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INTRODUCTION 

· Thermal-infrared imagery (thermography) obtained from satellite 

altitudes has been shown to be a promising new tool for resource man­

agement and development . Sate llite-borne thermal-infrared sensors 

allow the collect~on of time-sequential thermal-infrared radiation 

(thermal emittance) data over large land-surface·a~eas of the earth 

at relatively low cost. Thus, any resource which can be related to 

thermal emittance can be readily monitored. 

Thermal emittance from a surface is proportional to the fourth 

power of the surface temperature . Thus any factor which affects the 

surface temperatu re greatly affects the surface thermal emittance. · 

Moisture is such a factor when the land surface is considered. Near­

surface soil moisture changes the heat capacity and thermal conduc­

tivity of the soil and thus greatly alters the t emperature of the 

land surface. Thermography is very sensitive to s·uch changes in 

surface temperatu re making it a potenti al ly useful tool for monitoring 

near-surface soil moisture. 

Factors other than soil moisture also affect soil surface 

temperature and thus thermal emittance. These factors such as near­

surface ground water, wind velocity, topography of the land, plant 

canopy, soil type, and other variables serve to complicate the method. 

Thus, the isolat ion of one factor s~ch as soil moisture and its effect 

on thermal emittance is difficult. Therefore the interrelationship 

between these factors must be understood before a model that describes 

variations in thermal emittance can be constructed. The resource 



scientist may then be able ei ther t o compensate for the effect of 

these f.actors durin g data anal ysis, or collect data when these factors 

have a minimal effect on the thermal emittance of the land-surface. 

The plant canopy is a particular variable which must be 

understood and isolated since ba re soil conditions of the land-surface 

are rare and usuall y temporary. Plant cover effectively shields the 

soil surface from solar radiation during the daylight hours reducing 

the total amount of energy supplied -to the soil surface. It also 

insulates the soil from the atmosphere during the nighttime hours 

reducing the amo unt of heat escaping from the soil surface. These 

effects alter the thermal . emittance of both the soil and plant canopy 

which together form the comp-osite thermal image of the earth's surface 

as monitored by satelli te. 

The intervening atmosphere poses another particular problem 

when using satell ite-borne sensors. It absorbs and emits components 

of thermal-infrared radiation thus affecting the amount actually 

reaching the satel l ite sensors. The t empera tu re derived by assuming 

all radiation emi tted from the earth reaches the satellite sensors 

may then differ greatly from the ac tual tempera t ure of the earth's 

surface. The te rm 11 apparent temperature" is used to describe this 

remotely sensed variable. 

The emi ssivity of the surface is dependent upon surface 

conditions. Si nce emis s ivity i nflue nces both the radiation absorbed 

and reflected by a surface, the apparent temperature will also depend 

on surface conditions. 
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Temperature differences between two points on the earth are 

easier . to derive with reasonable accuracy from satellite thermal­

infrared imagery (TIR) than the exact temperature of each point. If 

· the atmospheric absorption and emission over both points is assumed 

identical and the emissivity is the same for both points, the apparent 

temperature difference will correspond very clos~ly to the actual 

temperature difference for the two surfaces. For example, absorbtion 

by the atmosphere may decrease the satellite derived apparent tem­

peratures of both points but the difference between these temperatures 

will be very close to the actual surface temperature difference. 

A model that successfully relates apparent temperature 

differences between two points on the earth to soil moisture differ-· 

ences at the two points would allow the monitoring of soil moisture 

over large land-surface areas. This method would require the "ground 

truth 11 monitoring of soil moisture at a reference site. Satellite 

thermography would then be used to determine apparent temperature 

differences between the reference site and any number of other sites. 

Moisture differences between the reference site and other sites could 

then be calcula ted from the apparen t temperature differences using 

the model. The general objective of this research was to test and 

modify an existing model for this application. 

3 



OBJECTIVES 

The specific objectives of this research concerning the 

.testing and modifi cation of the model for monitoring soil moisture 

4 

were: ,. 

1. To invest igate the rel ationship between soil surface 

temperature differences and soil moisture differences 

as predicted by the existing heat flow model. 

2. To investigate the relat ionship between surface soil 

heat flux and calcui ated surface temperature differences 

predi cted by the same existing theoretical model. 

3. To modify the existing heat flow model to accept plant 

parameters as inputs. 

4. To tes t the modified theoretical model by comparing 

predi cted surface temperature differences with apparent 

temperature difference acquired experimentally over two 

plots with an oats crop canopy. 



BACKGROUND LITERATURE 

Many previous investigations have been carried out with the 

over-all objective of monitoring soil moisture and underground water 

using thermal emittance. Myers and Heilman (1969) using pre-dawn 

TIR imagery found . higher soil surface temperatures corresponded to 

sotl with higher moisture content in the top 50-em ·layer of soil. 

The possibility of employing thermography from aircraft altitudes for 

mapping shallow aquifers in eastern South Dakota was investigated by 

Myers and Noore (19 72 ). They obtained statistically significant 

results for predi cting the thickness of saturated sands and gravels 

using August predawn fli ght data. Thermal responses to clima.tic 

variations were found to be depicted in seasonal and diurnal thermog­

raphy in a further study by Moore and Myers (1972). They concluded 

land use, soil moistu re, and other sources of thermal differences on 

the land surface of the earth were easily observed using daytime 

thermography. They al so found the effects of these variables were 

diminished for predawn thermography and concluded predawn flights to 

be best suited for identify ing shallow aquifers in South Dakota. 

Investigators have also explored the relationship between 

thermal emittance gath ered at aircraft heights and soil temperature. 

Schmugge et ~· (1978) and Reginato et ~- (1976) have both shown 

bare soil temperatures derived from remotely sensed thermal emittance 

data agree with ground based soil temperatures measured using thermo­

couples. Tunheim (1977) showed a positive correlation between tem­

perature patterns on the soil surface caused by near surface water 
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tables associated with saline seeps and airborne thermal infrared 

images _of the same area. The results of the study also indicated 

that a purely heat conducti on model must be modified to include 

.other factors such as soil moisture. 

Thermal inertia, the resistance of a material to a change in 

temperature, has also bee~ employed to relate so~~ . temperature to 

soil moisture and soil temperature to geologic formations. Schmugge 
~ 

et ~- (1978) found the amplitude of the diurnal soil surface tempera-

ture variation, measured by airborne thermal infrared sensor, was 

related to soil moisture content. They also found that a greater 

diurnal soil surface temperature amplitude corresponded to soil with 

lower thermal inertia. Gillespie and Kahle (1977) collected thermal 

emittance data at aircraft altitude to estimate thermal inertia of 

the soil surface. The resultant data was used to construct a map of 

thermal inertia pa tterns on the soil surface. They then identified 

near surface geological formations from the map. 

The first evaluation and anal ysis of satellite thermography 

data from Skylab showed positive correlation between soil moisture 

and thermal emittance (Moore et ~- , 19'15). Analysis of the Heat 

Capacity Mapping Mission (HCMM) satellite data by Heilman and Moore 

(1981) showed areas of high moisture content could be detected using 

satellite thermal infra red imagery . However, variations of conditions 

at the surface and in the atmosphere ~ust also be accounted for . 

during -analysis. 
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The effects of crop cover on the surface thermal emittance has 

been s~udied by several investigators. Blad and Rosenberg (1976) 

found the thermal emittance of the soil even at full plant cover can 

.affect the remote temperature measurements of crop canopies. Heilman 

and Moore (1980) measured the thermal emittance of the soil surface 

partially covered by an oat crop and compared it.tq the thermal emit­

tance of the crop canopy alone. They found the temperature of the 

partially covered soil surface to be from 0.5 co to 11.5 co warmer 

than the canopy temperature. 

Quantitative measurement of soil moisture using thermal emit­

tance would require a model that describes and simulates the effect 

of subsurface soil moisture on the soil surface temperature. No 

such model exists, although similar types of models have been 

developed. Kahle et ~· (1975) developed a model relating daily 

variations in surface temperature to the thermal inertia of geologic 

materials. This model primarily consists of a finite difference 

solution to a one dimensional heat transfer problem. Soil moisture, 

however, is not considered an input of the model. 

Meyer (1972) developed two models that relate surface thermal 

emittance to the presence of an aquifer. Bot~ models consider two 

soil profiles 50-cm in thickness. Both models are also based on the 

assumption that a shallow aquifer would cause the temperature at the 

50-cm depth to vary 1 C0 to 3 co from the temperature at the 50-cm 

depth of a region where no aquifer is present. Identical 50-cm 

thick homogenous soil profiles are considered in each model. The 
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50-cm depth was chosen because daily variations in temperature at 

that d~pth are small (Cartwright, 1968; Carson, 1961). 

Surface soil heat flux is assumed to be constant in the first 

·model and directed outward from the earth, simulating nighttime con­

ditions. The initial values for the surface temperatures of both 

profiles were set equal. The presence of an aquif~r at the 50-em 

depth was simulated by a constant temperature diference, ~T, between 

the two profiles. The heat transfer problem for both profiles was 

solved analytically, employing a finite integral transform. Analysis 

showed a surface temperature difference ranging from 20% to 40% of 

the assumed 50-cm temperature difference would develop in 9 hours. 

The rate of development of the surface temperature difference was also 

found to be dependent on only the thermal diffusivity of the soil. 

The surface heat flux of the second model was assumed to 

consist of two parts·, a rectified sine wave and a terrestrial radia- · 

tion term as suggested by Smith (1969). It was represented in that 

manner in order to simulate both night and day conditions at the 

surface of each profile. The one dimensional heat transfer problem 

using this type of radiative boundary conditions could not be solved 

analytically. Therefore a finite difference method was chosen. 

Numerical calculations were carried out by computer. Calculated 

temperature profiles predicted from model calculations compared 

qualitatively with data taken by Carson (1961). One significant 

result that has been verified experimentally (Aaron et ~-, 1976) 

was that the maximum value for the thermal anomaly would occur at 

approximately 0700 hours. 
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The finite difference model by Meyer (1972) was further modifi­

ed by Beutler (1980) to accept non-homogenous soil profiles. This non­

homogeneity of soil profiles was simulated by dividing each 50-cm thick 

soil profile into 1-cm homogenous layers differing in bulk density~ 

porosity and moisture content. Variations in thermal conductivity and 

heat capacity associated with these non~homogenous soils were thus in­

cluded as factors affecting the calculated soil surface and profile 

temperatures. 

