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ORIGINAL PAPER
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Abstract
Habitat availability can affect important life-history traits such as survival; however, little information exists on howmicrohabitat
characteristics found at parturition sites selected by dams and bed sites selected by their offspring differ from the surrounding area
and from each other. Therefore, we assessed how vegetation affected maternal parturition and offspring bed site selection for
white-tailed deer (Odocoileus virginianus) in the Northern Great Plains. Dams selected for sites with decreased vegetation height,
potentially improving their visibility, which may increase their ability to escape approaching predators. Conversely, there was no
variation between vegetative characteristics at neonate bed sites and their associated random sites, indicating grasslands provide
adequate concealment for neonates. Dams possess the ability to flee from approaching predators, thus increasing the importance
of visibility while giving birth. Conversely, neonates depend on fear bradycardia as their main antipredator defense, so conceal-
ment is more important. Our results suggest that vegetation structure is an important characteristic to white-tailed deer as habitat
needs vary between adults and neonates.

Keywords Bed site selection . Northern Great Plains .Odocoileus virginianus . Parturition site selection . Vegetative structure

Introduction

Habitat availability influences important life-history charac-
teristics such as survival. For example, elk (Cervus
canadensis) experienced increased mortality from wolves
(Canis lupus) when using pine forests compared with

grasslands (Hebblewhite et al. 2005) whereas resident elk de-
creased wolf predation risk by consuming forage located near
human activity (Hebblewhite and Merrill 2009). Ciuti et al.
(2014) reported mule deer (Odocoileus hemionus) neonate
survival decreased as habitat fragmentation increased in the
presence of high coyote (Canis latrans) populations. In con-
trast, elk, moose (Alces americanus), and white-tailed deer
(Odocoileus virginianus) avoided direct predation risk by
not selecting resources in areas that posed greater predation
risk (Kittle et al. 2008). Therefore, understanding how indi-
viduals use available habitat can potentially explain how pop-
ulations persist in dynamic environments.

Although there are several predators of white-tailed deer,
coyotes are the main predator of adult white-tailed deer in the
Northern Great Plains (Moratz et al. 2018) and are also an
important predator of white-tailed deer neonates in the
Northern Great Plains (Brinkman et al. 2004; Grovenburg
et al. 2011) and throughout their range (Gingery et al. 2018;
Kautz et al. 2019; Warbington et al. 2017). Furthermore, coy-
otes are reported to have substantial impacts on white-tailed
deer neonate populations at local scales (Chitwood et al. 2015;
Kilgo et al. 2012). However, results on effects of habitat com-
position and structure on neonate survival is inconsistent
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(Chitwood et al. 2015; Gulsby et al. 2017; Kilgo et al. 2014;
Michel et al. 2018).

Although general cover types can affect survival, micro-
habitat characteristics also can affect where individuals choose
to seek cover. Moose (Bowyer et al. 1999), American bison
(Bison bison; Kaze et al. 2016), and woodland caribou
(Rangifer tarandus; Leclerc et al. 2012) dams selected partu-
rition sites at greater elevations, likely to increase visibility
and avoid predation. Similarly, after the peak of parturition
(28 June to 9 July), pronghorn (Antilocapra americana) fe-
males selected areas with low vegetative biomass, whereas
neonate to female ratios were positively correlated with great-
er vegetative biomass (Christie et al. 2017). This suggests
females select areas that maximize detection of approaching
predators (Yoakum 2004), while balancing the need for con-
cealment of the neonate (Barrett 1984).

