
South Dakota State University South Dakota State University 

Open PRAIRIE: Open Public Research Access Institutional Open PRAIRIE: Open Public Research Access Institutional 

Repository and Information Exchange Repository and Information Exchange 

Electronic Theses and Dissertations 

2020 

Data Driven Synthetic Load Modeling for Smart City Energy Data Driven Synthetic Load Modeling for Smart City Energy 

Management Studies Management Studies 

Fernando Bereta dos Reis 
South Dakota State University 

Follow this and additional works at: https://openprairie.sdstate.edu/etd 

 Part of the Electrical and Computer Engineering Commons, and the Environmental Engineering 

Commons 

Recommended Citation Recommended Citation 
Bereta dos Reis, Fernando, "Data Driven Synthetic Load Modeling for Smart City Energy Management 
Studies" (2020). Electronic Theses and Dissertations. 4073. 
https://openprairie.sdstate.edu/etd/4073 

This Dissertation - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public 
Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in 
Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research 
Access Institutional Repository and Information Exchange. For more information, please contact 
michael.biondo@sdstate.edu. 

https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/etd
https://openprairie.sdstate.edu/etd?utm_source=openprairie.sdstate.edu%2Fetd%2F4073&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=openprairie.sdstate.edu%2Fetd%2F4073&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=openprairie.sdstate.edu%2Fetd%2F4073&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=openprairie.sdstate.edu%2Fetd%2F4073&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openprairie.sdstate.edu/etd/4073?utm_source=openprairie.sdstate.edu%2Fetd%2F4073&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:michael.biondo@sdstate.edu


BY

FERNANDO BERETA DOS REIS

A dissertation submitted in partial fulfillment of the requirements for the

Doctor of Philosophy

Major in Electrical Engineering

South Dakota State University

2020

DATA DRIVEN SYNTHETIC LOAD MODELING FOR SMART CITY

ENERGY MANAGEMENT STUDIES



ii 

DISSERTATION ACCEPTANCE PAGE 

 

This dissertation is approved as a creditable and independent investigation by a candidate 

for the Doctor of Philosophy degree and is acceptable for meeting the dissertation 

requirements for this degree.  Acceptance of this does not imply that the conclusions 

reached by the candidate are necessarily the conclusions of the major department. 

 Advisor Date 

Department Head   Date 

Dean, Graduate School   Date 

Fernando Bereta dos Reis

Timothy M. Hansen

Siddharth Suryanarayanan



iii

I dedicate this work to my colleagues, advisor, and my family. None of this may

have been possible without their love and support.

“The greatest illusion of this world is the illusion of separation. Things you think are

separate and different are actually one and the same. We are all people, but we live as if

divided.”

Guru Pathik



iv

ACKNOWLEDGEMENTS

I want to thank God for life and my family, Fernando Soares dos Reis (Father),

Angela Maria Bereta dos Reis (Mother), Fernanda Bereta dos Reis (Sister) and Lı́via

Maria Bereta dos Reis (Sister). I had a lot of support from my whole big family,

grandparents, uncles, aunts, etc., in the most difficult moments it was they who kept me

going, encouraging me to go ahead.

To my advisor, Dr. Timothy M. Hansen, for all the dedication, attention,

understanding, patience, experience, and collaboration so that the dissertation could be

completed satisfactorily. I would like to acknowledge him for conceptualizing and

funding this work. This work would not be possible without his support, motivation, and

enthusiasm. Besides my advisor, I would like to thank my committee, Dr. Reinaldo

Tonkoski, Dr. Robert Fourney, and graduate faculty representative Dr. Laura Hasselquist

for their participation and interest in my work.

Additionally, I would thank Dr. Siddharth Suryanarayana, Dr. Howard Jay Siegel,

Dr. Anthony A. Maciejewski, Swagata Sharma, Berk Celik from Colorado State

University (CSU) and Hendy Syahril for their contributions to this work. I would like to

thank all the graduate students who were present here during my courses for their help and

support in providing constructive feedback on my work.

The research in this dissertation was supported by the South Dakota Board of

Regants (SDBoR) PhD funds, National Science Foundation under grant numbers

ECCS-1608722, MRI-1726964, OAC-1924302, and CNS-1726946, and the U.S.

Department of Energy under Grant Number DE-SC0020281.



v

CONTENTS

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxiii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv

CHAPTER 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State of the Art Power System Research . . . . . . . . . . . . . . . . . . . 5

1.2.1 Residential Demand Response Research . . . . . . . . . . . . . . . 5

1.2.2 Residential Load Modeling for DR Research . . . . . . . . . . . . 6

1.2.3 Photovoltaic Generation Overvoltage Challenge in Distribution Sys-

tems Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Overvoltage Prevention With DR in PV Rich Distribution Systems

Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

CHAPTER 2 Synthetic Residential Load Models for Smart City Energy Manage-

ment Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13



vi

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Queueing Load Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Mt/G/∞ Queueing Load Model . . . . . . . . . . . . . . . . . . . 21

2.3.3 Mt/G/C Queueing Load Model . . . . . . . . . . . . . . . . . . . 26

2.3.4 Mt/G/Ct Queueing Load Model . . . . . . . . . . . . . . . . . . . 29

2.4 Appliance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Generic Appliance Model . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Overview of Appliance Model Variations . . . . . . . . . . . . . . 33

2.4.3 ZIP Appliance Load Model . . . . . . . . . . . . . . . . . . . . . . 34

2.4.4 Appliance Scheduling Characteristics . . . . . . . . . . . . . . . . 36

2.4.5 Non-Arriving Loads . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Synthetic Queueing Load Models Inputs . . . . . . . . . . . . . . . . . . . 39

2.5.1 Inputs to the Queueing Load Models . . . . . . . . . . . . . . . . . 39

2.5.2 ZIP Appliance Model Input . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Validation of the Proposed Synthetic Queueing Model Behavior . . . . . . 43

2.6.1 Comparing the Three Synthetic Queueing Load Models . . . . . . . 43

2.6.2 Impact of Queueing Model Parameter Choice . . . . . . . . . . . . 46

2.7 Queueing Model Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.7.1 ZIP Appliances with Mt/G/Ct . . . . . . . . . . . . . . . . . . . . 51

2.7.2 Computational Performance of the Synthetic Queueing Load Models 54

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



vii

CHAPTER 3 A Real Distribution System Test Case with One-Year Appliance-

Level Load Data Derived from Utility Smart Meters for Transactive

Energy Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Describing the test system . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Generating Granular-Level Synthetic Load Data . . . . . . . . . . . . . . . 66

3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.2 Evaluating the Nodal Load . . . . . . . . . . . . . . . . . . . . . . 67

3.4.3 Parameters for the Appliance Model . . . . . . . . . . . . . . . . . 67

3.4.4 Synthetic Queueing Load Model . . . . . . . . . . . . . . . . . . . 69

3.4.5 Parameters for the Queueing Load Model . . . . . . . . . . . . . . 70

3.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.2 Smart Meter vs. Synthetic Load . . . . . . . . . . . . . . . . . . . 74

3.5.3 Power Flow Comparison . . . . . . . . . . . . . . . . . . . . . . . 79

3.5.4 Created GridLAB-D Model . . . . . . . . . . . . . . . . . . . . . . 81

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

CHAPTER 4 Combining HEMS with PV Overvoltage Mitigation in Low Voltage

PV Rich Distribution Networks . . . . . . . . . . . . . . . . . . . . 84

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



viii

4.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.2 Queueing load model . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.3 Photovoltaic Inverter Controllers . . . . . . . . . . . . . . . . . . . 88

4.3.4 Implementing the PV Inverter Controllers in Power Flow Simulations 90

4.3.5 Solar Irradiance Forecasting . . . . . . . . . . . . . . . . . . . . . 91

4.3.6 ComEd Real-Time Pricing . . . . . . . . . . . . . . . . . . . . . . 94

4.3.7 Uncertainty of Price Problem . . . . . . . . . . . . . . . . . . . . . 96

4.4 Scheduling Appliances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.3 Assuming accurate forecast . . . . . . . . . . . . . . . . . . . . . . 98

4.4.4 Theoretical Lower Bound . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.5 Partially Observable Markov Decision Process . . . . . . . . . . . 98

4.4.6 Scheduling of Appliances Optimization . . . . . . . . . . . . . . . 101

4.5 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.2 Test System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.3 Appliance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.4 Residential Customer Pattern . . . . . . . . . . . . . . . . . . . . . 108

4.5.5 PV Curtailment on the Test System . . . . . . . . . . . . . . . . . . 109

4.5.6 Optimization Implementation . . . . . . . . . . . . . . . . . . . . . 109

4.5.7 Simulation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 112



ix

4.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.7.1 Impact in Low Income Households . . . . . . . . . . . . . . . . . . 123

CHAPTER 5 Other uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2 Removal of Residential Space Cooling and Heating Load from l(t) . . . . . 126

5.2.1 Removal of Residential Space Cooling Load from l(t) . . . . . . . 129

5.2.2 Results for Removing the Space Cooling Load from l(t) . . . . . . 130

5.2.3 Removal of Residential Space Heating from l(t) . . . . . . . . . . . 133

5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3 Queueing Load Model Choice . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4 Current Limitations of the Proposed Queueing Load Model . . . . . . . . . 138

CHAPTER 6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . 140

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

CHAPTER A Queueing Load Model Algorithm . . . . . . . . . . . . . . . . . . . 146

CHAPTER B Analyzing Time-Series Real Utility Data for a Distribution Test System148

B.1 Test system load data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



x

B.2 Fill in Error and Identify Nodes . . . . . . . . . . . . . . . . . . . . . . . . 154

B.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



xi

ABBREVIATIONS

Acronyms

DR demande response

HVAC heating, ventilation, and air conditioning

LIN-S linear-with-time-shift

LV low voltage

DG distributed generation

Nomenclature

T probability distribution of inter-arrival times

X probability distribution of service times

C number of servers (represents the maximum load power that can be served)

K queue capacity (maximum number of elements in the queue)

Z serving policy (order in which the queue is served)

P number of all the elements that can arrive in the queue

T/X/C simplified Kendall notation (assumes K = ∞, Z is first come first served, and

P = ∞)

Mt/G/∞ queueing load model with a time-dependent Poisson process, general

probability distribution of service times, and infinite capacity

t time

λ (t) time-varying appliance rate of arrival in the queue



xii

D duration of a set of customer appliances

P power rating of a set of customer appliances

l(t) expected aggregated household load

CL(t) openly available hourly load data from any distribution company

bmin minimum expected residential load for a given time period

bmax maximum expected residential load for a given time period

T simulation time lower bound

T simulation time upper bound

ψ set of customer appliances

E [P] expected power of appliances in the set

E [D] expected duration of appliances in the set

Arrival list of appliances with arrival time and other user-defined appliance attributes

∆ti inter-arrival time between appliances

i index of the arrival of an appliance in Arrival list

app specific appliance

Mt/G/C queueing load model with a time-dependent Poisson process, general

probability distribution of service times, and finite capacity

kC user-defined gain

Ph(t) aggregated power usage

tadd time an arriving appliance starts to be served

δ simulation time resolution

Mt/G/Ct queueing load model with a time-dependent Poisson process, general

probability distribution of service times, and time-dependent capacity



xiii

k Gamma distribution shape

θ Gamma distribution scale

µ mean

σ standard deviation

Zp constant active impedance

Ip constant active current

Pp constant active power

Zq constant reactive impedance

Iq constant reactive current

Pq constant reactive power

V local voltage

V0 nominal voltage

P0 active power at the nominal voltage

Q0 reactive power at the nominal voltage

SWstart start of the appliance scheduling window

SWend end of the appliance scheduling window

B(t) expected non-appliance load

Bl(t) expected household appliance load

N number of independent customers

C∗L(t) known aggregated load curve



xiv

LIST OF FIGURES

Figure 1.1. Power system studies environment and view for the future. Image

adapted from [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 2.1. Overview of the queueing model. Random arrival of elements in the

queue (defined by inter-arrival times T ), size (K) and serving policy of

the queue, number of available servers (C), and the service time (X). . . 20

Figure 2.2. Queueing load model output. The utilization of servers at a given

time represents the aggregation of appliances (yellow boxes where the

height is active power consumption width is time duration, and area

is energy consumption) being utilized, thus resulting in a load curve

(block line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.3. Schematic overview of the queueing load model generation procedure

for a single residential customer. . . . . . . . . . . . . . . . . . . . . . 23

Figure 2.4. Synthetic residential queueing load model Mt/G/∞ for a single customer. 25

Figure 2.5. Mt/G/C and Mt/G/Ct queueing load models power capacity, C and

Ct , respectively. The Mt/G/∞ queueing load model is unbounded. . . . 28

Figure 2.6. Synthetic residential queueing load model Mt/G/C for a single customer. 30



xv

Figure 2.7. Generic appliance model characteristics, assumptions, and justifica-

tion. (a) Illustrates the simplifying assumption of the appliance model

of a constant power draw and defined time duration; (b)the load profile

of the washer from [60] (blue line) versus the equivalent constant av-

erage load profile (red dotted line) at a one-minute resolution; and (c)

the energy consumption of the real (blue line) versus equivalent model

(red dotted line) through time. . . . . . . . . . . . . . . . . . . . . . . 32

Figure 2.8. Random sampling of two distinct gamma distributions to define ap-

pliance power and duration. The shape and scale of the gamma dis-

tribution are defined based on mean and standard deviation of actual

appliances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 2.9. Random sampling two distinct gamma distributions to define the ap-

pliance scheduling window start and end. The shape and scale of the

gamma distribution are defined based on mean and standard deviation

of the scheduling window. . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 2.10. Theoretical illustration of removing non-arriving appliance loads B(t)

(e.g., HVAC) from the aggregated household load l(t), thus generating

the new Bl(t) to be used in the queueing models. The sum of the two

will still approximate the known input load curve, l(t). . . . . . . . . . 39



xvi

Figure 2.11. The output of the three synthetic queueing load models Mt/G/∞, Mt/G/C,

and Mt/G/Ct — from left to right, respectively. The top row presents

the day that contains the valley hour (i.e., May 25, 2014) and the bot-

tom row presents the day with the peak hour (i.e., July 22, 2014). In

each plot, the dashed purple line is the user-defined expected load

curve of a single customer l(t), and the red dotted line is the power

capacity of the home (i.e., C and Ct from the queueing models —

there is no limit in the Mt/G/∞ queueing model). For each plot, 1,000

customers are synthetically created using the proposed queueing load

models. The mean of the 1,000 customers is the solid black line, the

first to third quartiles are represented by the dark shaded blue area,

and the minimum and maximum are represented by the light shaded

blue area. Each of the three models for both simulated days average to

the expected load curve, l(t), and hence will aggregate to the known

system load curve CL(t). . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 2.12. The known aggregated load curve C∗L(t) compared to the summation

of 1,000 customer outputs of the three synthetic queueing load mod-

els. The independently generated customer output of each of the three

queueing load models are similar to the behavior of the known aggre-

gated load curve, validating the methods. . . . . . . . . . . . . . . . . 46



xvii

Figure 2.13. The impact of lowering bmin to 100 W on the Mt/G/∞ and Mt/G/Ct

queueing load models. Each queueing model generated 1,000 cus-

tomers with: bmin = 100, bmax = 5000, kC = 2, appliance power (W)

µ = 500 and σ = 100, and appliance duration (hour) µ = 0.5 and

σ = 0.25. Due to the input parameters chosen, the output behavior of

the models may be unstable (e.g., 7:00 in the Mt/G/Ct queueing model). 47

Figure 2.14. Impact of small appliances on the Mt/G/∞ and Mt/G/Ct queueing

load models. Each queueing model generated 1,000 customers with:

bmin = 100, bmax = 5000, kC = 2, appliance power (W) µ = 10 and

σ = 2, and appliance duration (hour) µ = 0.2 and σ = 0.1. The impact

of smaller appliances reduces the range of generated customer load

curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 2.15. Active and reactive power for a single home using the Mt/G/Ct queue-

ing load model with ZIP appliances. The areas for active and reactive

power consider a voltage range from 0.95 p.u. to 1.05 p.u. Note that

there is no capacity or reference input for the reactive power curve,

rather these come directly from the ZIP characteristics and power fac-

tor of the appliance set. . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 2.16. Normalized speedup to 26 processors of the synthetic queueing load

models compared to the ideal parallel speedup using the Roaring Thun-

der Cluster. The queueing load models were used to generate 100 cus-

tomers for the entire year of 2014 averaged over four trials. . . . . . . 56

Figure 3.1. One line diagram of the test system. Adapted from [92]. . . . . . . . . 64



xviii

Figure 3.2. Summary of the synthetic queueing load model used to generate the

granular-level data for each home on the Midwest 240-Node test case .

At each load node, the node-level load is split into a per-home load ref-

erence curve, denoted by “1.” Each home independently generates the

granular-level appliance data using the synthetic queueing load model

(2 and 3). Lastly, denoted by “4,” the aggregated load from appliances

from all homes on the load node will statistically represent the node-

level reference curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 3.3. Algorithm that removes the extra homes from Midwest 240-Node dis-

tribution system test case. . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 3.4. Number of homes by load index considering the period of May 1 to

May 25 and the updated number of homes (i.e., the output from the

algorithm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 3.5. Year MAPE by load node in relation to the number of homes. . . . . . 75

Figure 3.6. Day load node visual comparison of know load and generated load.

The daily load of every load node are ordered according to the MAPE.

Thus, 0% is the worst and 100% the best, i.e., 5%, and 10% are values

in between. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 3.7. The worse, median, and best load days are presented in four levels of

aggregation, i.e., Feeder S, Feeder M, Feeder L, and system (i.e., entire

Midwest 240-Node test case ). On the top of every plot is the day MAPE. 78



xix

Figure 3.8. Distribution of voltage magnitudes for smart meter and synthetic load

data for Midwest 240-Node distribution system test case for one-year.

The labels 1 ST, 2 FS, 3 FM, and 4 FL, referrer to the substation trans-

former primary side, node 10 from Feeder S, capacitor node Feeder M,

and capacitor node Feeder M respectively. . . . . . . . . . . . . . . . 80

Figure 4.1. Droop-based PV inverter controllers. The active power curve from the

inverter is presented in red. The reactive power curve from the inverter

is presented in black. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 4.2. Probability transition for the Markov switching model. Image from [107]. 93

Figure 4.3. Irradiance variation for July 24, 2012. Image from [106]. . . . . . . . . 93

Figure 4.4. An example of the PJM forecast price availability and the RTP. Image

from [55]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 4.5. 12 house benchmark feeder with 8.4 kW grid-connected PV installed

at each house. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 4.6. Overview of May 30, 2019 (i.e. the PV peak generation day), system

load, PV generation, RTP, and forecast price. The available PV gener-

ation is for one home, since all homes have the same PV installation

the total system PV installation is the home curve multiplied by twelve. 113

Figure 4.7. Overview of May 30, 2019 (i.e. the PV peak generation day), system

load, PV generation, RTP, and forecast price. The scenario presented

do not consider the PV generation (i.e., not encouraging self consump-

tion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



xx

Figure 4.8. Overview of May 30, 2019 (i.e. the PV peak generation day), system

load, PV generation, RTP, and forecast price. The scenario presented

consider the PV generation (i.e., encouraging self consumption). . . . . 118

Figure 4.9. Zooming in two periods from Fig. 4.7. May 30, 2019 (i.e. the PV

peak generation day), system load, PV generation, RTP, and forecast

price. The scenario presented do not consider the PV generation (i.e.,

not encouraging self consumption). . . . . . . . . . . . . . . . . . . . 119

Figure 4.10. Zooming in two periods from Fig. 4.8. May 30, 2019 (i.e. the PV peak

generation day), system load, PV generation, RTP, and forecast price.

The scenario presented consider the PV generation (i.e., encouraging

self consumption). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure 5.1. A overview of the HVAC removal is presented. The HVAC residential

consumption in relation with the outdoor temperature and the tempera-

ture the residents consider comfortable is demonstrated, thus, alluding

to setting of the thermostat. Please keep in mind the image does not

intend to demonstrate the interaction of all the variables that contribute

to HVAC consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Figure 5.2. Queueing original reference l(t) with the complete Bl(t) plus the space

cooling from EnergyPlus. . . . . . . . . . . . . . . . . . . . . . . . . 132



xxi

Figure 5.3. Comparison of the three reference curves: first, queueing original ref-

erence l(t) with generated queueing load using Bl(t), plus the space

cooling. Second, queueing reference Bl(t) with generated queueing

load using Bl(t). Third, the last CAi(t) from the Algorithm 1 with the

space cooling from EnergyPlus. . . . . . . . . . . . . . . . . . . . . . 132

Figure 5.4. Queuing load model Mt/G/∞ year MAPE by load node in relation to

the number of homes. . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 5.5. Queuing load model Mt/G/C year MAPE by load node in relation to

the number of homes. . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 5.6. Queuing load model Mt/G/Ct year MAPE by load node in relation to

the number of homes. This is the same figure from Chapter 3 being

placed here to facilitate the comparison . . . . . . . . . . . . . . . . . 138

Figure B.1. Number of times the nodal energy consumption is below 100, 10, and

1 Wh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Figure B.2. Number of times the estimated home energy consumption is below

100, 10, and 1 Wh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Figure B.3. Energy consumption of the load nodes 158, and 163 for the period

from 3,504 to 3,792 hours. . . . . . . . . . . . . . . . . . . . . . . . . 151

Figure B.4. Energy consumption of the load nodes 134, 140, 142, 149, 152, 180,

and 183 for the period from 6,408 to 6,696 hours. . . . . . . . . . . . . 152

Figure B.5. Energy consumption of the load nodes 158, 162, and 163 for the period

from 3,504 to 3,792 hours. . . . . . . . . . . . . . . . . . . . . . . . . 153



xxii

Figure B.6. Original and the GLM model energy consumption of the worse load

node 58 on the fitted region from 3,144 to 3,480 hour and from 3,816

to 4,152 hour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Figure B.7. Energy consumption of the load nodes 41, 154, 158, 162, and 163 for

the period from 3,504 to 3,792 hours. . . . . . . . . . . . . . . . . . . 157

Figure B.8. Model energy consumption of the load nodes 41, 154, 158, 162, and

163 for the period from 3,504 to 3,792 hours. . . . . . . . . . . . . . . 159

Figure B.9. Model energy consumption of the load nodes 134, 140, 142, 149, 152,

180, and 183 for the period from 6,408 to 6,696 hours. . . . . . . . . . 160



xxiii

LIST OF TABLES

Table 2.1. Literature methods classification . . . . . . . . . . . . . . . . . . . . . 17

Table 2.2. Example of three ZIP appliances coefficients [63]. . . . . . . . . . . . . 41

Table 2.3. Typical residential load composition and seasonality [63]. . . . . . . . . 42

Table 2.4. Impact of parameters on range of generated queueing model outputs. . . 51

Table 2.5. Absolute time and average time per customer for the cases presented in

Fig. 2.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 3.1. Explaining the number of homes deviation from smaller MAPE. . . . . 76

Table 3.2. MAPE for the year of 2017 in four levels of aggregation, i.e., Feeder S,

Feeder M, Feeder L, and system. . . . . . . . . . . . . . . . . . . . . . 79

Table 3.3. Comparison of voltage and current from OpenDSS and GridLAB-D,

for a single power flow solution. . . . . . . . . . . . . . . . . . . . . . 82

Table 4.1. 12 home test system PV generation, load, and active power curtailment

for the peak solar irradiance day . . . . . . . . . . . . . . . . . . . . . 110

Table 4.2. Simulation results for the seven distinct scenarios . . . . . . . . . . . . 114

Table 4.3. 12 home test system hourly summary with the load, and RTP . . . . . . 121

Table 5.1. House Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Table B.1. Testing region from 3,600 to 3,700 hour EPE and MAPE for Section B.1

identified nodes and added classified nodes. . . . . . . . . . . . . . . . 158

Table B.2. Testing region from 6,450 to 6,550 hour EPE and MAPE for Section B.1

identified nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158



xxiv

ABSTRACT

DATA DRIVEN SYNTHETIC LOAD MODELING FOR SMART CITY

ENERGY MANAGEMENT STUDIES

FERNANDO BERETA DOS REIS

2020

The primary aim of this dissertation is to provide synthetic residential load models

with granular level information on the customers having information about the appliances

that constitute each individual residential customer through time. The synthetic load

model is capable of being widely utilized by the power system research community since

only publicly available data is utilized for its generation. This gives researcher’s access to

how the synthetic load was made and also how accurate the model is in representing real

power system regions. As the title of the dissertation suggests, the synthetic residential

load models are intended for smart city energy management studies. Smart city energy

management studies have the ability to control tens of thousands of electricity customers

in a coordinated manner to enact system-wide electric load changes. Such load changes

have the potential to reduce congestion (i.e. stress on power system components) and peak

demand (i.e. the need for peaking generation), among other benefits. For smart city

energy management studies to have the capability of evaluating how their strategies would

impact the actual power system, datasets that accurately characterize the system load are

required that also contain individual loads of all buildings in a given area. Currently, such

data is publicly unavailable due to privacy concerns. This dissertation’s synthetic

residential load model combines a top down and bottom up approach for modeling



xxv

individual residential customers and their individual electric assets, each possessing their

own characteristics, using time-varying queueing models. The aggregation of all customer

loads created by the queueing models represents a known city-sized load curve to be used

in smart city energy management studies. The dissertation presents three queueing

residential load models that make use of only publicly available data to alleviate privacy

concerns. The proposed approach is mainly driven by the aggregated distribution

companies load. An open-source Python tool to allow researchers to generate residential

load data for their studies is also provided. The simulation results comparing the three

queueing synthetic load models consider the ComEd region (utility company from

Chicago, IL) to demonstrate the model’s characteristics, impact of the choice of model

parameters, and scalability performance of the Python tool.