The model by Beutler was tested by calculating surface tempera­

ture differences between a dryland and irrigated plots over a diurnal 

period. The calculated temperature differences were then compared to 

experimental data. Surface temperatures for both plots were measur~d 

using a Barnes PRT-5 radiometer. Soil temperature profiles for both 

plots were measured using thermocouples buried at various depths in 

each plot. The two soil plots were first covered by a mature barley 

crop. The barley crop was then stripped from both soil plots. Data 

were collected for both crop cover and bare soil surface conditions. 

Soil moisture as well as other factors were periodically monitored. 

Theoretical model predictions of apparent temperature differ­

ence of the soil plots for both crop cover and bare plots were very 

simflar functionally to the actual data. The primary difference- was 

the absence of an experimental temperature difference during the night­

time hours for the crop covered plots. The magnitudes of the theo­

retical temperature differences were smaller during daytime hours but 

larger during nighttime hours than experimental values for both bare 

soil and crop covered conditions. 



THEORETICAL MODEL 

The finite difference heat flow model origina~ly developed by 

Meyer (1972) and modified by Beutler (1980) was the model chosen for 

further testing and modification in the research. It uses two 

non-homogenous soil profiles of 50-cm depth. The 50-em profile was 

chosen since daily variations in soil temperature at this depth have 

been obs-erved_ to be small (Cartwright, 1968; Carson, 1961). The 

10 

50-cm soil profiles are then each divided into 1-cm homogenous sections 

or layers containing 50 equally spaced points referred to as nodal 

. points. A diagram of this soi l profile construction is illustrated 

. in Figure 1. 

/ 

----~- ----•2 ___ ..... _ _._,_~ 
•3 

___ _. __ _._ ..... _ 
• n-1 
•n ----.n+l-------- ------

---------• m-2 - -- .,_ ...... ..... ..... .._ ---
• m-1 

__ ! _ 
--y-

Figure 1. Assignment of Nodal Points and Heat Flux 
Tenns for the Fini tc Difference f.Iodel. 



Nodal poin t 1- co incides with the upper surface of the soil profile 

at x = 0. Nodal point 50 coincides with the lower surface at x = 50. 

The heat flux entering the up per surface is denoted qs while the heat 

. flux leaving th e lower surface is denoted ql. 

The hea t flu x q
5 

is difficult t o measure and is thus treated 

as a parameter i n· the model. This parameter originally was composed 

of a rectified sine wave represent ing the amplitude of the solar term 

and a terrestri al blackbody radiat ion term. The ori ginal functional 

form of qs is given as 

11 

1Tt qs = A sin IL - R, ( 1 ) 

where A is the ampl itude of the solar term during the period of 

maximum solar radi ation during one diu r nal cycle , t represents the 

time of day measu red from sunrise, L represents t he t otal number of 

daylight hours, and R is t he terrestria l radiation te rm as suggested 

by Smith (1969) . 

The model by Beutler (1980) was modified duri ng this research 

to account for the shading effect of a row crop canopy on the soil 

surface. The soil surface heat flux term qs was th us modified and 

was chosen to be of the form, 

(2) 

where Fa represents the fraction of field in direct sunlight and the 

subscript denotes the solar altitude angle at time t. The fraction 

of field in di rect sunlight, Fa, is calculated using a model by Mann 

et !l· (1978). This model approximates the li ght penetration of a 



row crop incorporating both individual plant geometry and row struc­

ture. The individual plant geometry is assumed ellipsoidal as shown 

in Figure 2 with vertical axis of summetry. The lengths of the semi-

major axis and semiminor axis are a' and b' respectively. The soil 

surface is assumed to be horizontal. The geometrical projection of 

an ellipsoid onto a horizontal surface must then be considered. The 

direction of the plant projection and the solar ray are parallel. 

The projection onto the soil surface -is an ellipse with semimajor 

axis length given by 

12 

a= [(b') 2 +(a' Cot a)2]
1h, ( 3) 

and a semiminor axis length equal to 

b : b I • 

The area of each projection is given by the equation 

(4) 

A6 = nab, (5) 

where A8 denotes the area at solar altitude angle a. The model may 

be expressed in three dimensionless constants defined as follows: 

and k3 = [dl 'b']- 1 
, 

~~here 1 • is the distance between two consecutive rows and d is the 

-:number of plants per unit of field area. The field is now divided 

into strip areas of type A and type B to simulate the difference 

between the area in the plant rows and the area between those rows. 

Alternate strips are thus of the same type. Any point lying in strip 
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Plant Canopy 

\ 
/ . 

Figure 2. Ellipsoidal plant canopy and its elliptical projection 
onto the soil surface (Mann ~ al. p 132 and Fig. 1) • 

. e 

type A (in the row ) may be shaded by at most n-1 distinct rows. Any 

point lying in stri p type B may be shaded by at most n distinct rows. 

This means any so lar ray would ha ve to penetrate at most n-1 rows of 

plants to illuminate a point layi ng in a stri p of type A. The value 

of n is then a funct ion of solar pos ition and crop parameters. The 

value for n is calculated employing the condition 

n- 1 ~ q 2_ n, 

where q is the ratio of the width of a canopy projecti on measured 

perpendicularly to the rows, to the row width 1 '. The value for q 

is calculated using the follow i ng equation; 

I . 
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(6) 

where a is the angle between the solar azimuth and the direction 

parallel to the rows. The probability that a randomly selected 

point is shaded by exactly k plant canopies is a mixture of two 

Poisson distributions given by; 

k 
Pn(k) = [lJnAn,l _exp (-An,l) + 

k 
(1 -pn)An, 2 exp (-An. 2)]/k!, 

where 

and 

( 7) 

The various terms are defined in the following text. The term ~ rep­n 
resents the fractional field area which lies in strips of type A; where-

as, 1 - ~n represents the fractional field area which lies in strips 

of type B. Th~ term en is the fraction of a single plant canopy 

projection which lies in strips of type A; whereas, 1 - en is the 

fraction of a single plant canopy projection which lays in strips of 

type B. The value of en is determined from the condition 

{(;) 
, n = 1 

e = n-1 
( 2i - 1) n I Arcsin 

i=l q 

2. 2. 2 
+ ( -t -1) [1 - <-t - 1) ] , n > 1 • 

The term An,l represents ~he total area of all plant canopy projec­

tions which fall into strips of type A per unit of field area of 



type A. The -term ). 2 represents the to-tal field area of all plant n, 
canopy projections which fall into strips of type B per unit of field 

area of type B. 

It is assumed that the projected leaf area density of k plant 

canopies is the sum of the individual canopy projecti.ons. The' total 

p-r:-ojected leaf ar·ea onto the soil surface is 

15 

( 8) 

where c' is the total leaf area of one canopy project, Ak is the 

total field area shielded from the sun by k plant canopies, and A 

is the total field area. Equation {7) may be rewritten 

00 

c = E kc'[P (k)A/P (l)A], 
k = 0 n n 

where Pn(l) is the probabil i ty that a randomly selected point is 

shielded by exactly one plant canopy. Equation (9) may then be 

rewritten as 
00 

{9) 

( 10) 

The summation in equation (10) is the expected value of the mixture 

of two Poisson distributions and thus can be reWritten as 
00 

( 11) 

but 

VnAn,l + (1-vn)).n,2 =dAB ( 12) 

therefore substituting equation (12) into (11) yields the result 
00 

( 13) 
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Substituting equation (13) into equation (10) yields 

c'dA 
C - 8 - p (1) . ( 14) 

n 

The value of c is generated using the following method. The 

individual plant leaves are assumed to be part heliotropic and part 

to maintain a -constant orientation with respect to the soil surface. 

The total projected leaf area c is a combination of these two struc­

tural characteristics. Let R(a1) be the total leaf area inclined 

at angle a; with respect to the horizontal plane or soil surface. 

The projection c(a;,8) of R(a1) onto the soil surface in the direc­

tion of the solar ray is 

R(a1)(2/tr) cot 8 

0 < a. < 8 
1 -

( 15) 

where e = cos- 1 (tan 8 cota1), (Wilson, 1967). The heliotropic portion 

of the canopy is assumed to maintain a fixed angle v with respect to 

the solar position. The projection of this portion of the canopy, H, 

onto the soil surface is calculated using the expression 

c = H sin v/sin B . v 
(16) 

The expression for c is then rewritten as a combination of equations 

(15) and (16), thus 

c = c (B)+ ~c(ai,B) . 
v 1 

( 17) 

Now assume the leaf area projected onto the area of field 

shielded by k plant canopies follows a random rectan9ular distribution 



fork= 0, 1; ·· ·. This assumption is made to simplify the calcula­

, tion and make use of Beer's law to calculate the fraction of Rk which 

is in direct sunlight. The ratio of the projected leaf area of one 

·canopy to the total area of all plant canopy projections is 

The ratio of the total proj ected leaf area of all ·plant canopy 

projections is 

Employing Beer's law, an expression representing the fraction of Rk 

in direct sunlight i s derived and is given by 

17 

~c 
Fo k = exp(- dA A) . ( 18) ...., ' . s . 

The fraction of the entire field that is in direct sunlight is given 

by the weighted sum 
00 

F = 1: 
e k = 

Substituting equat i on (7) into equation (19) yield the equation 

Fe= ~nexp(-zAn,l) + (1-~n)exp(-zAn, 2 ), 

(19) 

where z = 1 - exp{.:. dAcA) . (20) 
B 

The expression for Fe has now been derived. 