Much research has focused on microhabitat characteristics
associated with neonate bed site selection. Black-tailed deer
(Bowyer et al. 1998) and pronghorn (Lehman et al. 2009)
neonates selected bed sites with increased forb cover and
overstory canopy cover while white-tailed deer neonates se-
lected bed sites with greater vertical structure (Grovenburg
et al. 2010; Huegel et al. 1986). Conversely, although con-
cealment was important for neonatal elk < 2 weeks old, neo-
nates tended to select for cover that allowed for increased
visibility as they aged (Pitman et al. 2014). Roe deer
(Capreolus capreolus) neonate bed site selection also varied
throughout the parturition season with late-born neonates in-
creasing use of agricultural areas compared with their early-
born counterparts (Linnell et al. 2004). Although microhabitat

characteristics affect site-specific selection for offspring, di-
rect comparisons regarding how these characteristics differ
between offspring and their dams are limited.

Our objective was to compare vegetative characteristics
found at white-tailed deer parturition sites and neonate bed
sites after assessing whether vegetative characteristics of both
parturition and neonate bed sites differed from paired random
sites. Both dams and neonates likely select sites to reduce
predation risk (Lehman et al. 2016; Pitman et al. 2014;
Rearden et al. 2011) and increase thermoregulatory efficiency
(Grovenburg et al. 2010; Kjellander et al. 2012; Linnell et al.
1995). Therefore, we developed multiple hypotheses
(Tables 1 and 2) to assess what vegetative characteristics af-
fected maternal parturition site and neonate bed site selection.
Additionally, given the prevalence of row crop agriculture in
the Northern Great Plains (Wright and Wimberly 2013), we
examined if percent of various cover types found within par-
turition and bed sites varied throughout the parturition season
to assess if use of row crops increased as crops matured and
subsequently provided increased cover.

Materials and methods

Study area

We focused neonate capture in a 2652-km2 area in the central
portion of Burleigh County (47.0449° N, 100.5050°W), North
Dakota, in a 1492-km2 area in the southwestern portion of
Dunn County (47.2122° N, 102.7260° W), North Dakota, in
a 1865-km2 area in the southwestern portion of Grant County
(46.3951° N, 101.5536° W), North Dakota, and in a 1492-km2

area in the central portion of Perkins County (45.3888° N,
102.3224° W; Fig. 1), South Dakota. Burleigh County, North
Dakota, was located within the Northwestern Glaciated Plains
Level III Ecoregion while Grant and Dunn counties, North
Dakota, and Perkins County, South Dakota, were located in
the Northwestern Great Plains Level III Ecoregion (Bryce

Table 1 List of variables included for each of 9 models describing
various vegetation characteristics and structure found for 63 neonate
bed sites located in Burleigh, Dunn, and Grant Counties, North Dakota,
and Perkins County, South Dakota, USA. We captured neonates in
Burleigh County, North Dakota, from 20 May to 30 June 2011 and
from 23 May to 23 June in Dunn and Grant Counties, North Dakota,
and in Perkins County, South Dakota, during 2014 and 2015

Model name Variable description

Grassland Percent grassland

Forested Percent forested

Forb Percent forbs including alfalfa

Vegetative structure Understory vegetation height + percent
canopy cover

Vegetative overstory Overstory vegetation height

Vegetative understory Understory vegetation height

Grassland + structure Percent grassland + understory vegetation
height + percent canopy cover

Forested + structure Percent forested + understory vegetation
height + percent canopy cover

Forb + structure Percent cropland + understory vegetation
height + percent canopy cover

Table 2 List of variables included for each of 4 models describing
various vegetation characteristics and structure found for 16 parturition
sites located in Burleigh, Dunn, and Grant Counties, North Dakota, and
Perkins County, South Dakota, USA. We captured neonates in Burleigh
County, North Dakota, from 20May to 30 June 2011 and from 23May to
23 June in Dunn and Grant Counties, North Dakota, and in Perkins
County, South Dakota, during 2014 and 2015

Model name Variable description

Grassland Percent grassland

Forb Percent forb

Vegetative overstory Overstory vegetation height

Vegetative understory Understory vegetation height
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et al. 1998). Grasslands and croplands were the dominant cover
types and ranged from 60 to 86% and 11 to 26%, respectively,
while forested cover types ranged from 0.01% in Perkins
County to 9% in Dunn County (Cropland Data Layer, United
States Department of Agriculture (USDA) 2011). Wetlands
and water also were prevalent cover types (7%) in Burleigh
County but were not prevalent in Dunn, Grant, or Perkins
Counties (United States Department of Agriculture (USDA)
2011). Thirty-year mean annual precipitation ranged from
41.2 cm (Grant County) to 44.9 cm (Burleigh and Perkins
Counties) and variation in 30-year mean monthly temperature
was greatest in Perkins County ranging from − 12.1 to 30.3 °C
(North Dakota State Climate Office 2016).