The developed residential synthetic queueing load models are utilized to create the

Midwest 240-Node distribution test case system, which generates appliance-level

synthetic residential load for 1,120 homes for the Iowa State distribution system test case

with 193 load nodes over three feeders. The Midwest 240-Node is a real distribution

system from the Midwest region of the U.S. with real one-year smart meter data at the

hourly aggregated node level resolution for 2017 available in an OpenDSS model. The

synthetic residential queueing load model generated for the Midwest 240-Node one-year

date has a mean absolute percentage error of 2.5828% in relation to the real smart meter

data. The Midwest 240-Node distribution system OpenDSS model was converted to

GridLAB-D to enable smart grid and transactive energy studies. The percentage of

maximum error observed on voltage magnitude from the OpenDSS to GridLAB-D model

is below 0.0009%. The GridLAB-D model and the generated synthetic residential load is
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made publicly available. The Midwest 240-Node real distribution system with the

synthetic residential load that follows the real data from smart meters is intended to be a

distributed energy active consumer test system network.

The focus of the developed synthetic residential load models is smart city energy

management studies; however, they can be utilized in many power systems studies to

evaluate economic and technical impacts of distributed energy resources. For example,

this dissertation also presents the utilization of the synthetic models for a PV rich low

voltage network.

The main component of the smart grid is demand response. Demand response, or

energy management, utilizes commonly passive load in to active power system resources.

Residential demand response, when aggregated, is capable of performing system-wide

changes that enable its participation in the power system markets. This dissertation

developed residential synthetic models to enable the standardization of approaches and

allow different approaches to be compared under the same environment.

The key contributions of this dissertation are:

• the development of a data driven residential synthetic queueing load model for

smart city energy management studies,

• the creation of a distribution test system with the synthetic load model based on real

smart meter data, to the same real distribution network from the U.S. Midwest

region,

• both the residential synthetic load models and the distribution test system utilized

publicly available data and are also made publicly available.
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CHAPTER 1 Introduction

1.1 Background

Power system studies possess a vast range of techniques from multiple fields of

knowledge. In a broad overview summary, there are: modeling, transmission, distribution,

markets, optimization, and forecasting. Modeling of the power system and its elements is,

in my view, the most significant part of every power system study. The assumptions made

in the models and the actual elements they are represented in different conditions and

scenarios must be fully understood to properly interpret the simulations results. The

commonly modeled elements in power system are generators (e.g. conventional, and

renewable), protection elements (e.g. relays, breakers, fusses, and lightning protection

system), transmission system (e.g. long high voltage three phase lines, three phase

transformers, phase shifting transformer, inductive and capacitive reactance banks), and

distribution system (e.g. short low voltage lines, transformers, capacitive reactance banks,

and customer loads). Markets development effectively regulates power systems; and

optimization techniques minimize the cost of energy while maintaining system security.

Forecasting, attempting to predict power system uncertainties, is the focus of this

Introduction.

The conventional power system structure had no wind and solar generation, which

are non-dispatchable forms of renewable generation. A non-dispatchable source of

electricity cannot control the amount of output power in order to meet societies fluctuating

electricity needs. This contrasts with flexible dispatchable power supplies, which can

change their output to meet power demand. Non-dispatchable power supplies are usually



2

highly intermittent; thus, cannot be continuously used due to uncontrollable factors like

weather. In conventional power system structure the only source of uncertainty is the

system demand (i.e. load consumption), but, to keep the power system operational, the

amount of energy being generated must match the consumption plus system losses.

Legacy dispatchable resources have the capability of controlling their output; however,

they were much slower (e.g. multiple days to reach full power) than contemporary gas

generation units (e.g. less than one hour). To accommodate changes in demand, the

available fast technologies were conventional hydroelectric generation and pumped

storage plants. Pumped storage plants for hydroelectric power in the Unites States were

built primarily between 1960 and 1990 [1]. In 2018, the United States had 22.9 gigawatts

(GW) of pumped storage hydroelectric generating capacity. Pumped storage behaves as

the name would suggest, pumping water into a storage reservoir at an elevated location

during times of relatively low electricity demand and low electricity prices, such as during

the night. When electricity demand is high, water flows downhill from the reservoir

through hydroelectric generators at a dam, behaving as a battery. Similar approaches are

used today when utilizing batteries to mitigate the uncertainties of the power system with

increasing non-dispatchable sources such as solar and wind.

A possible approach to address the uncertainties is the deployment of demand

response (DR). The new Federal Energy Regulatory Commission (FERC) regulations

enable participation of demand flexibility in the market [2] is under effect. With the load

flexibility provided by DR, the balancing of supply and demand can control the supply,

and, to some extent, the demand. The presence of renewable non-dispatchable energy

sources is not the only characteristic of the power system of the future. The distribution
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network was passive, only changing their demand, but, with the deployment of

distribution level resources, the distribution network is becoming more and more active.

Thus, the distribution system once treated as a passive component that only changes its

consumption independently of what is happening in the power system is changing.

Fig. 1.1 presents the environment for power system studies with a view in to the future,

where the distribution system plays an increasingly active role.

Figure 1.1. Power system studies environment and view for the future. Image adapted
from [3].

Fig. 1.1 presents the high voltage power system on the left and the distribution

system on the right. With the deployment of DR approaches, the distribution system is

influenced by the price of energy—possibly having resources such as photovoltaic (PV),

battery storage systems, electric vehicles, heat pumps, and/or other appliances. Thus, the

power system is changing in order to include distribution level resources to power system

operation and its markets.

The uncertainties of power systems create challenges; a relatable example to all
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this year, 2020, is COVID-19. The pandemic health crises also impacted power

systems [4]–[9]. Power systems are critical infrastructures for a national economy and

security [5]. The quarantine and the closing down of business resulted demand reduction

became another worldwide problem. Multiple nations are reporting a 3% to 10% demand

reduction [6]. However, there is not just a demand reduction, the demand throughout the

day has changed. In Australia, the load shape changed from a camel-like curve, having

morning and evening peaks, to a much flatter curve. The demand in Britain is a mixture of

weekend holidays with the presence of some businesses that are in operation remotely or

not that would be closed for holidays [5]. The residential loads are now a priority load in

Britain. It was made a priority since people in mandatory quarantine with no access to

energy, and consequently the internet, will reduce quarantine obedience, which creates

civil unrest. The California independent system operator has noticed a 13% March peak

load reduction [8]. Due to California’s large photovoltaic participation, the demand curve

did not get flatter as in Australia. The peak-to-valley difference increased by 5%. To

balance a larger demand difference, more flexible generation resources are needed. Such

flexibility is not available though, so more photovoltaic generation must be dumped.

The articles [4]–[9] give an overview of the importance of the power system: grid

modernization (i.e., Smart Grid), change in demand, resiliency (e.g., microgrids, flexible

load, and demand response), classification of critical loads, and market impact for a short

and long-term view on the participants. Grid modernization is not only necessary to

effectively deploy smart strategies to improve the performance of the power system. It is

also necessary to minimize the physical presence of essential personal to lower risk [5].

Southern California Edison, for example, to minimize risk to personal, has eight thousand
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remote workers and five thousand essential workers [4].

In [7], the significance of resilience is discussed given that most ventilators are

electric and are responsible for reducing the chances of death from COVID-19. The

change in fuel mix and the resulting technical challenges are also presented in [6]. [9]

urges development of power systems protocols to be able to better operate the power

systems to treat COVID-19 patients and others.

1.2 State of the Art Power System Research

This section presents the background (i.e. state of the art) of four areas of interest

for this dissertation. Section 1.2.1 presents the state of the art of residential demand

response. Section 1.2.2 presents the state of the art for residential load modeling for DR

research. Section 1.2.3 presents the state of the art for photovoltaic generation overvoltage

challenge in distribution systems research. Section 1.2.4 presents the state of the art for

overvoltage prevention with DR in PV rich distribution systems research.

1.2.1 Residential Demand Response Research

Residential loads represent approximately 38% of total energy consumption in the

U.S. [10]. Residential demand response can provide major benefits in the electricity

market: (a) participant financial benefits; (b) market-wide financial benefits; (c) reliability

benefits; and (d) market performance benefits [11], [12]. Industrial customers have been

utilizing DR programs developed for them given their significant demand magnitude

modification [13]. To include the residential load flexibility that would have a significant

impact on the system, multiple customers must participate. Residential DR makes

system-wide changes that require tens of thousands of buildings, each with many
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individual electric energy devices to be controlled [14].

A novel microgrid energy management system with model predictive control is

presented in [15]. This management systems is capable of simultaneously considering the

unity commitment constraints (i.e. in summary verifies that the generator scheduled to

supply the demand does not violate physical constraints), power flow, DR, and energy

storage system(s). Further, it can consider the residential load flexibility for scheduling the

generator to supply the load. In [13], residential loads are separated in a multi-class

queueing system. The class contains similar appliances to be optimized in a similar

strategy by scheduling the flexible load with the day-ahead power system market

information. In [16],automatic infrastructure is assumed to perform changes in the

residential load in real-time. Thus, differently than [13] in which scheduled appliances

were given the clear day-ahead energy market, [16] utilizes real-time. [17] presents a

game designed aggregate game approach intending to seek the price (i.e. Nash

equilibrium) of energy considering the necessary residential reward of performance

changes in demand.

1.2.2 Residential Load Modeling for DR Research

Residential DR makes system-wide changes that require tens of thousands of

buildings, each with many individual electric energy devices, to be controlled [14].

Evaluating the impact of residential DR strategies on electric power system operation and

markets requires large-scale residential load data for use in simulation studies. The input

parameters to such simulations should include the unique characteristics of each individual

residential customer, along with their individual electric energy assets. The aggregate of
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all such customer load data should behave as a typical city or region. Typically,

large-scale customer residential data is either unavailable or proprietary due to privacy

concerns [15], [18], [19]. For example, a load model that makes use of a large proprietary

database that includes measurements of appliances and household loads is presented

in [18]. In a second study, the interaction of DR and unit commitment of a microgrid is

described [15]. The controllable smart loads are modeled with a neural network that uses

measured and simulated data from an actual energy hub management system for

supervised training. In the case of [19], the loading of a distribution transformer is used to

generate load curves. Smart meter data has also been utilized for modeling individual

home appliances in [20], where a Hidden Markov Model with differential observations is

employed to attempt to identify individual appliance usage from the customer load.

Other techniques used are the static customer behavior method [16], [17], [21] (i.e.

load characteristics are acquired from static parameters); statistical methods [13], [14],

[22] (i.e. commonly requiring customer surveys which may not be available for different

regions, customers, or times); and physical methods [23]. The table method used in [16],

[21] possesses a set of schedulable appliances that is static every day for every customer.

Thus, all the homes are assumed to have the same occupancy habits, not representing

changes in behavior through time. In [17], the static customer behavior method does not

contain schedulable appliances, but rather a reference load with upper and lower limits.

With the flexibility knowledge of market participants, the convergence of customer

interaction on the system is analyzed with game theory. In [13], [14], aggregated

residential DR is performed by scheduling appliances, and [13] considers heating,

ventilation, and air conditioning (HVAC). A probabilistic method is proposed in [14]
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where 18 schedulable appliances are used to statistically generate residential loads to

reflect the total energy in an average household. The appliances have a specific percentage

penetration, power rating, and start time with mean and standard deviations; however, the

aggregate load of all customers does not change each day nor consider regional variations.

The appliances in [13] are modeled according to [18] with the same limitations for such

studies. A Markov Chain Monte Carlo approach is developed in [22] that has the chain

represent the state of the resident (e.g. presence of inhabitants), which affects energy

consumption. The statistical model is fitted using Netherlands public data surveys. The

physical method proposed in [23] develops a load simulator for residential customers

considering the physical characteristics of a home. The model considers some home

configurations, HVAC, and characteristics of other loads (e.g., washer, dishwasher, water

heater). The method is intended to model an individual home and is not suitable to be

scaled for a city-sized study.

1.2.3 Photovoltaic Generation Overvoltage Challenge in Distribution Systems Research

1The installation of photovoltaic (PV) generation in residential systems is rapidly

increasing due to environmental concerns, decreasing costs of PV modules, and

government incentives [25]. Distributed PV systems are connected to low/medium voltage

(LV/MV) distribution systems in the form of distributed generation (DG), but increased

PV installation has led to operational issues [26]–[32]. Traditionally, utilities use voltage

compensation techniques based on line voltage drop from the substation considering

1This work was performed jointly with the full list of co-authors available in [24]. This work is supported
by the National Science Foundation (NSF) under grant number ECCS-1608722, U.S. Department of Energy
(DOE) Grant Number DE-SC0020281, and the SDSU Joint Research, Scholarship and Creative Activity
Challenge Fund.
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unidirectional power flow to the end-user. However, with the increasing installation of PV,

power flow is not always unidirectional and can lead to voltage-rise in distribution

feeders [33].

Different approaches to solve overvoltage issues due to high PV penetration in

distribution systems have been discussed in the literature. Traditional voltage regulating

devices, such as line voltage regulators [34], switched capacitor banks [35], and on-load

tap changing transformers do not act in a sufficiently short time interval and result in poor

regulation [36]. Even if these approaches did limit the voltage fluctuations, the large

number of switching operations would shorten their operational life. As an alternative,

utilities can increase the conductor size (decrease conductor resistance) of distribution

lines to reduce voltage-rise, but upgrading the distribution system is not always

economically viable [37].

PV inverter control methods for preventing overvoltage in LV distribution feeders

are widely studied. Popular approaches in network independent PV inverter overvoltage

control are active power curtailment (APC) based on voltage deviations [38], [39],

reactive power absorption based on linear Volt/var droop [40], [41], and combined

active-reactive power management using limited communication [42].

1.2.4 Overvoltage Prevention With DR in PV Rich Distribution Systems Research

The possible solutions to address voltage regulation in the presence of distributed

generation are presented, e.g. curtailment, demand response (DR), and static synchronous

compensator. A review of distributed and decentralized voltage control of smart

distribution networks is presented in [43],where DR is presented as a strategy that should
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be further explored for voltage support. The impact of DR on the distribution system

voltage profile in the presence of renewable energy resources is presented in [44].

Similarly, the impact of DR on load, losses, and load factor is presented in [45].

Distribution system overvoltage due to renewable energy resources, such as photovoltaic

(PV), are more likely in periods with valley demand and peak generation. The relationship

between self-consumption of renewable energy resources and the required curtailment is

presented in [46]. The distribution system impact of load changes to mitigate overvoltage

in the presence of renewable energy resources is presented in [43], [44], [47]–[52].

A multi-agent, multi-objective renewable energy management scheme with

hierarchical control is presented in [47]to balance 3 objectives: minimizing electricity

bills, reducing power purchased from the main grid, and optimizing the power quality.

In [48], a distributed algorithm is implemented with a multi-agent structure. The network

is partitioned into zones where each zone-coordinator dispatches the active and reactive

power of various distributed energy resources and DR using a gradient descent method.

In [49], a distributed algorithm to control active and reactive power from PV’s is presented

to consider optimization in two-time scales, i.e. legacy conventional voltage control

devices and fast PV inverters and DR resources. In [50], strategies to mitigate overvoltage

problems in the distribution grid are discussed by presenting the change in the load having

4 setpoints based in a real-time voltage signal in a specific system. A centralized direct

control optimization with receding time horizon to mitigate uncertainties is presented

in [51]where the water heater of multiple customers performs the change in demand.

In [52], the cost to curtail PV generation and perform load shifts is estimated with the

distribution system elements models and their impact on each other (distribution network
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Jacobian matrix).

1.3 Objectives

Smart grid (i.e. smart city) research with grid modernization has been the center of

many power system research studies. The deployment of non-dispatchable resources

increases interest in the flexibility demand DR programs provide, so much so that,

according to [53], the main component of the smart grid is DR. Given the availability of

data (open access) the core objectives of this dissertation are:

1. develop synthetic scalable residential load model that possess granular level

information for customers (i.e. load by customer and appliances that constitute that

load) and the actual behavior of the power system demand for smart cities studies,

2. deploy the generated synthetic load model to a large real distribution test system to

standardize smart cities studies,

3. utilize the developed synthetic scalable residential load model for DR.

1.4 Contributions

The following contributions from this work are aimed at improving existing

state-of-the-art in power system research:

1. provide the power system research community with a synthetic scalable residential

load model that aggregates to the behavior of power system; thus, the impact of

residential DR approaches in the power system can be identified,

2. provide a real distribution test system for the deployment of residential demand

response considering the characteristics of low voltage distribution systems; thus,
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having the ability to explore new smart grid initiatives impact on a real distribution

system.

1.5 Dissertation Outline

In Chapter 2, the development of the synthetic scalable residential load model with

queueing theory is presented. The developed synthetic scalable residential queueing load

model to a real system and its validation is presented in 3. Chapter 4 presents the models

utilized for a residential DR approach in a PV rich distribution network. In Chapter 5, the

possible expansion of the synthetic residential load model to consider HVAC is presented.

Also, a simplified approach for selecting the queueing load mode is presented. Finally, in

Chapter 6, the conclusion and future work is presented.
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CHAPTER 2 Synthetic Residential Load Models for Smart City Energy Management

Simulations

2.1 Overview

The ability to control tens of thousands of residential electricity customers in a

coordinated manner has the potential to enact system-wide electric load changes, such as

reduce congestion and peak demand, among other benefits. To quantify the potential

benefits of demand side management and other power system simulation studies (e.g.,

home energy management, large-scale residential demand response), synthetic load

datasets that accurately characterize the system load are required. This chapter designs a

combined top-down and bottom-up approach for modeling individual residential

customers and their individual electric assets, each possessing their own characteristics,

using time-varying queueing models. The aggregation of all customer loads created by the

queueing models represents a known city-sized load curve to be used in simulation

studies. The three presented residential queueing load models use only publicly available

data. An open-source Python tool to allow researchers to generate residential load data for

their studies is also provided. The simulation results presented consider the ComEd region

(utility company from Chicago, IL) and demonstrate the characteristics of the three

proposed residential queueing load models, impact of the choice of model parameters, and

scalability performance of the Python tool.

This work was performed jointly with the full list of co-authors available in [54]. This work was sup-
ported by the National Science Foundation under grant numbers ECCS-1608722 and CNS-1726946.
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2.2 Introduction

Residential loads represent approximately 38% of the total energy consumption in

the U.S. [10]. Residential demand response (DR) can provide major benefits in the

electricity market: (a) participant financial benefits; (b) market-wide financial benefits; (c)

reliability benefits; and (d) market performance benefits [11], [12]. Residential DR makes

system-wide changes that require tens of thousands of buildings, each with many

individual electric energy devices, to be controlled [14]. To evaluate the impact of

residential DR strategies on electric power system operation and markets requires

large-scale residential load data for use in simulation studies. The input parameters to

such simulations should include the unique characteristics of each individual residential

customer, along with their individual electric energy assets. The aggregate of all such

customer load data should behave as a typical city or region.

Typically, large-scale customer residential data is either unavailable or proprietary

due to privacy concerns [15], [18], [19]. For example, a load model that makes use of a

large proprietary database that includes measurements of appliances and household loads

is presented in [18]. In a second study, the interaction of DR and unit commitment of a

microgrid is described [15]. The controllable smart loads are modeled with a neural

network that uses measured and simulated data from an actual energy hub management

system for supervised training. In the case of [19], the loading of a distribution

transformer is used to generate load curves. Because the data in these studies is not

publicly available, it is not possible to replicate the simulation results, compare new DR

and other demand side management methods to others, or generalize the results to other
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customers/regions. Smart meter data has also been utilized for modeling individual home

appliances in [20], where a Hidden Markov Model with differential observations is

employed to attempt to identify individual appliance usage from the customer load.

Other techniques used are the static customer behavior method [16], [17], [21]

(i.e., load characteristics are acquired from static parameters); statistical methods [13],

[14], [22] (i.e., commonly requiring customer surveys which may not be available for

different regions, customers, or times); and physical methods [23]. The table method used

in [16], [21] possesses a set of schedulable appliances that is static every day for every

customer. Thus, all the homes are assumed to have the same occupancy habits, not

representing changes in behavior through time. In [17], the static customer behavior

method does not contain schedulable appliances, but rather a reference load with upper

and lower limits. With the flexibility knowledge of market participants, the convergence

of customer interaction on the system is analyzed with game theory. In [13], [14],

aggregated residential DR is performed by scheduling appliances, and [13] considers

heating, ventilation, and air conditioning (HVAC). A probabilistic method is proposed

in [14], where 18 schedulable appliances are used to statistically generate residential loads

to reflect the total energy in an average household. The appliances have a specific

percentage penetration, power rating, and start time with mean and standard deviation,

however the aggregate load of all customers does not change each day nor consider

regional variations. The appliances in [13] are modeled according to [18], with the same

limitations for such studies.

A Markov Chain Monte Carlo approach is developed in [22], having the chain

represent the state of the resident (e.g., presence of inhabitants) which affects energy
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consumption. The statistical model is fit using Netherlands public data surveys. The

physical method proposed in [23] develops a load simulator for residential customers

considering the physical characteristics of a home. The model considers some home

configurations, HVAC, and characteristics of other loads (e.g., washer, dishwasher, water

heater). The method is intended to model an individual home, and is not suitable to be

scaled for a city-sized study.

The literature that presents residential customer load models can be roughly

divided into two categories — top-down and bottom-up [22] — which may or may not

make use of proprietary data. Top-down models use aggregated load to generate

individual load curves [15], [18], [19]. The study in [15] has knowledge of the aggregated

load and smart appliances, while [19] only has knowledge of the aggregated distribution

transformer. The bottom-up approach uses the given characteristics of appliances and

statistical behavior of customers to generate the load profile [13], [14], [16], [17],

[21]–[23]. Table 2.1 summarizes the methods in literature and demonstrates the need for

the proposed synthetic residential load models. The table is divided into the required

inputs for the literature methods, and the generated outputs. The numerous load models

present in literature (i) are dependent on data that is not publicly available nor applicable

to all regions of study, (ii) do not aggregate to the system load curve, or (iii) maintain the

same daily customer behavior throughout the simulation. There is a need for residential

load data that is openly available (i.e., results can be replicated and compared), aggregates

to a known system curve (i.e., large-scale studies that represent the expected electric

energy behavior of a city), varies through time (e.g., hourly, daily, and seasonal variation),

and does not require extensive customer surveys as they may not be available for every



17

region.

Table 2.1. Literature methods classification

Customers demand input Synthetic customer demand
data output
Statistical or survey derived Distinct day customer load
data variability (does not aggregate
[13], [14], [16]–[18], [21]–[23] to system load curve)
Individual customer [13], [15], [18], [19], [22]
measurement Low load variability (might or
[18], [20] might not aggregate to system
Aggregation of small regions load curve)
[15], [19] [16], [17], [21], [23]
Aggregated load information Aggregates to system load
by utility curve
None None

This chapter addresses the needs of residential large-scale load data by using

flexible time-varying queueing models to generate synthetic residential load data to allow

simulation studies to be replicated and compared by the research community to new

state-of-the-art methods. The proposed top-down and bottom-up approach addresses the

challenge of unavailable and proprietary customer data by utilizing available aggregate

load data for a region as an input to generate individual load profiles comprised of

individual residential electric assets. The aggregate of the individual synthetic customer

load data generated by the queueing models properly represents a known system load

curve and contains the time-varying characteristics of an actual power system region.

In this chapter we expand on the Mt/G/∞ queueing load model from [55], which

incorporates the arrival of appliances that comprise aggregate individual residential

customer load with time-varying behavior. In that work, however, the physical limitations

of homes were not considered, the appliance model was limited to active power
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consumption only, and scalability for city-size synthetic load datasets is not addressed.

Thus, the primary contributions in this work are:

• Design of two new synthetic time-varying residential queueing load models that are

capable of incorporating the physical limitations of residential customers without

loss of generality;

• Creation of a general residential appliance model that possesses many attributes

(e.g., power, duration, schedulability, ZIP load parameters), and is extensible

according to the necessities of the specific study being performed; and

• Development of a scalable Python tool that generates the synthetic residential load

models in parallel using high-performance computing.

The remainder of this chapter is organized as follows: Section 2.3 presents the

overview of queueing theory and the residential queueing load models. The appliance

model and its variations to incorporate voltage dependencies, scheduling windows, and

the consideration of non-arriving loads (e.g., HVAC) are presented in Section 2.4.

Section 2.5 presents the necessary inputs for the proposed synthetic residential load

models. The behavior of the proposed models is presented and validated in Section 2.6.

Concluding remarks on the models are discussed Section 2.8.

2.3 Queueing Load Models

2.3.1 Overview

Queueing theory models the behavior of a queue, i.e., waiting in line, and was

initially employed in the communication field (e.g., phone operators) to evaluate the
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performance of the system and determine how to operate the system more efficiently.

Queueing theory can model applications in many disciplines and provides useful insight

into distinct systems. In [56], an emergency hospital modeled the random arrival of

admitted patients as a queue and the condition of patients as the priority. With the model,

the flow of patients can be analyzed (e.g., queue waiting time). The authors in [57] make

use of queueing models for the load profile of plugin electric vehicles at charging stations,

similar to the application in this study.

Queueing models are defined by the probability distribution of inter-arrival times,

probability distribution of service times, number of servers, queue capacity, size of the

population, and a service discipline. Furthermore, the characteristics can be constant or

time-dependent (e.g., inter-arrival times as a function of time). Fig. 2.1 presents an

overview of the behavior of a queue, having the probability distribution of inter-arrival

times T . An element arrives in the queue at a time and possesses its own characteristics

(e.g., priority of arriving jobs in a server). The probability distribution of service times is

defined by X , i.e., distribution of time to serve an arriving element. The number of servers,

C, is a physical constraint of the system (e.g., the maximum capacity of the servers to

serve the arriving jobs). The characteristics of the queue are its capacity, K, and serving

policy, Z (i.e., the maximum number of elements in the queue and the order in which they

will be served). The size of the population P, is the number of all the elements that can

arrive in the queue.