The model by Beutler was further modified. The terrestrial 

blackbody radiation term as suggested by Fleagle (1950) originally 

represented the unobstructed radiation of heat from the earth toward 

the atmosphere. When a crop cover is present the heat radiated from 

the earth is obs true ted by the crop canopy. The obs-tructed radiation 
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term by Fleagle (1950) is then used to describe the heat lost by each 

crop covered profile at night. The expression for this radiation · 

term is 

(21) 

where cr is the Stefan-Boltzman constant, T is the temperature of the 

soil surface, in degrees Kelvin, Ta is the effecti~e air temperature, 

in degrees Kelvin, T1 is the temperature of the obstructing surface, 

in degrees Kelvin, and r represents the ratio of the obstructed area 

to the total area of a hemisphere circumscribed above the radiating 

point on the soil surface. The value of r can be shown by integration 

over the surface of a hemisphere to equal 

r = sin e, (22) 

where e is the mean elevation angle of the tallest obstruction taken 

through 2~ of azimuth . . 

Beutler (1980) modified the model by Meyer (1972) to accept 

non-homogenous soil profiles, as stated previously, using the follow­

ing method. Consider two soil profiles identical in all respects 

except moisture content. If the percent soil moisture, by volume 

+vw' and the percent soil, by volume, •vs' are known the percent 

air, Ea, can be calculated. With these values known, thermal con­

ductivity and heat capacity can be found for each one-em thick layer 

in the following manner. Heat capacity for a given volume of soil 

is found using the following equation 

C = ~ c + ~ c + ~ ca 
~vw w ~vs s ~va ' (23) 

where c , c , and c represent the heat capacities of water, soil, and w s a 
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air respectively. Since ca is small compared to cw and cs its effect . 

on heat capacity is very small and is neglected.' If the moisture 

content of the soil profile varies with depth, variations in heat 

capacities and thermal conduct i vities occur. To approximate this 

condition the model was constructed to accept experimental soil mois­

ture values at several depths. The values for soil moisture over the 

entire 50-cm profile are then calculated and assigned by interpolation 

and extrapolation. Thermal conducti vity is then calculated employing 

the method by DeVries (1963) . Calculation of an apparent thermal 

conductivity whi ch approx imat es heat transfer due to mass movement 

of water, phase change of water, convection, and conduction is accom-

plished using thi s method ~ The apparent thermal conductivity of a 

granular materia l is given by 

0 = 
>: k. x. 0· 
'1 1 1 1 ' 

E X. 01~ • 1 
1 

(24) 

··where ni is the apparen t thermal conductivity of the individual soil 

components, x. is the volume frac tion occupied by each soil component, 
1 

.and k. is the ra tio of the average temperature gradient in the gran­, 
-· ules across the medium. The equati on for calculating a value for ki 

·is given by 
ni I 

k • = 1/3 }: [1 + (- - 1 )g ]- e 

1 i n0 a 
(25) 

·the values ga are generated using an ·unsaturated soil, with water as 

the continuous medium from the equation 
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Ea 
9a = 0.33 - ~ (0.333 - 0.35) , ( 26) 

where E is the soil porosity. 

Now consider a volume of material surrounding node n (n - 2, 

3, ···, m-1) as shown in Figure 3. The volume surrounding node n is 

given by A~x, where A is the unit surface area and ~x is the distance 

between consecutive nodal points. The amount of heat transferred from 

node n to node n+l is denoted qn,n+l· The heat stored within the 

volume is denoted Esn· The law of conservation of energy to node n, 

considering one dimensional heat transfer results in the equation 

( 27) 

k A ~ 
I · I 

I . r· I 

~
I .---- .n~,~-JI __ f_ 

· n llX 

E~---~--- --~-
Cln,n+-1 . 

figur~ 3 . Energy Balan~e for Node n. 

The rate at which heat is transferred between nodal points is written 

in finite difference form as 

(28) 
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and 

{29) 

where Tn-l is the temperature of node n-1, Tn is the temperature of 

node n, Tn+l is the temperature node n+l, and Q is the thermal con­

ductivity of the material bet\.,reen the nodal points. If the thermal 

conductivity of every volume element surrounding·each nodal point is 

different, the thermal conductivity _between nodal points may be written 

as the average of conductivities associated with the volume elements. 

Thus, for equation (29) 

Q 1 + n n- n n -- 2 (31) 

Equation (28) may then be written as 

(nn-1 + 0 n) A 1n - Tn-1 
qn-1 ,n = ~ · . 2 Ax (32) 

Similarly, equation (29) is rewritten as 

0n + 0n+l 1n+l - Tn 
qn,n+l = - ( 2 } A AX (33) 

The energy storage term expresses the rate at which the temperature of 

the volume of material changes. This term may be written in finite 

difference form as 

where p is the density, c is the heat capacity, At is the time 

increment, Tn is the temperature of node nat timet, and Tn' is 

(34) 

the temperature of node nat time t +At. Substituting equations (32), 

(33), and (34) into equation (27) and rearranging terms yields 



Solving for the temperature at time t + ~t results in the equation 

T I 
.n 

(o 
1
+ on)~t . (o 1 + 2n + n 

1
.)At 

= n- T [ 1 . n- n n+ ] 
2(pc)n(Ax)2 n-1 + - 2(pc)n(Ax)2 Tn 

Now consider the transfer of heat at the surface, x = 0. Figure 4 

shows the volume el ement for node 1. 

/ 
k.,_, ___ . A ----)1.., 
l I 
f ( OS : 

I J ; . I J, 
IE • j----
. Cs]_- - - ~- - - - ~ -~-

~ . . t 
ql,2 . 

Figure 4. Energy Balance for Node 1. 

The energy balance equation can be written as . 
qs = ql , 2 + Es 1 • 

The rate of heat transfer from node 1 to node 2 is 

22 

(35) 

(37) 

(38) 
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Node 1 is at the surface, therefore, the volume of material surround-. 
ing node 1 is (~x/2)A. The energy storage term is then 

~sl = (pc)lA(~x/2) r, I - Tl 
~t 

(39) 

Substituting equations (37) and (38) into equation (39) and rearrang-

ing yields the equation 

Solving for the new temperature, T1 ',gives 

Finally, consider the node at the lower boundary, x = L. Figure 5 

depicts the volume element for node m. 

f( A ~ 
t I 

• l t t ~ ), 'lm:_l ~ - I 
[.:- -- l- ~X--

in .c.sc -_ ..:::2_-. 

~L i 

Figure 5. Energy Balance for·Node m. 

The energy balance equation for node m is given by the equation . 
qm-l,m = ql + Esm • 

(40) 

(42) 



The rate of heat transfer from node m-1 to node m is represented by 

the equation 
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n 1 + o T - Tm-l 
qm-l,m =- ( m- 2 m)A m ~x (43) 

Once more, since the volume element surrounding node m is only 

(Ax/2)A, the energy storage term can be written as 

• 6 T I - T 
Esm = (pc)mA( ~) m m • 

At 
(44) 

Substituting equations (42) and (43) into equation (44) and rearrang-

ing, results in the equation 

. (45) 

Solving for the new temperature Tm 1 yields the equation 

T I 
m 

2ql6t 
- (pc)mA~x 

The finite difference equations have now been derived and are 

equations (36), (41), and (46). The solution of a one-dimensional 

(46) 

heat transfer problem requires the specification of an initial tem­

perature for each of t hem nodel points. The method described is an 

analytically solved problem using a _specified initial condition. To 

calculate the new temperatu,re at time at the heat flux terms q to s 

ql must be specified. Equations (41} and (46) may then be used to 

determine the new boundary temperatures. The new temperature of each 



25 

interior noda) point can be determined by solving equation (36) for 

each node n (n = 2, 3 ... m-1 ). The res ultant temperatures obtained 

for the m nodal points can then be used to calculate the temperatures 

·at time 26t . The i teration process is t hen continued to obtain the 

temperature of any nodal point at any desi red future time. 

Choice of values of 6X and ~t depends on .the thermal proper­

ties of the soil considered and the thickness of the soil layer. 

The values ~t = 60 seconds and 6X = 1-cm were found to be sufficient 

(Beutler~ 1980) for a 50-cm soil layer and the range of soil thermal 

properties used. 

The finite difference model (Figure 6) requires the following 

inputs: (1) crop parameters, (2) soil heat fl ux, {3) soil moisture 

profile, (4) dry soil conductivity, (5) physical parameters of the 

soil which include the bulk density and the amou nt of soil by volume, 

(6) initial tempera~ure profile, and effective air temperature. 

Outpu ts of model calculations, are soil temperature profiles, 

for the two s ites , and a surface temperature difference between the 

two soil plots as a function of time. 
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FiBure 6. Schematic representation of the finite-difference 
model in .its present format. 
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DATA COLLECTION 

· Experimental data for this study were collected on a site at 

the South Dakota State University Agricultural Engineering farm, near 

Brookings, South Dakota. The soil is classified, according to USDA 

standards as a silt loam (Beutle r , 1980). 
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The si t e was divided i nt o two plots. The plots were separated 

by a plastic water vapor barrier dow.n to a depth of approximately 

100 em. This was done t o ensure that the moisture content for one 

plot could be var i ed without affecting the moisture content of the 

other. Both pl ots were covered by a mature oat crop canopy. 

Thermocouples were buried at depths of 1 em, 5 em, 10 em, · 

25 em, and 50 em . Soi l profile t emperatures were recorded every 

30 minutes. Th e t hermal emittance of the soil and crop canopy was 

measured using a Barnes PRT-5 mounted on an apparatus which allowed 

the scanning of both plo ts at 30 minute intervals from a height of 

approximately 3 m above the soil surface . . ~Jet bulb and dry bulb air 

temperature data were collected eve ry hour. Solar radiation and net­

solar radiation da ta were col l ected every 30 minutes. 

Soil moisture by weight was acquired using the gravimetric 

method with collect i on of soi l sampl es during midmorning and again 

during the early evening hou rs. Soil samples for these measurements 

were collected on the surface, at a -1 cm-8 em depth, at a 8 cm-25 em 

depth and at a 25 cm-50 em depth. Soil moisture by volume was then 

obtained in each case by multiplying soil moisture by weight by the 

average bulk density of the soil for each depth. 
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Crop parameters were estimated by measurement of plant height, 

width and row spacings. The values for these parameters do not rep­

resent a statistical study of each parameter value. 