Landscapes in this region were dominated by native mixed
grassland prairie species comprised western wheatgrass
(Pascopyrum smithii), needle-and-thread (Hesperostipa comata),
green needlegrass (Nassella viridula), little bluestem
(Schizachyrium scoparium), big bluestem (Andropogon
gerardii), Indiangrass (Sorghastrum nutans), prairie Junegrass

(Koeleria macrantha), and reed canarygrass (Phalaris
arundinacea). Introduced grasses included smooth brome
(Bromus inermis), orchardgrass (Dactylis glomerata), crested
wheatgrass (Agropyron sp.), timothy (Phleum pratense), and
Kentucky bluegrass (Poa pratensis). Primary harvested crops
included corn (Zeamays), wheat (Triticum aestivum), sunflowers
(Helianthus annuus), and alfalfa (Medicago sativa). Other crops
included flaxseed (Linum usitatissimum), canola (Brassica sp.),
soybeans (Glycine max), barley (Hordeum vulgare), safflower
(Carthamus tinctorius), oats (Avena sativa), and Sudangrass
(Sorghum bicolor).

Data collection

We captured neonates in Burleigh County, North Dakota,
from 20 May to 30 June 2011 and from 23 May to 23 June
in Dunn and Grant Counties, North Dakota, and in Perkins
County, South Dakota, during 2014 and 2015. We captured
adult female (≥ 1.5-year-old) white-tailed deer via helicopter

Fig. 1 Study area where
vegetative characteristics for 53
parturition and 140 white-tailed
deer bed sites were measured. a
Burleigh County, North Dakota.
b Dunn County, North Dakota. c
Grant County, North Dakota. d
Perkins County, South Dakota.
We captured neonates in Burleigh
County, North Dakota, from 20
May to 30 June 2011 and from 23
May to 23 June in Dunn and
Grant Counties, North Dakota,
and in Perkins County, South
Dakota, during 2014 and 2015
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net guns (Native Range Capture Services, Elko, NV, USA).
We then affixed very high frequency (VHF) radio-collars
(model M2610B, Advanced Telemetry Systems, Isanti, MN)
to individuals and inserted Vaginal Implant Transmitters
(Advanced Telemetry Systems, Inc., Isanti, MN, USA;
Bowman and Jacobson 1998; Carstensen et al. 2003;
Swanson et al. 2008). We also used reproductive female post-
partum behavior as an indicator of presence of neonates
(Downing and McGinnes 1969; Huegel et al. 1985; White
et al. 1972) and then captured neonates by hand or net. We
wore latex gloves and stored all radio-collars and other equip-
ment in natural vegetation to minimize scent transfer. We
fitted neonates with expandable breakaway radio-collars and
monitored individuals daily for the first 30 days using a truck-
mounted null-peak antenna system (Brinkman et al. 2002),
hand-held Yagi antennas, aerial telemetry, and omnidirection-
al whip antennas. We determined bed sites to be locations
where we opportunistically captured neonates and parturition
sites to be locations where we found a VIT. We only captured
neonates once. All handling methods followed the American
Society ofMammalogists guidelines for mammal care and use
(Sikes et al. 2016) and were approved by the South Dakota
State University Institutional Animal Care and Use
Committee (Approval No. 10-006E and 13-091A).