For all the queueing models presented in this chapter, the following three

assumptions have been made: the queue length is infinite (i.e., K = ∞, no loss of

appliances arriving to the system); the population is infinite (i.e., P = ∞, arrival process is
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Figure 2.1. Overview of the queueing model. Random arrival of elements in the queue
(defined by inter-arrival times T ), size (K) and serving policy of the queue, number of
available servers (C), and the service time (X).

not dependent on the appliances currently present in the system); and the service policy is

first come first served. Given the queueing model assumptions, the simplified Kendall

notation is used to described the queue behavior, i.e., T/X/C. The main advantages of

using queueing theory for generating synthetic residential loads is its relation to load:

• Residential customers use their appliances according to their individual behavior,

thus from the view of an outside observer the start times of appliances are random.

Customers are distinct and assumed to be unable to influence the usage of other

customers. Nevertheless the aggregation of a considerable number of customers is

known (i.e., top-down);

• Every arriving appliance possesses its own different characteristics as generic

elements, e.g., electric, temporal, and schedulability; and

• Non-homogeneous Poisson process has an average rate of arrivals that varies
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through time. Thus, the time-varying characteristics of hourly, daily, weekly, and

seasonal behavior of load is naturally considered.

The queueing studies presented in this chapter are specifically interested in the

probability distribution of inter-arrival times and usage of servers as it applies to

residential electric load. Fig. 2.2 illustrates the overall behavior of the queueing load

models proposed in this chapter for a single home. The arriving elements are appliances

with a time-varying exponential distribution. Thus, during peak load there is a larger

probability of small inter-arrival times (i.e., more electric energy arriving into the system)

and the opposite for valleys. The output of the queueing process in this work is the

utilization of “servers” which corresponds to the active power consumption of a

residential home. When representing electric load, the serving capacity need not be

represented by an integer (e.g., an arrival process could utilize 50.239 servers at a given

time as active power is in the real number set).

Sections 2.3.2–2.3.4 present the three proposed queueing load models. Fig. 2.3

presents the overall procedure the load models follow. The load generation for each

customer is independent, thus the overall queueing procedure is the same for all

customers. Each model possesses unique characteristics, but the overall procedure is

maintained for all.

2.3.2 Mt/G/∞ Queueing Load Model

The Mt/G/∞ queueing load model presented here builds on the previous work

in [55]. The queueing load model represents inter-arrival times as a time-dependent

Poisson process (T := Mt), the probability distribution of service times is general
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Figure 2.2. Queueing load model output. The utilization of servers at a given time rep-
resents the aggregation of appliances (yellow boxes where the height is active power con-
sumption width is time duration, and area is energy consumption) being utilized, thus re-
sulting in a load curve (block line).

(X := G), and the power capacity in the home is infinite (C := ∞). The arrival of

appliances in the Mt/G/∞ queueing model is time-dependent to capture the temporal

behavior of customers. Furthermore, because there is an infinite capacity, the arriving

appliances are served as soon as they arrive in the queue.

At time t, let λ (t) be the time-varying appliance rate into the system, D and P be

the random variables describing the duration and power rating of the set of customer

appliances, respectively, and l(t) be the expected aggregated household load. The

time-varying appliance rate into the system with a Poisson process is described as

λ (t) =
l (t +E [D])

E [P]E [D]
. (2.1)
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Figure 2.3. Schematic overview of the queueing load model generation procedure for a
single residential customer.
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The mathematical derivation of (2.1) is presented in [55]. The derivation makes use of the

linear-with-time-shift (LIN-S) approximation from [58] and assumes no causality as the

data is to be used in simulation studies.

The expected home load l(t) is generated with the openly available hourly load

data CL(t) from any distribution company. CL(t) naturally describes the aggregated

behavior of customers in a given region containing its geographic characteristics, e.g.,

climate and customer preferences. The load data is scaled to generate the expected

individual home load (2.2), where bmin and bmax are the minimum and maximum expected

residential load for a given time period.

l (t) = bmin +
CL (t)−min(CL)

max(CL)−min(CL)
· (bmax−bmin) (2.2)

A flow chart for generating the synthetic residential load model Mt/G/∞ is

presented in Fig. 4. The user-defined input parameters are the load scaling factors bmin and

bmax, and the range of the simulation time from T to T . The data input is the aggregate

load curve CL(t) and the set of appliances ψ , which will be discussed in detail in

Section 2.4.1. The expected power E [P] and expected duration E [D] used in (2.1) are

computed for the customer set of appliances ψ . The process starts by initializing the

variables where Arrival is a list of appliances with arrival time and other user-defined

appliance attributes (e.g., schedulability, ZIP load parameters). This general appliance

model allows the researcher to extend the output to match the study of interest (e.g., home

energy management). The variable ∆ti is the inter-arrival time between appliances (i.e.,

time for next arrival).
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Figure 2.4. Synthetic residential queueing load model Mt/G/∞ for a single customer.
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The Mt/G/∞ queueing model serves the appliances as soon as they arrive in the

system. Making use of (2.1), the generated customer load when aggregated approximates

the known load of the distribution company, CL(t). The number of servers being infinite is

justifiable because as soon as an appliance is turned ON, it instantaneously starts

operating, i.e., no waiting in line to consume power. Due to the intrinsic random behavior

of the queueing model, however, the generated load peaks could surpass an individual

residential building peak load consumption.

The unrealistic load peaks are a result of multiple appliances arriving in a short

amount of time, commonly referred to as burstiness [59]. For the same arrival rate λ (t),

different burstiness levels can occur. As the elements that form the distribution test case

and residential building have physical limitations, to be able to utilize the load generated

by the queueing model in distribution system test cases the residential peak load may need

a limit. To address this characteristic, the assumption of an infinite number of servers can

be changed which will be addressed in the two new proposed queueing load models in the

following sections.

2.3.3 Mt/G/C Queueing Load Model

To address the issue with unrealistic peak load from the Mt/G/∞ model, the

serving capacity of the queue can be limited. In the Mt/G/C queueing model, the system

is unable to serve an infinite amount of arriving appliances. In this model, when an

appliance arrives in the queue it may no longer be immediately served, but it will instead

depend on the available capacity. This addresses the issue of unfeasible peak load

consumption of a residential home given the physical limitations of the system. In the
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Mt/G/C queueing load model, the power capacity/maximum load consumption that can

be served must be defined based on the physical limitations of the power system. One

such method for setting the limit while maintaining the independent nature of each

customer queue is by defining a gain based on the customer’s expected home load. For a

given customer, let C be the residential home capacity for the queue model, and kC be the

user-defined gain. We define, for a given customer, the residential home capacity as:

C = max(l(t))kC. (2.3)

The power capacity C can be defined from (2.3) or be explicitly chosen by the user. In this

work, we assumed all customers have the same C, kC, and scaled l(t) according to (2)

and (3), but this can be scaled based on home sizes of the particular study of interest with

no loss of generality.

With the limitation of the residential home capacity in the Mt/G/C queueing load

model, unfeasible peak load consumption given the physical limitations of a system are no

longer created. However, in the Mt/G/C queue there may still be unrealistic peaks for low

values of l(t). Thus, even though the load does not surpass the physical limitations of the

system, unrealistic load peaks based on customer behavior may still be generated by the

queueing model as illustrated in Fig. 2.5. Depending on the analyses being performed by

the user, the unrealistic peaks for low values of l(t) may or may not be relevant.

The flow chart for generating the synthetic residential load model using the

Mt/G/C queue is presented in Fig. 6. The simulation time t is not necessarily the time an

appliance will be served. The aggregated power usage from the appliances actual run time
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Figure 2.5. Mt/G/C and Mt/G/Ct queueing load models power capacity, C and Ct , respec-
tively. The Mt/G/∞ queueing load model is unbounded.
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(i.e., when the appliance actually runs, not when it arrives in the queue), given by Ph(t), is

necessary because there is a power capacity and the appliance may need to wait in the

queue, with a service policy of first come first served. The appliance, after being sampled

from the set of appliances, will be served as soon as possible given the limitation of the

power capacity. The time an appliance will be served tadd is searched in the internal loop

where δ is the simulation time resolution, hence the load will never be greater than C.

2.3.4 Mt/G/Ct Queueing Load Model

The Mt/G/C addressed the issue of unfeasible peak load consumption given the

physical limitations of a system, but it may have unrealistic peaks for low values of l(t)

given the expected customer behavior, as illustrated in Fig. 2.5. The Mt/G/Ct queueing

load model addresses the issue of unrealistic peaks for low values of l(t) by replacing the

constant power capacity C with a time-varying power capacity Ct . The time-varying

power capacity, Ct , can be defined from (2.4) or any user-defined time-varying curve. In

this work, we assumed all customers have the same Ct , kC, and scaled l(t) according to (2)

and (3), but this can be generalized to a time-varying kC. The time-varying Ct is calculated

as:

Ct = l(t)kC. (2.4)

With the limitation of the power capacity Mt/G/Ct , unfeasible and unrealistic peak

load consumption given the physical limitations of a system and the expected customer

behavior are no longer created, Fig. 2.5. The procedure for the Mt/G/Ct queueing load

model is the same as the flow chart in Fig. 6, except C is replaced with Ct , thus the power
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Figure 2.6. Synthetic residential queueing load model Mt/G/C for a single customer.
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capacity is computed with (4) and the internal loop condition is replaced by:

(Ph(tadd)+apppower)>Ct(tadd). (2.5)

2.4 Appliance Model

2.4.1 Generic Appliance Model

The queueing model used to generate the synthetic load data is comprised of

arriving appliances, therefore it is necessary to consider the assumptions of the appliances.

In Sections 2.3.2–2.3.4, the synthetic queueing load models randomly sample a set of

appliances ψ . Appliances are studied in [60] presenting the electric power consumption of

household appliances, and the data is available online. The appliance model in Fig. 2.7a

presents a generic appliance as a block of energy, having constant-power draw over a

given time duration. In Fig. 2.7b, the output of the generic constant-power draw model is

compared to a washing machine with time-varying power consumption from [60] with

one-minute resolution. The generic appliance model consumes the same amount of energy

as the actual appliance, just at different rates throughout the appliance duration. To

validate this approximation, we compare the energy consumption of the two models

through the appliance duration, Fig. 2.7c. Although the two models rarely consume the

same power at any given time, the total energy consumed is the same and is relatively

close throughout the duration. Therefore, for energy management simulation purposes,

the generic constant load model is considered adequate and will be used in this chapter.

Additionally, the output of the Mt/G/∞ queueing load model was shown to work with the

real appliance power in [55] (i.e., due to G in the queueing models). The models presented
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Figure 2.7. Generic appliance model characteristics, assumptions, and justification. (a)
Illustrates the simplifying assumption of the appliance model of a constant power draw and
defined time duration; (b)the load profile of the washer from [60] (blue line) versus the
equivalent constant average load profile (red dotted line) at a one-minute resolution; and
(c) the energy consumption of the real (blue line) versus equivalent model (red dotted line)
through time.
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in this chapter will work with any set of appliances.

To generate the appliance power and duration, two gamma distributions are

randomly sampled. Gamma distributions are continuous probability distributions in the

positive real number set (a useful characteristic given the appliance power and duration

must be positive) defined by two parameters (i.e., shape k and scale θ ). The mean of a

gamma distribution is E [X ] = kθ , and the variance is Var(X) = kθ 2. Thus, by defining the

mean µ and standard deviation σ , the gamma parameters k and θ are computed with

k = µ2/σ2 and θ = σ2/µ. Fig. 2.8 illustrates the two gamma distributions sampled that

determine the power and duration of the appliances. The gamma distributions are made

from the expected mean and standard deviation of power in W and the mean and standard

deviation of the duration in time.

The Arrival list (i.e., the output) contains the characteristics of all appliance power

ratings in W and the time duration in hours, for each and every appliance that has arrived

in the queue. Each element in Arrival represents a single appliance. Every row in Arrival

represents an appliance i with its characteristics. Thus, Arrival contains all the arriving

appliances for a residential customer for the generated simulation period (i.e., from T to

T ). The appliance model can possess more characteristics depending on the user-defined

study of interest without significant changes to the model, further discussed in

Sections 2.4.3 and 2.4.4.

2.4.2 Overview of Appliance Model Variations

The synthetic residential queueing load models presented are considerably

flexible. By making small changes to the appliance and load inputs, the ability of the
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Figure 2.8. Random sampling of two distinct gamma distributions to define appliance
power and duration. The shape and scale of the gamma distribution are defined based on
mean and standard deviation of actual appliances.

models to address a wide range of researcher-specific projects can be achieved.

Section 2.4.3 incorporates ZIP polynomial appliance characteristics and reactive power to

the generic appliance model (i.e., appliance consumption has active and reactive power

that are dependent on the local voltage of the customer) to be used in distribution voltage

control studies. Scheduling characteristics of appliances are provided in Section 2.4.4 to

be used in energy management studies. In Section 2.4.5, it is demonstrated how the

reference curve l(t) can be altered so that a defined portion of the customer load is

non-arriving, allowing other residential energy devices to be modeled that do not behave

as the generic appliance model (e.g., HVAC, batteries, electric vehicles).

2.4.3 ZIP Appliance Load Model

Loads in a low voltage (LV) residential distribution network have a dependency on

voltage [61]–[63]. Distributed generation (DG) presents technical challenges in LV
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distribution networks. The voltage must be maintained within a predefined range, thus the

power consumption of appliances and generation from DG in LV networks interact

indirectly through voltage. Studies that analyze DG in LV distribution system networks or

microgrids could make use of the presented queueing load models (e.g., [26], [38], [64],

[65]). The queueing load models generate distinct load consumption patterns for every

residential customer, allowing impact assessment of the change in load on the change in

local voltage.

Considerable changes in appliances have occurred in recent years due to advances

in power electronics, leading to a change in load characteristics. ZIP load models have

been used to characterize the load dynamics with respect to voltage [62], [63]. In New

York City, a study was conducted to characterize the effects of voltage variations in load

consumption with field validation [62] with the intention of energy conservation using

Volt/var control at the substation level [61].

ZIP load models are flexible, the parameters are easily changed to better represent

load dynamics, and reduce to other load models (e.g., constant active power, constant

active and reactive power, constant resistance, constant impedance). ZIP is a static

representation of load models, and assumes that the static characteristics of the active

power of a load can be defined by three components: constant impedance (Zp), constant

current (Ip), and constant power (Pp), represented by (2.6). Similarly, reactive power

dynamics can be obtained by (2.7) using the parameters Zq, Iq, and Pq. In (2.6) and (2.7),

V is the local voltage, V0 is the nominal voltage, P0 is the reference active power at the

nominal voltage, and Q0 is the reference reactive power at the nominal voltage. Load

models that behave as constant resistance and/or impedance have a quadratic dependence
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on voltage change, where load models that behave as constant current have a linear

dependence on any change in voltage.

P = P0

[
Zp

(
V
V0

)2

+ Ip

(
V
V0

)
+Pp

]
(2.6)

Q = Q0

[
Zq

(
V
V0

)2

+ Iq

(
V
V0

)
+Pq

]
(2.7)

The ZIP coefficients have the following two constraints:

Zp + Ip +Pp = 1 (2.8)

Zq + Iq +Pq = 1 (2.9)

2.4.4 Appliance Scheduling Characteristics

Energy management benchmarks as in [13], [14], [16], [21], [66] schedule

appliances in a time window to achieve a goal (e.g., reduce cost of energy). In a similar

method to the ZIP characteristics, scheduling parameters can be added for the arriving

appliances from the queueing models to allow the synthetic load model presented in this

chapter to generate inputs for the studies in [13], [14], [16], [21], [66] and more energy

management studies.

To create the scheduling characteristics for each appliance, it needs to be

determined which appliances are schedulable, and the scheduling constraints (e.g., start

and end time of the scheduling window). Therefore, the appliances generated by the
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queueing models require more inputs to define these characteristics. One method for

determining if each appliance is schedulable is to generate a random sample and compare

it to a user-defined threshold, which determines the percentage of appliances that should

be schedulable. To specify the scheduling constraints, two gamma distributions are

created and sampled to specify the start of the scheduling window SWstart , and the end of

the scheduling window SWend (i.e., the time after the arrival plus the duration of the

appliance), as illustrated in Fig. 2.9. The scheduling characteristics could be further

extended depending on the user’s study of interest.

Figure 2.9. Random sampling two distinct gamma distributions to define the appliance
scheduling window start and end. The shape and scale of the gamma distribution are de-
fined based on mean and standard deviation of the scheduling window.

2.4.5 Non-Arriving Loads

Residential customers have more electric energy devices than just appliances

modeled by the synthetic queueing load models. Portions of the customer load profile

possess climate dependencies, such as HVAC and electric water heaters. In the proposed

queueing models, these are modeled as a conjunction of non-schedulable appliances rather

than containing their climate dependencies. As the energy consumption of such thermal
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loads changes based on use and climate, the energy is not able to be directly shifted to a

more opportune time (i.e., preheating or cooling a home does not imply that the same

amount of energy would be used at a later time). Most studies that consider thermal loads

take into account comfort to not violate the comfort of the inhabitants [13], [16], thus

proper thermal models must be used and need to have their energy separated from

conventional appliances and the presented queueing models.

Furthermore, other electric energy devices (e.g., electric vehicles) have energy

requirements dependent on usage, and are also not always available at the residence. The

use of the large battery from electric vehicles in DR is appealing, but the characteristics of

such a resource requires different considerations than the appliance model.

The presented queueing load models in Section 2.3 can be used with a small

adjustment to consider electric energy devices with different dependencies, characteristics,

and behavior. Non-arriving appliances (e.g., HVAC) should be removed from l(t) prior to

use in the queueing process. At time t, let B(t) be the expected non-appliance load, and

Bl(t) be the expected household appliance load. If modeling non-appliance load, Bl(t) is

used in place of l(t) for the queueing load models, and is defined as:

Bl(t) = l(t)−B(t). (2.10)

Fig. 2.10 demonstrates the removal of the non-arriving appliances from l(t), thus

maintaining the aggregated behavior of the customers. The sum of the generated

appliances from Bl(t) in the queueing load models plus B(t) from all customers has the

same proportions to the sum of the original load l(t) from all the customers. This allows
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researchers the ability to model any electric energy device in conjunction with the

synthetic queueing load models without losing the aggregation property to the known

input load curve.

Figure 2.10. Theoretical illustration of removing non-arriving appliance loads B(t) (e.g.,
HVAC) from the aggregated household load l(t), thus generating the new Bl(t) to be used
in the queueing models. The sum of the two will still approximate the known input load
curve, l(t).

2.5 Synthetic Queueing Load Models Inputs

2.5.1 Inputs to the Queueing Load Models

There are two input groups for all the queueing models: the publicly available

aggregate distribution system load data and the appliance parameters. The historic data

obtained from distribution companies is input as time-series CL(t) from (2.2). The
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residential building load curve l(t) is generated with the user-defined choice of bmin and

bmax (i.e. minimum and maximum expected residential load characteristics).

The appliances arriving into the queue are created as presented in Section 2.4.1,

thus generating the input set of appliances ψ . To generate ψ , the following parameters

must be chosen by the user:

• Number of appliances (i.e., size of the set ψ);

• Standard deviation and mean power of appliances (i.e., inputs to the gamma

distribution). The selection has a direct impact in the expected power of the set E [P]

(y-axis of Fig. 2.7a);

• Standard deviation and mean duration of appliances (i.e., inputs to the duration

gamma distribution). The selection has a direct impact in the expected duration of

the set E [D] (x-axis of Fig. 2.7a);

Thus, the selection of the gamma distributions to generate the appliances will impact the

arrival rate of appliances because (2.1) is dependent on E [P] and E [D]. Notice that the

chosen mean of the gamma distribution is not used in (2.1), but rather E [P] and E [D] from

the set of generated appliances ψ . The larger the number of appliances in ψ , the closer

these values will approximate the gamma distribution.

In this chapter, the validation of the models presented in Section 2.6 makes use of

the same input parameters unless stated otherwise. Historical data from ComEd [67] (the

utility company for Chicago, IL) is utilized as the CL(t) input for the Mt/G/∞, Mt/G/C,

and Mt/G/Ct queueing load models. The period utilized from ComEd is the year of 2014,
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having bmin = 500, bmax = 5000, and kC = 2. The appliance set ψ is generated as

illustrated in Fig. 2.7, having the gamma distribution parameters as power (W) µ = 500

and σ = 100, and appliance duration (hour) µ = 0.5 and σ = 0.25.

2.5.2 ZIP Appliance Model Input

The ZIP coefficients for residential, commercial, and industrial loads can be

estimated using field and/or experimental data as shown in [62], [63]. In [63], 29

appliances have their ZIP parameters modeled; Table 2.2 presents three example

appliances. Furthermore, the appliances also present the number of tested equipment,

cutoff voltage, nominal voltage, and active and reactive power at nominal voltage. Thus,

one of the inputs to generate the appliances that incorporates the ZIP polynomial

parameters is the complete set of appliances from [63].

Table 2.2. Example of three ZIP appliances coefficients [63].

Equipment /
component Zp Ip Pp Zq Iq Pq

Air Conditioner 1.17 -1.83 1.66 15.68 -27.15 12.47
Vacuum Cleaner 1.18 -0.38 0.2 4.1 -5.87 2.77

Television 0.11 -0.17 1.06 1.58 -1.72 1.14

In Table 2.2, the representation of ZIP polynomial parameters does not contain the

contribution of each appliance. To randomly generate a set of customer appliances, as

explained in Section 2.4.1, that maintain the aggregated behavior of the system the

contributions of each appliance must be maintained. In [63], the contribution of each

appliance is characterized. As the use of appliances changes throughout the year,

Table 2.3 presents the summary of appliance contributions normalized by season. From

[63], fall and spring are expected to possess the same behavior. The complete table with
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the contribution of appliances for residential customer is presented in [63].

Table 2.3. Typical residential load composition and seasonality [63].
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TV 1 0.208 1 0.2 1 0.2 0.8 0.6 0.8
PC 1 0.119 1 0.2 0.2 0.2 0.6 0.6 0.6
Laptop Ch. 1 0.036 0.6 0.6 0.4 0.6 0.3 0.2 0.3
Minibar 1 0.091 0.5 1 1 1 1.1 1.1 1.1
Incandescent 1 0.087 1 0.2 0.2 0.2 0.4 0.4 0.5
CFL Bulb 1 0.026 1 0.4 0.3 0.6 0.3 0.2 0.3
Fan 1 0.163 1 0.1 0.1 0 0.4 0.6 0
Air Cond. 1 0.496 1 0.1 0.3 0 1.2 3.9 0
Total 5.02 7.46 3.57
Reported average peak power (weekdays) 5.05 7.40 3.56

The creation of the set of appliances follows the same process as presented in

Section 2.4.1, but more characteristics than the appliance power (i.e., P0 in the ZIP model)

and time duration are needed. When an appliance arrives into the queue, another sample is

made to define Q0 and the ZIP polynomial coefficients. A weighted sample is made on the

set of appliances given the overall contribution in the particular season being generated

(i.e., from Table 2.3). From the random sample, the ZIP polynomial coefficients are used

directly, and Q0 of the appliance is defined to maintain its power factor. As the

contribution from each appliance changes with the season, the queueing load models must

change the set of arriving appliances ψ at every change of season. The results in this

chapter use the data from [63], but this can easily be altered by the user for the study in
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question with no loss of generality.

2.6 Validation of the Proposed Synthetic Queueing Model Behavior

2.6.1 Comparing the Three Synthetic Queueing Load Models

The three queueing load models are compared in detail for two days containing the

minimum and peak hour from the ComEd region in 2014 (May 25, 2014, and July 22,

2014, respectively) in Fig. 2.11. Each queueing model was used to generate 1,000

customers. The top row of Fig. 2.11 presents the minimum load day, while the bottom row

presents the peak day. The three columns from Fig. 2.11 represent the Mt/G/∞, Mt/G/C,

and Mt/G/Ct , respectively. In each plot, the dashed purple line is the user-defined

expected load curve of a single customer l(t), from (2.2) with bmin = 500 and bmax = 5000.

The first to third quartiles are represented by the dark shaded blue area, and the minimum

and maximum of the 1,000 customers are represented by the light shaded blue area. The

first quartile of the 1,000 customer loads splits the lowest 25% of the customer load data

from the highest 75%. Similarly, the third quartile splits the highest 25% of the load data,

hence the first to third quartile range represents the active power region where 50% of the

customers are located (please note that a specific customer may move in and out of this

region from one time period to the next). Fig. 2.11 presents the mean load value of the

1,000 customers from the output of the queueing models as the solid black line, which

follows the input reference curve l(t), showing that independently generated loads for

each customer have distinct behavior that on average follows the known reference load.

For the Mt/G/C and Mt/G/Ct queueing load models, the red dotted line in

Fig. 2.11 represents the power capacity of a single home (i.e., C and Ct , respectively). The
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Figure 2.11. The output of the three synthetic queueing load models Mt/G/∞, Mt/G/C,
and Mt/G/Ct — from left to right, respectively. The top row presents the day that contains
the valley hour (i.e., May 25, 2014) and the bottom row presents the day with the peak
hour (i.e., July 22, 2014). In each plot, the dashed purple line is the user-defined expected
load curve of a single customer l(t), and the red dotted line is the power capacity of the
home (i.e., C and Ct from the queueing models — there is no limit in the Mt/G/∞ queueing
model). For each plot, 1,000 customers are synthetically created using the proposed queue-
ing load models. The mean of the 1,000 customers is the solid black line, the first to third
quartiles are represented by the dark shaded blue area, and the minimum and maximum are
represented by the light shaded blue area. Each of the three models for both simulated days
average to the expected load curve, l(t), and hence will aggregate to the known system load
curve CL(t).
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power capacity C and Ct were computed with (3) and (4), respectively, having kC = 2. The

power capacity for the Mt/G/C queue does not appear in the minimum power day

because C =10 kW is out of the y-axis range. The Mt/G/∞ is unbounded, thus not having

a power capacity. In Fig. 2.11, it can be observed that only Mt/G/Ct is affected by the

power capacity for the minimum load day (i.e., the top row). Because the Mt/G/Ct active

power range for the minimum load day is considerably reduced, there is a low likelihood

for the arrival of appliances to be served during the low-capacity time period. This

characteristic is elaborated in Section 2.6.2.