RESULTS 

· This research consists of two parts. The first part is an 

investigation using the theoretical model by Beutler (1980) to obtain 

a relationship between soil moisture difference and the maximum 

surface temperature difference observed during a diurnal cycle for 

two soil plots. The second consists of a modification of the model 

to accept crop parameters as inputs ~and subsequent testing of the 

modified model by comparing predicted surface temperature differences 

between two soil plots with experimental data. 
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Near-surface soil moisture and soil surface temperature have 

been shown by investigators to be related to one another (Idso et ~., 

1975, Schmugge et ~., 1978) . Soil surface temperature difference 

has also been shown to have a similar functional fonn as surface 

temperature during the diurnal cycle (Beutler, 1980). This would 

indicate that surface temperature difference may be a useful tool 

for measuring soi l moisture eliminating the need for recalibration 

of thermal emittance data due to atmospheric and surface effects. 

Several series of calculations using the original theoretical 

model were carried out to predict the type of relationship between 

soil moisture difference and maximum surface temperature difference 

which might be expected between two soil plots. During all calcula­

tions both plots were assumed to have no plant canopy. Values for 

soil heat flux and soil physical properties were chosen to correspond 

to experimental observations and were identical for both plots. The 

percent soil moisture for each individual plot was. assumed constant 



throughout the entire profile. The value for soil moisture of the 

reference plot was held constant during each series of calculations 

while the value for soil moisture of the other plot was varied. The 

30 

·surface temperature differences we re calculated for each soil moisture 

difference as a function of time during a complete diurnal cycle. 

The maximum surface temperature difference during .each diurnal cycle 

was then plotted as a function of soil moisture difference. 

Results of calculations for a reference plot moisture of 5% 

by volume are shown in Figure 7. The temperature at the 50 em depth 

was assumed equal for both soil profiles. The maximum temperature 

difference in all calculations were found to be positive (the dry­

land plot was warmer than the irrigated plot) and occurred at approx­

imately 1300 hours. The points shown are calculated values and the 

continuous curve was fitted to these values using multiple linear 

regression analys is. The continuous line has a quadratic functional 

form and is readi ly seen in Figure 7 to be an excellent fit. 

The reference plot moisture was then increased to 10% by 

volume and the procedure was repeated generating a new set of maximum 

surface temperature differences. Calculated values were plotted 

again and the resultant graph is shown in Figure 8. Multiple linear 

regression analysis was performed and the continuous curve fitted to 

the calculated points. The curve ag~in has a quadratic form and fits 

the calculated values very well. 

The calculation procedure was repeated for a reference plot 

moisture of 20% by volume. The maximum temperature differences from 
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Figure 7. Calculated surface temperature difference between two 
soil plots as a function of moisture difference~ One 
plot is considered to have a fixed soil moisture 
profile of 5% by volume while the other is varied from 
that value. The temperature difference at a depth of 
50-cm is 0 C0

• 

31 



LLI 
:c 
~ __. 
0 
> 
>­m 
LLJ 
u 
z 
LLJ 

32 

ffi 16 
LJ... 
LJ... 
~ 

Q 

2.0 3.0 4.0 5.0 6.0 

SURFACE TEMPERATURE DIFFERENCE (°C) 

Figure 8. Ca)culated surface temperature difference between two 
soil plots as a function of moisture difference. One · 
plot is considered to have a fixed soil moisture 
profile of 10% by volume while the other is varied 
from that value. The temperature difference at a 
depth of 50-em is a·co. 
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these calculati ons are shown in Figure 9. The continuous curve from 

multiple linear regres sion analys is again fits these values extremely 

well. 
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Comparison of Figures 7, 8 and 9 shows the maximum surface 

temperature difference between t he t wo plots decreases with increasing 

reference pl ot soi l moisture. For example, a reference plot moisture 

of 5% and a moi sture difference of 10% in Figure 7 depicts a maximum 

surface temperature difference of 5.8 C0
• However, Figure 8 and 

Figure 9 dep ict maximum temperature differences of 4.0 co and 2.2 co 
respectively for the same moisture difference. 

Res ults of calculations us ing reference moistures of 2.5%, 

7.5%, and 15% by volume were also carried out but are very similar 

and will not be shown. 

Meyer {1972) assumed the presence of a shallow aquifer would 

cause the so il temperature at a depth of 50-cm to be 1.0 co ·to 3.0 co 
cooler when compared to a non-aqu ifer region. Employing this assump­

tion a series of theoretical calcul ations were carried out to explore 

the effect that a temperature difference at the 50-cm depth would 

have on the relationship between soil moisture difference and maximum 

surface temperature difference. 

The ca lculati ons were ca rried out in precisley the same 

manner as before. The reference plot soil moisture values used were 

2.5%, 5.0%, 7.5%, 10%, 15%, and 20%. The 50-cm temperature differ­

ences were ass umed to be 0.5 co, 1.0 co, 1.5 co, 2.0 co, 2.5 co, and 

3.0 co. The maximum temperature difference was again found to be 
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Figure 9. Calculated surface temperature difference between 
two soil plots as a function of moisture difference. 
One plot is consi dered to have a fixed soil mois­
t ure profile of 20% by volume while the other is 
varied from that va l ue. The temperature difference 
at a depth of 50-cm is 0 CO . · 



positive in ail calculations and occurred at 1300 hours. Calculated 

va 1 ues . were p 1 otted a-nd continuous curves fit to each set of data 

points using multiple linear regression analysis. Results for a 

·1.0 C0 50-cm temperature difference and reference plot moistures of 

5%, 10%, and 20% by volume are shown in Figures 10, 11, and 12 re-

. spectively. The continuous curves were quadratic .in all cases and 

fit the data extremely well. Note also, the maximum surface tem­

perature decreases as the reference plot soil moisture increases in 

the same manner as for the previous set of calculations. This trend 

continued for all sets of calculations completed. 
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A possible explanation for the decreasing maximum temperature 

differences with increasing reference plot moisture may be the in­

crease in thermal inertia associated with the increasing soil moisture. 

Thermal inertia is the square root of the product of thermal conduc­

tivity and heat capacity. The thermal conductivity increases as does 

the heat capacity of the soil with increasing soil moisture at low 

and intermediate values of soil moisture. As the soil moisture 

content approaches saturation, however, the thermal conductivity and 

heat capacity of the soil approach constant values. Thus, as soil 

moisture is increased in an initially dry soil thermal inertia tends 

to increase rapidly b u~ ap~roaches a constant value at high soil 

moisture values. 

Increasing thermal inertia has the effect of decreasi~g the 

temperature changes of the soil during a diurnal cycle. This con­

dition has been shown to exist for soils with large moisture content 
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Figure 10 . Calculated surface temperature differences between two 
soil plots as a func t ion of moisture difference. One 
plot is conside red to have a fixed soil moisture 
prof·le of 5% by volume while the other is varied from 
that va lue. The t emperature difference at a depth of 
50-em i s 1 C0
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Figure 11. Calculated surface temperature difference between 
two soil plots as a function of moisture dif­
ference. One plot is considered to have a fixed 
soil moisture profile of 10% by volume while the 
other is varied from that value. The temperature 
difference at a depth of 50-em is 1 C0
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Figure 12. Calculated surface temperature difference between 
two soil plots as a function of moisture differ­
enc~. One plot is considered to have a fixed soil 
moisture profile of 20% by volume while .the other 
is varied from that value. The temperature dif­
ference at a depth of 50-cm is 1 C0

• 



39 

by Beutler (1980) and Idso et ~- (1975). An increase in thermal 

inertia will decrease the maximum surface temperature of the soil 

which occurs at 1300 hours during the diurnal cycle. Thus if soil 

moisture is increased in both plots keeping the same soil moisture 

difference, the maximum temperature of both plots is decreased. Thus 

the maximum temperature difference between the plots will also be 

decreased. This would explain the smaller maximum surface temperature 

difference calculated by the model ·for each increase in reference plot 

moisture. 

Results of model calculations for a reference plot moisture 

of 10% by volume and temperature differences of 2 co and 3 co at the 

50-em depth are shown in Figures 13 and 14. The continuous curve is 

again quadratic in functional form . Comparison of Figures 8, 11, 13, 

and 14 indicates the maximum temperature difference increases when 

the temperature difference at the 50-cm depth is assumed to be 1 C0
• 

A further increase in the 50-cm temperature difference, however, does 

not lead to·"·furthe r increase in maximum surface temperature difference. 

For,· example, the maximu!ll temperature difference for a moisture differ­

ence of 15% from Figure 8 is approximately 5.2 co, whereas the same 

moisture difference gives a maximum surface temperature difference 

of approximately 6.2 co, 5.8 co, and 5.8 co as shown in Figures 11, 

13, and 14, respectively. 

This result is consistent with results by Meyer (1972-). Using 

the original theoretical finite difference model he concluded a thermal 

anomaly at a depth of 50-cm had little effect on the surface thermal 

anomaly during the middle of the day. 
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Calculated surface temperature difference between two 
soil plots as a function of moisture difference. One 
plot is considered to have a fixed soil moisture of 
10% by volume while the other is varied from that 
value. The temperature difference at a depth of 50-cm 
is 2 co. 
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Figure 14. Calculated surface temperature difference between 
two soil plots as a function of moisture differ­
ence. One plot is considered to have a fixed 
soil moisture of 10% by volume while the other is 
varied from that value. · The . temperature differ­
ence at a dept~ of 50-em is 3 C0
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Results for ot her theoreti cal calculations relating soil 

moisture difference and maxi mum surface temperature difference with 

a 50-cm soil temperat ure differen ce were similar and will not be 

shown. 

The most signifi cant result from these calculations using 

the theoretical model is the quadratic relationships. that were found 

to represent the ca lculated values of maximum surface temperature 

difference as a function of soil moisture difference. The value of 

the R2 term for every set of calcul ations derived from the multiple 

linear regress ion analysis was between 0.99 and 1.0. These highly 

statistically si gnificant results indicate that the relationship 

between the soil moisture difference and the calculated maximum 

temperature di fference observed du ring the day is quadratic in func­

tional form. The quadratic relationship also appears to hold true 

for all values of reference moisture and 50-cm depth temperature 

differences that might occur in the field. 