We completed vegetation assessments at parturition sites and
neonate bed sites immediately if neonates flushed upon approach
or collected measurements within 39 days if neonates did not
flush. We measured all vegetation heights using a modified
Robel pole (Robel et al. 1970) with 10-cm increments. The ob-
server was about 4 m from the Robel pole when collecting veg-
etation data. Vegetation overstory height represented the tallest
vegetation marked on the Robel pole, whereas understory vege-
tation height represented the tallest vegetation where the Robel
pole was completely obstructed. We recorded measurements
from the center of the parturition or bed site in each cardinal
direction and averaged them (by site) to determine height of the
vegetation overstory and height of vegetation understory (Robel
et al. 1970). We recorded ocular estimations of percent cover
using 5% increments for bare ground, forbs (including alfalfa),
grass, litter, row crop, shrub, and tree in 24, 1.0-m2 Daubenmire
plots (Daubenmire 1959) spaced at 1-m intervals along four per-
pendicular transects originating at the center of parturition or bed
sites and paired random sites. We estimated tree canopy cover at
6 m north, south, east, and west of parturition and bed sites or
paired random sites using a spherical densiometer (Uresk et al.
1999).We followed themethods of Grovenburg et al. (2010) and
identified each paired random site within 250 m of its associated
parturition or bed site. Locating paired random sites within
250 m of its associated parturition or bed site allowed us to keep
random sites within the same cover type. After locating paired
random sites in similar cover types (grassland, forested, riparian),
we then collected data in the samemanner as described above for
parturition and bed sites (Grovenburg et al. 2010).

Statistical analysis

Due to logistical constraints that delayed us from measuring
vegetation at parturition sites, bed sites, and their respective
paired random sites up to 39 days later, we restricted our partu-
rition and bed site selection analyses to sites where we collected
vegetation measurements within 14 days of locating sites.
Therefore, we assessed if vegetation characteristics varied be-
tween parturition and bed sites and their paired random sites
using a conditional logistic model and estimated odds ratios
using the clogit function in the Survival package in Program R
(R Core Team 2016 version 3.3.1; Therneau 2015). The clogit
function allows for specific comparisons between capture and
paired random sites. We developed nine models describing gen-
eral cover type, vegetative structure, or a combination of cover
type and structure for bed sites (Table 1). We simplified our
candidate set to four models describing vegetative structure and
composition for parturition sites due to sample size (n = 16;
Table 2). We then ranked each model using Akaike’s
Information Criterion corrected for small sample size (AICc)
and consideredmodels within 2ΔAICc as potentially competing
(Burnham and Anderson 2002). We derived AICc values, num-
ber of parameters, and model weights using the AICc and weight
functions in the MuMIn package in Program R (Barton 2016).
We assessed correlation among explanatory variables using the
cor.test function and included multiple variables in a single mod-
el when |r| ≤ 0.50. We used the model.avg. function in the
MuMIn package in Program R when necessary to calculate
model-averaged coefficients. We considered variables important
when their 95% confidence intervals (95% CIs) excluded 0
(Burnham and Anderson 2002; Arnold 2010). We considered
odds ratios important when their 95% CIs excluded 1. We pres-
ent all means ± 1 standard deviation.

Finally, we visually assessed if dam and neonate use of spe-
cific cover types varied by quantifying the number of parturition
and bed sites that we found in each cover type on a weekly basis
throughout the parturition season (day 1 representing the first
parturition/bed site found followed by the subsequent 6 days).
Although vegetative measurements were delayed, the cover type
of each site would not have changed temporally. Therefore, we
used our entire dataset for this assessment.

Results

We captured neonates from 20 May to 30 June and collected
vegetation data at 34 parturition sites primarily located in
grassland (47%; n = 16), riparian (26%, n = 9), and wooded
(18%, n = 6) cover types with all other cover types containing
≤ 9% (n = 3) of parturition sites. We collected vegetation data
at 63 individual neonate bed sites primarily located in grass-
lands (68%; n = 43), followed by riparian (17%; n = 11), and
wooded (11%; n = 7) cover types with all other cover types

Mamm Res



containing ≤ 2% (n = 2) of bed sites. Explanatory variables
were not correlated (|r| ≤ 0.33).