The mean of the 1,000 customers follows the reference load l(t), showing that the

average behavior of the independently generated customer loads is known, as presented in

Fig. 2.11. This characteristic can be extrapolated to generate any given number of

independent customers N to a known aggregated load curve C∗L(t) with,

C∗L(t) =
N−1

∑
n=0

ln(t). (2.11)

For a large number of N, C∗L(t) can be used for large-scale smart city sized energy

management studies. In Fig. 2.12, the aggregate behavior of all 1,000 customers is shown.

The output of each of the three models is compared to the sum of the reference curves,

C∗L(t). As each of the three models closely approximates C∗L(t), the proposed models are

validated for use in large-scale smart city sized energy management studies. This

demonstrates that even with the differences in the individual output of the queueing

models for every customer — i.e., random process and independently generated

using (2.11) — (i) the average behavior of a customer is known, (ii) the aggregate
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behavior of all customers represents a known system curve, and (iii) each customer is

independent with a unique load curve.
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Figure 2.12. The known aggregated load curve C∗L(t) compared to the summation of 1,000
customer outputs of the three synthetic queueing load models. The independently generated
customer output of each of the three queueing load models are similar to the behavior of
the known aggregated load curve, validating the methods.

2.6.2 Impact of Queueing Model Parameter Choice

The choice of input parameters impacts the output of the queueing load models.

Section 2.3.2 demonstrates that E [P] and E [D] have a direct impact on λ (t) (i.e., the

arrival rate of appliances) according to (2.1). Thus, the gamma distribution for generating

the appliances, as presented in Section 2.4.1, has an impact on λ (t). Additionally, the
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selection of appliance parameters impacts the size of the output list of appliances

generated by the queueing models. A small value of E [P] and E [D] requires many more

appliances to arrive for the same reference values, and vice versa.

For the same input parameters used in Section 2.6.1, if bmin is changed to 100 W,

the queueing load model behaves differently for the minimum hour day as shown in

Fig. 2.13. For the Mt/G/∞ queueing model, the choice of bmin impacts the arrival rate of

appliances. Based on (2.1) and (2.2), with an l(t) = 100 W at the minimum time and

E [P]≈ 500 W (depending on the sampling of the gamma distribution for ψ), the arrival

rate λ (t) significantly reduces (i.e., the period between arrivals is increased), as shown in

the left plot of Fig. 2.13.
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Figure 2.13. The impact of lowering bmin to 100 W on the Mt/G/∞ and Mt/G/Ct queueing
load models. Each queueing model generated 1,000 customers with: bmin = 100, bmax =
5000, kC = 2, appliance power (W) µ = 500 and σ = 100, and appliance duration (hour)
µ = 0.5 and σ = 0.25. Due to the input parameters chosen, the output behavior of the
models may be unstable (e.g., 7:00 in the Mt/G/Ct queueing model).
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For the Mt/G/Ct queueing model, because E [P] of the appliance set is ∼ 5 times

larger than the reference curve at hour 7:00, the probability of a customer having an

appliance smaller or equal to 100 W given the gamma distribution parameters are µ = 500

and σ = 100 is approximately zero. Thus, considering the probability of such appliances

arriving at a time in which they could be scheduled is negligible. The first to third quartile

range becomes non existent for a small period of time. The Mt/G/Ct possesses a power

capacity of 200 W for the hour, thus for all 1,000 customers no appliances are present that

can be served, making the load equal to zero. Because the service policy is first come first

served, the arrived appliances are started as soon as possible in the subsequent hours, the

mean value tends towards the power capacity and it takes a few hours to return to

steady-state behavior.

Maintaining the same parameters used in Section 2.6.1 except with bmin still equal

to 100 W, we significantly reduced E [P] and E [D] (i.e., appliance power (W) µ = 10 and

σ = 2, and appliance duration (hour) µ = 0.2 and σ = 0.1) to study the impact of small

appliances in the queueing models, shown in Fig. 2.14. The mean, complete range, and

first to third quartile range behave as expected for Mt/G/∞ and Mt/G/Ct , however the

generated ranges are considerably smaller, i.e., significantly reducing the difference

between the individual customers.

In summary, for the output of the queueing models to be stable, it is desirable that

multiple appliances can arrive and be served at any moment (i.e., Fig. 2.13 at 7:00). At the

same time, if a large number of small appliances arrive and are served at the same time,

the differences between the customers is greatly reduced as in Fig. 2.14. The choice of the

gamma distribution parameters for generating the set of appliances ψ , size of the set of
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appliances |ψ|, bmin, bmax, and queueing model power capacity has an impact on the

behavior of the queueing load models, and should be considered by the user when

choosing the input parameters for future studies using these models. These choices will

vary depending on the specific user problem of interest (e.g., HEMS, geographical area,

and other relevant input for a specific study).

The input variables bmin and bmax appear to be independent, but if it is desirable for

the aggregated behavior of the customers to approximate CL(t), bmin and bmax are not

independent. For the aggregated load of customers to behave as CL(t), the ratio of

max(CL) and min(CL) needs to be maintained in bmax and bmin, and bmax must be an

integer multiple of max(CL) as the number of customers is an integer. Thus, with a known

number of customers and bmax, it is known that bmin = min(CL)/max(CL)bmax.
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Figure 2.14. Impact of small appliances on the Mt/G/∞ and Mt/G/Ct queueing load mod-
els. Each queueing model generated 1,000 customers with: bmin = 100, bmax = 5000,
kC = 2, appliance power (W) µ = 10 and σ = 2, and appliance duration (hour) µ = 0.2 and
σ = 0.1. The impact of smaller appliances reduces the range of generated customer load
curves.
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2.7 Queueing Model Discussion

This subsection presents a comparative discussion of the results presented in

Subsections 5.1 and 5.2, summarizing the behavior of the queueing models and their

interaction with the appliance models. Residential customers naturally follow a

predictable behavior when aggregated, thus the average load approximates to the

reference (i.e., scaled system load curve). However, an individual residential customers is

expected to possess large variability through time (i.e., a single load in a house greatly

impacts its power consumption, but the same load is quite small compared to the system

curve). The ranges of generated values of the thousand residential customers is used to

demonstrate the behavior of the generated loads on the valley- and peak-hour days in

Table 2.4. The mean of the generated range from the first to the third quartile and the

complete range for the generated synthetic residential load models are presented, showing

the impact of the load model and choice of parameters in the model output. Cases 1, 2,

and 3 in Table 2.4 refer to the presented cases in Subsections 5.1 and 5.2. Case 1 is

presented in Subsection 5.1 has load scaling parameters kC = 2, bmin = 500 (W), and

bmax = 5 (kW); appliance duration µ = 0.5 (hour), σ = 0.25 (hour); and appliance power

µ = 500 (W), and σ = 100 (W). Case 2 presented in Subsection 5.2 has load scaling

parameters kC = 2, bmax = 5 (kW), and bmin = 100 (W); and the same appliance

parameters as Case 1. Finally, Case 3 presented in Subsection 5.2 has the same load

scaling parameters as Case 2; appliance duration µ = 0.2 (hour), σ = 0.1 (hour); and

appliance power µ = 10 (W), and σ = 2 (W). In Table 2.4, the queueing load model

time-varying server availability and appliance parameters have a similar impact on the
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complete ranges in Case 1, however not on the first to third quartile. Reducing the

appliance size will impact the complete and first to third quartile ranges in Case 3. Note

we only present the valley-hour day for Cases 2 and 3 because these were used to

highlight the impact of appliance size and scale parameters of the reference load on the

model output in Subsection 5.2, hence there is no data presented for the peak-hour day.

Table 2.4. Impact of parameters on range of generated queueing model outputs.

C
a
s
e

Model
Mean range (kW)

Valley hour day Peak hour day
First to
third

quartile
Complete

First to
third

quartile
Complete

1

Mt/G/∞ 1.09 4.44 1.83 8.37
Mt/G/C 1.09 4.50 1.83 8.11
Mt/G/Ct 1.03 2.34 1.86 6.64

2 Mt/G/∞ 0.62 2.74
Mt/G/Ct 0.45 0.89

3 Mt/G/∞ 0.09 0.44
Mt/G/Ct 0.09 0.43

2.7.1 ZIP Appliances with Mt/G/Ct

As seen in Section 2.4.3, the appliance load consumption is affected by the local

voltage. A common appliance model that considers this behavior is the ZIP load model.

ZIP load model characteristics were added to the appliances as shown in Section 2.5.2

with parameters from [63]. To demonstrate the behavior of the appliances with the ZIP

parameters, 50 homes were generated making use of the Mt/G/Ct queueing load model

with the same parameters from Section 2.6.1. Appliances arrive into the queue with their

individual characteristics (i.e., di, P0, Q0, Zp, Ip, Pp, Zq, Iq, Pq). Thus, to visualize the

behavior of the home, the appliances operating simultaneously are aggregated as
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AP0 = ∑
i

P0i

A(.)p = ∑
i

P0i

AP0

(.)pi



AQ0 = ∑
i

Q0i

A(.)q = ∑
i

Q0i

AQ0

(.)qi

(2.12)

where (.) = {Z, I,P}. Although 50 homes were visualized and analyzed, the output of

each home was similar, so a single home was chosen to illustrate the average

characteristics of the ZIP parameters for the queueing load models. Fig. 2.15 presents the

active and reactive power of the selected home for July 22, 2014, using the Mt/G/Ct

queueing model assuming a variation in voltage at the point of connection to the electric

power system. The top plot in Fig. 2.15 presents the reference curve for the queueing

model (black dashed line), active power of the home at nominal voltage (solid black line),

queueing model power capacity (red dotted line), and the range the active power (green

shaded area) assuming a voltage range from 0.95 p.u. to 1.05 p.u. [68]. The bottom plot in

Fig. 2.15 presents the reactive power at nominal voltage (solid black line) and the range of

reactive power for the same variation in voltage (blue shaded area). The reactive power of

appliances are dependent on the appliance model (i.e., user-defined ZIP characteristics

and power factor), not on the queueing model which only governs the arrival of appliances

based on the active power (hence the active power reference curve and a power capacity

for Mt/G/Ct).
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Figure 2.15. Active and reactive power for a single home using the Mt/G/Ct queueing
load model with ZIP appliances. The areas for active and reactive power consider a voltage
range from 0.95 p.u. to 1.05 p.u. Note that there is no capacity or reference input for the
reactive power curve, rather these come directly from the ZIP characteristics and power
factor of the appliance set.



54

2.7.2 Computational Performance of the Synthetic Queueing Load Models

The synthetic queueing load models are intended for power system studies for

large-scale smart city-sized assessment, which contain thousands to millions of electric

customers. Thus, any synthetic load generation approach for residential city-size studies

must be computationally efficient. As shown in the previous sections, the presented

synthetic queueing load models are capable of being independently generated for each

customer, thus they can be created in parallel with minimal interprocess communication.

The South Dakota State University Roaring Thunder High-Performance Computing

Cluster was used to generate customer loads in parallel to measure the scalability of the

proposed methods. Roaring Thunder possesses 56 compute nodes, each with dual socket

Intel Skylake 6148 CPUs, 40 CPU cores (20 cores per socket), 192 GB RAM, and 240 GB

SSD local storage. The code was developed in Python [69] and makes use of the SCOOP

(Scalable COncurrent Operations in Python) package to spread the customer load

generation work across the available compute resources in single and/or multiple compute

nodes. SCOOP maintains a master processor to manage and monitor the work in a

worker-pool model, thus when a process finishes generating and saving the data for one

customer it is assigned another customer from the work pool until all customer loads have

been generated. The data is saved using HDF5 file format and written using the cluster

parallel file system that enables concurrent read/write to disk.

The scalability of the queueing load models are presented in Fig. 2.16 for

generating 100 annual customer loads for the year 2014 using the different queueing load

models averaged over four trials. The y-axis presents the speedup normalized to the
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runtime for each algorithm using 26 processing elements and compared to the ideal

speedup (i.e., linear speedup with each additional processing element). The relative

performance of the methods differs due to the internal loop of Mt/G/C and Mt/G/Ct in

Fig. 6 for shifting the arriving appliances depending on the available power capacity. The

scalability of the three queueing models behave similarly through 76 processors, but the

three methods deviate in performance with 101 processors (i.e., 1 processor per customer

and 1 master process). Because of the internal loop, if each process only generates one

customer load, the single slowest customer load sets the entire runtime and negatively

impacts performance compared to Mt/G/∞. The time requirements of the internal loop of

Mt/G/Ct are more demanding (i.e., stricter power capacity), thus having a larger impact

on relative performance and scalability.

The absolute times required to generate the data are presented in Table 2.5, which

are averaged over four trials for each case. The individual customer time is computed by

multiplying the total time by the number of processing elements and dividing the result by

the number of generated customers. Notice that the average time for an individual

customer has little variation with the same queueing load model across differing numbers

of processing elements. As the time to create a one-year dataset per customer is relatively

low and the data is able to be generated independently in parallel with near-linear

speedup, the synthetic load models are promising to generate Smart City-sized datasets

that aggregate to a known system load curve.
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Figure 2.16. Normalized speedup to 26 processors of the synthetic queueing load models
compared to the ideal parallel speedup using the Roaring Thunder Cluster. The queueing
load models were used to generate 100 customers for the entire year of 2014 averaged over
four trials.
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Table 2.5. Absolute time and average time per customer for the cases
presented in Fig. 2.16.

Number of Processing Elements 26 51 76 101

Mt/G/∞

(minutes)

total 37.53 22.93 19.08 10.89

individual 9.76 11.69 14.50 11.00

Mt/G/C

(minutes)

total 74.70 43.31 39.25 24.53

individual 19.42 22.09 29.83 24.77

Mt/G/Ct

(minutes)

total 88.64 49.79 44.95 33.29

individual 23.05 25.39 34.16 33.62

2.8 Conclusions

This chapter proposed an approach for modeling individual residential customers

and their individual electric assets using time-varying queueing models. The queueing

load models presented in this chapter address the challenges of unavailability and

proprietary customer data by using only public available aggregated load data for a region,

allowing researchers to replicate results in many studies and compare their methods to the

state-of-the-art. In addition, by aggregating to a known system load curve, the economic

and technical impacts of new research methods can be better evaluated. The model

assumes that the aggregated distribution system behavior is known while including the

stochastic nature of individual customers and their electric assets (i.e., combined top-down

bottom-up modeling). The models are general enough to incorporate other characteristics,

such as non-arriving portions of customer loads (e.g., HVAC), voltage dependencies (e.g.,

ZIP polynomial coefficients), scheduling characteristics, and more depending on the needs

of the individual researcher. The models were validated by visualizing the differences in

output between a thousand customers and by their aggregated load that characterizes and
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follows a known system curve. As the proposed models were shown to scale in a

near-linear fashion and individual customer loads can be independently generated, the

methods can be used in large-scale demand side management studies (e.g., Smart City

demand response) with individual customer load data that maintains the time-varying

characteristics of an actual power system region. The future work is to expand the

appliance models to include HVAC and other characteristics such as frequency

dependencies.
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CHAPTER 3 A Real Distribution System Test Case with One-Year Appliance-Level

Load Data Derived from Utility Smart Meters for Transactive Energy

Studies

3.1 Overview

The Iowa State distribution system test case is a real 240-node distribution system

from the Midwest region of the U.S. in OpenDSS with one-year smart meter node-level

load data for 2017. This article derives a synthetic appliance-level residential load using

the queueing load model for 1,120 homes on the Iowa State distribution system test case

for use in distributed energy management studies. The expanded Midwest 240-Node test

case provides granular-level information for all homes in the distribution system (i.e.,

individual appliances that constitute the home load), and the aggregate of all customer

load emulates the real smart meter data. The one-year synthetic appliance data has a mean

absolute percentage error of 2.58% compared to the smart meter data. The Midwest

240-Node test case is validated and provided in open-source OpenDSS and GridLAB-D

models to enable transactive energy studies with active electric end-users.

3.2 Introduction

Given the increased variability in generation from the increased participation of

non-dispatchable resources (e.g., wind and solar), there is a need for increased operational

flexibility for the future environmentally friendly, economical, and secure power

system [70]–[72]. Demand response (DR) is one such source of flexibility, and according

to [53], is a main component of the smart grid. DR encourages consumers to change their
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demand concerning power system conditions — a generalized form of DR that considers

or coordinates both supply and demand is commonly referred to as transactive

energy [73]–[75]. Residential loads represent approximately 38% of the total energy

consumption in the U.S. [10]. Residential DR can provide the needed operational

flexibility, and the major resulting benefits are: (a) participant financial benefits; (b)

market-wide financial benefits; (c) reliability benefits; and (d) market performance

benefits [11], [12]. Residential DR makes system-wide changes that require tens of

thousands of buildings, each with many individual electric energy devices, to be

controlled [14].

There is a missing link in the research community between the availability of

aggregate power system demand, the individual customer demand that composes it, and

the location of such demand on distribution system networks. Multiple home energy

management system studies neglect their impact on the power system [76]–[79]. In [76],

residential DR optimization models for scheduling individual customer appliances is

presented. The paper makes use of actual real-time pricing information from an Illinois

power company. The work in [77] is similar to [76], but it aggregates residential

customers in a residential community to perform the optimization. The aggregation of

customers in [78] is also similar to [77], but differs by focusing on multi-objective

optimization tradeoffs between customer financial benefits and customer discomfort. In

contrast to the multi-objective optimization from [78], a hierarchical controller framework

bidding strategy for demand reduction events considering the consumer preferences is

presented in [79]. Differently than [76]–[78], a considerable effort is presented to evaluate

the change in locational marginal price given the change in demand [79]. However, the
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studies presented in [76]–[79] do not have a residential customer demand that aggregates

to a known region of the power system. A combined power system and home energy

management system test case must emulate the behavior of a real distribution system with

individual customer loads that aggregate to the known system load. Existing distribution

system test cases do not have real time-series load data, except for the IEEE European

LV [80], but this is only for a single day. By linking individual customer loads to the

system load, calculation and analysis of system-level impacts of residential DR is enabled.

Such analysis allows studies to more accurately demonstrate the flexibility and impacts of

DR on power system operations (e.g, electricity markets, reduction in renewable energy

curtailment).

The availability of a power system test case that accurately represents the behavior

of a real system is considered an enabling development for the design and analysis of new

and scalable approaches for the integration of distributed energy resources in [81]. The

lack of U.S. electric distribution system test cases led the authors from [82] to create

synthetic distribution test systems using street maps, equipment catalogs, and building

expected behavior. The distribution test systems are intended for testing algorithms with

considerable distributed resources present in distribution systems. The paper [81]

continues the work of [83]–[87] for the creation and validation of synthetic transmission

systems and [88]–[91] for the creation and validation of synthetic distribution systems

with access to utility data. The work presented in [81] focuses on the U.S. distribution

systems, creating and validating distribution synthetic systems of up to 10 million electric

nodes. The authors from [81] are researchers at National Renewable Energy Laboratory

(NREL) and have access to real utility data, which is considered Critical Energy/Electric
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Infrastructure Information (CEII) and is not available to the general research community.

Their approach enables the validation of flexible distribution synthetic systems, but the

methods still require unavailable CEII. Additionally, the work in [81] validates three large

scale synthetic test systems, with statistical quantification to infer how realistic the

networks are compared to real data, where the work in this chapter is to create time-series

synthetic load data at the granular-level from aggregated smart meter data on a real

distribution network.

The Iowa State distribution system test in [92] made available a real distribution

network from the U.S. Midwest region with one-year smart meter node-level load data for

2017. This unique test case combines a real utility distribution system network model with

corresponding field measurements that are publicly available. To maintain individual

consumer privacy, the available data is aggregated to node-level and is provided in an

hourly resolution. In this chapter, the nodal load data is first divided into 1,120 homes

across 193 load nodes over three feeders. The home data is further divided into

appliance-level data using the queuing load model from [54]. The one-year mean absolute

percentage error between the real smart meter data and granular-level synthetic data

generated for the Midwest 240-Node is 2.58%. The main contributions of this chapter are

(a) the generation of synthetic granular-level residential load data from aggregated

nodal smart meter data; and

(b) the development and validation of the open-source Midwest 240-Node transactive

energy test case.

The open-source Midwest 240-Node transactive energy test case is provided in
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both OpenDSS and GridLAB-D, and was validated with a maximum voltage magnitude

error less than 10−3%. This test case will enable researchers to perform granular-level

smart grid and transactive energy studies, and measure the system-level impacts.

The remainder of this chapter is organized as follows: Section 3.3 is an overview

of the publicly available Iowa State distribution system test case. The queueing load

model for generating the granular-level synthetic load data from the node-level smart

meter data is described in Section 3.4. In Section 3.5, the Midwest 240-Node system is

validated in regards to both the load mismatch (real nodal smart meter data vs. synthetic

granular-level data) and power flow impact (OpenDSS vs. GridLAB-D). Section 3.6

presents the main conclusions of this study. Finally, Appendix B details the conditioning

of missing smart meter data from the published Iowa State distribution system test case for

use in the Midwest 240-Node test case.

3.3 Describing the test system

Power system test cases, including distribution test systems, are derived from the

general characteristics of real networks. Dr. Zhaoyu Wang from Iowa State University

received permission from a utility partner to make publicly available a real distribution

network from the Midwest U.S. [92] in OpenDSS format. The test system has 240 primary

network nodes and 23 miles of primary feeder conductor. The real distribution network

will be referred to as the Iowa State distribution system test case. In addition to the real

network data, one-year smart meter measurements at the node-level were also provided.

The Iowa State distribution system test case is presented in Fig. 3.1 as a radial

distribution system consisting of three feeders [92]. The feeders are labeled as S, M, and L
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Figure 3.1. One line diagram of the test system. Adapted from [92].
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referring to the relative size of the feeders as small, medium, and large, respectively. A

10 MVA delta-wye step-down 69/13.8 kV substation transformer supplies power for the

three feeders. The substation transformer has a tap-changer mechanism that consists of

three independent single-phase tap changers. Feeders M and L have shunt capacitor banks

for voltage regulation. The utility has a strategy to switch on capacitor banks in normal

operation to provide reactive power support. Iowa State distribution system test case has

nine circuit breakers at the illustrated locations in Fig. 3.1 that are used for protection and

reconfiguration. Six of the circuit breakers are normally closed, and three are normally

open. All standard electric components in the Iowa State distribution system test case are

modeled, such as overhead lines, underground cables, substation transformers with load

tap changers, line switches, capacitor banks, and secondary distribution transformers.

The Iowa State distribution system test case has 1,120 homes, each with an

installed smart meter [92]. There are 193 system load nodes with 15 on Feeder S, 44 on

Feeder M, and 134 on Feeder L, each with a unique numeric number from 0 to 192. The

assigned number for the load node follows the order from the provided files in [93] and is

read in the following order: S, M, and L. The homes are connected to the primary network

nodes via secondary distribution transformers, demonstrated in Fig. 3.1. The load data is

measured using smart meters for the year 2017 in an hourly resolution (in kWh) by

approximating the hourly energy consumption under the assumption that the customer

demand is constant in each one-hour time interval [92]. To model reactive power for the

load nodes, a power factor is randomly selected in the range of 0.9–0.95 [93]. The power

factor and reactive power of each customer is calculated and aggregated for the customers

in the same load node.
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Although 1,120 homes are known to be on the network, the provided load data

in [92] is aggregated at the node level to protect the privacy of individual customers.

Additionally, it is unknown if any customers have distributed generation, such as solar

photovoltaic.

3.4 Generating Granular-Level Synthetic Load Data

3.4.1 Overview

The real customer demand from smart meter measurements [93] are the

aggregation of customers at a given load node with hourly resolution. Power system

studies such as home energy management systems, distributed energy management, DR,

and transactive energy require high-resolution individual customer load (i.e., the

knowledge of appliances that compose the demand of each customer/home). To utilize the

data provided in the Iowa State distribution system test case for such studies and taking

advantage of the real customer demand data, in this section

(a) the provided nodal load data is analyzed, and time periods with erroneous smart

meter data are statistically replaced (more information in Appendix B);

(b) the 1,120 homes are divided to the load nodes based on energy consumption;

(c) the appliance model parameters are described; and

(d) granular-level synthetic load data is generated using the queueing load model

from [54] to create the Midwest 240-Node test case.
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3.4.2 Evaluating the Nodal Load

As mentioned in the previous section, the Iowa State distribution system test

case provides one-year nodal load data based on smart meter measurements for the 1,120

homes. After analyzing the provided data from [93], small portions (i.e., less than 0.21%)

were suspected of being erroneous. Specifically,

(a) from hours 3,500–3,800 at load nodes 41, 154, 158, 162, and 163; and

(b) from hours 6,400–6,700 at load nodes 134, 140, 142, 149, 152, 180, and 183.

The data at these load nodes during these time periods were replaced with a statistical

representation using a generalized linear model. The complete analysis of the data and

explanation of the generalized linear model are presented in the Appendix B.