Since the relationship between soil moisture difference and 

maximum surface temperature difference were all represented extremely 

well by quadratic equations, an attempt was made to determine pos­

sible relationships between coeffici ents of the equations describing 

these curves. The general form of these equations would be given by 

~M = A + B (~T) + C (~T)2, 
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where 6M is the % soil moi sture difference between plots and ~T is the 

maximum surface temperature difference during the diurnal cycle. The 

coefficients A, B and C will be functions of the percent soil moisture 
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of the reference plot. Results of a linear regression analysis for · 

0 co t~mperature difference at the 50-cm depth are shown in Figures 15, 

16, and 17. Figure 15 shows the results for the constant term A. The 

·points are calculated values of A as a function of reference plot soil 

moisture. The continuous curve is given by 

A.= 0.0559 - 0.7126M + 2.3393M2. 

Where M is the reference moisture in fractional form by volume. The 

quadratic relationship found between the constant A and reference 

moistures is statistically significant with a R2 value of 0.89. 

Results for the linear coefficients Bare shown in Figure 16. 

The functional relationship between linear coefficients and reference 

moistures was also found quadratic in functional form and is repre-

sented by the equation 
.... 

8 = 0.0109 + 0.2317M- 0.1209M2 

The relationship is statistically significant with an R2 value of 0.97. 

Figure 17 shows the results of analysis for the quadratic 

coefficients C. The relationship between C and reference moisture 

was again found quadratic in form and is represented by the equation 

C = 0.0013 + 0.0201M - 0.0285M2 

The relationship is also statistically significant with an R2 value 

of 0.93. 

Multiple linear regression analysis was performed on the data 

corresponding to temperature differences of 0.5 co, 1.0 co, l.5 C0
, 

2.0 co, 2.5 co, and 3.0 co at the 50-cm depth. Results showed that 

in every instance a quadratic relationship was found to be 
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statistically significant with R2 values. of no less than 0.82. An 

example of results for th e anal ysis with a 3 co temperature difference 

at the 50-cm depth are shown in Fi gures 18, 19, and 20. 

It should be noted from Figures 15 thru 20 that the two 

reference moisture values, which are difficult to fit to the quadratic 

equation are the b.025 and 0.20 values. These r~present the extremely 

dry and the wet soil situations. A similar problem was found for all 

results. This situation may be explained using results of a study 

comparing soil heat flux predicted from DeVries (1963) and experi­

mental data by Kimball et ~- (1975 ). Kimball et ~- (1975) found 

the DeVries method to predict soil thermal conductivity well only at 

intermediate soil moisture conten ts. Thus, the coefficients assoc­

iated with reference moistures of 0.025 and 0.20 by volume may 

possibly be expected to give poorer statistical results. 

If further theoretical and experimental investigation results 

in a valid quadratic relationship between regression coefficients and 

a reference moisture, a method for measuring soil moisture over large 

areas of the earth would be greatly simplified. This technique would 

require the ground truth monitoring of soil moisture at a reference 

site and acquis ition of satellite thermal emittance data. The appro­

priate coefficients could be calculated from the . reference soil 

moisture and an appropriate quadratic function relating moisture 

difference coul d then be generated. Using this function the soil 

moisture of any other site could then be determined. 
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Several cal culat ions were al so carried out to determine the 

dependence of t he maximum surface temperature difference on soil heat 

flux. Value s fo r soil heat flux and physical properties of the soil 

.were again chosen to correpond t o the experimental values previously 

used. Soil moisture by vo l ume was as sumed to be 10% in one plot 

and 20% in th e second. So il heat flu x values were chosen to span a 

51 

. range which would incl ude most experim.ental situations for a clear day. 

The maximum su rface t emperature difference predicted during the day 

was plotted as a function of the ma ximum soi l heat flux. Results 

shown in Figure 21 di splay t he res ulting rel ationship. If further 

theoretical and expe ri menta l resu l t s show th is relationship to be 

valid, diffe rences i n daily solar radiation which exist during satel­

lite overpas s could easily be accounted for during analysis. 

The second major port ion of t his study entailed the prediction 

of surface t emperature differences between two soil plots using the 

modified theo reti cal model and compari ng the predicted values to 

experimental data. Data were collected for two 24 hour periods 

starting at 01 00 hours, Jul y 1 and Jul y 7, 1981 . Two mature oat crop 

covered soil pl ots were prepared as desc ribed above with one plot 

irrigated and th e other left as a dryland plot. Values for porosity 

and bulk density are listed in Tabl e 1 an d are taken according to 

Beutler {1980 ). Other pertinent data were collected as previously 

described. 

Apparen t surface t emperature was then plotted as a function 

of time for the J uly 1 dry - l and plot and is shown in Figure 22. The 

-
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Table 1 

Physical Properties of Soil Used 

Depth Porosity Bulk Density 
(em) (E ) (g/cm3 ) a 

1 .49 l. 336 
8 .47 1. 379 

25 .41 1.471 
42 .39 1.579 

Table 2 

Soil Moisture Values Used 

July 1 Ju1v 7 
Depth Wet Dry Wet Dry (em) ( gm/cm 3 ) (gm/cm 3 ) (gm/cm 3 ) (gm/cm3 ) 

1 0.22 0.04 0. 23 0.05 

8 0.25 0.12 0.25 0.14 

25 0.26 0.11 0.24 0.12 

42 0.25 0.10 0.17 0.12 
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points are actual data poi nts. The continuous curve was fit to the 

data using a cubic spl ine as described by Kimball (1976). The same 

data is shown in Figure 23 for the irrigated plot. Again a continuous 

·curve was fit to the da ta using a cubic spline. The apparent surface 

temperature for t he irri gated an d dry-1 and p 1 ots are functi ana lly 

similar . However, the apparent surface temperat~re variation for the 

irrigated pl ot during the diurnal cycle is smaller than dry-land 

temperature variation. This is cons istent with previous results 

from studi es by Beutler {1980) and I dsor et ~· (1975). 

The apparent surface tempera ture di fference for the diurnal 

cycle obtained by taking the difference of the cubic splines of 

Figures 22 and 23 is depicted in Figure 24. The functional form of 

the surface temperature difference i s s imi l ar to the functional form 

of the sur face temperature for the i ndividual plots. This is also 

consistent with results by Beutler (1 980). Note the surface temper­

ature difference between the two plots approaches zero shortly after 

dawn. The maximum surface temperature difference is approximately 

15.5 co and occurs at roughly 1400 hours. 

Surface temperature difference as a function of time for 

July 7 was obtained in precisely the same manner and is depicted in 

Figure 25. The maximum surface t emperature difference for July 7 

occurs at approximately 1400 hours . and is approximately 7.5 C0
• The 

reason for th e smaller sur f ace temperature differences for July 7 is 

the smaller moisture diffe rence between the two plots during that 

time. Note that the surface temperature difference _ for July 7 
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Apparent surface temperature over the oat crop cover 
of the irrigated plot. Data collection begins at 
0100 hours on July 1, 1981 and continues for 24 
hours thereafter. 
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is ·shown beginning at 0000 bours on July 1, 
1981 and continuin~ for 24 hours thereafter. 
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approaches zero at approximately the same time as the previous data . 

. The original theoretical model by Beutler (1980) was then used 

as a function of time for both July 1 and July 7. · The experimental 

·values for the soil physical properties were used as initial inputs 

to the theoretical model together with the soil moisture data shown 

in Table 2 and actual temperature profile at OlOQ ~ours. The results 

for July 1 and July 7 are illustrated in Figures 26 ·and 27. 

Inspection of Figures 26 and 27 show the predicted surface 

temperature difference is of the same functional form as apparent 

surface temperature difference for both days. The maximum surface 

temperature differences obtained from the model calculations are 

2.4 co and 2.0 co for July 1 and July 7, respectively. Both of these 

values are much smaller than values obtained from experiment. The 

predicted maximum surface temperature difference also occurs at 1200 

hours for both days which is two hours earlier than exp~riment shows. 

Also, the temperature difference during night is predicted by the 

model to be approxi mately -1.2 co for July 1 and -1.0 co for July 7 

which means the model predicts the surface temperature of the irri­

gated plot to be warmer than the dry-land plot which does not occur 

in experiment as previously shown. These results demonstrate the 

inadequacy of the model by Beutler (1980) to simulate the effects 

of a crop canopy. · 

The theoretical model was then modified to accept plant 

parameters and field structure parameters in addition to the already 

existing inputs to the theoretical model in an attempt to simulate 
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Figure 26. Theoretical model calculation of the surface 
temperature difference between the dry-land and 
irrigated oat covered plots for July 1, 1981. 
The calculation is shown to begin at 0100 hours 
and continues for 24 hours thereafter. The 
effect of the crop cover is not considered. 
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the shading effects of a crop canopy. The crop parameters were 

measur~d and estimated, bu t do no t represent the results of a statis = 

tical study for obtaining the most representative values. The panicle 

·Of th e individual oat pl ant was assumed to be the only source of 

shadowing on t he soil surface. Th e dimensions of the assumed ellip­

soidal shape of the panicle were 3. 5 em and 12.7 .c~ for the semi­

minor and semimajor axes respectively . The calculated value for plant 

density was 0.06 oat plants/cm2 • The distance between consecutive 

rows was 20 .3 em. Three leaf or grai n kernel orientations were con­

sidered constant and at angles of ~/6 , ~/3, and u/2 with respect to 

the soil surface at fractions of the ·canopy of 0.36, 0.27, and 0.17., 

respectively. The remaining fraction of the canopy was considered 

heliotro pic and thus maintained a constant angle of ~12 with respect 

to the sol ar altitude. These values for the various parameters were 

used in theoretical model calculations fo r both July 1 and July 7. 

In addition, the insulating effect of the canopy was also included in 

the theoretical model modifications. Thi s result adds the effective 

canopy temperature of both the dry- land and irrigated plots and the 

fraction of sky directly above any poi nt on the soil surface obstruc­

ted by th e canopy as inputs to the model. 