Given we found most parturition sites in grasslands, we
reduced our analysis to include only those parturition sites
found in grasslands. In doing so, we observed two competing
models that described vegetation characteristics at parturition
sites (Table 3). Our top supported model was our vegetative
understory model, which carried a majority of model weight
(wi = 0.64). Understory vegetation height at parturition sites
differed from random sites and had a negative effect (β = −
0.168; 95% CI, − 0.325–− 0.011, n = 16) on parturition site
selection such that for every 1-cm decrease in understory veg-
etation height, probability of a female selecting that site for
parturition increased 15.4% (odds ratio = 0.845; 95% CI,
0.722–0.989). Mean understory vegetation height was
22.6 ± 12.7 cm at parturition sites and was 31.8 ± 13.0 cm at
random sites. Overstory vegetation height at parturition sites
differed from random sites and had a negative effect (β = −
0.067; 95% CI, − 0.128–− 0.005, n = 16) on parturition site
selection such that for every 1-cm decrease in overstory veg-
etation height, probability of a female selecting that site for
parturition increased 6.5% (odds ratio = 0.935; 95% CI,
0.880–0.994). Mean overstory vegetation height was
52.9 ± 26.9 cm at parturition sites and was 71.2 ± 16.8 cm at
random sites. The likelihood ratio test indicated adequate
model fit (vegetative understory model, 9.26, DF = 1, P =
0.002; vegetative overstory model, 8.01, DF = 1, P = 0.005).

Although our most parsimoniousmodel describing neonate
bed site selectionwas our vegetative structure model, it carried
low model weight (wi = 0.31; Table 4). Our forb + structure
model (wi = 0.19) and vegetative understory model (wi = 0.14)
also appeared to be competing. The 95% CIs in our top
models overlapped 0 for all variables (S1).

Therefore, we calculated the model-averaged coefficients due
tomodel uncertainty (Burnham andAnderson 2002). After mod-
el averaging, there was a trend of understory vegetation height
(β = 0.025; 95% CI, − 0.005–0.065, n = 63) and overstory

vegetation height (β = 0.001; 95% CI, − 0.009–0.034, n = 63)
displaying a general positive impact on bed site selection. The
95% CIs for all other model-averaged coefficients greatly over-
lapped 0 (Table 5). Mean understory vegetation height was 36.2
± 14.0 cm at bed sites and 32.4 ± 16.3 cm at random sites. Mean
overstory vegetation height was 72.8 ± 24.5 cm at bed sites and
was 69.5 ± 24.6 cm at random sites. The likelihood ratio test
indicated adequate model fit for our vegetative structure model
(6.96, DF = 2, P = 0.030) and for our forb + structure model
(8.26, DF = 3, P = 0.040) but not for our vegetative understory
model (3.32, DF = 1, P = 0.70).

We did not detect any trends for variation in cover types used
for parturition sites (Fig. 2) and bed sites (Fig. 3) throughout the
parturition season as we consistently found parturition and bed
sites in grassland and riparian cover types. We did not find any
parturition sites in row crop or other cover types.

Discussion

Our understory vegetation height model was our top supported
model for parturition site selection with our overstory vegetation
heightmodel competingwith our topmodel. Adult femalewhite-
tailed deer selected for shorter vegetation than random when
selecting parturition sites. Our results support Rearden et al.
(2011) who found female elk selected for parturition sites with
increased visibility (but see Alldredge et al. 1991, Barrett 1984,
Barbknecht et al. 2011, and Lehman et al. 2016 for cases where
female ungulates selected parturition sites with increased cover).
Regardless, moose (Bowyer et al. 1999), American bison (Kaze
et al. 2016), and woodland caribou (Leclerc et al. 2012) selected
for parturition sites at higher elevations, likely to increase their