3.4.3 Parameters for the Appliance Model

The granular-level load data per home is assumed to be composed of individual

appliances, shown as the yellow squares in Fig. 3.2. Each home has a set of appliances

that is defined by average power rating and duration of each appliance. It was shown

in [54], [55] that appliances with any time-varying power draw can be used (i.e., a

researcher can use real appliance datasets if available), but in this work for generality it is

assumed that the appliances are randomly generated with a constant power draw over a

fixed duration. The appliance set for each home is generated by sampling two distinct

gamma distributions, one for the power rating of the appliances and the other for the

duration of the appliances. Gamma distributions are continuous probability distributions

in the positive real number set defined by two parameters (i.e., shape k and scale θ ). The
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Figure 3.2. Summary of the synthetic queueing load model used to generate the granular-
level data for each home on the Midwest 240-Node test case . At each load node, the
node-level load is split into a per-home load reference curve, denoted by “1.” Each home
independently generates the granular-level appliance data using the synthetic queueing load
model (2 and 3). Lastly, denoted by “4,” the aggregated load from appliances from all
homes on the load node will statistically represent the node-level reference curve.
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mean of a gamma distribution is E [X ] = kθ , and the variance is Var(X) = kθ 2. Thus, by

defining the mean µ and standard deviation σ , the gamma parameters k and θ are

computed with k = µ2/σ2 and θ = σ2/µ. For the granular-level data, the appliance set ψ is

generated with gamma distribution parameters as power (W) µ = 500 and σ = 100, and

appliance duration (hour) µ = 0.5 and σ = 0.25, as utilized in [54].

3.4.4 Synthetic Queueing Load Model

Queueing models are defined by the probability distribution of inter-arrival times

T (i.e., appliance inter-arrival times), probability distribution of service times X , number

of servers C (i.e., power supply capacity), queue capacity, size of the population, and a

service discipline. Furthermore, the characteristics can be constant or time-dependent

(e.g., inter-arrival times as a function of time, as illustrated in Fig. 3.2). The queueing load

models in [54] make three assumptions: the queue length is infinite (i.e., no loss of

appliances arriving at the system); the population is infinite (i.e., arrival process is not

dependent on the appliances currently present in the system); and the service policy is first

come first served. Given the assumptions, the queueing load models are described with the

simplified Kendall notation, i.e., T/X/C.

The synthetic queueing load model combines a top-down bottom-up approach.

Having the expected load of a customer (l(t)) as the input for computing statistical time

varying arrival rate of appliances for a customer. The appliance are modeled as generic

blocks of energy as in [54]. Fig. 3.2 presents a summary of the process for generating the

synthetic queueing load for one of the load nodes. Thus, as the output having the

appliances that constitute the demand for each one of the customers in each load node for
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the Midwest 240-Node test case . The numbers from 1 to 4 with the arrows on a light blue

background are the steps for generating the load. Number 1 is making the reference curve

for all the customers that constitute the total load node demand. Number 2 running the

queueing load model, which are independent from each other. Number 3 the output of the

arrived appliances in the queue for each customer for the generated period. Number 4 the

aggregated arriving appliance load for all the customers approximates the original load

node demand.

Three queueing load models are presented in [54], i.e., the Mt/G/∞, Mt/G/C, and

Mt/G/Ct . The models have a time-varying probability distribution of inter-arrival times

(Mt) and the probability distribution of service times is general (G). However, each

queueing load model has a distinct power supply capacity, being infinite (∞), constant (C),

and time-varying (Ct) respectively. Given the natural random characteristic of the

queueing models with the probability distribution of inter-arrival times it is expected that

the larger the number of customers being generated the smaller the deviation from the

reference curve for a given load node. The formulation for the queueing load models and

further explanation are presented in [54]. Loads that want to be treated separately from the

queueing arriving appliances can be simply subtracted from l(t), as shown in [54].

3.4.5 Parameters for the Queueing Load Model

According to U.S. Energy Information Administration 2015 Residential Energy

Consumption Survey [94], homes from the Midwest region have an average yearly

consumption of 9,567 kWh. Assuming the yearly consumption divided by the expected

yearly energy consumption the number of residential customers is 1,367. Being
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considerably different from the 1,120 homes. By excluding the two regions of strange

behavior and divided by the adjusted yearly consumption (i.e., average yearly

consumption is linearly reduced by the reduction in the period of the year being

considered) the number of residential customers is 1,378. It is known that the consumption

is climate dependent and it is present in the data, as demonstrated in [92]. Using the

month of May for selecting the number of homes without considering the periods of

strange behavior (i.e., from May 1 to May 25) results in the number of homes of 1,187.

In Section 3.4.4 the queue load model is presented and with the demonstration

from [54] better approximate the desired load curve with height reference energy values

and large aggregation of customers. The height reference energy values increase the

probability of multiple appliances being served, which is desirable. The large aggregation

of customers enables the deviation from the reference energy values of individual

customers to be minimized. The desirable number of customers is 1,120 allowing some

control over the reference energy curve.

Fig. 3.3 presents the algorithm to remove the 67 extra homes. The algorithm

requires the information of the node load loadn, number of homes by node NHn, and

average yearly consumption ϕ , excluding the periods of strange behavior for loadn and ϕ .

The subscript represents the individual node index n. The algorithm removes one home at

a time giving priority to homes with low energy if two conditions are satisfied. First, the

node in question must have more than one home. Second, the resulting homes energy

consumption at the node will not surpass 1.5 times the ϕ . The value of 1.5 was chosen to

avoid deviating too much from the average yearly consumption. The resulting number of

homes by load node is presented in Fig. 3.4. Presenting the number of homes before and
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Figure 3.3. Algorithm that removes the extra homes from Midwest 240-Node distribution
system test case.
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after running the Algorithm that removes the extra homes.

Figure 3.4. Number of homes by load index considering the period of May 1 to May 25
and the updated number of homes (i.e., the output from the algorithm).

The synthetic queueing load model Mt/G/Ct is chosen to generate data for

presenting lower deviation from the smart meter data than the other queueing models. The

time-varying power supply capacity (Ct) is never allowed to be smaller than 1,500 W and

made by giving a gain of 2 to the customer expected load. Thus, always having the

possibility of serving multiple appliances, and suppressing unrealistic and unfeasible load

peaks [54].

3.5 Validation

3.5.1 Overview

This section presents the validation of the proposed approach for the generated

granular-level synthetic load compared to the original node-level smart meter data. The

synthetic load generated with the queueing load model utilizes the nodal load smart meter

real data for the year of 2017 is divided by the expected number of homes of that node,

making the expected load of a customer (l(t)). With that, the queuing load model is run

generating the arrival of appliances for each customer. Thus, having the load by customer
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and the appliances that compose the customer load.

3.5.2 Smart Meter vs. Synthetic Load

The queueing model is a random process of arrival of appliances and as such the

generated load will be different from the smart meter data. In this section the periods of

strange smart meter behavior presented in Section 3.4.2 and further explored in

Appendix B are not considered. A metric utilized for evaluating the distance or error from

the smart meter load and synthetic load is the mean absolute percentage error (MAPE),

MAPE =
1
n

n

∑
t=1

∣∣∣∣At−Ft

At

∣∣∣∣ . (3.1)

Where At is the smart meter data and Ft is the generated synthetic load. The subscript t is

discreet time in an hour resolution. Thus, the synthetic load is converted to hourly

consumption to enable the comparison.

From [54] it is known that one of the characteristics to reduce the difference from

the reference curve is the number of aggregated customers. Thus, the larger the number of

customers being aggregated to a node load a smaller error is expected. Fig. 3.5

demonstrates this characteristic. The nodes and their respective MAPE over the year are

plotted having the load nodes ordered from small to large in respect to their number of

customers. As it can be observed there is a negative correlation in between the number of

homes and MAPE.

Fig. 3.5 last three node loads present a peculiar behavior. Given that they are the

nodes with most houses but appear to have an increasing MAPE. Table 3.1 presents more

variables to assist in explaining this behavior, i.e., load node numeric identifier (Node),
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Figure 3.5. Year MAPE by load node in relation to the number of homes.

number of homes (NH), minimum customer load (min), median customer load (median),

customer energy (energy), and load node MAPE. The table presents the last six load nodes

from Fig. 3.5, having a line to separate the load Nodes 52, 51, and 56 (i.e., more NH lower

MAPE) from the load Nodes 120, 40, and 15 (i.e., more NH larger MAPE). Other

characteristics that increase the difference from synthetic to a reference are the low values

of the reference curve being summarized in Table 3.1 with minimum, median, and energy.

Low values of the reference curve are problematic given that some periods are not likely

to have appliances arriving and/or large inter-arrival periods [54]. Node 120 is like Node

51 in minimum load and energy; however, the low median increased the MAPE. Node 40

is like Node 52 in energy; however, the higher minimum and median lowered the MAPE.

Node 15 is like Node 56 in energy; however, the lower minimum and median increased

the MAPE.
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Table 3.1. Explaining the number of homes deviation from smaller MAPE.

Node NH min (W) median (W)
energy
(MWh) MAPE (%)

52 21 156.19 681.90 12.99 14.72
51 40 238.05 1567.32 13.09 6.50
56 42 433.98 1063.80 9.26 6.07

120 48 214.58 836.79 13.24 7.12
40 58 413.79 1368.27 11.39 12.09
15 60 357.00 677.66 8.67 15.73

Figure 3.6. Day load node visual comparison of know load and generated load. The daily
load of every load node are ordered according to the MAPE. Thus, 0% is the worst and
100% the best, i.e., 5%, and 10% are values in between.

The knowledge of the MAPE by explored node for the year in Fig. 3.5 is further

explored graphically in Fig. 3.6. Where the MAPE is computed for a day for all the days

in all the nodes. Furthermore, the resulting day and node MAPE is ordered in a decreasing

order. Fig. 3.6 graphically presents five days giving an insight into the daily behavior.

Each of the five plots has a title containing the load node number followed by a percentage

wise position of the day on the ordered day and node MAPE. Thus, 0% is the worst and

100% the best, i.e., 5%, 10%, and 50% are values in between. The worst day node plot

behaves as the name suggests, having the synthetic load barely following the actual nodal

load. The load Node 159 has a single customer and the maximum load for that day is

0.9 kW. Thus, this situation has both the lack of customer aggregation and low reference

values. However, the load Node 159 for May 13 is the worse day node load. The second
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plot presents the behavior of the load Node 97, two customers, for March, 31. Presenting a

day near the worse day node load, meaning that 95% of the synthetic load performs as

good or better at following the smart meter reference curve. The third plot shows the load

Node 20, two customers, for January 30. Where 90% of the synthetic load performs as

good or better at following the smart meter reference curve. The fourth plot presents the

load Node 85, five customers, for September 14. Representing the median load node day.

Thus, 50% of load node days performer ether better, equal, or worse. The fifth and final

plot shows the load Node 51, 40 customers, for November, 23. This particular node also

appears in Table 3.1 for further information on it and is the best node load day for the

synthetic generated queuing load model.

As expected and demonstrated in Fig. 3.5 and Fig. 3.6, aggregating customers

reduces the differences in between the smart meter load and the synthetic load. In a

similar fashion to the previously described Fig. 3.7 presents the worse, median, and best

load days in four levels of aggregation. The four levels of aggregation are each row and

are the tree feeders of the system and the total distribution system, i.e., Feeder S, Feeder

M, Feeder L, and system (i.e., entire Midwest 240-Node test case ). Every plot in Fig. 3.7

has a title containing that particular level of aggregation day MAPE. The smallest level of

aggregation is Feeder S, that for the worse day is 7.92% MAPE, i.e., no other day in any

other presented level of aggregation will perform worse. The Feeders S, M, and L have a

clear reduction of MAPE from smaller to larger.

The levels of aggregation are ordered from smaller to larger in Fig. 3.7. However,

Feeder L has lower MAPE for the worse and best day than the complete distribution

system. This occurred given that we are presenting the MAPE for the day being presented.
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Figure 3.7. The worse, median, and best load days are presented in four levels of aggre-
gation, i.e., Feeder S, Feeder M, Feeder L, and system (i.e., entire Midwest 240-Node test
case ). On the top of every plot is the day MAPE.
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Table 3.2 presents the levels of aggregation in relation to the number of customers and the

yearly MAPE. Demonstrating that increasing the aggregation will reduce the MAPE.

Table 3.2. MAPE for the year of 2017 in four levels of aggregation, i.e., Feeder S, Feeder
M, Feeder L, and system.

NH MAPE (%)
Feeder S 76 6.4617

Feeder M 370 3.8090
Feeder L 674 2.5864

System 1,120 2.5828

3.5.3 Power Flow Comparison

The different input loads impact for the Midwest 240-Node test case power flow

are presented in this section. Section 3.5.2 demonstrated that smart meter and synthetic

load data are not exactly the same. However, the synthetic load follows the behavior of the

smart meter load data. The impact on the power flow is presented by demonstrating the

voltage behavior in four points of Midwest 240-Node test case . The comparison makes

use of a violin plot showing the annual distribution of voltage magnitudes in p.u. located

in four points of the Midwest 240-Node network for phases A, B, and C are presented in

Fig. 3.8 (8,760 voltage magnitude samples for every half violin plot, thus, a total of

210,240 voltage magnitude samples for the four nodes and two load types using one-hour

time resolution over one-year). This type of plot is like a box plot, but with the (rotated)

kernel density plot on each side. The thickness (or density) represents how often each

voltage magnitude occurred.

The node being presented in Fig. 3.8 are labeled 1 ST, 2 FS, 3 FM, and 4 FL,

referred to the substation transformer primary side, node 10 from Feeder S, capacitor node

Feeder M, and capacitor node Feeder L respectively. The location of the presented nodes
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Figure 3.8. Distribution of voltage magnitudes for smart meter and synthetic load data
for Midwest 240-Node distribution system test case for one-year. The labels 1 ST, 2 FS,
3 FM, and 4 FL, referrer to the substation transformer primary side, node 10 from Feeder
S, capacitor node Feeder M, and capacitor node Feeder M respectively.
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are identifiable in Fig. 3.1. The three phase nodes were chosen empirically with the intent

of demonstrating the voltage at the substation and within each of the feeders. The violin

plots in Fig. 3.8 are split in half having, smart meter on the left side, and the synthetic on

the right. The split violin plots have similar shape to their other half and the median and

quartile are near each other. Thus, the power flow studies with the generated synthetic

load approximate the behavior of the smart meter load.

3.5.4 Created GridLAB-D Model

The GridLAB-D simulation software for distribution systems. The core of

GridLAB-D has an advanced algorithm that simultaneously coordinates the state of

millions of independent devices, each of which is described by multiple differential

equations. GridLAB-D examines in detail the interplay of every part of a distribution

system with every other. Incorporates an extensive suite of tools to build and manage

studies and analyze results, e.g., agent-based and information-based modeling tools that

allow users to create detailed models of how new end-use technologies, distributed energy

resources, distribution automation, and retail markets interact and evolve over time. Thus,

being of interest for multiple power system studies especially for smart grids, smart cities,

demand response, and home energy management systems [95].

The OpenDSS model available from [93] is converted to GridLAB-D making use

of the python packages DiTTo [96] and glm [97]. The package DiTTo makes an initial

conversion file for GridLAB-D, however, without considering the split phase structure and

the impedance to which the distribution system is connected to the main grid. The

package “glm” is used to addresses the split phase structure and some unity mismatches.
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The impedance from the swing node to the distribution system is computed as presented

in [98]. Table 3.3 presents the comparison of voltage and current from OpenDSS and

GridLAB-D, for a single power flow solution. The single power flow solution is the

original available from [93]. The voltage magnitude comparison is performed for all the

nodes, Table 3.3 presents only the worse for each of the phases. The percentage wise

maximum error observed on voltage magnitude is below 0.0009%. The current magnitude

comparison is performed for the lines and transformers primary, however, currents below

0.1 A on OpenDSS are not considered, Table 3.3 presents only the worse for each of the

phases. The percentage wise maximum error observed on the considered current

magnitude is below 0.04%. The GridLAB-D model with the synthetic load data is made

publicly available at [99] and [100].

Table 3.3. Comparison of voltage and current from OpenDSS and GridLAB-D, for a single
power flow solution.

Maximum error observed in all nodes
Phase

A B C
Voltage (mV) 0.7983 0.8102 0.7394

Maximum error observed in lines and
transformers primary (currents below
0.1 A on OpenDSS are not consider)

Phase

A B C
Current (mA) 3.8504 0.6626 0.9765

3.6 Conclusions

This chapter developed synthetic load data inspired on real time-varying smart

meter data for the Iowa State distribution system test case . The smart meter data is from a

real distribution system in the U.S. Midwest region. The available smart meter data has an

hour resolution and customers in the same distribution node are aggregated to preserve
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their privacy. The generated synthetic queueing load data used only the publicly available

data that approximate the aggregated behavior of the smart meter data. The generated

synthetic load data models individual residential customers and their individual electric

assets. The granular-level load is individually known for all the 1,120 homes to create the

Midwest 240-Node test case . The appliances that compose every residential home is also

known. The procedure presented in this chapter for the generation of the synthetic load

data that aggregated to the complete power system region demand is applicable to other

test systems. The procedure consists of analyzing the available demand, address possible

challenges, assuming the nodal load is not available the demand would have to be

segregated to nodal level, segregate the nodal demand to the customer level, and generate

the load with the synthetic queueing load method. Assuming portions of the demand are

desired to be treated differently it is only required to remove that demand from the

reference given to the queueing load method. The studies of this test system with the

synthetic load data are intended mainly for smart grid technologies. For this reason, the

Iowa State distribution system test case OpenDSS model is converted to GridLAB-D and

validated in this chapter. GridLAB-D is an agent-based approach for simulating smart

grids, e.g., market design, building control system design, and integration of new

technologies. The GridLAB-D model with the synthetic load data is made publicly

available, allowing researchers to validate their methods.
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CHAPTER 4 Combining HEMS with PV Overvoltage Mitigation in Low Voltage PV

Rich Distribution Networks

4.1 Overview

The utilization of the developed synthetic queueing load model presented in

Chapter 2 for energy management systems is demonstrated in this chapter. This creates a

framework for testing home energy management systems in low voltage photovoltaic (PV)

rich networks. Low voltage PV rich networks face the challenge of overvoltage, which

limits the amount of energy generated by the PV arrays to be injected into the system.

Thus, reducing the revenue of customers who invested in the PV systems (i.e. increasing

even further the already long payback period of PVs systems). The developed framework

presented here is capable of evaluating home energy management systems in low voltage

systems with PV local inverter controllers. To the best of the author’s knowledge, this has

not been done before as no mention appears in the literature of the field. The framework

offers the capability to make a local PV generation forecast. Furthermore, one of the home

energy management systems utilizes a partially observable Markov decision process in an

attempt to consider the uncertainty in the price of energy. As discussed in Chapter 1,

uncertainties are important challenges in power system studies.

4.2 Introduction

The impact of distributed generation on the distribution system protection and

voltage control is presented in [101], who discusses the challenges of protection

coordination with distributed energy resources given their different characteristics and
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bidirectional power flow on unidirectionally designed distribution networks. It also

considers how renewable energy resource generation uncertainties impact legacy voltage

control devices. The possible solutions to address the voltage regulation in the presence of

distributed generation are presented: curtailment, demand response (DR), and static

synchronous compensator. A review of distributed and decentralized voltage control of

smart distribution networks is presented in [43] where DR is presented as a strategy that

should be further explored for voltage support.

The impact of DR on the distribution system voltage profile in the presence of

renewable energy resources is presented in [44]. The authors suggest for future work the

inclusion of reactive power support from PV inverters. Similarly, the impact of DR on

load, losses, and load factor is presented in [45]. The distribution system impact of load

changes to mitigate overvoltage in the presence of renewable energy resources is then

presented in [43], [44], [47]–[52], [101]–[103]. Changing the load, however, can also be

utilized to mitigate undervoltage as discussed in [102] where the demand is reduced to

mitigate undervoltage.

Distribution system overvoltage due to renewable energy resources, such as

photovoltaic (PV), are more likely in periods with valley demand and peak generation.

The relationship between self-consumption of renewable energy resources and the

required curtailment is presented in [46]. However, the need to curtail PV is due to

transformer limits, not overvoltage. Approaches that reduce the local mismatch of demand

and generation by increasing the local consumption with the intent of mitigating

overvoltage are presented in [49], [51], [52], [103]. Additionally, in [49], a distributed

algorithm to control active and reactive power from PVs is presented. Considering
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optimization in two-time scales, i.e. legacy conventional voltage control devices and fast

PV inverters and DR resources, a centralized direct control optimization with receding

time horizon to mitigate uncertainties is presented in [51] where the water heater of

multiple customers performs the change in demand. In [52], the cost to curtail PV

generation and perform load shifts is estimated with the distribution network Jacobian

matrix. A multi-agent transactive energy management system is proposed in [103]; here

the agents perform their heuristic optimization in series with updated price forecast given

the actions of previous agents. Thus, only [49] considers reactive power support, but, the

work assumes that every load node has some capability to control its power factor and the

simulation aggregates the low voltage network.

Voltage support with DR is approached in [47], [48], [50] without directly

attempting to increase self-consumption. Similar to work presented in [49], the authors

in [48] make use of a distributed algorithm implemented in a multi-agent structure. The

network is partitioned into zones where each zone-coordinator dispatches the active and

reactive power of various DER and DR using a gradient descent method. In [50],

mitigating overvoltage problems in the distribution grid are discussed. Changing the load

to having 4 setpoints based in a real-time voltage signal in a specific system is presented.

Thus, for [48], [50], DR only participates given the system voltage. In contrast, a

multi-agent with a hierarchically controlled and multi-objective renewable energy

management scheme is presented in [47]. The 3 objectives are lowering electricity bills,

minimizing power purchased from the main grid, and optimizing the power quality. Thus,

the hierarchical structure provides coordination for balancing the three objectives;

however, reactive power support from renewable energy resources is not considered.
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An increased self-consumption naturally assists in preventing overvoltage since

overvoltage is more likely in periods with valley demand and peak generation.

Overvoltage mitigation strategies that utilize DR will, at some level, attempt to increase

self-consumption. For a PV rich distribution network, days during the summer with clear

skies present a higher generation. Assuming the customers invested in automation to

perform demand shifts, the resources should be utilized throughout the year (i.e., not only

during one period of the year). From the literature review, no DR strategy in low voltage

PV rich network considers the utilization of PV inverters local controllers for voltage

support (mitigating overvoltage). This chapter develops a home energy management

system DR strategy considering PV inverters local controllers.

The remainder of this chapter is organized as follows: Section 4.3 presents the

system model. The developed scheduling appliances strategies are presented in

Section 4.4. Section 4.5 describes the simulation. The simulation results are presented in

Section 4.6. The discussion on the developed approach is available in Section 4.7.

4.3 System Model

4.3.1 Overview

The models being utilized in the simulation are discussed in this section.

Section 4.3.2 reminds the reader of the synthetic queueing load model extensively

discussed in Chapter 2. In Section 4.3.3, two local PV inverter controllers are presented.

The implementation of the PV inverter controllers in a quasi-steady-state simulation

environment is presented in Section 4.3.4. Section 4.3.5 presents the local statistical

model for the solar irradiance forecast. An overview of the billing structure of the
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distribution company of Chicago, IL, U.S., ComEd appears in Section 4.3.6. Finally, a

discussion on the uncertainty of price is presented in Section 4.3.7.

4.3.2 Queueing load model

The synthetic queueing load model combines a top-down, bottom-up approach

with the expected load of a customer (l(t)) as the input for computing statistical time

varying arrival rate of appliances for a customer. The appliances are modeled as generic

blocks of energy as in [54]. A detailed discussion on the synthetic queueing load model is

presented in Chapters 2 and 3. The queueing load model utilized in this chapter is only a

portion of the ones from Chapter 3.

4.3.3 Photovoltaic Inverter Controllers

The PV inverter controllers presented in this section are droop-based controllers

from [24]. The active power curtailment droop-based approach gives a gain m (kW/V) to

the difference between the measured voltage V and the critical voltage Vcri. The difference

and the gain describes how much active power will be curtailed from the total available in

the PV-array PMPPT , resulting in the power actually injected by the PV inverter Pinv as

described by [38]:

Pinv =


PMPPT −m(V −Vcri), if V ≥Vcri

PMPPT , if V <Vcri

(4.1)

Fig. 4.1 graphically illustrates the curve behavior of the Pinv, active power, assuming the

PMPPT is kept constant.

Active power presents a larger impact on the system voltage given that low voltage
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distribution systems are much more resistive than reactive (R >> X) [27]. However,

reactive power is capable of assisting in providing voltage support. An active-reactive

droop PV inverter controller, in addition to the active curtailment describe by (4.1),

presents reactive power support. The reactive power support is described by:

Qinv =



0 V ≤Vkick

−Qmax
Vcri−Vkick

(V −Vkick) Vkick <V <Vcri

−Qmax V ≥Vcri

(4.2)

Where Vkick is the voltage, the inverter starts absorbing reactive power; and Qmax is the

maximum reactive power the inverter can absorb, having the totality of the reactive power

available for utilization before performing active power curtailment. Fig. 4.1 presents the

behavior of the PV inverter Qinv and Pinv assuming the PMPPT is kept constant.

Figure 4.1. Droop-based PV inverter controllers. The active power curve from the inverter
is presented in red. The reactive power curve from the inverter is presented in black.
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4.3.4 Implementing the PV Inverter Controllers in Power Flow Simulations

The PV inverter controllers presented in Section 4.3.3 and other droop-based

controllers operate as intended in dynamic simulations and are popular methods for

preventing overvoltage in low voltage PV rich networks. To deploy the droop-based

controllers in a quasi-steady-state simulation to reduce the computational burden of

dynamic simulations, an interactive approach can be utilized to prevent numerical

oscillation from occurring , as presented in [104].

For example, the implementation of the PV inverters droop-based active power

curtailment is performed by the linear gain in the difference of the measured voltage V and

the critical voltage Vcri. Developing a controller in quasi-steady-state simulation would

cause large steps in the voltage since the controller is providing voltage support, and, at

the same time, utilizes the voltage to define how much voltage support is necessary. Thus,

presenting numerical oscillations of diploid directly, an interactive method is a possible

solution to address the numerical oscillations. Instead of making large changes in the

active power being injected at every customer, the changes are performed over iterations

and the size of the step is dependent on the system characteristics. The voltage sensitivity

matrix of the network (SV) contains the partial derivatives for changes in voltage in

relation to the active and reactive power of its nodes. The ∆P,∆Q is the voltage change

due to reactive power at each node and the ∆V,∆δ the voltage change due to active power

at each node. The network contains N-nodes. The voltage sensitivity matrix is written as,
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SV =

 (∆δ

∆P) ( ∆δ

∆Q)

(∆V
∆P ) (∆V

∆Q)


2N×2N

(4.3)

The voltage sensitivity matrix is the base for implementing all types of droop-base PV

inverter controllers in a quasi-steady-state simulation. The complete explanation is

presented in [104].

