Processor, using Math Coprocessors. Though this
paper has used the IBM PC for the General Purpose Computer
this design can be implemented on any other general purpose
processor that provides the necessary interface signals for
a Math Coprocessor.

Throughout this paper, no specific number for the
Coprocessors that can be connected in parallel with the CPU
has been mentioned. This is because the number of Math
Coprocessors that can be used in parallel with the CPU
depends on the hardware cost, the speed required, and the
software application requirements.

The increase in number of Math Coprocessors also
increases the system power requirements and the number of
bus drivers, but gives rise to a dramatic increase in speed
of the systemn.

Since it 1is the Math Coprocessor that operates in
parallel, the Vector Processor gets all the advantages of
having a Coprocessor in the system. These advantages

include handling of floating-point numbers, increase in

124

data types, and built-in facility of transcendental
functions such as logarithm and tangent functions. Table
10.1 gives the amount of increase in speed of execution of
certain instructions, caused by the wuse of a Math
Coprocessor. A 5 to 10 times increase over this speed can
be achieved (depending on the number of Coprocessors) by
The Vector Processor. However, this paper does not discuss
the exact amount of increase 1in speed as this varies from
instruction to instruction of the Coprocessor and hence can
be determined only with progress in software development

for the systenm.

Suggestions For Further Research

As has been mentioned earlier, The Vector Processor

uses only three instructions. Depending on the number of
Coprocessors, an equal number of vector instructions may be
used to indicate the number of Coprocessors to be
activated.
As an example, for a system with eight Coprocessors in
parallel, seven more instructions can be used so as to
activate the exact number of Coprocessors required. With
the present design, all the Coprocessors are activated
regardless of the number required.

In chapter VI, the Vector Instructions Decoder decodes

the T3 clock of a Read bus cycle and in Chapter VII, the

125

Approximate Execution Time (us)
(5 MHz Clock)
Instruction
0l Emsuolg?ion
Multiply (single precision) 19 1,600
Multiply (double precision) 27 2,100
Add 17 1,600
Divide (single precision) 39 3,200
Compare 9 1,300
Load (single precision) 9 1,700
Store (single precision) 18 1,200
Square root 36 19,600
Tangent 90 13,000
LExponentiation 100 17,100

Figure 10.1 8087 Math Coprocessor Speed Comparison

126

Sequential LOAD/STORE Control generates T22 clock which 1is
the T2 clock of a bus cycle. It might be convenient to
combine these two and generate them with fewer components.

In Chapter VII, a '9B' counter is used to stop filling
the operands queue of the Coprocessors. Instead it 1is
advisable to use a status line divide-by-4 counter and
stop the instruction storage into the operands queue at the
end of the 4th count.

There will be occurences of new bugs, as software
development for the system progress, which will result in
further improvement of the hardware design. With this the
author wishes to conclude the paper by expressing his best
wishes for further research on this project initiated by

Dr.Miron.

SN7400
SN7404
SN74L08
SN7410
SN74L11
SN74L20
SN74L30
SN7432
SN7442A
SN74LS74
SN7476
SN74L93
SN74L154

c8087

127

APPENDIX A

List of IC Numbers

2-Input NAND Gates

Hex Inverters

2-Input AND Gates

3-Input NAND Gates

3-Input AND Gates

4-Input NAND Gates

8-Input NAND Gates

2-Input OR Gates
4-Line-to-10-Line Decoders
D-Type Flip-Flops

J-K Flip-Flops

4-Bit Binary Counters
4-Line-to-16-Line Decoders

Intel Math Coprocessors

128

APPENDIX B

7D02 LOGIC ANALYZER

The 7D02 Logic Analyzer is a device wused as design,
debugging, and trouble shooting aid for wuse 1in the
development of digital systems, especially microprocessor
based systems. It is capable of supporting 8-bit and 16-bit
microprocessor systems. This plug-in analyzer requires a 3
wide Tektronix 7603 oscilloscope mainframe. The basic 7DO02
offers

1) a wide (28 channel) acquisition memory

2) four word recognizers

3) two general purpose counters

4) a user configurable clock

5) data qualification circuitry

6) three memories and

7) a facility for using the 7D02 for wide variety of

microprocessors.

The 28 channels of 7D02 are divided into 16 address bus
lines, 8 data bus lines and 4 control lines. The 7D02 can
be programmed to know the status of 28 channels or it is
possible to know the status of each channel separately. The

unit has a option called word recognizer which <can Dbe

gl S

129

programmed to recognize user defined patterns on each of the

channels.

There are four test programs stored in the program
memory of the Logic Analyzer. The user can select any of
these programs which are suitable for the system under test.
It is important to know that only one test is active at a
time.