The surface 1eat flux with the l ight penetration model during 

the daylight hours is plotted as a_ function of time in Figure 28. 

Also shown is the surface heat f lux as calculated for a bare soil 

surface. Th e light penetration model lowers the maximum value for 

soil heat flux by 40% and also sligh tly changes the_ functional form. 

The maximum surface heat flux for t he bare soil occurs at 1230 hours 
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compared to 1300 hours for the plant canopy situation. The later 

occurring maxi mum heat flux is probably due to the different orienta­

tions of parts of the plant canopy. The smaller heat flux is due to 

the fact that the crop canopy interce pts a portion of the incoming 

solar radia tion. The amount of solar radiation not reaching the 

soil surface is dependent on the solar altitude thus changing the 

functional form of the solar heat flux during the daylight hours. 

The modified theore tical mode l was then used to predict the 

soil tempera ture difference during a diurna l cycle for both July 1 
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and July 7, 1981. The results are depicted in Figures 29 and 30. 

Comparing Figures 26 and 27 to Figures 29 and 30 one . can see that the 

predicted maximum surface temperatures fo~ both models are e~sentially 

the same but the maximum temperatu re difference predicted by the mod­

ified model occurs at 1300 hours instead of 1200 hours. This is con­

siderably closer to the experimental results previously discussed. 

Another result from the modified theoretical model is the disappear­

ance of a surface temperature difference during the nighttime hours 

as was obse rved experimentally. 

The predicted surface temperature difference for both July 1 

and July 7 are of the same functional form as the experimental appar­

ent surface tempera ture differences depicted in Figures 24 and 25. 

These results indicate that the modifications to the theoretical model 

contribute substantially to the accuracy of predicting surface temper­

ature difference during the nighttime hours. However, the model may 

require furth er modification to better predict the magnitudes of 

daylight surface temperature differences. 
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CONCLUSIONS 

1. Model calculations predi ct a well defined quadratic relationship 

between maximum surface temperature difference and soil moisture 

difference . 

2. Sta tistical analysis shows a quadratic dependence of the coef­

ficie nts for the quadratic equation of conclusion number 1 on 

the reference plot moisture. 

3. Model ca l culations predict a li near relationship between soil 

heat f lux at the surface and the maximum surface temperature 

di fference. 

4. The surface temperature differences for the daylight hours pre­

dicted by the modified model are smaller in magnitude than the 

experi mental apparent surface temperature differences but have 

the same general functional dependence on time. 

5. The predicted surface temperature diff erences during the night­

time hours using the modi fied model is similar in magnitude to 

the experimental nighttime apparent surface temperature differ-

ences. 

67 

6. The results of this study in general show great promise for the 

use of satellite thermal emittance data in determining soil 

moisture over large areas of the earth using the -following method. 

A group of sites is chosen over t he area considered with · at least 

one si te chosen as a reference site where soil moisture will be 

ground-truth monitored. Using the reference soil moisture, the 

coeffi cients of the quadratic equation relating soil moisture 
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difference to maximum surface temperature difference can be ob­

tained. Using the apparent surface temperature differences 

obtained from satellite TIR and corrected for variation in solar 

radiation the soil moisture differences between the reference site 

and the other sites can be determined. Since the reference site 

moisture would be known the soil moisture ca~ . ~e easily determined 

for the other sites. 



SUGGESTI ONS FOR FURTHER STUDY 

The quadratic relationship found to exist between soil 

moisture difference and calculated maximum surface temperature 

difference needs to be further confirmed by experiment. The data 

.collecti on would require the monitoring of soil moisture in both 

soil plots and the capability to change content of either plot 

independently of the other. The same experimental method as used 

in this study is appropriate but data must be collected for much 

greater variation of reference soil moistures. 
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The quadratic relationship between the regression coefficients 

obtained from the relationship between soil moisture difference and 

calculated maximum surface temperature difference could be investi­

gated further. Kimball et ~· (1975) found that the method by 

DeVries {1963) for calculating thermal conductivity agreed well with 

experimental data on ly at intermediate soil moisture contents. Thus, 

the funct ional relationship between the reference site moisture and 

the regress ion coefficients and constants may be further defined and 

understood if intermediate reference soil moistures, between 5% and 

18% by volume, are used in all further theoretical model calculations. 

The theoretical model in its present form does not predict 

~he magnitude of maximum daylight surf~ce temperature difference with 

a great deal of accuracy. There are two possible methods by which the 

theoretical model may be refined and modified to simulate surface 

temperature difference between two points on the earth with greater 

accuracy. The first method would require a statistical study of 



crop parameters to determine the most representative values of plant 

density, the lengths of the semimajor and semiminor axes, and etc. 

The second method wou l d require modification of the model to 
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·simul ate the energy lost from the sur face due to evaporation from the 

soil and evapotranspiration from the plant canopy. This model would 

require air temperature , humidity, wind velocity~ .~nd remotely sensed 

surface t emperature data for the calculation of the energy budget at 

the soil surface when the energy lost t o evaporation is simulated 

(Idso et ~., 1975; Idso et ~., 1977) . When a crop canopy is present 

the model would also require a remotel y sensed effective crop canopy 

· temperature to predict the energy los t due to the evapotranspiration 

from th e crop canopy (Kanemasu et ~., 1976). 
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APPENDIX 

HPL PROGRAM FOR FINITE-DIFFERENCE HEAT FLOW SIMULATION MODEL 

The following program listing is written in a language used 

· by Hewlett-Packard in the 9835A mini-computer furnished by the Water 

Resources Institute at South Dakota State University 

A[*] 

B[*J 

C[*] 

0[0]-0[50] 

0[51] 

D[52] 

0[53] 

E[O]-E[50] 

E[I] 

F[O] ~F[50] 

F[51] 

F[52] 

F[53] 

H[*] 

G[O] 

G[l] 

G[2] 

Temperature of Profile A 

Temperature of Profile B 

Conductivity of Profile A 

Conductivity of Profile B 

Fraction of field covered by the canopy 
oriented at angle a 1 

Fraction of field covered by the canopy 
oriented at angle a 2 

Fraction of field covered by the canopy 
oriented at angle a 3 

Heat Capacity of Profile A 

Term used by Mann in calculation of the 
fraction of a single plant canopy projection 
which lies in strip type A 

Heat Capacity of Profile B 

Angle a1 

Angle a2 

Angle a3 

Time of day (hour) 

Term used by DeVries in calculation of 
conductivity 

Heat capacity of water 

Heat capacity of soil 
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H[l] 

H[2] 

K[O] 

K[l ] 

K[2] 

M[l] 

M[2] 

0[*] 

P[*] 

R[O]~R[50] 

R[51] 

R[52] 

R[53] 

R[54] 

R[55] 

R[56] 

R[57] 

R[58] 

R[59] 

S[*] 

U[0:50] 

V[0;50] 

Initial starting hour 

Ending hour 

Conductivity of air 

Conductivity of water 

Conductivity of soil 

Initial starting minute 

Minute when calculation is to end 

Soil moisture for site A 

Soil moisture for site B 

Allocation to store old temperature for site A 

Semiminor axis length of individual ellipsoidal 
plant canopy 

Semimajor axis length of individual ellipsoidal 
plant canopy 

Angl e between the solar azimuth and the 
direct i on parallel to the rows of the crop 

Maximum number of rows shielding any point 
in strip type B 

Plant density 

Angle between heliotropic part of plant canopy 
and solar altitude assumed to be w/2 

Distance between consecutive crop rows 

Fraction of the plant canopy that is 
heliotropic 

Fraction of the field shielded by canopy 
projection on to the field 

Allocation to store old temperature for site B 

Aeration porosity for site A 

Aeration porosity for site B 
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W(l ] 

W[2] 

W[3] 

W[4] 

W[5] 

X[ l ] 

Y[ l ] 

A 

B 

c 
D,E,F,G 

I 

J 

K 

L 

M 

N 

p 

Q 

R 

T 

X 

r29 

ffective air temperature 

Amount of soi l by volume at 1-cm depth 

Amount of soil by volume at 8-cm depth 

Amount of soil by volume at 24-cm depth 

Amount of soil by volume at 42-cm depth 

Distance between nodal points 

Ending day 

Soil h at f lux for si t e A 

Soi1 h at lux for s ite B 

Time from sunrise to sol ar noon 

Soil bul k Je 1si ty at 1, 8, 24, and 42 
cen ime ers 

Count er 

Counter 

Counter' 

length t.lf .'ay 

Ampl i tude of soil heat fl ux for site A 

~Numbe of equally spaced noda l points 

Time bet\~ee 1 pri ntouts 

-Ampli t ude of soi l hea t flux for site B 

Dummy variable 

Time inte val between calc ulation in seconds 

.OuJJ111y va ri ab 1 e 

Fractional area of the fi eld which lies · in 
strip type A 

Area of indi vidual plant canopy projection 
onto the fie l d 
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r33 

Total area of all plant canopy projections 
which fall into strips of type A per unit 
field area 

Total area of all plant canopy projections 
which fall into strips of type B per unit 
field area 

Fraction of entire field in direct sunlight 

Fraction of a single p1ant canopy projection 
which lies in strip type A .. . 