4.3.5 Solar Irradiance Forecasting

Section 4.2 presented the challenges of increased integration of renewables at low

voltage and the importance of self-consumption in order to mitigate overvoltage.

However, it is not necessary to increase self-consumption for low generation periods,

which enables the customer to schedule their consumption according to the price. In order

to attempt to identify periods of large PV generation, a solar irradiance forecast is

required. With the knowledge of the forecast irradiance, the necessity to increase

self-consumption can be identified.

The solar irradiance forecast utilized is presented in [105], which was developed

based on [106]. The solar irradiance presented consists of a statistical model that requires

historical solar irradiance and locally measured irradiance. The strategy is developed with

remote microgrids in mind (i.e. would have only access to local irradiance

measurements). The solar irradiance forecast makes use of the Markov switching model.

Markov switching model are models that combine two or more models to estimate or

forecast a variable depending on an unknown state [107]. The Markov switching model

was proposed given the empirical evidence suggesting that a time series behavior presents
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different patterns through time. The unknown state is considered in the Markov process.

Markov models have multiple states and the probability of being in those states alters the

forecast or estimation. Commutation Markov models have been utilized in multiple fields

of study because they excel at predictions or estimations of a non-linear nature. The

commutation Markov model involves multiple structures that represent different behaviors

during non-linear time series. The model offers the possibility to alter states in a

probabilistic manner as it is capable of tracking a complex dynamic time series.

Commonly, the hidden variable controls the change in between states of the Markov

switching model. The hidden variable is commonly assumed to be a first order Markov

chain.

The probability transition model for the Markov switching model for solar

irradiance forecasting is presented in Fig. 4.2. The solar irradiance Markov switching

model has 3 states, referred to as low, medium, and high. As the names suggest, the states

are referred to as the solar irradiance states. The pnum refers to the probability p of the

change in between states num.

In [105], the evaluation of the state based on the irradiance at the previous hour as

well as other approaches is presented. However, the approach that makes use of the

previously observed irradiance to discover the optimal state presented the best

performance. Fig. 4.3 presented the forecast of the Markov switching model utilizing the

first four hours of solar irradiance to discover the Markov state and illustrates the

inspiration for the work in [105], which updates the forecast based on the previous hour.

The past hour Pearson correlation coefficient from 2000 to 2011 were never below 0.966

for Brookings, SD, USA.
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Figure 4.2. Probability transition for the Markov switching model. Image from [107].

Figure 4.3. Irradiance variation for July 24, 2012. Image from [106].
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The Markov switching model for solar irradiance is fitted in R with the package

depmixS4 from [108]. The possible states forecast for leap and non-leap years are

exported to file in which the forecast can now occur in any programming language.

4.3.6 ComEd Real-Time Pricing

The distribution company of Chicago, IL, U.S., ComEd presents Real-Time

pricing (RTP). The RTP signal has a resolution of five minutes available at [109]. The

electric bill of customers on RTP is comprised of a supply charge, delivery charge,

capacity charge, taxes, and fees. The five minute RTP signal assists customer in

understanding the RTP; however, the customer is billed according to the hourly price from

Pennsylvania, New Jersey, and Maryland (PJM) interconnection. The PJM

interconnection is a regional transmission organization that coordinates the movement of

wholesale electricity in all or parts of 13 states and the District of Columbia. ComEd

simply passes along the hourly market prices with no mark-up. The PJM real-time hourly

price is the average of the previous 12 five minute interval signals. All real-time hourly

market prices are subject to a 24-hour settlement period where the final price the customer

will be billed is settled [109].

The capacity charge calculation is dependent on the customers previous year

consumption during the system coincidental peak (PJM interconnection), the five hours of

the summer when ComEd System demand was highest, and adjusting PJM factors [110].

These factors will be used to compute customer capacity obligation and the individual

Capacity Charge. Thus, the larger the customer coincidental peak with ComEd and PJM

for the previous year, the larger the Capacity Charge. A sample ComEd residential bill is
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available in [111], presenting all the charges.

As explored in Chapter 1, a challenge of the power system is the uncertainty.

Given the uncertainties and the required planning to have sufficient resources to supply

energy to customers once the time arrives, there is a day-ahead market that is financially

binding, which is different from the real-time market that is financially and generation

binding. This means that the closer the assumptions of the power systems are to what

actually happens, the closer the day-ahead cleared market price will be to the real-time

market. The day-ahead market is cleared at approximately 4:30 p.m., providing cleared

prices for the next day 24 hours in advance at an hourly resolution. Since the day-ahead

cleared price has a tendency to approximate the real-time price, it will be referred to as the

forecast price. The timing characteristic of the RTP and the forecast is given in Fig. 4.4.

Figure 4.4. An example of the PJM forecast price availability and the RTP. Image from [55].
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4.3.7 Uncertainty of Price Problem

As explored in Chapter 1, further uncertainties in the power system lie in load and

PV generation. The uncertainty in price, however, is a particular problem for scheduling

of residential appliances with DR. The problem of minimizing the residential customers

cost of energy under the uncertainty of price is explored in detail in [55]. In summary, the

customer has some appliances arriving in their queue and some schedulable to start

running in a given time window—notice that there is no knowledge of appliances arriving

in the future. Thus, the optimization problem of scheduling the appliances is run without

precise information of the price. The vector of scheduling arriving appliances of the

customer at times Ht . The ith element in the vectors correspond to the ith appliance.

Scheduling appliances are removed from the vector once they have been scheduled to run

in the current time. The optimization goal is to find the vector of start-times, t̂start, to

minimize the total cost.

Different than the problem statement from [55], the scheduling of appliances is no

longer able to be performed individually for every appliance since it is expected to be run

for multiple customers. In [55], the author noticed an increase in the peak load when

scheduling appliances, which is not a problem with a single customer; but considering

multiple customers and all attempts to schedule most of their appliances at the expected

lowest price would be a problem since the expected system valley load could become the

system peak. This problem is referred to as the rebound effect [112]. A possible strategy

to mitigate the rebound effect is presented in [55] that suggests imposing a maximum load

constraint on the optimization.
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The optimization problem needs to consider all the appliances in conjunction to

avoid the rebound effect. The customers with PV rich networks are not only interested in

the scheduling of appliances in regard to price, they also wish to use their load flexibility

to mitigate overvoltage caused by PV in order to reduce the amount of active power

curtailment. As presented in Section 1, self-consumption mitigated overvoltage. To

encourage self-consumption, the optimization problem must also incorporate a lower

bound for some periods of time where large PV generation is expected. Thus, being a

much more complex optimization problem than the one from [55] since the appliances

have to be considered in conjunction with both the lower and upper bounds.

4.4 Scheduling Appliances

4.4.1 Overview

Three distinct scheduling of appliances for HEMS are discussed in Sections 4.4.2,

4.4.3, 4.4.4, and 4.4.5 being the no scheduling, using the day-ahead price for scheduling,

having knowledge of the future (i.e. to know the best performance, no real world

application), and the partially observable Markov decision process respectively. These

sections present the theory and assumptions of the HEMS approaches. Finally in

Section 4.4.6 the formulation of the optimization problem is presented.

4.4.2 Immediate

The immediate scheduling of appliances (IMM), as the name suggests, maintains

the same schedule of the appliances as their arrival to the customer queueing load model.

The scheduled appliances are run at the same time they arrive at the queue. This means

that none of the appliances are affected by anything other than the queueing load
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model [54].

4.4.3 Assuming accurate forecast

As briefly presented in Section 4.3.6, the real-time price is not the only market in

the power system. Thus, the assuming accurate forecast (AAF) makes used of the forecast

price (the day-ahead cleared price) assuming there will be no deviation from the forecast

price to the RTP. Thus, schedulable appliances are scheduled accordingly.

4.4.4 Theoretical Lower Bound

Since we will be performing a simulation to evaluate how to propose performance

strategies without the knowledge of the RTP, the actual knowledge of the future is utilized

to create a theoretical lower bound, meaning that there is no way for a system to perform

better than the theoretical lower bound (LB). The LB determines the maximum gap

between the methods on the assumption of knowledge of the RTP, subject to the same

constraints (i.e. upper and lower bound of schedule appliances for a fair comparison).

4.4.5 Partially Observable Markov Decision Process

The partially observable Markov decision process (POMDP) from [55], [113]

offers a non-myopic, receding horizon control method that balances the trade-off between

immediate knowledge and the uncertainty of the future (i.e. uncertainty of the RTP). The

receding horizon with RTP presents us with the known prior and current price. With

historical knowledge of the distribution of the RTP, the expected RTP behavior for the

future is known, but not the actual RTP. The trade-off between immediate and future

decisions makes use of the Q-value approximation from Bellman’s equation [114]. The

appliances in the scheduling vector Ht ready to run have their individual actions ai chosen
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from the set of possible actions A (i.e., ai ∈ A). Let â be the vector consisting of individual

appliance actions (henceforth known as the action) to be determined by the scheduler

optimization, x be the current state, x′ be the next state (after taking action â), R(x, â) be

the immediate reward for taking action â in state x, and V ∗(x) be the optimal cumulative

reward value over the time horizon given an initial state x. We want to find the optimal

action policy, π∗(x), that maps states to actions to maximize the Q-value, Q(x, â), given by

the equation:

Q(x, â) = R(x, â)+E[V ∗(x′)|x, â]. (4.4)

The action π∗(x) is based on Bellman’s principle [114], and given by:

π
∗(x) = argmax

â
Q(x, â). (4.5)

The home energy management system will take actions â = π∗(x) at each state x.

The POMDP formulation in [55] is utilized for the home energy management

system. The formulation assumes two types of variables: the observable and

measurements of the unobservable. The unobservables are emulated and filtered to

estimate their posterior distribution. The distribution of the unobservables with the

observable determines the belief state. The underlying state of the POMDP HEMS is

represented by yt for time t, having the vector Ψ̂t of random variables describing the likely

RTP, and the error between the utility forecast and current RTP is εt . Then,

yt = (c(t),Ψ̂t ,εt ,Ht) is the underlying state where Ψ̂t is unobservable. Unobservables

measurements, future RTP available, and Ψ̂t are the utility forecast price, c f (t,τ), where
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|Ψ̂t [τ]|= τmax. Given measurements c f (t,τ), we can determine P
(
Ψ̂t |c f (t,τ)

)
using a

filtering method. The filtering method utilized is the same as in [55], [115].

Available appliance actions are to run at the current time or at a later time

(A = {run,wait}). In decision events, â is determined having |â|= |Ht | and each ai

corresponds to appliance Ht [i] to maximize Q(x, â).

The particle filter utilized is the same proposed in [55] POMDP-GARCH, which

performed best for larger uncertainty in the future RTP. The particle filter is a combination

of two statistical models, the autoregresive (AR) (i.e., forecast the variable of interest

using a linear combination of past values of the variable) and the generalized

autoregressive conditional heteroskedasticity (GARCH) (i.e. specialized AR process that

analyze time-series variance error). The AR process is given as:

car(t) = k+
m

∑
i=1

(
γicar(t− i)

)
+ εt−ar. (4.6)

Where car(t) is the cost output of the AR process, k is the AR constant, car(t− i) is the ith

previous output, γi is the coefficient corresponding to car(t− i), m is the number of

modeled coefficients, and εt−ar is the error.

The AR error εt−ar presented in (4.6) is then modeled by the GARCH process.

Having σt be the standard deviation and zt ∼N (0,1). The expected error from AR

according to GARCH is εt−ar = σtzt . A GARCH(P,Q) process is fully described by εt−ar

and results in:

σ
2
t = χ +

P

∑
i=1

φiσ
2
t−i +

Q

∑
j=1

qiε
2
t− j. (4.7)
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Where ε2
t− j be the jth previous square-error, σt represents the linear combination of prior

inputs, χ is the GARCH constant, σ2
t−i is the ith previous variance, φi is the coefficient

corresponding to σ2
t−i, P is the number of GARCH terms (prior variances), q j is the

coefficient corresponding to ε2
t− j, and Q is the number of ARCH terms (prior

square-errors). The combination of the AR with the GARCH statistical models is made by

replacing the AR error term εt−ar by the GARCH, resulting in:

car(t) = k+
m

∑
i=1

(
γicar(t− i)

)
+σtzt . (4.8)

In summary, the particles are possible samples of the future RTP generated

according to (4.8) by the random sampling of zt with N (0,1), meaning that every particle

has a different expected RTP for the future. Every particle optimized their decision

making based on their understanding of the RTP. The measurements of the unobservables

are utilized to estimate the Q-value of the actions taken in the moment with their expected

impact on the unknown future. For more clarifications on the action selector please refer

to [55].

4.4.6 Scheduling of Appliances Optimization

Independently of how the RTP is consider in LB, AAF, and POMDP the scheduled

appliances must be scheduled. To optimize the scheduled of appliances to minimize the

cost of energy an optimization problem must be solved with desired understanding of the

RTP.

As discussed in Section 4.3.7, the HEMS interested in minimizing the cost of

energy and for individual homes has a upper bound to discourage the rebound effect and a
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lower bound to encourage self-consumption from PV. To consider the discouraging and

encouraging load consumption, the optimization problem is organized with “generators”

with low cost Cloweri , normal cost CRT Pi , and high cost Chighi to represent the cost for

encouraging self-consumption, normal, and discouraging rebound effect, respectively. The

underscore i represents a unit of time for the optimization. The load of the HEMS is Loadi

and the load is supplied by each of the “generators” is Lloweri , LRT Pi , and Lhighi . The

available scheduled appliances are characterized by vectors, having every element of the

vectors be the information of the j appliance. The set of appliances to be scheduled is J.

The vectors are Ap j, and Ad j, being the appliance power, and duration, respectively. The

As j contains the i index were the appliance can be scheduled (i.e., the scheduling

window). The optimization problem is modeled as a linear optimization for schedule of

the appliances in order to minimize (4.9), being subject to the constraints (4.10). The

objective function contains the portion of the load being supplied by each of the

“generators” multiplied by there respective cost (4.9). The sum of supplied energy from

the “generators” is constraint to be equal to the load (4.10b). The “generators” maximum

capacity is enforced in (4.10c), and (4.10d). Where, LBloweri and LBRT Pi represents the

maximum generation capacity of the lower bound “generators”, and the RTP “generators”,

respectively. Please notice that all the decision variables are enforced to be greater or

equal to zero (4.10o). To performed the scheduling of appliances a binary variable Bsi, j,

and an integer variable Ali, j are utilized. The binary variable Bsi, j marks the start of

running the appliance. Since a given appliance can only start once the summation of all

the values of Bsi, j are made equal to one (4.10i). The integer variable Ali, j contains the

units of energy of the appliances used through time, thus, the summation must be equal to
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the appliance duration Ad j (4.10e). The load Loadi in turn must be equal to the

multiplication of the Ali, j and appliance power Ap j (4.10a). For Bsi, j to mark the start of

an appliance, run the combinations of the inequality constraints from (4.10k) to (4.10m)

must be satisfied. Since, the inequality constraints (4.10k) and (4.10l) require the

knowledge of Ali, j at i−1 the first unit of time is a place holder. Furthermore, the

receding time horizon optimization problem can have appliances with a scheduling

window larger than the time currently being considered. For this reason the variable Ali, j

is only allowed to the larger than one at the last unit of time (4.10g) and (4.10h), enabling

appliances to be schedulable outside the time currently being considered. This requires

that the last unit of time currently being considered to also be a place holder with an

expected cost to the future. Given the place holders at the first and last unit of time the

constraints (4.10f) and (4.10j) are utilized. The set N has all the values of i and the set n

has all the values of i except “-1” (i.e., the last time considered). The Ali, j can have values

larger than one at i =−1 (4.10h), not being useful for the inequality constraints from

(4.10k) to (4.10m) for Bsi, j. To ensure the appliance runs until its end the auxiliary

variable ai, j is utilized. The variable ai, j contains the number of periods the appliance j

should have run if it had started at Bsi, j. Thus, not allowing the appliances to stop running

once they have started with the equality constraint (4.10n).
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min
Bsi, j,Ali, j,Loadi,Lloweri ,LRT Pi ,Lhighi

N

∑
i=0

LloweriCloweri +LRT PiCRT Pi +LhighiChighi (4.9)

s.t. Loadi =
J

∑
j=0

Ap jAli, j (4.10a)

Loadi = Lloweri +LRT Pi +Lhighi (4.10b)

Lloweri ≤ LBloweri (4.10c)

LRT Pi ≤ LBRT Pi (4.10d)

N

∑
i=0

Ali, j = Ad j (4.10e)

Ali, j = 0 i, j 6∈ {As j} (4.10f)

Ali, j ≤ 1 i, j ∈ {As j}∩{n} (4.10g)

Ali, j ≤ ∞ i =−1, j ∈ {As j} (4.10h)

N

∑
i=0

Bsi, j = 1 (4.10i)

Bsi, j = 0 i ∈ {0,−1} (4.10j)

Bsi, j ≥ Ali, j−Ali−1, j i 6∈ {0,−1} (4.10k)

Bsi, j ≤ 1−Ali−1, j i 6∈ {0,−1} (4.10l)

Bsi, j ≤ Ali, j i 6∈ {0,−1} (4.10m)

n

∑
i=0

Bsi, jai, j =
n

∑
i=0

Ali, j (4.10n)

Lloweri , LRT Pi , Lhighi , Loadi, Ali, j, Bsi, j ≥ 0 (4.10o)
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4.5 Simulation Setup

4.5.1 Overview

The simulation setup with the consideration of the approaches from Section 4.4 are

presented here. Section 4.5.2 presents the 12 homes low voltage PV rich test system

network. The appliances parameters and the customer l(t) parameters for the synthetic

queueing load model utilized are presented in Section 4.5.3 and 4.5.4, respectively.

Section 4.5.5 presents the creation of the minimum self-consumption based on the PV

irradiance forecast. Section 4.5.6 presents the linear optimization problem. Finally, in

Section 4.5.7, the simulation scenarios are presented.

4.5.2 Test System

The chosen test system for testing is the 12 house radial distribution system

from [38]. The low voltage system was chosen given its prior development with PV

inverter controllers presented in [24]. The solving of the power flow quasi-steady-state

time-series software utilized GridLAB-D utilizing Bus.py [116] to communicate with

python 2.7 where the PV inverter controllers are implemented as described in [104] and

the summary previously presented in Section 4.3.4. The files were manually converted to

python 3.7. Every residential customer or home possesses an installed peak PV capacity

of 8.4 kW. The system distribution transformer is 75 kVA, single-phase,

14.4 kV–120/240 V shown in Fig. 4.5. The feeder is 120 m long and the service entrance

are connected to it by 20 m long cables. The line parameters of the benchmark feeder are

provided in [38], being two live wires twisted around a grounded neutral cable (NS 90

3/0 AWG) and two wires supported by a steel grounded neutral cable (NS 90 1/0 AWG)
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for the feeder and service entrance respectively. In the 8.4 kW capacity PV system, the

efficiency is taken as η =16.7% and A =50.2605 m2 [24], [117], having the power

available at the PV array (PVpower) equal to PVpower =
16.7
100 50.2605 PVirrad where PVirrad

is the solar irradiance and PVpower unit is kW.

Figure 4.5. 12 house benchmark feeder with 8.4 kW grid-connected PV installed at each
house.

4.5.3 Appliance Model

Section 4.3.2 presented an overview of the queueing load model for generating

synthetic load profiles for energy management studies [54]. The queueing model

generates the synthetic load with the arrival of appliances. Thus, the set of appliances to

arrive must be generated. The appliance set is generated by performing multiple random

samples. The samples generate the appliances: size, scheduling window, and ZIP

characteristics. The ZIP appliance characteristics are obtained from [63]. The study was
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conducted to characterize the effects of voltage variations in load consumption with field

validation [62] with the intention of energy conservation using Volt/var control at the

substation level. Further details are presented in [54]. The appliances are modeled as

blocks of energy with specific duration and constant power draw. To generate the blocks

of energy, two distinct gamma distributions were sampled to obtain the appliance duration

and power. The scheduling window is generated by sampling two times: a gamma

distribution for the time prior and after the appliances intended run time. However, this is

only performed for schedulable appliances, which are selected by a random sample

considering a desired percentage of the appliance set. Gamma distributions are continuous

probability distributions in the positive real number set defined by two parameters (shape

k and scale θ ). The mean of a gamma distribution is E [X ] = kθ , and the variance is

Var(X) = kθ 2. Thus, by defining the mean µ and standard deviation σ , the gamma

parameters k and θ are computed with k = µ2/σ2 and θ = σ2/µ.

The appliance set ψ is generated having the gamma distribution parameters as

power (W) µ = 500 and σ = 100 and appliance duration (hour) µ = 0.5 and σ = 0.25, as

utilized in [54]. A review of home energy management systems is presented in [118]

showing a comparison of multiple studies in regard to their parameters and assumptions.

The mean peak reduction of the studies is 29.6%, which is chosen to be equal to the

percentage of scheduling appliances. The scheduling period of time of the schedulable

appliances, i.e. scheduling window, depends on the customers’ willingness. A survey for

customers responding to time varying price of energy is presented in [119] where 76

pricing experiments are analyzed in an attempt to identify the price responsiveness of

customers. The comparison supports the possibility of achieving peak reductions of the



108

theoretical studies. A modeling complexity survey for home energy management systems

is presented in [118] describing distinct models and the presence of demand shift. Thus,

the change in demand given the price difference between the periods of time. The Ameren

Illinois utilities power smart pricing report [120] presents models to attempt to

characterize the price responsiveness of customers and averaged estimated demand

changes for 24 hours on different days and for different types of customers. However,

customers do not respond only to price changes. The experimental study by Gyamfi et al.,

found that extending the incentive options to reducing carbon emissions increased

customer participation [121]. Exploring the different incentives for customer

participation, such as functionality, price, and carbon emissions, an analytic hierarchy

process for prioritizing user preferences is presented in [122]. Given the considerable

deviations and assumptions, and its dependency on customers and types of incentives, the

gamma distribution to define the scheduling window is chosen as duration (hour)

µ = 2.68 and σ = 1.95, as utilized in [16], [123].

4.5.4 Residential Customer Pattern

The residential customers’ pattern comes from the xx test system described in

detail in Chapter 3. One of the 193 load nodes for the system (i.e., node 143) possesses

exactly 12 homes. Given that the node was chosen to characterize the low voltage network

of the 12 home test system presented in Section 4.5.2, the individual home load makes the

same assumptions explained in Chapter 3. Thus, the reference customer curve l(t) is the

same for all the 12 customers and is computed by dividing the nodal load by 12. Please

keep in mind that the actual load of the 12 customers is distinct from each other. The
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synthetic queueing load model utilized is the Mt/G/Ct .

4.5.5 PV Curtailment on the Test System

The 12 home low voltage test system was run with the load of all homes equal to

l(t) with the PV inverter active power curtailment local controller. May 30, 2019 has the

peak solar irradiance and is evaluated in detail. Table 4.1 presents the power available in

the PV array, the reference load, and the PV power curtailment by home in the 12 home

system. The 12 home system is symmetrical and, in this case, the residential load is

exactly the same in all homes; thus, the PV curtailment is presented for one home from the

pair. The first two homes in the system have no PV curtailment and as such are not

presented in the table. Half of the homes only present PV curtailment for PV generation

above 4456.95 W and 4691.96 W, hours 9 and 16 respectively. With this in mind,

self-consumption to avoid overvoltage in the low voltage network will be set to start for

PV generation above 5 kW. The nominal power of the PV arrays is 8.4 kW, the incentive

for self-consumption is made to be maximum of 10% of the schedulable load (i.e. the total

schedulable load is expected to be 29.6%). A linear interpolation of the values will be

utilized for the creation of the self-consumption incentive.

4.5.6 Optimization Implementation

The optimization problem is modeled as a linear optimization in python with the

package Pulp [124]. The variable LBloweri represents the maximum lower bound

“generators” capacity and the variable LBRT Pi is the maximum bound of the RTP

“generators” capacity, encouraging load consumption below LBloweri and discouraging

load consumption above the LBRT Pi . Load consumption above LBRT Pi is discouraged to



110

Table 4.1. 12 home test system PV generation, load, and active power curtailment for the
peak solar irradiance day

PV curtailment in (W) by home
hour PV (W) l(t) (W) H3 H5 H7 H9 H11
0 0.00 590.25 0.00 0.00 0.00 0.00 0.00
1 0.00 565.25 0.00 0.00 0.00 0.00 0.00
2 0.00 539.41 0.00 0.00 0.00 0.00 0.00
3 0.00 542.33 0.00 0.00 0.00 0.00 0.00
4 75.54 905.33 0.00 0.00 0.00 0.00 0.00
5 436.46 870.16 0.00 0.00 0.00 0.00 0.00
6 923.28 838.58 0.00 0.00 0.00 0.00 0.00
7 1628.33 771.58 0.00 0.00 0.00 0.00 0.00
8 3164.35 825.33 0.00 0.00 0.00 0.00 379.47
9 4456.95 760.75 0.00 0.00 858.94 1630.02 1972.62
10 7218.41 695.91 0.00 2158.12 3517.19 4348.34 4701.73
11 7923.46 866.87 221.98 2563.52 4000.19 4826.62 5198.65
12 8116.51 531.43 573.33 2974.82 4448.99 5296.12 5677.40
13 7839.53 1176.55 0.00 2234.96 3661.09 4469.34 4839.49
14 7142.87 994.65 0.00 1792.03 3190.28 3987.64 4352.27
15 6068.50 1016.15 0.00 928.28 2141.84 2971.24 3278.36
16 4691.96 992.70 0.00 0.00 863.83 1645.55 1964.46
17 2727.88 1179.81 0.00 0.00 0.00 0.00 0.00
18 545.57 1111.94 0.00 0.00 0.00 0.00 0.00
19 83.93 968.39 0.00 0.00 0.00 0.00 0.00
20 0.00 1215.36 0.00 0.00 0.00 0.00 0.00
21 0.00 893.93 0.00 0.00 0.00 0.00 0.00
22 0.00 722.17 0.00 0.00 0.00 0.00 0.00
23 0.00 517.50 0.00 0.00 0.00 0.00 0.00
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avoid the rebound effect, but the rebound effect happens when multiple customers change

their load to the same time step and now the expected valley is a peak. This will not

happen in the 12 homes test case, which does not consider the change in price given the

change in demand; however, it is a necessary characteristic for its deployment in a large

system. Both the LBloweri and LBRT Pi impact the scheduled appliances, which are 29.6%

of the total. The homes load forecast is the reference load of the customer l(t) as

presented in Section 4.5.4. The l(t) of the customers peak for the 12 homes network is

38,916 kW at the time period June 13, 2017 (2017 referes to the smart meter data

presented in detailed in Chapter 3), and the distribution transformer is rated at 75 kW.