The format of these tests is as follows:

TEST #

IF event clause

THEN DO statement command clause
OR IF event clause

THEN DO command clause

ELSE command clause (optional)
END TEST #

The physcial connection between the Logic Analyzer and
the «circuit under test 1is made through the PM 101
Personality Module. This module serves to analyze any
system which does not have specific probe for testing.
Electrically, the PM 101 can buffer up to 16 data lines, 24
address lines, and 10 control lines. It has a provision for
qualifier clock which is helpful in checking the valid data

on address, data, and control lines.

N

130

The tests followed in using the test program are as

listed:

1.

Connect the PM 101 personality module to the plug-in
unit of 7D02.

After the power up diagnostics the screen will be
blank until a command is entered. If the PM 101 is
not properly connected then 'failure of the system'
message is seen on the screen.

If there is no failure then connect the leads

(other end of PM 101) to the system under test.
Enter the immediate mode by pressing Immediate key
on 7D02 and then press Display and the Program. Then
press Trigger to display the Test #1 program
structure. After completing Test #1 the user can go
to Test #2 or end Test #1 by pressing the START/STOP
key. At this time the screen shows 'Running'
message.

When the START/STOP key is pressed once again then
the screen shows whatever data it has acquired from
the system under test. By making use of the scroll
key it is possible to see more data than can be

displayed on the screen at one time.

s S5

131

The exact format of the test program is shown below:
TEST #1

1 IF

1 WORD RECOGNIZER #1

1 DATA = XX

1 ADDRESS = XXXX

1 CO=X Cl=X C2=X C3=X

1 C4=X C5=X EXT TRIG IN = X

1 THEN DO

1 TRIGGER

1 O - BEFORE DATA
1 1 - CENTERED

1 2 - AFTER DATA
1 3 - ZERO DELAY

1 O - SYSTEM UNDER TEST CONT.
1 O - STANDARD CLOCK QUAL.

END TEST 1

If one wants to trigger on a paritcular data, address
or a control output then the value of that data «can be
entered in the places of don't cares (XXX), in the above
program. So, whenever that particular value appears on the
data , address or control 1line the screen displays the

content of the data acquired by the acquisition memory.

132

For understanding and debugging of The Vector
Processor, the Logic Analyzer may be used and programmed to
trigger on the occurance of a vector instruction. The
following procedure is recommonded:

1) Connect the data probes of the Logic Analyzer to the

the data lines of The Vector Processor.

2) The qualifier probes CO, Cl, C2, and C3 are
connected to the status lines SO, S1, and queue
status lines QSO, and QS1 respectively.

3) Connect the qualifier probe C4 to the decoder 74L154
(pin 17) of The Vector Processor.

4) Connect tha address probes, one out of the first 4
address lines to the Busy line of the 8087 or any of
the required test points.

In the program make C4=1 and run the program. The Logic
Analyzer will trigger on occurance of the vector instruction
DF FF. By observing the Busy 1lines of all the 8087's
through the address 1lines, one can see the serial 1loading

and parallel execution of the Math Coprocessors.

§3\

10.

11.

12.

13.

14,

15.

133

REFERENCES

Intel Microsystem Components Handbook: Volume I and
Volume II, Intel Corporation, California, 1984.

Morris, M.: Computer System Architecture, Prentice-Hall,
Inc., New Jersey, 1982,

Intel iAPX 86/88, 186/188 User's Manual: Hardware
Reference, Intel Corporation, California, 1985.

The TTL Data Book for Design Engineers, Texas
Instruments, Inc., Texas, 1981.

Technical Reference Manual: IBM Personal Computer, IBM,
Florida, 1983.

Intel iAPX 86/88, 186/188 User'Manual: Programmer's
Reference, Intel Corporation, California, 1985.

Walter, A.T., A. Singh: 16-Bit Microprocessors,
Prentice-Hall, Inc., New Jersey, 1985.

Tektronix 7D02 Logic Analyzer Instruction Manual,
Tektronix, Inc., Oregon, 1981.

S.S.Reddi., E.A.Feustel.: A Restructurable Computer
System, IEEE Transactions on Computers, VOL. C-27,
No. 1, January 1978.

Disk Operating Systems Manual: IBM Personal Computer,
Version 2.10, Microsoft, IBM, Florida, 1983.

Y.P.Raghuram,: Interfacing of Two Non-Identiacal
Printers to the IBM PC, SDSU, 1986.

D. Miron,: Vector Processor, SDSU, 1985.

Tektronix PM101 General Purpose Personality Module:
Instruction Manual, Tektronix, Inc., Oregon, 1980.

Walter, A.T. and A. Singh: 8088 Assembly Language for
IBM PC, Printice Hall, Inc., New Jersey, 1984.

Macro Assembler Reference: IBM Personal Computer,
Version 2.00, IBM, Florida, 1984.

	The Vector Processor
	Recommended Citation

	tmp.1599508805.pdf.bS27Q