Ratio of the obstructed area to the total area 
of a hemisphere circumscribed above the 
radiating point on the soil surface 

Dry-land site canopy effective temperature · 

Irrigated site canopy effective temperature 

Dummy variable 
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PROGRAM LISTING (HPL) 

Operational Procedure 
0: 706•cO;gto 74 

Subroutine for Soil Heat Flux 

lf •QHtATM:M[l}/60•r21 
:l: tl[l)+r2l•r22 
J: r22-C•r23 
4: (W[l]+273.16)/lOO•r24:r76*{r74+27J.l6)/lOO•r77 
5: (A[O lt273.16)/l00•r25;r76*(r75 +273.16)/l00•(78 
6: (B(OJ +273.16)/l00•r26 
7: .000136*r24T4•r60;(1-r73)~.65*r80•r80 
d: -(.000136*(r25T4-r73•r77T~)-r80J•rll 
~= -(.000136*(r26iA-r7J•r78i4)-r80)•C12 
10: if r2J<:0;9to 61 
11: if r2J>:L;gto 61 
12: r ad 
13: jf rJ9;0;M*Sln{r23*n/L)+rll•rll 
1~: if r~l:O;Q*sln(r23*n/L}+r12•rl2 
15: if r39~0 and r4l=O;gto ~i 
16: (cos(n*r23/L)/sin(n•r23/L) )fl•r27 
17: (R{Sl]T2+R[52]f2*r27}T(l/2)•r27 
18: (cos(n•r 2J/L)/si n(«*r23/L) )l2-*sin{R[5JJ) 72•r28 
19: l+(R{52] /R(Sl]) T2*r28•r28 
20: 2*R[52]*r28T (l/2)/R{57]-.r2S 
21: if O<r28 ond r26<=1;1·~[54] 
22: if l<r25 and r28<~2;2•R[54] 
23: if 2<r28 and r28<:J;J•R(54] 
24: if 3<r28 ar.d r28<=4:4•R(54J 
25: if 4<r28 and r2C<=5;S•R[541 
26: if 5<r28 and r28<=6;6•R(54] 
27: if 6<r2B a~d r28<=7;7•R{541 
2d: if 7<r2B and r2~<=B:8•R{54) 
29: if 8<r2S and r28<=9:9•R[54J 
~0: if 9<r28 and r28<=10;10•N[54] 
31: if r23>6 and r28>10;r 37-.0035•r37;gto 59 
32: if r23<6 and r23>10;.0038+r37•r37;gto 59 
33: R[54)-r28•r29;0•r57 
34: if R [54 J = 1; g to 4 0 
35: for I=Sl to 49+R{S4) 
36: (2(I-50)-r28)/r2~•E{I) 
37: asn(E(I} )+E(ll * (1- S [I] T2)i (l/2)•E[IJ 
38: E[IJ*2/rr•r30;r30+r57•r57 
39: next I 
40: r27*R[5l}*~·r31 
41: if r29=0; [5S]*r3l*r57•r32;qto 43 . 
42: R[SS}~r3l*r57/r29•r32 
4(3: FUSS} *r31* (l-r57)/(l-r29)•r33 
44: for 1=51 to 53 . 
45: if O<=F[I)a~dF[I}<=n*r23/L;gto 48 
46: if n*c23/L<f[IJ and f[I)< JT/2;gto 49 
47: if F[Ij=~)2;gto S2 
4Cl: D[I]*cos(r[I])•P[IJ;sto 53 
49: asc (tan(!t*r23/L)*cos(2[1) )/sin(F{I] ))•r34 
50: 1+2*((tun(r3~)-r34)/n)•P[I) 
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Subroutine for Soil Heat Flux Continued 

51 : D [ I ] * cos ( E' [ I ) ) * P [ I I • P ( I ) ; g to 5 J 
52: D(I)*(2/n)*cos(~*r23/L)/sin(n*r23/L)•P(I) 
53: next I 
54: R(5l)+R{52]+R(53)•R[59) 
55: R(58)*(sin(R(56])/5in(rr*r23/L))+R[59)•R[59] 
5o: R[59)/(R(55)*r3l)•r35 
57: l-9Xp(-r35)•r36 
SU: r29*exp(-r32*r36)~(1-r29)*exp(-r33*r36)+.~•r37 
59: i! r39=l;r37*M•r70;r70*Sin(r23*rr/L)+rll•cll 
60: if r4l=l;Q*r37•r70;r70*sin(r23*n/L)+rl2•rl2 
61: rll•A;rl2•B;ret 

Subroutine for Conductivitie£ in Profile A 

62: ""CONOUC /\•: 
6 J : • 3 3 3- 0 [ I I I ( 1-w [X l ) * ( • 3 3 3- • 0 3 5) •G ( 0 ) 
64: .0000615+.00196*01£J•K(O) 
65: (2/(l+(K(21/Kill-l)*G[0j)+l/(l+(K(2}/~(l)-l)*(l-2*G[0))))/3•rl 

. 66: (2/(l+(KJ01/K(!J-l)•G[Oj)+l/(l~(K{O)/Kll)-l)*(l-2*G[0))))/3•r2 
67: ret · · 

Subroutine for Conductivities in Profile B 

68: •cotmuc B": 
69: .J33-V(I}/(l-W(Xl)*(.J33-.0l5)•G[O] 
70: e0000615+.00196*P(I}•K{O) 
71: (2/(l+(K[3)/K[lj-l)*G[0})+l/(l+(K(3)/K(l)-l)*(l-2*G[0))))/3•r3 
72: (2/(l+(K(O]/KllJ-l)•G[Oj)+l/(l+(K(O]/K[l]-l)*(l-2*C[0])))/3•r2 
73: ret 

Dimension Statements 
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74: dim A[O:SOJ ,B[0:50] ,C[0:50) ,0[0:53} ,£:[0:60) ,F[0:53] ,0[0:230) ,P[O:S3] 
75: dim X(l} ,V(0:230) ,W[S) ,e$(4) 
76: dim 11(0:4],H[O:lj ,K[0:3],G[0:2),Y[O:l],R[0:59),S[0:51],U(0:230) 

Program Parameter Assignments 

77: l•Y[l];60•T;50•N;C•M[l];l•B[l);O•f1[2];l•H[2);l•X(l] 



18: 
79: 
80: 
81: 
82: 
83: 
24: 
85: 

Ente ring of Calculation Parameters 

e n t P , R { 51 1 , R [ 5 2 1 , R [ 5 3 1 , R { s s 1 , R [ 5 ti 1 , R { 5 7 1 R ( s a J. 
en t ~(Slj ,f(52) ,Ff531 ,0 [51} ,D[5 2) ,D[53j ,w[1J ,r73,r74 r75 
~n t CRO P COVER A? 'iES=-l,t-iO=O• ,r38 ' 
1 f r3 8-=l ;l •r3<J 
if r3 8=-0;0•r39 
en t aCROP COVER 8? YES=l ,NO=O• ,r40 
if r40=l:l•c4l 
if r 40=0:0 .. r4l 

Procedural Step 

86: O•J•M [3l ·~l~J·rl0 
~7: H(lJ' 60+M( l~•Mi3J 
88: l .. rl3 

Ente ring of Soil Temperature Profiles 
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89: en t A { o 1 , A [ 11 , A 1 5 ], A 11 o 1 , A [ 25 1 , 'd so J , 6 I o 1 , B [ 11 , B (51 , B ( 1 o J , B ( 2 5 J , a 1 so 1 

Interpolation of Soil Tempera tures 

90: for 1=2 to 4; (l\[5]-A(l1)/ 4"*(I-l)+A{ l]•A{1) 
91 :· ( B [ 5 1 -:- B [ 1 I ) 1 4 • C I - J ) + B ( ll .. a { I I ; n e x t I 
92: fo r I=6 to 9;(A{l0}-A (5!)/5" (1-S)+A{S] •t\[l] 
93: (8[1 0]-B[S ! )/S•(I-5~+8 (S}•B [I];next. I 
9 4 : f o r I = 11 t 0 2 4 : ( A i 2 5 I - A { l 0 J ) / 1 ~ • ( I - 1 0 )+A [ 1 .1 ] • A ( I ) 
95: (B(2 5}-B[l0]J/l5"'(I-10)-ra(lCJ•B{Il:ncxt I 
96: for 1=2 6 to 49;(A(50]-A[25j)/25*(I-25)+A [25]•A[I] 
97: (B{5 0) -B[25} ) /25*(I-25)+B[2~]•B[I] ; nex ~ I 

Surface Temperature Difference 

98: A(O] -B[O]•S[S l] 



Determination of Mode for Entering Heat Capacity 
and Thermal Conductivity 

99: J+l•J;lf J>l;gto 146 

Entering of Soil Physical Parameters 

100: ent 0(1] ,0!8] ,0{25) ,0[42] ,P{l] ,P(B] ,P(25] ,P[42} ,W(Z] ,W[3) ,W[4) ,W[S] 
101: ent K[lj ,l<(2] ,.K(3} ,G[l) ,C(2] ,O,E,F,G,M,Q,C,L,r76 

·Calculation of Percent Moisture by Volume 

102: 0(1] *D•O[ 1] ;0{8}*E•0(81 ;0[25) *f•0{251 ;Of.C2}*G•0[42) 
103: P[l)*O•P(lj;P[8]*E•P[8];P(25)*F•Pl25);P{42]*G•P[42) 

Calculatio.n of Percent Air 

104: l-O(l]-~[2J~U[l] 
105: l-P[l]-W(2j•V(l} 
106: l-0(8}-W(3)•U[bj 
107: l-P[8J-WI3J•V[S) 
lu8: l-0(25j-W(4)•U(25) 
109: l - P(25]-W(4]•V[25) 
110: l-0[42]-W[S)•U[42] 
111: l-P{42)-W[5J•V[42) 

Specification of Thermal Conductivities _ 

112: l•I:2•X;cl1 'COWOUC A'(U(I),O[I],W[X]) 
113: (O(l)*.K(1}+rl*W[2!*K[2]+r2*U[l}*K{0])/(0(l)+rl*W(2]+r2*U[1))•C[1) 
114: l•I;2•X;cll 'CONOUC B'(V(IJ,P(I],W(X]) 
115 : ( P ( 1] * K {1 J + r 3 •H ( 2 ) * K [ 3] +r 2 * V [ 1] * K [ 0 ] ) I ( P [ 1 I + r 3 *W [ 2 ] + r 2 * V [" 1) ) • 0 [ 1] 
116: B•I;J•X;cll 'CONOUC A'(U{IJ,O[I),W(Xj) 
117: (0(8J*K[l]+rl*W(3l*K[2J+r2•ureJ*K(OJ)/(0[8]+rl*W[3)+r2*U(SJ)•C(aJ 
118: 8• I: 3• X: c 11 'CON OUC B • (V (I] , P (I J , W [X)) 
119: (P[8j*K[l)+r3*W(J]•K[3)Tr2*V[8)•K[O))/(P[S)+~3*~[3)+r2*V[8))•D(8] 
12 0 : 25 • I : 4 • X: c 11 • CONDUC . A ' ( U [ I J , 0 [ I I , W [>{) ) 
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lll: (0[25]*K[l]+rl*W[4j*K(2]+r2*U[25]*~{0J)/(0[25)+rl*W[4)+r2*U[25))•C[25] 
12 2 : 2 5 • I ; 4 • X ; c 11 'C 0 N 0 IJC B , ( V { I ] , P [ I J , W [ X ] ) . 
123: (P(2S]*K[l)+r3*W[4]*K[3]+r2*V(25)*K[0))/(P[2S]+r3*W[4]+r2*Vi25])•D[2SJ 
124: 42•I;S•X;cll 'CONOUCA'(U{Ij,O[I)~I(X)) -
125: (0[42)*K[l)+rl•W(S)*K[2]+r2*U{42J*K(OJ)/(0[42)+rl*W(S)+r2*U[42))•C[42) 
12o: 42•I:5•X;cl1 'CONDUC B'(V{I),P[IJ,W(X]) 
1Z7: (P[42)•K(l)+r3*W[5j*K[3)+rl*V(42]*K[0])/{P(~2)+r3*W(5]+r2*V[42])•D[42) 