Coincidental peaks of the actual customer loads are expected to be above 38,916 kW (e.g.

coincidental peak for load generated for the same day is 67,540 kW). With this knowledge

in mind, the LBRT Pi is made equal to 60% of the l(t); thus, LBRT Pi = l(t)0.6−LBloweri

discourages scheduled appliance load changes above two times their expected value. The

cost of the Chighi upper bound generator should not only discourage consumption but also

follow the shape of the CRT Pi to discourage consumption in regions with higher prices

resulting in Chighi = max(CRT Pi)5.0+CRT Pi .

The LBloweri is made as described in Section 4.5.5, being if the PV forecast

generation (PVf orecast) is above 5 kW LBloweri = l(t)0.1× PV f orecast
8.4 . Similarly to the cost of

discouraging Chighi consumption, the cost for encouraging consumption (Cloweri) is made

as Cloweri = min(CRT Pi)−max(CRT Pi)+CRT Pi . Given that the PV forecast is updated every

hour, and the RTP utilized for actual billing is also updated every hour, the optimization is

run hourly with the knowledge of appliances that will arrive on that hour. However, the

unit of time within the optimization problem is of one minute.



112

4.5.7 Simulation Scenarios

The simulation scenarios compare the behavior of seven distinct scenarios. The

first scenario contemplates no changes performed to the schedulable appliances and will

be named Queue. The second scenario contemplates the theoretical lower bound (i.e. LB),

meaning that the optimization has perfect knowledge of the future RTP. The third scenario

contemplates the assuming accurate forecast (i.e. AAF), meaning that the optimization

utilizes the utility forecast as there RTP. The fourth scenario contemplates the partially

observable Markov decision process (i.e., POMDP), meaning that the optimization

problem is run multiple times (50 times) considering the forecast error with AR GARCH

statistical models. The fifth scenario contemplates the same characteristic of the second

scenario, but with PV lower bound to encourage self-consumption. The sixth scenario

contemplates the same characteristic of the third scenario, but with PV lower bound to

encourage self-consumption. The seventh scenario contemplates the same characteristic

of the fourth scenario, but with PV lower bound to encourage self-consumption. The

seven distinct scenarios are simulated in GridLAB-D with the PV active power

curtailment controller.

4.6 Simulation Results

The simulations were performed on May 30, 2019 (i.e. the PV peak generation

day). Fig. 4.6 presented the system load without any scheduling, the total available PV

generation in one home, real time price, and the forecast price. Given an overview of the

day under consideration. The energy consumed by the customers on May 30, 2019 is

254.89 kWh. The total available PV generation for May 30, 2019 is 756.52 kWh. From
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Fig. 4.6 in this particular day appliances will have a tendency of being scheduled for

periods of low PV generation, contributing in increase PV curtailment.

Figure 4.6. Overview of May 30, 2019 (i.e. the PV peak generation day), system load, PV
generation, RTP, and forecast price. The available PV generation is for one home, since
all homes have the same PV installation the total system PV installation is the home curve
multiplied by twelve.

The seven distinct simulation scenarios conferred in Section 4.5.7 results summary

are presented in Table 4.2. The results presented in Table 4.2 are for the behavior of the 12

homes test system. The load of all the customers are summed and multiplied by the RTP

giving the energy cost no PV (¢). The load of all the customers are summed and

subtracted by the sum of the system PV actual generation (i.e. considering the active
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power curtailment), resulting in the total energy cost (¢). Notice that the total energy cost

(¢) can be negative, meaning that the customer would be receiving an energy financial

incentive. However, this does not mean that the customers would be receiving money

since there are other costs than just energy as discussed in Section 4.3.6. The system

curtailed PV energy (kWh) is computed by subtracting each individual PV actual

generation from the total PV array availability and then aggregating it to the single value

presented in Table 4.2. Notice that the scenarios that consider the PV generation with the

lower bound described in Section 4.5.6, manage to reduce their PV power curtailment in

relation to their counterpart. The POMDP scenario presented the largest decrease in PV

curtailment of 1.33 kWh, but not considering the PV lower bound it is the one with the

largest PV curtailment.

Table 4.2. Simulation results for the seven distinct scenarios

scenario
with PV
lower
bound

energy cost
no PV (¢)

total energy
cost (¢)

curtailed PV
energy (kWh)

Queue no 670.01 -944.74 191.5
LB no 652.96 -949.39 194.49
AAF no 666.83 -938.48 194.92
POMDP no 660.09 -942.62 195.31
LB yes 652.55 -951.73 193.76
AAF yes 665.75 -941.09 194.25
POMDP yes 658.20 -946.16 193.98

The optimization problem described in Section 4.4.6 being solved for all the

scenarios is a receding time horizon where all the actions that affect the most recent hour

are taken, while the other are in the waiting. This characteristic explain the apparent

improve performance of the LB from without considering PV to considering PV of 0.41 ¢

for the cost of energy without considering PV. Given no scenario knows the schedulable
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appliances that will be available for optimization in the next optimization period and the

problem is subject to two soft constraints (i.e., the maximum “generator” capacity). The

POMDP outperformed the AAF scenarios by 6.74 ¢ and 7.55 ¢, for the cases with and

without PV respectively. Thus, demonstrating the value of considering the uncertainties in

the decision making process. The uncertainties considered are the RTP, however the

POMDP problem can be expanded to consider other sources of uncertainty. Such as, PV

generation and the expected future arrival of schedulable appliances. Including more

uncertainty variables to the POMDP problem does not necessarily imply that the

performance will increase. It is important to keep in mind that the increase in performance

by incorporating other uncertainty variables to POMDP only occurs if the forecast error is

significant as demonstrated in [55]. This characteristic can also be inferred from Table 4.2,

given if the price forecast were to be close enough to the RTP the results from AAF would

be closer to the LB than POMDP (i.e., assuming POMDP historical data would suggest

larger uncertainty than the current price forecast performance).

The changes in the system consumption, and curtailed PV power through time for

May 30, 2019 is presented in Fig. 4.7, and Fig. 4.8, having the base case in relation to the

scenario without considering PV, and with PV consideration, respectively. The Fig. 4.7,

and Fig. 4.8 has a top plot containing the RTP and forecast price to assist in understanding

the changes in consumption and curtailed power. As expected from Fig. 4.6 the appliances

have a tendency of being scheduled for periods of low PV generation, contributing in

increase PV curtailment. This characteristic is point out in Table 4.2 and especially in

Fig. 4.7, where there is no PV self consumption incentive. Comparing Fig. 4.7, and

Fig. 4.8 it becomes evident that the changes are small, however, always present for all the
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scenarios.

In Fig. 4.9 gives a closer look at hour 16:00 (i.e., peak RTP) the AAF approach

increased the consumption on that hour since according to the forecast price that should

have been after the RTP peak price. Since POMDP considers the uncertainty of the

forecast the load consumption for the hour 16:00 is much lower than AAF, and not that

different from the approach that has knowledge from the future (i.e., LB). The behavior

for the hour 16:00 is maintained in the cases that consider PV generation, Fig. 4.10. The

comparison of the differences in between the POMDP with and without considering PV is

not so visible on the Fig. 4.7, and Fig. 4.8. For example the largest difference in PV

curtailment from the two POMDP scenario is 2.03 kW. The 2.03 kW PV curtailment

difference happens at the time 16:15. Resampling the minute resolution PV curtailment to

hourly the hour 16:00 presents a curtailment reduction of 0.86 kWh. Important to point

out that some hours had the curtailment of PV increased even considering the PV on the

optimization. However, on average for the day May 30, 2019 the PV curtailment is always

reduced as stated in Table 4.2. A closer observation on the PV curtailment is presented on

the closer look at the time periods of 10:00 to 13:00 and 15:00 to 18:00 in Fig. 4.9, and

Fig. 4.8, without and with an incentive for self consumption.

Table 4.3 presents The hourly summary of the scheduling approaches. The

Table 4.3 was developed in an attempt o facilitated the comparison of the scheduling

approaches. Please take a closer look at the hour 16, were the POMDP is able to anticipate

the likely to be RTP peak. At hour 12 the system has 95.76 kWh available PV power

generation capability. Please notice that the consideration of PV generation (i.e., desire to

increase self consumption) their is a increase of self consumption with POMPD at hour 12.
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Figure 4.7. Overview of May 30, 2019 (i.e. the PV peak generation day), system load,
PV generation, RTP, and forecast price. The scenario presented do not consider the PV
generation (i.e., not encouraging self consumption).
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Figure 4.8. Overview of May 30, 2019 (i.e. the PV peak generation day), system load,
PV generation, RTP, and forecast price. The scenario presented consider the PV generation
(i.e., encouraging self consumption).
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Figure 4.9. Zooming in two periods from Fig. 4.7. May 30, 2019 (i.e. the PV peak genera-
tion day), system load, PV generation, RTP, and forecast price. The scenario presented do
not consider the PV generation (i.e., not encouraging self consumption).
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Figure 4.10. Zooming in two periods from Fig. 4.8. May 30, 2019 (i.e. the PV peak gen-
eration day), system load, PV generation, RTP, and forecast price. The scenario presented
consider the PV generation (i.e., encouraging self consumption).
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Table 4.3. 12 home test system hourly summary with the load, and RTP

System load for different scheduling approaches (kWh)
price queue Not considering PV Considering PV

hour (¢/kWh) (kWh) LB AAF POMDP LB AAF POMDP
0 1.93 7.88 6.74 6.44 6.48 6.76 6.44 6.21
1 1.95 6.81 6.56 4.86 6.63 6.56 4.86 5.70
2 1.83 8.00 5.73 6.23 5.67 5.72 6.27 6.55
3 1.91 6.53 5.65 7.12 5.91 5.65 7.11 6.24
4 2.21 10.97 12.39 13.66 10.49 12.41 13.67 10.47
5 2.20 13.12 14.32 13.53 13.02 14.49 13.60 13.19
6 2.26 11.51 12.16 11.78 13.16 12.13 11.76 11.63
7 2.54 10.42 9.03 9.63 9.56 8.92 9.61 10.12
8 2.60 10.07 9.70 9.99 10.32 9.67 10.05 11.67
9 2.95 10.20 9.81 10.41 10.74 9.79 10.28 10.43
10 2.49 9.11 8.51 8.08 7.71 8.56 8.09 7.54
11 2.50 9.18 10.61 10.08 10.49 10.60 10.10 10.64
12 3.30 8.97 5.77 5.60 5.68 5.74 5.58 5.75
13 2.90 13.35 14.58 14.21 15.34 14.60 14.59 15.62
14 2.59 13.88 14.44 12.98 13.69 15.42 12.60 14.25
15 2.53 11.64 12.00 10.27 9.26 11.91 11.54 10.19
16 4.72 10.58 7.32 11.70 9.16 7.36 11.57 7.75
17 2.67 15.75 16.90 14.08 15.63 17.12 13.74 15.12
18 4.00 14.21 11.65 15.02 14.11 11.40 14.40 14.25
19 2.73 12.61 12.63 12.98 13.45 11.75 13.23 13.06
20 2.39 11.81 13.95 11.91 13.44 13.62 11.55 13.93
21 2.26 10.39 12.38 12.56 12.47 12.78 12.59 12.46
22 2.18 9.97 12.65 12.42 12.89 12.63 12.37 12.64
23 1.95 7.82 7.53 7.20 6.79 7.44 7.13 7.03
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4.7 Discussion

The developed framework is capable of simulating HEMS with PV inverters local

controllers. To the best of my knowledge, just these two characteristics make the approach

presented in this chapter the first of its type. This is likely due to the fact that this

simulation can only be performed by optimizing the HEMS resources and performing a

dynamic simulation or the quasi-steady-state simulation considering numerical

oscillations presented in [104], thus greatly increasing the complexity of the simulation.

The developed framework also contains the capability to forecast PV solar generation with

the statistical Markov switching model presented in [105] and the capability of performing

the HEMS optimization considering the RTP uncertainty with POMDP as presented

in [55]. This is different than the model in [55] that fitted the AR and GARCH only at a

given time. The framework enables fitting the AR and GARCH models through time. An

interesting characteristic given that the fitting of AR and GARCH models a larger

importance is given on the behavior of the time series in recent time in relation to older

data. This, characteristic is made possible by directly utilizing Python packages for the

AR and GARCH models.

The result Section 4.5.7 presented seven distinct simulation scenarios enabling the

comparison of the proposed POMDP approach. The theoretical lower bound (i.e., LB),

assuming accurate forecast (i.e., AAf), and the partially observable Markov decision

process (i.e., POMDP) scenarios are compared against themselves with or without the

consideration of PV, and against the no scheduling. The summary of the results of the

compared scenarios approaches is presented in Table 4.2. The presented results
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collaborate the strategies assumptions that considering the uncertainties in RTP results in a

performance increase in relation to assuming accurate forecast. The consideration of PV

generation is also capable of reducing the renewable energy that has to be curtailed to

avoid the problem of overvoltage. Please keep in mind the LB approach is only theoretical,

and it is not possible to implement since it considers having knowledge from the future.

The presented framework demonstrates a concept that could be performed in real

time. The results presented in Section 4.6 illustrate the framework’s potential and are an

example of the utilization of the developed synthetic residential load models in Chapters 2

and 3. The local PV inverter controller utilized is the active power curtailment; if the

active-reactive droop PV inverter controller were to be utilized, it is expected that the PV

curtailment would be significantly reduced as presented in [24].

4.7.1 Impact in Low Income Households

HEMS changes the load consumption to receive a financial gain of providing that

flexibility. In order to provide the flexibility a home is expected to have smart appliances

connected with a communication network to a controller or optimizer, as presented in this

chapter. Thus, the resident may require to make the initial investment of the required

structures if they are not readily available. Similarly to the installation of distributed

generation such as PV, also presented in this chapter. Where the owner of the resources

receives financial incentives for the generation. The impact of customer owned generation

social impact is presented in [125]. The democratization of electricity systems vision for

the future from [125], given that wind and solar, are available everywhere, renewable

energy can be economically harnessed at small scales across the country. In [125] clams
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that the larger change is not the distributed generation of renewable but the democratized

network of independently-owned and widely dispersed renewable energy generators.

Having the financial incentive or economic benefits as dispersed as the ownership.

In [126] presents the social impacts of community renewable energy projects, comparing

two rural communities in Scottish Highlands demonstrating the resistance to change given

the value the individual local communities value there current “traditional” land escape.

The “destruction” of the current to open the way to the future. The different social impact

given the providence of capital to the initial investment is also presented. The feeling of

lack of control when the initial capital comes from abroad has the potential of increasing

the resistance to change.

The democratization of the energy generation, increase of renewable generation,

and improve power system performance due to load flexibility are a benefit to society as a

whole. However, there is a need for the initial investment in infrastructure to directly

participate in the changes. Also, participating directly or indirectly the power system is

the same for all in the same region, and is affected by its changes. Thus, low income

customers that are likely not to have generation nor smart appliances to change their

demand based on price can be negatively impacted by the changes in the system [127].

The affordability and accessibility remain serious problems for low income

households [128]. The combination of less efficient appliances, and less control over

them, results in barriers to adopted demand response programs. The work in [128]

presented statistical analyzes of the behavior of low income households residents. The

data demonstrate significant changes in behavior by income, time of usage of energy, and

available technology. The authors suggest the need to increase the knowledge of smart
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meters and related technologies in low income households. An analogy to the change in

electric demand by residential income, especially low income households, is presented

in [129]. Where the change in the fair for the mass-transit rail system in Chicago is

analyzed. Demonstrating the fight of two foresees in low income households residents that

are at the same time more constrained in their budget, but also have fewer options.

In summary, HEMS approaches, and the possibility of generating energy locally,

democratizing the energy generation market is amazing. However, a closer look in the

impact the new technologies and approaches have on the low income households has to be

given in order to not negatively affect the low income households.
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CHAPTER 5 Other uses

5.1 Overview

Chapter 5 focuses on possibilities for estimating the energy utilized for space

cooling and heating and making a decision for which queueing residential load model to

utilize. Section 5.2 presents the beginning of the work performed for removing heating,

ventilation, and air conditioning (HVAC) from the queuing load model l(t) as suggested in

Section 2.4.5. Section 5.3 presents a summary understanding of the queueing load models

from Chapter 2, which assists in selection of an appropriate queueing load model for each

given simulation or study being performed. Finally, Section 5.4 discusses the limitation of

applying the developed synthetic queueing load model.

5.2 Removal of Residential Space Cooling and Heating Load from l(t)

Residential customers have more electric energy devices than just the appliances

modeled by synthetic queueing load models. Additionally, portions of the customer load

profile possess climate dependencies such as HVAC and electric water heaters. In the

proposed queueing models, these are modeled as an aggregate of non-schedulable

appliances rather than individual options that reflect their climate dependencies. As the

energy consumption of such thermal loads change based on use and climate, the energy is

not able to be directly shifted to a more opportune time (i.e. preheating or cooling a home

does not imply that the same amount of energy would be used at a later time).

In the literature for modeling the HVAC load (lHVAC), the building characteristics

and the intrinsic non linearity of the thermal models is not considered. The simple
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constraining lmin < lHVAC < lmax is the only requirement satisfied in the optimization

problem from [17], [66]. In [66], lHVAC is randomly sampled from a normal distribution

where the mean is obtained from historical data and the standard deviation is given.

In [17], lHVAC is given and the boundaries defined as ±20% of the lHVAC. Thus, [17], [66]

present an interesting optimization problem formulation, but the load model makes

simplified assumptions: load does not aggregate to system load, does not consider the

change per day or season, and cannot account for customer preferences. Studies that

consider customer comfort provide more reliable data [13], [16]. Thus, proper thermal

models must be used and need to have their energy separated from conventional

appliances and presented queuing models. The residential models presented, utilized

in [13], [16], are more complex than those presented in [17], [66]. However,

simplifications have been made to enable computing solutions.

Fig. 5.1 demonstrates the desired theoretical behavior of the load model.

Maintaining the queueing load model arrival of appliances and having segregated at l(t)

from space heating and space cooling demand. Fig. 5.1 also eludes to the preferred

customer temperature and outdoor temperature discussed in [17], [66].

Since HVAC loads are time and climate dependent (i.e. outdoor temperature in

Fig. 5.1), demand response in residential space heating and cooling is performed by

temporarily altering the temperature set point (i.e., the comfort temperature in Fig. 5.1).

Not utilizing an amount of energy at a given temperature set point with specific

environment conditions, such as outdoor temperature, solar irradiance, and humidity, does

not imply that the same energy will be used in a different time period with distinct

conditions. Furthermore, the indoor temperature is not only affected by the outdoor
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Figure 5.1. A overview of the HVAC removal is presented. The HVAC residential con-
sumption in relation with the outdoor temperature and the temperature the residents con-
sider comfortable is demonstrated, thus, alluding to setting of the thermostat. Please keep
in mind the image does not intend to demonstrate the interaction of all the variables that
contribute to HVAC consumption.

climate, temperature, and humidity, but also by the internal heat contributions, specifically

inhabitants and appliances.

Detailed thermal models of residential buildings are available with the software

EnergyPlus [130], which provides detailed energy requirements for heating, ventilation,

and air conditioning models. EnergyPlus considers the detailed geometry of house,

weather data, internal loads, temperature set points, infiltration and appliance schedule for

the calculation of energy consumption in the house. EnergyPlus allows experiments to

schedule the load in hourly intervals using the schedules in EnergyPlus and to create a sub

hourly schedule of the appliance using an external interface.

The remainder of this section is organized as follows: Section 5.2.1 provides an

approach for removing space cooling loads from l(t). The approach is then tested making

used of EnergyPlus home models in Section 5.2.2. Section 5.2.3 presents a discussion on
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removing space heating from l(t). Concluding remarks on the challenges of removing

HVAC from l(t) are discussed in Section 5.2.4.

5.2.1 Removal of Residential Space Cooling Load from l(t)

Not all appliances can be simply shifted for a different time, e.g. cooling

appliances (CA). CA correspond to 17.5% of residential yearly energy use or 6.65% of

total yearly energy use in the US [10]. Demand response in residential space cooling is

performed by temporarily altering the temperature set; however, not using that amount of

energy at a specific condition with a set temperature does not imply that the same energy

will be used in a different time. For this characteristic, the cooling loads should be

removed from the queueing load models l(t).

Space cooling loads cannot be simply removed from l(t) by utilizing the (2.10),

i.e., Bl(t) = l(t)−B(t), as presented in Section 2.4.5. The indoor temperature of a home is

affected by the internal heat gains such as inhabitants and appliances. This means that

some of the appliances are heating the home and a portion of them are cooling the home at

the same time. Thus, for a given home with l(t) is simulated on EnergyPlus and resulting

in CA the Bl(t), it cannot be computed directly by subtracting. Since the new l(t) would

not heat the home as much as the previous, less CA is required for cooling the home. An

integrative model is required for removing the CA from l(t) and also a model for

estimating the amount of CA since running EnergyPlus multiple times for thousands of

customers is not possible.

Generalized linear model (GLM) can be utilized with predictors that have error

distribution models other than a normal distribution. EnergyPlus climate data has over 30
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variables. Thus, it is necessary to choose which variables to use in fitting the GLM. In

order to select the predictors in fitting the GLM, step wise selectors are utilized. The step

wise selector adds and removes predictors to evaluate their impact on the model in relation

to their statistical significance and/or goodness of fit. The R function made use of the

Akaike information criterion (AIC), which considers the quality of the model (goodness

of fit) in relation to the model complexity. AIC deals with both the risk of over-fitting and

the risk of under-fitting. The interactive process of removing the cooling load from l(t) is

presented in Algorithm 1. Here, Φ is the climate data, k is a constant small value to slowly

remove the CA, and li(t) refers to the reference load at iteration i; thus, ∑ l0(t) is the

original l(t). The Algorithm 1 stops subtracting small portions of li(t) until the energy of

the li(t) and CAi(t) are equal or smaller than the energy of ∑ l0(t). The effectiveness of

this approach is presented in Section 5.2.2.

Algorithm 1: Interactive process for removing the space cooling load from the
expected customer load (l(t)).
1 i = 0
2 li(t) = l(t)
3 CAi(t) = ∞

4 while ∑ l0(t)≤ ∑ li(t)+CAi(t) do
5 i = i+1
6 CAi(t) = MODELGLMcooling(li−1(t),Φ)

7 li(t) = li−1(t)−CAi(t)k
8 end
9 Bl(t) = li(t)

5.2.2 Results for Removing the Space Cooling Load from l(t)

The openly available hourly load data (CL (t)) chosen for the simulation was

Commonwealth Edison Company (ComEd) [67] for the year of 2014. The load data is

scaled down to make the expected individual home load with equation (2.2). The ComEd
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company provides electric service to approximately 3.8 million customers across northern

Illinois, or 70% of the state’s population [131], and was chosen for the simulation since

the region also possesses openly available climate data, which is necessary for the

building model in EnergyPlus. Table 5.1 presents the characteristics of the home being

simulated on EnergyPlus.

Table 5.1. House Parameters

Model attribute Parameters used
Area 1517 f t2

No. of floors single
floor plan 3 bedrooms
HVAC system Electric resistance heating
Window to wall ratio 7%
Glazing layer 2
Glazing material low-e-glass
Solar heat gain coefficient 0.3
Location and weather file Chicago, IL

The warmest day for the year of 2014 in Chicago, IL is chosen for the testing the

proposed approach. Fig. 5.2 presents the total reference l(t), which is in an hour

resolution to the complete simulation output. The complete simulation output refers to the

generated queueing load model data with Bl(t) and running the simulation on EnergyPlus.

As demonstrated in Fig. 5.2, the complete simulation output follows the original l(t)

having separated space cooling from the appliance model. Fig. 5.3 makes the comparison

of the three reference curves: first, queueing original reference l(t) with generated

queueing load using Bl(t) plus the space cooling. Second, queueing reference Bl(t) with

generated queueing load using Bl(t). Third, the last CAi(t) from the Algorithm 1 with the

space cooling from EnergyPlus to demonstrate that the generated curves follow their

respective references.
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Figure 5.2. Queueing original reference l(t) with the complete Bl(t) plus the space cooling
from EnergyPlus.

Figure 5.3. Comparison of the three reference curves: first, queueing original reference
l(t) with generated queueing load using Bl(t), plus the space cooling. Second, queueing
reference Bl(t) with generated queueing load using Bl(t). Third, the last CAi(t) from the
Algorithm 1 with the space cooling from EnergyPlus.
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5.2.3 Removal of Residential Space Heating from l(t)

The indoor temperature of a home is affected by the internal heat gains

(inhabitants and appliances). Section 5.2.1 demonstrated an interactive process for slowly

removing the CA from l(t). Thus, it is not possible to remove the space heating from l(t)

given that the appliances running during cooling are assisting in heating the home. If a

similar approach was utilized for space heating, for example, the amount of required

heating load would increase at every interaction. In order to consider the space heating

separately, it is required to go back to the original curve where l(t) is generated and

remove the space heating from the openly available hourly load data from any distribution

company CL(t). Unfortunately, this results in a loop since the l(t) for a home must be

known to simulate the residential model in EnergyPlus and l(t) changes significantly by

removing the space heating from CL(t).