Table 3 Model results for 4 models describing various vegetation
characteristics and structure found for 16 parturition sites of adult
female white-tailed deer located in Burleigh, Dunn, and Grant Counties,
North Dakota, and Perkins County, South Dakota, USA. We captured
neonates in Burleigh County, North Dakota, from 20 May to 30
June 2011 and from 23 May to 23 June in Dunn and Grant Counties,
North Dakota, and in Perkins County, South Dakota, during 2014 and
2015

Model ΔAICc wi K

Vegetative understory 0.00 0.64 1

Vegetative overstory 1.25 0.34 1

Forb 7.87 0.01 1

Grassland 9.23 0.01 1

Table 4 Model results for 9 models describing various vegetation
characteristics and structure found for 63 bed sites of neonate white-
tailed deer located in Burleigh, Dunn, and Grant Counties, North
Dakota, and Perkins County, South Dakota, USA. We captured neonates
in Burleigh County, North Dakota, from 20 May to 30 June 2011 and
from 23 May to 23 June in Dunn and Grant Counties, North Dakota, and
in Perkins County, South Dakota, during 2014 and 2015

Model ΔAICc wi K

Vegetative structure 0.00 0.31 2

Forb + structure 0.91 0.19 3

Vegetative understory 1.51 0.14 1

Grassland + structure 2.19 0.10 3

Forested + structure 2.25 0.10 4

Forb 3.56 0.05 1

Vegetative overstory 3.58 0.05 1

Grassland 4.58 0.03 1

Forested 5.28 0.02 2
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visibility. Therefore, given the magnitude of difference between
vegetative heights recorded at parturition sites compared with
random sites and the increased probability of a mother selecting
a site based on vegetative height, increasing visibility during a
birthing event is seemingly an important antipredator defense
strategy forwhite-tailed deermothers using grassland cover types
in the Northern Great Plains.

Although we report a general trend of increased vegetation
height at neonate bed sites compared with random sites, weak
estimates and imprecise confidence intervals preclude us from
directly discussing this variation. Nevertheless, several studies
report ungulate neonates such as mule deer (Gerlach and
Vaughan 1991), elk (Pitman et al. 2014), bighorn sheep
(Ovis canadensis; Smith et al. 2015), and pronghorn (Barrett
1984; Christie et al. 2017) selected for bed sites with increased
concealment. White-tailed deer neonates display fear brady-
cardia and are relatively immobile within their first 30 days of
life (Carl and Robbins 1988; Lent 1974). Therefore, increased
understory and overstory vegetation height provides increased
cover and visual obstruction from predators potentially de-
creasing predation risk, though the effects of vegetation at
bed sites on neonate survival are inconsistent (Canon and
Bryant 1997; Chitwood et al. 2015). Increased vegetative
height at neonate bed sites also could potentially help neonates
thermoregulate during inclement weather (precipitation
events), potentially influencing survival (Grovenburg et al.
2010; Kjellander et al. 2012; Linnell et al. 1995). Grassland
was the most common cover type in our study, comprised up
to 86% of the landscape, and was the most common cover
type in which neonate bed sites were located throughout the
parturition season. Concomitantly, fawn survival is generally

Fig. 2 Number of parturition sites used by week throughout the parturition season in South Dakota and North Dakota, USA.We located parturition sites
from 20 May to 30 June 2011 and from 23 May to 23 June in 2014 and 2015. Parturition sites were not found in either row crop or other cover types

Table 5 Model-averaged beta coefficients and 95% confidence
intervals for 63 bed sites of white-tailed deer neonates collected through-
out South Dakota and North Dakota, USA. We captured neonates in
Burleigh County, North Dakota, from 20 May to 30 June 2011 and from
23 May to 23 June in Dunn and Grant Counties, North Dakota, and in
Perkins County, South Dakota, during 2014 and 2015