Specifi cation of Heat Capacity 

128: W{2]*G[ 2)+0 [l}*G[l)•E(l] 
129: W(2]*G[2}+P[l)*G[l]•F[l) 
130 : W[3)*G( 2)+0 (8 )*G[l )•E[8) 
131: W[3j*G[ 2}+P[8]*G(l )•F[d} 
132: W(4)*G[2) T0[25}*G[l)•E [25] 
133 . W(4)*G[ 2)+P[ 2 ~}*G[l }•F[25] 
134: W( SJ*G[ ~ J+0[42}*G(l)• E[42) 
135: w(5 )*Gl 2 +P(42) *G(l]•f[ 42) 

Interpola t i)n of Thermal Conducti vities and 
Heat Capaci t' 

l3G: for !=2 to 24;C[ 8] -(C [25 ] -C[8])/17*(8-I)•C(I] 
137 : 0(8}-(D[ 25}-D[8 J) /17 *(B - I)•D[I) 
138 : E[8} - {f:[2S) -E [8 } )/17* (S - I) •E( IJ 
139 : f'[8] ~ f' [25)-·F[8})/l 7*(8 - I)•F[I};next I 
140 : for ! =26 to 50;C {2S}+(C (42] -C{25) )/l7*(I-25)•C[I] 
141: D[ 25]~(D[42]-D[25 }) / 17*(I-25) ~D{I ) 
142 : E( 25 }+(E[42]-E[25] )/17 * (I- 25) •E[I J 
143 : ~[ 25}+( [42J-F[25 }}/17*(I-25)•F(I ):next I . 
144 : C(l] • [O);D(l}•D(O];E(l]•E[O ];F[l)•F[O) 

· Time Inte rval Between Cal culations 

145 : T/(2*X(Ljt~ X[l} )• rl;qto 160 

Call for Soil Heat Flux Subrouti ne 

146 : ell ' QHEAT ' 
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Calculation of Nodal Temperatures and 
Lo~1er Boundry 

147: for I=l to N-l~(E[IJ/rl-C(l-l)-2*C(I}-C{I+lJ)*A(I)•r6 
14 8: ( (C ( I -1) +C [ I] ) *A ( I -1 J + ( C [ I) -tC ll + 1 1 ) • A [ 1 + 1 J + r 6) • r 1/ E l I J • R [I J 
14 9 : ( f' ( I] I r 1-D [ I- 1 1 -2 * D [·I ) -0 ( I + 11 ) * 8 [ I ) • r 1 
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150: ( (0[1-l)+D(I) )*B[I-l}+(O[I]+O(I+l) )•B(I+1J+r7)*rl/f[I]•S[I) ;next I 
151: 4*X[l}*rll+(E[l}/rl-2*C(l]-2*C(2])~A[0]+(2*C[l}+2*C(2])*A(l)•R[O) 
152: rl/E[l]*R(O]•R(O) 
1~3: 4*X(l]*rl2+(r[l]/r1-2*D(l]-2*0[2])*8[0]+(2*D[l)+2*0(2))*B[l]•S(O) 
154: rl/F[lj*S(O]•S(O) . . 
155: A(N]•R(N) 
156: S[N}•S[N) 

Reassignment of Nodal Temperature for 
Succeeding Iteration 

157: for I=O to N:R[I]•A[l];S[I]•S[I];next I 
158: A{U)-B(O]•S[S1] 

Test for Printout Time 
/ 

1 59: if H(4)<P;gto 183 

160: 
161: 
162 ": 
163: 
164: 
165: 
166: 
1b7: 
168: 
169: 
170: 
171: 
172: 
173: 
174: 
175: 
176: 
177: 
178: 
17~: 
180: 
181: 

Printout of Pertinent Data 

rlO+l•rlO 
int(rl0/2)•rll;rll*2•r12 
fmt 1,4/,NT EMPERATURE PROFILE AT •,fz2.0,fz2.0,• HOURS" 
wrt 706.l,H[l),M(l) 
fmt 2 ,/,/, " SURFACE TEM PERATURE DIFFERENCE · =•,f6.3 
wrt 706.2,5(51) 
fmt 4,/,"SOIL HEAT FLUX SITE A= •,fl2.9,• SIT~ 8 = •,fl2.9 
wrt 70b.4,A,i:3 
fmt 1,2/,4x,3~ DEPTH 
wrt 706.1 
int CN / 3)+l•r2 
r2*3•r3 
N-r3+l•r4 
for I=O to r 2 -l;I•r5•r6 
if r4>=l;r6+l•r6 
r6+r2•r7•rd 
if r4>=2;r8+l•rS 
r8+r2•r9 

TEMP A 'l'EMP B • 

fmt 1,5x,f3.0,4x,f6.3,3x,f6.3,4x,f3.0,4x,f6.3,3x,f6.3,z 
wrt 706 .l,rS,A[r5) ,B[rS] ,r7,A[r7) ,B[r7) 
fmt 2,4x,f3.0 , 4x,f6.3,3x,!6.3 
wet 706.2,r9,A[r9],0{r9);ncxt I 



Procedural Step 

182: O•M[4] 

Test ·if Calculation Has Run 
Desi red Time 

183: if M[l) <M[2}: gto 190 
184: if H[l] <H[2] ; gto ld7 
185: if Y[O] <Y[1} ; gto ld7 
186: gto 201 

Test if Temperature Difference 
is to be Calculated 

187: M(3]+l•M[3] 
188: if M[3]/(rl3*20)>=l;gto 190 
169: gto 19 4 
190: rl3 +l+rl3 

/ 

Calcul at ion of Surface and 5-cm 
Temperature Difference 

191: A[0)-B[O]•U(M[3)/20] 
192: Al5}-B[5J•V{M[3J/20) 

Calculation of New Time 

193: H(3}/60•0(M(3]/20) 
19 4: M[4)+T•M[4J 
195: M[l]+T/60•M[l) 
196 : if M[l]<60;gto 200 
1Y 7: M[l)-60•M[l) 
198: H[l)+l•H[lj;if H(l ]<24~gto 200 
199 : H[l]-24•H[l] ;Y{O}+l•Y(O) 
200: gto 99 
201 : stp 

84 
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Surface Temperature Difference Plot 
of Calculat~d Data 

i02: deg 
203: dsp "SURFACE T~MPERATURE DIFFERENCE";wait lGOO;cll 'PLOT' 
204: for t=l to Y[l)*24+H[l];line l,4;plt I,O;next I 
205: pen;line · 
206: for I=l to Y[l)*72+3*H(l);if O[l}=O;pen;jmp 2 
207: plt O[I],U[I) 
208: next I 
209: pen 

. - 5-cm Temperature Difference Plot of 
Calculated Data 

210: dsp "Change Pa t>er,then Continue• ;stp· 
211: dsp "5 CM TEMPERATURE DifFERENCE'•;walt lOOO;cll .. PLO·r .. 
212: for I=l to Y[l)*24+H(l);line l,4;plt I,O;next I 
213: pen;line · 
214: fo~ I=l to Y[l)*72+3*H(l);if O(IJ=O;pen;jmp 2 
215: plt O[I],V(IJ 
216: next I 
217: pen 
218: end 

/ 

.. 
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Plotting Subroutine 

219: "PLOT 11
: 

220: .,POINTS PLOTTED IN J-iAlN": 
221: if flg11;gto +2 
222: dim W$[3,50];sfg 11 _ 
223: ent "x-min",p4,"x-max",pl,"y-min",pl,"y-max",p3 

86 

224: scl p4-_(pl-p4) (7/32) ,pl+(pl-p4) (j/32) ,p2-{p3-p2) (l/8) ,p3+{pJ-p2) (1/8) 
225: ent "x tic interval",pS,"y tic interval•,p6 . 
226: csiz 1.5,2,1,0 
227: ent "(xd for x-axis",p9 
228: fxd p9 
229: xax p2,pS,p4,pl,l 
230: ent "fxd for y-axisu,plO 
231: fxd plO 
232: yax p4,p6,p2,p3,1 
233: prt "If NO LABEL ENTER DD" 
234: cnt "botto~ labe1",W$~1} 
235: len(W$[l))•p7 
236: ent .. sine 1abel",W~[2} 
237: len(w$[2])•p8 
238: ent "top 1abe1",W$[3] 
239: len(W$[3))•pll 
240: if W$(1)="DD";gto +2 
241: plt (pl-p4)/2+p4,p2-(p3-p2)(1/8),l;cplt -p7/2,0;lbl .-/$[1} 
242: csiz 3,3.5,1,0 
243: if W$[3J="OD";gto +2 . 
244: plt (p1-p4)/2+p4,p3+(p3-p2) (l/8),l;cplt -pll/2,0;lbl W$[3] 
245: csiz 1.5,2,1,90 
246: if W$[2]="DD";gto +2 
247: plt p4-{pl-p4) (7/64), {p3-p2)/2+p2,l;cplt -p8/2,0;lbl W$[2) 
248: ret 
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