A completely different approach is required to enable the removal of space heating

from CL(t). Understanding the challenges this implies requires recalling how the number

of homes for every load node was computed in Chapter 3. The knowledge of CL(t) and the

expected energy consumption for a home is utilized, which means that not only will the

l(t) change with the removal of space heating from CL(t) the number of homes would also

change. An approach demonstrating some promise would sequentially generate data for a

single home to segregate the expected energy consumption from space heating followed

by updating the CL(t) until the percentage of homes with electric space heating had been

generated. Unfortunately, the sequential removal of space heating for the winter period

would result in negative values for CL(t). For this characteristic, it was known that the
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home model in EnergyPlus would have to be changed and/or a different consideration for

the number of homes with electric space heating, and/or utilized the energy of the system

that is expected to be utilized for electric space heating. In order to account for this

characteristic the following solutions, or a combination, may be used: change the home

model in EnergyPlus, change considerations for the number of homes with electric space

heating, or calculate expected energy use for electric space heating. Thus, the removal of

space heating from l(t) is still an open question.

5.2.4 Discussion

Section 5.2 presents the beginning of the work performed for removing the

residential home HVAC load from l(t) to provide different treatment than conventional

appliances in DR programs. Section 5.2.1 presents a promising approach for removing

space cooling load. This strategy works best for warm days with periods of time during

Spring and Fall facing some challenges for utilizing the model. Thus, is not only

necessary to have an accurate model for removing the space cooling but it also requires a

classification model to know the periods of time to perform the removal. Classification

models attempted were not accurate for the periods of Spring and Fall, especially for days

that have a considerable change in temperature. This is true for both space heating and

cooling. Regarding space heating, other challenges remain to be overcome as presented in

Section 5.2.3; however, the most significant change occurs in regard to knowing how to

properly generate the l(t) and how to select the number of homes.
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5.3 Queueing Load Model Choice

There are three queueing load models presented in Chapter 2, i.e. Mt/G/∞,

Mt/G/C, and Mt/G/Ct . The proper selection of the queuing load model to be utilized is

dependent on the studies being performed. The characteristics of interest to consider for

each challenge and the behavior of the tree queueing load models are described in detailed

in Chapter 2. However, a simplified approached can be utilized for selecting the most

appropriate queueing load model depending on the studies being performed.

The simplified selection of the queueing load model can be performed by

considering three characteristics. First, the number of customers being generated. Second,

utilization of the customer model in a low voltage distribution network. Third, the desired

to match a small level of aggregation to the system expected behavior. The number of

customers refers to the time or computational resources that will be utilized for generating

the customers. The queueing load Mt/G/∞ does not possess the inner loop for verifying if

the appliance is able to be run given the maximum power that can be served. Algorithm

loops require more computational time, so Mt/G/∞ is faster than Mt/G/C and Mt/G/Ct .

Also, given a lower power supplied capacity, Mt/G/C is faster than Mt/G/Ct .

Assuming the load being generated will be utilized in a low voltage distribution

system, the queueing load models Mt/G/C and Mt/G/Ct should be utilized. The

queueing load models Mt/G/C and Mt/G/Ct possess an upper bound power capacity not

enabling a single customer to consume an infinite amount of energy. Customers naturally

have a maximum power capacity given the appliances on their electric system. However,

the utilization of the queueing load models Mt/G/C and Mt/G/Ct for low voltage
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distribution systems comes from the need to be able to solve the power flow for all periods

of time. The likelihood of a customer generated with Mt/G/∞ presenting periods where a

single customer surpasses the system capacity limits is small. However, if the customer

generated load surpasses the system limit for a single period the simulation would not be

successful. Thus, in the event were a customer surpasses the system capabilities, the

customer would have to be identified and the load generated as many times as required

until the customer behaves as expected. For these reasons, the load models Mt/G/C or

Mt/G/Ct should be utilized.

The customer reference curve l(t) can be generated from a system level demand or

nodal level demand, as presented in Chapter 2 and Chapter 3. Chapter 2 presented the

three queueing load models and Chapter 3 utilized the Mt/G/Ct to generate the customer

load with nodal level demand. Chapter 3 demonstrates, in Fig. 2.5, the theoretical

comparison of the Mt/G/C and Mt/G/Ct . The models Mt/G/C and Mt/G/Ct address the

issue of unfeasible peaks. Only Mt/G/Ct avoids unrealistic peaks by shifting forward

appliances that arrived at a valley period that is already more that filled given the defined

time varying power capacity. This characteristic naturally reduces the MAPE of the

generated load in respect to the aggregated demand. The system level MAPE for

Mt/G/∞, Mt/G/C and Mt/G/Ct are 2.7973%, 2.7379%, and 2.5828% respectively.

Fig. 5.4, Fig. 5.5, and Fig. 5.6 present that the larger the number of customers being

aggregated to a node lode, the smaller the rate of error. Each of the figure’s refers to the

output of a queueing load model.

Notice that in Fig. 5.6 the MAPE for the number of homes is reduced in the earlier

nodes when comparing to Fig. 5.4 and Fig. 5.5. Similarly, but to a much lower degree, this
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Figure 5.4. Queuing load model Mt/G/∞ year MAPE by load node in relation to the
number of homes.

Figure 5.5. Queuing load model Mt/G/C year MAPE by load node in relation to the
number of homes.
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Figure 5.6. Queuing load model Mt/G/Ct year MAPE by load node in relation to the
number of homes. This is the same figure from Chapter 3 being placed here to facilitate the
comparison

is also observed from Fig. 5.5 to Fig. 5.4. The presence of a power capacity limit improves

the MAPE from the real smart meter load data to the synthetically generated queueing

load model . This characteristic is expected since large deviations from the reference are

not permitted at all times. In this regard, Mt/G/Ct is better than the other queueing load

models; however, Mt/G/Ct is the model that is more computationally demanding.

5.4 Current Limitations of the Proposed Queueing Load Model

The data driven synthetic load modeling for smart city energy management studies

has the potential for standardizing the studies performed on the future of smart grids.

Demand response in smart grids is considered the main characteristic of the smart cities of

the future. However, the proposed synthetic load model currently has limitations, the most

relevant are that the:
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• Appliance model lacks:

– Frequency dependencies

∗ I.e., not suitable for frequency studies.

– Protection models

∗ I.e., protection is not triggered under pre-defined conditions.

– Harmonic distortion.

∗ I.e., load do not contribute for harmonic distortion and power quality

studies.

• Arrival rate of appliances is dependent only on the reference curve generated from

the aggregated load. The load curve does not explicitly consider non-arriving

appliances, e.g.:

– Heating, ventilation, and air conditioning.

– Electric vehicles.
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CHAPTER 6 Conclusions and Future Work

6.1 Conclusions

The ability to control tens of thousands of residential electricity customers in a

coordinated manner has the potential to enact system-wide electric load changes, such as

reduce congestion and peak demand, among other benefits. To quantify the potential

benefits of demand side management, synthetic load datasets that accurately characterize

the system load are required. Addressing this need, data driven residential synthetic load

models utilizing time-varying queueing models to characterize individual residential

customers and their individual electric assets are presented and discussed in detail in this

dissertation. The queueing load models presented in this paper address the challenges of

unavailability and proprietary customer data by using only public available aggregated

load data for a region, allowing researchers to replicate results in many studies and

compare their methods to the state-of-the-art. In addition, by aggregating to a known

system load curve, the economic and technical impacts of new research methods can be

better evaluated. The model assumes that the aggregated distribution system behavior is

known while including the stochastic nature of individual customers and their electric

assets. Thus, the developed synthetic residential load model combined a top-down and

bottom-up approach for modeling individual residential customers and their individual

electric assets, each possessing their own characteristics. The models are general enough

to incorporate other characteristics, such as non-arriving portions of customer loads (e.g.

HVAC), voltage dependencies (e.g. ZIP polynomial coefficients), scheduling

characteristics, and more depending on the needs of the individual researcher. The models
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were validated by visualizing the differences in output between a thousand customers and

by their aggregated load characteristics and follow a known system curve. As the

proposed models were shown to scale in a near-linear fashion and individual customer

loads can be independently generated, the methods can be used in large-scale demand side

management studies (e.g. Smart City demand response) with individual customer load

data that maintains the time-varying characteristics of an actual power system region. The

three residential queueing load models use only publicly available data. An open-source

Python tool to allow researchers to generate residential synthetic load data for their studies

is made publicly available.

The developed residential synthetic queueing load models are used to create the

Midwest 240-Node distribution test case system generating an appliance-level synthetic

residential load for 1,120 homes for the Iowa State distribution system test case with 193

load nodes over three feeders. The Midwest 240-Node is a real distribution system from

the Midwest region of the U.S. with real one-year smart meter data at the hourly

aggregated node level for 2017, available in an OpenDSS model. Collecting smart meter

data for 1,120 customers for a yearlong period is not trivial. Real data is subject to

environmental hardships; thus, being under the influence of equipment failure,

communication failure, and misused equipment. Given the environment is a distribution

system in the Midwest U.S. many had access to the equipment (i.e. not a control area).

The smart meter data was evaluated to identify specious behavior, which could indicate

erroneous data. Two periods of strange behavior were found. The first time period is from

3,504 to 3,792 hours for the nodes 41, 154, 158, 162, and 163. The second time period is

from 6,408 to 6,696 hours for the nodes 134, 140, 142, 149, 152, 180, and 183. The
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strange behavior is not limited to those nodes, but unexpected behavior has a larger

likelihood of being erroneous. Attempting to preserve the original smart meter data, and

to reduce the chances of replacing accurate data, only the previously mentioned nodes

were altered. The replacing of data makes use of a generalized linear model on the

selected nodes and periods consisting of an alteration below 0.21% of the smart meter

load data. The Midwest 240-Node one-year mean absolute percentage error from the

smart meter to the generated is 2.5828%. The Midwest 240-Node distribution system

OpenDSS model was converted to GridLAB-D to enable smart grid and transactive

energy studies. The percentage wise maximum error observed on voltage magnitude from

the OpenDSS to GridLAB-D model is below 0.0009%. The GridLAB-D model and the

generated synthetic residential load is made publicly available. The Midwest 240-Node

real distribution system with the synthetic residential load that follows the real data from

smart meters is intended to be a distributed energy active consumer test system network.

The contribution of this dissertation provides the power system research

community two publicly available resources: the python tool for generating residential

synthetic load datasets that, when aggregated, characterizes a region of the power system

and the distribution test case Midwest 240-Node which is a real system with synthetic

residential load generated with the nodal information of a real yearlong smart meter data.

These publicly available resources allow the researchers the capability to create their own

standardized systems with no privacy concerns and a realistic standardized distribution

test system to deploy their strategies.
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6.2 Limitations

The data driven synthetic load modeling for smart city energy management studies

has the potential for standardizing the studies performed on the future of smart grids.

Demand response in smart grids is considered the main characteristic of the smart cites of

the future. Being able to use the available resources in a more effective manner mixes

multiple fields of study but is centered in improving the wellbeing of the residents,

environment, and economy. Being a vast field of studies. Researcher that require the

assumptions made on the developed model to change will face the model limitations.

Important to keep in mind that one of the most interesting characteristics of the developed

model is its base on actual load data.

The utilization of real load data is, in itself, one of the main benefits of the

developed models, but such data may not be available for systems of interest to a given

researcher. Since, the models utilize aggregated load data the unavailability is unlikely.

Even if the aggregated load is not publicly available for a given system, it is possible to

use a nearby system with similar climate conditions, but the knowledge of how close the

replacement data was to the actual system load would be completely lost in such a

scenario since a comparison would not be possible.

The usage of generic appliances, as the name states, enables the arrival of generic

blocks of energy to the queueing load models. A synthetic load model assumption enables

not knowing what the appliance is to perform the energy management, and demand

response, meaning that the models do not know and do not attempt to represent specific

appliances. This implies that appliances that have a strong tendency to be used in
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sequence (e.g. clothes washer and clothes dryer) will not have such constraints to the

problem being studied. If such a characteristic is necessary, the researcher would have to

either incorporate the characteristic as illustrated in the Section 5.2.1 for space cooling or

seek their own solution to the model limitations.

6.3 Future Work

This work presented a data driven synthetic load modeling approach for generating

smart city energy management studies. Synthetic load modeling makes use of

open-source data from distribution companies since it is developed for residential load

modeling. The residential synthetic load data generated the test case Midwest 240-Node,

which was generated having the knowledge of the nodal load of a real distribution

network from the U.S. Midwest region. The test case can be utilized to perform complex

energy management studies on the system 1,120 customers over three feeders. Chapter 4

illustrates how the developed synthetic load modeling can be utilized for energy

management systems. The work presented in Chapter 4 can be expanded to the complete

Midwest 240-Node test system and further integrated with a transmission network with a

detailed model of generators, enabling studies interested in the change in price given the

changes in load and incentives.

The dissertation also presents, in Section 5.2, the initial work performed to

segregate space heating and cooling from the generic appliance model. Concluding the

initial work would increase the relevance and complexity of the models given the natural

non linearity of space heating and cooling loads in regulating the indoor temperature,

which impact the customer comfort. Thus, having multiple variables competing for their
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own desires and the common non linearity of the model that now would contemplate an

actual home. Furthermore, more characteristics can be given to the load, such as frequency

dependencies. Future work could also focus on improving the developed synthetic load

models, incorporating other models and test system, and utilizing the developed models.
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APPENDIX

CHAPTER A Queueing Load Model Algorithm

Algorithm 2 demonstrates the process of generating the synthetic residential load

model Mt/G/∞, representing the information of Fig. 2.4 in algorithm form.

Algorithm 2: Mt/G/∞ residential queueing load model
Input:
• Simulation time period, T to T

• Load scaling factors, bmin and bmax

Data:

• Openly available hourly load data, CL(t)

• Set of appliances, ψ

1 t = T ; i = 0 ; Arrival = empty list

2 while t < T do
3 ∆ti← random sample exponential distribution with λ (t)
4 according to (2.1) and (2.2)
5 t← t +∆ti

6 if t < T then
7 app← random sample appliance from ψ

8 Arrival[i]← app at arriving time t
9 end

10 i← i+1
11 end
12 return Arrival

Algorithm 3 demonstrates the process of generating the synthetic residential load

model Mt/G/C (i.e., Fig. 2.6). The initialization of variables, input, and data from

Algorithm 2 is the same, thus being summarized in Line 1. Note that the procedure for the

Mt/G/Ct queueing load model is the same as Algorithm 3, except C is replaced with Ct ,
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thus the power capacity computed with (2.4) and the internal loop condition replaced

by 2.5 (i.e., Line 10).

Algorithm 3: Mt/G/C residential synthetic load model
1 Same initialization as Algorithm 2.

2 Ph(t)← 0

3 C← user-defined power capacity or by (2.3)

4 while t < T do
5 ∆ti← random sample exponential distribution with λ (t)
6 according to (2.1) and (2.2)
7 t← t +∆ti

8 if t < T then
9 app← random sample appliance from ψ

10 tadd ← t

11 while (Ph(tadd)+apppower)>C do

12 tadd ← tadd +δ

13 end

14 Arrival[i]← app arriving at time tadd

15 Ph(tadd)← Ph(tadd)+apppower

16 end

17 i← i+1
18 end
19 return Arrival
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CHAPTER B Analyzing Time-Series Real Utility Data for a Distribution Test System

The appendix analyzes the time-series distribution test system load data (i.e., smart

meter data from [93]). The data being analyzed is the first of its type. Having real year

long time-series data for an actual distribution feeder. Commonly real data of a test system

is not available with the exception of the test system IEEE European LV. However, the

data for IEEE European LV is only for a single day. Thus, having data for a complete year

is of interest. Given the privacy and technical challenges in collecting data for customers

of an actual system. The year long time-series load data is analyzed and small portions

suspected of being erroneous data are replaced with a generalized linear model. Less than

0.21% of the data is altered. The appendix is separated in three sections. Section B.1

presents the analyses, evaluating the smart meter data from [93]. Section B.2 presents the

strategy adopted for identifying the load nodes with strange behavior, and the process for

addressing it. A brief discussion on the presented approach is presented in Section B.3.

B.1 Test system load data

The authors have noticed the presence of significantly small energy consumption

for the available data provided in [93]. Fig. B.1 presents the number of occurrences of

nodal energy consumption of below 100, 10, and 1 Wh. The nodes that have occurrences

of below 100 Wh are the 12, 32, 142, 158, 159, and 183.

The occurrences of low energy consumption for the expected home is presented in

Fig. B.2. According to U.S. Energy Information Administration 2015 Residential Energy

Consumption Survey [94], homes from the Midwest region have a expected yearly

consumption of 9,567 kWh. Assuming the yearly consumption divided by the expected
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Figure B.1. Number of times the nodal energy consumption is below 100, 10, and 1 Wh.

yearly energy consumption the number of residential customers is 1,367. Which is

considerably different from the 1,120 homes. However, it is also known that the

consumption is climate dependent as demonstrated in [92]. Using the month of May for

selecting the number of homes in load nodes the number of homes is 1,161, which is

much closer from the 1,120 homes. The estimation of homes in each load node makes use

of such an assumption. The energy consumption for the expected homes is computed by

dividing the total nodal energy consumption by the expected number of homes. The nodes

that have occurrences of below 100 Wh are the 12, 32, 38, 129, 134, 140, 142, 149, 152,

158, 159, 163, 180, and 183. However, the occurrence of low energy consumption for the

node or for the estimated home energy consumption can be normal operation.

The yearly energy consumption for the load nodes 12, 32, 38, 129, 134, 140, 142,

149, 152, 158, 159, 163, 180, and 183 is furthered analyzed. During two periods of time

the year long data has strange behavior. The first is in between the hours 3,504 to 3,792 in

the nodes 158, and 163. The load for this nodes are presented in Fig. B.3. The second

period is between the hours 6,408 to 6,696 in the nodes 134, 140, 142, 149, 152, 180, and
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Figure B.2. Number of times the estimated home energy consumption is below 100, 10,
and 1 Wh.

183. The load for this nodes are presented in Fig. B.4.

Fig. B.3 and Fig. B.4 present regions of data that for the nodes of interest that do

not appear to follow there normal behavior. Fig. B.3 node 158 clearly presents two regions

of constant energy consumption for over 100 hours. Furthermore, during the same period

of time the load node 163 behaves strangely. Fig. B.4 nodes 142, and 183 presents two

regions of constant energy consumption for over 100 hours. Similarly, during the same

period of time the load nodes 134, 152, 140, 149, and 180 behaves strangely.

The load nodes 158 and 163 are considerably close to each other as shown in

Fig. 3.1. Taking a closer look on the near by load nodes 157, 159, 160, 161, 164, and 165

was performed. However, only the load node 162 behaves strangely as show in Fig. B.5.

Since, only 162 presents strange behavior it does not appear to be dependent on the test

system location.
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Figure B.3. Energy consumption of the load nodes 158, and 163 for the period from 3,504
to 3,792 hours.
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Figure B.4. Energy consumption of the load nodes 134, 140, 142, 149, 152, 180, and 183
for the period from 6,408 to 6,696 hours.
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Figure B.5. Energy consumption of the load nodes 158, 162, and 163 for the period from
3,504 to 3,792 hours.
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B.2 Fill in Error and Identify Nodes

In this section the generalized linear model (GLM) is made use to identify nodes

with errors and to fill in the error period. In the Section B.1 two error periods have been

identified, i.e., 3,504 to 3,792 hour, and 6,408 to 6,696 hour. Furthermore, some nodes

have been identified and will make the baseline for identification. Given the only

knowledge available is time the predictors for the model are the hour of the day and day of

the week, i.e., both are classifiers with 24 and 7 possibilities respectively. The GLM

equation considers the interactions of the two predictors since this greatly improves the

fitted model. The model provides the average behavior of the load node for the hour of the

day and day of the week. Thus, selecting the fitting regions near the period of interest is

expected to provide the average behavior of the error period. The python package

statsmodels [132] was utilized.

A GLM model is fitted for every node for the two periods. The fitting regions are

3,144 to 3,480 hour and 3,816 to 4,152 hour for the first period, and 6,048 to 6,384 hour

and 6,720 to 7,056 hour for the second period. Thus, fitting the GLM models with 2

weeks prior and 2 weeks after the error. The first interest is to identify nodes thus the fitted

models are used to compute the expected behavior on the two error periods (i.e., testing

regions). The testing regions are from 3,600 to 3,700 hour and 6,450 to 6,550 hour for the

first and second error regions respectively. The testing regions have been chosen

imperially from the behavior demonstrated in Section B.1. Once the modes have been

fitted the energy percentage error (EPE) and mean absolute percentage error (MAPE) are

computed on the testing region with (B.1) and (3.1) respectively. Where t is the hour
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index, At is the load from file, and Ft is the forecast value (i.e., the average hour and day of

the week behavior from the fitted GLM model).

EPE =

∣∣∣∣∑At−∑Ft

∑At

∣∣∣∣×100% (B.1)

The GLM models for the first fitted region presented a minimum, median, and maximum

MAPE in p.u. of 0.1197, 0.3167, and 1.5495 respectively. The GLM models for the

second fitted region presented a minimum, median, and maximum MAPE in p.u. of

0.0947, 0.2775, and 0.8846 respectively. Please keep in mind that the calculation of

MAPE (3.1) is sensitive to small values of At , i.e., deviations for small values of At have a

height percentage error. Fig. B.6 present the original and the GLM model on the fitted

region from 3,144 to 3,480 hour and from 3,816 to 4,152 hour for the worse MAPE node

of the first fitted region (node 58). Thus, illustrating the sensitive of MAPE to small values

of At .

Evaluating the performance of Section B.1 identified nodes in regard to there EPE

and MAPE boundaries to classifies problematic nodes are tested. Utilizing the data

presented in Table B.1 for the performance of the GLM model for the testing region from

3,600 to 3,700 hour possible boundaries utilizing EPE and MAPE are tested and visually

analyzed. The lowest EPE and MAPE from Table B.1 are utilized as starting points. The

resulting classifier for the testing region from 3,600 to 3,700 hour became a combination

of presenting EPE larger than 0.67 and MAPE larger than 1.75. Resulting in adding the

nodes 41 and 154 which have been verified visually, as presented on Fig. B.7.

Similarly utilizing the data presented in Table B.2 for the performance of the GLM model
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Figure B.6. Original and the GLM model energy consumption of the worse load node 58
on the fitted region from 3,144 to 3,480 hour and from 3,816 to 4,152 hour.
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Figure B.7. Energy consumption of the load nodes 41, 154, 158, 162, and 163 for the
period from 3,504 to 3,792 hours.
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Table B.1. Testing region from 3,600 to 3,700 hour EPE and MAPE for Section B.1 iden-
tified nodes and added classified nodes.

Node EPE (p.u.) MAPE (p.u.)
158 1.0446 inf
162 0.8734 1.9536
163 1.2984 5.0156

Added node EPE (p.u.) MAPE (p.u.)
41 1.8870 2.9512
154 2.4025 2.9391

for the testing region from 6,450 to 6,550 hour EPE and MAPE are made. Utilizing the

experience from the first testing region and visually testing multiple boundaries the same

classifier was made. Nodes with problems are classified by the combination of presenting

EPE larger than 1.99 and MAPE larger than 4.47. No nodes have been added.

Table B.2. Testing region from 6,450 to 6,550 hour EPE and MAPE for Section B.1 iden-
tified nodes.

Node EPE (p.u.) MAPE (p.u.)
134 2.2388 5.0973
140 4.1193 1.0915 ×101

142 7.1508 6.1649 ×1021

149 2.3612 5.0088
152 2.1967 4.6794
180 2.6942 5.1156
183 10.3285 4.4456 ×1022

The selection of nodes identified as errors has been performed utilizing the GLM

model in regards to there EPE and MAPE. The replacing of the data suspected of being

erroneous is performed by the same GLM model. The first is in between the hours 3,504

to 3,792 in the nodes 41, 154, 158, 162, and 163. The new load for this nodes are

presented in Fig. B.8. The second period is between the hours 6,408 to 6,696 in the nodes

134, 140, 142, 149, 152, 180, and 183. The new load for this nodes are presented in
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Fig. B.9. Comparing Fig. B.8 with Fig. B.7 and Fig. B.9 with Fig. B.4 the differences of

the original data with the replaced model data are presented.

Figure B.8. Model energy consumption of the load nodes 41, 154, 158, 162, and 163 for
the period from 3,504 to 3,792 hours.

B.3 Discussion

Collecting smart meters data for 1,120 customers for a year long period is not

trivial. Real data is subject to the environment hardships. Thus, being under the influence

of equipment failure, communication failure, and misuse of equipment. Given the

environment is a distribution system in the Midwest U.S. many had aces to the equipment

(i.e., not a control area). The analyze the time-series distribution test system load data
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Figure B.9. Model energy consumption of the load nodes 134, 140, 142, 149, 152, 180,
and 183 for the period from 6,408 to 6,696 hours.
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presented here shows two time periods were some of the load nodes presents strange

behavior. The first time period is from 3,504 to 3,792 hour for the nodes 41, 154, 158,

162, and 163. The second time period is from 6,408 to 6,696 hours for the nodes 134, 140,

142, 149, 152, 180, and 183. The strange behavior is not limited to nodes presented here,

however, strange behavior only suggest errors on the data. The authors attempted to

preserve the original data, avoiding replacing correct data from the two time periods of

strange behavior. The presented replacing of data for the GLM models on the selected

nodes and regions consist of an alteration lower than 0.21% of the load data.
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