Variable Beta Lower 95% CI Upper 95% CI

Understory vegetation height 0.025 − 0.005 0.065

Percent canopy cover 0.044 − 0.018 0.143

Percent forb 0.006 − 0.021 0.070

Percent grass − 0.001 − 0.040 0.032

Percent forested − 0.023 − 0.569 0.189

Percent shrub − 0.005 − 0.159 0.080

Overstory vegetation height 0.001 − 0.009 0.034

Mamm Res



high in the Northern Great Plains (Michel et al. 2018). Given
the lack of variation between vegetative structure at neonate
bed sites compared with random sites (understory vegetation
height = ~ 4-cm difference; overstory vegetation height = ~ 3-
cm difference), our results indicate grasslands likely provide
the vegetative structure necessary for adequate concealment
and thermoregulation that neonates require early in life in the
Northern Great Plains.

Neither maternal nor neonate use of cover types varied
throughout the parturition season. Although row crops such
as corn and soybeans mature throughout the summer and,
therefore, provide increased hiding cover as neonates age
(Grovenburg et al. 2012a), we found no evidence that white-
tailed deer use agricultural crops more than other cover types
later in the parturition season. This is likely because grass-
lands, riparian areas, and forested areas represent permanent
cover and provide vegetation with adequate height during the
parturition season. Phenology of cool-season grasses also can
impact white-tailed deer selection given that 47% of parturi-
tion sites and 68% of neonate bed sites were found in grass-
lands. For example, cool-season grasses grow mostly in early
spring and generally complete flowering by 21 June (Leopold
and Kriedemann 1975; Weier et al. 1974); we captured all
neonates by 30 June. Dams also selected understory vegeta-
tion that was about 23 cm tall while neonates selected vege-
tation that was about 36 cm tall, a height most cool-season
plants reach before maturation. Therefore, between growth of
cool-season grasses and residual dead plant material, dams
and neonates likely had enough permanent cover in grasslands
throughout the parturition season while obtaining additional
cover from riparian and forested areas.

Our results emphasize the importance of understanding
whether habitat requirements vary by life-stage for a species.

For example, previous research has shown that forested areas
provide important winter cover for adult white-tailed deer
(Grovenburg et al. 2011), whereas white-tailed deer neonate
survival decreased with increasing forested cover; potentially
because small linear tree plantings on the prairie may serve as
ecological traps due to coyote predation (Grovenburg et al.
2012b). Nevertheless, understanding age-specific habitat re-
quirements allows for more specific habitat management,
which ultimately encourages vegetative diversity on the land-
scape and could potentially impact life-history characteristics
such as survival for several age-classes.

We recommend maintaining a mosaic of grassland, ripari-
an, and forested cover types in agriculturally dominated land-
scapes as those cover types contained 92% of parturition sites
and 86% of all bed site locations in our study. Furthermore,
maintaining an understory vegetation height of about 23 cm
for mothers and about 36 cm for neonates while maintaining
an overstory vegetation height of about 53 cm for mothers and
about 73 cm for neonates should allow for adequate visibility
for mothers and adequate concealment for neonates, particu-
larly in grassland cover types. Maintaining this vegetative
height will also likely allowmothers to detect predators during
parturition events (Rearden et al. 2011) and may assist neo-
nates in avoiding detection by predators (Gerlach and
Vaughan 1991; Pitman et al. 2014; Smith et al. 2015).
Finally, dam and neonate use of cover types did not vary
throughout the parturition season, suggesting white-tailed
deer likely do not increase use of agricultural crops throughout
the parturition season; however, deer do likely increase their
use of row crops later in summer as crops provide increased
cover as they mature (Grovenburg et al. 2012a). Regardless,
agricultural crops are probably not beneficial in providing
cover to white-tailed deer during the parturition season.

Fig. 3 Number of bed sites used
by week throughout the
parturition season in South
Dakota and North Dakota, USA.
We located parturition sites from
20May to 30 June 2011 and from
23 May to 23 June in 2014 and
2015
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